teradataml 20.0.0.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +2762 -0
- teradataml/__init__.py +78 -0
- teradataml/_version.py +11 -0
- teradataml/analytics/Transformations.py +2996 -0
- teradataml/analytics/__init__.py +82 -0
- teradataml/analytics/analytic_function_executor.py +2416 -0
- teradataml/analytics/analytic_query_generator.py +1050 -0
- teradataml/analytics/byom/H2OPredict.py +514 -0
- teradataml/analytics/byom/PMMLPredict.py +437 -0
- teradataml/analytics/byom/__init__.py +16 -0
- teradataml/analytics/json_parser/__init__.py +133 -0
- teradataml/analytics/json_parser/analytic_functions_argument.py +1805 -0
- teradataml/analytics/json_parser/json_store.py +191 -0
- teradataml/analytics/json_parser/metadata.py +1666 -0
- teradataml/analytics/json_parser/utils.py +805 -0
- teradataml/analytics/meta_class.py +236 -0
- teradataml/analytics/sqle/DecisionTreePredict.py +456 -0
- teradataml/analytics/sqle/NaiveBayesPredict.py +420 -0
- teradataml/analytics/sqle/__init__.py +128 -0
- teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -0
- teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -0
- teradataml/analytics/table_operator/__init__.py +11 -0
- teradataml/analytics/uaf/__init__.py +82 -0
- teradataml/analytics/utils.py +828 -0
- teradataml/analytics/valib.py +1617 -0
- teradataml/automl/__init__.py +5835 -0
- teradataml/automl/autodataprep/__init__.py +493 -0
- teradataml/automl/custom_json_utils.py +1625 -0
- teradataml/automl/data_preparation.py +1384 -0
- teradataml/automl/data_transformation.py +1254 -0
- teradataml/automl/feature_engineering.py +2273 -0
- teradataml/automl/feature_exploration.py +1873 -0
- teradataml/automl/model_evaluation.py +488 -0
- teradataml/automl/model_training.py +1407 -0
- teradataml/catalog/__init__.py +2 -0
- teradataml/catalog/byom.py +1759 -0
- teradataml/catalog/function_argument_mapper.py +859 -0
- teradataml/catalog/model_cataloging_utils.py +491 -0
- teradataml/clients/__init__.py +0 -0
- teradataml/clients/auth_client.py +137 -0
- teradataml/clients/keycloak_client.py +165 -0
- teradataml/clients/pkce_client.py +481 -0
- teradataml/common/__init__.py +1 -0
- teradataml/common/aed_utils.py +2078 -0
- teradataml/common/bulk_exposed_utils.py +113 -0
- teradataml/common/constants.py +1669 -0
- teradataml/common/deprecations.py +166 -0
- teradataml/common/exceptions.py +147 -0
- teradataml/common/formula.py +743 -0
- teradataml/common/garbagecollector.py +666 -0
- teradataml/common/logger.py +1261 -0
- teradataml/common/messagecodes.py +518 -0
- teradataml/common/messages.py +262 -0
- teradataml/common/pylogger.py +67 -0
- teradataml/common/sqlbundle.py +764 -0
- teradataml/common/td_coltype_code_to_tdtype.py +48 -0
- teradataml/common/utils.py +3166 -0
- teradataml/common/warnings.py +36 -0
- teradataml/common/wrapper_utils.py +625 -0
- teradataml/config/__init__.py +0 -0
- teradataml/config/dummy_file1.cfg +5 -0
- teradataml/config/dummy_file2.cfg +3 -0
- teradataml/config/sqlengine_alias_definitions_v1.0 +14 -0
- teradataml/config/sqlengine_alias_definitions_v1.1 +20 -0
- teradataml/config/sqlengine_alias_definitions_v1.3 +19 -0
- teradataml/context/__init__.py +0 -0
- teradataml/context/aed_context.py +223 -0
- teradataml/context/context.py +1462 -0
- teradataml/data/A_loan.csv +19 -0
- teradataml/data/BINARY_REALS_LEFT.csv +11 -0
- teradataml/data/BINARY_REALS_RIGHT.csv +11 -0
- teradataml/data/B_loan.csv +49 -0
- teradataml/data/BuoyData2.csv +17 -0
- teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -0
- teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -0
- teradataml/data/Convolve2RealsLeft.csv +5 -0
- teradataml/data/Convolve2RealsRight.csv +5 -0
- teradataml/data/Convolve2ValidLeft.csv +11 -0
- teradataml/data/Convolve2ValidRight.csv +11 -0
- teradataml/data/DFFTConv_Real_8_8.csv +65 -0
- teradataml/data/Employee.csv +5 -0
- teradataml/data/Employee_Address.csv +4 -0
- teradataml/data/Employee_roles.csv +5 -0
- teradataml/data/JulesBelvezeDummyData.csv +100 -0
- teradataml/data/Mall_customer_data.csv +201 -0
- teradataml/data/Orders1_12mf.csv +25 -0
- teradataml/data/Pi_loan.csv +7 -0
- teradataml/data/SMOOTHED_DATA.csv +7 -0
- teradataml/data/TestDFFT8.csv +9 -0
- teradataml/data/TestRiver.csv +109 -0
- teradataml/data/Traindata.csv +28 -0
- teradataml/data/__init__.py +0 -0
- teradataml/data/acf.csv +17 -0
- teradataml/data/adaboost_example.json +34 -0
- teradataml/data/adaboostpredict_example.json +24 -0
- teradataml/data/additional_table.csv +11 -0
- teradataml/data/admissions_test.csv +21 -0
- teradataml/data/admissions_train.csv +41 -0
- teradataml/data/admissions_train_nulls.csv +41 -0
- teradataml/data/advertising.csv +201 -0
- teradataml/data/ageandheight.csv +13 -0
- teradataml/data/ageandpressure.csv +31 -0
- teradataml/data/amazon_reviews_25.csv +26 -0
- teradataml/data/antiselect_example.json +36 -0
- teradataml/data/antiselect_input.csv +8 -0
- teradataml/data/antiselect_input_mixed_case.csv +8 -0
- teradataml/data/applicant_external.csv +7 -0
- teradataml/data/applicant_reference.csv +7 -0
- teradataml/data/apriori_example.json +22 -0
- teradataml/data/arima_example.json +9 -0
- teradataml/data/assortedtext_input.csv +8 -0
- teradataml/data/attribution_example.json +34 -0
- teradataml/data/attribution_sample_table.csv +27 -0
- teradataml/data/attribution_sample_table1.csv +6 -0
- teradataml/data/attribution_sample_table2.csv +11 -0
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bank_marketing.csv +11163 -0
- teradataml/data/bank_web_clicks1.csv +43 -0
- teradataml/data/bank_web_clicks2.csv +91 -0
- teradataml/data/bank_web_url.csv +85 -0
- teradataml/data/barrier.csv +2 -0
- teradataml/data/barrier_new.csv +3 -0
- teradataml/data/betweenness_example.json +14 -0
- teradataml/data/bike_sharing.csv +732 -0
- teradataml/data/bin_breaks.csv +8 -0
- teradataml/data/bin_fit_ip.csv +4 -0
- teradataml/data/binary_complex_left.csv +11 -0
- teradataml/data/binary_complex_right.csv +11 -0
- teradataml/data/binary_matrix_complex_left.csv +21 -0
- teradataml/data/binary_matrix_complex_right.csv +21 -0
- teradataml/data/binary_matrix_real_left.csv +21 -0
- teradataml/data/binary_matrix_real_right.csv +21 -0
- teradataml/data/blood2ageandweight.csv +26 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/boston.csv +507 -0
- teradataml/data/boston2cols.csv +721 -0
- teradataml/data/breast_cancer.csv +570 -0
- teradataml/data/buoydata_mix.csv +11 -0
- teradataml/data/burst_data.csv +5 -0
- teradataml/data/burst_example.json +21 -0
- teradataml/data/byom_example.json +34 -0
- teradataml/data/bytes_table.csv +4 -0
- teradataml/data/cal_housing_ex_raw.csv +70 -0
- teradataml/data/callers.csv +7 -0
- teradataml/data/calls.csv +10 -0
- teradataml/data/cars_hist.csv +33 -0
- teradataml/data/cat_table.csv +25 -0
- teradataml/data/ccm_example.json +32 -0
- teradataml/data/ccm_input.csv +91 -0
- teradataml/data/ccm_input2.csv +13 -0
- teradataml/data/ccmexample.csv +101 -0
- teradataml/data/ccmprepare_example.json +9 -0
- teradataml/data/ccmprepare_input.csv +91 -0
- teradataml/data/cfilter_example.json +12 -0
- teradataml/data/changepointdetection_example.json +18 -0
- teradataml/data/changepointdetectionrt_example.json +8 -0
- teradataml/data/chi_sq.csv +3 -0
- teradataml/data/churn_data.csv +14 -0
- teradataml/data/churn_emission.csv +35 -0
- teradataml/data/churn_initial.csv +3 -0
- teradataml/data/churn_state_transition.csv +5 -0
- teradataml/data/citedges_2.csv +745 -0
- teradataml/data/citvertices_2.csv +1210 -0
- teradataml/data/clicks2.csv +16 -0
- teradataml/data/clickstream.csv +13 -0
- teradataml/data/clickstream1.csv +11 -0
- teradataml/data/closeness_example.json +16 -0
- teradataml/data/complaints.csv +21 -0
- teradataml/data/complaints_mini.csv +3 -0
- teradataml/data/complaints_test_tokenized.csv +353 -0
- teradataml/data/complaints_testtoken.csv +224 -0
- teradataml/data/complaints_tokens_model.csv +348 -0
- teradataml/data/complaints_tokens_test.csv +353 -0
- teradataml/data/complaints_traintoken.csv +472 -0
- teradataml/data/computers_category.csv +1001 -0
- teradataml/data/computers_test1.csv +1252 -0
- teradataml/data/computers_train1.csv +5009 -0
- teradataml/data/computers_train1_clustered.csv +5009 -0
- teradataml/data/confusionmatrix_example.json +9 -0
- teradataml/data/conversion_event_table.csv +3 -0
- teradataml/data/corr_input.csv +17 -0
- teradataml/data/correlation_example.json +11 -0
- teradataml/data/covid_confirm_sd.csv +83 -0
- teradataml/data/coxhazardratio_example.json +39 -0
- teradataml/data/coxph_example.json +15 -0
- teradataml/data/coxsurvival_example.json +28 -0
- teradataml/data/cpt.csv +41 -0
- teradataml/data/credit_ex_merged.csv +45 -0
- teradataml/data/creditcard_data.csv +1001 -0
- teradataml/data/customer_loyalty.csv +301 -0
- teradataml/data/customer_loyalty_newseq.csv +31 -0
- teradataml/data/customer_segmentation_test.csv +2628 -0
- teradataml/data/customer_segmentation_train.csv +8069 -0
- teradataml/data/dataframe_example.json +173 -0
- teradataml/data/decisionforest_example.json +37 -0
- teradataml/data/decisionforestpredict_example.json +38 -0
- teradataml/data/decisiontree_example.json +21 -0
- teradataml/data/decisiontreepredict_example.json +45 -0
- teradataml/data/dfft2_size4_real.csv +17 -0
- teradataml/data/dfft2_test_matrix16.csv +17 -0
- teradataml/data/dfft2conv_real_4_4.csv +65 -0
- teradataml/data/diabetes.csv +443 -0
- teradataml/data/diabetes_test.csv +89 -0
- teradataml/data/dict_table.csv +5 -0
- teradataml/data/docperterm_table.csv +4 -0
- teradataml/data/docs/__init__.py +1 -0
- teradataml/data/docs/byom/__init__.py +0 -0
- teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -0
- teradataml/data/docs/byom/docs/DataikuPredict.py +217 -0
- teradataml/data/docs/byom/docs/H2OPredict.py +325 -0
- teradataml/data/docs/byom/docs/ONNXEmbeddings.py +242 -0
- teradataml/data/docs/byom/docs/ONNXPredict.py +283 -0
- teradataml/data/docs/byom/docs/ONNXSeq2Seq.py +255 -0
- teradataml/data/docs/byom/docs/PMMLPredict.py +278 -0
- teradataml/data/docs/byom/docs/__init__.py +0 -0
- teradataml/data/docs/sqle/__init__.py +0 -0
- teradataml/data/docs/sqle/docs_17_10/Antiselect.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/Attribution.py +200 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +172 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -0
- teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -0
- teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +96 -0
- teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -0
- teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +152 -0
- teradataml/data/docs/sqle/docs_17_10/FTest.py +161 -0
- teradataml/data/docs/sqle/docs_17_10/FillRowId.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/Fit.py +88 -0
- teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +85 -0
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +82 -0
- teradataml/data/docs/sqle/docs_17_10/Histogram.py +165 -0
- teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -0
- teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +209 -0
- teradataml/data/docs/sqle/docs_17_10/NPath.py +266 -0
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -0
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -0
- teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +135 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +166 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -0
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +112 -0
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -0
- teradataml/data/docs/sqle/docs_17_10/QQNorm.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +110 -0
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +118 -0
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -0
- teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +153 -0
- teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -0
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -0
- teradataml/data/docs/sqle/docs_17_10/Sessionize.py +114 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -0
- teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -0
- teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +146 -0
- teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +142 -0
- teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -0
- teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -0
- teradataml/data/docs/sqle/docs_17_10/__init__.py +0 -0
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -0
- teradataml/data/docs/sqle/docs_17_20/Antiselect.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/Apriori.py +138 -0
- teradataml/data/docs/sqle/docs_17_20/Attribution.py +201 -0
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +172 -0
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -0
- teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
- teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -0
- teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +246 -0
- teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +280 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +136 -0
- teradataml/data/docs/sqle/docs_17_20/FTest.py +240 -0
- teradataml/data/docs/sqle/docs_17_20/FillRowId.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/Fit.py +88 -0
- teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +415 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -0
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -0
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +106 -0
- teradataml/data/docs/sqle/docs_17_20/Histogram.py +224 -0
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -0
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/KNN.py +215 -0
- teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -0
- teradataml/data/docs/sqle/docs_17_20/NERExtractor.py +121 -0
- teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +209 -0
- teradataml/data/docs/sqle/docs_17_20/NPath.py +266 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +127 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +119 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -0
- teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -0
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +231 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -0
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +220 -0
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +191 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -0
- teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -0
- teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/QQNorm.py +105 -0
- teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +155 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -0
- teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -0
- teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +118 -0
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -0
- teradataml/data/docs/sqle/docs_17_20/SMOTE.py +212 -0
- teradataml/data/docs/sqle/docs_17_20/SVM.py +414 -0
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -0
- teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +153 -0
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -0
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -0
- teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -0
- teradataml/data/docs/sqle/docs_17_20/Sessionize.py +114 -0
- teradataml/data/docs/sqle/docs_17_20/Shap.py +225 -0
- teradataml/data/docs/sqle/docs_17_20/Silhouette.py +153 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -0
- teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +146 -0
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -0
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -0
- teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
- teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +267 -0
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -0
- teradataml/data/docs/sqle/docs_17_20/TextMorph.py +119 -0
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +224 -0
- teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +160 -0
- teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -0
- teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -0
- teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
- teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +169 -0
- teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +237 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +362 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -0
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -0
- teradataml/data/docs/sqle/docs_17_20/__init__.py +0 -0
- teradataml/data/docs/tableoperator/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +430 -0
- teradataml/data/docs/tableoperator/docs_17_00/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +430 -0
- teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +348 -0
- teradataml/data/docs/tableoperator/docs_17_05/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +429 -0
- teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +348 -0
- teradataml/data/docs/tableoperator/docs_17_10/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
- teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +440 -0
- teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +387 -0
- teradataml/data/docs/tableoperator/docs_17_20/__init__.py +0 -0
- teradataml/data/docs/uaf/__init__.py +0 -0
- teradataml/data/docs/uaf/docs_17_20/ACF.py +186 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +370 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +172 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +161 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
- teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
- teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +248 -0
- teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +178 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +175 -0
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +230 -0
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +218 -0
- teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +185 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT.py +204 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +216 -0
- teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +192 -0
- teradataml/data/docs/uaf/docs_17_20/DIFF.py +175 -0
- teradataml/data/docs/uaf/docs_17_20/DTW.py +180 -0
- teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
- teradataml/data/docs/uaf/docs_17_20/DWT2D.py +217 -0
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +142 -0
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +184 -0
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +185 -0
- teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
- teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +206 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +143 -0
- teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +198 -0
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +260 -0
- teradataml/data/docs/uaf/docs_17_20/IDFFT.py +165 -0
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +191 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
- teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/InputValidator.py +121 -0
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +156 -0
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +215 -0
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +174 -0
- teradataml/data/docs/uaf/docs_17_20/MInfo.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +145 -0
- teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +191 -0
- teradataml/data/docs/uaf/docs_17_20/PACF.py +157 -0
- teradataml/data/docs/uaf/docs_17_20/Portman.py +217 -0
- teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +203 -0
- teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +155 -0
- teradataml/data/docs/uaf/docs_17_20/Resample.py +237 -0
- teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
- teradataml/data/docs/uaf/docs_17_20/SInfo.py +123 -0
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +173 -0
- teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +174 -0
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +164 -0
- teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +180 -0
- teradataml/data/docs/uaf/docs_17_20/Smoothma.py +208 -0
- teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +151 -0
- teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +202 -0
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
- teradataml/data/docs/uaf/docs_17_20/__init__.py +0 -0
- teradataml/data/dtw_example.json +18 -0
- teradataml/data/dtw_t1.csv +11 -0
- teradataml/data/dtw_t2.csv +4 -0
- teradataml/data/dwt2d_dataTable.csv +65 -0
- teradataml/data/dwt2d_example.json +16 -0
- teradataml/data/dwt_dataTable.csv +8 -0
- teradataml/data/dwt_example.json +15 -0
- teradataml/data/dwt_filterTable.csv +3 -0
- teradataml/data/dwt_filter_dim.csv +5 -0
- teradataml/data/emission.csv +9 -0
- teradataml/data/emp_table_by_dept.csv +19 -0
- teradataml/data/employee_info.csv +4 -0
- teradataml/data/employee_table.csv +6 -0
- teradataml/data/excluding_event_table.csv +2 -0
- teradataml/data/finance_data.csv +6 -0
- teradataml/data/finance_data2.csv +61 -0
- teradataml/data/finance_data3.csv +93 -0
- teradataml/data/finance_data4.csv +13 -0
- teradataml/data/fish.csv +160 -0
- teradataml/data/fm_blood2ageandweight.csv +26 -0
- teradataml/data/fmeasure_example.json +12 -0
- teradataml/data/followers_leaders.csv +10 -0
- teradataml/data/fpgrowth_example.json +12 -0
- teradataml/data/frequentpaths_example.json +29 -0
- teradataml/data/friends.csv +9 -0
- teradataml/data/fs_input.csv +33 -0
- teradataml/data/fs_input1.csv +33 -0
- teradataml/data/genData.csv +513 -0
- teradataml/data/geodataframe_example.json +40 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/glm_admissions_model.csv +12 -0
- teradataml/data/glm_example.json +56 -0
- teradataml/data/glml1l2_example.json +28 -0
- teradataml/data/glml1l2predict_example.json +54 -0
- teradataml/data/glmpredict_example.json +54 -0
- teradataml/data/gq_t1.csv +21 -0
- teradataml/data/grocery_transaction.csv +19 -0
- teradataml/data/hconvolve_complex_right.csv +5 -0
- teradataml/data/hconvolve_complex_rightmulti.csv +5 -0
- teradataml/data/histogram_example.json +12 -0
- teradataml/data/hmmdecoder_example.json +79 -0
- teradataml/data/hmmevaluator_example.json +25 -0
- teradataml/data/hmmsupervised_example.json +10 -0
- teradataml/data/hmmunsupervised_example.json +8 -0
- teradataml/data/hnsw_alter_data.csv +5 -0
- teradataml/data/hnsw_data.csv +10 -0
- teradataml/data/house_values.csv +12 -0
- teradataml/data/house_values2.csv +13 -0
- teradataml/data/housing_cat.csv +7 -0
- teradataml/data/housing_data.csv +9 -0
- teradataml/data/housing_test.csv +47 -0
- teradataml/data/housing_test_binary.csv +47 -0
- teradataml/data/housing_train.csv +493 -0
- teradataml/data/housing_train_attribute.csv +5 -0
- teradataml/data/housing_train_binary.csv +437 -0
- teradataml/data/housing_train_parameter.csv +2 -0
- teradataml/data/housing_train_response.csv +493 -0
- teradataml/data/housing_train_segment.csv +201 -0
- teradataml/data/ibm_stock.csv +370 -0
- teradataml/data/ibm_stock1.csv +370 -0
- teradataml/data/identitymatch_example.json +22 -0
- teradataml/data/idf_table.csv +4 -0
- teradataml/data/idwt2d_dataTable.csv +5 -0
- teradataml/data/idwt_dataTable.csv +8 -0
- teradataml/data/idwt_filterTable.csv +3 -0
- teradataml/data/impressions.csv +101 -0
- teradataml/data/inflation.csv +21 -0
- teradataml/data/initial.csv +3 -0
- teradataml/data/insect2Cols.csv +61 -0
- teradataml/data/insect_sprays.csv +13 -0
- teradataml/data/insurance.csv +1339 -0
- teradataml/data/interpolator_example.json +13 -0
- teradataml/data/interval_data.csv +5 -0
- teradataml/data/iris_altinput.csv +481 -0
- teradataml/data/iris_attribute_output.csv +8 -0
- teradataml/data/iris_attribute_test.csv +121 -0
- teradataml/data/iris_attribute_train.csv +481 -0
- teradataml/data/iris_category_expect_predict.csv +31 -0
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/iris_input.csv +151 -0
- teradataml/data/iris_response_train.csv +121 -0
- teradataml/data/iris_test.csv +31 -0
- teradataml/data/iris_train.csv +121 -0
- teradataml/data/join_table1.csv +4 -0
- teradataml/data/join_table2.csv +4 -0
- teradataml/data/jsons/anly_function_name.json +7 -0
- teradataml/data/jsons/byom/ONNXSeq2Seq.json +287 -0
- teradataml/data/jsons/byom/dataikupredict.json +148 -0
- teradataml/data/jsons/byom/datarobotpredict.json +147 -0
- teradataml/data/jsons/byom/h2opredict.json +195 -0
- teradataml/data/jsons/byom/onnxembeddings.json +267 -0
- teradataml/data/jsons/byom/onnxpredict.json +187 -0
- teradataml/data/jsons/byom/pmmlpredict.json +147 -0
- teradataml/data/jsons/paired_functions.json +450 -0
- teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/16.20/Attribution.json +249 -0
- teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/16.20/Pack.json +98 -0
- teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/16.20/Unpack.json +166 -0
- teradataml/data/jsons/sqle/16.20/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.00/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/17.00/Pack.json +98 -0
- teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.00/Unpack.json +166 -0
- teradataml/data/jsons/sqle/17.00/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.05/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/17.05/Pack.json +98 -0
- teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.05/Unpack.json +166 -0
- teradataml/data/jsons/sqle/17.05/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.10/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -0
- teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +172 -0
- teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -0
- teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -0
- teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -0
- teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -0
- teradataml/data/jsons/sqle/17.10/Pack.json +133 -0
- teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -0
- teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -0
- teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -0
- teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +54 -0
- teradataml/data/jsons/sqle/17.10/TD_Chisq.json +68 -0
- teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +54 -0
- teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +69 -0
- teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -0
- teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +52 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -0
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_Histogram.json +133 -0
- teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +183 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +66 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +197 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -0
- teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +112 -0
- teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +128 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +157 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +71 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +148 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -0
- teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -0
- teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +119 -0
- teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -0
- teradataml/data/jsons/sqle/17.10/Unpack.json +188 -0
- teradataml/data/jsons/sqle/17.10/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.20/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -0
- teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -0
- teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -0
- teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -0
- teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -0
- teradataml/data/jsons/sqle/17.20/Pack.json +133 -0
- teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -0
- teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +149 -0
- teradataml/data/jsons/sqle/17.20/TD_Apriori.json +181 -0
- teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -0
- teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
- teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_Chisq.json +68 -0
- teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +146 -0
- teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -0
- teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -0
- teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +260 -0
- teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -0
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -0
- teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -0
- teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -0
- teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -0
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -0
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -0
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -0
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -0
- teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -0
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +232 -0
- teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +87 -0
- teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -0
- teradataml/data/jsons/sqle/17.20/TD_NERExtractor.json +145 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -0
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +316 -0
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +124 -0
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -0
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -0
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -0
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -0
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -0
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -0
- teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -0
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -0
- teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -0
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +179 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +179 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +74 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -0
- teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +138 -0
- teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -0
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +128 -0
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_SMOTE.json +267 -0
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -0
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -0
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +310 -0
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +120 -0
- teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +194 -0
- teradataml/data/jsons/sqle/17.20/TD_Shap.json +221 -0
- teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +143 -0
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -0
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -0
- teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -0
- teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -0
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -0
- teradataml/data/jsons/sqle/17.20/TD_TextMorph.json +134 -0
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json +297 -0
- teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -0
- teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -0
- teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
- teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +183 -0
- teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -0
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -0
- teradataml/data/jsons/sqle/17.20/Unpack.json +188 -0
- teradataml/data/jsons/sqle/17.20/nPath.json +269 -0
- teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json +370 -0
- teradataml/data/jsons/sqle/20.00/AI_AskLLM.json +460 -0
- teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json +385 -0
- teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_MaskPII.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json +400 -0
- teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json +401 -0
- teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json +384 -0
- teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json +384 -0
- teradataml/data/jsons/sqle/20.00/TD_API_AzureML.json +151 -0
- teradataml/data/jsons/sqle/20.00/TD_API_Sagemaker.json +182 -0
- teradataml/data/jsons/sqle/20.00/TD_API_VertexAI.json +183 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSW.json +296 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json +206 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json +32 -0
- teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
- teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
- teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
- teradataml/data/jsons/tableoperator/17.00/read_nos.json +198 -0
- teradataml/data/jsons/tableoperator/17.05/read_nos.json +198 -0
- teradataml/data/jsons/tableoperator/17.05/write_nos.json +195 -0
- teradataml/data/jsons/tableoperator/17.10/read_nos.json +184 -0
- teradataml/data/jsons/tableoperator/17.10/write_nos.json +195 -0
- teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
- teradataml/data/jsons/tableoperator/17.20/read_nos.json +183 -0
- teradataml/data/jsons/tableoperator/17.20/write_nos.json +224 -0
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +132 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +396 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +77 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +153 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
- teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +107 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +106 -0
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +89 -0
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +104 -0
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +66 -0
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +87 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +134 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +144 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +108 -0
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_DIFF.json +92 -0
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +114 -0
- teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
- teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +39 -0
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +85 -0
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +71 -0
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +139 -0
- teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECASTER.json +313 -0
- teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +58 -0
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +81 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
- teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +64 -0
- teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +182 -0
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +103 -0
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +181 -0
- teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
- teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +68 -0
- teradataml/data/jsons/uaf/17.20/TD_MINFO.json +67 -0
- teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +179 -0
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -0
- teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +119 -0
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -0
- teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +98 -0
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +194 -0
- teradataml/data/jsons/uaf/17.20/TD_SAX.json +210 -0
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +143 -0
- teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +90 -0
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +80 -0
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +68 -0
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -0
- teradataml/data/jsons/uaf/17.20/TD_SINFO.json +58 -0
- teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +163 -0
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +112 -0
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -0
- teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +410 -0
- teradataml/data/kmeans_example.json +23 -0
- teradataml/data/kmeans_table.csv +10 -0
- teradataml/data/kmeans_us_arrests_data.csv +51 -0
- teradataml/data/knn_example.json +19 -0
- teradataml/data/knnrecommender_example.json +7 -0
- teradataml/data/knnrecommenderpredict_example.json +12 -0
- teradataml/data/lar_example.json +17 -0
- teradataml/data/larpredict_example.json +30 -0
- teradataml/data/lc_new_predictors.csv +5 -0
- teradataml/data/lc_new_reference.csv +9 -0
- teradataml/data/lda_example.json +9 -0
- teradataml/data/ldainference_example.json +15 -0
- teradataml/data/ldatopicsummary_example.json +9 -0
- teradataml/data/levendist_input.csv +13 -0
- teradataml/data/levenshteindistance_example.json +10 -0
- teradataml/data/linreg_example.json +10 -0
- teradataml/data/load_example_data.py +350 -0
- teradataml/data/loan_prediction.csv +295 -0
- teradataml/data/lungcancer.csv +138 -0
- teradataml/data/mappingdata.csv +12 -0
- teradataml/data/medical_readings.csv +101 -0
- teradataml/data/milk_timeseries.csv +157 -0
- teradataml/data/min_max_titanic.csv +4 -0
- teradataml/data/minhash_example.json +6 -0
- teradataml/data/ml_ratings.csv +7547 -0
- teradataml/data/ml_ratings_10.csv +2445 -0
- teradataml/data/mobile_data.csv +13 -0
- teradataml/data/model1_table.csv +5 -0
- teradataml/data/model2_table.csv +5 -0
- teradataml/data/models/License_file.txt +1 -0
- teradataml/data/models/License_file_empty.txt +0 -0
- teradataml/data/models/dataiku_iris_data_ann_thin +0 -0
- teradataml/data/models/dr_iris_rf +0 -0
- teradataml/data/models/iris_db_dt_model_sklearn.onnx +0 -0
- teradataml/data/models/iris_db_dt_model_sklearn_floattensor.onnx +0 -0
- teradataml/data/models/iris_db_glm_model.pmml +57 -0
- teradataml/data/models/iris_db_xgb_model.pmml +4471 -0
- teradataml/data/models/iris_kmeans_model +0 -0
- teradataml/data/models/iris_mojo_glm_h2o_model +0 -0
- teradataml/data/models/iris_mojo_xgb_h2o_model +0 -0
- teradataml/data/modularity_example.json +12 -0
- teradataml/data/movavg_example.json +8 -0
- teradataml/data/mtx1.csv +7 -0
- teradataml/data/mtx2.csv +13 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/mvdfft8.csv +9 -0
- teradataml/data/naivebayes_example.json +10 -0
- teradataml/data/naivebayespredict_example.json +19 -0
- teradataml/data/naivebayestextclassifier2_example.json +7 -0
- teradataml/data/naivebayestextclassifier_example.json +8 -0
- teradataml/data/naivebayestextclassifierpredict_example.json +32 -0
- teradataml/data/name_Find_configure.csv +10 -0
- teradataml/data/namedentityfinder_example.json +14 -0
- teradataml/data/namedentityfinderevaluator_example.json +10 -0
- teradataml/data/namedentityfindertrainer_example.json +6 -0
- teradataml/data/nb_iris_input_test.csv +31 -0
- teradataml/data/nb_iris_input_train.csv +121 -0
- teradataml/data/nbp_iris_model.csv +13 -0
- teradataml/data/ner_dict.csv +8 -0
- teradataml/data/ner_extractor_text.csv +2 -0
- teradataml/data/ner_input_eng.csv +7 -0
- teradataml/data/ner_rule.csv +5 -0
- teradataml/data/ner_sports_test2.csv +29 -0
- teradataml/data/ner_sports_train.csv +501 -0
- teradataml/data/nerevaluator_example.json +6 -0
- teradataml/data/nerextractor_example.json +18 -0
- teradataml/data/nermem_sports_test.csv +18 -0
- teradataml/data/nermem_sports_train.csv +51 -0
- teradataml/data/nertrainer_example.json +7 -0
- teradataml/data/ngrams_example.json +7 -0
- teradataml/data/notebooks/__init__.py +0 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -0
- teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -0
- teradataml/data/notebooks/sqlalchemy/__init__.py +0 -0
- teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -0
- teradataml/data/npath_example.json +23 -0
- teradataml/data/ntree_example.json +14 -0
- teradataml/data/numeric_strings.csv +5 -0
- teradataml/data/numerics.csv +4 -0
- teradataml/data/ocean_buoy.csv +17 -0
- teradataml/data/ocean_buoy2.csv +17 -0
- teradataml/data/ocean_buoys.csv +28 -0
- teradataml/data/ocean_buoys2.csv +10 -0
- teradataml/data/ocean_buoys_nonpti.csv +28 -0
- teradataml/data/ocean_buoys_seq.csv +29 -0
- teradataml/data/onehot_encoder_train.csv +4 -0
- teradataml/data/openml_example.json +92 -0
- teradataml/data/optional_event_table.csv +4 -0
- teradataml/data/orders1.csv +11 -0
- teradataml/data/orders1_12.csv +13 -0
- teradataml/data/orders_ex.csv +4 -0
- teradataml/data/pack_example.json +9 -0
- teradataml/data/package_tracking.csv +19 -0
- teradataml/data/package_tracking_pti.csv +19 -0
- teradataml/data/pagerank_example.json +13 -0
- teradataml/data/paragraphs_input.csv +6 -0
- teradataml/data/pathanalyzer_example.json +8 -0
- teradataml/data/pathgenerator_example.json +8 -0
- teradataml/data/patient_profile.csv +101 -0
- teradataml/data/pattern_matching_data.csv +11 -0
- teradataml/data/payment_fraud_dataset.csv +10001 -0
- teradataml/data/peppers.png +0 -0
- teradataml/data/phrases.csv +7 -0
- teradataml/data/pivot_example.json +9 -0
- teradataml/data/pivot_input.csv +22 -0
- teradataml/data/playerRating.csv +31 -0
- teradataml/data/pos_input.csv +40 -0
- teradataml/data/postagger_example.json +7 -0
- teradataml/data/posttagger_output.csv +44 -0
- teradataml/data/production_data.csv +17 -0
- teradataml/data/production_data2.csv +7 -0
- teradataml/data/randomsample_example.json +32 -0
- teradataml/data/randomwalksample_example.json +9 -0
- teradataml/data/rank_table.csv +6 -0
- teradataml/data/real_values.csv +14 -0
- teradataml/data/ref_mobile_data.csv +4 -0
- teradataml/data/ref_mobile_data_dense.csv +2 -0
- teradataml/data/ref_url.csv +17 -0
- teradataml/data/restaurant_reviews.csv +7 -0
- teradataml/data/retail_churn_table.csv +27772 -0
- teradataml/data/river_data.csv +145 -0
- teradataml/data/roc_example.json +8 -0
- teradataml/data/roc_input.csv +101 -0
- teradataml/data/rule_inputs.csv +6 -0
- teradataml/data/rule_table.csv +2 -0
- teradataml/data/sales.csv +7 -0
- teradataml/data/sales_transaction.csv +501 -0
- teradataml/data/salesdata.csv +342 -0
- teradataml/data/sample_cities.csv +3 -0
- teradataml/data/sample_shapes.csv +11 -0
- teradataml/data/sample_streets.csv +3 -0
- teradataml/data/sampling_example.json +16 -0
- teradataml/data/sax_example.json +17 -0
- teradataml/data/scale_attributes.csv +3 -0
- teradataml/data/scale_example.json +74 -0
- teradataml/data/scale_housing.csv +11 -0
- teradataml/data/scale_housing_test.csv +6 -0
- teradataml/data/scale_input_part_sparse.csv +31 -0
- teradataml/data/scale_input_partitioned.csv +16 -0
- teradataml/data/scale_input_sparse.csv +11 -0
- teradataml/data/scale_parameters.csv +3 -0
- teradataml/data/scale_stat.csv +11 -0
- teradataml/data/scalebypartition_example.json +13 -0
- teradataml/data/scalemap_example.json +13 -0
- teradataml/data/scalesummary_example.json +12 -0
- teradataml/data/score_category.csv +101 -0
- teradataml/data/score_summary.csv +4 -0
- teradataml/data/script_example.json +10 -0
- teradataml/data/scripts/deploy_script.py +84 -0
- teradataml/data/scripts/lightgbm/dataset.template +175 -0
- teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +264 -0
- teradataml/data/scripts/lightgbm/lightgbm_function.template +234 -0
- teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +177 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/mapper.py +16 -0
- teradataml/data/scripts/mapper_replace.py +16 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +205 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +148 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +144 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +166 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +161 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +145 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +327 -0
- teradataml/data/sdk/modelops/modelops_spec.json +101737 -0
- teradataml/data/seeds.csv +10 -0
- teradataml/data/sentenceextractor_example.json +7 -0
- teradataml/data/sentiment_extract_input.csv +11 -0
- teradataml/data/sentiment_train.csv +16 -0
- teradataml/data/sentiment_word.csv +20 -0
- teradataml/data/sentiment_word_input.csv +20 -0
- teradataml/data/sentimentextractor_example.json +24 -0
- teradataml/data/sentimenttrainer_example.json +8 -0
- teradataml/data/sequence_table.csv +10 -0
- teradataml/data/seriessplitter_example.json +8 -0
- teradataml/data/sessionize_example.json +17 -0
- teradataml/data/sessionize_table.csv +116 -0
- teradataml/data/setop_test1.csv +24 -0
- teradataml/data/setop_test2.csv +22 -0
- teradataml/data/soc_nw_edges.csv +11 -0
- teradataml/data/soc_nw_vertices.csv +8 -0
- teradataml/data/souvenir_timeseries.csv +168 -0
- teradataml/data/sparse_iris_attribute.csv +5 -0
- teradataml/data/sparse_iris_test.csv +121 -0
- teradataml/data/sparse_iris_train.csv +601 -0
- teradataml/data/star1.csv +6 -0
- teradataml/data/star_pivot.csv +8 -0
- teradataml/data/state_transition.csv +5 -0
- teradataml/data/stock_data.csv +53 -0
- teradataml/data/stock_movement.csv +11 -0
- teradataml/data/stock_vol.csv +76 -0
- teradataml/data/stop_words.csv +8 -0
- teradataml/data/store_sales.csv +37 -0
- teradataml/data/stringsimilarity_example.json +8 -0
- teradataml/data/strsimilarity_input.csv +13 -0
- teradataml/data/students.csv +101 -0
- teradataml/data/svm_iris_input_test.csv +121 -0
- teradataml/data/svm_iris_input_train.csv +481 -0
- teradataml/data/svm_iris_model.csv +7 -0
- teradataml/data/svmdense_example.json +10 -0
- teradataml/data/svmdensepredict_example.json +19 -0
- teradataml/data/svmsparse_example.json +8 -0
- teradataml/data/svmsparsepredict_example.json +14 -0
- teradataml/data/svmsparsesummary_example.json +8 -0
- teradataml/data/target_mobile_data.csv +13 -0
- teradataml/data/target_mobile_data_dense.csv +5 -0
- teradataml/data/target_udt_data.csv +8 -0
- teradataml/data/tdnerextractor_example.json +14 -0
- teradataml/data/templatedata.csv +1201 -0
- teradataml/data/templates/open_source_ml.json +11 -0
- teradataml/data/teradata_icon.ico +0 -0
- teradataml/data/teradataml_example.json +1473 -0
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_loan_prediction.csv +53 -0
- teradataml/data/test_pacf_12.csv +37 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/test_river2.csv +109 -0
- teradataml/data/text_inputs.csv +6 -0
- teradataml/data/textchunker_example.json +8 -0
- teradataml/data/textclassifier_example.json +7 -0
- teradataml/data/textclassifier_input.csv +7 -0
- teradataml/data/textclassifiertrainer_example.json +7 -0
- teradataml/data/textmorph_example.json +11 -0
- teradataml/data/textparser_example.json +15 -0
- teradataml/data/texttagger_example.json +12 -0
- teradataml/data/texttokenizer_example.json +7 -0
- teradataml/data/texttrainer_input.csv +11 -0
- teradataml/data/tf_example.json +7 -0
- teradataml/data/tfidf_example.json +14 -0
- teradataml/data/tfidf_input1.csv +201 -0
- teradataml/data/tfidf_train.csv +6 -0
- teradataml/data/time_table1.csv +535 -0
- teradataml/data/time_table2.csv +14 -0
- teradataml/data/timeseriesdata.csv +1601 -0
- teradataml/data/timeseriesdatasetsd4.csv +105 -0
- teradataml/data/timestamp_data.csv +4 -0
- teradataml/data/titanic.csv +892 -0
- teradataml/data/titanic_dataset_unpivoted.csv +19 -0
- teradataml/data/to_num_data.csv +4 -0
- teradataml/data/tochar_data.csv +5 -0
- teradataml/data/token_table.csv +696 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/train_tracking.csv +28 -0
- teradataml/data/trans_dense.csv +16 -0
- teradataml/data/trans_sparse.csv +55 -0
- teradataml/data/transformation_table.csv +6 -0
- teradataml/data/transformation_table_new.csv +2 -0
- teradataml/data/tv_spots.csv +16 -0
- teradataml/data/twod_climate_data.csv +117 -0
- teradataml/data/uaf_example.json +529 -0
- teradataml/data/univariatestatistics_example.json +9 -0
- teradataml/data/unpack_example.json +10 -0
- teradataml/data/unpivot_example.json +25 -0
- teradataml/data/unpivot_input.csv +8 -0
- teradataml/data/url_data.csv +10 -0
- teradataml/data/us_air_pass.csv +37 -0
- teradataml/data/us_population.csv +624 -0
- teradataml/data/us_states_shapes.csv +52 -0
- teradataml/data/varmax_example.json +18 -0
- teradataml/data/vectordistance_example.json +30 -0
- teradataml/data/ville_climatedata.csv +121 -0
- teradataml/data/ville_tempdata.csv +12 -0
- teradataml/data/ville_tempdata1.csv +12 -0
- teradataml/data/ville_temperature.csv +11 -0
- teradataml/data/waveletTable.csv +1605 -0
- teradataml/data/waveletTable2.csv +1605 -0
- teradataml/data/weightedmovavg_example.json +9 -0
- teradataml/data/wft_testing.csv +5 -0
- teradataml/data/windowdfft.csv +16 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/data/word_embed_input_table1.csv +6 -0
- teradataml/data/word_embed_input_table2.csv +5 -0
- teradataml/data/word_embed_model.csv +23 -0
- teradataml/data/words_input.csv +13 -0
- teradataml/data/xconvolve_complex_left.csv +6 -0
- teradataml/data/xconvolve_complex_leftmulti.csv +6 -0
- teradataml/data/xgboost_example.json +36 -0
- teradataml/data/xgboostpredict_example.json +32 -0
- teradataml/data/ztest_example.json +16 -0
- teradataml/dataframe/__init__.py +0 -0
- teradataml/dataframe/copy_to.py +2446 -0
- teradataml/dataframe/data_transfer.py +2840 -0
- teradataml/dataframe/dataframe.py +20908 -0
- teradataml/dataframe/dataframe_utils.py +2114 -0
- teradataml/dataframe/fastload.py +794 -0
- teradataml/dataframe/functions.py +2110 -0
- teradataml/dataframe/indexer.py +424 -0
- teradataml/dataframe/row.py +160 -0
- teradataml/dataframe/setop.py +1171 -0
- teradataml/dataframe/sql.py +10904 -0
- teradataml/dataframe/sql_function_parameters.py +440 -0
- teradataml/dataframe/sql_functions.py +652 -0
- teradataml/dataframe/sql_interfaces.py +220 -0
- teradataml/dataframe/vantage_function_types.py +675 -0
- teradataml/dataframe/window.py +694 -0
- teradataml/dbutils/__init__.py +3 -0
- teradataml/dbutils/dbutils.py +2871 -0
- teradataml/dbutils/filemgr.py +318 -0
- teradataml/gen_ai/__init__.py +2 -0
- teradataml/gen_ai/convAI.py +473 -0
- teradataml/geospatial/__init__.py +4 -0
- teradataml/geospatial/geodataframe.py +1105 -0
- teradataml/geospatial/geodataframecolumn.py +392 -0
- teradataml/geospatial/geometry_types.py +926 -0
- teradataml/hyperparameter_tuner/__init__.py +1 -0
- teradataml/hyperparameter_tuner/optimizer.py +4115 -0
- teradataml/hyperparameter_tuner/utils.py +303 -0
- teradataml/lib/__init__.py +0 -0
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/lib/libaed_0_1_aarch64.so +0 -0
- teradataml/lib/libaed_0_1_ppc64le.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/_base.py +1321 -0
- teradataml/opensource/_class.py +464 -0
- teradataml/opensource/_constants.py +61 -0
- teradataml/opensource/_lightgbm.py +949 -0
- teradataml/opensource/_sklearn.py +1008 -0
- teradataml/opensource/_wrapper_utils.py +267 -0
- teradataml/options/__init__.py +148 -0
- teradataml/options/configure.py +489 -0
- teradataml/options/display.py +187 -0
- teradataml/plot/__init__.py +3 -0
- teradataml/plot/axis.py +1427 -0
- teradataml/plot/constants.py +15 -0
- teradataml/plot/figure.py +431 -0
- teradataml/plot/plot.py +810 -0
- teradataml/plot/query_generator.py +83 -0
- teradataml/plot/subplot.py +216 -0
- teradataml/scriptmgmt/UserEnv.py +4273 -0
- teradataml/scriptmgmt/__init__.py +3 -0
- teradataml/scriptmgmt/lls_utils.py +2157 -0
- teradataml/sdk/README.md +79 -0
- teradataml/sdk/__init__.py +4 -0
- teradataml/sdk/_auth_modes.py +422 -0
- teradataml/sdk/_func_params.py +487 -0
- teradataml/sdk/_json_parser.py +453 -0
- teradataml/sdk/_openapi_spec_constants.py +249 -0
- teradataml/sdk/_utils.py +236 -0
- teradataml/sdk/api_client.py +900 -0
- teradataml/sdk/constants.py +62 -0
- teradataml/sdk/modelops/__init__.py +98 -0
- teradataml/sdk/modelops/_client.py +409 -0
- teradataml/sdk/modelops/_constants.py +304 -0
- teradataml/sdk/modelops/models.py +2308 -0
- teradataml/sdk/spinner.py +107 -0
- teradataml/series/__init__.py +0 -0
- teradataml/series/series.py +537 -0
- teradataml/series/series_utils.py +71 -0
- teradataml/store/__init__.py +12 -0
- teradataml/store/feature_store/__init__.py +0 -0
- teradataml/store/feature_store/constants.py +658 -0
- teradataml/store/feature_store/feature_store.py +4814 -0
- teradataml/store/feature_store/mind_map.py +639 -0
- teradataml/store/feature_store/models.py +7330 -0
- teradataml/store/feature_store/utils.py +390 -0
- teradataml/table_operators/Apply.py +979 -0
- teradataml/table_operators/Script.py +1739 -0
- teradataml/table_operators/TableOperator.py +1343 -0
- teradataml/table_operators/__init__.py +2 -0
- teradataml/table_operators/apply_query_generator.py +262 -0
- teradataml/table_operators/query_generator.py +493 -0
- teradataml/table_operators/table_operator_query_generator.py +462 -0
- teradataml/table_operators/table_operator_util.py +726 -0
- teradataml/table_operators/templates/dataframe_apply.template +184 -0
- teradataml/table_operators/templates/dataframe_map.template +176 -0
- teradataml/table_operators/templates/dataframe_register.template +73 -0
- teradataml/table_operators/templates/dataframe_udf.template +67 -0
- teradataml/table_operators/templates/script_executor.template +170 -0
- teradataml/telemetry_utils/__init__.py +0 -0
- teradataml/telemetry_utils/queryband.py +53 -0
- teradataml/utils/__init__.py +0 -0
- teradataml/utils/docstring.py +527 -0
- teradataml/utils/dtypes.py +943 -0
- teradataml/utils/internal_buffer.py +122 -0
- teradataml/utils/print_versions.py +206 -0
- teradataml/utils/utils.py +451 -0
- teradataml/utils/validators.py +3305 -0
- teradataml-20.0.0.8.dist-info/METADATA +2804 -0
- teradataml-20.0.0.8.dist-info/RECORD +1208 -0
- teradataml-20.0.0.8.dist-info/WHEEL +5 -0
- teradataml-20.0.0.8.dist-info/top_level.txt +1 -0
- teradataml-20.0.0.8.dist-info/zip-safe +1 -0
|
@@ -0,0 +1,652 @@
|
|
|
1
|
+
from functools import wraps
|
|
2
|
+
|
|
3
|
+
from teradataml.common.utils import UtilFuncs
|
|
4
|
+
|
|
5
|
+
from teradataml.common.exceptions import TeradataMlException
|
|
6
|
+
from teradataml.common.messages import Messages
|
|
7
|
+
from teradataml.common.messagecodes import MessageCodes
|
|
8
|
+
from sqlalchemy import func, literal
|
|
9
|
+
from sqlalchemy.ext.compiler import compiles
|
|
10
|
+
from sqlalchemy.sql import expression
|
|
11
|
+
from sqlalchemy.sql.elements import BinaryExpression, ColumnClause
|
|
12
|
+
from sqlalchemy.sql.expression import case as case_when
|
|
13
|
+
|
|
14
|
+
from .sql import _SQLColumnExpression, _resolve_value_to_type
|
|
15
|
+
from .sql_interfaces import ColumnExpression
|
|
16
|
+
|
|
17
|
+
from teradatasqlalchemy.dialect import preparer, dialect as td_dialect
|
|
18
|
+
from teradatasqlalchemy import (BYTEINT, SMALLINT, INTEGER, BIGINT, DECIMAL, FLOAT)
|
|
19
|
+
from teradatasqlalchemy import (CHAR, VARCHAR, CLOB, NUMBER)
|
|
20
|
+
from teradatasqlalchemy import (TIMESTAMP, DATE, TIME)
|
|
21
|
+
|
|
22
|
+
__all__ = ['translate', 'to_numeric']
|
|
23
|
+
|
|
24
|
+
def _as_varchar_literal(arg):
|
|
25
|
+
"""
|
|
26
|
+
return a sqlalchemy literal
|
|
27
|
+
|
|
28
|
+
Parameters
|
|
29
|
+
---------
|
|
30
|
+
arg: string literal
|
|
31
|
+
|
|
32
|
+
"""
|
|
33
|
+
return literal(arg, type_ = VARCHAR(len(arg)))
|
|
34
|
+
|
|
35
|
+
# TODO: refactor this once more functions are created
|
|
36
|
+
#def _implementation(fn):
|
|
37
|
+
#
|
|
38
|
+
# """
|
|
39
|
+
# This decorator wraps sql functions that generate expressions
|
|
40
|
+
# that can be used in DataFrame and Series methods such as assign.
|
|
41
|
+
#
|
|
42
|
+
# The wrapper performs error checks as well as implements
|
|
43
|
+
# the kind of ColumnExpression instance to return
|
|
44
|
+
#
|
|
45
|
+
# Parameters
|
|
46
|
+
# ----------
|
|
47
|
+
# A function or method that generates sql.
|
|
48
|
+
# The function is from the sql_functions module.
|
|
49
|
+
#
|
|
50
|
+
# Examples
|
|
51
|
+
# --------
|
|
52
|
+
# @implementation
|
|
53
|
+
# def unicode_to_latin(x)
|
|
54
|
+
#
|
|
55
|
+
# """
|
|
56
|
+
# @wraps
|
|
57
|
+
# def inner(*args, **kw):
|
|
58
|
+
#
|
|
59
|
+
# res = fn(*args, **kw)
|
|
60
|
+
# return _SQLColumnExpression(res)
|
|
61
|
+
#
|
|
62
|
+
#
|
|
63
|
+
#@_implementation
|
|
64
|
+
|
|
65
|
+
def translate(x, source = 'UNICODE', target = 'LATIN'):
|
|
66
|
+
"""
|
|
67
|
+
Returns a TRANSLATE(x USING source_TO_target) expression
|
|
68
|
+
|
|
69
|
+
PARAMETERS:
|
|
70
|
+
x: A ColumnExpression instance coming from the DataFrame
|
|
71
|
+
or output of other functions in sql_functions. A python
|
|
72
|
+
string literal may also be used.
|
|
73
|
+
|
|
74
|
+
source, target: str with values:
|
|
75
|
+
- 'UNICODE'
|
|
76
|
+
- 'LATIN'
|
|
77
|
+
|
|
78
|
+
REFERENCES:
|
|
79
|
+
Chapter 28: String Operators and Functions
|
|
80
|
+
Teradata® Database SQL Functions, Operators, Expressions, and
|
|
81
|
+
Predicates, Release 16.20
|
|
82
|
+
|
|
83
|
+
EXAMPLES:
|
|
84
|
+
>>> from teradataml.dataframe.sql_functions import translate
|
|
85
|
+
|
|
86
|
+
>>> df = DataFrame('df')
|
|
87
|
+
>>> tvshow = df['tvshow']
|
|
88
|
+
|
|
89
|
+
>>> res = df.assign(tvshow = translate(tvshow))
|
|
90
|
+
"""
|
|
91
|
+
|
|
92
|
+
# error checking
|
|
93
|
+
if not isinstance(x, str) and not isinstance(x, ColumnExpression):
|
|
94
|
+
msg = Messages.get_message(MessageCodes.TDMLDF_UNKNOWN_TYPE).format('x', "a DataFrame column or string")
|
|
95
|
+
raise TeradataMlException(msg, MessageCodes.TDMLDF_UNKNOWN_TYPE)
|
|
96
|
+
|
|
97
|
+
if not isinstance(source, str):
|
|
98
|
+
msg = Messages.get_message(MessageCodes.TDMLDF_UNKNOWN_TYPE).format('source', "a string")
|
|
99
|
+
raise TeradataMlException(msg, MessageCodes.TDMLDF_UNKNOWN_TYPE)
|
|
100
|
+
|
|
101
|
+
if not isinstance(target, str):
|
|
102
|
+
msg = Messages.get_message(MessageCodes.TDMLDF_UNKNOWN_TYPE).format('target', "a string")
|
|
103
|
+
raise TeradataMlException(msg, MessageCodes.TDMLDF_UNKNOWN_TYPE)
|
|
104
|
+
|
|
105
|
+
supported = ('UNICODE', 'LATIN')
|
|
106
|
+
if (source.upper() not in supported):
|
|
107
|
+
msg = Messages.get_message(MessageCodes.INVALID_ARG_VALUE).format(source.upper(), 'source', "in {}".format(supported))
|
|
108
|
+
raise TeradataMlException(msg, MessageCodes.INVALID_ARG_VALUE)
|
|
109
|
+
|
|
110
|
+
if (target.upper() not in supported):
|
|
111
|
+
msg = Messages.get_message(MessageCodes.INVALID_ARG_VALUE).format(target.upper(), 'target', "in {}".format(supported))
|
|
112
|
+
raise TeradataMlException(msg, MessageCodes.INVALID_ARG_VALUE)
|
|
113
|
+
|
|
114
|
+
# get the sqlalchemy expression
|
|
115
|
+
expr = None
|
|
116
|
+
if isinstance(x, ColumnExpression):
|
|
117
|
+
expr = x.expression
|
|
118
|
+
|
|
119
|
+
else:
|
|
120
|
+
expr = literal(x, type_ = VARCHAR(length = len(x), charset = 'UNICODE'))
|
|
121
|
+
|
|
122
|
+
if not isinstance(expr.type, (CHAR, VARCHAR, CLOB)):
|
|
123
|
+
msg = Messages.get_message(MessageCodes.TDMLDF_UNKNOWN_TYPE).format('x', "a DataFrame column of type CHAR, VARCHAR, or CLOB")
|
|
124
|
+
raise TeradataMlException(msg, MessageCodes.TDMLDF_UNKNOWN_TYPE)
|
|
125
|
+
|
|
126
|
+
# get the result type
|
|
127
|
+
length, charset = expr.type.length, target
|
|
128
|
+
typ_ = CLOB(length, charset) if isinstance(expr.type, CLOB) else VARCHAR(length, charset)
|
|
129
|
+
|
|
130
|
+
# define an inner class to generate the sql expression
|
|
131
|
+
class _translate(expression.FunctionElement):
|
|
132
|
+
name = '_translate'
|
|
133
|
+
type = typ_
|
|
134
|
+
|
|
135
|
+
custom = source + '_TO_' + target
|
|
136
|
+
@compiles(_translate)
|
|
137
|
+
def default__translate(element, compiler, **kw):
|
|
138
|
+
column_expression = compiler.process(element.clauses, **kw)
|
|
139
|
+
return ('TRANSLATE({x} USING ' + custom + ')').format(x = column_expression)
|
|
140
|
+
|
|
141
|
+
return _SQLColumnExpression(_translate(expr.expression))
|
|
142
|
+
|
|
143
|
+
def case(whens, value=None, else_=None):
|
|
144
|
+
"""
|
|
145
|
+
Returns a ColumnExpression based on the CASE expression.
|
|
146
|
+
|
|
147
|
+
PARAMETERS:
|
|
148
|
+
whens:
|
|
149
|
+
Required Argument.
|
|
150
|
+
Specifies the criteria to be compared against. It accepts two different forms,
|
|
151
|
+
based on whether or not the value argument is used.
|
|
152
|
+
|
|
153
|
+
In the first form, it accepts a list of 2-tuples; each 2-tuple consists of (<sql expression>, <value>),
|
|
154
|
+
where the <sql expression> is a boolean expression and “value” is a resulting value.
|
|
155
|
+
For example:
|
|
156
|
+
|
|
157
|
+
case([
|
|
158
|
+
(df.first_name == 'wendy', 'W'),
|
|
159
|
+
(df.first_name == 'jack', 'J')
|
|
160
|
+
])
|
|
161
|
+
|
|
162
|
+
In the second form, it accepts a Python dictionary of comparison values mapped to a resulting value;
|
|
163
|
+
this form requires 'value' argument to be present, and values will be compared using the '==' operator.
|
|
164
|
+
For example:
|
|
165
|
+
|
|
166
|
+
case(
|
|
167
|
+
{"wendy": "W", "jack": "J"},
|
|
168
|
+
value=df.first_name
|
|
169
|
+
)
|
|
170
|
+
|
|
171
|
+
Types: List of 2-tuples or Dictionary of comparison value mapped to a resulting value.
|
|
172
|
+
|
|
173
|
+
value:
|
|
174
|
+
Optional Argument. Required when 'whens' is of dictionary type.
|
|
175
|
+
Specifies a SQL expression (ColumnExpression or literal) which will be used as a fixed “comparison point”
|
|
176
|
+
for candidate values within a dictionary passed to the 'whens' argument.
|
|
177
|
+
Types: ColumnExpression or SQL Expression (Python literal)
|
|
178
|
+
|
|
179
|
+
else_:
|
|
180
|
+
Optional Argument.
|
|
181
|
+
Specifies a SQL expression (ColumnExpression or literal) which will be the evaluated result of
|
|
182
|
+
the CASE construct if all expressions within 'whens' evaluate to False.
|
|
183
|
+
When omitted, will produce a result of NULL if none of the 'when' expressions evaluate to True.
|
|
184
|
+
Types: ColumnExpression or SQL Expression (Python literal)
|
|
185
|
+
|
|
186
|
+
|
|
187
|
+
RETURNS:
|
|
188
|
+
ColumnExpression
|
|
189
|
+
|
|
190
|
+
|
|
191
|
+
EXAMPLES:
|
|
192
|
+
>>> from teradataml.dataframe.sql_functions import case
|
|
193
|
+
>>> load_example_data("GLM", ["admissions_train"])
|
|
194
|
+
>>> df = DataFrame("admissions_train")
|
|
195
|
+
>>> print(df)
|
|
196
|
+
masters gpa stats programming admitted
|
|
197
|
+
id
|
|
198
|
+
5 no 3.44 Novice Novice 0
|
|
199
|
+
3 no 3.70 Novice Beginner 1
|
|
200
|
+
1 yes 3.95 Beginner Beginner 0
|
|
201
|
+
20 yes 3.90 Advanced Advanced 1
|
|
202
|
+
8 no 3.60 Beginner Advanced 1
|
|
203
|
+
25 no 3.96 Advanced Advanced 1
|
|
204
|
+
18 yes 3.81 Advanced Advanced 1
|
|
205
|
+
24 no 1.87 Advanced Novice 1
|
|
206
|
+
26 yes 3.57 Advanced Advanced 1
|
|
207
|
+
38 yes 2.65 Advanced Beginner 1
|
|
208
|
+
>>> print(df.shape)
|
|
209
|
+
(40, 6)
|
|
210
|
+
|
|
211
|
+
>>> # Example showing 'whens' passed a 2-tuple - assign rating based on GPA
|
|
212
|
+
>>> # gpa > 3.0 = 'good'
|
|
213
|
+
>>> # 2.0 < gpa <= 3.0 = 'average'
|
|
214
|
+
>>> # gpa <= 2.0 = 'bad'
|
|
215
|
+
>>> # Filtering all the 'good' scores only.
|
|
216
|
+
>>> good_df = df[case([(df.gpa > 3.0, 'good'),
|
|
217
|
+
(df.gpa > 2.0, 'average')],
|
|
218
|
+
else_='bad') == 'good']
|
|
219
|
+
>>> print(good_df)
|
|
220
|
+
masters gpa stats programming admitted
|
|
221
|
+
id
|
|
222
|
+
13 no 4.00 Advanced Novice 1
|
|
223
|
+
11 no 3.13 Advanced Advanced 1
|
|
224
|
+
9 no 3.82 Advanced Advanced 1
|
|
225
|
+
26 yes 3.57 Advanced Advanced 1
|
|
226
|
+
3 no 3.70 Novice Beginner 1
|
|
227
|
+
1 yes 3.95 Beginner Beginner 0
|
|
228
|
+
20 yes 3.90 Advanced Advanced 1
|
|
229
|
+
18 yes 3.81 Advanced Advanced 1
|
|
230
|
+
5 no 3.44 Novice Novice 0
|
|
231
|
+
32 yes 3.46 Advanced Beginner 0
|
|
232
|
+
>>> print(good_df.shape)
|
|
233
|
+
(35, 6)
|
|
234
|
+
|
|
235
|
+
>>> # Use DataFrame.assign() to create a new column with the rating
|
|
236
|
+
>>> whens_df = df.assign(rating = case([(df.gpa > 3.0, 'good'),
|
|
237
|
+
(df.gpa > 2.0, 'average')],
|
|
238
|
+
else_='bad'))
|
|
239
|
+
>>> print(whens_df)
|
|
240
|
+
masters gpa stats programming admitted rating
|
|
241
|
+
id
|
|
242
|
+
5 no 3.44 Novice Novice 0 good
|
|
243
|
+
3 no 3.70 Novice Beginner 1 good
|
|
244
|
+
1 yes 3.95 Beginner Beginner 0 good
|
|
245
|
+
20 yes 3.90 Advanced Advanced 1 good
|
|
246
|
+
8 no 3.60 Beginner Advanced 1 good
|
|
247
|
+
25 no 3.96 Advanced Advanced 1 good
|
|
248
|
+
18 yes 3.81 Advanced Advanced 1 good
|
|
249
|
+
24 no 1.87 Advanced Novice 1 bad
|
|
250
|
+
26 yes 3.57 Advanced Advanced 1 good
|
|
251
|
+
38 yes 2.65 Advanced Beginner 1 average
|
|
252
|
+
>>> print(whens_df.shape)
|
|
253
|
+
(40, 7)
|
|
254
|
+
|
|
255
|
+
>>> # Example not specifying 'else_'
|
|
256
|
+
>>> no_else = df.assign(rating = case([(df.gpa > 3.0, 'good')]))
|
|
257
|
+
>>> print(no_else)
|
|
258
|
+
masters gpa stats programming admitted rating
|
|
259
|
+
id
|
|
260
|
+
5 no 3.44 Novice Novice 0 good
|
|
261
|
+
3 no 3.70 Novice Beginner 1 good
|
|
262
|
+
1 yes 3.95 Beginner Beginner 0 good
|
|
263
|
+
20 yes 3.90 Advanced Advanced 1 good
|
|
264
|
+
8 no 3.60 Beginner Advanced 1 good
|
|
265
|
+
25 no 3.96 Advanced Advanced 1 good
|
|
266
|
+
18 yes 3.81 Advanced Advanced 1 good
|
|
267
|
+
24 no 1.87 Advanced Novice 1 None
|
|
268
|
+
26 yes 3.57 Advanced Advanced 1 good
|
|
269
|
+
38 yes 2.65 Advanced Beginner 1 None
|
|
270
|
+
>>> print(no_else.shape)
|
|
271
|
+
(40, 7)
|
|
272
|
+
|
|
273
|
+
>>> # Example showing 'whens' passed a dictionary along with 'value'
|
|
274
|
+
>>> whens_value_df = df.assign(admitted_text = case({ 1 : "admitted", 0 : "not admitted"},
|
|
275
|
+
value=df.admitted,
|
|
276
|
+
else_="don't know"))
|
|
277
|
+
|
|
278
|
+
>>> print(whens_value_df)
|
|
279
|
+
masters gpa stats programming admitted admitted_text
|
|
280
|
+
id
|
|
281
|
+
13 no 4.00 Advanced Novice 1 admitted
|
|
282
|
+
11 no 3.13 Advanced Advanced 1 admitted
|
|
283
|
+
9 no 3.82 Advanced Advanced 1 admitted
|
|
284
|
+
28 no 3.93 Advanced Advanced 1 admitted
|
|
285
|
+
33 no 3.55 Novice Novice 1 admitted
|
|
286
|
+
10 no 3.71 Advanced Advanced 1 admitted
|
|
287
|
+
16 no 3.70 Advanced Advanced 1 admitted
|
|
288
|
+
32 yes 3.46 Advanced Beginner 0 not admitted
|
|
289
|
+
34 yes 3.85 Advanced Beginner 0 not admitted
|
|
290
|
+
17 no 3.83 Advanced Advanced 1 admitted
|
|
291
|
+
>>> print(whens_value_df.shape)
|
|
292
|
+
(40, 7)
|
|
293
|
+
|
|
294
|
+
>>> # Example showing how you can decide on projecting a column based on the value of expression.
|
|
295
|
+
>>> # In this example, you end up projecting values from column 'average_rating' if 2.0 < gpa <= 3.0,
|
|
296
|
+
>>> # and the values from column 'good_rating' when gpa > 3.0, naming the column 'ga_rating'.
|
|
297
|
+
|
|
298
|
+
>>> from sqlalchemy.sql import literal_column
|
|
299
|
+
>>> whens_new_df = df.assign(good_rating = case([(df.gpa > 3.0, 'good')]))
|
|
300
|
+
>>> whens_new_df = whens_new_df.assign(avg_rating = case([((whens_new_df.gpa > 2.0) & (whens_new_df.gpa <= 3.0),
|
|
301
|
+
'average')]))
|
|
302
|
+
>>> literal_df = whens_new_df.assign(ga_rating = case([(whens_new_df.gpa > 3.0, literal_column('good_rating')),
|
|
303
|
+
(whens_new_df.gpa > 2.0, literal_column('avg_rating'))]))
|
|
304
|
+
>>> print(literal_df)
|
|
305
|
+
masters gpa stats programming admitted good_rating avg_rating ga_rating
|
|
306
|
+
id
|
|
307
|
+
5 no 3.44 Novice Novice 0 good None good
|
|
308
|
+
3 no 3.70 Novice Beginner 1 good None good
|
|
309
|
+
1 yes 3.95 Beginner Beginner 0 good None good
|
|
310
|
+
20 yes 3.90 Advanced Advanced 1 good None good
|
|
311
|
+
8 no 3.60 Beginner Advanced 1 good None good
|
|
312
|
+
25 no 3.96 Advanced Advanced 1 good None good
|
|
313
|
+
18 yes 3.81 Advanced Advanced 1 good None good
|
|
314
|
+
24 no 1.87 Advanced Novice 1 None None None
|
|
315
|
+
26 yes 3.57 Advanced Advanced 1 good None good
|
|
316
|
+
38 yes 2.65 Advanced Beginner 1 None average average
|
|
317
|
+
|
|
318
|
+
"""
|
|
319
|
+
|
|
320
|
+
# Variable contains_type stores the tdtypes
|
|
321
|
+
contains_type = set()
|
|
322
|
+
# Validations
|
|
323
|
+
new_whens = whens
|
|
324
|
+
# whens can be a dictionary, but requires values to be specified
|
|
325
|
+
if isinstance(whens, dict):
|
|
326
|
+
# Make sure values is passed and is of required type
|
|
327
|
+
if not value:
|
|
328
|
+
raise TeradataMlException(Messages.get_message(MessageCodes.DEPENDENT_ARG_MISSING, "value",
|
|
329
|
+
"whens of dictionary type"),
|
|
330
|
+
MessageCodes.DEPENDENT_ARG_MISSING)
|
|
331
|
+
# as whens can take value only as Python type, so first mapping the value of
|
|
332
|
+
# Python type to tdtypes and storing the tdtypes in contains_type
|
|
333
|
+
for _, values in whens.items():
|
|
334
|
+
contains_type.add(type(_resolve_value_to_type(values)))
|
|
335
|
+
# If it is a teradataml ColumnExpression, we need to pass the SQLAlchemy Column Expression
|
|
336
|
+
if isinstance(value, ColumnExpression):
|
|
337
|
+
value = value.expression
|
|
338
|
+
|
|
339
|
+
# whens can be a list of 2-tuples
|
|
340
|
+
elif isinstance(whens, list):
|
|
341
|
+
new_whens = []
|
|
342
|
+
# Make sure the list of tuples has _SQLColumnExpression as first element
|
|
343
|
+
for when in whens:
|
|
344
|
+
raise_err = True if (not isinstance(when, tuple) or len(when) != 2) else False
|
|
345
|
+
if raise_err or (not isinstance(when[0], ColumnExpression) and not isinstance(when[0], BinaryExpression)):
|
|
346
|
+
raise TeradataMlException(Messages.get_message(MessageCodes.UNSUPPORTED_DATATYPE, 'whens',
|
|
347
|
+
"a list of 2-tuples with each tuple having a"
|
|
348
|
+
" boolean expression as the first element"),
|
|
349
|
+
MessageCodes.UNSUPPORTED_DATATYPE)
|
|
350
|
+
|
|
351
|
+
# If it is a teradataml ColumnExpression, we need to use the SQLAlchemy Column Expression
|
|
352
|
+
new_whens.append((when[0].expression if isinstance(when[0], ColumnExpression) else when[0],
|
|
353
|
+
when[1].expression if isinstance(when[1], ColumnExpression) else when[1]))
|
|
354
|
+
# If when[1] is a teradataml ColumnExpression type or when[1] is a literal_column then store
|
|
355
|
+
# the tdtypes in contains_type.
|
|
356
|
+
if isinstance(when[1], (ColumnExpression, ColumnClause)):
|
|
357
|
+
contains_type.add(type(when[1].type))
|
|
358
|
+
# If when[1] is of Python data type, so first mapping the value of
|
|
359
|
+
# Python type to tdtypes and storing the tdtypes in contains_type
|
|
360
|
+
else:
|
|
361
|
+
contains_type.add(type(_resolve_value_to_type(when[1])))
|
|
362
|
+
|
|
363
|
+
# values will be ignored by SQLAlchemy when 'whens' is a 2-tuple list.
|
|
364
|
+
# However, an issue was noticed with it when it was actually passed a value, which resulted in an
|
|
365
|
+
# incorrectly formed CASE statement. We forcefully set it to NULL.
|
|
366
|
+
if value is not None:
|
|
367
|
+
value = None
|
|
368
|
+
else:
|
|
369
|
+
raise TeradataMlException(Messages.get_message(MessageCodes.UNSUPPORTED_DATATYPE, 'whens',
|
|
370
|
+
"a list of 2-tuples with each tuple having a"
|
|
371
|
+
" boolean expression as the first element"),
|
|
372
|
+
MessageCodes.UNSUPPORTED_DATATYPE)
|
|
373
|
+
|
|
374
|
+
# If it is a teradataml ColumnExpression, we need to use the SQLAlchemy Column Expression
|
|
375
|
+
# and storing the tdtypes of ColumnExpression in contains_type
|
|
376
|
+
if isinstance(else_, ColumnExpression):
|
|
377
|
+
else_ = else_.expression
|
|
378
|
+
contains_type.add(type(else_.type))
|
|
379
|
+
# If else_ is literal_column then store the tdtypes of literal_column used
|
|
380
|
+
elif isinstance(else_, ColumnClause):
|
|
381
|
+
contains_type.add(type(else_.type))
|
|
382
|
+
# if else_ is of python data type so first mapping the value of
|
|
383
|
+
# Python type to tdtypes and storing the tdtypes in contains_type
|
|
384
|
+
else:
|
|
385
|
+
contains_type.add(type(_resolve_value_to_type(else_)))
|
|
386
|
+
|
|
387
|
+
if isinstance(new_whens, dict):
|
|
388
|
+
output_case_when = case_when(new_whens, value=value, else_=else_)
|
|
389
|
+
else:
|
|
390
|
+
output_case_when = case_when(*new_whens, value=value, else_=else_)
|
|
391
|
+
|
|
392
|
+
# Here assigning the correct tdypes if there are multiple tdtypes present in case function
|
|
393
|
+
# according to below conditions and if contains_type doesnot contain any below condition
|
|
394
|
+
# we kept the type of output_case_when as it is(means type provided by case_when)
|
|
395
|
+
# If VARCHAR tdtypes present in case function assign column type to VARCHAR tdtypes
|
|
396
|
+
if VARCHAR in contains_type:
|
|
397
|
+
output_case_when.type = VARCHAR()
|
|
398
|
+
# If FLOAT tdypes present in case function assign column type to FLOAT tdtypes
|
|
399
|
+
elif FLOAT in contains_type:
|
|
400
|
+
output_case_when.type = FLOAT()
|
|
401
|
+
# If NUMBER tdypes present in case function assign column type to NUMBER tdtypes
|
|
402
|
+
elif NUMBER in contains_type:
|
|
403
|
+
output_case_when.type = NUMBER()
|
|
404
|
+
# If DECIMAL tdypes present in case function assign column type to DECIMAL tdtypes
|
|
405
|
+
elif DECIMAL in contains_type:
|
|
406
|
+
output_case_when.type = DECIMAL()
|
|
407
|
+
# If BIGINT tdypes present in case function assign column type to BIGINT tdtypes
|
|
408
|
+
elif BIGINT in contains_type:
|
|
409
|
+
output_case_when.type = BIGINT()
|
|
410
|
+
# If INTEGER tdypes present in case function assign column type to INTEGER tdtypes
|
|
411
|
+
elif INTEGER in contains_type:
|
|
412
|
+
output_case_when.type = INTEGER()
|
|
413
|
+
# If SMALLINT tdypes present in case function assign column type to SMALLINT tdtypes
|
|
414
|
+
elif SMALLINT in contains_type:
|
|
415
|
+
output_case_when.type = SMALLINT()
|
|
416
|
+
# If BYTEINT tdypes present in case function assign column type to BYTINT tdtypes
|
|
417
|
+
elif BYTEINT in contains_type:
|
|
418
|
+
output_case_when.type = BYTEINT()
|
|
419
|
+
|
|
420
|
+
return _SQLColumnExpression(output_case_when)
|
|
421
|
+
|
|
422
|
+
def to_numeric(arg, **kw):
|
|
423
|
+
|
|
424
|
+
"""
|
|
425
|
+
Convert a string-like representation of a number to a Numeric type.
|
|
426
|
+
|
|
427
|
+
PARAMETERS:
|
|
428
|
+
arg: DataFrame column
|
|
429
|
+
kw: optional keyword arguments
|
|
430
|
+
format_: string. Specifies the format of a string-like number to convert to numeric
|
|
431
|
+
nls: dict where 'param' and 'value' are keys:
|
|
432
|
+
|
|
433
|
+
- param specifies one of the following string values:
|
|
434
|
+
-'CURRENCY', 'NUMERIC_CHARACTERS', 'DUAL_CURRENCY', 'ISO_CURRENCY'
|
|
435
|
+
|
|
436
|
+
- value: specifies characters that are returned by number format elements.
|
|
437
|
+
See References for more information
|
|
438
|
+
|
|
439
|
+
REFERENCES:
|
|
440
|
+
Chapter 14: Data Type Conversion Functions
|
|
441
|
+
Teradata® Database SQL Functions, Operators, Expressions, and
|
|
442
|
+
Predicates, Release 16.20
|
|
443
|
+
|
|
444
|
+
|
|
445
|
+
RETURNS:
|
|
446
|
+
A DataFrame column of numeric type
|
|
447
|
+
|
|
448
|
+
NOTES:
|
|
449
|
+
- If the arg column input is a numeric type, it is returned as is
|
|
450
|
+
- Nulls may be introduced in the result if the parsing fails
|
|
451
|
+
- You may need to strip() columns that have leading or trailing spaces
|
|
452
|
+
in order for to_numeric to parse correctly
|
|
453
|
+
|
|
454
|
+
EXAMPLES:
|
|
455
|
+
|
|
456
|
+
>>> df = DataFrame('numeric_strings')
|
|
457
|
+
|
|
458
|
+
hex decimal commas numbers
|
|
459
|
+
0 19FF 00.77 08,8 1
|
|
460
|
+
1 abcd 0.77 0,88 1
|
|
461
|
+
2 ABCDEFABCD 0.7.7 ,088 999
|
|
462
|
+
3 2018 .077 088, 0
|
|
463
|
+
|
|
464
|
+
>>> df.dtypes
|
|
465
|
+
|
|
466
|
+
hex str
|
|
467
|
+
decimal str
|
|
468
|
+
commas str
|
|
469
|
+
numbers str
|
|
470
|
+
|
|
471
|
+
# converting string numbers to numeric
|
|
472
|
+
>>> df.assign(drop_columns = True,
|
|
473
|
+
numbers = df.numbers,
|
|
474
|
+
numeric = to_numeric(df.numbers))
|
|
475
|
+
|
|
476
|
+
numbers numeric
|
|
477
|
+
0 1 1
|
|
478
|
+
1 1 1
|
|
479
|
+
2 999 999
|
|
480
|
+
3 0 0
|
|
481
|
+
|
|
482
|
+
|
|
483
|
+
# converting decimal-like strings to numeric
|
|
484
|
+
# Note that strings not following the format return None
|
|
485
|
+
>>> df.assign(drop_columns = True,
|
|
486
|
+
decimal = df.decimal,
|
|
487
|
+
numeric_dec = to_numeric(df.decimal))
|
|
488
|
+
|
|
489
|
+
decimal numeric_dec
|
|
490
|
+
0 00.77 .77
|
|
491
|
+
1 0.77 .77
|
|
492
|
+
2 0.7.7 None
|
|
493
|
+
3 .077 .077
|
|
494
|
+
|
|
495
|
+
# converting comma (group separated) strings to numeric
|
|
496
|
+
# Note that strings not following the format return None
|
|
497
|
+
>>> df.assign(drop_columns = True,
|
|
498
|
+
commas = df.commas,
|
|
499
|
+
numeric_commas = to_numeric(df.commas, format_ = '9G99'))
|
|
500
|
+
|
|
501
|
+
commas numeric_commas
|
|
502
|
+
0 08,8 None
|
|
503
|
+
1 0,88 88
|
|
504
|
+
2 ,088 None
|
|
505
|
+
3 088, None
|
|
506
|
+
|
|
507
|
+
# converting hex strings to numeric
|
|
508
|
+
>>> df.assign(drop_columns = True,
|
|
509
|
+
hex = df.hex,
|
|
510
|
+
numeric_hex = to_numeric(df.hex, format_ = 'XXXXXXXXXX'))
|
|
511
|
+
|
|
512
|
+
hex numeric_hex
|
|
513
|
+
0 19FF 6655
|
|
514
|
+
1 abcd 43981
|
|
515
|
+
2 ABCDEFABCD 737894443981
|
|
516
|
+
3 2018 8216
|
|
517
|
+
|
|
518
|
+
# converting literals to numeric
|
|
519
|
+
>>> df.assign(drop_columns = True,
|
|
520
|
+
a = to_numeric('123,456',format_ = '999,999'),
|
|
521
|
+
b = to_numeric('1,333.555', format_ = '9,999D999'),
|
|
522
|
+
c = to_numeric('2,333,2',format_ = '9G999G9'),
|
|
523
|
+
d = to_numeric('3E20'),
|
|
524
|
+
e = to_numeric('$41.99', format_ = 'L99.99'),
|
|
525
|
+
f = to_numeric('$.12', format_ = 'L.99'),
|
|
526
|
+
g = to_numeric('dollar123,456.00',
|
|
527
|
+
format_ = 'L999G999D99',
|
|
528
|
+
nls = {'param': 'currency', 'value': 'dollar'})).head(1)
|
|
529
|
+
|
|
530
|
+
a b c d e f g
|
|
531
|
+
0 123456 1333.555 23332 300000000000000000000 41.99 .12 123456
|
|
532
|
+
|
|
533
|
+
# For more information on format elements and parameters, see the Reference.
|
|
534
|
+
"""
|
|
535
|
+
|
|
536
|
+
# validation
|
|
537
|
+
if not isinstance(arg, str) and not isinstance(arg, ColumnExpression):
|
|
538
|
+
msg = Messages.get_message(MessageCodes.TDMLDF_UNKNOWN_TYPE).format('arg', "a string or DataFrame column of type CHAR or VARCHAR")
|
|
539
|
+
raise TeradataMlException(msg, MessageCodes.TDMLDF_UNKNOWN_TYPE)
|
|
540
|
+
|
|
541
|
+
expr = None
|
|
542
|
+
if isinstance(arg, ColumnExpression):
|
|
543
|
+
expr = arg.expression
|
|
544
|
+
else:
|
|
545
|
+
expr = literal(arg, type_ = VARCHAR(length = len(arg), charset = 'UNICODE'))
|
|
546
|
+
|
|
547
|
+
# The only reason to use to_numeric with a numerically typed column is if downcast is used,
|
|
548
|
+
# but those downcasted types are not supported (uint8, int8, float32)
|
|
549
|
+
# TODO: Look into supporting downcasting if we implement the three downcasted types above
|
|
550
|
+
if isinstance(expr.type, tuple(UtilFuncs()._get_numeric_datatypes())):
|
|
551
|
+
return arg
|
|
552
|
+
|
|
553
|
+
if not isinstance(expr.type, (VARCHAR, CHAR)):
|
|
554
|
+
msg = Messages.get_message(MessageCodes.TDMLDF_UNKNOWN_TYPE).format('arg', "a string or DataFrame column of type CHAR or VARCHAR")
|
|
555
|
+
raise TeradataMlException(msg, MessageCodes.TDMLDF_UNKNOWN_TYPE)
|
|
556
|
+
|
|
557
|
+
fmt = kw.get('format_', None)
|
|
558
|
+
nls = kw.get('nls', None)
|
|
559
|
+
|
|
560
|
+
if fmt is not None and not isinstance(fmt, str):
|
|
561
|
+
msg = Messages.get_message(MessageCodes.TDMLDF_UNKNOWN_TYPE).format('format_', "a string")
|
|
562
|
+
raise TeradataMlException(msg, MessageCodes.TDMLDF_UNKNOWN_TYPE)
|
|
563
|
+
|
|
564
|
+
if nls is not None and not isinstance(nls, dict):
|
|
565
|
+
msg = Messages.get_message(MessageCodes.TDMLDF_UNKNOWN_TYPE).format('nls', "a dict")
|
|
566
|
+
raise TeradataMlException(msg, MessageCodes.TDMLDF_UNKNOWN_TYPE)
|
|
567
|
+
|
|
568
|
+
# prepare for _to_number
|
|
569
|
+
if fmt is not None:
|
|
570
|
+
fmt = _as_varchar_literal(fmt)
|
|
571
|
+
|
|
572
|
+
if nls is not None:
|
|
573
|
+
if not (('param' in nls) and ('value' in nls)):
|
|
574
|
+
msg = Messages.get_message(MessageCodes.INVALID_ARG_VALUE).format(nls, 'nls', 'dict with "param" and "value" keys')
|
|
575
|
+
raise TeradataMlException(msg, MessageCodes.INVALID_ARG_VALUE)
|
|
576
|
+
|
|
577
|
+
if not isinstance(nls['param'], str) and not isinstance(nls['value'], str):
|
|
578
|
+
msg = Messages.get_message(MessageCodes.INVALID_ARG_VALUE).format(nls, 'nls', 'dict with "param" and "value" keys mapping to string values')
|
|
579
|
+
raise TeradataMlException(msg, MessageCodes.INVALID_ARG_VALUE)
|
|
580
|
+
|
|
581
|
+
nls_params = ('NUMERIC_CHARACTERS', 'CURRENCY', 'DUAL_CURRENCY', 'ISO_CURRENCY')
|
|
582
|
+
|
|
583
|
+
if not nls['param'].upper() in nls_params:
|
|
584
|
+
msg = Messages.get_message(MessageCodes.INVALID_ARG_VALUE).format(nls['param'].upper(), "nls['param']", 'in {}'.format(nls_params))
|
|
585
|
+
raise TeradataMlException(msg, MessageCodes.INVALID_ARG_VALUE)
|
|
586
|
+
|
|
587
|
+
nls_param = nls['param'].upper()
|
|
588
|
+
nls_value = _as_varchar_literal(nls['value'])
|
|
589
|
+
nls = {'param': nls_param, 'value': nls_value}
|
|
590
|
+
|
|
591
|
+
elif nls is not None:
|
|
592
|
+
msg = Messages.get_message(MessageCodes.MISSING_ARGS).format('format_. format_ keyword must be specfied if the nls keyword is used')
|
|
593
|
+
raise TeradataMlException(msg, MessageCodes.MISSING_ARGS)
|
|
594
|
+
|
|
595
|
+
label = arg.name if isinstance(arg, ColumnExpression) else arg
|
|
596
|
+
stmt = _to_number(expr, format_=fmt, nls=nls).label(label)
|
|
597
|
+
|
|
598
|
+
return _SQLColumnExpression(stmt)
|
|
599
|
+
|
|
600
|
+
|
|
601
|
+
class _to_number(expression.FunctionElement):
|
|
602
|
+
"""
|
|
603
|
+
Internal class used for representing the TO_NUMBER function in the SQL Engine.
|
|
604
|
+
|
|
605
|
+
"""
|
|
606
|
+
name = '_to_number'
|
|
607
|
+
type = NUMBER()
|
|
608
|
+
|
|
609
|
+
def __init__(self, arg, format_=None, nls=None, **kw):
|
|
610
|
+
"""
|
|
611
|
+
See docstring for_to_numeric.
|
|
612
|
+
|
|
613
|
+
Reference
|
|
614
|
+
---------
|
|
615
|
+
Chapter 14: Data Type Conversion Functions
|
|
616
|
+
Teradata® Database SQL Functions, Operators, Expressions, and
|
|
617
|
+
Predicates, Release 16.20
|
|
618
|
+
|
|
619
|
+
"""
|
|
620
|
+
args = [arg, format_]
|
|
621
|
+
if nls is not None:
|
|
622
|
+
args.append(nls['value'])
|
|
623
|
+
self.nls_param = 'NLS_' + nls['param']
|
|
624
|
+
|
|
625
|
+
args = (x for x in args if x is not None)
|
|
626
|
+
super().__init__(*args)
|
|
627
|
+
|
|
628
|
+
@compiles(_to_number)
|
|
629
|
+
def _visit_to_number(element, compiler, **kw):
|
|
630
|
+
"""
|
|
631
|
+
Compilation method for the _to_number function element class
|
|
632
|
+
|
|
633
|
+
Parameters
|
|
634
|
+
----------
|
|
635
|
+
element: A sqlalchemy ClauseElement instance
|
|
636
|
+
compiler: A sqlalchemy.engine.interfaces.Compiled instance
|
|
637
|
+
|
|
638
|
+
"""
|
|
639
|
+
col_exps = [compiler.process(exp, **kw) for exp in element.clauses]
|
|
640
|
+
|
|
641
|
+
optional = ''
|
|
642
|
+
|
|
643
|
+
# handle format
|
|
644
|
+
if len(col_exps) >= 2:
|
|
645
|
+
optional += ', {}'.format(col_exps[1])
|
|
646
|
+
|
|
647
|
+
# handle nls
|
|
648
|
+
if len(col_exps) >= 3:
|
|
649
|
+
optional += ", '{} = '{}''".format(element.nls_param, col_exps[2])
|
|
650
|
+
|
|
651
|
+
res = ('TO_NUMBER({x}{optional})').format(x = col_exps[0], optional = optional)
|
|
652
|
+
return res
|