teradataml 20.0.0.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +2762 -0
- teradataml/__init__.py +78 -0
- teradataml/_version.py +11 -0
- teradataml/analytics/Transformations.py +2996 -0
- teradataml/analytics/__init__.py +82 -0
- teradataml/analytics/analytic_function_executor.py +2416 -0
- teradataml/analytics/analytic_query_generator.py +1050 -0
- teradataml/analytics/byom/H2OPredict.py +514 -0
- teradataml/analytics/byom/PMMLPredict.py +437 -0
- teradataml/analytics/byom/__init__.py +16 -0
- teradataml/analytics/json_parser/__init__.py +133 -0
- teradataml/analytics/json_parser/analytic_functions_argument.py +1805 -0
- teradataml/analytics/json_parser/json_store.py +191 -0
- teradataml/analytics/json_parser/metadata.py +1666 -0
- teradataml/analytics/json_parser/utils.py +805 -0
- teradataml/analytics/meta_class.py +236 -0
- teradataml/analytics/sqle/DecisionTreePredict.py +456 -0
- teradataml/analytics/sqle/NaiveBayesPredict.py +420 -0
- teradataml/analytics/sqle/__init__.py +128 -0
- teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -0
- teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -0
- teradataml/analytics/table_operator/__init__.py +11 -0
- teradataml/analytics/uaf/__init__.py +82 -0
- teradataml/analytics/utils.py +828 -0
- teradataml/analytics/valib.py +1617 -0
- teradataml/automl/__init__.py +5835 -0
- teradataml/automl/autodataprep/__init__.py +493 -0
- teradataml/automl/custom_json_utils.py +1625 -0
- teradataml/automl/data_preparation.py +1384 -0
- teradataml/automl/data_transformation.py +1254 -0
- teradataml/automl/feature_engineering.py +2273 -0
- teradataml/automl/feature_exploration.py +1873 -0
- teradataml/automl/model_evaluation.py +488 -0
- teradataml/automl/model_training.py +1407 -0
- teradataml/catalog/__init__.py +2 -0
- teradataml/catalog/byom.py +1759 -0
- teradataml/catalog/function_argument_mapper.py +859 -0
- teradataml/catalog/model_cataloging_utils.py +491 -0
- teradataml/clients/__init__.py +0 -0
- teradataml/clients/auth_client.py +137 -0
- teradataml/clients/keycloak_client.py +165 -0
- teradataml/clients/pkce_client.py +481 -0
- teradataml/common/__init__.py +1 -0
- teradataml/common/aed_utils.py +2078 -0
- teradataml/common/bulk_exposed_utils.py +113 -0
- teradataml/common/constants.py +1669 -0
- teradataml/common/deprecations.py +166 -0
- teradataml/common/exceptions.py +147 -0
- teradataml/common/formula.py +743 -0
- teradataml/common/garbagecollector.py +666 -0
- teradataml/common/logger.py +1261 -0
- teradataml/common/messagecodes.py +518 -0
- teradataml/common/messages.py +262 -0
- teradataml/common/pylogger.py +67 -0
- teradataml/common/sqlbundle.py +764 -0
- teradataml/common/td_coltype_code_to_tdtype.py +48 -0
- teradataml/common/utils.py +3166 -0
- teradataml/common/warnings.py +36 -0
- teradataml/common/wrapper_utils.py +625 -0
- teradataml/config/__init__.py +0 -0
- teradataml/config/dummy_file1.cfg +5 -0
- teradataml/config/dummy_file2.cfg +3 -0
- teradataml/config/sqlengine_alias_definitions_v1.0 +14 -0
- teradataml/config/sqlengine_alias_definitions_v1.1 +20 -0
- teradataml/config/sqlengine_alias_definitions_v1.3 +19 -0
- teradataml/context/__init__.py +0 -0
- teradataml/context/aed_context.py +223 -0
- teradataml/context/context.py +1462 -0
- teradataml/data/A_loan.csv +19 -0
- teradataml/data/BINARY_REALS_LEFT.csv +11 -0
- teradataml/data/BINARY_REALS_RIGHT.csv +11 -0
- teradataml/data/B_loan.csv +49 -0
- teradataml/data/BuoyData2.csv +17 -0
- teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -0
- teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -0
- teradataml/data/Convolve2RealsLeft.csv +5 -0
- teradataml/data/Convolve2RealsRight.csv +5 -0
- teradataml/data/Convolve2ValidLeft.csv +11 -0
- teradataml/data/Convolve2ValidRight.csv +11 -0
- teradataml/data/DFFTConv_Real_8_8.csv +65 -0
- teradataml/data/Employee.csv +5 -0
- teradataml/data/Employee_Address.csv +4 -0
- teradataml/data/Employee_roles.csv +5 -0
- teradataml/data/JulesBelvezeDummyData.csv +100 -0
- teradataml/data/Mall_customer_data.csv +201 -0
- teradataml/data/Orders1_12mf.csv +25 -0
- teradataml/data/Pi_loan.csv +7 -0
- teradataml/data/SMOOTHED_DATA.csv +7 -0
- teradataml/data/TestDFFT8.csv +9 -0
- teradataml/data/TestRiver.csv +109 -0
- teradataml/data/Traindata.csv +28 -0
- teradataml/data/__init__.py +0 -0
- teradataml/data/acf.csv +17 -0
- teradataml/data/adaboost_example.json +34 -0
- teradataml/data/adaboostpredict_example.json +24 -0
- teradataml/data/additional_table.csv +11 -0
- teradataml/data/admissions_test.csv +21 -0
- teradataml/data/admissions_train.csv +41 -0
- teradataml/data/admissions_train_nulls.csv +41 -0
- teradataml/data/advertising.csv +201 -0
- teradataml/data/ageandheight.csv +13 -0
- teradataml/data/ageandpressure.csv +31 -0
- teradataml/data/amazon_reviews_25.csv +26 -0
- teradataml/data/antiselect_example.json +36 -0
- teradataml/data/antiselect_input.csv +8 -0
- teradataml/data/antiselect_input_mixed_case.csv +8 -0
- teradataml/data/applicant_external.csv +7 -0
- teradataml/data/applicant_reference.csv +7 -0
- teradataml/data/apriori_example.json +22 -0
- teradataml/data/arima_example.json +9 -0
- teradataml/data/assortedtext_input.csv +8 -0
- teradataml/data/attribution_example.json +34 -0
- teradataml/data/attribution_sample_table.csv +27 -0
- teradataml/data/attribution_sample_table1.csv +6 -0
- teradataml/data/attribution_sample_table2.csv +11 -0
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bank_marketing.csv +11163 -0
- teradataml/data/bank_web_clicks1.csv +43 -0
- teradataml/data/bank_web_clicks2.csv +91 -0
- teradataml/data/bank_web_url.csv +85 -0
- teradataml/data/barrier.csv +2 -0
- teradataml/data/barrier_new.csv +3 -0
- teradataml/data/betweenness_example.json +14 -0
- teradataml/data/bike_sharing.csv +732 -0
- teradataml/data/bin_breaks.csv +8 -0
- teradataml/data/bin_fit_ip.csv +4 -0
- teradataml/data/binary_complex_left.csv +11 -0
- teradataml/data/binary_complex_right.csv +11 -0
- teradataml/data/binary_matrix_complex_left.csv +21 -0
- teradataml/data/binary_matrix_complex_right.csv +21 -0
- teradataml/data/binary_matrix_real_left.csv +21 -0
- teradataml/data/binary_matrix_real_right.csv +21 -0
- teradataml/data/blood2ageandweight.csv +26 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/boston.csv +507 -0
- teradataml/data/boston2cols.csv +721 -0
- teradataml/data/breast_cancer.csv +570 -0
- teradataml/data/buoydata_mix.csv +11 -0
- teradataml/data/burst_data.csv +5 -0
- teradataml/data/burst_example.json +21 -0
- teradataml/data/byom_example.json +34 -0
- teradataml/data/bytes_table.csv +4 -0
- teradataml/data/cal_housing_ex_raw.csv +70 -0
- teradataml/data/callers.csv +7 -0
- teradataml/data/calls.csv +10 -0
- teradataml/data/cars_hist.csv +33 -0
- teradataml/data/cat_table.csv +25 -0
- teradataml/data/ccm_example.json +32 -0
- teradataml/data/ccm_input.csv +91 -0
- teradataml/data/ccm_input2.csv +13 -0
- teradataml/data/ccmexample.csv +101 -0
- teradataml/data/ccmprepare_example.json +9 -0
- teradataml/data/ccmprepare_input.csv +91 -0
- teradataml/data/cfilter_example.json +12 -0
- teradataml/data/changepointdetection_example.json +18 -0
- teradataml/data/changepointdetectionrt_example.json +8 -0
- teradataml/data/chi_sq.csv +3 -0
- teradataml/data/churn_data.csv +14 -0
- teradataml/data/churn_emission.csv +35 -0
- teradataml/data/churn_initial.csv +3 -0
- teradataml/data/churn_state_transition.csv +5 -0
- teradataml/data/citedges_2.csv +745 -0
- teradataml/data/citvertices_2.csv +1210 -0
- teradataml/data/clicks2.csv +16 -0
- teradataml/data/clickstream.csv +13 -0
- teradataml/data/clickstream1.csv +11 -0
- teradataml/data/closeness_example.json +16 -0
- teradataml/data/complaints.csv +21 -0
- teradataml/data/complaints_mini.csv +3 -0
- teradataml/data/complaints_test_tokenized.csv +353 -0
- teradataml/data/complaints_testtoken.csv +224 -0
- teradataml/data/complaints_tokens_model.csv +348 -0
- teradataml/data/complaints_tokens_test.csv +353 -0
- teradataml/data/complaints_traintoken.csv +472 -0
- teradataml/data/computers_category.csv +1001 -0
- teradataml/data/computers_test1.csv +1252 -0
- teradataml/data/computers_train1.csv +5009 -0
- teradataml/data/computers_train1_clustered.csv +5009 -0
- teradataml/data/confusionmatrix_example.json +9 -0
- teradataml/data/conversion_event_table.csv +3 -0
- teradataml/data/corr_input.csv +17 -0
- teradataml/data/correlation_example.json +11 -0
- teradataml/data/covid_confirm_sd.csv +83 -0
- teradataml/data/coxhazardratio_example.json +39 -0
- teradataml/data/coxph_example.json +15 -0
- teradataml/data/coxsurvival_example.json +28 -0
- teradataml/data/cpt.csv +41 -0
- teradataml/data/credit_ex_merged.csv +45 -0
- teradataml/data/creditcard_data.csv +1001 -0
- teradataml/data/customer_loyalty.csv +301 -0
- teradataml/data/customer_loyalty_newseq.csv +31 -0
- teradataml/data/customer_segmentation_test.csv +2628 -0
- teradataml/data/customer_segmentation_train.csv +8069 -0
- teradataml/data/dataframe_example.json +173 -0
- teradataml/data/decisionforest_example.json +37 -0
- teradataml/data/decisionforestpredict_example.json +38 -0
- teradataml/data/decisiontree_example.json +21 -0
- teradataml/data/decisiontreepredict_example.json +45 -0
- teradataml/data/dfft2_size4_real.csv +17 -0
- teradataml/data/dfft2_test_matrix16.csv +17 -0
- teradataml/data/dfft2conv_real_4_4.csv +65 -0
- teradataml/data/diabetes.csv +443 -0
- teradataml/data/diabetes_test.csv +89 -0
- teradataml/data/dict_table.csv +5 -0
- teradataml/data/docperterm_table.csv +4 -0
- teradataml/data/docs/__init__.py +1 -0
- teradataml/data/docs/byom/__init__.py +0 -0
- teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -0
- teradataml/data/docs/byom/docs/DataikuPredict.py +217 -0
- teradataml/data/docs/byom/docs/H2OPredict.py +325 -0
- teradataml/data/docs/byom/docs/ONNXEmbeddings.py +242 -0
- teradataml/data/docs/byom/docs/ONNXPredict.py +283 -0
- teradataml/data/docs/byom/docs/ONNXSeq2Seq.py +255 -0
- teradataml/data/docs/byom/docs/PMMLPredict.py +278 -0
- teradataml/data/docs/byom/docs/__init__.py +0 -0
- teradataml/data/docs/sqle/__init__.py +0 -0
- teradataml/data/docs/sqle/docs_17_10/Antiselect.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/Attribution.py +200 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +172 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -0
- teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -0
- teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +96 -0
- teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -0
- teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +152 -0
- teradataml/data/docs/sqle/docs_17_10/FTest.py +161 -0
- teradataml/data/docs/sqle/docs_17_10/FillRowId.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/Fit.py +88 -0
- teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +85 -0
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +82 -0
- teradataml/data/docs/sqle/docs_17_10/Histogram.py +165 -0
- teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -0
- teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +209 -0
- teradataml/data/docs/sqle/docs_17_10/NPath.py +266 -0
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -0
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -0
- teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +135 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +166 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -0
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +112 -0
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -0
- teradataml/data/docs/sqle/docs_17_10/QQNorm.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +110 -0
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +118 -0
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -0
- teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +153 -0
- teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -0
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -0
- teradataml/data/docs/sqle/docs_17_10/Sessionize.py +114 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -0
- teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -0
- teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +146 -0
- teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +142 -0
- teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -0
- teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -0
- teradataml/data/docs/sqle/docs_17_10/__init__.py +0 -0
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -0
- teradataml/data/docs/sqle/docs_17_20/Antiselect.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/Apriori.py +138 -0
- teradataml/data/docs/sqle/docs_17_20/Attribution.py +201 -0
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +172 -0
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -0
- teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
- teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -0
- teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +246 -0
- teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +280 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +136 -0
- teradataml/data/docs/sqle/docs_17_20/FTest.py +240 -0
- teradataml/data/docs/sqle/docs_17_20/FillRowId.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/Fit.py +88 -0
- teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +415 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -0
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -0
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +106 -0
- teradataml/data/docs/sqle/docs_17_20/Histogram.py +224 -0
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -0
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/KNN.py +215 -0
- teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -0
- teradataml/data/docs/sqle/docs_17_20/NERExtractor.py +121 -0
- teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +209 -0
- teradataml/data/docs/sqle/docs_17_20/NPath.py +266 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +127 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +119 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -0
- teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -0
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +231 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -0
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +220 -0
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +191 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -0
- teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -0
- teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/QQNorm.py +105 -0
- teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +155 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -0
- teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -0
- teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +118 -0
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -0
- teradataml/data/docs/sqle/docs_17_20/SMOTE.py +212 -0
- teradataml/data/docs/sqle/docs_17_20/SVM.py +414 -0
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -0
- teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +153 -0
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -0
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -0
- teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -0
- teradataml/data/docs/sqle/docs_17_20/Sessionize.py +114 -0
- teradataml/data/docs/sqle/docs_17_20/Shap.py +225 -0
- teradataml/data/docs/sqle/docs_17_20/Silhouette.py +153 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -0
- teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +146 -0
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -0
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -0
- teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
- teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +267 -0
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -0
- teradataml/data/docs/sqle/docs_17_20/TextMorph.py +119 -0
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +224 -0
- teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +160 -0
- teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -0
- teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -0
- teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
- teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +169 -0
- teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +237 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +362 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -0
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -0
- teradataml/data/docs/sqle/docs_17_20/__init__.py +0 -0
- teradataml/data/docs/tableoperator/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +430 -0
- teradataml/data/docs/tableoperator/docs_17_00/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +430 -0
- teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +348 -0
- teradataml/data/docs/tableoperator/docs_17_05/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +429 -0
- teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +348 -0
- teradataml/data/docs/tableoperator/docs_17_10/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
- teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +440 -0
- teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +387 -0
- teradataml/data/docs/tableoperator/docs_17_20/__init__.py +0 -0
- teradataml/data/docs/uaf/__init__.py +0 -0
- teradataml/data/docs/uaf/docs_17_20/ACF.py +186 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +370 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +172 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +161 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
- teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
- teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +248 -0
- teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +178 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +175 -0
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +230 -0
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +218 -0
- teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +185 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT.py +204 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +216 -0
- teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +192 -0
- teradataml/data/docs/uaf/docs_17_20/DIFF.py +175 -0
- teradataml/data/docs/uaf/docs_17_20/DTW.py +180 -0
- teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
- teradataml/data/docs/uaf/docs_17_20/DWT2D.py +217 -0
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +142 -0
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +184 -0
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +185 -0
- teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
- teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +206 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +143 -0
- teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +198 -0
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +260 -0
- teradataml/data/docs/uaf/docs_17_20/IDFFT.py +165 -0
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +191 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
- teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/InputValidator.py +121 -0
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +156 -0
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +215 -0
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +174 -0
- teradataml/data/docs/uaf/docs_17_20/MInfo.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +145 -0
- teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +191 -0
- teradataml/data/docs/uaf/docs_17_20/PACF.py +157 -0
- teradataml/data/docs/uaf/docs_17_20/Portman.py +217 -0
- teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +203 -0
- teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +155 -0
- teradataml/data/docs/uaf/docs_17_20/Resample.py +237 -0
- teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
- teradataml/data/docs/uaf/docs_17_20/SInfo.py +123 -0
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +173 -0
- teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +174 -0
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +164 -0
- teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +180 -0
- teradataml/data/docs/uaf/docs_17_20/Smoothma.py +208 -0
- teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +151 -0
- teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +202 -0
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
- teradataml/data/docs/uaf/docs_17_20/__init__.py +0 -0
- teradataml/data/dtw_example.json +18 -0
- teradataml/data/dtw_t1.csv +11 -0
- teradataml/data/dtw_t2.csv +4 -0
- teradataml/data/dwt2d_dataTable.csv +65 -0
- teradataml/data/dwt2d_example.json +16 -0
- teradataml/data/dwt_dataTable.csv +8 -0
- teradataml/data/dwt_example.json +15 -0
- teradataml/data/dwt_filterTable.csv +3 -0
- teradataml/data/dwt_filter_dim.csv +5 -0
- teradataml/data/emission.csv +9 -0
- teradataml/data/emp_table_by_dept.csv +19 -0
- teradataml/data/employee_info.csv +4 -0
- teradataml/data/employee_table.csv +6 -0
- teradataml/data/excluding_event_table.csv +2 -0
- teradataml/data/finance_data.csv +6 -0
- teradataml/data/finance_data2.csv +61 -0
- teradataml/data/finance_data3.csv +93 -0
- teradataml/data/finance_data4.csv +13 -0
- teradataml/data/fish.csv +160 -0
- teradataml/data/fm_blood2ageandweight.csv +26 -0
- teradataml/data/fmeasure_example.json +12 -0
- teradataml/data/followers_leaders.csv +10 -0
- teradataml/data/fpgrowth_example.json +12 -0
- teradataml/data/frequentpaths_example.json +29 -0
- teradataml/data/friends.csv +9 -0
- teradataml/data/fs_input.csv +33 -0
- teradataml/data/fs_input1.csv +33 -0
- teradataml/data/genData.csv +513 -0
- teradataml/data/geodataframe_example.json +40 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/glm_admissions_model.csv +12 -0
- teradataml/data/glm_example.json +56 -0
- teradataml/data/glml1l2_example.json +28 -0
- teradataml/data/glml1l2predict_example.json +54 -0
- teradataml/data/glmpredict_example.json +54 -0
- teradataml/data/gq_t1.csv +21 -0
- teradataml/data/grocery_transaction.csv +19 -0
- teradataml/data/hconvolve_complex_right.csv +5 -0
- teradataml/data/hconvolve_complex_rightmulti.csv +5 -0
- teradataml/data/histogram_example.json +12 -0
- teradataml/data/hmmdecoder_example.json +79 -0
- teradataml/data/hmmevaluator_example.json +25 -0
- teradataml/data/hmmsupervised_example.json +10 -0
- teradataml/data/hmmunsupervised_example.json +8 -0
- teradataml/data/hnsw_alter_data.csv +5 -0
- teradataml/data/hnsw_data.csv +10 -0
- teradataml/data/house_values.csv +12 -0
- teradataml/data/house_values2.csv +13 -0
- teradataml/data/housing_cat.csv +7 -0
- teradataml/data/housing_data.csv +9 -0
- teradataml/data/housing_test.csv +47 -0
- teradataml/data/housing_test_binary.csv +47 -0
- teradataml/data/housing_train.csv +493 -0
- teradataml/data/housing_train_attribute.csv +5 -0
- teradataml/data/housing_train_binary.csv +437 -0
- teradataml/data/housing_train_parameter.csv +2 -0
- teradataml/data/housing_train_response.csv +493 -0
- teradataml/data/housing_train_segment.csv +201 -0
- teradataml/data/ibm_stock.csv +370 -0
- teradataml/data/ibm_stock1.csv +370 -0
- teradataml/data/identitymatch_example.json +22 -0
- teradataml/data/idf_table.csv +4 -0
- teradataml/data/idwt2d_dataTable.csv +5 -0
- teradataml/data/idwt_dataTable.csv +8 -0
- teradataml/data/idwt_filterTable.csv +3 -0
- teradataml/data/impressions.csv +101 -0
- teradataml/data/inflation.csv +21 -0
- teradataml/data/initial.csv +3 -0
- teradataml/data/insect2Cols.csv +61 -0
- teradataml/data/insect_sprays.csv +13 -0
- teradataml/data/insurance.csv +1339 -0
- teradataml/data/interpolator_example.json +13 -0
- teradataml/data/interval_data.csv +5 -0
- teradataml/data/iris_altinput.csv +481 -0
- teradataml/data/iris_attribute_output.csv +8 -0
- teradataml/data/iris_attribute_test.csv +121 -0
- teradataml/data/iris_attribute_train.csv +481 -0
- teradataml/data/iris_category_expect_predict.csv +31 -0
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/iris_input.csv +151 -0
- teradataml/data/iris_response_train.csv +121 -0
- teradataml/data/iris_test.csv +31 -0
- teradataml/data/iris_train.csv +121 -0
- teradataml/data/join_table1.csv +4 -0
- teradataml/data/join_table2.csv +4 -0
- teradataml/data/jsons/anly_function_name.json +7 -0
- teradataml/data/jsons/byom/ONNXSeq2Seq.json +287 -0
- teradataml/data/jsons/byom/dataikupredict.json +148 -0
- teradataml/data/jsons/byom/datarobotpredict.json +147 -0
- teradataml/data/jsons/byom/h2opredict.json +195 -0
- teradataml/data/jsons/byom/onnxembeddings.json +267 -0
- teradataml/data/jsons/byom/onnxpredict.json +187 -0
- teradataml/data/jsons/byom/pmmlpredict.json +147 -0
- teradataml/data/jsons/paired_functions.json +450 -0
- teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/16.20/Attribution.json +249 -0
- teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/16.20/Pack.json +98 -0
- teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/16.20/Unpack.json +166 -0
- teradataml/data/jsons/sqle/16.20/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.00/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/17.00/Pack.json +98 -0
- teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.00/Unpack.json +166 -0
- teradataml/data/jsons/sqle/17.00/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.05/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/17.05/Pack.json +98 -0
- teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.05/Unpack.json +166 -0
- teradataml/data/jsons/sqle/17.05/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.10/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -0
- teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +172 -0
- teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -0
- teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -0
- teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -0
- teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -0
- teradataml/data/jsons/sqle/17.10/Pack.json +133 -0
- teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -0
- teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -0
- teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -0
- teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +54 -0
- teradataml/data/jsons/sqle/17.10/TD_Chisq.json +68 -0
- teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +54 -0
- teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +69 -0
- teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -0
- teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +52 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -0
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_Histogram.json +133 -0
- teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +183 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +66 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +197 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -0
- teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +112 -0
- teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +128 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +157 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +71 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +148 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -0
- teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -0
- teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +119 -0
- teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -0
- teradataml/data/jsons/sqle/17.10/Unpack.json +188 -0
- teradataml/data/jsons/sqle/17.10/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.20/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -0
- teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -0
- teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -0
- teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -0
- teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -0
- teradataml/data/jsons/sqle/17.20/Pack.json +133 -0
- teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -0
- teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +149 -0
- teradataml/data/jsons/sqle/17.20/TD_Apriori.json +181 -0
- teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -0
- teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
- teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_Chisq.json +68 -0
- teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +146 -0
- teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -0
- teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -0
- teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +260 -0
- teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -0
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -0
- teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -0
- teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -0
- teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -0
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -0
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -0
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -0
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -0
- teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -0
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +232 -0
- teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +87 -0
- teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -0
- teradataml/data/jsons/sqle/17.20/TD_NERExtractor.json +145 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -0
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +316 -0
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +124 -0
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -0
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -0
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -0
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -0
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -0
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -0
- teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -0
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -0
- teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -0
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +179 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +179 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +74 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -0
- teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +138 -0
- teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -0
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +128 -0
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_SMOTE.json +267 -0
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -0
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -0
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +310 -0
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +120 -0
- teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +194 -0
- teradataml/data/jsons/sqle/17.20/TD_Shap.json +221 -0
- teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +143 -0
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -0
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -0
- teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -0
- teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -0
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -0
- teradataml/data/jsons/sqle/17.20/TD_TextMorph.json +134 -0
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json +297 -0
- teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -0
- teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -0
- teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
- teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +183 -0
- teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -0
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -0
- teradataml/data/jsons/sqle/17.20/Unpack.json +188 -0
- teradataml/data/jsons/sqle/17.20/nPath.json +269 -0
- teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json +370 -0
- teradataml/data/jsons/sqle/20.00/AI_AskLLM.json +460 -0
- teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json +385 -0
- teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_MaskPII.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json +400 -0
- teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json +401 -0
- teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json +384 -0
- teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json +384 -0
- teradataml/data/jsons/sqle/20.00/TD_API_AzureML.json +151 -0
- teradataml/data/jsons/sqle/20.00/TD_API_Sagemaker.json +182 -0
- teradataml/data/jsons/sqle/20.00/TD_API_VertexAI.json +183 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSW.json +296 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json +206 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json +32 -0
- teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
- teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
- teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
- teradataml/data/jsons/tableoperator/17.00/read_nos.json +198 -0
- teradataml/data/jsons/tableoperator/17.05/read_nos.json +198 -0
- teradataml/data/jsons/tableoperator/17.05/write_nos.json +195 -0
- teradataml/data/jsons/tableoperator/17.10/read_nos.json +184 -0
- teradataml/data/jsons/tableoperator/17.10/write_nos.json +195 -0
- teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
- teradataml/data/jsons/tableoperator/17.20/read_nos.json +183 -0
- teradataml/data/jsons/tableoperator/17.20/write_nos.json +224 -0
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +132 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +396 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +77 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +153 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
- teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +107 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +106 -0
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +89 -0
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +104 -0
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +66 -0
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +87 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +134 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +144 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +108 -0
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_DIFF.json +92 -0
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +114 -0
- teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
- teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +39 -0
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +85 -0
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +71 -0
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +139 -0
- teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECASTER.json +313 -0
- teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +58 -0
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +81 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
- teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +64 -0
- teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +182 -0
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +103 -0
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +181 -0
- teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
- teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +68 -0
- teradataml/data/jsons/uaf/17.20/TD_MINFO.json +67 -0
- teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +179 -0
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -0
- teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +119 -0
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -0
- teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +98 -0
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +194 -0
- teradataml/data/jsons/uaf/17.20/TD_SAX.json +210 -0
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +143 -0
- teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +90 -0
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +80 -0
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +68 -0
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -0
- teradataml/data/jsons/uaf/17.20/TD_SINFO.json +58 -0
- teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +163 -0
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +112 -0
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -0
- teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +410 -0
- teradataml/data/kmeans_example.json +23 -0
- teradataml/data/kmeans_table.csv +10 -0
- teradataml/data/kmeans_us_arrests_data.csv +51 -0
- teradataml/data/knn_example.json +19 -0
- teradataml/data/knnrecommender_example.json +7 -0
- teradataml/data/knnrecommenderpredict_example.json +12 -0
- teradataml/data/lar_example.json +17 -0
- teradataml/data/larpredict_example.json +30 -0
- teradataml/data/lc_new_predictors.csv +5 -0
- teradataml/data/lc_new_reference.csv +9 -0
- teradataml/data/lda_example.json +9 -0
- teradataml/data/ldainference_example.json +15 -0
- teradataml/data/ldatopicsummary_example.json +9 -0
- teradataml/data/levendist_input.csv +13 -0
- teradataml/data/levenshteindistance_example.json +10 -0
- teradataml/data/linreg_example.json +10 -0
- teradataml/data/load_example_data.py +350 -0
- teradataml/data/loan_prediction.csv +295 -0
- teradataml/data/lungcancer.csv +138 -0
- teradataml/data/mappingdata.csv +12 -0
- teradataml/data/medical_readings.csv +101 -0
- teradataml/data/milk_timeseries.csv +157 -0
- teradataml/data/min_max_titanic.csv +4 -0
- teradataml/data/minhash_example.json +6 -0
- teradataml/data/ml_ratings.csv +7547 -0
- teradataml/data/ml_ratings_10.csv +2445 -0
- teradataml/data/mobile_data.csv +13 -0
- teradataml/data/model1_table.csv +5 -0
- teradataml/data/model2_table.csv +5 -0
- teradataml/data/models/License_file.txt +1 -0
- teradataml/data/models/License_file_empty.txt +0 -0
- teradataml/data/models/dataiku_iris_data_ann_thin +0 -0
- teradataml/data/models/dr_iris_rf +0 -0
- teradataml/data/models/iris_db_dt_model_sklearn.onnx +0 -0
- teradataml/data/models/iris_db_dt_model_sklearn_floattensor.onnx +0 -0
- teradataml/data/models/iris_db_glm_model.pmml +57 -0
- teradataml/data/models/iris_db_xgb_model.pmml +4471 -0
- teradataml/data/models/iris_kmeans_model +0 -0
- teradataml/data/models/iris_mojo_glm_h2o_model +0 -0
- teradataml/data/models/iris_mojo_xgb_h2o_model +0 -0
- teradataml/data/modularity_example.json +12 -0
- teradataml/data/movavg_example.json +8 -0
- teradataml/data/mtx1.csv +7 -0
- teradataml/data/mtx2.csv +13 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/mvdfft8.csv +9 -0
- teradataml/data/naivebayes_example.json +10 -0
- teradataml/data/naivebayespredict_example.json +19 -0
- teradataml/data/naivebayestextclassifier2_example.json +7 -0
- teradataml/data/naivebayestextclassifier_example.json +8 -0
- teradataml/data/naivebayestextclassifierpredict_example.json +32 -0
- teradataml/data/name_Find_configure.csv +10 -0
- teradataml/data/namedentityfinder_example.json +14 -0
- teradataml/data/namedentityfinderevaluator_example.json +10 -0
- teradataml/data/namedentityfindertrainer_example.json +6 -0
- teradataml/data/nb_iris_input_test.csv +31 -0
- teradataml/data/nb_iris_input_train.csv +121 -0
- teradataml/data/nbp_iris_model.csv +13 -0
- teradataml/data/ner_dict.csv +8 -0
- teradataml/data/ner_extractor_text.csv +2 -0
- teradataml/data/ner_input_eng.csv +7 -0
- teradataml/data/ner_rule.csv +5 -0
- teradataml/data/ner_sports_test2.csv +29 -0
- teradataml/data/ner_sports_train.csv +501 -0
- teradataml/data/nerevaluator_example.json +6 -0
- teradataml/data/nerextractor_example.json +18 -0
- teradataml/data/nermem_sports_test.csv +18 -0
- teradataml/data/nermem_sports_train.csv +51 -0
- teradataml/data/nertrainer_example.json +7 -0
- teradataml/data/ngrams_example.json +7 -0
- teradataml/data/notebooks/__init__.py +0 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -0
- teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -0
- teradataml/data/notebooks/sqlalchemy/__init__.py +0 -0
- teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -0
- teradataml/data/npath_example.json +23 -0
- teradataml/data/ntree_example.json +14 -0
- teradataml/data/numeric_strings.csv +5 -0
- teradataml/data/numerics.csv +4 -0
- teradataml/data/ocean_buoy.csv +17 -0
- teradataml/data/ocean_buoy2.csv +17 -0
- teradataml/data/ocean_buoys.csv +28 -0
- teradataml/data/ocean_buoys2.csv +10 -0
- teradataml/data/ocean_buoys_nonpti.csv +28 -0
- teradataml/data/ocean_buoys_seq.csv +29 -0
- teradataml/data/onehot_encoder_train.csv +4 -0
- teradataml/data/openml_example.json +92 -0
- teradataml/data/optional_event_table.csv +4 -0
- teradataml/data/orders1.csv +11 -0
- teradataml/data/orders1_12.csv +13 -0
- teradataml/data/orders_ex.csv +4 -0
- teradataml/data/pack_example.json +9 -0
- teradataml/data/package_tracking.csv +19 -0
- teradataml/data/package_tracking_pti.csv +19 -0
- teradataml/data/pagerank_example.json +13 -0
- teradataml/data/paragraphs_input.csv +6 -0
- teradataml/data/pathanalyzer_example.json +8 -0
- teradataml/data/pathgenerator_example.json +8 -0
- teradataml/data/patient_profile.csv +101 -0
- teradataml/data/pattern_matching_data.csv +11 -0
- teradataml/data/payment_fraud_dataset.csv +10001 -0
- teradataml/data/peppers.png +0 -0
- teradataml/data/phrases.csv +7 -0
- teradataml/data/pivot_example.json +9 -0
- teradataml/data/pivot_input.csv +22 -0
- teradataml/data/playerRating.csv +31 -0
- teradataml/data/pos_input.csv +40 -0
- teradataml/data/postagger_example.json +7 -0
- teradataml/data/posttagger_output.csv +44 -0
- teradataml/data/production_data.csv +17 -0
- teradataml/data/production_data2.csv +7 -0
- teradataml/data/randomsample_example.json +32 -0
- teradataml/data/randomwalksample_example.json +9 -0
- teradataml/data/rank_table.csv +6 -0
- teradataml/data/real_values.csv +14 -0
- teradataml/data/ref_mobile_data.csv +4 -0
- teradataml/data/ref_mobile_data_dense.csv +2 -0
- teradataml/data/ref_url.csv +17 -0
- teradataml/data/restaurant_reviews.csv +7 -0
- teradataml/data/retail_churn_table.csv +27772 -0
- teradataml/data/river_data.csv +145 -0
- teradataml/data/roc_example.json +8 -0
- teradataml/data/roc_input.csv +101 -0
- teradataml/data/rule_inputs.csv +6 -0
- teradataml/data/rule_table.csv +2 -0
- teradataml/data/sales.csv +7 -0
- teradataml/data/sales_transaction.csv +501 -0
- teradataml/data/salesdata.csv +342 -0
- teradataml/data/sample_cities.csv +3 -0
- teradataml/data/sample_shapes.csv +11 -0
- teradataml/data/sample_streets.csv +3 -0
- teradataml/data/sampling_example.json +16 -0
- teradataml/data/sax_example.json +17 -0
- teradataml/data/scale_attributes.csv +3 -0
- teradataml/data/scale_example.json +74 -0
- teradataml/data/scale_housing.csv +11 -0
- teradataml/data/scale_housing_test.csv +6 -0
- teradataml/data/scale_input_part_sparse.csv +31 -0
- teradataml/data/scale_input_partitioned.csv +16 -0
- teradataml/data/scale_input_sparse.csv +11 -0
- teradataml/data/scale_parameters.csv +3 -0
- teradataml/data/scale_stat.csv +11 -0
- teradataml/data/scalebypartition_example.json +13 -0
- teradataml/data/scalemap_example.json +13 -0
- teradataml/data/scalesummary_example.json +12 -0
- teradataml/data/score_category.csv +101 -0
- teradataml/data/score_summary.csv +4 -0
- teradataml/data/script_example.json +10 -0
- teradataml/data/scripts/deploy_script.py +84 -0
- teradataml/data/scripts/lightgbm/dataset.template +175 -0
- teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +264 -0
- teradataml/data/scripts/lightgbm/lightgbm_function.template +234 -0
- teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +177 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/mapper.py +16 -0
- teradataml/data/scripts/mapper_replace.py +16 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +205 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +148 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +144 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +166 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +161 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +145 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +327 -0
- teradataml/data/sdk/modelops/modelops_spec.json +101737 -0
- teradataml/data/seeds.csv +10 -0
- teradataml/data/sentenceextractor_example.json +7 -0
- teradataml/data/sentiment_extract_input.csv +11 -0
- teradataml/data/sentiment_train.csv +16 -0
- teradataml/data/sentiment_word.csv +20 -0
- teradataml/data/sentiment_word_input.csv +20 -0
- teradataml/data/sentimentextractor_example.json +24 -0
- teradataml/data/sentimenttrainer_example.json +8 -0
- teradataml/data/sequence_table.csv +10 -0
- teradataml/data/seriessplitter_example.json +8 -0
- teradataml/data/sessionize_example.json +17 -0
- teradataml/data/sessionize_table.csv +116 -0
- teradataml/data/setop_test1.csv +24 -0
- teradataml/data/setop_test2.csv +22 -0
- teradataml/data/soc_nw_edges.csv +11 -0
- teradataml/data/soc_nw_vertices.csv +8 -0
- teradataml/data/souvenir_timeseries.csv +168 -0
- teradataml/data/sparse_iris_attribute.csv +5 -0
- teradataml/data/sparse_iris_test.csv +121 -0
- teradataml/data/sparse_iris_train.csv +601 -0
- teradataml/data/star1.csv +6 -0
- teradataml/data/star_pivot.csv +8 -0
- teradataml/data/state_transition.csv +5 -0
- teradataml/data/stock_data.csv +53 -0
- teradataml/data/stock_movement.csv +11 -0
- teradataml/data/stock_vol.csv +76 -0
- teradataml/data/stop_words.csv +8 -0
- teradataml/data/store_sales.csv +37 -0
- teradataml/data/stringsimilarity_example.json +8 -0
- teradataml/data/strsimilarity_input.csv +13 -0
- teradataml/data/students.csv +101 -0
- teradataml/data/svm_iris_input_test.csv +121 -0
- teradataml/data/svm_iris_input_train.csv +481 -0
- teradataml/data/svm_iris_model.csv +7 -0
- teradataml/data/svmdense_example.json +10 -0
- teradataml/data/svmdensepredict_example.json +19 -0
- teradataml/data/svmsparse_example.json +8 -0
- teradataml/data/svmsparsepredict_example.json +14 -0
- teradataml/data/svmsparsesummary_example.json +8 -0
- teradataml/data/target_mobile_data.csv +13 -0
- teradataml/data/target_mobile_data_dense.csv +5 -0
- teradataml/data/target_udt_data.csv +8 -0
- teradataml/data/tdnerextractor_example.json +14 -0
- teradataml/data/templatedata.csv +1201 -0
- teradataml/data/templates/open_source_ml.json +11 -0
- teradataml/data/teradata_icon.ico +0 -0
- teradataml/data/teradataml_example.json +1473 -0
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_loan_prediction.csv +53 -0
- teradataml/data/test_pacf_12.csv +37 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/test_river2.csv +109 -0
- teradataml/data/text_inputs.csv +6 -0
- teradataml/data/textchunker_example.json +8 -0
- teradataml/data/textclassifier_example.json +7 -0
- teradataml/data/textclassifier_input.csv +7 -0
- teradataml/data/textclassifiertrainer_example.json +7 -0
- teradataml/data/textmorph_example.json +11 -0
- teradataml/data/textparser_example.json +15 -0
- teradataml/data/texttagger_example.json +12 -0
- teradataml/data/texttokenizer_example.json +7 -0
- teradataml/data/texttrainer_input.csv +11 -0
- teradataml/data/tf_example.json +7 -0
- teradataml/data/tfidf_example.json +14 -0
- teradataml/data/tfidf_input1.csv +201 -0
- teradataml/data/tfidf_train.csv +6 -0
- teradataml/data/time_table1.csv +535 -0
- teradataml/data/time_table2.csv +14 -0
- teradataml/data/timeseriesdata.csv +1601 -0
- teradataml/data/timeseriesdatasetsd4.csv +105 -0
- teradataml/data/timestamp_data.csv +4 -0
- teradataml/data/titanic.csv +892 -0
- teradataml/data/titanic_dataset_unpivoted.csv +19 -0
- teradataml/data/to_num_data.csv +4 -0
- teradataml/data/tochar_data.csv +5 -0
- teradataml/data/token_table.csv +696 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/train_tracking.csv +28 -0
- teradataml/data/trans_dense.csv +16 -0
- teradataml/data/trans_sparse.csv +55 -0
- teradataml/data/transformation_table.csv +6 -0
- teradataml/data/transformation_table_new.csv +2 -0
- teradataml/data/tv_spots.csv +16 -0
- teradataml/data/twod_climate_data.csv +117 -0
- teradataml/data/uaf_example.json +529 -0
- teradataml/data/univariatestatistics_example.json +9 -0
- teradataml/data/unpack_example.json +10 -0
- teradataml/data/unpivot_example.json +25 -0
- teradataml/data/unpivot_input.csv +8 -0
- teradataml/data/url_data.csv +10 -0
- teradataml/data/us_air_pass.csv +37 -0
- teradataml/data/us_population.csv +624 -0
- teradataml/data/us_states_shapes.csv +52 -0
- teradataml/data/varmax_example.json +18 -0
- teradataml/data/vectordistance_example.json +30 -0
- teradataml/data/ville_climatedata.csv +121 -0
- teradataml/data/ville_tempdata.csv +12 -0
- teradataml/data/ville_tempdata1.csv +12 -0
- teradataml/data/ville_temperature.csv +11 -0
- teradataml/data/waveletTable.csv +1605 -0
- teradataml/data/waveletTable2.csv +1605 -0
- teradataml/data/weightedmovavg_example.json +9 -0
- teradataml/data/wft_testing.csv +5 -0
- teradataml/data/windowdfft.csv +16 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/data/word_embed_input_table1.csv +6 -0
- teradataml/data/word_embed_input_table2.csv +5 -0
- teradataml/data/word_embed_model.csv +23 -0
- teradataml/data/words_input.csv +13 -0
- teradataml/data/xconvolve_complex_left.csv +6 -0
- teradataml/data/xconvolve_complex_leftmulti.csv +6 -0
- teradataml/data/xgboost_example.json +36 -0
- teradataml/data/xgboostpredict_example.json +32 -0
- teradataml/data/ztest_example.json +16 -0
- teradataml/dataframe/__init__.py +0 -0
- teradataml/dataframe/copy_to.py +2446 -0
- teradataml/dataframe/data_transfer.py +2840 -0
- teradataml/dataframe/dataframe.py +20908 -0
- teradataml/dataframe/dataframe_utils.py +2114 -0
- teradataml/dataframe/fastload.py +794 -0
- teradataml/dataframe/functions.py +2110 -0
- teradataml/dataframe/indexer.py +424 -0
- teradataml/dataframe/row.py +160 -0
- teradataml/dataframe/setop.py +1171 -0
- teradataml/dataframe/sql.py +10904 -0
- teradataml/dataframe/sql_function_parameters.py +440 -0
- teradataml/dataframe/sql_functions.py +652 -0
- teradataml/dataframe/sql_interfaces.py +220 -0
- teradataml/dataframe/vantage_function_types.py +675 -0
- teradataml/dataframe/window.py +694 -0
- teradataml/dbutils/__init__.py +3 -0
- teradataml/dbutils/dbutils.py +2871 -0
- teradataml/dbutils/filemgr.py +318 -0
- teradataml/gen_ai/__init__.py +2 -0
- teradataml/gen_ai/convAI.py +473 -0
- teradataml/geospatial/__init__.py +4 -0
- teradataml/geospatial/geodataframe.py +1105 -0
- teradataml/geospatial/geodataframecolumn.py +392 -0
- teradataml/geospatial/geometry_types.py +926 -0
- teradataml/hyperparameter_tuner/__init__.py +1 -0
- teradataml/hyperparameter_tuner/optimizer.py +4115 -0
- teradataml/hyperparameter_tuner/utils.py +303 -0
- teradataml/lib/__init__.py +0 -0
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/lib/libaed_0_1_aarch64.so +0 -0
- teradataml/lib/libaed_0_1_ppc64le.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/_base.py +1321 -0
- teradataml/opensource/_class.py +464 -0
- teradataml/opensource/_constants.py +61 -0
- teradataml/opensource/_lightgbm.py +949 -0
- teradataml/opensource/_sklearn.py +1008 -0
- teradataml/opensource/_wrapper_utils.py +267 -0
- teradataml/options/__init__.py +148 -0
- teradataml/options/configure.py +489 -0
- teradataml/options/display.py +187 -0
- teradataml/plot/__init__.py +3 -0
- teradataml/plot/axis.py +1427 -0
- teradataml/plot/constants.py +15 -0
- teradataml/plot/figure.py +431 -0
- teradataml/plot/plot.py +810 -0
- teradataml/plot/query_generator.py +83 -0
- teradataml/plot/subplot.py +216 -0
- teradataml/scriptmgmt/UserEnv.py +4273 -0
- teradataml/scriptmgmt/__init__.py +3 -0
- teradataml/scriptmgmt/lls_utils.py +2157 -0
- teradataml/sdk/README.md +79 -0
- teradataml/sdk/__init__.py +4 -0
- teradataml/sdk/_auth_modes.py +422 -0
- teradataml/sdk/_func_params.py +487 -0
- teradataml/sdk/_json_parser.py +453 -0
- teradataml/sdk/_openapi_spec_constants.py +249 -0
- teradataml/sdk/_utils.py +236 -0
- teradataml/sdk/api_client.py +900 -0
- teradataml/sdk/constants.py +62 -0
- teradataml/sdk/modelops/__init__.py +98 -0
- teradataml/sdk/modelops/_client.py +409 -0
- teradataml/sdk/modelops/_constants.py +304 -0
- teradataml/sdk/modelops/models.py +2308 -0
- teradataml/sdk/spinner.py +107 -0
- teradataml/series/__init__.py +0 -0
- teradataml/series/series.py +537 -0
- teradataml/series/series_utils.py +71 -0
- teradataml/store/__init__.py +12 -0
- teradataml/store/feature_store/__init__.py +0 -0
- teradataml/store/feature_store/constants.py +658 -0
- teradataml/store/feature_store/feature_store.py +4814 -0
- teradataml/store/feature_store/mind_map.py +639 -0
- teradataml/store/feature_store/models.py +7330 -0
- teradataml/store/feature_store/utils.py +390 -0
- teradataml/table_operators/Apply.py +979 -0
- teradataml/table_operators/Script.py +1739 -0
- teradataml/table_operators/TableOperator.py +1343 -0
- teradataml/table_operators/__init__.py +2 -0
- teradataml/table_operators/apply_query_generator.py +262 -0
- teradataml/table_operators/query_generator.py +493 -0
- teradataml/table_operators/table_operator_query_generator.py +462 -0
- teradataml/table_operators/table_operator_util.py +726 -0
- teradataml/table_operators/templates/dataframe_apply.template +184 -0
- teradataml/table_operators/templates/dataframe_map.template +176 -0
- teradataml/table_operators/templates/dataframe_register.template +73 -0
- teradataml/table_operators/templates/dataframe_udf.template +67 -0
- teradataml/table_operators/templates/script_executor.template +170 -0
- teradataml/telemetry_utils/__init__.py +0 -0
- teradataml/telemetry_utils/queryband.py +53 -0
- teradataml/utils/__init__.py +0 -0
- teradataml/utils/docstring.py +527 -0
- teradataml/utils/dtypes.py +943 -0
- teradataml/utils/internal_buffer.py +122 -0
- teradataml/utils/print_versions.py +206 -0
- teradataml/utils/utils.py +451 -0
- teradataml/utils/validators.py +3305 -0
- teradataml-20.0.0.8.dist-info/METADATA +2804 -0
- teradataml-20.0.0.8.dist-info/RECORD +1208 -0
- teradataml-20.0.0.8.dist-info/WHEEL +5 -0
- teradataml-20.0.0.8.dist-info/top_level.txt +1 -0
- teradataml-20.0.0.8.dist-info/zip-safe +1 -0
|
@@ -0,0 +1,979 @@
|
|
|
1
|
+
#!/usr/bin/python
|
|
2
|
+
# ##################################################################
|
|
3
|
+
#
|
|
4
|
+
# Copyright 2020 Teradata. All rights reserved.
|
|
5
|
+
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
+
#
|
|
7
|
+
# Primary Owner: Trupti Purohit (trupti.purohit@teradata.com)
|
|
8
|
+
# Secondary Owner: Gouri Patwardhan (gouri.patwardhan@teradata.com)
|
|
9
|
+
#
|
|
10
|
+
# Function Version: 1.0
|
|
11
|
+
#
|
|
12
|
+
# Description: Apply is a TeradataML wrapper around Teradata's
|
|
13
|
+
# Apply Table Operator
|
|
14
|
+
# ##################################################################
|
|
15
|
+
|
|
16
|
+
import os, re
|
|
17
|
+
from collections import OrderedDict
|
|
18
|
+
from teradataml.common.utils import UtilFuncs
|
|
19
|
+
from teradataml.common.constants import OutputStyle
|
|
20
|
+
from teradataml.options.display import display
|
|
21
|
+
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
22
|
+
from teradataml.scriptmgmt.UserEnv import UserEnv
|
|
23
|
+
from teradataml.scriptmgmt.lls_utils import get_user_env, get_env
|
|
24
|
+
from teradataml.common.constants import TeradataConstants
|
|
25
|
+
from teradataml.common.exceptions import TeradataMlException
|
|
26
|
+
from teradataml.common.messages import Messages
|
|
27
|
+
from teradataml.common.messagecodes import MessageCodes
|
|
28
|
+
from teradataml.common.sqlbundle import SQLBundle
|
|
29
|
+
from teradataml.table_operators.TableOperator import TableOperator
|
|
30
|
+
from teradataml.table_operators.apply_query_generator import ApplyTableOperatorQueryGenerator
|
|
31
|
+
from teradatasqlalchemy.dialect import dialect as td_dialect
|
|
32
|
+
from teradataml.utils.validators import _Validators
|
|
33
|
+
from teradatasqlalchemy import (BYTEINT, SMALLINT, INTEGER, BIGINT, DECIMAL, FLOAT, NUMBER)
|
|
34
|
+
from teradatasqlalchemy import (CHAR, VARCHAR)
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
class Apply(TableOperator):
|
|
38
|
+
|
|
39
|
+
def __init__(self,
|
|
40
|
+
data=None,
|
|
41
|
+
script_name=None,
|
|
42
|
+
files_local_path=None,
|
|
43
|
+
apply_command=None,
|
|
44
|
+
delimiter=",",
|
|
45
|
+
returns=None,
|
|
46
|
+
quotechar=None,
|
|
47
|
+
env_name=None,
|
|
48
|
+
style="csv",
|
|
49
|
+
data_partition_column=None,
|
|
50
|
+
data_hash_column=None,
|
|
51
|
+
data_order_column=None,
|
|
52
|
+
is_local_order=False,
|
|
53
|
+
sort_ascending=True,
|
|
54
|
+
nulls_first=True,
|
|
55
|
+
**kwargs):
|
|
56
|
+
"""
|
|
57
|
+
DESCRIPTION:
|
|
58
|
+
The fastpath Apply table operator executes a user-installed script or
|
|
59
|
+
any Linux command inside the remote user environment using Open Analytics Framework.
|
|
60
|
+
The installed script will be executed in parallel with data from Advanced SQL Engine.
|
|
61
|
+
|
|
62
|
+
PARAMETERS:
|
|
63
|
+
apply_command:
|
|
64
|
+
Required Argument.
|
|
65
|
+
Specifies the command/script to run.
|
|
66
|
+
Note:
|
|
67
|
+
* 'Rscript --vanilla ..' helps user to run R script without saving or restoring anything in
|
|
68
|
+
the process and keep things clean.
|
|
69
|
+
Types: str
|
|
70
|
+
|
|
71
|
+
script_name:
|
|
72
|
+
Required Argument.
|
|
73
|
+
Specifies the name of the user script.
|
|
74
|
+
Types: str
|
|
75
|
+
|
|
76
|
+
files_local_path:
|
|
77
|
+
Required Argument.
|
|
78
|
+
Specifies the absolute local path where user script and all supporting files
|
|
79
|
+
like model files, input data file reside.
|
|
80
|
+
Types: str
|
|
81
|
+
|
|
82
|
+
env_name:
|
|
83
|
+
Required Argument.
|
|
84
|
+
Specifies the name of the remote user environment or an object of class UserEnv.
|
|
85
|
+
Types: str or oject of class UserEnv.
|
|
86
|
+
|
|
87
|
+
returns:
|
|
88
|
+
Optional Argument.
|
|
89
|
+
Specifies the output column definition.
|
|
90
|
+
Data argument is required when "returns" is not specified.
|
|
91
|
+
When "returns" is not specified, output column definition should match
|
|
92
|
+
with column definition of table specified in the data argument.
|
|
93
|
+
Types: Dictionary specifying column name to teradatasqlalchemy type mapping.
|
|
94
|
+
Default: None
|
|
95
|
+
|
|
96
|
+
data:
|
|
97
|
+
Optional Argument.
|
|
98
|
+
Specifies a teradataml DataFrame containing the input data for the script.
|
|
99
|
+
|
|
100
|
+
data_hash_column:
|
|
101
|
+
Optional Argument.
|
|
102
|
+
Specifies the column to be used for hashing.
|
|
103
|
+
The rows in the input data are redistributed to AMPs based on the hash value of the
|
|
104
|
+
column specified.
|
|
105
|
+
If there is no "data_hash_column", then the entire result set,
|
|
106
|
+
delivered by the function, constitutes a single group or partition.
|
|
107
|
+
Types: str
|
|
108
|
+
Notes:
|
|
109
|
+
1. "data_hash_column" can not be specified along with "data_partition_column".
|
|
110
|
+
2. "data_hash_column" can not be specified along with "is_local_order=False" and
|
|
111
|
+
"data_order_column".
|
|
112
|
+
|
|
113
|
+
data_partition_column:
|
|
114
|
+
Optional Argument.
|
|
115
|
+
Specifies Partition By columns for data.
|
|
116
|
+
Values to this argument can be provided as a list, if multiple
|
|
117
|
+
columns are used for partition. If there is no "data_partition_column",
|
|
118
|
+
then the entire result set delivered by the function, constitutes a single
|
|
119
|
+
group or partition.
|
|
120
|
+
Default Value: ANY
|
|
121
|
+
Types: str OR list of Strings (str)
|
|
122
|
+
Notes:
|
|
123
|
+
1) "data_partition_column" can not be specified along with "data_hash_column".
|
|
124
|
+
2) "data_partition_column" can not be specified along with "is_local_order = True".
|
|
125
|
+
|
|
126
|
+
is_local_order:
|
|
127
|
+
Optional Argument.
|
|
128
|
+
Specifies a boolean value to determine whether the input data is to be ordered locally
|
|
129
|
+
or not. 'sort_ascending' specifies the order in which the values in a group, or partition,
|
|
130
|
+
are sorted. This argument is ignored, if data_order_column is None.
|
|
131
|
+
When set to 'True', qualified rows are ordered locally in preparation to be input
|
|
132
|
+
to the function.
|
|
133
|
+
Default Value: False
|
|
134
|
+
Types: bool
|
|
135
|
+
Note:
|
|
136
|
+
When "is_local_order" is set to 'True', "data_order_column" should be
|
|
137
|
+
specified, and the columns specified in "data_order_column"
|
|
138
|
+
are used for local ordering.
|
|
139
|
+
|
|
140
|
+
|
|
141
|
+
data_order_column:
|
|
142
|
+
Optional Argument.
|
|
143
|
+
Specifies Order By columns for data.
|
|
144
|
+
Values to this argument can be provided as a list, if multiple
|
|
145
|
+
columns are used for ordering.
|
|
146
|
+
This argument is used with in both cases: "is_local_order = True"
|
|
147
|
+
and "is_local_order = False".
|
|
148
|
+
Types: str OR list of Strings (str)
|
|
149
|
+
Note:
|
|
150
|
+
"data_order_column" can not be specified along with "data_hash_column".
|
|
151
|
+
|
|
152
|
+
sort_ascending:
|
|
153
|
+
Optional Argument.
|
|
154
|
+
Specifies a boolean value to determine if the input data is to be sorted on
|
|
155
|
+
the data_order_column column in ascending or descending order.
|
|
156
|
+
When this is set to 'True' data is sorted in ascending order,
|
|
157
|
+
otherwise data is sorted in descending order.
|
|
158
|
+
This argument is ignored, if data_order_column is None.
|
|
159
|
+
Default Value: True
|
|
160
|
+
Types: bool
|
|
161
|
+
|
|
162
|
+
nulls_first:
|
|
163
|
+
Optional Argument.
|
|
164
|
+
Specifies a boolean value to determine whether NULLS from input data are listed
|
|
165
|
+
first or last during ordering.
|
|
166
|
+
When this is set to 'True' NULLS are listed first, otherwise NULLS are listed last.
|
|
167
|
+
This argument is ignored, if data_order_column is None.
|
|
168
|
+
Default Value: True
|
|
169
|
+
Types: bool
|
|
170
|
+
|
|
171
|
+
delimiter:
|
|
172
|
+
Optional Argument.
|
|
173
|
+
Specifies a delimiter to use when reading columns from a row and
|
|
174
|
+
writing result columns. Delimiter must be a valid Unicode code point.
|
|
175
|
+
Notes:
|
|
176
|
+
1) The Quotechar cannot be the same as the Delimiter.
|
|
177
|
+
2) The value of delimiter cannot be an empty string, newline and carriage return.
|
|
178
|
+
Default value: comma (,)
|
|
179
|
+
Types: str
|
|
180
|
+
|
|
181
|
+
quotechar:
|
|
182
|
+
Optional Argument.
|
|
183
|
+
Specifies the character used to quote all input and output values for the script.
|
|
184
|
+
Note: The Quotechar cannot be the same as the Delimiter.
|
|
185
|
+
Default value: double quote (")
|
|
186
|
+
Types: str
|
|
187
|
+
|
|
188
|
+
style:
|
|
189
|
+
Optional Argument.
|
|
190
|
+
Specifies how input is passed to and output is generated by the 'apply_command'
|
|
191
|
+
respectively.
|
|
192
|
+
Note:
|
|
193
|
+
This clause only supports 'csv' value for Apply.
|
|
194
|
+
Default value: "csv"
|
|
195
|
+
Types: str
|
|
196
|
+
|
|
197
|
+
RETURNS:
|
|
198
|
+
Apply Object
|
|
199
|
+
|
|
200
|
+
RAISES:
|
|
201
|
+
TeradataMlException
|
|
202
|
+
|
|
203
|
+
EXAMPLES:
|
|
204
|
+
# Note - Refer to User Guide for setting required permissions.
|
|
205
|
+
# Load example data.
|
|
206
|
+
>>> load_example_data("Script", ["barrier"])
|
|
207
|
+
|
|
208
|
+
# Example 1 - The Python script mapper.py reads in a line of text input ("Old Macdonald Had A Farm")
|
|
209
|
+
# from csv and splits the line into individual words, emitting a new row for each word.
|
|
210
|
+
|
|
211
|
+
# Create teradataml DataFrame objects.
|
|
212
|
+
>>> barrierdf = DataFrame.from_table("barrier")
|
|
213
|
+
|
|
214
|
+
# Create remote user environment.
|
|
215
|
+
>>> testenv = create_env('testenv', 'python_3.7.13', 'Demo environment')
|
|
216
|
+
User environment testenv created.
|
|
217
|
+
|
|
218
|
+
>>> import os, teradataml
|
|
219
|
+
>>> teradataml_dir = os.path.dirname(teradataml.__file__)
|
|
220
|
+
|
|
221
|
+
# Create an Apply object that allows us to execute script.
|
|
222
|
+
>>> apply_obj = Apply(data=barrierdf,
|
|
223
|
+
script_name='mapper.py',
|
|
224
|
+
files_local_path= os.path.join(teradataml_dir, 'data', 'scripts'),
|
|
225
|
+
apply_command='python3 mapper.py',
|
|
226
|
+
data_order_column="Id",
|
|
227
|
+
is_local_order=False,
|
|
228
|
+
nulls_first=False,
|
|
229
|
+
sort_ascending=False,
|
|
230
|
+
returns={"word": VARCHAR(15), "count_input": VARCHAR(10)},
|
|
231
|
+
env_name=testenv,
|
|
232
|
+
delimiter='\t')
|
|
233
|
+
|
|
234
|
+
# Run user script locally using data from csv.
|
|
235
|
+
# This helps the user to fix script level issues outside Open Analytics
|
|
236
|
+
# Framework.
|
|
237
|
+
>>> apply_obj.test_script(input_data_file=os.path.join(teradataml_dir, 'data', 'barrier.csv'))
|
|
238
|
+
############ STDOUT Output ############
|
|
239
|
+
|
|
240
|
+
word count_input
|
|
241
|
+
0 Macdonald 1
|
|
242
|
+
1 A 1
|
|
243
|
+
2 Farm 1
|
|
244
|
+
3 Had 1
|
|
245
|
+
4 Old 1
|
|
246
|
+
5 1 1
|
|
247
|
+
|
|
248
|
+
# Install file in remote user environment.
|
|
249
|
+
>>> apply_obj.install_file(file_name=os.path.join(teradataml_dir, 'data', 'mapper.py'))
|
|
250
|
+
File 'mapper.py' installed successfully in the remote user environment 'testenv'.
|
|
251
|
+
|
|
252
|
+
# Execute the user script in the Open Analytics Framework.
|
|
253
|
+
>>> apply_obj.execute_script()
|
|
254
|
+
word count_input
|
|
255
|
+
0 Macdonald 1
|
|
256
|
+
1 A 1
|
|
257
|
+
2 Farm 1
|
|
258
|
+
3 Had 1
|
|
259
|
+
4 Old 1
|
|
260
|
+
5 1 1
|
|
261
|
+
|
|
262
|
+
# Remove the installed file from remote user environment.
|
|
263
|
+
>>> apply_obj.remove_file(file_name='mapper.py')
|
|
264
|
+
File 'mapper.py' removed successfully from the remote user environment 'testenv'.
|
|
265
|
+
|
|
266
|
+
# Example 2 - The R script mapper.R reads in a line of text input ("Old Macdonald Had A Farm")
|
|
267
|
+
# from csv and splits the line into individual words, emitting a new row for each word.
|
|
268
|
+
|
|
269
|
+
# Create teradataml DataFrame object.
|
|
270
|
+
>>> barrierdf = DataFrame.from_table("barrier")
|
|
271
|
+
|
|
272
|
+
# Create remote user environment.
|
|
273
|
+
>>> testenv = create_env('test_env_for_r', 'r_4.1', 'Demo environment')
|
|
274
|
+
User environment test_env_for_r created.
|
|
275
|
+
|
|
276
|
+
>>> import os, teradataml
|
|
277
|
+
|
|
278
|
+
# Install file in remote user environment.
|
|
279
|
+
>>> testenv.install_file(file_path=os.path.join(os.path.dirname(teradataml.__file__), "data", "scripts", "mapper.R"))
|
|
280
|
+
File 'mapper.R' installed successfully in the remote user environment 'test_env_for_r'.
|
|
281
|
+
|
|
282
|
+
# Create an Apply object that allows us to execute script.
|
|
283
|
+
>>> apply_obj = Apply(data=barrierdf,
|
|
284
|
+
apply_command='Rscript --vanilla mapper.R',
|
|
285
|
+
data_order_column="Id",
|
|
286
|
+
is_local_order=False,
|
|
287
|
+
nulls_first=False,
|
|
288
|
+
sort_ascending=False,
|
|
289
|
+
returns={"word": VARCHAR(15), "count_input": VARCHAR(10)},
|
|
290
|
+
env_name=testenv,
|
|
291
|
+
delimiter='\t')
|
|
292
|
+
|
|
293
|
+
# Execute the user script in the Open Analytics Framework.
|
|
294
|
+
>>> apply_obj.execute_script()
|
|
295
|
+
word count_input
|
|
296
|
+
0 Macdonald 1
|
|
297
|
+
1 A 1
|
|
298
|
+
2 Farm 1
|
|
299
|
+
3 Had 1
|
|
300
|
+
4 Old 1
|
|
301
|
+
5 1 1
|
|
302
|
+
|
|
303
|
+
# Remove the installed file from remote user environment.
|
|
304
|
+
>>> apply_obj.remove_file(file_name='mapper.R')
|
|
305
|
+
File 'mapper.R' removed successfully from the remote user environment 'test_env_for_r'.
|
|
306
|
+
"""
|
|
307
|
+
# Common variables and their validation in base class.
|
|
308
|
+
super(Apply, self).__init__(data,
|
|
309
|
+
script_name,
|
|
310
|
+
files_local_path,
|
|
311
|
+
delimiter,
|
|
312
|
+
returns,
|
|
313
|
+
quotechar,
|
|
314
|
+
data_partition_column,
|
|
315
|
+
data_hash_column,
|
|
316
|
+
data_order_column,
|
|
317
|
+
is_local_order,
|
|
318
|
+
sort_ascending,
|
|
319
|
+
nulls_first)
|
|
320
|
+
# Create AnalyticsWrapperUtils instance which contains validation functions.
|
|
321
|
+
# This is required for is_default_or_not check.
|
|
322
|
+
# Rest all validation is done using _Validators
|
|
323
|
+
self.__awu = AnalyticsWrapperUtils()
|
|
324
|
+
|
|
325
|
+
# Perform argument validation for arguments specific to this class.
|
|
326
|
+
self.__arg_info_matrix = []
|
|
327
|
+
|
|
328
|
+
self.__arg_info_matrix.append(["style", style, True, (str), True, ['CSV']])
|
|
329
|
+
self.__arg_info_matrix.append(["env_name", env_name, False, (str, UserEnv), True])
|
|
330
|
+
self.__arg_info_matrix.append(["apply_command", apply_command, False, (str), True])
|
|
331
|
+
self.__arg_info_matrix.append(["returns", returns, True, (dict), True])
|
|
332
|
+
self._skip_argument_validation = False
|
|
333
|
+
# Perform the function argument validations.
|
|
334
|
+
self.__apply__validate()
|
|
335
|
+
|
|
336
|
+
# If user do not pass environment, get the default environment.
|
|
337
|
+
if env_name is None:
|
|
338
|
+
env_name = get_user_env()
|
|
339
|
+
self._open_af_env = env_name
|
|
340
|
+
|
|
341
|
+
# Set the variable specific to this child class.
|
|
342
|
+
self.apply_command = apply_command
|
|
343
|
+
self.env_name = env_name if isinstance(env_name, str) else env_name.env_name
|
|
344
|
+
self.style = style
|
|
345
|
+
self.returns = returns
|
|
346
|
+
|
|
347
|
+
# Internal variable to check if validation is required for Python and python package versions mismatch.
|
|
348
|
+
_validation_required = kwargs.pop('_validate_version', False)
|
|
349
|
+
# Interval variable to store the function name for which validation is required.
|
|
350
|
+
_func_name = kwargs.pop('_func_name', None)
|
|
351
|
+
# Internal variable to store the list of packages required for the function.
|
|
352
|
+
_packages = kwargs.pop('_packages', None)
|
|
353
|
+
|
|
354
|
+
# Check if validation for Python and python package versions mismatch is required.
|
|
355
|
+
if _validation_required:
|
|
356
|
+
# Check if the Python interpreter major versions are consistent between Vantage and local.
|
|
357
|
+
UtilFuncs._check_python_version_diff(self.env_name)
|
|
358
|
+
# Check if the package versions are consistent between Vantage and local.
|
|
359
|
+
UtilFuncs._check_package_version_diff(_func_name, _packages, self.env_name)
|
|
360
|
+
|
|
361
|
+
|
|
362
|
+
@property
|
|
363
|
+
def env(self):
|
|
364
|
+
"""
|
|
365
|
+
DESCRIPTION:
|
|
366
|
+
Getter to get environment.
|
|
367
|
+
|
|
368
|
+
RETURNS:
|
|
369
|
+
bool
|
|
370
|
+
|
|
371
|
+
RAISES:
|
|
372
|
+
None
|
|
373
|
+
"""
|
|
374
|
+
if isinstance(self._open_af_env, str):
|
|
375
|
+
self._open_af_env = get_env(self._open_af_env)
|
|
376
|
+
|
|
377
|
+
return self._open_af_env
|
|
378
|
+
|
|
379
|
+
@property
|
|
380
|
+
def skip_argument_validation(self):
|
|
381
|
+
"""
|
|
382
|
+
DESCRIPTION:
|
|
383
|
+
Getter for self._skip_argument_validation.
|
|
384
|
+
|
|
385
|
+
RETURNS:
|
|
386
|
+
bool
|
|
387
|
+
|
|
388
|
+
RAISES:
|
|
389
|
+
None
|
|
390
|
+
"""
|
|
391
|
+
return self._skip_argument_validation
|
|
392
|
+
|
|
393
|
+
@skip_argument_validation.setter
|
|
394
|
+
def skip_argument_validation(self, flag):
|
|
395
|
+
"""
|
|
396
|
+
DESCRIPTION:
|
|
397
|
+
Setter for self._skip_argument_validation
|
|
398
|
+
|
|
399
|
+
PARAMETERS:
|
|
400
|
+
flag:
|
|
401
|
+
Required Argument.
|
|
402
|
+
Specifies whether the argument validation should be skipped or not.
|
|
403
|
+
Types: bool
|
|
404
|
+
|
|
405
|
+
RETURNS:
|
|
406
|
+
None
|
|
407
|
+
|
|
408
|
+
RAISES:
|
|
409
|
+
None
|
|
410
|
+
"""
|
|
411
|
+
self._skip_argument_validation = flag
|
|
412
|
+
|
|
413
|
+
def __apply__validate(self):
|
|
414
|
+
|
|
415
|
+
if self._skip_argument_validation:
|
|
416
|
+
return
|
|
417
|
+
# Make sure that a non-NULL value has been supplied for all mandatory arguments.
|
|
418
|
+
_Validators._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
419
|
+
|
|
420
|
+
# Validate argument types.
|
|
421
|
+
_Validators._validate_function_arguments(self.__arg_info_matrix)
|
|
422
|
+
|
|
423
|
+
if all([self.returns is None, self.data is None]):
|
|
424
|
+
raise TeradataMlException(Messages.get_message(MessageCodes.SPECIFY_AT_LEAST_ONE_ARG,
|
|
425
|
+
"data",
|
|
426
|
+
"returns"),
|
|
427
|
+
MessageCodes.SPECIFY_AT_LEAST_ONE_ARG)
|
|
428
|
+
|
|
429
|
+
if self.returns is None:
|
|
430
|
+
self.returns = OrderedDict(zip(self.data.columns,
|
|
431
|
+
[col.type for col in
|
|
432
|
+
self.data._metaexpr.c]))
|
|
433
|
+
|
|
434
|
+
def install_file(self, file_name, replace=False):
|
|
435
|
+
"""
|
|
436
|
+
DESCRIPTION:
|
|
437
|
+
Function to install script in remote user environment specified in env_name
|
|
438
|
+
argument of an Apply class object.
|
|
439
|
+
On success, prints a message that file is installed or replaced.
|
|
440
|
+
This language script can be executed via execute_script() function.
|
|
441
|
+
|
|
442
|
+
PARAMETERS:
|
|
443
|
+
file_name:
|
|
444
|
+
Required Argument:
|
|
445
|
+
Specifies the name of the file including file extension to be installed
|
|
446
|
+
or replaced.
|
|
447
|
+
Note:
|
|
448
|
+
File names are case sensitive.
|
|
449
|
+
Types: str
|
|
450
|
+
|
|
451
|
+
replace:
|
|
452
|
+
Optional Argument.
|
|
453
|
+
Specifies if the file is to be installed or replaced.
|
|
454
|
+
Default Value: False
|
|
455
|
+
Types: bool
|
|
456
|
+
|
|
457
|
+
RETURNS:
|
|
458
|
+
True, if successful.
|
|
459
|
+
|
|
460
|
+
RAISES:
|
|
461
|
+
TeradataMLException, SqlOperationalError
|
|
462
|
+
|
|
463
|
+
EXAMPLES:
|
|
464
|
+
# Example 1: Install the file mapper.py found at the relative path data/scripts/ using
|
|
465
|
+
# the default text mode.
|
|
466
|
+
|
|
467
|
+
# In order to run example 1, "mapper.py" is required to be present on client.
|
|
468
|
+
# Provide the path of "mapper.py" in "file_path" argument.
|
|
469
|
+
# Create a file named "mapper.py" with content as follows:
|
|
470
|
+
-----------------------------------------------------------
|
|
471
|
+
#!/usr/bin/python
|
|
472
|
+
import sys
|
|
473
|
+
for line in sys.stdin:
|
|
474
|
+
line = line.strip()
|
|
475
|
+
words = line.split()
|
|
476
|
+
for word in words:
|
|
477
|
+
print ('%s\t%s' % (word, 1))
|
|
478
|
+
------------------------------------------------------------
|
|
479
|
+
|
|
480
|
+
# Create teradataml DataFrame objects.
|
|
481
|
+
>>> barrierdf = DataFrame.from_table("barrier")
|
|
482
|
+
|
|
483
|
+
# Create remote user environment.
|
|
484
|
+
>>> from teradataml import create_env
|
|
485
|
+
>>> test_env = create_env('test_env', 'python_3.7.9', 'Demo environment')
|
|
486
|
+
User environment testenv created.
|
|
487
|
+
|
|
488
|
+
>>> import teradataml, os
|
|
489
|
+
>>> teradataml_dir = os.path.dirname(teradataml.__file__)
|
|
490
|
+
# Create an Apply object that allows user to execute script using Open Analytics Framework.
|
|
491
|
+
>>> apply_obj = Apply(data=barrierdf,
|
|
492
|
+
files_local_path='data/scripts/',
|
|
493
|
+
script_name='mapper.py',
|
|
494
|
+
apply_command='python3 mapper.py',
|
|
495
|
+
data_order_column="Id",
|
|
496
|
+
env_name=test_env,
|
|
497
|
+
returns={"word": VARCHAR(15), "count_input": VARCHAR(2)}
|
|
498
|
+
)
|
|
499
|
+
|
|
500
|
+
# Install file in remote user environment.
|
|
501
|
+
>>> apply_obj.install_file(file_name='mapper.py')
|
|
502
|
+
File 'mapper.py' installed successfully in the remote user environment 'test_env'.
|
|
503
|
+
|
|
504
|
+
# Replace file in remote user environment.
|
|
505
|
+
>>> apply_obj.install_file(file_name='mapper.py', replace=True)
|
|
506
|
+
File 'mapper.py' replaced successfully in the remote user environment 'test_env'.
|
|
507
|
+
"""
|
|
508
|
+
# Install/Replace file in the remote user environment.
|
|
509
|
+
try:
|
|
510
|
+
__arg_info_matrix = []
|
|
511
|
+
__arg_info_matrix.append(["file_name", file_name, False, (str), True])
|
|
512
|
+
|
|
513
|
+
# Validate arguments
|
|
514
|
+
_Validators._validate_missing_required_arguments(__arg_info_matrix)
|
|
515
|
+
_Validators._validate_function_arguments(__arg_info_matrix)
|
|
516
|
+
|
|
517
|
+
file_path = os.path.join(self.files_local_path, file_name)
|
|
518
|
+
|
|
519
|
+
# Install file in remote user environment.
|
|
520
|
+
self.env.install_file(file_path=file_path, replace=replace)
|
|
521
|
+
except:
|
|
522
|
+
raise
|
|
523
|
+
|
|
524
|
+
def remove_file(self, file_name):
|
|
525
|
+
"""
|
|
526
|
+
DESCRIPTION:
|
|
527
|
+
Function to remove user installed files/scripts from remote user environment.
|
|
528
|
+
|
|
529
|
+
PARAMETERS:
|
|
530
|
+
file_name:
|
|
531
|
+
Required Argument.
|
|
532
|
+
Specifies the name of user-installed file with extension.
|
|
533
|
+
Note:
|
|
534
|
+
File names are case sensitive.
|
|
535
|
+
Types: str
|
|
536
|
+
|
|
537
|
+
RETURNS:
|
|
538
|
+
True, if successful.
|
|
539
|
+
|
|
540
|
+
RAISES:
|
|
541
|
+
TeradataMLException, SqlOperationalError
|
|
542
|
+
|
|
543
|
+
EXAMPLES:
|
|
544
|
+
# Refer install_file example to create mapper.py script and install the file
|
|
545
|
+
# in remote user environment.
|
|
546
|
+
|
|
547
|
+
# Remove the installed file.
|
|
548
|
+
>>> apply_obj.remove_file(file_name='mapper.py')
|
|
549
|
+
File mapper.py removed successfully from the remote user environment test_env.
|
|
550
|
+
|
|
551
|
+
"""
|
|
552
|
+
# Remove file from remote user environment.
|
|
553
|
+
self.env.remove_file(file_name)
|
|
554
|
+
|
|
555
|
+
def set_data(self,
|
|
556
|
+
data,
|
|
557
|
+
data_partition_column=None,
|
|
558
|
+
data_hash_column=None,
|
|
559
|
+
data_order_column=None,
|
|
560
|
+
is_local_order=False,
|
|
561
|
+
sort_ascending=True,
|
|
562
|
+
nulls_first=True):
|
|
563
|
+
"""
|
|
564
|
+
DESCRIPTION:
|
|
565
|
+
Function enables user to set data and data related arguments without having to
|
|
566
|
+
re-create Apply object.
|
|
567
|
+
|
|
568
|
+
PARAMETERS:
|
|
569
|
+
data:
|
|
570
|
+
Required Argument.
|
|
571
|
+
Specifies a teradataml DataFrame containing the input data.
|
|
572
|
+
|
|
573
|
+
data_partition_column:
|
|
574
|
+
Optional Argument.
|
|
575
|
+
Specifies Partition By columns for data.
|
|
576
|
+
Values to this argument can be provided as a list, if multiple
|
|
577
|
+
columns are used for partition. If there is no "data_partition_column",
|
|
578
|
+
then the entire result set delivered by the function, constitutes a single
|
|
579
|
+
group or partition.
|
|
580
|
+
Default Value: ANY
|
|
581
|
+
Types: str OR list of Strings (str)
|
|
582
|
+
Notes:
|
|
583
|
+
1) "data_partition_column" can not be specified along with
|
|
584
|
+
"data_hash_column".
|
|
585
|
+
2) "data_partition_column" can not be specified along with
|
|
586
|
+
"is_local_order = True".
|
|
587
|
+
|
|
588
|
+
data_hash_column:
|
|
589
|
+
Optional Argument.
|
|
590
|
+
Specifies the column to be used for hashing.
|
|
591
|
+
The rows in the input data are redistributed to AMPs based on the hash value of the
|
|
592
|
+
column specified.
|
|
593
|
+
If there is no data_hash_column, then the entire result set,
|
|
594
|
+
delivered by the function, constitutes a single group or partition.
|
|
595
|
+
Types: str
|
|
596
|
+
Note:
|
|
597
|
+
"data_hash_column" can not be specified along with "data_partition_column",
|
|
598
|
+
"is_local_order" and "data_order_column".
|
|
599
|
+
|
|
600
|
+
data_order_column:
|
|
601
|
+
Optional Argument.
|
|
602
|
+
Specifies Order By columns for data.
|
|
603
|
+
Values to this argument can be provided as a list, if multiple
|
|
604
|
+
columns are used for ordering.
|
|
605
|
+
This argument is used in both cases:
|
|
606
|
+
"is_local_order = True" and "is_local_order = False".
|
|
607
|
+
Types: str OR list of Strings (str)
|
|
608
|
+
Note:
|
|
609
|
+
"data_order_column" can not be specified along with
|
|
610
|
+
"data_hash_column".
|
|
611
|
+
|
|
612
|
+
is_local_order:
|
|
613
|
+
Optional Argument.
|
|
614
|
+
Specifies a boolean value to determine whether the input data is to be
|
|
615
|
+
ordered locally or not. Order by specifies the order in which the
|
|
616
|
+
values in a group or partition are sorted. Local Order By specifies
|
|
617
|
+
orders qualified rows on each AMP in preparation to be input to a table
|
|
618
|
+
function. This argument is ignored, if "data_order_column" is None. When
|
|
619
|
+
set to True, data is ordered locally.
|
|
620
|
+
Default Value: False
|
|
621
|
+
Types: bool
|
|
622
|
+
Note:
|
|
623
|
+
1) "is_local_order" can not be specified along with
|
|
624
|
+
"data_hash_column".
|
|
625
|
+
2) When "is_local_order" is set to True, "data_order_column" should be
|
|
626
|
+
specified, and the columns specified in "data_order_column" are
|
|
627
|
+
used for local ordering.
|
|
628
|
+
|
|
629
|
+
sort_ascending:
|
|
630
|
+
Optional Argument.
|
|
631
|
+
Specifies a boolean value to determine if the result set is to be sorted
|
|
632
|
+
on the column specified in "data_order_column", in ascending or descending
|
|
633
|
+
order.
|
|
634
|
+
The sorting is ascending when this argument is set to True, and descending
|
|
635
|
+
when set to False.
|
|
636
|
+
This argument is ignored, if "data_order_column" is None.
|
|
637
|
+
Default Value: True
|
|
638
|
+
Types: bool
|
|
639
|
+
|
|
640
|
+
nulls_first:
|
|
641
|
+
Optional Argument.
|
|
642
|
+
Specifies a boolean value to determine whether NULLS are listed first or
|
|
643
|
+
last during ordering.
|
|
644
|
+
This argument is ignored, if "data_order_column" is None.
|
|
645
|
+
NULLS are listed first when this argument is set to True, and
|
|
646
|
+
last when set to False.
|
|
647
|
+
Default Value: True
|
|
648
|
+
Types: bool
|
|
649
|
+
|
|
650
|
+
RETURNS:
|
|
651
|
+
None.
|
|
652
|
+
|
|
653
|
+
RAISES:
|
|
654
|
+
TeradataMlException
|
|
655
|
+
|
|
656
|
+
EXAMPLES:
|
|
657
|
+
# Load example data.
|
|
658
|
+
>>> load_example_data("Script", ["barrier", "barrier_new"])
|
|
659
|
+
|
|
660
|
+
# Create teradataml DataFrame objects.
|
|
661
|
+
>>> barrierdf = DataFrame.from_table("barrier")
|
|
662
|
+
>>> barrierdf
|
|
663
|
+
Name
|
|
664
|
+
Id
|
|
665
|
+
1 Old Macdonald Had A Farm
|
|
666
|
+
>>>
|
|
667
|
+
|
|
668
|
+
# List base environments.
|
|
669
|
+
>>> from teradataml import list_base_envs, create_env
|
|
670
|
+
>>> list_base_envs()
|
|
671
|
+
base_name language version
|
|
672
|
+
0 python_3.7.13 Python 3.7.13
|
|
673
|
+
1 python_3.8.13 Python 3.8.13
|
|
674
|
+
2 python_3.9.13 Python 3.9.13
|
|
675
|
+
>>>
|
|
676
|
+
|
|
677
|
+
# Create an environment.
|
|
678
|
+
>>> demo_env = create_env(env_name = 'demo_env', base_env = 'python_3.8.13', desc = 'Demo Environment')
|
|
679
|
+
User environment 'demo_env' created.
|
|
680
|
+
>>>
|
|
681
|
+
|
|
682
|
+
>>> import teradataml
|
|
683
|
+
>>> from teradatasqlalchemy import VARCHAR
|
|
684
|
+
>>> td_path = os.path.dirname(teradataml.__file__)
|
|
685
|
+
|
|
686
|
+
# The script mapper.py reads in a line of text input
|
|
687
|
+
# ("Old Macdonald Had A Farm") from csv and
|
|
688
|
+
# splits the line into individual words, emitting a new row for each word.
|
|
689
|
+
# Create an APPLY object with data and its arguments.
|
|
690
|
+
>>> apply_obj = Apply(data = barrierdf,
|
|
691
|
+
... script_name='mapper.py',
|
|
692
|
+
... files_local_path= os.path.join(td_path,'data', 'scripts'),
|
|
693
|
+
... apply_command='python3 mapper.py',
|
|
694
|
+
... data_order_column="Id",
|
|
695
|
+
... is_local_order=False,
|
|
696
|
+
... nulls_first=False,
|
|
697
|
+
... sort_ascending=False,
|
|
698
|
+
... returns={"word": VARCHAR(15), "count_input": VARCHAR(10)},
|
|
699
|
+
... env_name=demo_env,
|
|
700
|
+
... delimiter='\t')
|
|
701
|
+
|
|
702
|
+
# Install file in environment.
|
|
703
|
+
>>> apply_obj.install_file('mapper.py')
|
|
704
|
+
File 'mapper.py' installed successfully in the remote user environment 'demo_env'.
|
|
705
|
+
>>>
|
|
706
|
+
|
|
707
|
+
>>> apply_obj.execute_script()
|
|
708
|
+
word count_input
|
|
709
|
+
0 Macdonald 1
|
|
710
|
+
1 A 1
|
|
711
|
+
2 Farm 1
|
|
712
|
+
3 Had 1
|
|
713
|
+
4 Old 1
|
|
714
|
+
5 1 1
|
|
715
|
+
>>>
|
|
716
|
+
|
|
717
|
+
# Now run the script on a new DataFrame.
|
|
718
|
+
>>> barrierdf_new = DataFrame.from_table("barrier_new")
|
|
719
|
+
>>> barrierdf_new
|
|
720
|
+
Name
|
|
721
|
+
Id
|
|
722
|
+
1 Old Macdonald Had A Farm
|
|
723
|
+
2 On his farm he had a cow
|
|
724
|
+
>>>
|
|
725
|
+
|
|
726
|
+
# Note:
|
|
727
|
+
# All data related arguments that are not specified in set_data() are
|
|
728
|
+
# reset to default values.
|
|
729
|
+
>>> apply_obj.set_data(data=barrierdf_new,
|
|
730
|
+
... data_order_column='Id',
|
|
731
|
+
... nulls_first = True)
|
|
732
|
+
>>>
|
|
733
|
+
|
|
734
|
+
# Execute the user script on Vantage.
|
|
735
|
+
>>> apply_obj.execute_script()
|
|
736
|
+
word count_input
|
|
737
|
+
0 his 1
|
|
738
|
+
1 he 1
|
|
739
|
+
2 had 1
|
|
740
|
+
3 a 1
|
|
741
|
+
4 1 1
|
|
742
|
+
5 Old 1
|
|
743
|
+
6 Macdonald 1
|
|
744
|
+
7 Had 1
|
|
745
|
+
8 A 1
|
|
746
|
+
9 Farm 1
|
|
747
|
+
>>>
|
|
748
|
+
"""
|
|
749
|
+
super(Apply, self).set_data(data,
|
|
750
|
+
data_partition_column,
|
|
751
|
+
data_hash_column,
|
|
752
|
+
data_order_column,
|
|
753
|
+
is_local_order,
|
|
754
|
+
sort_ascending,
|
|
755
|
+
nulls_first)
|
|
756
|
+
|
|
757
|
+
self._validate(for_data_args=True)
|
|
758
|
+
|
|
759
|
+
def __form_table_operator_query(self):
|
|
760
|
+
"""
|
|
761
|
+
Function to generate the Table Operator queries. The function defines
|
|
762
|
+
variables and list of arguments required to form the query.
|
|
763
|
+
"""
|
|
764
|
+
# Output table arguments list
|
|
765
|
+
self.__func_output_args_sql_names = []
|
|
766
|
+
self.__func_output_args = []
|
|
767
|
+
|
|
768
|
+
# Generate lists for rest of the function arguments
|
|
769
|
+
self.__func_other_arg_sql_names = []
|
|
770
|
+
self.__func_other_args = []
|
|
771
|
+
self.__func_other_arg_json_datatypes = []
|
|
772
|
+
|
|
773
|
+
self.__func_args_before_using_clause_names = []
|
|
774
|
+
self.__func_args_before_using_clause_values = []
|
|
775
|
+
self.__func_args_before_using_clause_types = []
|
|
776
|
+
|
|
777
|
+
self.__func_other_arg_sql_names.append("APPLY_COMMAND")
|
|
778
|
+
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.apply_command, "'"))
|
|
779
|
+
self.__func_other_arg_json_datatypes.append("STRING")
|
|
780
|
+
|
|
781
|
+
self.__func_other_arg_sql_names.append("ENVIRONMENT")
|
|
782
|
+
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.env_name, "'"))
|
|
783
|
+
self.__func_other_arg_json_datatypes.append("STRING")
|
|
784
|
+
|
|
785
|
+
self.__func_other_arg_sql_names.append("STYLE")
|
|
786
|
+
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.style, "'"))
|
|
787
|
+
self.__func_other_arg_json_datatypes.append("STRING")
|
|
788
|
+
|
|
789
|
+
if self.delimiter is not None:
|
|
790
|
+
self.__func_other_arg_sql_names.append("delimiter")
|
|
791
|
+
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.delimiter, "'"))
|
|
792
|
+
self.__func_other_arg_json_datatypes.append("STRING")
|
|
793
|
+
|
|
794
|
+
# Generate returns clause
|
|
795
|
+
if self.returns is not None:
|
|
796
|
+
if isinstance(self.returns, dict):
|
|
797
|
+
returns_clause = ', '.join(
|
|
798
|
+
'{} {}'.format(key, self.returns[key].compile(td_dialect())) for key in self.returns.keys())
|
|
799
|
+
self.__func_other_arg_sql_names.append("returns")
|
|
800
|
+
self.__func_other_args.append(returns_clause)
|
|
801
|
+
self.__func_other_arg_json_datatypes.append("STRING")
|
|
802
|
+
|
|
803
|
+
if self.quotechar is not None:
|
|
804
|
+
self.__func_other_arg_sql_names.append("quotechar")
|
|
805
|
+
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.quotechar, "'"))
|
|
806
|
+
self.__func_other_arg_json_datatypes.append("STRING")
|
|
807
|
+
|
|
808
|
+
# Declare empty lists to hold input table information.
|
|
809
|
+
self.__func_input_arg_sql_names = []
|
|
810
|
+
self.__func_input_table_view_query = []
|
|
811
|
+
self.__func_input_dataframe_type = []
|
|
812
|
+
self.__func_input_distribution = []
|
|
813
|
+
self.__func_input_partition_by_cols = []
|
|
814
|
+
self.__func_input_order_by_cols = []
|
|
815
|
+
self.__func_input_order_by_type = []
|
|
816
|
+
self.__func_input_sort_ascending = self.sort_ascending
|
|
817
|
+
self.__func_input_nulls_first = None
|
|
818
|
+
|
|
819
|
+
# Process data
|
|
820
|
+
if self.data is not None:
|
|
821
|
+
data_distribution = "FACT"
|
|
822
|
+
if self.data_hash_column is not None:
|
|
823
|
+
data_distribution = "HASH"
|
|
824
|
+
self.data_partition_column = UtilFuncs._teradata_collapse_arglist(self.data_hash_column, "\"")
|
|
825
|
+
else:
|
|
826
|
+
if self.__awu._is_default_or_not(self.data_partition_column, "ANY"):
|
|
827
|
+
self.data_partition_column = UtilFuncs._teradata_collapse_arglist(
|
|
828
|
+
self.data_partition_column, "\"")
|
|
829
|
+
else:
|
|
830
|
+
self.data_partition_column = None
|
|
831
|
+
if self.data_order_column is not None:
|
|
832
|
+
if self.is_local_order:
|
|
833
|
+
self.__func_input_order_by_type.append("LOCAL")
|
|
834
|
+
if not self.data_hash_column:
|
|
835
|
+
data_distribution = None
|
|
836
|
+
else:
|
|
837
|
+
self.__func_input_order_by_type.append(None)
|
|
838
|
+
self.__func_input_order_by_cols.append(
|
|
839
|
+
UtilFuncs._teradata_collapse_arglist(self.data_order_column, "\""))
|
|
840
|
+
else:
|
|
841
|
+
self.__func_input_order_by_type.append(None)
|
|
842
|
+
self.__func_input_order_by_cols.append("NA_character_")
|
|
843
|
+
|
|
844
|
+
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
|
|
845
|
+
self.__func_input_distribution.append(data_distribution)
|
|
846
|
+
self.__func_input_arg_sql_names.append("input")
|
|
847
|
+
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
848
|
+
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
849
|
+
self.__func_input_partition_by_cols.append(self.data_partition_column)
|
|
850
|
+
self.__func_input_nulls_first = self.nulls_first
|
|
851
|
+
|
|
852
|
+
function_name = "Apply"
|
|
853
|
+
# Create instance to generate Table Operator Query.
|
|
854
|
+
applyqg_obj = ApplyTableOperatorQueryGenerator(function_name
|
|
855
|
+
, self.__func_input_arg_sql_names
|
|
856
|
+
, self.__func_input_table_view_query
|
|
857
|
+
, self.__func_input_dataframe_type
|
|
858
|
+
, self.__func_input_distribution
|
|
859
|
+
, self.__func_input_partition_by_cols
|
|
860
|
+
, self.__func_input_order_by_cols
|
|
861
|
+
, self.__func_other_arg_sql_names
|
|
862
|
+
, self.__func_other_args
|
|
863
|
+
, self.__func_other_arg_json_datatypes
|
|
864
|
+
, self.__func_output_args_sql_names
|
|
865
|
+
, self.__func_output_args
|
|
866
|
+
, self.__func_input_order_by_type
|
|
867
|
+
, self.__func_input_sort_ascending
|
|
868
|
+
, self.__func_input_nulls_first
|
|
869
|
+
, engine="ENGINE_SQL"
|
|
870
|
+
)
|
|
871
|
+
|
|
872
|
+
# Invoke call to Apply Table operator query generation.
|
|
873
|
+
self._tblop_query = applyqg_obj._gen_table_operator_select_stmt_sql()
|
|
874
|
+
|
|
875
|
+
# Print Table Operator query if requested to do so.
|
|
876
|
+
if display.print_sqlmr_query:
|
|
877
|
+
print(self._tblop_query)
|
|
878
|
+
|
|
879
|
+
def execute_script(self, output_style='VIEW'):
|
|
880
|
+
"""
|
|
881
|
+
DESCRIPTION:
|
|
882
|
+
Function enables user to execute Python scripts using Open Analytics Framework.
|
|
883
|
+
|
|
884
|
+
PARAMETERS:
|
|
885
|
+
output_style:
|
|
886
|
+
Specifies the type of output object to create - a table or a view.
|
|
887
|
+
Permitted values: 'VIEW', 'TABLE'.
|
|
888
|
+
Default value: 'VIEW'
|
|
889
|
+
Types: str
|
|
890
|
+
|
|
891
|
+
RETURNS:
|
|
892
|
+
Output teradataml DataFrames can be accessed using attribute
|
|
893
|
+
references, such as ScriptObj.<attribute_name>.
|
|
894
|
+
Output teradataml DataFrame attribute name is:
|
|
895
|
+
result
|
|
896
|
+
|
|
897
|
+
RAISES:
|
|
898
|
+
TeradataMlException
|
|
899
|
+
|
|
900
|
+
EXAMPLES:
|
|
901
|
+
Refer to help(Apply)
|
|
902
|
+
"""
|
|
903
|
+
# Validate the output_style.
|
|
904
|
+
permitted_values = [OutputStyle.OUTPUT_TABLE.value,
|
|
905
|
+
OutputStyle.OUTPUT_VIEW.value]
|
|
906
|
+
_Validators._validate_permitted_values(output_style, permitted_values, 'output_style',
|
|
907
|
+
case_insensitive=False, includeNone=False)
|
|
908
|
+
|
|
909
|
+
# Generate the Table Operator query
|
|
910
|
+
self.__form_table_operator_query()
|
|
911
|
+
|
|
912
|
+
# Execute Table Operator query and return results
|
|
913
|
+
return self._execute(output_style)
|
|
914
|
+
|
|
915
|
+
# TODO: Remove the function with ELE-5010.
|
|
916
|
+
def _execute(self, output_style="TABLE"):
|
|
917
|
+
"""
|
|
918
|
+
DESCRIPTION:
|
|
919
|
+
Function to execute APPLY Query and store the result in a table.
|
|
920
|
+
|
|
921
|
+
PARAMETERS:
|
|
922
|
+
output_style:
|
|
923
|
+
Specifies the type of output object to create - a table or a view.
|
|
924
|
+
Permitted values: 'VIEW', 'TABLE'.
|
|
925
|
+
Default value: 'VIEW'
|
|
926
|
+
Types: str
|
|
927
|
+
|
|
928
|
+
RETURNS:
|
|
929
|
+
Output teradataml DataFrames can be accessed using attribute
|
|
930
|
+
references, such as ScriptObj.<attribute_name>.
|
|
931
|
+
Output teradataml DataFrame attribute name is:
|
|
932
|
+
result
|
|
933
|
+
|
|
934
|
+
RAISES:
|
|
935
|
+
TeradataMlException
|
|
936
|
+
|
|
937
|
+
EXAMPLES:
|
|
938
|
+
self._execute("VIEW")
|
|
939
|
+
"""
|
|
940
|
+
# Generate STDOUT table name and add it to the output table list.
|
|
941
|
+
tblop_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_tblop_out_",
|
|
942
|
+
use_default_database=True, gc_on_quit=True,
|
|
943
|
+
quote=False,
|
|
944
|
+
table_type=TeradataConstants.TERADATA_TABLE
|
|
945
|
+
)
|
|
946
|
+
|
|
947
|
+
try:
|
|
948
|
+
# Create table.
|
|
949
|
+
columns_clause = ', '.join(
|
|
950
|
+
'{} {}'.format(key, self.returns[key].compile(td_dialect())) for key in self.returns.keys())
|
|
951
|
+
UtilFuncs._create_table_using_columns(tblop_stdout_temp_tablename,
|
|
952
|
+
columns_datatypes=columns_clause,
|
|
953
|
+
storage="TD_OFSSTORAGE")
|
|
954
|
+
|
|
955
|
+
# Use insert with select to populate the data to table.
|
|
956
|
+
# Insert with select accepts a table as a table and columns as
|
|
957
|
+
# second and third parameter. So, converting the Query to a subquery
|
|
958
|
+
# so the query acts as a table.
|
|
959
|
+
query = "({}) as apply_result".format(self._tblop_query)
|
|
960
|
+
ins_table = SQLBundle._build_insert_from_table_query(tblop_stdout_temp_tablename,
|
|
961
|
+
query,
|
|
962
|
+
"*")
|
|
963
|
+
UtilFuncs._execute_query(ins_table)
|
|
964
|
+
|
|
965
|
+
except Exception as emsg:
|
|
966
|
+
emsg = str(emsg)
|
|
967
|
+
pattern = r'\b\d{18}\b'
|
|
968
|
+
query_id = re.findall(pattern, emsg)
|
|
969
|
+
print("-----------------------------------------------------------------------")
|
|
970
|
+
print("User should run view_log() to download the logs with the query id \"{}\".".format(query_id[0]))
|
|
971
|
+
print("-----------------------------------------------------------------------")
|
|
972
|
+
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, emsg),
|
|
973
|
+
MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
974
|
+
|
|
975
|
+
self.result = self.__awu._create_data_set_object(
|
|
976
|
+
df_input=UtilFuncs._extract_table_name(tblop_stdout_temp_tablename), source_type="table",
|
|
977
|
+
database_name=UtilFuncs._extract_db_name(tblop_stdout_temp_tablename))
|
|
978
|
+
|
|
979
|
+
return self.result
|