teradataml 20.0.0.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +2762 -0
- teradataml/__init__.py +78 -0
- teradataml/_version.py +11 -0
- teradataml/analytics/Transformations.py +2996 -0
- teradataml/analytics/__init__.py +82 -0
- teradataml/analytics/analytic_function_executor.py +2416 -0
- teradataml/analytics/analytic_query_generator.py +1050 -0
- teradataml/analytics/byom/H2OPredict.py +514 -0
- teradataml/analytics/byom/PMMLPredict.py +437 -0
- teradataml/analytics/byom/__init__.py +16 -0
- teradataml/analytics/json_parser/__init__.py +133 -0
- teradataml/analytics/json_parser/analytic_functions_argument.py +1805 -0
- teradataml/analytics/json_parser/json_store.py +191 -0
- teradataml/analytics/json_parser/metadata.py +1666 -0
- teradataml/analytics/json_parser/utils.py +805 -0
- teradataml/analytics/meta_class.py +236 -0
- teradataml/analytics/sqle/DecisionTreePredict.py +456 -0
- teradataml/analytics/sqle/NaiveBayesPredict.py +420 -0
- teradataml/analytics/sqle/__init__.py +128 -0
- teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -0
- teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -0
- teradataml/analytics/table_operator/__init__.py +11 -0
- teradataml/analytics/uaf/__init__.py +82 -0
- teradataml/analytics/utils.py +828 -0
- teradataml/analytics/valib.py +1617 -0
- teradataml/automl/__init__.py +5835 -0
- teradataml/automl/autodataprep/__init__.py +493 -0
- teradataml/automl/custom_json_utils.py +1625 -0
- teradataml/automl/data_preparation.py +1384 -0
- teradataml/automl/data_transformation.py +1254 -0
- teradataml/automl/feature_engineering.py +2273 -0
- teradataml/automl/feature_exploration.py +1873 -0
- teradataml/automl/model_evaluation.py +488 -0
- teradataml/automl/model_training.py +1407 -0
- teradataml/catalog/__init__.py +2 -0
- teradataml/catalog/byom.py +1759 -0
- teradataml/catalog/function_argument_mapper.py +859 -0
- teradataml/catalog/model_cataloging_utils.py +491 -0
- teradataml/clients/__init__.py +0 -0
- teradataml/clients/auth_client.py +137 -0
- teradataml/clients/keycloak_client.py +165 -0
- teradataml/clients/pkce_client.py +481 -0
- teradataml/common/__init__.py +1 -0
- teradataml/common/aed_utils.py +2078 -0
- teradataml/common/bulk_exposed_utils.py +113 -0
- teradataml/common/constants.py +1669 -0
- teradataml/common/deprecations.py +166 -0
- teradataml/common/exceptions.py +147 -0
- teradataml/common/formula.py +743 -0
- teradataml/common/garbagecollector.py +666 -0
- teradataml/common/logger.py +1261 -0
- teradataml/common/messagecodes.py +518 -0
- teradataml/common/messages.py +262 -0
- teradataml/common/pylogger.py +67 -0
- teradataml/common/sqlbundle.py +764 -0
- teradataml/common/td_coltype_code_to_tdtype.py +48 -0
- teradataml/common/utils.py +3166 -0
- teradataml/common/warnings.py +36 -0
- teradataml/common/wrapper_utils.py +625 -0
- teradataml/config/__init__.py +0 -0
- teradataml/config/dummy_file1.cfg +5 -0
- teradataml/config/dummy_file2.cfg +3 -0
- teradataml/config/sqlengine_alias_definitions_v1.0 +14 -0
- teradataml/config/sqlengine_alias_definitions_v1.1 +20 -0
- teradataml/config/sqlengine_alias_definitions_v1.3 +19 -0
- teradataml/context/__init__.py +0 -0
- teradataml/context/aed_context.py +223 -0
- teradataml/context/context.py +1462 -0
- teradataml/data/A_loan.csv +19 -0
- teradataml/data/BINARY_REALS_LEFT.csv +11 -0
- teradataml/data/BINARY_REALS_RIGHT.csv +11 -0
- teradataml/data/B_loan.csv +49 -0
- teradataml/data/BuoyData2.csv +17 -0
- teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -0
- teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -0
- teradataml/data/Convolve2RealsLeft.csv +5 -0
- teradataml/data/Convolve2RealsRight.csv +5 -0
- teradataml/data/Convolve2ValidLeft.csv +11 -0
- teradataml/data/Convolve2ValidRight.csv +11 -0
- teradataml/data/DFFTConv_Real_8_8.csv +65 -0
- teradataml/data/Employee.csv +5 -0
- teradataml/data/Employee_Address.csv +4 -0
- teradataml/data/Employee_roles.csv +5 -0
- teradataml/data/JulesBelvezeDummyData.csv +100 -0
- teradataml/data/Mall_customer_data.csv +201 -0
- teradataml/data/Orders1_12mf.csv +25 -0
- teradataml/data/Pi_loan.csv +7 -0
- teradataml/data/SMOOTHED_DATA.csv +7 -0
- teradataml/data/TestDFFT8.csv +9 -0
- teradataml/data/TestRiver.csv +109 -0
- teradataml/data/Traindata.csv +28 -0
- teradataml/data/__init__.py +0 -0
- teradataml/data/acf.csv +17 -0
- teradataml/data/adaboost_example.json +34 -0
- teradataml/data/adaboostpredict_example.json +24 -0
- teradataml/data/additional_table.csv +11 -0
- teradataml/data/admissions_test.csv +21 -0
- teradataml/data/admissions_train.csv +41 -0
- teradataml/data/admissions_train_nulls.csv +41 -0
- teradataml/data/advertising.csv +201 -0
- teradataml/data/ageandheight.csv +13 -0
- teradataml/data/ageandpressure.csv +31 -0
- teradataml/data/amazon_reviews_25.csv +26 -0
- teradataml/data/antiselect_example.json +36 -0
- teradataml/data/antiselect_input.csv +8 -0
- teradataml/data/antiselect_input_mixed_case.csv +8 -0
- teradataml/data/applicant_external.csv +7 -0
- teradataml/data/applicant_reference.csv +7 -0
- teradataml/data/apriori_example.json +22 -0
- teradataml/data/arima_example.json +9 -0
- teradataml/data/assortedtext_input.csv +8 -0
- teradataml/data/attribution_example.json +34 -0
- teradataml/data/attribution_sample_table.csv +27 -0
- teradataml/data/attribution_sample_table1.csv +6 -0
- teradataml/data/attribution_sample_table2.csv +11 -0
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bank_marketing.csv +11163 -0
- teradataml/data/bank_web_clicks1.csv +43 -0
- teradataml/data/bank_web_clicks2.csv +91 -0
- teradataml/data/bank_web_url.csv +85 -0
- teradataml/data/barrier.csv +2 -0
- teradataml/data/barrier_new.csv +3 -0
- teradataml/data/betweenness_example.json +14 -0
- teradataml/data/bike_sharing.csv +732 -0
- teradataml/data/bin_breaks.csv +8 -0
- teradataml/data/bin_fit_ip.csv +4 -0
- teradataml/data/binary_complex_left.csv +11 -0
- teradataml/data/binary_complex_right.csv +11 -0
- teradataml/data/binary_matrix_complex_left.csv +21 -0
- teradataml/data/binary_matrix_complex_right.csv +21 -0
- teradataml/data/binary_matrix_real_left.csv +21 -0
- teradataml/data/binary_matrix_real_right.csv +21 -0
- teradataml/data/blood2ageandweight.csv +26 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/boston.csv +507 -0
- teradataml/data/boston2cols.csv +721 -0
- teradataml/data/breast_cancer.csv +570 -0
- teradataml/data/buoydata_mix.csv +11 -0
- teradataml/data/burst_data.csv +5 -0
- teradataml/data/burst_example.json +21 -0
- teradataml/data/byom_example.json +34 -0
- teradataml/data/bytes_table.csv +4 -0
- teradataml/data/cal_housing_ex_raw.csv +70 -0
- teradataml/data/callers.csv +7 -0
- teradataml/data/calls.csv +10 -0
- teradataml/data/cars_hist.csv +33 -0
- teradataml/data/cat_table.csv +25 -0
- teradataml/data/ccm_example.json +32 -0
- teradataml/data/ccm_input.csv +91 -0
- teradataml/data/ccm_input2.csv +13 -0
- teradataml/data/ccmexample.csv +101 -0
- teradataml/data/ccmprepare_example.json +9 -0
- teradataml/data/ccmprepare_input.csv +91 -0
- teradataml/data/cfilter_example.json +12 -0
- teradataml/data/changepointdetection_example.json +18 -0
- teradataml/data/changepointdetectionrt_example.json +8 -0
- teradataml/data/chi_sq.csv +3 -0
- teradataml/data/churn_data.csv +14 -0
- teradataml/data/churn_emission.csv +35 -0
- teradataml/data/churn_initial.csv +3 -0
- teradataml/data/churn_state_transition.csv +5 -0
- teradataml/data/citedges_2.csv +745 -0
- teradataml/data/citvertices_2.csv +1210 -0
- teradataml/data/clicks2.csv +16 -0
- teradataml/data/clickstream.csv +13 -0
- teradataml/data/clickstream1.csv +11 -0
- teradataml/data/closeness_example.json +16 -0
- teradataml/data/complaints.csv +21 -0
- teradataml/data/complaints_mini.csv +3 -0
- teradataml/data/complaints_test_tokenized.csv +353 -0
- teradataml/data/complaints_testtoken.csv +224 -0
- teradataml/data/complaints_tokens_model.csv +348 -0
- teradataml/data/complaints_tokens_test.csv +353 -0
- teradataml/data/complaints_traintoken.csv +472 -0
- teradataml/data/computers_category.csv +1001 -0
- teradataml/data/computers_test1.csv +1252 -0
- teradataml/data/computers_train1.csv +5009 -0
- teradataml/data/computers_train1_clustered.csv +5009 -0
- teradataml/data/confusionmatrix_example.json +9 -0
- teradataml/data/conversion_event_table.csv +3 -0
- teradataml/data/corr_input.csv +17 -0
- teradataml/data/correlation_example.json +11 -0
- teradataml/data/covid_confirm_sd.csv +83 -0
- teradataml/data/coxhazardratio_example.json +39 -0
- teradataml/data/coxph_example.json +15 -0
- teradataml/data/coxsurvival_example.json +28 -0
- teradataml/data/cpt.csv +41 -0
- teradataml/data/credit_ex_merged.csv +45 -0
- teradataml/data/creditcard_data.csv +1001 -0
- teradataml/data/customer_loyalty.csv +301 -0
- teradataml/data/customer_loyalty_newseq.csv +31 -0
- teradataml/data/customer_segmentation_test.csv +2628 -0
- teradataml/data/customer_segmentation_train.csv +8069 -0
- teradataml/data/dataframe_example.json +173 -0
- teradataml/data/decisionforest_example.json +37 -0
- teradataml/data/decisionforestpredict_example.json +38 -0
- teradataml/data/decisiontree_example.json +21 -0
- teradataml/data/decisiontreepredict_example.json +45 -0
- teradataml/data/dfft2_size4_real.csv +17 -0
- teradataml/data/dfft2_test_matrix16.csv +17 -0
- teradataml/data/dfft2conv_real_4_4.csv +65 -0
- teradataml/data/diabetes.csv +443 -0
- teradataml/data/diabetes_test.csv +89 -0
- teradataml/data/dict_table.csv +5 -0
- teradataml/data/docperterm_table.csv +4 -0
- teradataml/data/docs/__init__.py +1 -0
- teradataml/data/docs/byom/__init__.py +0 -0
- teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -0
- teradataml/data/docs/byom/docs/DataikuPredict.py +217 -0
- teradataml/data/docs/byom/docs/H2OPredict.py +325 -0
- teradataml/data/docs/byom/docs/ONNXEmbeddings.py +242 -0
- teradataml/data/docs/byom/docs/ONNXPredict.py +283 -0
- teradataml/data/docs/byom/docs/ONNXSeq2Seq.py +255 -0
- teradataml/data/docs/byom/docs/PMMLPredict.py +278 -0
- teradataml/data/docs/byom/docs/__init__.py +0 -0
- teradataml/data/docs/sqle/__init__.py +0 -0
- teradataml/data/docs/sqle/docs_17_10/Antiselect.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/Attribution.py +200 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +172 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -0
- teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -0
- teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +96 -0
- teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -0
- teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +152 -0
- teradataml/data/docs/sqle/docs_17_10/FTest.py +161 -0
- teradataml/data/docs/sqle/docs_17_10/FillRowId.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/Fit.py +88 -0
- teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +85 -0
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +82 -0
- teradataml/data/docs/sqle/docs_17_10/Histogram.py +165 -0
- teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -0
- teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +209 -0
- teradataml/data/docs/sqle/docs_17_10/NPath.py +266 -0
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -0
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -0
- teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +135 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +166 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -0
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +112 -0
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -0
- teradataml/data/docs/sqle/docs_17_10/QQNorm.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +110 -0
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +118 -0
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -0
- teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +153 -0
- teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -0
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -0
- teradataml/data/docs/sqle/docs_17_10/Sessionize.py +114 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -0
- teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -0
- teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +146 -0
- teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +142 -0
- teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -0
- teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -0
- teradataml/data/docs/sqle/docs_17_10/__init__.py +0 -0
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -0
- teradataml/data/docs/sqle/docs_17_20/Antiselect.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/Apriori.py +138 -0
- teradataml/data/docs/sqle/docs_17_20/Attribution.py +201 -0
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +172 -0
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -0
- teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
- teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -0
- teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +246 -0
- teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +280 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +136 -0
- teradataml/data/docs/sqle/docs_17_20/FTest.py +240 -0
- teradataml/data/docs/sqle/docs_17_20/FillRowId.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/Fit.py +88 -0
- teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +415 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -0
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -0
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +106 -0
- teradataml/data/docs/sqle/docs_17_20/Histogram.py +224 -0
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -0
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/KNN.py +215 -0
- teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -0
- teradataml/data/docs/sqle/docs_17_20/NERExtractor.py +121 -0
- teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +209 -0
- teradataml/data/docs/sqle/docs_17_20/NPath.py +266 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +127 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +119 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -0
- teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -0
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +231 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -0
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +220 -0
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +191 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -0
- teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -0
- teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/QQNorm.py +105 -0
- teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +155 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -0
- teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -0
- teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +118 -0
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -0
- teradataml/data/docs/sqle/docs_17_20/SMOTE.py +212 -0
- teradataml/data/docs/sqle/docs_17_20/SVM.py +414 -0
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -0
- teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +153 -0
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -0
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -0
- teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -0
- teradataml/data/docs/sqle/docs_17_20/Sessionize.py +114 -0
- teradataml/data/docs/sqle/docs_17_20/Shap.py +225 -0
- teradataml/data/docs/sqle/docs_17_20/Silhouette.py +153 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -0
- teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +146 -0
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -0
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -0
- teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
- teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +267 -0
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -0
- teradataml/data/docs/sqle/docs_17_20/TextMorph.py +119 -0
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +224 -0
- teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +160 -0
- teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -0
- teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -0
- teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
- teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +169 -0
- teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +237 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +362 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -0
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -0
- teradataml/data/docs/sqle/docs_17_20/__init__.py +0 -0
- teradataml/data/docs/tableoperator/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +430 -0
- teradataml/data/docs/tableoperator/docs_17_00/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +430 -0
- teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +348 -0
- teradataml/data/docs/tableoperator/docs_17_05/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +429 -0
- teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +348 -0
- teradataml/data/docs/tableoperator/docs_17_10/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
- teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +440 -0
- teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +387 -0
- teradataml/data/docs/tableoperator/docs_17_20/__init__.py +0 -0
- teradataml/data/docs/uaf/__init__.py +0 -0
- teradataml/data/docs/uaf/docs_17_20/ACF.py +186 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +370 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +172 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +161 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
- teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
- teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +248 -0
- teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +178 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +175 -0
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +230 -0
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +218 -0
- teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +185 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT.py +204 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +216 -0
- teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +192 -0
- teradataml/data/docs/uaf/docs_17_20/DIFF.py +175 -0
- teradataml/data/docs/uaf/docs_17_20/DTW.py +180 -0
- teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
- teradataml/data/docs/uaf/docs_17_20/DWT2D.py +217 -0
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +142 -0
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +184 -0
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +185 -0
- teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
- teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +206 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +143 -0
- teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +198 -0
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +260 -0
- teradataml/data/docs/uaf/docs_17_20/IDFFT.py +165 -0
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +191 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
- teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/InputValidator.py +121 -0
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +156 -0
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +215 -0
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +174 -0
- teradataml/data/docs/uaf/docs_17_20/MInfo.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +145 -0
- teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +191 -0
- teradataml/data/docs/uaf/docs_17_20/PACF.py +157 -0
- teradataml/data/docs/uaf/docs_17_20/Portman.py +217 -0
- teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +203 -0
- teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +155 -0
- teradataml/data/docs/uaf/docs_17_20/Resample.py +237 -0
- teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
- teradataml/data/docs/uaf/docs_17_20/SInfo.py +123 -0
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +173 -0
- teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +174 -0
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +164 -0
- teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +180 -0
- teradataml/data/docs/uaf/docs_17_20/Smoothma.py +208 -0
- teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +151 -0
- teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +202 -0
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
- teradataml/data/docs/uaf/docs_17_20/__init__.py +0 -0
- teradataml/data/dtw_example.json +18 -0
- teradataml/data/dtw_t1.csv +11 -0
- teradataml/data/dtw_t2.csv +4 -0
- teradataml/data/dwt2d_dataTable.csv +65 -0
- teradataml/data/dwt2d_example.json +16 -0
- teradataml/data/dwt_dataTable.csv +8 -0
- teradataml/data/dwt_example.json +15 -0
- teradataml/data/dwt_filterTable.csv +3 -0
- teradataml/data/dwt_filter_dim.csv +5 -0
- teradataml/data/emission.csv +9 -0
- teradataml/data/emp_table_by_dept.csv +19 -0
- teradataml/data/employee_info.csv +4 -0
- teradataml/data/employee_table.csv +6 -0
- teradataml/data/excluding_event_table.csv +2 -0
- teradataml/data/finance_data.csv +6 -0
- teradataml/data/finance_data2.csv +61 -0
- teradataml/data/finance_data3.csv +93 -0
- teradataml/data/finance_data4.csv +13 -0
- teradataml/data/fish.csv +160 -0
- teradataml/data/fm_blood2ageandweight.csv +26 -0
- teradataml/data/fmeasure_example.json +12 -0
- teradataml/data/followers_leaders.csv +10 -0
- teradataml/data/fpgrowth_example.json +12 -0
- teradataml/data/frequentpaths_example.json +29 -0
- teradataml/data/friends.csv +9 -0
- teradataml/data/fs_input.csv +33 -0
- teradataml/data/fs_input1.csv +33 -0
- teradataml/data/genData.csv +513 -0
- teradataml/data/geodataframe_example.json +40 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/glm_admissions_model.csv +12 -0
- teradataml/data/glm_example.json +56 -0
- teradataml/data/glml1l2_example.json +28 -0
- teradataml/data/glml1l2predict_example.json +54 -0
- teradataml/data/glmpredict_example.json +54 -0
- teradataml/data/gq_t1.csv +21 -0
- teradataml/data/grocery_transaction.csv +19 -0
- teradataml/data/hconvolve_complex_right.csv +5 -0
- teradataml/data/hconvolve_complex_rightmulti.csv +5 -0
- teradataml/data/histogram_example.json +12 -0
- teradataml/data/hmmdecoder_example.json +79 -0
- teradataml/data/hmmevaluator_example.json +25 -0
- teradataml/data/hmmsupervised_example.json +10 -0
- teradataml/data/hmmunsupervised_example.json +8 -0
- teradataml/data/hnsw_alter_data.csv +5 -0
- teradataml/data/hnsw_data.csv +10 -0
- teradataml/data/house_values.csv +12 -0
- teradataml/data/house_values2.csv +13 -0
- teradataml/data/housing_cat.csv +7 -0
- teradataml/data/housing_data.csv +9 -0
- teradataml/data/housing_test.csv +47 -0
- teradataml/data/housing_test_binary.csv +47 -0
- teradataml/data/housing_train.csv +493 -0
- teradataml/data/housing_train_attribute.csv +5 -0
- teradataml/data/housing_train_binary.csv +437 -0
- teradataml/data/housing_train_parameter.csv +2 -0
- teradataml/data/housing_train_response.csv +493 -0
- teradataml/data/housing_train_segment.csv +201 -0
- teradataml/data/ibm_stock.csv +370 -0
- teradataml/data/ibm_stock1.csv +370 -0
- teradataml/data/identitymatch_example.json +22 -0
- teradataml/data/idf_table.csv +4 -0
- teradataml/data/idwt2d_dataTable.csv +5 -0
- teradataml/data/idwt_dataTable.csv +8 -0
- teradataml/data/idwt_filterTable.csv +3 -0
- teradataml/data/impressions.csv +101 -0
- teradataml/data/inflation.csv +21 -0
- teradataml/data/initial.csv +3 -0
- teradataml/data/insect2Cols.csv +61 -0
- teradataml/data/insect_sprays.csv +13 -0
- teradataml/data/insurance.csv +1339 -0
- teradataml/data/interpolator_example.json +13 -0
- teradataml/data/interval_data.csv +5 -0
- teradataml/data/iris_altinput.csv +481 -0
- teradataml/data/iris_attribute_output.csv +8 -0
- teradataml/data/iris_attribute_test.csv +121 -0
- teradataml/data/iris_attribute_train.csv +481 -0
- teradataml/data/iris_category_expect_predict.csv +31 -0
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/iris_input.csv +151 -0
- teradataml/data/iris_response_train.csv +121 -0
- teradataml/data/iris_test.csv +31 -0
- teradataml/data/iris_train.csv +121 -0
- teradataml/data/join_table1.csv +4 -0
- teradataml/data/join_table2.csv +4 -0
- teradataml/data/jsons/anly_function_name.json +7 -0
- teradataml/data/jsons/byom/ONNXSeq2Seq.json +287 -0
- teradataml/data/jsons/byom/dataikupredict.json +148 -0
- teradataml/data/jsons/byom/datarobotpredict.json +147 -0
- teradataml/data/jsons/byom/h2opredict.json +195 -0
- teradataml/data/jsons/byom/onnxembeddings.json +267 -0
- teradataml/data/jsons/byom/onnxpredict.json +187 -0
- teradataml/data/jsons/byom/pmmlpredict.json +147 -0
- teradataml/data/jsons/paired_functions.json +450 -0
- teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/16.20/Attribution.json +249 -0
- teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/16.20/Pack.json +98 -0
- teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/16.20/Unpack.json +166 -0
- teradataml/data/jsons/sqle/16.20/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.00/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/17.00/Pack.json +98 -0
- teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.00/Unpack.json +166 -0
- teradataml/data/jsons/sqle/17.00/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.05/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/17.05/Pack.json +98 -0
- teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.05/Unpack.json +166 -0
- teradataml/data/jsons/sqle/17.05/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.10/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -0
- teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +172 -0
- teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -0
- teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -0
- teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -0
- teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -0
- teradataml/data/jsons/sqle/17.10/Pack.json +133 -0
- teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -0
- teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -0
- teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -0
- teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +54 -0
- teradataml/data/jsons/sqle/17.10/TD_Chisq.json +68 -0
- teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +54 -0
- teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +69 -0
- teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -0
- teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +52 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -0
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_Histogram.json +133 -0
- teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +183 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +66 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +197 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -0
- teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +112 -0
- teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +128 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +157 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +71 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +148 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -0
- teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -0
- teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +119 -0
- teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -0
- teradataml/data/jsons/sqle/17.10/Unpack.json +188 -0
- teradataml/data/jsons/sqle/17.10/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.20/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -0
- teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -0
- teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -0
- teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -0
- teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -0
- teradataml/data/jsons/sqle/17.20/Pack.json +133 -0
- teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -0
- teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +149 -0
- teradataml/data/jsons/sqle/17.20/TD_Apriori.json +181 -0
- teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -0
- teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
- teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_Chisq.json +68 -0
- teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +146 -0
- teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -0
- teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -0
- teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +260 -0
- teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -0
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -0
- teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -0
- teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -0
- teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -0
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -0
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -0
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -0
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -0
- teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -0
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +232 -0
- teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +87 -0
- teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -0
- teradataml/data/jsons/sqle/17.20/TD_NERExtractor.json +145 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -0
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +316 -0
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +124 -0
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -0
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -0
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -0
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -0
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -0
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -0
- teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -0
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -0
- teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -0
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +179 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +179 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +74 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -0
- teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +138 -0
- teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -0
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +128 -0
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_SMOTE.json +267 -0
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -0
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -0
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +310 -0
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +120 -0
- teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +194 -0
- teradataml/data/jsons/sqle/17.20/TD_Shap.json +221 -0
- teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +143 -0
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -0
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -0
- teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -0
- teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -0
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -0
- teradataml/data/jsons/sqle/17.20/TD_TextMorph.json +134 -0
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json +297 -0
- teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -0
- teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -0
- teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
- teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +183 -0
- teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -0
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -0
- teradataml/data/jsons/sqle/17.20/Unpack.json +188 -0
- teradataml/data/jsons/sqle/17.20/nPath.json +269 -0
- teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json +370 -0
- teradataml/data/jsons/sqle/20.00/AI_AskLLM.json +460 -0
- teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json +385 -0
- teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_MaskPII.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json +400 -0
- teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json +401 -0
- teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json +384 -0
- teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json +384 -0
- teradataml/data/jsons/sqle/20.00/TD_API_AzureML.json +151 -0
- teradataml/data/jsons/sqle/20.00/TD_API_Sagemaker.json +182 -0
- teradataml/data/jsons/sqle/20.00/TD_API_VertexAI.json +183 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSW.json +296 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json +206 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json +32 -0
- teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
- teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
- teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
- teradataml/data/jsons/tableoperator/17.00/read_nos.json +198 -0
- teradataml/data/jsons/tableoperator/17.05/read_nos.json +198 -0
- teradataml/data/jsons/tableoperator/17.05/write_nos.json +195 -0
- teradataml/data/jsons/tableoperator/17.10/read_nos.json +184 -0
- teradataml/data/jsons/tableoperator/17.10/write_nos.json +195 -0
- teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
- teradataml/data/jsons/tableoperator/17.20/read_nos.json +183 -0
- teradataml/data/jsons/tableoperator/17.20/write_nos.json +224 -0
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +132 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +396 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +77 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +153 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
- teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +107 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +106 -0
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +89 -0
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +104 -0
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +66 -0
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +87 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +134 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +144 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +108 -0
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_DIFF.json +92 -0
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +114 -0
- teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
- teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +39 -0
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +85 -0
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +71 -0
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +139 -0
- teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECASTER.json +313 -0
- teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +58 -0
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +81 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
- teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +64 -0
- teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +182 -0
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +103 -0
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +181 -0
- teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
- teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +68 -0
- teradataml/data/jsons/uaf/17.20/TD_MINFO.json +67 -0
- teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +179 -0
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -0
- teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +119 -0
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -0
- teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +98 -0
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +194 -0
- teradataml/data/jsons/uaf/17.20/TD_SAX.json +210 -0
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +143 -0
- teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +90 -0
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +80 -0
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +68 -0
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -0
- teradataml/data/jsons/uaf/17.20/TD_SINFO.json +58 -0
- teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +163 -0
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +112 -0
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -0
- teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +410 -0
- teradataml/data/kmeans_example.json +23 -0
- teradataml/data/kmeans_table.csv +10 -0
- teradataml/data/kmeans_us_arrests_data.csv +51 -0
- teradataml/data/knn_example.json +19 -0
- teradataml/data/knnrecommender_example.json +7 -0
- teradataml/data/knnrecommenderpredict_example.json +12 -0
- teradataml/data/lar_example.json +17 -0
- teradataml/data/larpredict_example.json +30 -0
- teradataml/data/lc_new_predictors.csv +5 -0
- teradataml/data/lc_new_reference.csv +9 -0
- teradataml/data/lda_example.json +9 -0
- teradataml/data/ldainference_example.json +15 -0
- teradataml/data/ldatopicsummary_example.json +9 -0
- teradataml/data/levendist_input.csv +13 -0
- teradataml/data/levenshteindistance_example.json +10 -0
- teradataml/data/linreg_example.json +10 -0
- teradataml/data/load_example_data.py +350 -0
- teradataml/data/loan_prediction.csv +295 -0
- teradataml/data/lungcancer.csv +138 -0
- teradataml/data/mappingdata.csv +12 -0
- teradataml/data/medical_readings.csv +101 -0
- teradataml/data/milk_timeseries.csv +157 -0
- teradataml/data/min_max_titanic.csv +4 -0
- teradataml/data/minhash_example.json +6 -0
- teradataml/data/ml_ratings.csv +7547 -0
- teradataml/data/ml_ratings_10.csv +2445 -0
- teradataml/data/mobile_data.csv +13 -0
- teradataml/data/model1_table.csv +5 -0
- teradataml/data/model2_table.csv +5 -0
- teradataml/data/models/License_file.txt +1 -0
- teradataml/data/models/License_file_empty.txt +0 -0
- teradataml/data/models/dataiku_iris_data_ann_thin +0 -0
- teradataml/data/models/dr_iris_rf +0 -0
- teradataml/data/models/iris_db_dt_model_sklearn.onnx +0 -0
- teradataml/data/models/iris_db_dt_model_sklearn_floattensor.onnx +0 -0
- teradataml/data/models/iris_db_glm_model.pmml +57 -0
- teradataml/data/models/iris_db_xgb_model.pmml +4471 -0
- teradataml/data/models/iris_kmeans_model +0 -0
- teradataml/data/models/iris_mojo_glm_h2o_model +0 -0
- teradataml/data/models/iris_mojo_xgb_h2o_model +0 -0
- teradataml/data/modularity_example.json +12 -0
- teradataml/data/movavg_example.json +8 -0
- teradataml/data/mtx1.csv +7 -0
- teradataml/data/mtx2.csv +13 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/mvdfft8.csv +9 -0
- teradataml/data/naivebayes_example.json +10 -0
- teradataml/data/naivebayespredict_example.json +19 -0
- teradataml/data/naivebayestextclassifier2_example.json +7 -0
- teradataml/data/naivebayestextclassifier_example.json +8 -0
- teradataml/data/naivebayestextclassifierpredict_example.json +32 -0
- teradataml/data/name_Find_configure.csv +10 -0
- teradataml/data/namedentityfinder_example.json +14 -0
- teradataml/data/namedentityfinderevaluator_example.json +10 -0
- teradataml/data/namedentityfindertrainer_example.json +6 -0
- teradataml/data/nb_iris_input_test.csv +31 -0
- teradataml/data/nb_iris_input_train.csv +121 -0
- teradataml/data/nbp_iris_model.csv +13 -0
- teradataml/data/ner_dict.csv +8 -0
- teradataml/data/ner_extractor_text.csv +2 -0
- teradataml/data/ner_input_eng.csv +7 -0
- teradataml/data/ner_rule.csv +5 -0
- teradataml/data/ner_sports_test2.csv +29 -0
- teradataml/data/ner_sports_train.csv +501 -0
- teradataml/data/nerevaluator_example.json +6 -0
- teradataml/data/nerextractor_example.json +18 -0
- teradataml/data/nermem_sports_test.csv +18 -0
- teradataml/data/nermem_sports_train.csv +51 -0
- teradataml/data/nertrainer_example.json +7 -0
- teradataml/data/ngrams_example.json +7 -0
- teradataml/data/notebooks/__init__.py +0 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -0
- teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -0
- teradataml/data/notebooks/sqlalchemy/__init__.py +0 -0
- teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -0
- teradataml/data/npath_example.json +23 -0
- teradataml/data/ntree_example.json +14 -0
- teradataml/data/numeric_strings.csv +5 -0
- teradataml/data/numerics.csv +4 -0
- teradataml/data/ocean_buoy.csv +17 -0
- teradataml/data/ocean_buoy2.csv +17 -0
- teradataml/data/ocean_buoys.csv +28 -0
- teradataml/data/ocean_buoys2.csv +10 -0
- teradataml/data/ocean_buoys_nonpti.csv +28 -0
- teradataml/data/ocean_buoys_seq.csv +29 -0
- teradataml/data/onehot_encoder_train.csv +4 -0
- teradataml/data/openml_example.json +92 -0
- teradataml/data/optional_event_table.csv +4 -0
- teradataml/data/orders1.csv +11 -0
- teradataml/data/orders1_12.csv +13 -0
- teradataml/data/orders_ex.csv +4 -0
- teradataml/data/pack_example.json +9 -0
- teradataml/data/package_tracking.csv +19 -0
- teradataml/data/package_tracking_pti.csv +19 -0
- teradataml/data/pagerank_example.json +13 -0
- teradataml/data/paragraphs_input.csv +6 -0
- teradataml/data/pathanalyzer_example.json +8 -0
- teradataml/data/pathgenerator_example.json +8 -0
- teradataml/data/patient_profile.csv +101 -0
- teradataml/data/pattern_matching_data.csv +11 -0
- teradataml/data/payment_fraud_dataset.csv +10001 -0
- teradataml/data/peppers.png +0 -0
- teradataml/data/phrases.csv +7 -0
- teradataml/data/pivot_example.json +9 -0
- teradataml/data/pivot_input.csv +22 -0
- teradataml/data/playerRating.csv +31 -0
- teradataml/data/pos_input.csv +40 -0
- teradataml/data/postagger_example.json +7 -0
- teradataml/data/posttagger_output.csv +44 -0
- teradataml/data/production_data.csv +17 -0
- teradataml/data/production_data2.csv +7 -0
- teradataml/data/randomsample_example.json +32 -0
- teradataml/data/randomwalksample_example.json +9 -0
- teradataml/data/rank_table.csv +6 -0
- teradataml/data/real_values.csv +14 -0
- teradataml/data/ref_mobile_data.csv +4 -0
- teradataml/data/ref_mobile_data_dense.csv +2 -0
- teradataml/data/ref_url.csv +17 -0
- teradataml/data/restaurant_reviews.csv +7 -0
- teradataml/data/retail_churn_table.csv +27772 -0
- teradataml/data/river_data.csv +145 -0
- teradataml/data/roc_example.json +8 -0
- teradataml/data/roc_input.csv +101 -0
- teradataml/data/rule_inputs.csv +6 -0
- teradataml/data/rule_table.csv +2 -0
- teradataml/data/sales.csv +7 -0
- teradataml/data/sales_transaction.csv +501 -0
- teradataml/data/salesdata.csv +342 -0
- teradataml/data/sample_cities.csv +3 -0
- teradataml/data/sample_shapes.csv +11 -0
- teradataml/data/sample_streets.csv +3 -0
- teradataml/data/sampling_example.json +16 -0
- teradataml/data/sax_example.json +17 -0
- teradataml/data/scale_attributes.csv +3 -0
- teradataml/data/scale_example.json +74 -0
- teradataml/data/scale_housing.csv +11 -0
- teradataml/data/scale_housing_test.csv +6 -0
- teradataml/data/scale_input_part_sparse.csv +31 -0
- teradataml/data/scale_input_partitioned.csv +16 -0
- teradataml/data/scale_input_sparse.csv +11 -0
- teradataml/data/scale_parameters.csv +3 -0
- teradataml/data/scale_stat.csv +11 -0
- teradataml/data/scalebypartition_example.json +13 -0
- teradataml/data/scalemap_example.json +13 -0
- teradataml/data/scalesummary_example.json +12 -0
- teradataml/data/score_category.csv +101 -0
- teradataml/data/score_summary.csv +4 -0
- teradataml/data/script_example.json +10 -0
- teradataml/data/scripts/deploy_script.py +84 -0
- teradataml/data/scripts/lightgbm/dataset.template +175 -0
- teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +264 -0
- teradataml/data/scripts/lightgbm/lightgbm_function.template +234 -0
- teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +177 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/mapper.py +16 -0
- teradataml/data/scripts/mapper_replace.py +16 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +205 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +148 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +144 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +166 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +161 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +145 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +327 -0
- teradataml/data/sdk/modelops/modelops_spec.json +101737 -0
- teradataml/data/seeds.csv +10 -0
- teradataml/data/sentenceextractor_example.json +7 -0
- teradataml/data/sentiment_extract_input.csv +11 -0
- teradataml/data/sentiment_train.csv +16 -0
- teradataml/data/sentiment_word.csv +20 -0
- teradataml/data/sentiment_word_input.csv +20 -0
- teradataml/data/sentimentextractor_example.json +24 -0
- teradataml/data/sentimenttrainer_example.json +8 -0
- teradataml/data/sequence_table.csv +10 -0
- teradataml/data/seriessplitter_example.json +8 -0
- teradataml/data/sessionize_example.json +17 -0
- teradataml/data/sessionize_table.csv +116 -0
- teradataml/data/setop_test1.csv +24 -0
- teradataml/data/setop_test2.csv +22 -0
- teradataml/data/soc_nw_edges.csv +11 -0
- teradataml/data/soc_nw_vertices.csv +8 -0
- teradataml/data/souvenir_timeseries.csv +168 -0
- teradataml/data/sparse_iris_attribute.csv +5 -0
- teradataml/data/sparse_iris_test.csv +121 -0
- teradataml/data/sparse_iris_train.csv +601 -0
- teradataml/data/star1.csv +6 -0
- teradataml/data/star_pivot.csv +8 -0
- teradataml/data/state_transition.csv +5 -0
- teradataml/data/stock_data.csv +53 -0
- teradataml/data/stock_movement.csv +11 -0
- teradataml/data/stock_vol.csv +76 -0
- teradataml/data/stop_words.csv +8 -0
- teradataml/data/store_sales.csv +37 -0
- teradataml/data/stringsimilarity_example.json +8 -0
- teradataml/data/strsimilarity_input.csv +13 -0
- teradataml/data/students.csv +101 -0
- teradataml/data/svm_iris_input_test.csv +121 -0
- teradataml/data/svm_iris_input_train.csv +481 -0
- teradataml/data/svm_iris_model.csv +7 -0
- teradataml/data/svmdense_example.json +10 -0
- teradataml/data/svmdensepredict_example.json +19 -0
- teradataml/data/svmsparse_example.json +8 -0
- teradataml/data/svmsparsepredict_example.json +14 -0
- teradataml/data/svmsparsesummary_example.json +8 -0
- teradataml/data/target_mobile_data.csv +13 -0
- teradataml/data/target_mobile_data_dense.csv +5 -0
- teradataml/data/target_udt_data.csv +8 -0
- teradataml/data/tdnerextractor_example.json +14 -0
- teradataml/data/templatedata.csv +1201 -0
- teradataml/data/templates/open_source_ml.json +11 -0
- teradataml/data/teradata_icon.ico +0 -0
- teradataml/data/teradataml_example.json +1473 -0
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_loan_prediction.csv +53 -0
- teradataml/data/test_pacf_12.csv +37 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/test_river2.csv +109 -0
- teradataml/data/text_inputs.csv +6 -0
- teradataml/data/textchunker_example.json +8 -0
- teradataml/data/textclassifier_example.json +7 -0
- teradataml/data/textclassifier_input.csv +7 -0
- teradataml/data/textclassifiertrainer_example.json +7 -0
- teradataml/data/textmorph_example.json +11 -0
- teradataml/data/textparser_example.json +15 -0
- teradataml/data/texttagger_example.json +12 -0
- teradataml/data/texttokenizer_example.json +7 -0
- teradataml/data/texttrainer_input.csv +11 -0
- teradataml/data/tf_example.json +7 -0
- teradataml/data/tfidf_example.json +14 -0
- teradataml/data/tfidf_input1.csv +201 -0
- teradataml/data/tfidf_train.csv +6 -0
- teradataml/data/time_table1.csv +535 -0
- teradataml/data/time_table2.csv +14 -0
- teradataml/data/timeseriesdata.csv +1601 -0
- teradataml/data/timeseriesdatasetsd4.csv +105 -0
- teradataml/data/timestamp_data.csv +4 -0
- teradataml/data/titanic.csv +892 -0
- teradataml/data/titanic_dataset_unpivoted.csv +19 -0
- teradataml/data/to_num_data.csv +4 -0
- teradataml/data/tochar_data.csv +5 -0
- teradataml/data/token_table.csv +696 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/train_tracking.csv +28 -0
- teradataml/data/trans_dense.csv +16 -0
- teradataml/data/trans_sparse.csv +55 -0
- teradataml/data/transformation_table.csv +6 -0
- teradataml/data/transformation_table_new.csv +2 -0
- teradataml/data/tv_spots.csv +16 -0
- teradataml/data/twod_climate_data.csv +117 -0
- teradataml/data/uaf_example.json +529 -0
- teradataml/data/univariatestatistics_example.json +9 -0
- teradataml/data/unpack_example.json +10 -0
- teradataml/data/unpivot_example.json +25 -0
- teradataml/data/unpivot_input.csv +8 -0
- teradataml/data/url_data.csv +10 -0
- teradataml/data/us_air_pass.csv +37 -0
- teradataml/data/us_population.csv +624 -0
- teradataml/data/us_states_shapes.csv +52 -0
- teradataml/data/varmax_example.json +18 -0
- teradataml/data/vectordistance_example.json +30 -0
- teradataml/data/ville_climatedata.csv +121 -0
- teradataml/data/ville_tempdata.csv +12 -0
- teradataml/data/ville_tempdata1.csv +12 -0
- teradataml/data/ville_temperature.csv +11 -0
- teradataml/data/waveletTable.csv +1605 -0
- teradataml/data/waveletTable2.csv +1605 -0
- teradataml/data/weightedmovavg_example.json +9 -0
- teradataml/data/wft_testing.csv +5 -0
- teradataml/data/windowdfft.csv +16 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/data/word_embed_input_table1.csv +6 -0
- teradataml/data/word_embed_input_table2.csv +5 -0
- teradataml/data/word_embed_model.csv +23 -0
- teradataml/data/words_input.csv +13 -0
- teradataml/data/xconvolve_complex_left.csv +6 -0
- teradataml/data/xconvolve_complex_leftmulti.csv +6 -0
- teradataml/data/xgboost_example.json +36 -0
- teradataml/data/xgboostpredict_example.json +32 -0
- teradataml/data/ztest_example.json +16 -0
- teradataml/dataframe/__init__.py +0 -0
- teradataml/dataframe/copy_to.py +2446 -0
- teradataml/dataframe/data_transfer.py +2840 -0
- teradataml/dataframe/dataframe.py +20908 -0
- teradataml/dataframe/dataframe_utils.py +2114 -0
- teradataml/dataframe/fastload.py +794 -0
- teradataml/dataframe/functions.py +2110 -0
- teradataml/dataframe/indexer.py +424 -0
- teradataml/dataframe/row.py +160 -0
- teradataml/dataframe/setop.py +1171 -0
- teradataml/dataframe/sql.py +10904 -0
- teradataml/dataframe/sql_function_parameters.py +440 -0
- teradataml/dataframe/sql_functions.py +652 -0
- teradataml/dataframe/sql_interfaces.py +220 -0
- teradataml/dataframe/vantage_function_types.py +675 -0
- teradataml/dataframe/window.py +694 -0
- teradataml/dbutils/__init__.py +3 -0
- teradataml/dbutils/dbutils.py +2871 -0
- teradataml/dbutils/filemgr.py +318 -0
- teradataml/gen_ai/__init__.py +2 -0
- teradataml/gen_ai/convAI.py +473 -0
- teradataml/geospatial/__init__.py +4 -0
- teradataml/geospatial/geodataframe.py +1105 -0
- teradataml/geospatial/geodataframecolumn.py +392 -0
- teradataml/geospatial/geometry_types.py +926 -0
- teradataml/hyperparameter_tuner/__init__.py +1 -0
- teradataml/hyperparameter_tuner/optimizer.py +4115 -0
- teradataml/hyperparameter_tuner/utils.py +303 -0
- teradataml/lib/__init__.py +0 -0
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/lib/libaed_0_1_aarch64.so +0 -0
- teradataml/lib/libaed_0_1_ppc64le.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/_base.py +1321 -0
- teradataml/opensource/_class.py +464 -0
- teradataml/opensource/_constants.py +61 -0
- teradataml/opensource/_lightgbm.py +949 -0
- teradataml/opensource/_sklearn.py +1008 -0
- teradataml/opensource/_wrapper_utils.py +267 -0
- teradataml/options/__init__.py +148 -0
- teradataml/options/configure.py +489 -0
- teradataml/options/display.py +187 -0
- teradataml/plot/__init__.py +3 -0
- teradataml/plot/axis.py +1427 -0
- teradataml/plot/constants.py +15 -0
- teradataml/plot/figure.py +431 -0
- teradataml/plot/plot.py +810 -0
- teradataml/plot/query_generator.py +83 -0
- teradataml/plot/subplot.py +216 -0
- teradataml/scriptmgmt/UserEnv.py +4273 -0
- teradataml/scriptmgmt/__init__.py +3 -0
- teradataml/scriptmgmt/lls_utils.py +2157 -0
- teradataml/sdk/README.md +79 -0
- teradataml/sdk/__init__.py +4 -0
- teradataml/sdk/_auth_modes.py +422 -0
- teradataml/sdk/_func_params.py +487 -0
- teradataml/sdk/_json_parser.py +453 -0
- teradataml/sdk/_openapi_spec_constants.py +249 -0
- teradataml/sdk/_utils.py +236 -0
- teradataml/sdk/api_client.py +900 -0
- teradataml/sdk/constants.py +62 -0
- teradataml/sdk/modelops/__init__.py +98 -0
- teradataml/sdk/modelops/_client.py +409 -0
- teradataml/sdk/modelops/_constants.py +304 -0
- teradataml/sdk/modelops/models.py +2308 -0
- teradataml/sdk/spinner.py +107 -0
- teradataml/series/__init__.py +0 -0
- teradataml/series/series.py +537 -0
- teradataml/series/series_utils.py +71 -0
- teradataml/store/__init__.py +12 -0
- teradataml/store/feature_store/__init__.py +0 -0
- teradataml/store/feature_store/constants.py +658 -0
- teradataml/store/feature_store/feature_store.py +4814 -0
- teradataml/store/feature_store/mind_map.py +639 -0
- teradataml/store/feature_store/models.py +7330 -0
- teradataml/store/feature_store/utils.py +390 -0
- teradataml/table_operators/Apply.py +979 -0
- teradataml/table_operators/Script.py +1739 -0
- teradataml/table_operators/TableOperator.py +1343 -0
- teradataml/table_operators/__init__.py +2 -0
- teradataml/table_operators/apply_query_generator.py +262 -0
- teradataml/table_operators/query_generator.py +493 -0
- teradataml/table_operators/table_operator_query_generator.py +462 -0
- teradataml/table_operators/table_operator_util.py +726 -0
- teradataml/table_operators/templates/dataframe_apply.template +184 -0
- teradataml/table_operators/templates/dataframe_map.template +176 -0
- teradataml/table_operators/templates/dataframe_register.template +73 -0
- teradataml/table_operators/templates/dataframe_udf.template +67 -0
- teradataml/table_operators/templates/script_executor.template +170 -0
- teradataml/telemetry_utils/__init__.py +0 -0
- teradataml/telemetry_utils/queryband.py +53 -0
- teradataml/utils/__init__.py +0 -0
- teradataml/utils/docstring.py +527 -0
- teradataml/utils/dtypes.py +943 -0
- teradataml/utils/internal_buffer.py +122 -0
- teradataml/utils/print_versions.py +206 -0
- teradataml/utils/utils.py +451 -0
- teradataml/utils/validators.py +3305 -0
- teradataml-20.0.0.8.dist-info/METADATA +2804 -0
- teradataml-20.0.0.8.dist-info/RECORD +1208 -0
- teradataml-20.0.0.8.dist-info/WHEEL +5 -0
- teradataml-20.0.0.8.dist-info/top_level.txt +1 -0
- teradataml-20.0.0.8.dist-info/zip-safe +1 -0
|
@@ -0,0 +1,234 @@
|
|
|
1
|
+
import sys, json, io
|
|
2
|
+
import pickle, base64, importlib, numpy as np
|
|
3
|
+
from collections import OrderedDict
|
|
4
|
+
import os
|
|
5
|
+
from contextlib import contextmanager
|
|
6
|
+
|
|
7
|
+
func_name = "<func_name>"
|
|
8
|
+
module_name = "<module_name>"
|
|
9
|
+
is_lake_system = <is_lake_system>
|
|
10
|
+
params = json.loads('<params>')
|
|
11
|
+
data_partition_column_indices = <partition_cols_indices>
|
|
12
|
+
data_partition_column_types = <partition_cols_types>
|
|
13
|
+
model_file_prefix = "<model_file_prefix>" # Needed in case of lake system for writing model to /tmp
|
|
14
|
+
|
|
15
|
+
DELIMITER = '\t'
|
|
16
|
+
|
|
17
|
+
@contextmanager
|
|
18
|
+
def suppress_stderr():
|
|
19
|
+
"""
|
|
20
|
+
Function to suppress the warnings(lake systems treats warnings as errors).
|
|
21
|
+
"""
|
|
22
|
+
with open(os.devnull, "w") as devnull:
|
|
23
|
+
old_stderr = sys.stderr
|
|
24
|
+
sys.stderr = devnull
|
|
25
|
+
try:
|
|
26
|
+
yield
|
|
27
|
+
finally:
|
|
28
|
+
sys.stderr = old_stderr
|
|
29
|
+
|
|
30
|
+
## On Lake system warnings raised by script are treated as a errors.
|
|
31
|
+
## Hence, to suppress it putting the under suppress_stderr().
|
|
32
|
+
with suppress_stderr():
|
|
33
|
+
def convert_to_type(val, typee):
|
|
34
|
+
if typee == 'int':
|
|
35
|
+
return int(val) if val != "" else np.nan
|
|
36
|
+
if typee == 'float':
|
|
37
|
+
if isinstance(val, str):
|
|
38
|
+
val = val.replace(' ', '')
|
|
39
|
+
return float(val) if val != "" else np.nan
|
|
40
|
+
if typee == 'bool':
|
|
41
|
+
return eval(val) if val != "" else None
|
|
42
|
+
return str(val) if val != "" else None
|
|
43
|
+
|
|
44
|
+
if not is_lake_system:
|
|
45
|
+
db = sys.argv[0].split("/")[1]
|
|
46
|
+
|
|
47
|
+
data_present = False
|
|
48
|
+
data_partition_column_values = []
|
|
49
|
+
|
|
50
|
+
while 1:
|
|
51
|
+
try:
|
|
52
|
+
line = input()
|
|
53
|
+
if line == '': # Exit if user provides blank line
|
|
54
|
+
break
|
|
55
|
+
else:
|
|
56
|
+
data_present = True
|
|
57
|
+
values = line.split(DELIMITER)
|
|
58
|
+
if not data_partition_column_values:
|
|
59
|
+
# Partition column values is same for all rows. Hence, only read once.
|
|
60
|
+
for i, val in enumerate(data_partition_column_indices): # Only partition columns are
|
|
61
|
+
data_partition_column_values.append(
|
|
62
|
+
convert_to_type(values[val], typee=data_partition_column_types[i])
|
|
63
|
+
)
|
|
64
|
+
|
|
65
|
+
# Prepare the corresponding model file name and extract model.
|
|
66
|
+
partition_join = "_".join([str(x) for x in data_partition_column_values])
|
|
67
|
+
# Replace '-' with '_' because partition_columns can be negative containing '-'.
|
|
68
|
+
partition_join = partition_join.replace("-", "_")
|
|
69
|
+
|
|
70
|
+
train_set = params.get("train_set") # Gets file name prefix.
|
|
71
|
+
model_file_path = f"{train_set}_{partition_join}"\
|
|
72
|
+
if is_lake_system else \
|
|
73
|
+
f"./{db}/{train_set}_{partition_join}"
|
|
74
|
+
|
|
75
|
+
with open(model_file_path, "rb") as fp:
|
|
76
|
+
params["train_set"] = pickle.loads(fp.read())
|
|
77
|
+
|
|
78
|
+
valid_sets = params.get("valid_sets", None) # Gets file names prefix.
|
|
79
|
+
if valid_sets:
|
|
80
|
+
params["valid_sets"] = []
|
|
81
|
+
for valid_set in valid_sets:
|
|
82
|
+
model_file_path = f"{valid_set}_{partition_join}"\
|
|
83
|
+
if is_lake_system else \
|
|
84
|
+
f"./{db}/{valid_set}_{partition_join}"
|
|
85
|
+
with open(model_file_path, "rb") as fp:
|
|
86
|
+
params["valid_sets"].append(pickle.load(fp))
|
|
87
|
+
|
|
88
|
+
except EOFError: # Exit if reached EOF or CTRL-D
|
|
89
|
+
break
|
|
90
|
+
|
|
91
|
+
if not data_present:
|
|
92
|
+
sys.exit(0)
|
|
93
|
+
|
|
94
|
+
# Handle callbacks.
|
|
95
|
+
rec_eval = None
|
|
96
|
+
if "callbacks" in params and params["callbacks"] is not None:
|
|
97
|
+
callbacks = params["callbacks"]
|
|
98
|
+
callbacks = [callbacks] if not isinstance(callbacks, list) else callbacks
|
|
99
|
+
for i, callback in enumerate(callbacks):
|
|
100
|
+
c_module_name = callback["module"]
|
|
101
|
+
c_func_name = callback["func_name"]
|
|
102
|
+
c_kwargs = callback["kwargs"]
|
|
103
|
+
c_module = importlib.import_module(c_module_name)
|
|
104
|
+
if c_func_name == "record_evaluation":
|
|
105
|
+
# record_evaluation function takes empty dict. If the argument has elements in the
|
|
106
|
+
# dict, they will be deleted as per the documentation from lightgbm as described below:
|
|
107
|
+
# eval_result (dict) -
|
|
108
|
+
# Dictionary used to store all evaluation results of all validation sets. This should
|
|
109
|
+
# be initialized outside of your call to record_evaluation() and should be empty. Any
|
|
110
|
+
# initial contents of the dictionary will be deleted.
|
|
111
|
+
rec_eval = {}
|
|
112
|
+
callbacks[i] = getattr(c_module, c_func_name)(rec_eval)
|
|
113
|
+
else:
|
|
114
|
+
callbacks[i] = getattr(c_module, c_func_name)(**c_kwargs)
|
|
115
|
+
|
|
116
|
+
params["callbacks"] = callbacks
|
|
117
|
+
|
|
118
|
+
module_ = importlib.import_module(module_name)
|
|
119
|
+
|
|
120
|
+
### LightGBM training is giving some meaningful console output like this:
|
|
121
|
+
### Hence, capturing it to show to the user.
|
|
122
|
+
|
|
123
|
+
# [LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000190 seconds.
|
|
124
|
+
# You can set `force_row_wise=true` to remove the overhead.
|
|
125
|
+
# And if memory is not enough, you can set `force_col_wise=true`.
|
|
126
|
+
# [LightGBM] [Info] Total Bins 136
|
|
127
|
+
# [LightGBM] [Info] Number of data points in the train set: 97, number of used features: 4
|
|
128
|
+
# [LightGBM] [Info] Start training from score 0.556701
|
|
129
|
+
# [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
|
|
130
|
+
# [1] valid_0's l2: 0.219637 valid_1's l2: 0.219637
|
|
131
|
+
# [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
|
|
132
|
+
# [2] valid_0's l2: 0.196525 valid_1's l2: 0.196525
|
|
133
|
+
# [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
|
|
134
|
+
# [3] valid_0's l2: 0.178462 valid_1's l2: 0.178462
|
|
135
|
+
# [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
|
|
136
|
+
# [4] valid_0's l2: 0.162887 valid_1's l2: 0.162887
|
|
137
|
+
# [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
|
|
138
|
+
# [5] valid_0's l2: 0.150271 valid_1's l2: 0.150271
|
|
139
|
+
# [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
|
|
140
|
+
# [6] valid_0's l2: 0.140219 valid_1's l2: 0.140219
|
|
141
|
+
# [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
|
|
142
|
+
# [7] valid_0's l2: 0.131697 valid_1's l2: 0.131697
|
|
143
|
+
# [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
|
|
144
|
+
# [8] valid_0's l2: 0.124056 valid_1's l2: 0.124056
|
|
145
|
+
# [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
|
|
146
|
+
# [9] valid_0's l2: 0.117944 valid_1's l2: 0.117944
|
|
147
|
+
# [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
|
|
148
|
+
# [10] valid_0's l2: 0.11263 valid_1's l2: 0.11263
|
|
149
|
+
# [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
|
|
150
|
+
# [11] valid_0's l2: 0.105228 valid_1's l2: 0.105228
|
|
151
|
+
# [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
|
|
152
|
+
# [12] valid_0's l2: 0.0981571 valid_1's l2: 0.0981571
|
|
153
|
+
# [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
|
|
154
|
+
# [13] valid_0's l2: 0.0924294 valid_1's l2: 0.0924294
|
|
155
|
+
# [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
|
|
156
|
+
# [14] valid_0's l2: 0.0877899 valid_1's l2: 0.0877899
|
|
157
|
+
# [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
|
|
158
|
+
# [15] valid_0's l2: 0.084032 valid_1's l2: 0.084032
|
|
159
|
+
# [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
|
|
160
|
+
# [16] valid_0's l2: 0.080988 valid_1's l2: 0.080988
|
|
161
|
+
# [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
|
|
162
|
+
# [17] valid_0's l2: 0.0785224 valid_1's l2: 0.0785224
|
|
163
|
+
# [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
|
|
164
|
+
# [18] valid_0's l2: 0.0765253 valid_1's l2: 0.0765253
|
|
165
|
+
# [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
|
|
166
|
+
# [19] valid_0's l2: 0.0750803 valid_1's l2: 0.0750803
|
|
167
|
+
# [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
|
|
168
|
+
# [20] valid_0's l2: 0.0738915 valid_1's l2: 0.0738915
|
|
169
|
+
# [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
|
|
170
|
+
# [21] valid_0's l2: 0.07288 valid_1's l2: 0.07288
|
|
171
|
+
# [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
|
|
172
|
+
# [22] valid_0's l2: 0.0718676 valid_1's l2: 0.0718676
|
|
173
|
+
# [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
|
|
174
|
+
# [23] valid_0's l2: 0.0706037 valid_1's l2: 0.0706037
|
|
175
|
+
# [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
|
|
176
|
+
# [24] valid_0's l2: 0.0695799 valid_1's l2: 0.0695799
|
|
177
|
+
# [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
|
|
178
|
+
# [25] valid_0's l2: 0.0687507 valid_1's l2: 0.0687507
|
|
179
|
+
# [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
|
|
180
|
+
# [26] valid_0's l2: 0.0680819 valid_1's l2: 0.0680819
|
|
181
|
+
# [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
|
|
182
|
+
# [27] valid_0's l2: 0.0674077 valid_1's l2: 0.0674077
|
|
183
|
+
# [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
|
|
184
|
+
# [28] valid_0's l2: 0.0665111 valid_1's l2: 0.0665111
|
|
185
|
+
# [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
|
|
186
|
+
# [29] valid_0's l2: 0.0659656 valid_1's l2: 0.0659656
|
|
187
|
+
# [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
|
|
188
|
+
# [30] valid_0's l2: 0.0652665 valid_1's l2: 0.0652665
|
|
189
|
+
result = ""
|
|
190
|
+
stdout = None
|
|
191
|
+
try:
|
|
192
|
+
stdout = sys.stdout
|
|
193
|
+
new_stdout = io.StringIO()
|
|
194
|
+
sys.stdout = new_stdout
|
|
195
|
+
trained_model = getattr(module_, func_name)(**params)
|
|
196
|
+
result = new_stdout.getvalue()
|
|
197
|
+
except Exception:
|
|
198
|
+
raise
|
|
199
|
+
finally:
|
|
200
|
+
sys.stdout = stdout
|
|
201
|
+
|
|
202
|
+
model_str = pickle.dumps(trained_model)
|
|
203
|
+
console_output_str = result.encode()
|
|
204
|
+
|
|
205
|
+
if is_lake_system:
|
|
206
|
+
model_file_path = f"/tmp/{model_file_prefix}_{partition_join}.pickle"
|
|
207
|
+
model_console_output_path = f"/tmp/{model_file_prefix}_{partition_join}_console_output.pickle"
|
|
208
|
+
|
|
209
|
+
# Write to file in Vantage, to be used in predict/scoring.
|
|
210
|
+
with open(model_file_path, "wb") as fp:
|
|
211
|
+
fp.write(model_str)
|
|
212
|
+
|
|
213
|
+
with open(model_console_output_path, "wb") as fpc:
|
|
214
|
+
fpc.write(console_output_str)
|
|
215
|
+
|
|
216
|
+
|
|
217
|
+
model_data = model_file_path if is_lake_system else base64.b64encode(model_str)
|
|
218
|
+
console_output = model_console_output_path if is_lake_system else base64.b64encode(console_output_str)
|
|
219
|
+
|
|
220
|
+
output_data = [model_data, console_output]
|
|
221
|
+
|
|
222
|
+
if rec_eval is not None:
|
|
223
|
+
rec_eval = pickle.dumps(rec_eval)
|
|
224
|
+
if is_lake_system:
|
|
225
|
+
rec_eval_file_path = f"/tmp/{model_file_prefix}_{partition_join}_rec_eval.pickle"
|
|
226
|
+
|
|
227
|
+
with open(rec_eval_file_path, "wb") as fp:
|
|
228
|
+
fp.write(rec_eval)
|
|
229
|
+
|
|
230
|
+
rec_eval = rec_eval_file_path if is_lake_system else base64.b64encode(rec_eval)
|
|
231
|
+
|
|
232
|
+
output_data.append(rec_eval)
|
|
233
|
+
|
|
234
|
+
print(*(data_partition_column_values + output_data), sep=DELIMITER)
|
|
@@ -0,0 +1,177 @@
|
|
|
1
|
+
import sys, json
|
|
2
|
+
import pickle, base64, importlib, numpy as np
|
|
3
|
+
from collections import OrderedDict
|
|
4
|
+
import os
|
|
5
|
+
from contextlib import contextmanager
|
|
6
|
+
|
|
7
|
+
DELIMITER = '\t'
|
|
8
|
+
|
|
9
|
+
func_name = <func_name>
|
|
10
|
+
params = json.loads('<params>')
|
|
11
|
+
is_lake_system = <is_lake_system>
|
|
12
|
+
model_file_prefix = <model_file_prefix>
|
|
13
|
+
|
|
14
|
+
@contextmanager
|
|
15
|
+
def suppress_stderr():
|
|
16
|
+
"""
|
|
17
|
+
Function to suppress the warnings(lake systems treats warnings as errors).
|
|
18
|
+
"""
|
|
19
|
+
with open(os.devnull, "w") as devnull:
|
|
20
|
+
old_stderr = sys.stderr
|
|
21
|
+
sys.stderr = devnull
|
|
22
|
+
try:
|
|
23
|
+
yield
|
|
24
|
+
finally:
|
|
25
|
+
sys.stderr = old_stderr
|
|
26
|
+
|
|
27
|
+
## On Lake system warnings raised by script are treated as a errors.
|
|
28
|
+
## Hence, to suppress it putting the under suppress_stderr().
|
|
29
|
+
with suppress_stderr():
|
|
30
|
+
def convert_to_type(val, typee):
|
|
31
|
+
if typee == 'int':
|
|
32
|
+
return int(val) if val != "" else np.nan
|
|
33
|
+
if typee == 'float':
|
|
34
|
+
if isinstance(val, str):
|
|
35
|
+
val = val.replace(' ', '')
|
|
36
|
+
return float(val) if val != "" else np.nan
|
|
37
|
+
if typee == 'bool':
|
|
38
|
+
return eval(val) if val != "" else None
|
|
39
|
+
return str(val) if val != "" else None
|
|
40
|
+
|
|
41
|
+
def splitter(strr, delim=",", convert_to="str"):
|
|
42
|
+
"""
|
|
43
|
+
Split the string based on delimiter and convert to the type specified.
|
|
44
|
+
"""
|
|
45
|
+
if strr == "None":
|
|
46
|
+
return []
|
|
47
|
+
return [convert_to_type(i, convert_to) for i in strr.split(delim)]
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
if not is_lake_system:
|
|
51
|
+
db = sys.argv[0].split("/")[1]
|
|
52
|
+
|
|
53
|
+
data_partition_column_indices = <partition_cols_indices>
|
|
54
|
+
data_column_types = <types_of_data_cols>
|
|
55
|
+
|
|
56
|
+
data_partition_column_types = [data_column_types[idx] for idx in data_partition_column_indices]
|
|
57
|
+
|
|
58
|
+
# Data related arguments information of indices and types.
|
|
59
|
+
data_args_indices_types = OrderedDict()
|
|
60
|
+
|
|
61
|
+
# Data related arguments values - prepare dictionary and populate data later.
|
|
62
|
+
data_args_values = {}
|
|
63
|
+
|
|
64
|
+
data_args_info_str = <data_args_info_str>
|
|
65
|
+
for data_arg in data_args_info_str.split("--"):
|
|
66
|
+
arg_name, indices, types = data_arg.split("-")
|
|
67
|
+
indices = splitter(indices, convert_to="int")
|
|
68
|
+
types = splitter(types)
|
|
69
|
+
|
|
70
|
+
data_args_indices_types[arg_name] = {"indices": indices, "types": types}
|
|
71
|
+
data_args_values[arg_name] = [] # Keeping empty for each data arg name and populate data later.
|
|
72
|
+
|
|
73
|
+
data_partition_column_values = []
|
|
74
|
+
data_present = False
|
|
75
|
+
|
|
76
|
+
model = None
|
|
77
|
+
|
|
78
|
+
# Read data - columns information is passed as command line argument and stored in
|
|
79
|
+
# data_args_indices_types dictionary.
|
|
80
|
+
while 1:
|
|
81
|
+
try:
|
|
82
|
+
line = input()
|
|
83
|
+
if line == '': # Exit if user provides blank line
|
|
84
|
+
break
|
|
85
|
+
else:
|
|
86
|
+
data_present = True
|
|
87
|
+
values = line.split(DELIMITER)
|
|
88
|
+
if not data_partition_column_values:
|
|
89
|
+
# Partition column values is same for all rows. Hence, only read once.
|
|
90
|
+
for i, val in enumerate(data_partition_column_indices):
|
|
91
|
+
data_partition_column_values.append(
|
|
92
|
+
convert_to_type(values[val], typee=data_partition_column_types[i])
|
|
93
|
+
)
|
|
94
|
+
|
|
95
|
+
# Prepare the corresponding model file name and extract model.
|
|
96
|
+
partition_join = "_".join([str(x) for x in data_partition_column_values])
|
|
97
|
+
# Replace '-' with '_' as '-' because partition_columns can be negative.
|
|
98
|
+
partition_join = partition_join.replace("-", "_")
|
|
99
|
+
|
|
100
|
+
|
|
101
|
+
model_file_path = f"{model_file_prefix}_{partition_join}"\
|
|
102
|
+
if is_lake_system else \
|
|
103
|
+
f"./{db}/{model_file_prefix}_{partition_join}"
|
|
104
|
+
|
|
105
|
+
with open(model_file_path, "rb") as fp:
|
|
106
|
+
model = pickle.loads(fp.read())
|
|
107
|
+
|
|
108
|
+
if model is None:
|
|
109
|
+
sys.exit("Model file is not installed in Vantage.")
|
|
110
|
+
|
|
111
|
+
# Prepare data dictionary containing only arguments related to data.
|
|
112
|
+
for arg_name in data_args_values:
|
|
113
|
+
data_indices = data_args_indices_types[arg_name]["indices"]
|
|
114
|
+
types = data_args_indices_types[arg_name]["types"]
|
|
115
|
+
cur_row = []
|
|
116
|
+
for idx, data_idx in enumerate(data_indices):
|
|
117
|
+
cur_row.append(convert_to_type(values[data_idx], types[idx]))
|
|
118
|
+
data_args_values[arg_name].append(cur_row)
|
|
119
|
+
except EOFError: # Exit if reached EOF or CTRL-D
|
|
120
|
+
break
|
|
121
|
+
|
|
122
|
+
if not data_present:
|
|
123
|
+
sys.exit(0)
|
|
124
|
+
|
|
125
|
+
# Handle callbacks.
|
|
126
|
+
rec_eval = None
|
|
127
|
+
if "callbacks" in params and params["callbacks"] is not None:
|
|
128
|
+
callbacks = params["callbacks"]
|
|
129
|
+
callbacks = [callbacks] if not isinstance(callbacks, list) else callbacks
|
|
130
|
+
for i, callback in enumerate(callbacks):
|
|
131
|
+
c_module_name = callback["module"]
|
|
132
|
+
c_func_name = callback["func_name"]
|
|
133
|
+
c_kwargs = callback["kwargs"]
|
|
134
|
+
c_module = importlib.import_module(c_module_name)
|
|
135
|
+
if c_func_name == "record_evaluation":
|
|
136
|
+
# record_evaluation function takes empty dict. If the argument has elements in the
|
|
137
|
+
# dict, they will be deleted as per the documentation from lightgbm as described below:
|
|
138
|
+
# eval_result (dict) -
|
|
139
|
+
# Dictionary used to store all evaluation results of all validation sets. This should
|
|
140
|
+
# be initialized outside of your call to record_evaluation() and should be empty. Any
|
|
141
|
+
# initial contents of the dictionary will be deleted.
|
|
142
|
+
rec_eval = {}
|
|
143
|
+
callbacks[i] = getattr(c_module, c_func_name)(rec_eval)
|
|
144
|
+
else:
|
|
145
|
+
callbacks[i] = getattr(c_module, c_func_name)(**c_kwargs)
|
|
146
|
+
|
|
147
|
+
params["callbacks"] = callbacks
|
|
148
|
+
|
|
149
|
+
# Update data as numpy arrays.
|
|
150
|
+
for arg_name in data_args_values:
|
|
151
|
+
np_values = np.array(data_args_values[arg_name])
|
|
152
|
+
data_args_values[arg_name] = np_values
|
|
153
|
+
if arg_name == "sample_weight":
|
|
154
|
+
data_args_values[arg_name] = np_values.ravel()
|
|
155
|
+
|
|
156
|
+
# Combine all arguments.
|
|
157
|
+
all_args = {**data_args_values, **params}
|
|
158
|
+
|
|
159
|
+
trained_model = getattr(model, func_name)(**all_args)
|
|
160
|
+
|
|
161
|
+
model_data = 0
|
|
162
|
+
if func_name == "fit":
|
|
163
|
+
model_str = pickle.dumps(trained_model)
|
|
164
|
+
|
|
165
|
+
if is_lake_system:
|
|
166
|
+
model_file_path = f"/tmp/{model_file_prefix}_{partition_join}.pickle"
|
|
167
|
+
|
|
168
|
+
# Write to file in Vantage, to be used in predict/scoring.
|
|
169
|
+
with open(model_file_path, "wb") as fp:
|
|
170
|
+
fp.write(model_str)
|
|
171
|
+
|
|
172
|
+
model_data = model_file_path if is_lake_system else base64.b64encode(model_str)
|
|
173
|
+
|
|
174
|
+
elif func_name == "score":
|
|
175
|
+
model_data = trained_model
|
|
176
|
+
|
|
177
|
+
print(*(data_partition_column_values + [model_data]), sep=DELIMITER)
|
|
@@ -0,0 +1,20 @@
|
|
|
1
|
+
#!/usr/bin/Rscript
|
|
2
|
+
|
|
3
|
+
# Read input from STDIN (standard input)
|
|
4
|
+
input <- file("stdin", open = "r")
|
|
5
|
+
while (length(line <- readLines(input, n = 1)) > 0) {
|
|
6
|
+
# Remove leading and trailing whitespace
|
|
7
|
+
line <- trimws(line)
|
|
8
|
+
# Split the line into words
|
|
9
|
+
words <- unlist(strsplit(line, "\\s+"))
|
|
10
|
+
# Increase counters
|
|
11
|
+
for (word in words) {
|
|
12
|
+
# Write the results to STDOUT (standard output);
|
|
13
|
+
# what we output here will be the input for the
|
|
14
|
+
# Reduce step, i.e., the input for reducer.py
|
|
15
|
+
#
|
|
16
|
+
# tab-delimited; the trivial word count is 1
|
|
17
|
+
cat(paste(word,"\t","1\n"))
|
|
18
|
+
}
|
|
19
|
+
}
|
|
20
|
+
close(input)
|
|
@@ -0,0 +1,16 @@
|
|
|
1
|
+
#!/usr/bin/python
|
|
2
|
+
import sys
|
|
3
|
+
# input comes from STDIN (standard input)
|
|
4
|
+
for line in sys.stdin:
|
|
5
|
+
# remove leading and trailing whitespace
|
|
6
|
+
line = line.strip()
|
|
7
|
+
# split the line into words
|
|
8
|
+
words = line.split()
|
|
9
|
+
# increase counters
|
|
10
|
+
for word in words:
|
|
11
|
+
# write the results to STDOUT (standard output);
|
|
12
|
+
# what we output here will be the input for the
|
|
13
|
+
# Reduce step, i.e. the input for reducer.py
|
|
14
|
+
#
|
|
15
|
+
# tab-delimited; the trivial word count is 1
|
|
16
|
+
print ('%s\t%s' % (word, 1))
|
|
@@ -0,0 +1,16 @@
|
|
|
1
|
+
#!/usr/bin/python
|
|
2
|
+
import sys
|
|
3
|
+
# input comes from STDIN (standard input)
|
|
4
|
+
for line in sys.stdin:
|
|
5
|
+
# remove leading and trailing whitespace
|
|
6
|
+
line = line.strip()
|
|
7
|
+
# split the line into words
|
|
8
|
+
words = line.split()
|
|
9
|
+
# increase counters
|
|
10
|
+
for newword in words:
|
|
11
|
+
# write the results to STDOUT (standard output);
|
|
12
|
+
# what we output here will be the input for the
|
|
13
|
+
# Reduce step, i.e. the input for reducer.py
|
|
14
|
+
#
|
|
15
|
+
# tab-delimited; the trivial word count is 1
|
|
16
|
+
print ('%s,%s' % (newword, 1))
|
|
File without changes
|
|
@@ -0,0 +1,205 @@
|
|
|
1
|
+
import sys
|
|
2
|
+
import numpy as np
|
|
3
|
+
import pickle
|
|
4
|
+
import base64
|
|
5
|
+
import os
|
|
6
|
+
from contextlib import contextmanager
|
|
7
|
+
|
|
8
|
+
DELIMITER = '\t'
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
@contextmanager
|
|
12
|
+
def suppress_stderr():
|
|
13
|
+
"""
|
|
14
|
+
Function to suppress the warnings(lake systems treats warnings as errors).
|
|
15
|
+
"""
|
|
16
|
+
with open(os.devnull, "w") as devnull:
|
|
17
|
+
old_stderr = sys.stderr
|
|
18
|
+
sys.stderr = devnull
|
|
19
|
+
try:
|
|
20
|
+
yield
|
|
21
|
+
finally:
|
|
22
|
+
sys.stderr = old_stderr
|
|
23
|
+
|
|
24
|
+
## On Lake system warnings raised by script are treated as a errors.
|
|
25
|
+
## Hence, to suppress it putting the under suppress_stderr().
|
|
26
|
+
with suppress_stderr():
|
|
27
|
+
def get_values_list(values, types, model_obj):
|
|
28
|
+
ret_vals = []
|
|
29
|
+
for i, val in enumerate(values):
|
|
30
|
+
if type(model_obj).__name__ == "MultiLabelBinarizer" and val == "":
|
|
31
|
+
continue
|
|
32
|
+
ret_vals.append(convert_to_type(val, types[i]))
|
|
33
|
+
return ret_vals
|
|
34
|
+
|
|
35
|
+
def convert_to_type(val, typee):
|
|
36
|
+
if typee == 'int':
|
|
37
|
+
return int(val) if val != "" else np.nan
|
|
38
|
+
if typee == 'float':
|
|
39
|
+
if isinstance(val, str):
|
|
40
|
+
val = val.replace(' ', '')
|
|
41
|
+
return float(val) if val != "" else np.nan
|
|
42
|
+
if typee == 'bool':
|
|
43
|
+
return eval(val) if val != "" else None
|
|
44
|
+
return str(val) if val != "" else None
|
|
45
|
+
|
|
46
|
+
def get_classes_as_list(classes, actual_type):
|
|
47
|
+
if classes == "None":
|
|
48
|
+
return None
|
|
49
|
+
if actual_type == "None":
|
|
50
|
+
sys.exit("type of class elements is None where class elements exists.")
|
|
51
|
+
|
|
52
|
+
# separated by '--'
|
|
53
|
+
classes = classes.split("--")
|
|
54
|
+
|
|
55
|
+
for idx, cls in enumerate(classes):
|
|
56
|
+
classes[idx] = convert_to_type(cls, actual_type)
|
|
57
|
+
|
|
58
|
+
return classes
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
def splitter(strr, delim=",", convert_to="str"):
|
|
62
|
+
"""
|
|
63
|
+
Split the string based on delimiter and convert to the type specified.
|
|
64
|
+
"""
|
|
65
|
+
if strr == "None":
|
|
66
|
+
return []
|
|
67
|
+
return [convert_to_type(i, convert_to) for i in strr.split(delim)]
|
|
68
|
+
|
|
69
|
+
# Arguments to the Script
|
|
70
|
+
if len(sys.argv) != 10:
|
|
71
|
+
# 10 arguments command line arguments should be passed to this file.
|
|
72
|
+
# 1: file to be run
|
|
73
|
+
# 2. function name
|
|
74
|
+
# 3. No of feature columns.
|
|
75
|
+
# 4. No of class labels.
|
|
76
|
+
# 5. Comma separated indices of partition columns.
|
|
77
|
+
# 6. Comma separated types of all the data columns.
|
|
78
|
+
# 7. Model file prefix to generated model file using partition columns.
|
|
79
|
+
# 8. classes (separated by '--') - should be converted to list. "None" if no classes exists.
|
|
80
|
+
# 9. type of elements in passed in classes. "None" if no classes exists.
|
|
81
|
+
# 10. Flag to check the system type. True, means Lake, Enterprise otherwise
|
|
82
|
+
sys.exit("10 arguments command line arguments should be passed: file to be run,"
|
|
83
|
+
" function name, no of feature columns, no of class labels, comma separated indices"
|
|
84
|
+
" of partition columns, comma separated types of all columns, model file prefix ,"
|
|
85
|
+
" classes, type of elements in classes and flag to check lake or enterprise.")
|
|
86
|
+
|
|
87
|
+
is_lake_system = eval(sys.argv[9])
|
|
88
|
+
if not is_lake_system:
|
|
89
|
+
db = sys.argv[0].split("/")[1]
|
|
90
|
+
function_name = sys.argv[1]
|
|
91
|
+
n_f_cols = int(sys.argv[2])
|
|
92
|
+
n_c_labels = int(sys.argv[3])
|
|
93
|
+
data_column_types = splitter(sys.argv[5], delim="--")
|
|
94
|
+
data_partition_column_indices = splitter(sys.argv[4], convert_to="int") # indices are integers.
|
|
95
|
+
model_file_prefix = sys.argv[6]
|
|
96
|
+
class_type = sys.argv[8]
|
|
97
|
+
classes = get_classes_as_list(sys.argv[7], class_type)
|
|
98
|
+
|
|
99
|
+
data_partition_column_types = [data_column_types[idx] for idx in data_partition_column_indices]
|
|
100
|
+
|
|
101
|
+
model = None
|
|
102
|
+
|
|
103
|
+
# Data Format (n_features, k_labels, one data_partition_column):
|
|
104
|
+
# feature1, feature2, ..., featuren, label1, label2, ... labelk, data_partition_column1, ...,
|
|
105
|
+
# data_partition_columnn
|
|
106
|
+
# There can be no labels also.
|
|
107
|
+
|
|
108
|
+
# Read data from table through STO and build features and labels.
|
|
109
|
+
features = []
|
|
110
|
+
labels = []
|
|
111
|
+
data_partition_column_values = []
|
|
112
|
+
|
|
113
|
+
|
|
114
|
+
while 1:
|
|
115
|
+
try:
|
|
116
|
+
line = input()
|
|
117
|
+
if line == '': # Exit if user provides blank line
|
|
118
|
+
break
|
|
119
|
+
else:
|
|
120
|
+
values = line.split(DELIMITER)
|
|
121
|
+
|
|
122
|
+
if not data_partition_column_values:
|
|
123
|
+
# Partition column values is same for all rows. Hence, only read once.
|
|
124
|
+
for i, val in enumerate(data_partition_column_indices):
|
|
125
|
+
data_partition_column_values.append(
|
|
126
|
+
convert_to_type(values[val], typee=data_partition_column_types[i])
|
|
127
|
+
)
|
|
128
|
+
|
|
129
|
+
# Prepare the corresponding model file name and extract model.
|
|
130
|
+
partition_join = "_".join([str(x) for x in data_partition_column_values])
|
|
131
|
+
# Replace '-' with '_' as '-' because partition_columns can be negative.
|
|
132
|
+
partition_join = partition_join.replace("-", "_")
|
|
133
|
+
|
|
134
|
+
model_file_path = f"{model_file_prefix}_{partition_join}"\
|
|
135
|
+
if is_lake_system else \
|
|
136
|
+
f"./{db}/{model_file_prefix}_{partition_join}"
|
|
137
|
+
|
|
138
|
+
with open(model_file_path, "rb") as fp:
|
|
139
|
+
model = pickle.loads(fp.read())
|
|
140
|
+
|
|
141
|
+
if model is None:
|
|
142
|
+
sys.exit("Model file is not installed in Vantage.")
|
|
143
|
+
|
|
144
|
+
values = get_values_list(values, data_column_types, model)
|
|
145
|
+
values = values[:-len(data_partition_column_indices)] # Already processed partition columns.
|
|
146
|
+
features.append(values[:n_f_cols])
|
|
147
|
+
if n_c_labels > 0:
|
|
148
|
+
labels.append(values[n_f_cols:(n_f_cols+n_c_labels)])
|
|
149
|
+
|
|
150
|
+
|
|
151
|
+
except EOFError: # Exit if reached EOF or CTRL-D
|
|
152
|
+
break
|
|
153
|
+
|
|
154
|
+
if not len(features):
|
|
155
|
+
sys.exit(0)
|
|
156
|
+
|
|
157
|
+
# Fit/partial_fit the model to the data.
|
|
158
|
+
model_name = model.__class__.__name__
|
|
159
|
+
if function_name == "partial_fit":
|
|
160
|
+
if labels and classes:
|
|
161
|
+
if model_name == "SelectFromModel":
|
|
162
|
+
features = np.array(features)
|
|
163
|
+
classes = np.array(classes)
|
|
164
|
+
labels = np.array(labels).ravel()
|
|
165
|
+
model.partial_fit(features, labels, classes=classes)
|
|
166
|
+
elif labels:
|
|
167
|
+
model.partial_fit(features, labels)
|
|
168
|
+
elif classes:
|
|
169
|
+
model.partial_fit(features, classes=classes)
|
|
170
|
+
else:
|
|
171
|
+
model.partial_fit(features)
|
|
172
|
+
elif function_name == "fit":
|
|
173
|
+
np_func_list = ["OneVsRestClassifier", "LabelBinarizer", "TSNE"]
|
|
174
|
+
if labels:
|
|
175
|
+
# For IsotonicRegression, fit() accepts training target as
|
|
176
|
+
# y: array-like of shape (n_samples,).
|
|
177
|
+
if model_name in ["CalibratedClassifierCV", "GaussianProcessClassifier", "GenericUnivariateSelect",
|
|
178
|
+
"IsotonicRegression", "LinearSVC", "GridSearchCV", "LinearDiscriminantAnalysis", "RFECV",
|
|
179
|
+
"RFE", "RandomizedSearchCV", "SelectFdr", "SelectFpr", "SelectFromModel", "SelectFwe",
|
|
180
|
+
"SelectKBest", "SelectPercentile", "SequentialFeatureSelector", "GaussianNB",
|
|
181
|
+
"QuadraticDiscriminantAnalysis"]:
|
|
182
|
+
labels = np.array(labels).reshape(-1)
|
|
183
|
+
if model_name in np_func_list:
|
|
184
|
+
labels = np.array(labels)
|
|
185
|
+
features = np.array(features)
|
|
186
|
+
model.fit(features, labels)
|
|
187
|
+
else:
|
|
188
|
+
if model_name in np_func_list:
|
|
189
|
+
features = np.array(features)
|
|
190
|
+
model.fit(features)
|
|
191
|
+
|
|
192
|
+
model_str = pickle.dumps(model)
|
|
193
|
+
|
|
194
|
+
if is_lake_system:
|
|
195
|
+
model_file_path = f"/tmp/{model_file_prefix}_{partition_join}.pickle"
|
|
196
|
+
|
|
197
|
+
# Write to file in Vantage, to be used in predict/scoring.
|
|
198
|
+
with open(model_file_path, "wb") as fp:
|
|
199
|
+
fp.write(model_str)
|
|
200
|
+
|
|
201
|
+
model_data = model_file_path if is_lake_system \
|
|
202
|
+
else base64.b64encode(model_str)
|
|
203
|
+
|
|
204
|
+
# Print the model to be read from script.
|
|
205
|
+
print(*(data_partition_column_values + [model_data]), sep=DELIMITER)
|