teradataml 20.0.0.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +2762 -0
- teradataml/__init__.py +78 -0
- teradataml/_version.py +11 -0
- teradataml/analytics/Transformations.py +2996 -0
- teradataml/analytics/__init__.py +82 -0
- teradataml/analytics/analytic_function_executor.py +2416 -0
- teradataml/analytics/analytic_query_generator.py +1050 -0
- teradataml/analytics/byom/H2OPredict.py +514 -0
- teradataml/analytics/byom/PMMLPredict.py +437 -0
- teradataml/analytics/byom/__init__.py +16 -0
- teradataml/analytics/json_parser/__init__.py +133 -0
- teradataml/analytics/json_parser/analytic_functions_argument.py +1805 -0
- teradataml/analytics/json_parser/json_store.py +191 -0
- teradataml/analytics/json_parser/metadata.py +1666 -0
- teradataml/analytics/json_parser/utils.py +805 -0
- teradataml/analytics/meta_class.py +236 -0
- teradataml/analytics/sqle/DecisionTreePredict.py +456 -0
- teradataml/analytics/sqle/NaiveBayesPredict.py +420 -0
- teradataml/analytics/sqle/__init__.py +128 -0
- teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -0
- teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -0
- teradataml/analytics/table_operator/__init__.py +11 -0
- teradataml/analytics/uaf/__init__.py +82 -0
- teradataml/analytics/utils.py +828 -0
- teradataml/analytics/valib.py +1617 -0
- teradataml/automl/__init__.py +5835 -0
- teradataml/automl/autodataprep/__init__.py +493 -0
- teradataml/automl/custom_json_utils.py +1625 -0
- teradataml/automl/data_preparation.py +1384 -0
- teradataml/automl/data_transformation.py +1254 -0
- teradataml/automl/feature_engineering.py +2273 -0
- teradataml/automl/feature_exploration.py +1873 -0
- teradataml/automl/model_evaluation.py +488 -0
- teradataml/automl/model_training.py +1407 -0
- teradataml/catalog/__init__.py +2 -0
- teradataml/catalog/byom.py +1759 -0
- teradataml/catalog/function_argument_mapper.py +859 -0
- teradataml/catalog/model_cataloging_utils.py +491 -0
- teradataml/clients/__init__.py +0 -0
- teradataml/clients/auth_client.py +137 -0
- teradataml/clients/keycloak_client.py +165 -0
- teradataml/clients/pkce_client.py +481 -0
- teradataml/common/__init__.py +1 -0
- teradataml/common/aed_utils.py +2078 -0
- teradataml/common/bulk_exposed_utils.py +113 -0
- teradataml/common/constants.py +1669 -0
- teradataml/common/deprecations.py +166 -0
- teradataml/common/exceptions.py +147 -0
- teradataml/common/formula.py +743 -0
- teradataml/common/garbagecollector.py +666 -0
- teradataml/common/logger.py +1261 -0
- teradataml/common/messagecodes.py +518 -0
- teradataml/common/messages.py +262 -0
- teradataml/common/pylogger.py +67 -0
- teradataml/common/sqlbundle.py +764 -0
- teradataml/common/td_coltype_code_to_tdtype.py +48 -0
- teradataml/common/utils.py +3166 -0
- teradataml/common/warnings.py +36 -0
- teradataml/common/wrapper_utils.py +625 -0
- teradataml/config/__init__.py +0 -0
- teradataml/config/dummy_file1.cfg +5 -0
- teradataml/config/dummy_file2.cfg +3 -0
- teradataml/config/sqlengine_alias_definitions_v1.0 +14 -0
- teradataml/config/sqlengine_alias_definitions_v1.1 +20 -0
- teradataml/config/sqlengine_alias_definitions_v1.3 +19 -0
- teradataml/context/__init__.py +0 -0
- teradataml/context/aed_context.py +223 -0
- teradataml/context/context.py +1462 -0
- teradataml/data/A_loan.csv +19 -0
- teradataml/data/BINARY_REALS_LEFT.csv +11 -0
- teradataml/data/BINARY_REALS_RIGHT.csv +11 -0
- teradataml/data/B_loan.csv +49 -0
- teradataml/data/BuoyData2.csv +17 -0
- teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -0
- teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -0
- teradataml/data/Convolve2RealsLeft.csv +5 -0
- teradataml/data/Convolve2RealsRight.csv +5 -0
- teradataml/data/Convolve2ValidLeft.csv +11 -0
- teradataml/data/Convolve2ValidRight.csv +11 -0
- teradataml/data/DFFTConv_Real_8_8.csv +65 -0
- teradataml/data/Employee.csv +5 -0
- teradataml/data/Employee_Address.csv +4 -0
- teradataml/data/Employee_roles.csv +5 -0
- teradataml/data/JulesBelvezeDummyData.csv +100 -0
- teradataml/data/Mall_customer_data.csv +201 -0
- teradataml/data/Orders1_12mf.csv +25 -0
- teradataml/data/Pi_loan.csv +7 -0
- teradataml/data/SMOOTHED_DATA.csv +7 -0
- teradataml/data/TestDFFT8.csv +9 -0
- teradataml/data/TestRiver.csv +109 -0
- teradataml/data/Traindata.csv +28 -0
- teradataml/data/__init__.py +0 -0
- teradataml/data/acf.csv +17 -0
- teradataml/data/adaboost_example.json +34 -0
- teradataml/data/adaboostpredict_example.json +24 -0
- teradataml/data/additional_table.csv +11 -0
- teradataml/data/admissions_test.csv +21 -0
- teradataml/data/admissions_train.csv +41 -0
- teradataml/data/admissions_train_nulls.csv +41 -0
- teradataml/data/advertising.csv +201 -0
- teradataml/data/ageandheight.csv +13 -0
- teradataml/data/ageandpressure.csv +31 -0
- teradataml/data/amazon_reviews_25.csv +26 -0
- teradataml/data/antiselect_example.json +36 -0
- teradataml/data/antiselect_input.csv +8 -0
- teradataml/data/antiselect_input_mixed_case.csv +8 -0
- teradataml/data/applicant_external.csv +7 -0
- teradataml/data/applicant_reference.csv +7 -0
- teradataml/data/apriori_example.json +22 -0
- teradataml/data/arima_example.json +9 -0
- teradataml/data/assortedtext_input.csv +8 -0
- teradataml/data/attribution_example.json +34 -0
- teradataml/data/attribution_sample_table.csv +27 -0
- teradataml/data/attribution_sample_table1.csv +6 -0
- teradataml/data/attribution_sample_table2.csv +11 -0
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bank_marketing.csv +11163 -0
- teradataml/data/bank_web_clicks1.csv +43 -0
- teradataml/data/bank_web_clicks2.csv +91 -0
- teradataml/data/bank_web_url.csv +85 -0
- teradataml/data/barrier.csv +2 -0
- teradataml/data/barrier_new.csv +3 -0
- teradataml/data/betweenness_example.json +14 -0
- teradataml/data/bike_sharing.csv +732 -0
- teradataml/data/bin_breaks.csv +8 -0
- teradataml/data/bin_fit_ip.csv +4 -0
- teradataml/data/binary_complex_left.csv +11 -0
- teradataml/data/binary_complex_right.csv +11 -0
- teradataml/data/binary_matrix_complex_left.csv +21 -0
- teradataml/data/binary_matrix_complex_right.csv +21 -0
- teradataml/data/binary_matrix_real_left.csv +21 -0
- teradataml/data/binary_matrix_real_right.csv +21 -0
- teradataml/data/blood2ageandweight.csv +26 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/boston.csv +507 -0
- teradataml/data/boston2cols.csv +721 -0
- teradataml/data/breast_cancer.csv +570 -0
- teradataml/data/buoydata_mix.csv +11 -0
- teradataml/data/burst_data.csv +5 -0
- teradataml/data/burst_example.json +21 -0
- teradataml/data/byom_example.json +34 -0
- teradataml/data/bytes_table.csv +4 -0
- teradataml/data/cal_housing_ex_raw.csv +70 -0
- teradataml/data/callers.csv +7 -0
- teradataml/data/calls.csv +10 -0
- teradataml/data/cars_hist.csv +33 -0
- teradataml/data/cat_table.csv +25 -0
- teradataml/data/ccm_example.json +32 -0
- teradataml/data/ccm_input.csv +91 -0
- teradataml/data/ccm_input2.csv +13 -0
- teradataml/data/ccmexample.csv +101 -0
- teradataml/data/ccmprepare_example.json +9 -0
- teradataml/data/ccmprepare_input.csv +91 -0
- teradataml/data/cfilter_example.json +12 -0
- teradataml/data/changepointdetection_example.json +18 -0
- teradataml/data/changepointdetectionrt_example.json +8 -0
- teradataml/data/chi_sq.csv +3 -0
- teradataml/data/churn_data.csv +14 -0
- teradataml/data/churn_emission.csv +35 -0
- teradataml/data/churn_initial.csv +3 -0
- teradataml/data/churn_state_transition.csv +5 -0
- teradataml/data/citedges_2.csv +745 -0
- teradataml/data/citvertices_2.csv +1210 -0
- teradataml/data/clicks2.csv +16 -0
- teradataml/data/clickstream.csv +13 -0
- teradataml/data/clickstream1.csv +11 -0
- teradataml/data/closeness_example.json +16 -0
- teradataml/data/complaints.csv +21 -0
- teradataml/data/complaints_mini.csv +3 -0
- teradataml/data/complaints_test_tokenized.csv +353 -0
- teradataml/data/complaints_testtoken.csv +224 -0
- teradataml/data/complaints_tokens_model.csv +348 -0
- teradataml/data/complaints_tokens_test.csv +353 -0
- teradataml/data/complaints_traintoken.csv +472 -0
- teradataml/data/computers_category.csv +1001 -0
- teradataml/data/computers_test1.csv +1252 -0
- teradataml/data/computers_train1.csv +5009 -0
- teradataml/data/computers_train1_clustered.csv +5009 -0
- teradataml/data/confusionmatrix_example.json +9 -0
- teradataml/data/conversion_event_table.csv +3 -0
- teradataml/data/corr_input.csv +17 -0
- teradataml/data/correlation_example.json +11 -0
- teradataml/data/covid_confirm_sd.csv +83 -0
- teradataml/data/coxhazardratio_example.json +39 -0
- teradataml/data/coxph_example.json +15 -0
- teradataml/data/coxsurvival_example.json +28 -0
- teradataml/data/cpt.csv +41 -0
- teradataml/data/credit_ex_merged.csv +45 -0
- teradataml/data/creditcard_data.csv +1001 -0
- teradataml/data/customer_loyalty.csv +301 -0
- teradataml/data/customer_loyalty_newseq.csv +31 -0
- teradataml/data/customer_segmentation_test.csv +2628 -0
- teradataml/data/customer_segmentation_train.csv +8069 -0
- teradataml/data/dataframe_example.json +173 -0
- teradataml/data/decisionforest_example.json +37 -0
- teradataml/data/decisionforestpredict_example.json +38 -0
- teradataml/data/decisiontree_example.json +21 -0
- teradataml/data/decisiontreepredict_example.json +45 -0
- teradataml/data/dfft2_size4_real.csv +17 -0
- teradataml/data/dfft2_test_matrix16.csv +17 -0
- teradataml/data/dfft2conv_real_4_4.csv +65 -0
- teradataml/data/diabetes.csv +443 -0
- teradataml/data/diabetes_test.csv +89 -0
- teradataml/data/dict_table.csv +5 -0
- teradataml/data/docperterm_table.csv +4 -0
- teradataml/data/docs/__init__.py +1 -0
- teradataml/data/docs/byom/__init__.py +0 -0
- teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -0
- teradataml/data/docs/byom/docs/DataikuPredict.py +217 -0
- teradataml/data/docs/byom/docs/H2OPredict.py +325 -0
- teradataml/data/docs/byom/docs/ONNXEmbeddings.py +242 -0
- teradataml/data/docs/byom/docs/ONNXPredict.py +283 -0
- teradataml/data/docs/byom/docs/ONNXSeq2Seq.py +255 -0
- teradataml/data/docs/byom/docs/PMMLPredict.py +278 -0
- teradataml/data/docs/byom/docs/__init__.py +0 -0
- teradataml/data/docs/sqle/__init__.py +0 -0
- teradataml/data/docs/sqle/docs_17_10/Antiselect.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/Attribution.py +200 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +172 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -0
- teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -0
- teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +96 -0
- teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -0
- teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +152 -0
- teradataml/data/docs/sqle/docs_17_10/FTest.py +161 -0
- teradataml/data/docs/sqle/docs_17_10/FillRowId.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/Fit.py +88 -0
- teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +85 -0
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +82 -0
- teradataml/data/docs/sqle/docs_17_10/Histogram.py +165 -0
- teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -0
- teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +209 -0
- teradataml/data/docs/sqle/docs_17_10/NPath.py +266 -0
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -0
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -0
- teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +135 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +166 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -0
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +112 -0
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -0
- teradataml/data/docs/sqle/docs_17_10/QQNorm.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +110 -0
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +118 -0
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -0
- teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +153 -0
- teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -0
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -0
- teradataml/data/docs/sqle/docs_17_10/Sessionize.py +114 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -0
- teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -0
- teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +146 -0
- teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +142 -0
- teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -0
- teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -0
- teradataml/data/docs/sqle/docs_17_10/__init__.py +0 -0
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -0
- teradataml/data/docs/sqle/docs_17_20/Antiselect.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/Apriori.py +138 -0
- teradataml/data/docs/sqle/docs_17_20/Attribution.py +201 -0
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +172 -0
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -0
- teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
- teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -0
- teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +246 -0
- teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +280 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +136 -0
- teradataml/data/docs/sqle/docs_17_20/FTest.py +240 -0
- teradataml/data/docs/sqle/docs_17_20/FillRowId.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/Fit.py +88 -0
- teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +415 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -0
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -0
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +106 -0
- teradataml/data/docs/sqle/docs_17_20/Histogram.py +224 -0
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -0
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/KNN.py +215 -0
- teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -0
- teradataml/data/docs/sqle/docs_17_20/NERExtractor.py +121 -0
- teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +209 -0
- teradataml/data/docs/sqle/docs_17_20/NPath.py +266 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +127 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +119 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -0
- teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -0
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +231 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -0
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +220 -0
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +191 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -0
- teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -0
- teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/QQNorm.py +105 -0
- teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +155 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -0
- teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -0
- teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +118 -0
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -0
- teradataml/data/docs/sqle/docs_17_20/SMOTE.py +212 -0
- teradataml/data/docs/sqle/docs_17_20/SVM.py +414 -0
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -0
- teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +153 -0
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -0
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -0
- teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -0
- teradataml/data/docs/sqle/docs_17_20/Sessionize.py +114 -0
- teradataml/data/docs/sqle/docs_17_20/Shap.py +225 -0
- teradataml/data/docs/sqle/docs_17_20/Silhouette.py +153 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -0
- teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +146 -0
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -0
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -0
- teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
- teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +267 -0
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -0
- teradataml/data/docs/sqle/docs_17_20/TextMorph.py +119 -0
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +224 -0
- teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +160 -0
- teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -0
- teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -0
- teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
- teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +169 -0
- teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +237 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +362 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -0
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -0
- teradataml/data/docs/sqle/docs_17_20/__init__.py +0 -0
- teradataml/data/docs/tableoperator/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +430 -0
- teradataml/data/docs/tableoperator/docs_17_00/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +430 -0
- teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +348 -0
- teradataml/data/docs/tableoperator/docs_17_05/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +429 -0
- teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +348 -0
- teradataml/data/docs/tableoperator/docs_17_10/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
- teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +440 -0
- teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +387 -0
- teradataml/data/docs/tableoperator/docs_17_20/__init__.py +0 -0
- teradataml/data/docs/uaf/__init__.py +0 -0
- teradataml/data/docs/uaf/docs_17_20/ACF.py +186 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +370 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +172 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +161 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
- teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
- teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +248 -0
- teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +178 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +175 -0
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +230 -0
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +218 -0
- teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +185 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT.py +204 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +216 -0
- teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +192 -0
- teradataml/data/docs/uaf/docs_17_20/DIFF.py +175 -0
- teradataml/data/docs/uaf/docs_17_20/DTW.py +180 -0
- teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
- teradataml/data/docs/uaf/docs_17_20/DWT2D.py +217 -0
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +142 -0
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +184 -0
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +185 -0
- teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
- teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +206 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +143 -0
- teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +198 -0
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +260 -0
- teradataml/data/docs/uaf/docs_17_20/IDFFT.py +165 -0
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +191 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
- teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/InputValidator.py +121 -0
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +156 -0
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +215 -0
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +174 -0
- teradataml/data/docs/uaf/docs_17_20/MInfo.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +145 -0
- teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +191 -0
- teradataml/data/docs/uaf/docs_17_20/PACF.py +157 -0
- teradataml/data/docs/uaf/docs_17_20/Portman.py +217 -0
- teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +203 -0
- teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +155 -0
- teradataml/data/docs/uaf/docs_17_20/Resample.py +237 -0
- teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
- teradataml/data/docs/uaf/docs_17_20/SInfo.py +123 -0
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +173 -0
- teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +174 -0
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +164 -0
- teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +180 -0
- teradataml/data/docs/uaf/docs_17_20/Smoothma.py +208 -0
- teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +151 -0
- teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +202 -0
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
- teradataml/data/docs/uaf/docs_17_20/__init__.py +0 -0
- teradataml/data/dtw_example.json +18 -0
- teradataml/data/dtw_t1.csv +11 -0
- teradataml/data/dtw_t2.csv +4 -0
- teradataml/data/dwt2d_dataTable.csv +65 -0
- teradataml/data/dwt2d_example.json +16 -0
- teradataml/data/dwt_dataTable.csv +8 -0
- teradataml/data/dwt_example.json +15 -0
- teradataml/data/dwt_filterTable.csv +3 -0
- teradataml/data/dwt_filter_dim.csv +5 -0
- teradataml/data/emission.csv +9 -0
- teradataml/data/emp_table_by_dept.csv +19 -0
- teradataml/data/employee_info.csv +4 -0
- teradataml/data/employee_table.csv +6 -0
- teradataml/data/excluding_event_table.csv +2 -0
- teradataml/data/finance_data.csv +6 -0
- teradataml/data/finance_data2.csv +61 -0
- teradataml/data/finance_data3.csv +93 -0
- teradataml/data/finance_data4.csv +13 -0
- teradataml/data/fish.csv +160 -0
- teradataml/data/fm_blood2ageandweight.csv +26 -0
- teradataml/data/fmeasure_example.json +12 -0
- teradataml/data/followers_leaders.csv +10 -0
- teradataml/data/fpgrowth_example.json +12 -0
- teradataml/data/frequentpaths_example.json +29 -0
- teradataml/data/friends.csv +9 -0
- teradataml/data/fs_input.csv +33 -0
- teradataml/data/fs_input1.csv +33 -0
- teradataml/data/genData.csv +513 -0
- teradataml/data/geodataframe_example.json +40 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/glm_admissions_model.csv +12 -0
- teradataml/data/glm_example.json +56 -0
- teradataml/data/glml1l2_example.json +28 -0
- teradataml/data/glml1l2predict_example.json +54 -0
- teradataml/data/glmpredict_example.json +54 -0
- teradataml/data/gq_t1.csv +21 -0
- teradataml/data/grocery_transaction.csv +19 -0
- teradataml/data/hconvolve_complex_right.csv +5 -0
- teradataml/data/hconvolve_complex_rightmulti.csv +5 -0
- teradataml/data/histogram_example.json +12 -0
- teradataml/data/hmmdecoder_example.json +79 -0
- teradataml/data/hmmevaluator_example.json +25 -0
- teradataml/data/hmmsupervised_example.json +10 -0
- teradataml/data/hmmunsupervised_example.json +8 -0
- teradataml/data/hnsw_alter_data.csv +5 -0
- teradataml/data/hnsw_data.csv +10 -0
- teradataml/data/house_values.csv +12 -0
- teradataml/data/house_values2.csv +13 -0
- teradataml/data/housing_cat.csv +7 -0
- teradataml/data/housing_data.csv +9 -0
- teradataml/data/housing_test.csv +47 -0
- teradataml/data/housing_test_binary.csv +47 -0
- teradataml/data/housing_train.csv +493 -0
- teradataml/data/housing_train_attribute.csv +5 -0
- teradataml/data/housing_train_binary.csv +437 -0
- teradataml/data/housing_train_parameter.csv +2 -0
- teradataml/data/housing_train_response.csv +493 -0
- teradataml/data/housing_train_segment.csv +201 -0
- teradataml/data/ibm_stock.csv +370 -0
- teradataml/data/ibm_stock1.csv +370 -0
- teradataml/data/identitymatch_example.json +22 -0
- teradataml/data/idf_table.csv +4 -0
- teradataml/data/idwt2d_dataTable.csv +5 -0
- teradataml/data/idwt_dataTable.csv +8 -0
- teradataml/data/idwt_filterTable.csv +3 -0
- teradataml/data/impressions.csv +101 -0
- teradataml/data/inflation.csv +21 -0
- teradataml/data/initial.csv +3 -0
- teradataml/data/insect2Cols.csv +61 -0
- teradataml/data/insect_sprays.csv +13 -0
- teradataml/data/insurance.csv +1339 -0
- teradataml/data/interpolator_example.json +13 -0
- teradataml/data/interval_data.csv +5 -0
- teradataml/data/iris_altinput.csv +481 -0
- teradataml/data/iris_attribute_output.csv +8 -0
- teradataml/data/iris_attribute_test.csv +121 -0
- teradataml/data/iris_attribute_train.csv +481 -0
- teradataml/data/iris_category_expect_predict.csv +31 -0
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/iris_input.csv +151 -0
- teradataml/data/iris_response_train.csv +121 -0
- teradataml/data/iris_test.csv +31 -0
- teradataml/data/iris_train.csv +121 -0
- teradataml/data/join_table1.csv +4 -0
- teradataml/data/join_table2.csv +4 -0
- teradataml/data/jsons/anly_function_name.json +7 -0
- teradataml/data/jsons/byom/ONNXSeq2Seq.json +287 -0
- teradataml/data/jsons/byom/dataikupredict.json +148 -0
- teradataml/data/jsons/byom/datarobotpredict.json +147 -0
- teradataml/data/jsons/byom/h2opredict.json +195 -0
- teradataml/data/jsons/byom/onnxembeddings.json +267 -0
- teradataml/data/jsons/byom/onnxpredict.json +187 -0
- teradataml/data/jsons/byom/pmmlpredict.json +147 -0
- teradataml/data/jsons/paired_functions.json +450 -0
- teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/16.20/Attribution.json +249 -0
- teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/16.20/Pack.json +98 -0
- teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/16.20/Unpack.json +166 -0
- teradataml/data/jsons/sqle/16.20/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.00/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/17.00/Pack.json +98 -0
- teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.00/Unpack.json +166 -0
- teradataml/data/jsons/sqle/17.00/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.05/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/17.05/Pack.json +98 -0
- teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.05/Unpack.json +166 -0
- teradataml/data/jsons/sqle/17.05/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.10/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -0
- teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +172 -0
- teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -0
- teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -0
- teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -0
- teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -0
- teradataml/data/jsons/sqle/17.10/Pack.json +133 -0
- teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -0
- teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -0
- teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -0
- teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +54 -0
- teradataml/data/jsons/sqle/17.10/TD_Chisq.json +68 -0
- teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +54 -0
- teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +69 -0
- teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -0
- teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +52 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -0
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_Histogram.json +133 -0
- teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +183 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +66 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +197 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -0
- teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +112 -0
- teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +128 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +157 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +71 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +148 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -0
- teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -0
- teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +119 -0
- teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -0
- teradataml/data/jsons/sqle/17.10/Unpack.json +188 -0
- teradataml/data/jsons/sqle/17.10/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.20/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -0
- teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -0
- teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -0
- teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -0
- teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -0
- teradataml/data/jsons/sqle/17.20/Pack.json +133 -0
- teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -0
- teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +149 -0
- teradataml/data/jsons/sqle/17.20/TD_Apriori.json +181 -0
- teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -0
- teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
- teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_Chisq.json +68 -0
- teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +146 -0
- teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -0
- teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -0
- teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +260 -0
- teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -0
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -0
- teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -0
- teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -0
- teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -0
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -0
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -0
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -0
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -0
- teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -0
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +232 -0
- teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +87 -0
- teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -0
- teradataml/data/jsons/sqle/17.20/TD_NERExtractor.json +145 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -0
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +316 -0
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +124 -0
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -0
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -0
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -0
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -0
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -0
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -0
- teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -0
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -0
- teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -0
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +179 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +179 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +74 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -0
- teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +138 -0
- teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -0
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +128 -0
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_SMOTE.json +267 -0
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -0
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -0
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +310 -0
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +120 -0
- teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +194 -0
- teradataml/data/jsons/sqle/17.20/TD_Shap.json +221 -0
- teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +143 -0
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -0
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -0
- teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -0
- teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -0
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -0
- teradataml/data/jsons/sqle/17.20/TD_TextMorph.json +134 -0
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json +297 -0
- teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -0
- teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -0
- teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
- teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +183 -0
- teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -0
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -0
- teradataml/data/jsons/sqle/17.20/Unpack.json +188 -0
- teradataml/data/jsons/sqle/17.20/nPath.json +269 -0
- teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json +370 -0
- teradataml/data/jsons/sqle/20.00/AI_AskLLM.json +460 -0
- teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json +385 -0
- teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_MaskPII.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json +400 -0
- teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json +401 -0
- teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json +384 -0
- teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json +384 -0
- teradataml/data/jsons/sqle/20.00/TD_API_AzureML.json +151 -0
- teradataml/data/jsons/sqle/20.00/TD_API_Sagemaker.json +182 -0
- teradataml/data/jsons/sqle/20.00/TD_API_VertexAI.json +183 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSW.json +296 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json +206 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json +32 -0
- teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
- teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
- teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
- teradataml/data/jsons/tableoperator/17.00/read_nos.json +198 -0
- teradataml/data/jsons/tableoperator/17.05/read_nos.json +198 -0
- teradataml/data/jsons/tableoperator/17.05/write_nos.json +195 -0
- teradataml/data/jsons/tableoperator/17.10/read_nos.json +184 -0
- teradataml/data/jsons/tableoperator/17.10/write_nos.json +195 -0
- teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
- teradataml/data/jsons/tableoperator/17.20/read_nos.json +183 -0
- teradataml/data/jsons/tableoperator/17.20/write_nos.json +224 -0
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +132 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +396 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +77 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +153 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
- teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +107 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +106 -0
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +89 -0
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +104 -0
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +66 -0
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +87 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +134 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +144 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +108 -0
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_DIFF.json +92 -0
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +114 -0
- teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
- teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +39 -0
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +85 -0
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +71 -0
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +139 -0
- teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECASTER.json +313 -0
- teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +58 -0
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +81 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
- teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +64 -0
- teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +182 -0
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +103 -0
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +181 -0
- teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
- teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +68 -0
- teradataml/data/jsons/uaf/17.20/TD_MINFO.json +67 -0
- teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +179 -0
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -0
- teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +119 -0
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -0
- teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +98 -0
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +194 -0
- teradataml/data/jsons/uaf/17.20/TD_SAX.json +210 -0
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +143 -0
- teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +90 -0
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +80 -0
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +68 -0
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -0
- teradataml/data/jsons/uaf/17.20/TD_SINFO.json +58 -0
- teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +163 -0
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +112 -0
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -0
- teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +410 -0
- teradataml/data/kmeans_example.json +23 -0
- teradataml/data/kmeans_table.csv +10 -0
- teradataml/data/kmeans_us_arrests_data.csv +51 -0
- teradataml/data/knn_example.json +19 -0
- teradataml/data/knnrecommender_example.json +7 -0
- teradataml/data/knnrecommenderpredict_example.json +12 -0
- teradataml/data/lar_example.json +17 -0
- teradataml/data/larpredict_example.json +30 -0
- teradataml/data/lc_new_predictors.csv +5 -0
- teradataml/data/lc_new_reference.csv +9 -0
- teradataml/data/lda_example.json +9 -0
- teradataml/data/ldainference_example.json +15 -0
- teradataml/data/ldatopicsummary_example.json +9 -0
- teradataml/data/levendist_input.csv +13 -0
- teradataml/data/levenshteindistance_example.json +10 -0
- teradataml/data/linreg_example.json +10 -0
- teradataml/data/load_example_data.py +350 -0
- teradataml/data/loan_prediction.csv +295 -0
- teradataml/data/lungcancer.csv +138 -0
- teradataml/data/mappingdata.csv +12 -0
- teradataml/data/medical_readings.csv +101 -0
- teradataml/data/milk_timeseries.csv +157 -0
- teradataml/data/min_max_titanic.csv +4 -0
- teradataml/data/minhash_example.json +6 -0
- teradataml/data/ml_ratings.csv +7547 -0
- teradataml/data/ml_ratings_10.csv +2445 -0
- teradataml/data/mobile_data.csv +13 -0
- teradataml/data/model1_table.csv +5 -0
- teradataml/data/model2_table.csv +5 -0
- teradataml/data/models/License_file.txt +1 -0
- teradataml/data/models/License_file_empty.txt +0 -0
- teradataml/data/models/dataiku_iris_data_ann_thin +0 -0
- teradataml/data/models/dr_iris_rf +0 -0
- teradataml/data/models/iris_db_dt_model_sklearn.onnx +0 -0
- teradataml/data/models/iris_db_dt_model_sklearn_floattensor.onnx +0 -0
- teradataml/data/models/iris_db_glm_model.pmml +57 -0
- teradataml/data/models/iris_db_xgb_model.pmml +4471 -0
- teradataml/data/models/iris_kmeans_model +0 -0
- teradataml/data/models/iris_mojo_glm_h2o_model +0 -0
- teradataml/data/models/iris_mojo_xgb_h2o_model +0 -0
- teradataml/data/modularity_example.json +12 -0
- teradataml/data/movavg_example.json +8 -0
- teradataml/data/mtx1.csv +7 -0
- teradataml/data/mtx2.csv +13 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/mvdfft8.csv +9 -0
- teradataml/data/naivebayes_example.json +10 -0
- teradataml/data/naivebayespredict_example.json +19 -0
- teradataml/data/naivebayestextclassifier2_example.json +7 -0
- teradataml/data/naivebayestextclassifier_example.json +8 -0
- teradataml/data/naivebayestextclassifierpredict_example.json +32 -0
- teradataml/data/name_Find_configure.csv +10 -0
- teradataml/data/namedentityfinder_example.json +14 -0
- teradataml/data/namedentityfinderevaluator_example.json +10 -0
- teradataml/data/namedentityfindertrainer_example.json +6 -0
- teradataml/data/nb_iris_input_test.csv +31 -0
- teradataml/data/nb_iris_input_train.csv +121 -0
- teradataml/data/nbp_iris_model.csv +13 -0
- teradataml/data/ner_dict.csv +8 -0
- teradataml/data/ner_extractor_text.csv +2 -0
- teradataml/data/ner_input_eng.csv +7 -0
- teradataml/data/ner_rule.csv +5 -0
- teradataml/data/ner_sports_test2.csv +29 -0
- teradataml/data/ner_sports_train.csv +501 -0
- teradataml/data/nerevaluator_example.json +6 -0
- teradataml/data/nerextractor_example.json +18 -0
- teradataml/data/nermem_sports_test.csv +18 -0
- teradataml/data/nermem_sports_train.csv +51 -0
- teradataml/data/nertrainer_example.json +7 -0
- teradataml/data/ngrams_example.json +7 -0
- teradataml/data/notebooks/__init__.py +0 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -0
- teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -0
- teradataml/data/notebooks/sqlalchemy/__init__.py +0 -0
- teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -0
- teradataml/data/npath_example.json +23 -0
- teradataml/data/ntree_example.json +14 -0
- teradataml/data/numeric_strings.csv +5 -0
- teradataml/data/numerics.csv +4 -0
- teradataml/data/ocean_buoy.csv +17 -0
- teradataml/data/ocean_buoy2.csv +17 -0
- teradataml/data/ocean_buoys.csv +28 -0
- teradataml/data/ocean_buoys2.csv +10 -0
- teradataml/data/ocean_buoys_nonpti.csv +28 -0
- teradataml/data/ocean_buoys_seq.csv +29 -0
- teradataml/data/onehot_encoder_train.csv +4 -0
- teradataml/data/openml_example.json +92 -0
- teradataml/data/optional_event_table.csv +4 -0
- teradataml/data/orders1.csv +11 -0
- teradataml/data/orders1_12.csv +13 -0
- teradataml/data/orders_ex.csv +4 -0
- teradataml/data/pack_example.json +9 -0
- teradataml/data/package_tracking.csv +19 -0
- teradataml/data/package_tracking_pti.csv +19 -0
- teradataml/data/pagerank_example.json +13 -0
- teradataml/data/paragraphs_input.csv +6 -0
- teradataml/data/pathanalyzer_example.json +8 -0
- teradataml/data/pathgenerator_example.json +8 -0
- teradataml/data/patient_profile.csv +101 -0
- teradataml/data/pattern_matching_data.csv +11 -0
- teradataml/data/payment_fraud_dataset.csv +10001 -0
- teradataml/data/peppers.png +0 -0
- teradataml/data/phrases.csv +7 -0
- teradataml/data/pivot_example.json +9 -0
- teradataml/data/pivot_input.csv +22 -0
- teradataml/data/playerRating.csv +31 -0
- teradataml/data/pos_input.csv +40 -0
- teradataml/data/postagger_example.json +7 -0
- teradataml/data/posttagger_output.csv +44 -0
- teradataml/data/production_data.csv +17 -0
- teradataml/data/production_data2.csv +7 -0
- teradataml/data/randomsample_example.json +32 -0
- teradataml/data/randomwalksample_example.json +9 -0
- teradataml/data/rank_table.csv +6 -0
- teradataml/data/real_values.csv +14 -0
- teradataml/data/ref_mobile_data.csv +4 -0
- teradataml/data/ref_mobile_data_dense.csv +2 -0
- teradataml/data/ref_url.csv +17 -0
- teradataml/data/restaurant_reviews.csv +7 -0
- teradataml/data/retail_churn_table.csv +27772 -0
- teradataml/data/river_data.csv +145 -0
- teradataml/data/roc_example.json +8 -0
- teradataml/data/roc_input.csv +101 -0
- teradataml/data/rule_inputs.csv +6 -0
- teradataml/data/rule_table.csv +2 -0
- teradataml/data/sales.csv +7 -0
- teradataml/data/sales_transaction.csv +501 -0
- teradataml/data/salesdata.csv +342 -0
- teradataml/data/sample_cities.csv +3 -0
- teradataml/data/sample_shapes.csv +11 -0
- teradataml/data/sample_streets.csv +3 -0
- teradataml/data/sampling_example.json +16 -0
- teradataml/data/sax_example.json +17 -0
- teradataml/data/scale_attributes.csv +3 -0
- teradataml/data/scale_example.json +74 -0
- teradataml/data/scale_housing.csv +11 -0
- teradataml/data/scale_housing_test.csv +6 -0
- teradataml/data/scale_input_part_sparse.csv +31 -0
- teradataml/data/scale_input_partitioned.csv +16 -0
- teradataml/data/scale_input_sparse.csv +11 -0
- teradataml/data/scale_parameters.csv +3 -0
- teradataml/data/scale_stat.csv +11 -0
- teradataml/data/scalebypartition_example.json +13 -0
- teradataml/data/scalemap_example.json +13 -0
- teradataml/data/scalesummary_example.json +12 -0
- teradataml/data/score_category.csv +101 -0
- teradataml/data/score_summary.csv +4 -0
- teradataml/data/script_example.json +10 -0
- teradataml/data/scripts/deploy_script.py +84 -0
- teradataml/data/scripts/lightgbm/dataset.template +175 -0
- teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +264 -0
- teradataml/data/scripts/lightgbm/lightgbm_function.template +234 -0
- teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +177 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/mapper.py +16 -0
- teradataml/data/scripts/mapper_replace.py +16 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +205 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +148 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +144 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +166 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +161 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +145 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +327 -0
- teradataml/data/sdk/modelops/modelops_spec.json +101737 -0
- teradataml/data/seeds.csv +10 -0
- teradataml/data/sentenceextractor_example.json +7 -0
- teradataml/data/sentiment_extract_input.csv +11 -0
- teradataml/data/sentiment_train.csv +16 -0
- teradataml/data/sentiment_word.csv +20 -0
- teradataml/data/sentiment_word_input.csv +20 -0
- teradataml/data/sentimentextractor_example.json +24 -0
- teradataml/data/sentimenttrainer_example.json +8 -0
- teradataml/data/sequence_table.csv +10 -0
- teradataml/data/seriessplitter_example.json +8 -0
- teradataml/data/sessionize_example.json +17 -0
- teradataml/data/sessionize_table.csv +116 -0
- teradataml/data/setop_test1.csv +24 -0
- teradataml/data/setop_test2.csv +22 -0
- teradataml/data/soc_nw_edges.csv +11 -0
- teradataml/data/soc_nw_vertices.csv +8 -0
- teradataml/data/souvenir_timeseries.csv +168 -0
- teradataml/data/sparse_iris_attribute.csv +5 -0
- teradataml/data/sparse_iris_test.csv +121 -0
- teradataml/data/sparse_iris_train.csv +601 -0
- teradataml/data/star1.csv +6 -0
- teradataml/data/star_pivot.csv +8 -0
- teradataml/data/state_transition.csv +5 -0
- teradataml/data/stock_data.csv +53 -0
- teradataml/data/stock_movement.csv +11 -0
- teradataml/data/stock_vol.csv +76 -0
- teradataml/data/stop_words.csv +8 -0
- teradataml/data/store_sales.csv +37 -0
- teradataml/data/stringsimilarity_example.json +8 -0
- teradataml/data/strsimilarity_input.csv +13 -0
- teradataml/data/students.csv +101 -0
- teradataml/data/svm_iris_input_test.csv +121 -0
- teradataml/data/svm_iris_input_train.csv +481 -0
- teradataml/data/svm_iris_model.csv +7 -0
- teradataml/data/svmdense_example.json +10 -0
- teradataml/data/svmdensepredict_example.json +19 -0
- teradataml/data/svmsparse_example.json +8 -0
- teradataml/data/svmsparsepredict_example.json +14 -0
- teradataml/data/svmsparsesummary_example.json +8 -0
- teradataml/data/target_mobile_data.csv +13 -0
- teradataml/data/target_mobile_data_dense.csv +5 -0
- teradataml/data/target_udt_data.csv +8 -0
- teradataml/data/tdnerextractor_example.json +14 -0
- teradataml/data/templatedata.csv +1201 -0
- teradataml/data/templates/open_source_ml.json +11 -0
- teradataml/data/teradata_icon.ico +0 -0
- teradataml/data/teradataml_example.json +1473 -0
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_loan_prediction.csv +53 -0
- teradataml/data/test_pacf_12.csv +37 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/test_river2.csv +109 -0
- teradataml/data/text_inputs.csv +6 -0
- teradataml/data/textchunker_example.json +8 -0
- teradataml/data/textclassifier_example.json +7 -0
- teradataml/data/textclassifier_input.csv +7 -0
- teradataml/data/textclassifiertrainer_example.json +7 -0
- teradataml/data/textmorph_example.json +11 -0
- teradataml/data/textparser_example.json +15 -0
- teradataml/data/texttagger_example.json +12 -0
- teradataml/data/texttokenizer_example.json +7 -0
- teradataml/data/texttrainer_input.csv +11 -0
- teradataml/data/tf_example.json +7 -0
- teradataml/data/tfidf_example.json +14 -0
- teradataml/data/tfidf_input1.csv +201 -0
- teradataml/data/tfidf_train.csv +6 -0
- teradataml/data/time_table1.csv +535 -0
- teradataml/data/time_table2.csv +14 -0
- teradataml/data/timeseriesdata.csv +1601 -0
- teradataml/data/timeseriesdatasetsd4.csv +105 -0
- teradataml/data/timestamp_data.csv +4 -0
- teradataml/data/titanic.csv +892 -0
- teradataml/data/titanic_dataset_unpivoted.csv +19 -0
- teradataml/data/to_num_data.csv +4 -0
- teradataml/data/tochar_data.csv +5 -0
- teradataml/data/token_table.csv +696 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/train_tracking.csv +28 -0
- teradataml/data/trans_dense.csv +16 -0
- teradataml/data/trans_sparse.csv +55 -0
- teradataml/data/transformation_table.csv +6 -0
- teradataml/data/transformation_table_new.csv +2 -0
- teradataml/data/tv_spots.csv +16 -0
- teradataml/data/twod_climate_data.csv +117 -0
- teradataml/data/uaf_example.json +529 -0
- teradataml/data/univariatestatistics_example.json +9 -0
- teradataml/data/unpack_example.json +10 -0
- teradataml/data/unpivot_example.json +25 -0
- teradataml/data/unpivot_input.csv +8 -0
- teradataml/data/url_data.csv +10 -0
- teradataml/data/us_air_pass.csv +37 -0
- teradataml/data/us_population.csv +624 -0
- teradataml/data/us_states_shapes.csv +52 -0
- teradataml/data/varmax_example.json +18 -0
- teradataml/data/vectordistance_example.json +30 -0
- teradataml/data/ville_climatedata.csv +121 -0
- teradataml/data/ville_tempdata.csv +12 -0
- teradataml/data/ville_tempdata1.csv +12 -0
- teradataml/data/ville_temperature.csv +11 -0
- teradataml/data/waveletTable.csv +1605 -0
- teradataml/data/waveletTable2.csv +1605 -0
- teradataml/data/weightedmovavg_example.json +9 -0
- teradataml/data/wft_testing.csv +5 -0
- teradataml/data/windowdfft.csv +16 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/data/word_embed_input_table1.csv +6 -0
- teradataml/data/word_embed_input_table2.csv +5 -0
- teradataml/data/word_embed_model.csv +23 -0
- teradataml/data/words_input.csv +13 -0
- teradataml/data/xconvolve_complex_left.csv +6 -0
- teradataml/data/xconvolve_complex_leftmulti.csv +6 -0
- teradataml/data/xgboost_example.json +36 -0
- teradataml/data/xgboostpredict_example.json +32 -0
- teradataml/data/ztest_example.json +16 -0
- teradataml/dataframe/__init__.py +0 -0
- teradataml/dataframe/copy_to.py +2446 -0
- teradataml/dataframe/data_transfer.py +2840 -0
- teradataml/dataframe/dataframe.py +20908 -0
- teradataml/dataframe/dataframe_utils.py +2114 -0
- teradataml/dataframe/fastload.py +794 -0
- teradataml/dataframe/functions.py +2110 -0
- teradataml/dataframe/indexer.py +424 -0
- teradataml/dataframe/row.py +160 -0
- teradataml/dataframe/setop.py +1171 -0
- teradataml/dataframe/sql.py +10904 -0
- teradataml/dataframe/sql_function_parameters.py +440 -0
- teradataml/dataframe/sql_functions.py +652 -0
- teradataml/dataframe/sql_interfaces.py +220 -0
- teradataml/dataframe/vantage_function_types.py +675 -0
- teradataml/dataframe/window.py +694 -0
- teradataml/dbutils/__init__.py +3 -0
- teradataml/dbutils/dbutils.py +2871 -0
- teradataml/dbutils/filemgr.py +318 -0
- teradataml/gen_ai/__init__.py +2 -0
- teradataml/gen_ai/convAI.py +473 -0
- teradataml/geospatial/__init__.py +4 -0
- teradataml/geospatial/geodataframe.py +1105 -0
- teradataml/geospatial/geodataframecolumn.py +392 -0
- teradataml/geospatial/geometry_types.py +926 -0
- teradataml/hyperparameter_tuner/__init__.py +1 -0
- teradataml/hyperparameter_tuner/optimizer.py +4115 -0
- teradataml/hyperparameter_tuner/utils.py +303 -0
- teradataml/lib/__init__.py +0 -0
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/lib/libaed_0_1_aarch64.so +0 -0
- teradataml/lib/libaed_0_1_ppc64le.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/_base.py +1321 -0
- teradataml/opensource/_class.py +464 -0
- teradataml/opensource/_constants.py +61 -0
- teradataml/opensource/_lightgbm.py +949 -0
- teradataml/opensource/_sklearn.py +1008 -0
- teradataml/opensource/_wrapper_utils.py +267 -0
- teradataml/options/__init__.py +148 -0
- teradataml/options/configure.py +489 -0
- teradataml/options/display.py +187 -0
- teradataml/plot/__init__.py +3 -0
- teradataml/plot/axis.py +1427 -0
- teradataml/plot/constants.py +15 -0
- teradataml/plot/figure.py +431 -0
- teradataml/plot/plot.py +810 -0
- teradataml/plot/query_generator.py +83 -0
- teradataml/plot/subplot.py +216 -0
- teradataml/scriptmgmt/UserEnv.py +4273 -0
- teradataml/scriptmgmt/__init__.py +3 -0
- teradataml/scriptmgmt/lls_utils.py +2157 -0
- teradataml/sdk/README.md +79 -0
- teradataml/sdk/__init__.py +4 -0
- teradataml/sdk/_auth_modes.py +422 -0
- teradataml/sdk/_func_params.py +487 -0
- teradataml/sdk/_json_parser.py +453 -0
- teradataml/sdk/_openapi_spec_constants.py +249 -0
- teradataml/sdk/_utils.py +236 -0
- teradataml/sdk/api_client.py +900 -0
- teradataml/sdk/constants.py +62 -0
- teradataml/sdk/modelops/__init__.py +98 -0
- teradataml/sdk/modelops/_client.py +409 -0
- teradataml/sdk/modelops/_constants.py +304 -0
- teradataml/sdk/modelops/models.py +2308 -0
- teradataml/sdk/spinner.py +107 -0
- teradataml/series/__init__.py +0 -0
- teradataml/series/series.py +537 -0
- teradataml/series/series_utils.py +71 -0
- teradataml/store/__init__.py +12 -0
- teradataml/store/feature_store/__init__.py +0 -0
- teradataml/store/feature_store/constants.py +658 -0
- teradataml/store/feature_store/feature_store.py +4814 -0
- teradataml/store/feature_store/mind_map.py +639 -0
- teradataml/store/feature_store/models.py +7330 -0
- teradataml/store/feature_store/utils.py +390 -0
- teradataml/table_operators/Apply.py +979 -0
- teradataml/table_operators/Script.py +1739 -0
- teradataml/table_operators/TableOperator.py +1343 -0
- teradataml/table_operators/__init__.py +2 -0
- teradataml/table_operators/apply_query_generator.py +262 -0
- teradataml/table_operators/query_generator.py +493 -0
- teradataml/table_operators/table_operator_query_generator.py +462 -0
- teradataml/table_operators/table_operator_util.py +726 -0
- teradataml/table_operators/templates/dataframe_apply.template +184 -0
- teradataml/table_operators/templates/dataframe_map.template +176 -0
- teradataml/table_operators/templates/dataframe_register.template +73 -0
- teradataml/table_operators/templates/dataframe_udf.template +67 -0
- teradataml/table_operators/templates/script_executor.template +170 -0
- teradataml/telemetry_utils/__init__.py +0 -0
- teradataml/telemetry_utils/queryband.py +53 -0
- teradataml/utils/__init__.py +0 -0
- teradataml/utils/docstring.py +527 -0
- teradataml/utils/dtypes.py +943 -0
- teradataml/utils/internal_buffer.py +122 -0
- teradataml/utils/print_versions.py +206 -0
- teradataml/utils/utils.py +451 -0
- teradataml/utils/validators.py +3305 -0
- teradataml-20.0.0.8.dist-info/METADATA +2804 -0
- teradataml-20.0.0.8.dist-info/RECORD +1208 -0
- teradataml-20.0.0.8.dist-info/WHEEL +5 -0
- teradataml-20.0.0.8.dist-info/top_level.txt +1 -0
- teradataml-20.0.0.8.dist-info/zip-safe +1 -0
|
@@ -0,0 +1,2445 @@
|
|
|
1
|
+
"userid","itemid","rating"
|
|
2
|
+
5,1,4
|
|
3
|
+
9,17,3
|
|
4
|
+
7,50,4.5
|
|
5
|
+
6,1,4
|
|
6
|
+
5,5,3
|
|
7
|
+
9,32,2
|
|
8
|
+
7,58,3.5
|
|
9
|
+
6,2,3
|
|
10
|
+
5,6,4
|
|
11
|
+
9,34,5
|
|
12
|
+
7,112,4.5
|
|
13
|
+
6,6,4
|
|
14
|
+
5,11,4
|
|
15
|
+
9,36,4
|
|
16
|
+
7,520,4
|
|
17
|
+
6,10,4
|
|
18
|
+
5,14,4
|
|
19
|
+
9,39,2
|
|
20
|
+
7,745,4.5
|
|
21
|
+
6,16,4
|
|
22
|
+
5,16,5
|
|
23
|
+
9,43,3
|
|
24
|
+
7,1094,4
|
|
25
|
+
6,19,3
|
|
26
|
+
5,21,5
|
|
27
|
+
9,50,5
|
|
28
|
+
7,1234,4
|
|
29
|
+
6,21,4
|
|
30
|
+
5,32,5
|
|
31
|
+
9,110,5
|
|
32
|
+
7,1252,5
|
|
33
|
+
6,39,3
|
|
34
|
+
5,39,4
|
|
35
|
+
9,150,4
|
|
36
|
+
7,1358,3.5
|
|
37
|
+
6,47,4
|
|
38
|
+
5,45,4
|
|
39
|
+
9,223,3
|
|
40
|
+
7,1380,3
|
|
41
|
+
6,50,4
|
|
42
|
+
5,47,5
|
|
43
|
+
9,235,4
|
|
44
|
+
7,1639,3.5
|
|
45
|
+
6,62,4
|
|
46
|
+
5,50,5
|
|
47
|
+
9,247,3
|
|
48
|
+
7,2194,4
|
|
49
|
+
6,63,3
|
|
50
|
+
5,52,5
|
|
51
|
+
9,253,4
|
|
52
|
+
7,2268,2
|
|
53
|
+
6,70,3.5
|
|
54
|
+
5,89,3
|
|
55
|
+
9,265,3
|
|
56
|
+
7,2302,3.5
|
|
57
|
+
6,72,3
|
|
58
|
+
5,105,5
|
|
59
|
+
9,300,3
|
|
60
|
+
7,2406,3.5
|
|
61
|
+
6,104,4
|
|
62
|
+
5,110,4
|
|
63
|
+
9,318,5
|
|
64
|
+
7,2599,3
|
|
65
|
+
6,111,4
|
|
66
|
+
5,111,5
|
|
67
|
+
9,407,4
|
|
68
|
+
7,3751,4
|
|
69
|
+
6,145,4
|
|
70
|
+
5,141,5
|
|
71
|
+
9,428,3
|
|
72
|
+
7,3801,4.5
|
|
73
|
+
6,153,3
|
|
74
|
+
5,150,4
|
|
75
|
+
9,434,3
|
|
76
|
+
7,4034,4.5
|
|
77
|
+
6,165,3.5
|
|
78
|
+
5,151,4
|
|
79
|
+
9,481,4
|
|
80
|
+
7,5008,4
|
|
81
|
+
6,215,5
|
|
82
|
+
5,161,4
|
|
83
|
+
9,482,4
|
|
84
|
+
7,5060,4
|
|
85
|
+
6,223,4
|
|
86
|
+
5,162,5
|
|
87
|
+
9,527,4
|
|
88
|
+
7,5637,4
|
|
89
|
+
6,231,3
|
|
90
|
+
5,171,5
|
|
91
|
+
9,555,4
|
|
92
|
+
7,6777,4.5
|
|
93
|
+
6,260,4
|
|
94
|
+
5,175,4
|
|
95
|
+
9,562,4
|
|
96
|
+
7,6787,4.5
|
|
97
|
+
6,293,5
|
|
98
|
+
5,180,4
|
|
99
|
+
9,593,5
|
|
100
|
+
4,32,4.5
|
|
101
|
+
6,316,2.5
|
|
102
|
+
5,194,5
|
|
103
|
+
9,608,4
|
|
104
|
+
4,163,3
|
|
105
|
+
6,318,5
|
|
106
|
+
5,223,5
|
|
107
|
+
9,671,1
|
|
108
|
+
4,172,3
|
|
109
|
+
6,344,2.5
|
|
110
|
+
5,225,3
|
|
111
|
+
9,780,3
|
|
112
|
+
4,315,3
|
|
113
|
+
6,353,4
|
|
114
|
+
5,231,2
|
|
115
|
+
9,785,3
|
|
116
|
+
4,318,5
|
|
117
|
+
6,356,4
|
|
118
|
+
5,235,4
|
|
119
|
+
9,898,5
|
|
120
|
+
4,370,3
|
|
121
|
+
6,364,3
|
|
122
|
+
5,253,5
|
|
123
|
+
9,902,3
|
|
124
|
+
4,435,2
|
|
125
|
+
6,367,2.5
|
|
126
|
+
5,260,3
|
|
127
|
+
9,903,4
|
|
128
|
+
4,555,4
|
|
129
|
+
6,368,4
|
|
130
|
+
5,265,4
|
|
131
|
+
9,904,5
|
|
132
|
+
4,805,4
|
|
133
|
+
6,377,3.5
|
|
134
|
+
5,272,4
|
|
135
|
+
9,908,5
|
|
136
|
+
4,1242,5
|
|
137
|
+
6,380,3.5
|
|
138
|
+
5,282,4
|
|
139
|
+
9,915,5
|
|
140
|
+
4,1252,5
|
|
141
|
+
6,413,3.5
|
|
142
|
+
5,296,5
|
|
143
|
+
9,923,4
|
|
144
|
+
4,1278,3.5
|
|
145
|
+
6,420,3.5
|
|
146
|
+
5,299,3
|
|
147
|
+
9,930,5
|
|
148
|
+
4,1302,5
|
|
149
|
+
6,434,3
|
|
150
|
+
5,300,5
|
|
151
|
+
9,932,5
|
|
152
|
+
4,1500,3.5
|
|
153
|
+
6,442,4
|
|
154
|
+
5,318,5
|
|
155
|
+
9,948,3
|
|
156
|
+
4,1639,4
|
|
157
|
+
6,454,3.5
|
|
158
|
+
5,321,5
|
|
159
|
+
9,949,4
|
|
160
|
+
4,2353,4
|
|
161
|
+
6,466,3
|
|
162
|
+
5,322,4
|
|
163
|
+
9,951,5
|
|
164
|
+
4,2572,3.5
|
|
165
|
+
6,480,3.5
|
|
166
|
+
5,337,4
|
|
167
|
+
9,956,4
|
|
168
|
+
4,2699,4
|
|
169
|
+
6,500,3
|
|
170
|
+
5,345,5
|
|
171
|
+
9,1010,5
|
|
172
|
+
4,2890,4.5
|
|
173
|
+
6,520,2.5
|
|
174
|
+
5,349,4
|
|
175
|
+
9,1013,4
|
|
176
|
+
4,3101,4
|
|
177
|
+
6,553,3.5
|
|
178
|
+
5,353,4
|
|
179
|
+
9,1041,4
|
|
180
|
+
4,3112,4
|
|
181
|
+
6,586,3.5
|
|
182
|
+
5,356,2
|
|
183
|
+
9,1090,5
|
|
184
|
+
4,8169,3
|
|
185
|
+
6,588,4
|
|
186
|
+
5,363,5
|
|
187
|
+
9,1093,4
|
|
188
|
+
4,8636,3
|
|
189
|
+
6,589,4
|
|
190
|
+
5,364,3
|
|
191
|
+
9,1103,3
|
|
192
|
+
4,69757,3.5
|
|
193
|
+
6,592,4
|
|
194
|
+
5,367,4
|
|
195
|
+
9,1104,5
|
|
196
|
+
6,595,3
|
|
197
|
+
5,373,5
|
|
198
|
+
9,1179,4
|
|
199
|
+
6,608,3
|
|
200
|
+
5,377,4
|
|
201
|
+
9,1201,4
|
|
202
|
+
6,628,4
|
|
203
|
+
5,380,3
|
|
204
|
+
9,1203,4
|
|
205
|
+
6,648,4
|
|
206
|
+
5,428,4
|
|
207
|
+
9,1213,5
|
|
208
|
+
6,733,5
|
|
209
|
+
5,431,4
|
|
210
|
+
9,1215,3
|
|
211
|
+
6,736,3
|
|
212
|
+
5,441,4
|
|
213
|
+
9,1219,4
|
|
214
|
+
6,750,4
|
|
215
|
+
5,446,4
|
|
216
|
+
9,1265,4
|
|
217
|
+
6,778,4
|
|
218
|
+
5,457,3
|
|
219
|
+
9,1269,5
|
|
220
|
+
6,780,5
|
|
221
|
+
5,471,5
|
|
222
|
+
9,1304,5
|
|
223
|
+
6,788,3
|
|
224
|
+
5,477,5
|
|
225
|
+
9,1334,4
|
|
226
|
+
6,832,3.5
|
|
227
|
+
5,480,4
|
|
228
|
+
9,1387,4
|
|
229
|
+
6,852,3.5
|
|
230
|
+
5,486,2
|
|
231
|
+
9,1513,2
|
|
232
|
+
6,858,4
|
|
233
|
+
5,488,5
|
|
234
|
+
9,1580,3
|
|
235
|
+
6,953,5
|
|
236
|
+
5,491,4
|
|
237
|
+
9,1587,3
|
|
238
|
+
6,1036,4
|
|
239
|
+
5,508,5
|
|
240
|
+
9,1617,3
|
|
241
|
+
6,1059,5
|
|
242
|
+
5,509,5
|
|
243
|
+
9,1639,2
|
|
244
|
+
6,1060,4
|
|
245
|
+
5,515,4
|
|
246
|
+
9,1641,4
|
|
247
|
+
6,1073,4
|
|
248
|
+
5,527,5
|
|
249
|
+
9,1673,4
|
|
250
|
+
6,1097,3.5
|
|
251
|
+
5,532,4
|
|
252
|
+
9,1885,3
|
|
253
|
+
6,1101,4
|
|
254
|
+
5,538,5
|
|
255
|
+
9,1911,3
|
|
256
|
+
6,1148,4
|
|
257
|
+
5,539,3
|
|
258
|
+
9,1963,4
|
|
259
|
+
6,1196,5
|
|
260
|
+
5,541,5
|
|
261
|
+
9,2160,5
|
|
262
|
+
6,1202,3.5
|
|
263
|
+
5,551,4
|
|
264
|
+
9,2176,5
|
|
265
|
+
6,1210,5
|
|
266
|
+
5,553,3
|
|
267
|
+
9,2188,3
|
|
268
|
+
6,1213,4.5
|
|
269
|
+
5,581,5
|
|
270
|
+
9,2321,2
|
|
271
|
+
6,1221,4
|
|
272
|
+
5,585,3
|
|
273
|
+
9,2336,4
|
|
274
|
+
6,1234,5
|
|
275
|
+
5,588,4
|
|
276
|
+
9,2340,2
|
|
277
|
+
6,1240,4
|
|
278
|
+
5,589,4
|
|
279
|
+
9,2355,3
|
|
280
|
+
6,1246,4
|
|
281
|
+
5,590,4
|
|
282
|
+
9,2395,4
|
|
283
|
+
6,1247,4.5
|
|
284
|
+
5,592,4
|
|
285
|
+
9,2413,2
|
|
286
|
+
6,1259,4
|
|
287
|
+
5,593,5
|
|
288
|
+
9,2490,3
|
|
289
|
+
6,1265,5
|
|
290
|
+
5,594,5
|
|
291
|
+
9,2502,3
|
|
292
|
+
6,1270,4
|
|
293
|
+
5,595,3
|
|
294
|
+
9,2541,3
|
|
295
|
+
6,1288,4
|
|
296
|
+
5,596,3
|
|
297
|
+
9,2546,2
|
|
298
|
+
6,1291,3.5
|
|
299
|
+
5,597,3
|
|
300
|
+
9,2550,4
|
|
301
|
+
6,1370,3.5
|
|
302
|
+
5,599,3
|
|
303
|
+
9,2572,4
|
|
304
|
+
6,1377,3.5
|
|
305
|
+
5,608,5
|
|
306
|
+
9,2581,3
|
|
307
|
+
6,1380,3.5
|
|
308
|
+
5,610,4
|
|
309
|
+
9,2598,3
|
|
310
|
+
6,1391,3
|
|
311
|
+
5,628,4
|
|
312
|
+
9,2599,4
|
|
313
|
+
6,1485,3
|
|
314
|
+
5,648,4
|
|
315
|
+
9,2605,3
|
|
316
|
+
6,1527,3.5
|
|
317
|
+
5,663,4
|
|
318
|
+
9,2676,1
|
|
319
|
+
6,1552,4
|
|
320
|
+
5,671,4
|
|
321
|
+
9,2683,2
|
|
322
|
+
6,1573,4
|
|
323
|
+
5,708,4
|
|
324
|
+
9,2686,5
|
|
325
|
+
6,1580,3
|
|
326
|
+
5,722,5
|
|
327
|
+
9,2694,2
|
|
328
|
+
6,1610,4
|
|
329
|
+
5,733,3
|
|
330
|
+
9,2699,3
|
|
331
|
+
6,1617,4
|
|
332
|
+
5,750,5
|
|
333
|
+
9,2702,3
|
|
334
|
+
6,1653,5
|
|
335
|
+
5,766,5
|
|
336
|
+
9,2706,5
|
|
337
|
+
6,1658,5
|
|
338
|
+
5,778,5
|
|
339
|
+
9,2707,4
|
|
340
|
+
6,1676,3.5
|
|
341
|
+
5,832,4
|
|
342
|
+
9,2710,4
|
|
343
|
+
6,1680,4
|
|
344
|
+
5,851,5
|
|
345
|
+
9,2712,2
|
|
346
|
+
6,1682,4
|
|
347
|
+
5,858,5
|
|
348
|
+
9,2718,4
|
|
349
|
+
6,1704,4
|
|
350
|
+
5,897,3
|
|
351
|
+
9,2719,3
|
|
352
|
+
6,1721,3.5
|
|
353
|
+
5,898,4
|
|
354
|
+
9,2723,4
|
|
355
|
+
6,1722,3.5
|
|
356
|
+
5,899,3
|
|
357
|
+
9,2724,1
|
|
358
|
+
6,1732,4.5
|
|
359
|
+
5,900,3
|
|
360
|
+
9,2729,5
|
|
361
|
+
6,1747,4
|
|
362
|
+
5,902,4
|
|
363
|
+
9,2734,2
|
|
364
|
+
6,1755,4
|
|
365
|
+
5,903,5
|
|
366
|
+
9,2759,3
|
|
367
|
+
6,1831,3.5
|
|
368
|
+
5,904,5
|
|
369
|
+
9,2762,4
|
|
370
|
+
6,1876,2.5
|
|
371
|
+
5,905,3
|
|
372
|
+
9,2763,2
|
|
373
|
+
6,1884,3.5
|
|
374
|
+
5,908,5
|
|
375
|
+
9,2770,3
|
|
376
|
+
6,1917,4
|
|
377
|
+
5,909,3
|
|
378
|
+
9,2771,2
|
|
379
|
+
6,1923,3.5
|
|
380
|
+
5,910,5
|
|
381
|
+
9,2772,3
|
|
382
|
+
6,1954,4.5
|
|
383
|
+
5,911,4
|
|
384
|
+
9,2805,2
|
|
385
|
+
6,1961,4
|
|
386
|
+
5,912,4
|
|
387
|
+
9,2826,4
|
|
388
|
+
6,2000,3.5
|
|
389
|
+
5,913,4
|
|
390
|
+
9,2827,3
|
|
391
|
+
6,2003,4
|
|
392
|
+
5,914,3
|
|
393
|
+
9,2840,3
|
|
394
|
+
6,2005,4.5
|
|
395
|
+
5,915,4
|
|
396
|
+
9,2858,3
|
|
397
|
+
6,2011,3.5
|
|
398
|
+
5,916,3
|
|
399
|
+
9,2861,3
|
|
400
|
+
6,2012,3.5
|
|
401
|
+
5,918,2
|
|
402
|
+
9,2870,4
|
|
403
|
+
6,2028,4
|
|
404
|
+
5,919,5
|
|
405
|
+
9,2881,3
|
|
406
|
+
6,2054,3
|
|
407
|
+
5,920,5
|
|
408
|
+
9,2906,2
|
|
409
|
+
6,2081,3
|
|
410
|
+
5,921,4
|
|
411
|
+
9,2947,4
|
|
412
|
+
6,2082,4
|
|
413
|
+
5,922,5
|
|
414
|
+
9,2949,4
|
|
415
|
+
6,2115,4
|
|
416
|
+
5,923,5
|
|
417
|
+
9,2961,3
|
|
418
|
+
6,2134,2.5
|
|
419
|
+
5,924,5
|
|
420
|
+
9,2993,4
|
|
421
|
+
6,2161,4
|
|
422
|
+
5,926,3
|
|
423
|
+
9,2995,2
|
|
424
|
+
6,2167,4
|
|
425
|
+
5,927,4
|
|
426
|
+
9,2997,5
|
|
427
|
+
6,2194,4
|
|
428
|
+
5,928,5
|
|
429
|
+
9,3005,3
|
|
430
|
+
6,2291,4
|
|
431
|
+
5,930,4
|
|
432
|
+
9,3016,5
|
|
433
|
+
6,2296,4.5
|
|
434
|
+
5,931,4
|
|
435
|
+
9,3074,5
|
|
436
|
+
6,2302,3.5
|
|
437
|
+
5,933,4
|
|
438
|
+
9,3079,2
|
|
439
|
+
6,2324,5
|
|
440
|
+
5,934,4
|
|
441
|
+
9,3081,3
|
|
442
|
+
6,2329,4
|
|
443
|
+
5,938,4
|
|
444
|
+
9,3113,3
|
|
445
|
+
6,2335,4
|
|
446
|
+
5,940,3
|
|
447
|
+
9,3146,4
|
|
448
|
+
6,2340,4
|
|
449
|
+
5,941,3
|
|
450
|
+
9,3168,5
|
|
451
|
+
6,2355,2.5
|
|
452
|
+
5,942,4
|
|
453
|
+
9,3203,3
|
|
454
|
+
6,2378,2.5
|
|
455
|
+
5,943,4
|
|
456
|
+
9,3219,4
|
|
457
|
+
6,2380,4
|
|
458
|
+
5,944,3
|
|
459
|
+
9,3238,3
|
|
460
|
+
6,2381,4
|
|
461
|
+
5,945,4
|
|
462
|
+
9,3263,2
|
|
463
|
+
6,2382,3.5
|
|
464
|
+
5,946,3
|
|
465
|
+
9,3296,3
|
|
466
|
+
6,2383,4
|
|
467
|
+
5,947,4
|
|
468
|
+
9,3501,3
|
|
469
|
+
6,2396,3.5
|
|
470
|
+
5,948,5
|
|
471
|
+
9,3565,3
|
|
472
|
+
6,2406,2.5
|
|
473
|
+
5,949,5
|
|
474
|
+
9,3578,5
|
|
475
|
+
6,2411,3.5
|
|
476
|
+
5,950,3
|
|
477
|
+
9,3623,4
|
|
478
|
+
6,2412,2
|
|
479
|
+
5,951,4
|
|
480
|
+
9,3633,4
|
|
481
|
+
6,2420,5
|
|
482
|
+
5,952,4
|
|
483
|
+
9,3635,4
|
|
484
|
+
6,2421,3.5
|
|
485
|
+
5,953,2
|
|
486
|
+
9,3638,4
|
|
487
|
+
6,2424,3.5
|
|
488
|
+
5,954,3
|
|
489
|
+
9,3752,4
|
|
490
|
+
6,2470,3.5
|
|
491
|
+
5,955,3
|
|
492
|
+
9,3769,5
|
|
493
|
+
6,2502,4
|
|
494
|
+
5,965,3
|
|
495
|
+
9,3809,4
|
|
496
|
+
6,2541,3.5
|
|
497
|
+
5,968,3
|
|
498
|
+
9,3835,4
|
|
499
|
+
6,2542,5
|
|
500
|
+
5,969,5
|
|
501
|
+
9,3844,4
|
|
502
|
+
6,2571,5
|
|
503
|
+
5,971,4
|
|
504
|
+
9,3846,4
|
|
505
|
+
6,2572,5
|
|
506
|
+
5,982,3
|
|
507
|
+
9,3869,4
|
|
508
|
+
6,2617,3
|
|
509
|
+
5,1012,3
|
|
510
|
+
9,4148,5
|
|
511
|
+
6,2628,3.5
|
|
512
|
+
5,1018,3
|
|
513
|
+
10,207,3.5
|
|
514
|
+
6,2671,3
|
|
515
|
+
5,1019,5
|
|
516
|
+
10,595,3.5
|
|
517
|
+
6,2683,3.5
|
|
518
|
+
5,1022,3
|
|
519
|
+
10,596,4
|
|
520
|
+
6,2699,3
|
|
521
|
+
5,1029,4
|
|
522
|
+
10,832,4
|
|
523
|
+
6,2700,4
|
|
524
|
+
5,1034,4
|
|
525
|
+
10,851,2
|
|
526
|
+
6,2706,4
|
|
527
|
+
5,1035,2
|
|
528
|
+
10,899,4.5
|
|
529
|
+
6,2716,4
|
|
530
|
+
5,1036,3
|
|
531
|
+
10,1092,3.5
|
|
532
|
+
6,2763,4
|
|
533
|
+
5,1044,4
|
|
534
|
+
10,1101,3
|
|
535
|
+
6,2797,4.5
|
|
536
|
+
5,1046,5
|
|
537
|
+
10,1263,4
|
|
538
|
+
6,2858,4.5
|
|
539
|
+
5,1059,4
|
|
540
|
+
10,1485,3
|
|
541
|
+
6,2916,4
|
|
542
|
+
5,1060,4
|
|
543
|
+
10,2054,4
|
|
544
|
+
6,2918,4.5
|
|
545
|
+
5,1073,3
|
|
546
|
+
10,2081,3
|
|
547
|
+
6,2959,5
|
|
548
|
+
5,1076,5
|
|
549
|
+
10,2096,3
|
|
550
|
+
6,2985,4
|
|
551
|
+
5,1077,4
|
|
552
|
+
10,2273,4
|
|
553
|
+
6,2987,4
|
|
554
|
+
5,1078,3
|
|
555
|
+
10,2687,3.5
|
|
556
|
+
6,3020,4.5
|
|
557
|
+
5,1079,5
|
|
558
|
+
10,3114,4
|
|
559
|
+
6,3039,4.5
|
|
560
|
+
5,1080,4
|
|
561
|
+
10,4310,3.5
|
|
562
|
+
6,3087,4.5
|
|
563
|
+
5,1081,4
|
|
564
|
+
10,5060,2
|
|
565
|
+
6,3114,4
|
|
566
|
+
5,1082,3
|
|
567
|
+
10,5377,3
|
|
568
|
+
6,3146,3.5
|
|
569
|
+
5,1083,4
|
|
570
|
+
10,5632,2
|
|
571
|
+
6,3147,3.5
|
|
572
|
+
5,1084,4
|
|
573
|
+
10,5952,4
|
|
574
|
+
6,3160,3.5
|
|
575
|
+
5,1086,4
|
|
576
|
+
6,3253,4
|
|
577
|
+
5,1089,5
|
|
578
|
+
6,3254,4
|
|
579
|
+
5,1090,3
|
|
580
|
+
6,3271,4.5
|
|
581
|
+
5,1093,5
|
|
582
|
+
6,3408,3
|
|
583
|
+
5,1094,4
|
|
584
|
+
6,3479,3
|
|
585
|
+
5,1095,4
|
|
586
|
+
6,3481,5
|
|
587
|
+
5,1096,4
|
|
588
|
+
6,3513,3.5
|
|
589
|
+
5,1097,3
|
|
590
|
+
6,3578,4.5
|
|
591
|
+
5,1099,3
|
|
592
|
+
6,3740,4
|
|
593
|
+
5,1101,2
|
|
594
|
+
6,3751,4
|
|
595
|
+
5,1103,5
|
|
596
|
+
6,3753,3.5
|
|
597
|
+
5,1104,5
|
|
598
|
+
6,3897,4.5
|
|
599
|
+
5,1120,5
|
|
600
|
+
6,3948,2.5
|
|
601
|
+
5,1124,4
|
|
602
|
+
6,3949,4
|
|
603
|
+
5,1128,3
|
|
604
|
+
6,3996,4
|
|
605
|
+
5,1129,4
|
|
606
|
+
6,4006,4.5
|
|
607
|
+
5,1130,3
|
|
608
|
+
6,4011,5
|
|
609
|
+
5,1132,4
|
|
610
|
+
6,4014,4
|
|
611
|
+
5,1136,5
|
|
612
|
+
6,4018,4
|
|
613
|
+
5,1161,4
|
|
614
|
+
6,4022,3.5
|
|
615
|
+
5,1162,4
|
|
616
|
+
6,4084,3
|
|
617
|
+
5,1171,5
|
|
618
|
+
6,4085,3.5
|
|
619
|
+
5,1172,3
|
|
620
|
+
6,4223,4
|
|
621
|
+
5,1175,5
|
|
622
|
+
6,4226,4.5
|
|
623
|
+
5,1179,4
|
|
624
|
+
6,4235,4
|
|
625
|
+
5,1186,4
|
|
626
|
+
6,4246,3.5
|
|
627
|
+
5,1187,3
|
|
628
|
+
6,4306,4
|
|
629
|
+
5,1189,5
|
|
630
|
+
6,4308,5
|
|
631
|
+
5,1190,3
|
|
632
|
+
6,4370,3.5
|
|
633
|
+
5,1191,4
|
|
634
|
+
6,4487,3.5
|
|
635
|
+
5,1192,5
|
|
636
|
+
6,4489,4
|
|
637
|
+
5,1193,4
|
|
638
|
+
6,4545,3.5
|
|
639
|
+
5,1196,3
|
|
640
|
+
6,4571,4
|
|
641
|
+
5,1197,3
|
|
642
|
+
6,4614,3.5
|
|
643
|
+
5,1198,4
|
|
644
|
+
6,4673,4
|
|
645
|
+
5,1199,5
|
|
646
|
+
6,4720,4
|
|
647
|
+
5,1200,4
|
|
648
|
+
6,4776,4
|
|
649
|
+
5,1201,3
|
|
650
|
+
6,4816,5
|
|
651
|
+
5,1203,4
|
|
652
|
+
6,4848,4
|
|
653
|
+
5,1204,5
|
|
654
|
+
6,4878,4
|
|
655
|
+
5,1206,5
|
|
656
|
+
6,4963,4.5
|
|
657
|
+
5,1207,5
|
|
658
|
+
6,4973,5
|
|
659
|
+
5,1208,5
|
|
660
|
+
6,4975,4
|
|
661
|
+
5,1209,3
|
|
662
|
+
6,4979,3.5
|
|
663
|
+
5,1210,3
|
|
664
|
+
6,4980,3
|
|
665
|
+
5,1212,4
|
|
666
|
+
6,4993,3.5
|
|
667
|
+
5,1213,5
|
|
668
|
+
6,4995,3.5
|
|
669
|
+
5,1214,5
|
|
670
|
+
6,5055,4
|
|
671
|
+
5,1217,5
|
|
672
|
+
6,5137,4.5
|
|
673
|
+
5,1219,5
|
|
674
|
+
6,5151,3.5
|
|
675
|
+
5,1220,4
|
|
676
|
+
6,5283,4
|
|
677
|
+
5,1222,5
|
|
678
|
+
6,5377,4
|
|
679
|
+
5,1225,4
|
|
680
|
+
6,5378,4
|
|
681
|
+
5,1226,4
|
|
682
|
+
6,5418,4
|
|
683
|
+
5,1227,4
|
|
684
|
+
6,5445,3.5
|
|
685
|
+
5,1228,4
|
|
686
|
+
6,5459,2.5
|
|
687
|
+
5,1230,5
|
|
688
|
+
6,5618,3.5
|
|
689
|
+
5,1231,3
|
|
690
|
+
6,5669,3.5
|
|
691
|
+
5,1233,3
|
|
692
|
+
6,5673,4
|
|
693
|
+
5,1234,3
|
|
694
|
+
6,5810,4.5
|
|
695
|
+
5,1235,4
|
|
696
|
+
6,5876,3.5
|
|
697
|
+
5,1238,4
|
|
698
|
+
6,5903,3
|
|
699
|
+
5,1240,4
|
|
700
|
+
6,5952,4
|
|
701
|
+
5,1244,5
|
|
702
|
+
6,5956,3.5
|
|
703
|
+
5,1246,5
|
|
704
|
+
6,5989,4
|
|
705
|
+
5,1247,4
|
|
706
|
+
6,6016,5
|
|
707
|
+
5,1249,5
|
|
708
|
+
6,6188,4.5
|
|
709
|
+
5,1250,4
|
|
710
|
+
6,6218,3.5
|
|
711
|
+
5,1251,3
|
|
712
|
+
6,6281,3.5
|
|
713
|
+
5,1252,4
|
|
714
|
+
6,6365,3.5
|
|
715
|
+
5,1253,5
|
|
716
|
+
6,6377,4
|
|
717
|
+
5,1254,5
|
|
718
|
+
6,6502,4
|
|
719
|
+
5,1256,5
|
|
720
|
+
6,6548,4
|
|
721
|
+
5,1258,5
|
|
722
|
+
6,6618,3.5
|
|
723
|
+
5,1259,4
|
|
724
|
+
6,6664,5
|
|
725
|
+
5,1262,3
|
|
726
|
+
6,6711,5
|
|
727
|
+
5,1263,4
|
|
728
|
+
6,6796,3.5
|
|
729
|
+
5,1264,5
|
|
730
|
+
6,6863,4
|
|
731
|
+
5,1265,3
|
|
732
|
+
6,6874,4
|
|
733
|
+
5,1266,5
|
|
734
|
+
6,6936,5
|
|
735
|
+
5,1267,5
|
|
736
|
+
6,6942,4.5
|
|
737
|
+
5,1268,4
|
|
738
|
+
6,7033,4
|
|
739
|
+
5,1269,4
|
|
740
|
+
6,7090,4
|
|
741
|
+
5,1270,3
|
|
742
|
+
6,7147,4
|
|
743
|
+
5,1271,4
|
|
744
|
+
6,7153,4
|
|
745
|
+
5,1272,5
|
|
746
|
+
6,7254,4
|
|
747
|
+
5,1274,5
|
|
748
|
+
6,7259,2
|
|
749
|
+
5,1275,4
|
|
750
|
+
6,7325,3.5
|
|
751
|
+
5,1276,3
|
|
752
|
+
6,7361,5
|
|
753
|
+
5,1278,5
|
|
754
|
+
6,7438,4
|
|
755
|
+
5,1279,4
|
|
756
|
+
6,7762,4
|
|
757
|
+
5,1282,4
|
|
758
|
+
6,7844,4.5
|
|
759
|
+
5,1283,3
|
|
760
|
+
6,7981,4.5
|
|
761
|
+
5,1285,4
|
|
762
|
+
6,8360,3.5
|
|
763
|
+
5,1286,4
|
|
764
|
+
6,8376,4
|
|
765
|
+
5,1287,4
|
|
766
|
+
6,8464,3.5
|
|
767
|
+
5,1288,4
|
|
768
|
+
6,8528,4.5
|
|
769
|
+
5,1291,3
|
|
770
|
+
6,8529,4
|
|
771
|
+
5,1292,4
|
|
772
|
+
6,8533,4
|
|
773
|
+
5,1293,5
|
|
774
|
+
6,8638,5
|
|
775
|
+
5,1295,5
|
|
776
|
+
6,8641,5
|
|
777
|
+
5,1296,4
|
|
778
|
+
6,8665,4
|
|
779
|
+
5,1297,3
|
|
780
|
+
6,8784,4.5
|
|
781
|
+
5,1298,5
|
|
782
|
+
6,8798,3.5
|
|
783
|
+
5,1299,5
|
|
784
|
+
6,8873,4
|
|
785
|
+
5,1302,3
|
|
786
|
+
6,8874,4
|
|
787
|
+
5,1303,4
|
|
788
|
+
6,8910,4.5
|
|
789
|
+
5,1304,3
|
|
790
|
+
6,8917,4
|
|
791
|
+
5,1305,4
|
|
792
|
+
6,8961,4
|
|
793
|
+
5,1307,3
|
|
794
|
+
6,8983,3.5
|
|
795
|
+
5,1321,5
|
|
796
|
+
6,25941,4
|
|
797
|
+
5,1329,2
|
|
798
|
+
6,26547,4.5
|
|
799
|
+
5,1332,3
|
|
800
|
+
6,26614,4.5
|
|
801
|
+
5,1333,5
|
|
802
|
+
6,26865,3.5
|
|
803
|
+
5,1340,5
|
|
804
|
+
6,27592,4
|
|
805
|
+
5,1343,5
|
|
806
|
+
6,27773,5
|
|
807
|
+
5,1345,4
|
|
808
|
+
6,27801,4.5
|
|
809
|
+
5,1346,4
|
|
810
|
+
6,27808,4
|
|
811
|
+
5,1347,3
|
|
812
|
+
6,27831,4.5
|
|
813
|
+
5,1348,3
|
|
814
|
+
6,30707,4
|
|
815
|
+
5,1350,4
|
|
816
|
+
6,30793,3
|
|
817
|
+
5,1355,3
|
|
818
|
+
6,30810,4.5
|
|
819
|
+
5,1356,3
|
|
820
|
+
6,31878,4
|
|
821
|
+
5,1358,5
|
|
822
|
+
6,33493,4
|
|
823
|
+
5,1370,2
|
|
824
|
+
6,33679,3.5
|
|
825
|
+
5,1372,3
|
|
826
|
+
6,33794,4.5
|
|
827
|
+
5,1374,4
|
|
828
|
+
6,34048,3.5
|
|
829
|
+
5,1378,3
|
|
830
|
+
6,34162,4
|
|
831
|
+
5,1380,3
|
|
832
|
+
6,35836,3.5
|
|
833
|
+
5,1387,4
|
|
834
|
+
6,35957,3
|
|
835
|
+
5,1391,4
|
|
836
|
+
6,38038,3.5
|
|
837
|
+
5,1393,4
|
|
838
|
+
6,38061,4.5
|
|
839
|
+
5,1394,5
|
|
840
|
+
6,40629,3.5
|
|
841
|
+
5,1396,4
|
|
842
|
+
6,42632,4.5
|
|
843
|
+
5,1401,4
|
|
844
|
+
6,44195,4
|
|
845
|
+
5,1405,4
|
|
846
|
+
6,44199,4.5
|
|
847
|
+
5,1408,5
|
|
848
|
+
6,44665,4
|
|
849
|
+
5,1419,4
|
|
850
|
+
6,45183,4.5
|
|
851
|
+
5,1449,4
|
|
852
|
+
6,45728,4
|
|
853
|
+
5,1466,4
|
|
854
|
+
6,46578,3.5
|
|
855
|
+
5,1480,4
|
|
856
|
+
6,46970,3.5
|
|
857
|
+
5,1517,5
|
|
858
|
+
6,46976,5
|
|
859
|
+
5,1580,2
|
|
860
|
+
6,47200,2
|
|
861
|
+
5,1584,5
|
|
862
|
+
6,47610,4
|
|
863
|
+
5,1587,2
|
|
864
|
+
6,48385,4
|
|
865
|
+
5,1589,2
|
|
866
|
+
6,48394,3.5
|
|
867
|
+
5,1594,3
|
|
868
|
+
6,48516,4
|
|
869
|
+
5,1610,4
|
|
870
|
+
6,48774,4.5
|
|
871
|
+
5,1611,5
|
|
872
|
+
6,48780,4
|
|
873
|
+
5,1613,4
|
|
874
|
+
6,49272,4.5
|
|
875
|
+
5,1617,4
|
|
876
|
+
6,51662,3.5
|
|
877
|
+
5,1625,4
|
|
878
|
+
6,51939,4
|
|
879
|
+
5,1627,4
|
|
880
|
+
6,52973,4
|
|
881
|
+
5,1639,5
|
|
882
|
+
6,53972,3.5
|
|
883
|
+
5,1641,5
|
|
884
|
+
6,53996,3
|
|
885
|
+
5,1645,4
|
|
886
|
+
6,54286,4.5
|
|
887
|
+
5,1653,5
|
|
888
|
+
6,54503,4
|
|
889
|
+
5,1663,4
|
|
890
|
+
6,54997,4.5
|
|
891
|
+
5,1673,4
|
|
892
|
+
6,55267,4
|
|
893
|
+
5,1674,4
|
|
894
|
+
6,55442,4
|
|
895
|
+
5,1678,4
|
|
896
|
+
6,56174,3.5
|
|
897
|
+
5,1682,4
|
|
898
|
+
6,56367,4
|
|
899
|
+
5,1690,4
|
|
900
|
+
6,56587,3.5
|
|
901
|
+
5,1694,5
|
|
902
|
+
6,56941,4
|
|
903
|
+
5,1699,4
|
|
904
|
+
6,58246,3
|
|
905
|
+
5,1701,4
|
|
906
|
+
6,58297,1.5
|
|
907
|
+
5,1704,5
|
|
908
|
+
6,58334,4
|
|
909
|
+
5,1711,5
|
|
910
|
+
6,58559,4.5
|
|
911
|
+
5,1727,5
|
|
912
|
+
6,59315,4
|
|
913
|
+
5,1729,5
|
|
914
|
+
6,59369,5
|
|
915
|
+
5,1732,4
|
|
916
|
+
6,59784,4
|
|
917
|
+
5,1747,4
|
|
918
|
+
6,59900,2.5
|
|
919
|
+
5,1784,4
|
|
920
|
+
6,60069,4
|
|
921
|
+
5,1805,2
|
|
922
|
+
6,61132,3.5
|
|
923
|
+
5,1883,4
|
|
924
|
+
6,62511,3
|
|
925
|
+
5,1884,3
|
|
926
|
+
6,63082,4
|
|
927
|
+
5,1885,4
|
|
928
|
+
6,63113,4
|
|
929
|
+
5,1909,4
|
|
930
|
+
6,63859,4
|
|
931
|
+
5,1913,3
|
|
932
|
+
6,64285,3
|
|
933
|
+
5,1921,2
|
|
934
|
+
6,64499,4
|
|
935
|
+
5,1923,5
|
|
936
|
+
6,64614,4
|
|
937
|
+
5,1924,4
|
|
938
|
+
6,64839,4
|
|
939
|
+
5,1925,4
|
|
940
|
+
6,65514,5
|
|
941
|
+
5,1927,3
|
|
942
|
+
6,65810,3
|
|
943
|
+
5,1935,4
|
|
944
|
+
6,66509,4.5
|
|
945
|
+
5,1936,5
|
|
946
|
+
6,66665,4.5
|
|
947
|
+
5,1937,3
|
|
948
|
+
6,67255,3.5
|
|
949
|
+
5,1939,4
|
|
950
|
+
6,68237,4.5
|
|
951
|
+
5,1942,4
|
|
952
|
+
6,68319,3.5
|
|
953
|
+
5,1944,4
|
|
954
|
+
6,69122,4
|
|
955
|
+
5,1945,4
|
|
956
|
+
6,69757,4.5
|
|
957
|
+
5,1946,4
|
|
958
|
+
6,69951,4
|
|
959
|
+
5,1947,5
|
|
960
|
+
6,70286,4
|
|
961
|
+
5,1948,3
|
|
962
|
+
6,71254,3
|
|
963
|
+
5,1949,4
|
|
964
|
+
6,71520,3.5
|
|
965
|
+
5,1950,4
|
|
966
|
+
6,71535,4.5
|
|
967
|
+
5,1952,3
|
|
968
|
+
6,71899,4.5
|
|
969
|
+
5,1953,4
|
|
970
|
+
6,72011,4
|
|
971
|
+
5,1954,2
|
|
972
|
+
6,73266,4
|
|
973
|
+
5,1955,4
|
|
974
|
+
6,73323,3.5
|
|
975
|
+
5,1956,4
|
|
976
|
+
6,74510,4
|
|
977
|
+
5,1957,4
|
|
978
|
+
6,76093,4
|
|
979
|
+
5,1959,5
|
|
980
|
+
6,76251,4.5
|
|
981
|
+
5,1961,3
|
|
982
|
+
6,77800,4
|
|
983
|
+
5,1962,4
|
|
984
|
+
6,78499,4
|
|
985
|
+
5,1963,3
|
|
986
|
+
6,79132,5
|
|
987
|
+
5,1964,3
|
|
988
|
+
6,79134,3.5
|
|
989
|
+
5,1965,5
|
|
990
|
+
6,79553,3.5
|
|
991
|
+
5,1967,4
|
|
992
|
+
6,79695,1
|
|
993
|
+
5,1968,2
|
|
994
|
+
6,79702,4
|
|
995
|
+
5,1982,1
|
|
996
|
+
6,80463,4
|
|
997
|
+
5,1994,4
|
|
998
|
+
6,80693,3.5
|
|
999
|
+
5,1997,4
|
|
1000
|
+
6,81591,3.5
|
|
1001
|
+
5,2000,2
|
|
1002
|
+
6,81932,4
|
|
1003
|
+
5,2001,3
|
|
1004
|
+
6,82093,3.5
|
|
1005
|
+
5,2009,3
|
|
1006
|
+
6,84152,3.5
|
|
1007
|
+
5,2010,4
|
|
1008
|
+
6,84601,3.5
|
|
1009
|
+
5,2011,3
|
|
1010
|
+
6,84772,4
|
|
1011
|
+
5,2017,3
|
|
1012
|
+
6,85401,3.5
|
|
1013
|
+
5,2018,3
|
|
1014
|
+
6,85414,4
|
|
1015
|
+
5,2020,5
|
|
1016
|
+
6,86190,4
|
|
1017
|
+
5,2022,4
|
|
1018
|
+
6,86332,4
|
|
1019
|
+
5,2023,5
|
|
1020
|
+
6,86882,4.5
|
|
1021
|
+
5,2028,5
|
|
1022
|
+
6,87192,4.5
|
|
1023
|
+
5,2046,3
|
|
1024
|
+
6,87222,4
|
|
1025
|
+
5,2064,5
|
|
1026
|
+
6,87232,4
|
|
1027
|
+
5,2065,3
|
|
1028
|
+
6,87306,3.5
|
|
1029
|
+
5,2067,4
|
|
1030
|
+
6,88129,3.5
|
|
1031
|
+
5,2068,4
|
|
1032
|
+
6,88810,4
|
|
1033
|
+
5,2070,4
|
|
1034
|
+
6,89305,3.5
|
|
1035
|
+
5,2076,5
|
|
1036
|
+
6,89492,4
|
|
1037
|
+
5,2078,2
|
|
1038
|
+
6,89745,4
|
|
1039
|
+
5,2085,3
|
|
1040
|
+
6,89753,4
|
|
1041
|
+
5,2094,3
|
|
1042
|
+
6,89774,5
|
|
1043
|
+
5,2096,4
|
|
1044
|
+
6,89864,4.5
|
|
1045
|
+
5,2097,3
|
|
1046
|
+
6,90405,3.5
|
|
1047
|
+
5,2100,4
|
|
1048
|
+
6,90866,4
|
|
1049
|
+
5,2102,5
|
|
1050
|
+
6,91529,4.5
|
|
1051
|
+
5,2105,4
|
|
1052
|
+
6,91630,4
|
|
1053
|
+
5,2108,4
|
|
1054
|
+
6,91653,3.5
|
|
1055
|
+
5,2109,3
|
|
1056
|
+
6,92393,4
|
|
1057
|
+
5,2110,3
|
|
1058
|
+
6,93510,4
|
|
1059
|
+
5,2112,5
|
|
1060
|
+
6,94864,3
|
|
1061
|
+
5,2114,4
|
|
1062
|
+
6,95441,3.5
|
|
1063
|
+
5,2115,4
|
|
1064
|
+
6,95873,4
|
|
1065
|
+
5,2117,3
|
|
1066
|
+
6,96079,4
|
|
1067
|
+
5,2124,4
|
|
1068
|
+
6,96610,4
|
|
1069
|
+
5,2130,5
|
|
1070
|
+
6,96693,2.5
|
|
1071
|
+
5,2132,4
|
|
1072
|
+
6,96728,1
|
|
1073
|
+
5,2133,3
|
|
1074
|
+
6,96737,3.5
|
|
1075
|
+
5,2138,3
|
|
1076
|
+
6,96811,3
|
|
1077
|
+
5,2143,3
|
|
1078
|
+
6,96821,4.5
|
|
1079
|
+
5,2145,3
|
|
1080
|
+
6,96861,3.5
|
|
1081
|
+
5,2150,3
|
|
1082
|
+
6,97304,4
|
|
1083
|
+
5,2155,4
|
|
1084
|
+
6,97913,4
|
|
1085
|
+
5,2160,5
|
|
1086
|
+
6,97921,4
|
|
1087
|
+
5,2161,3
|
|
1088
|
+
6,97938,4
|
|
1089
|
+
5,2165,4
|
|
1090
|
+
6,98809,3
|
|
1091
|
+
5,2174,3
|
|
1092
|
+
6,99149,3
|
|
1093
|
+
5,2176,5
|
|
1094
|
+
6,99728,3.5
|
|
1095
|
+
5,2178,4
|
|
1096
|
+
6,99813,3.5
|
|
1097
|
+
5,2180,3
|
|
1098
|
+
6,100714,3.5
|
|
1099
|
+
5,2181,4
|
|
1100
|
+
6,102445,4
|
|
1101
|
+
5,2183,5
|
|
1102
|
+
6,102819,4
|
|
1103
|
+
5,2184,4
|
|
1104
|
+
6,103042,4
|
|
1105
|
+
5,2194,3
|
|
1106
|
+
6,103141,4
|
|
1107
|
+
5,2202,3
|
|
1108
|
+
6,103606,3.5
|
|
1109
|
+
5,2212,5
|
|
1110
|
+
6,104841,4
|
|
1111
|
+
5,2231,4
|
|
1112
|
+
6,106920,4.5
|
|
1113
|
+
5,2240,4
|
|
1114
|
+
6,108932,4
|
|
1115
|
+
5,2242,3
|
|
1116
|
+
6,109487,4.5
|
|
1117
|
+
5,2243,3
|
|
1118
|
+
6,111360,3.5
|
|
1119
|
+
5,2245,3
|
|
1120
|
+
6,111362,3.5
|
|
1121
|
+
5,2247,4
|
|
1122
|
+
6,111759,4
|
|
1123
|
+
5,2261,3
|
|
1124
|
+
6,111815,4
|
|
1125
|
+
5,2268,4
|
|
1126
|
+
6,112290,4.5
|
|
1127
|
+
5,2271,3
|
|
1128
|
+
6,112623,4
|
|
1129
|
+
5,2273,3
|
|
1130
|
+
6,112852,4
|
|
1131
|
+
5,2278,4
|
|
1132
|
+
6,115617,4
|
|
1133
|
+
5,2280,5
|
|
1134
|
+
6,122892,3
|
|
1135
|
+
5,2282,4
|
|
1136
|
+
5,2287,4
|
|
1137
|
+
5,2288,4
|
|
1138
|
+
5,2289,5
|
|
1139
|
+
5,2291,2
|
|
1140
|
+
5,2294,4
|
|
1141
|
+
5,2300,5
|
|
1142
|
+
5,2301,4
|
|
1143
|
+
5,2302,3
|
|
1144
|
+
5,2303,5
|
|
1145
|
+
5,2313,4
|
|
1146
|
+
5,2320,3
|
|
1147
|
+
5,2321,3
|
|
1148
|
+
5,2329,5
|
|
1149
|
+
5,2331,4
|
|
1150
|
+
5,2333,5
|
|
1151
|
+
5,2336,5
|
|
1152
|
+
5,2337,4
|
|
1153
|
+
5,2344,4
|
|
1154
|
+
5,2345,4
|
|
1155
|
+
5,2348,4
|
|
1156
|
+
5,2349,4
|
|
1157
|
+
5,2352,4
|
|
1158
|
+
5,2353,4
|
|
1159
|
+
5,2355,4
|
|
1160
|
+
5,2359,4
|
|
1161
|
+
5,2361,5
|
|
1162
|
+
5,2362,4
|
|
1163
|
+
5,2366,3
|
|
1164
|
+
5,2370,4
|
|
1165
|
+
5,2371,2
|
|
1166
|
+
5,2372,2
|
|
1167
|
+
5,2378,2
|
|
1168
|
+
5,2395,4
|
|
1169
|
+
5,2396,4
|
|
1170
|
+
5,2398,3
|
|
1171
|
+
5,2401,3
|
|
1172
|
+
5,2406,3
|
|
1173
|
+
5,2414,2
|
|
1174
|
+
5,2437,5
|
|
1175
|
+
5,2454,5
|
|
1176
|
+
5,2455,3
|
|
1177
|
+
5,2463,4
|
|
1178
|
+
5,2467,4
|
|
1179
|
+
5,2469,4
|
|
1180
|
+
5,2495,4
|
|
1181
|
+
5,2496,5
|
|
1182
|
+
5,2501,5
|
|
1183
|
+
5,2502,5
|
|
1184
|
+
5,2504,4
|
|
1185
|
+
5,2518,4
|
|
1186
|
+
5,2519,4
|
|
1187
|
+
5,2527,4
|
|
1188
|
+
5,2528,4
|
|
1189
|
+
5,2529,3
|
|
1190
|
+
5,2541,4
|
|
1191
|
+
5,2542,5
|
|
1192
|
+
5,2550,5
|
|
1193
|
+
5,2551,4
|
|
1194
|
+
5,2553,3
|
|
1195
|
+
5,2565,4
|
|
1196
|
+
5,2571,5
|
|
1197
|
+
5,2580,3
|
|
1198
|
+
5,2583,4
|
|
1199
|
+
5,2596,3
|
|
1200
|
+
5,2613,3
|
|
1201
|
+
5,2633,3
|
|
1202
|
+
5,2637,4
|
|
1203
|
+
5,2648,5
|
|
1204
|
+
5,2649,4
|
|
1205
|
+
5,2654,3
|
|
1206
|
+
5,2657,5
|
|
1207
|
+
5,2659,5
|
|
1208
|
+
5,2661,5
|
|
1209
|
+
5,2662,4
|
|
1210
|
+
5,2664,4
|
|
1211
|
+
5,2671,4
|
|
1212
|
+
5,2677,4
|
|
1213
|
+
5,2689,4
|
|
1214
|
+
5,2693,4
|
|
1215
|
+
5,2706,1
|
|
1216
|
+
5,2707,4
|
|
1217
|
+
5,2710,4
|
|
1218
|
+
5,2712,3
|
|
1219
|
+
5,2716,4
|
|
1220
|
+
5,2728,4
|
|
1221
|
+
5,2729,4
|
|
1222
|
+
5,2730,4
|
|
1223
|
+
5,2734,4
|
|
1224
|
+
5,2739,5
|
|
1225
|
+
5,2747,2
|
|
1226
|
+
5,2759,4
|
|
1227
|
+
5,2762,5
|
|
1228
|
+
5,2763,5
|
|
1229
|
+
5,2764,4
|
|
1230
|
+
5,2779,4
|
|
1231
|
+
5,2780,2
|
|
1232
|
+
5,2781,4
|
|
1233
|
+
5,2782,3
|
|
1234
|
+
5,2784,2
|
|
1235
|
+
5,2788,4
|
|
1236
|
+
5,2791,3
|
|
1237
|
+
5,2792,2
|
|
1238
|
+
5,2797,4
|
|
1239
|
+
5,2804,4
|
|
1240
|
+
5,2819,3
|
|
1241
|
+
5,2829,5
|
|
1242
|
+
5,2841,3
|
|
1243
|
+
5,2858,5
|
|
1244
|
+
5,2859,5
|
|
1245
|
+
5,2863,5
|
|
1246
|
+
5,2867,4
|
|
1247
|
+
5,2871,4
|
|
1248
|
+
5,2872,3
|
|
1249
|
+
5,2890,5
|
|
1250
|
+
5,2899,4
|
|
1251
|
+
5,2901,2
|
|
1252
|
+
5,2904,4
|
|
1253
|
+
5,2908,5
|
|
1254
|
+
5,2912,4
|
|
1255
|
+
5,2915,3
|
|
1256
|
+
5,2916,4
|
|
1257
|
+
5,2917,4
|
|
1258
|
+
5,2918,3
|
|
1259
|
+
5,2919,4
|
|
1260
|
+
5,2921,3
|
|
1261
|
+
5,2922,3
|
|
1262
|
+
5,2926,5
|
|
1263
|
+
5,2932,3
|
|
1264
|
+
5,2940,4
|
|
1265
|
+
5,2941,3
|
|
1266
|
+
5,2944,3
|
|
1267
|
+
5,2946,5
|
|
1268
|
+
5,2947,3
|
|
1269
|
+
5,2948,3
|
|
1270
|
+
5,2949,3
|
|
1271
|
+
5,2951,3
|
|
1272
|
+
5,2959,5
|
|
1273
|
+
5,2967,5
|
|
1274
|
+
5,2968,3
|
|
1275
|
+
5,2970,5
|
|
1276
|
+
5,2971,5
|
|
1277
|
+
5,2973,3
|
|
1278
|
+
5,2983,3
|
|
1279
|
+
5,2985,2
|
|
1280
|
+
5,2987,3
|
|
1281
|
+
5,2988,4
|
|
1282
|
+
5,2993,3
|
|
1283
|
+
5,2997,5
|
|
1284
|
+
5,3006,4
|
|
1285
|
+
5,3007,5
|
|
1286
|
+
5,3011,4
|
|
1287
|
+
5,3016,2
|
|
1288
|
+
5,3018,2
|
|
1289
|
+
5,3019,5
|
|
1290
|
+
5,3022,3
|
|
1291
|
+
5,3028,4
|
|
1292
|
+
5,3035,3
|
|
1293
|
+
5,3037,4
|
|
1294
|
+
5,3039,3
|
|
1295
|
+
5,3040,3
|
|
1296
|
+
5,3044,2
|
|
1297
|
+
5,3046,4
|
|
1298
|
+
5,3049,3
|
|
1299
|
+
5,3052,4
|
|
1300
|
+
5,3060,4
|
|
1301
|
+
5,3061,3
|
|
1302
|
+
5,3066,3
|
|
1303
|
+
5,3068,4
|
|
1304
|
+
5,3072,5
|
|
1305
|
+
5,3073,4
|
|
1306
|
+
5,3074,3
|
|
1307
|
+
5,3079,4
|
|
1308
|
+
5,3088,4
|
|
1309
|
+
5,3093,2
|
|
1310
|
+
5,3094,5
|
|
1311
|
+
5,3095,3
|
|
1312
|
+
5,3096,3
|
|
1313
|
+
5,3098,4
|
|
1314
|
+
5,3099,4
|
|
1315
|
+
5,3100,4
|
|
1316
|
+
5,3101,4
|
|
1317
|
+
5,3102,4
|
|
1318
|
+
5,3104,4
|
|
1319
|
+
5,3105,4
|
|
1320
|
+
5,3107,2
|
|
1321
|
+
5,3108,4
|
|
1322
|
+
5,3111,3
|
|
1323
|
+
5,3133,4
|
|
1324
|
+
5,3134,4
|
|
1325
|
+
5,3135,3
|
|
1326
|
+
5,3148,4
|
|
1327
|
+
5,3152,4
|
|
1328
|
+
5,3153,3
|
|
1329
|
+
5,3157,3
|
|
1330
|
+
5,3159,5
|
|
1331
|
+
5,3160,5
|
|
1332
|
+
5,3168,4
|
|
1333
|
+
5,3169,4
|
|
1334
|
+
5,3172,4
|
|
1335
|
+
5,3174,1
|
|
1336
|
+
5,3175,4
|
|
1337
|
+
5,3176,5
|
|
1338
|
+
5,3182,5
|
|
1339
|
+
5,3194,2
|
|
1340
|
+
5,3196,3
|
|
1341
|
+
5,3197,4
|
|
1342
|
+
5,3198,2
|
|
1343
|
+
5,3200,3
|
|
1344
|
+
5,3201,5
|
|
1345
|
+
5,3203,4
|
|
1346
|
+
5,3204,3
|
|
1347
|
+
5,3210,5
|
|
1348
|
+
5,3244,3
|
|
1349
|
+
5,3252,4
|
|
1350
|
+
5,3253,5
|
|
1351
|
+
5,3255,4
|
|
1352
|
+
5,3256,4
|
|
1353
|
+
5,3260,5
|
|
1354
|
+
5,3262,4
|
|
1355
|
+
5,3266,5
|
|
1356
|
+
5,3274,3
|
|
1357
|
+
5,3281,5
|
|
1358
|
+
5,3282,5
|
|
1359
|
+
5,3284,4
|
|
1360
|
+
5,3296,3
|
|
1361
|
+
5,3307,3
|
|
1362
|
+
5,3330,3
|
|
1363
|
+
5,3334,4
|
|
1364
|
+
5,3342,3
|
|
1365
|
+
5,3350,4
|
|
1366
|
+
5,3358,5
|
|
1367
|
+
5,3359,4
|
|
1368
|
+
5,3361,3
|
|
1369
|
+
5,3362,4
|
|
1370
|
+
5,3363,5
|
|
1371
|
+
5,3379,5
|
|
1372
|
+
5,3384,3
|
|
1373
|
+
5,3386,4
|
|
1374
|
+
5,3404,4
|
|
1375
|
+
5,3408,5
|
|
1376
|
+
5,3417,3
|
|
1377
|
+
5,3418,4
|
|
1378
|
+
5,3420,4
|
|
1379
|
+
5,3424,3
|
|
1380
|
+
5,3435,3
|
|
1381
|
+
5,3447,3
|
|
1382
|
+
5,3448,4
|
|
1383
|
+
5,3451,5
|
|
1384
|
+
5,3461,4
|
|
1385
|
+
5,3462,3
|
|
1386
|
+
5,3467,3
|
|
1387
|
+
5,3468,4
|
|
1388
|
+
5,3469,4
|
|
1389
|
+
5,3471,5
|
|
1390
|
+
5,3475,4
|
|
1391
|
+
5,3476,4
|
|
1392
|
+
5,3478,4
|
|
1393
|
+
5,3494,3
|
|
1394
|
+
5,3498,4
|
|
1395
|
+
5,3499,5
|
|
1396
|
+
5,3504,5
|
|
1397
|
+
5,3505,4
|
|
1398
|
+
5,3507,4
|
|
1399
|
+
5,3508,3
|
|
1400
|
+
5,3516,5
|
|
1401
|
+
5,3521,4
|
|
1402
|
+
5,3524,4
|
|
1403
|
+
5,3526,4
|
|
1404
|
+
5,3527,4
|
|
1405
|
+
5,3535,4
|
|
1406
|
+
5,3543,3
|
|
1407
|
+
5,3544,1
|
|
1408
|
+
5,3545,4
|
|
1409
|
+
5,3546,5
|
|
1410
|
+
5,3547,5
|
|
1411
|
+
5,3548,5
|
|
1412
|
+
5,3549,2
|
|
1413
|
+
5,3550,4
|
|
1414
|
+
5,3551,4
|
|
1415
|
+
5,3552,4
|
|
1416
|
+
5,3556,4
|
|
1417
|
+
5,3576,4
|
|
1418
|
+
5,3578,4
|
|
1419
|
+
5,3604,5
|
|
1420
|
+
5,3606,3
|
|
1421
|
+
5,3608,5
|
|
1422
|
+
5,3629,3
|
|
1423
|
+
5,3634,3
|
|
1424
|
+
5,3635,3
|
|
1425
|
+
5,3639,3
|
|
1426
|
+
5,3649,4
|
|
1427
|
+
5,3654,3
|
|
1428
|
+
5,3668,3
|
|
1429
|
+
5,3671,5
|
|
1430
|
+
5,3675,4
|
|
1431
|
+
5,3676,2
|
|
1432
|
+
5,3678,3
|
|
1433
|
+
5,3679,4
|
|
1434
|
+
5,3681,3
|
|
1435
|
+
5,3683,5
|
|
1436
|
+
5,3684,3
|
|
1437
|
+
5,3685,5
|
|
1438
|
+
5,3686,4
|
|
1439
|
+
5,3698,4
|
|
1440
|
+
5,3699,4
|
|
1441
|
+
5,3700,4
|
|
1442
|
+
5,3701,3
|
|
1443
|
+
5,3702,4
|
|
1444
|
+
5,3703,5
|
|
1445
|
+
5,3706,4
|
|
1446
|
+
5,3712,4
|
|
1447
|
+
5,3718,4
|
|
1448
|
+
5,3724,3
|
|
1449
|
+
5,3727,4
|
|
1450
|
+
5,3730,5
|
|
1451
|
+
5,3732,3
|
|
1452
|
+
5,3733,3
|
|
1453
|
+
5,3734,3
|
|
1454
|
+
5,3735,4
|
|
1455
|
+
5,3736,4
|
|
1456
|
+
5,3738,4
|
|
1457
|
+
5,3740,4
|
|
1458
|
+
5,3741,4
|
|
1459
|
+
5,3742,4
|
|
1460
|
+
5,3751,3
|
|
1461
|
+
5,3755,3
|
|
1462
|
+
5,3760,3
|
|
1463
|
+
5,3763,3
|
|
1464
|
+
5,3769,3
|
|
1465
|
+
5,3788,4
|
|
1466
|
+
5,3793,5
|
|
1467
|
+
5,3794,5
|
|
1468
|
+
5,3809,4
|
|
1469
|
+
5,3810,4
|
|
1470
|
+
5,3811,3
|
|
1471
|
+
5,3812,3
|
|
1472
|
+
5,3814,3
|
|
1473
|
+
5,3836,2
|
|
1474
|
+
5,3844,4
|
|
1475
|
+
5,3864,1
|
|
1476
|
+
5,3868,3
|
|
1477
|
+
5,3871,3
|
|
1478
|
+
5,3872,5
|
|
1479
|
+
5,3873,4
|
|
1480
|
+
5,3880,3
|
|
1481
|
+
5,3893,5
|
|
1482
|
+
5,3897,5
|
|
1483
|
+
5,3911,4
|
|
1484
|
+
5,3913,4
|
|
1485
|
+
5,3917,2
|
|
1486
|
+
5,3922,2
|
|
1487
|
+
5,3924,2
|
|
1488
|
+
5,3927,3
|
|
1489
|
+
5,3928,3
|
|
1490
|
+
5,3929,4
|
|
1491
|
+
5,3930,4
|
|
1492
|
+
5,3932,4
|
|
1493
|
+
5,3948,4
|
|
1494
|
+
5,3949,3
|
|
1495
|
+
5,3952,4
|
|
1496
|
+
5,3959,4
|
|
1497
|
+
5,3984,3
|
|
1498
|
+
5,3993,5
|
|
1499
|
+
5,3996,5
|
|
1500
|
+
5,4000,3
|
|
1501
|
+
5,4002,4
|
|
1502
|
+
5,4005,3
|
|
1503
|
+
5,4007,3
|
|
1504
|
+
5,4009,3
|
|
1505
|
+
5,4011,5
|
|
1506
|
+
5,4014,4
|
|
1507
|
+
5,4017,4
|
|
1508
|
+
5,4019,3
|
|
1509
|
+
5,4021,5
|
|
1510
|
+
5,4022,4
|
|
1511
|
+
5,4025,3
|
|
1512
|
+
5,4027,5
|
|
1513
|
+
5,4029,4
|
|
1514
|
+
5,4034,5
|
|
1515
|
+
5,4037,4
|
|
1516
|
+
5,4066,4
|
|
1517
|
+
5,4085,3
|
|
1518
|
+
5,4086,3
|
|
1519
|
+
5,4103,4
|
|
1520
|
+
5,4116,5
|
|
1521
|
+
5,4117,5
|
|
1522
|
+
5,4178,4
|
|
1523
|
+
5,4185,2
|
|
1524
|
+
5,4186,4
|
|
1525
|
+
5,4187,3
|
|
1526
|
+
5,4189,3
|
|
1527
|
+
5,4190,4
|
|
1528
|
+
5,4191,3
|
|
1529
|
+
5,4195,2
|
|
1530
|
+
5,4205,3
|
|
1531
|
+
5,4210,4
|
|
1532
|
+
5,4211,5
|
|
1533
|
+
5,4212,3
|
|
1534
|
+
5,4216,5
|
|
1535
|
+
5,4218,4
|
|
1536
|
+
5,4226,5
|
|
1537
|
+
5,4239,5
|
|
1538
|
+
5,4254,1
|
|
1539
|
+
5,4262,5
|
|
1540
|
+
5,4276,5
|
|
1541
|
+
5,4277,3
|
|
1542
|
+
5,4278,5
|
|
1543
|
+
5,4279,4
|
|
1544
|
+
5,4280,4
|
|
1545
|
+
5,4282,4
|
|
1546
|
+
5,4291,4
|
|
1547
|
+
5,4292,3
|
|
1548
|
+
5,4294,3
|
|
1549
|
+
5,4304,5
|
|
1550
|
+
5,4306,4
|
|
1551
|
+
5,4308,5
|
|
1552
|
+
5,4321,4
|
|
1553
|
+
5,4326,3
|
|
1554
|
+
5,4329,3
|
|
1555
|
+
5,4332,4
|
|
1556
|
+
5,4333,3
|
|
1557
|
+
5,4349,3
|
|
1558
|
+
5,4351,2
|
|
1559
|
+
5,4356,3
|
|
1560
|
+
5,4357,4
|
|
1561
|
+
5,4359,3
|
|
1562
|
+
5,4360,3
|
|
1563
|
+
5,4361,4
|
|
1564
|
+
5,4369,4
|
|
1565
|
+
5,4370,4
|
|
1566
|
+
5,4401,2
|
|
1567
|
+
5,4406,3
|
|
1568
|
+
5,4407,4
|
|
1569
|
+
5,4410,3
|
|
1570
|
+
5,4427,4
|
|
1571
|
+
5,4428,5
|
|
1572
|
+
5,4443,3
|
|
1573
|
+
5,4464,4
|
|
1574
|
+
5,4465,4
|
|
1575
|
+
5,4467,4
|
|
1576
|
+
5,4489,4
|
|
1577
|
+
5,4499,3
|
|
1578
|
+
5,4506,4
|
|
1579
|
+
5,4508,4
|
|
1580
|
+
5,4515,4
|
|
1581
|
+
5,4522,4
|
|
1582
|
+
5,4529,4
|
|
1583
|
+
5,4537,4
|
|
1584
|
+
5,4552,2
|
|
1585
|
+
5,4555,5
|
|
1586
|
+
5,4557,3
|
|
1587
|
+
5,4571,4
|
|
1588
|
+
5,4588,1
|
|
1589
|
+
5,4641,5
|
|
1590
|
+
5,4642,5
|
|
1591
|
+
5,4660,4
|
|
1592
|
+
5,4661,4
|
|
1593
|
+
5,4681,3
|
|
1594
|
+
5,4690,3
|
|
1595
|
+
5,4703,4
|
|
1596
|
+
5,4705,5
|
|
1597
|
+
5,4708,4
|
|
1598
|
+
5,4710,3
|
|
1599
|
+
5,4713,5
|
|
1600
|
+
5,4734,5
|
|
1601
|
+
5,4769,4
|
|
1602
|
+
5,4783,4
|
|
1603
|
+
5,4787,4
|
|
1604
|
+
5,4789,4
|
|
1605
|
+
5,4795,3
|
|
1606
|
+
5,4799,5
|
|
1607
|
+
5,4800,4
|
|
1608
|
+
5,4801,4
|
|
1609
|
+
5,4802,4
|
|
1610
|
+
5,4803,4
|
|
1611
|
+
5,4804,3
|
|
1612
|
+
5,4809,5
|
|
1613
|
+
5,4811,4
|
|
1614
|
+
5,4813,4
|
|
1615
|
+
5,4816,4
|
|
1616
|
+
5,4835,5
|
|
1617
|
+
5,4841,3
|
|
1618
|
+
5,4848,4
|
|
1619
|
+
5,4855,4
|
|
1620
|
+
5,4857,3
|
|
1621
|
+
5,4886,3
|
|
1622
|
+
5,4896,3
|
|
1623
|
+
5,4917,4
|
|
1624
|
+
5,4932,4
|
|
1625
|
+
5,4956,4
|
|
1626
|
+
5,4958,4
|
|
1627
|
+
5,4966,4
|
|
1628
|
+
5,4979,5
|
|
1629
|
+
5,4981,4
|
|
1630
|
+
5,4984,3
|
|
1631
|
+
5,4993,4
|
|
1632
|
+
5,4995,4
|
|
1633
|
+
5,5007,4
|
|
1634
|
+
5,5010,5
|
|
1635
|
+
5,5013,5
|
|
1636
|
+
5,5015,5
|
|
1637
|
+
5,5016,2
|
|
1638
|
+
5,5049,3
|
|
1639
|
+
5,5054,4
|
|
1640
|
+
5,5055,4
|
|
1641
|
+
5,5060,3
|
|
1642
|
+
5,5062,4
|
|
1643
|
+
5,5065,4
|
|
1644
|
+
5,5099,2
|
|
1645
|
+
5,5101,4
|
|
1646
|
+
5,5120,4
|
|
1647
|
+
5,5123,4
|
|
1648
|
+
5,5158,4
|
|
1649
|
+
5,5179,3
|
|
1650
|
+
5,5184,4
|
|
1651
|
+
5,5187,3
|
|
1652
|
+
5,5190,3
|
|
1653
|
+
5,5231,4
|
|
1654
|
+
5,5232,4
|
|
1655
|
+
5,5233,4
|
|
1656
|
+
5,5249,4
|
|
1657
|
+
5,5265,4
|
|
1658
|
+
5,5299,5
|
|
1659
|
+
5,5339,3
|
|
1660
|
+
5,5367,5
|
|
1661
|
+
5,5372,2
|
|
1662
|
+
5,5383,3
|
|
1663
|
+
5,5384,3
|
|
1664
|
+
5,5385,3
|
|
1665
|
+
5,5392,4
|
|
1666
|
+
5,5434,4
|
|
1667
|
+
5,5493,3
|
|
1668
|
+
5,5497,3
|
|
1669
|
+
5,5500,3
|
|
1670
|
+
5,5540,4
|
|
1671
|
+
5,5544,4
|
|
1672
|
+
5,5548,5
|
|
1673
|
+
5,5568,2
|
|
1674
|
+
5,5588,2
|
|
1675
|
+
5,5630,3
|
|
1676
|
+
5,5638,1
|
|
1677
|
+
5,5642,4
|
|
1678
|
+
5,5646,4
|
|
1679
|
+
5,5650,2
|
|
1680
|
+
5,5689,4
|
|
1681
|
+
5,5693,2
|
|
1682
|
+
5,5696,4
|
|
1683
|
+
5,5705,2
|
|
1684
|
+
5,5707,4
|
|
1685
|
+
5,5732,4
|
|
1686
|
+
5,5745,4
|
|
1687
|
+
5,5747,3
|
|
1688
|
+
5,5772,5
|
|
1689
|
+
5,5777,3
|
|
1690
|
+
5,5780,3
|
|
1691
|
+
5,5801,4
|
|
1692
|
+
5,5802,3
|
|
1693
|
+
5,5816,4
|
|
1694
|
+
5,5826,3
|
|
1695
|
+
5,5836,4
|
|
1696
|
+
5,5847,4
|
|
1697
|
+
5,5853,4
|
|
1698
|
+
5,5862,3
|
|
1699
|
+
5,5868,2
|
|
1700
|
+
5,5899,4
|
|
1701
|
+
5,5902,5
|
|
1702
|
+
5,5911,5
|
|
1703
|
+
5,5933,4
|
|
1704
|
+
5,5938,4
|
|
1705
|
+
5,5940,4
|
|
1706
|
+
5,5983,4
|
|
1707
|
+
5,6001,4
|
|
1708
|
+
5,6184,3
|
|
1709
|
+
3,163,4.5
|
|
1710
|
+
3,172,2
|
|
1711
|
+
3,260,5
|
|
1712
|
+
3,370,4
|
|
1713
|
+
3,432,3
|
|
1714
|
+
3,466,3
|
|
1715
|
+
3,502,3.5
|
|
1716
|
+
3,832,3.5
|
|
1717
|
+
3,919,5
|
|
1718
|
+
3,1259,4
|
|
1719
|
+
3,1270,5
|
|
1720
|
+
3,1288,4.5
|
|
1721
|
+
3,1380,5
|
|
1722
|
+
3,1485,3
|
|
1723
|
+
3,2012,4
|
|
1724
|
+
3,2054,3
|
|
1725
|
+
3,2134,4.5
|
|
1726
|
+
3,2406,4
|
|
1727
|
+
3,2420,4
|
|
1728
|
+
3,2640,2.5
|
|
1729
|
+
3,2791,4
|
|
1730
|
+
3,3508,4
|
|
1731
|
+
3,3897,3.5
|
|
1732
|
+
3,4025,2.5
|
|
1733
|
+
3,4621,3
|
|
1734
|
+
3,6744,4
|
|
1735
|
+
3,7361,4
|
|
1736
|
+
3,8641,2
|
|
1737
|
+
3,8865,3.5
|
|
1738
|
+
1,1,5
|
|
1739
|
+
1,2,3
|
|
1740
|
+
1,10,3
|
|
1741
|
+
1,32,4
|
|
1742
|
+
1,34,4
|
|
1743
|
+
1,47,3
|
|
1744
|
+
1,50,4
|
|
1745
|
+
1,62,4
|
|
1746
|
+
1,150,4
|
|
1747
|
+
1,153,3
|
|
1748
|
+
1,160,3
|
|
1749
|
+
1,161,4
|
|
1750
|
+
1,165,4
|
|
1751
|
+
1,185,3
|
|
1752
|
+
1,208,3
|
|
1753
|
+
1,253,3
|
|
1754
|
+
1,265,5
|
|
1755
|
+
1,266,3
|
|
1756
|
+
1,288,5
|
|
1757
|
+
1,292,4
|
|
1758
|
+
1,296,5
|
|
1759
|
+
1,300,5
|
|
1760
|
+
1,316,3
|
|
1761
|
+
1,318,5
|
|
1762
|
+
1,329,4
|
|
1763
|
+
1,344,3
|
|
1764
|
+
1,349,4
|
|
1765
|
+
1,350,4
|
|
1766
|
+
1,356,5
|
|
1767
|
+
1,357,4
|
|
1768
|
+
1,364,4
|
|
1769
|
+
1,367,4
|
|
1770
|
+
1,377,3
|
|
1771
|
+
1,380,4
|
|
1772
|
+
1,434,3
|
|
1773
|
+
1,454,4
|
|
1774
|
+
1,457,4
|
|
1775
|
+
1,480,5
|
|
1776
|
+
1,500,3
|
|
1777
|
+
1,508,5
|
|
1778
|
+
1,509,4
|
|
1779
|
+
1,515,5
|
|
1780
|
+
1,539,3
|
|
1781
|
+
1,588,4
|
|
1782
|
+
1,589,3
|
|
1783
|
+
1,592,3
|
|
1784
|
+
1,597,4
|
|
1785
|
+
1,648,5
|
|
1786
|
+
8,1,3
|
|
1787
|
+
8,2,2.5
|
|
1788
|
+
8,6,3
|
|
1789
|
+
8,10,2.5
|
|
1790
|
+
8,16,4.5
|
|
1791
|
+
8,18,4
|
|
1792
|
+
8,19,2
|
|
1793
|
+
8,21,2.5
|
|
1794
|
+
8,24,3.5
|
|
1795
|
+
8,25,3.5
|
|
1796
|
+
8,29,4.5
|
|
1797
|
+
8,32,4
|
|
1798
|
+
8,34,2.5
|
|
1799
|
+
8,47,4.5
|
|
1800
|
+
8,50,4.5
|
|
1801
|
+
8,70,3.5
|
|
1802
|
+
8,110,3
|
|
1803
|
+
8,111,4.5
|
|
1804
|
+
8,153,2.5
|
|
1805
|
+
8,163,3.5
|
|
1806
|
+
8,165,4
|
|
1807
|
+
8,170,2
|
|
1808
|
+
8,172,4
|
|
1809
|
+
8,173,4
|
|
1810
|
+
8,208,4.5
|
|
1811
|
+
8,231,3
|
|
1812
|
+
8,235,3
|
|
1813
|
+
8,253,4
|
|
1814
|
+
8,256,1.5
|
|
1815
|
+
8,260,4
|
|
1816
|
+
8,261,2.5
|
|
1817
|
+
8,288,4.5
|
|
1818
|
+
8,292,3
|
|
1819
|
+
8,293,5
|
|
1820
|
+
8,296,4.5
|
|
1821
|
+
8,316,3
|
|
1822
|
+
8,318,4
|
|
1823
|
+
8,319,4
|
|
1824
|
+
8,327,3.5
|
|
1825
|
+
8,344,2.5
|
|
1826
|
+
8,345,2.5
|
|
1827
|
+
8,353,4.5
|
|
1828
|
+
8,356,4.5
|
|
1829
|
+
8,357,3
|
|
1830
|
+
8,364,2.5
|
|
1831
|
+
8,367,2.5
|
|
1832
|
+
8,368,3
|
|
1833
|
+
8,370,3.5
|
|
1834
|
+
8,377,3
|
|
1835
|
+
8,380,3
|
|
1836
|
+
8,413,3
|
|
1837
|
+
8,420,2
|
|
1838
|
+
8,428,4
|
|
1839
|
+
8,434,4
|
|
1840
|
+
8,435,2.5
|
|
1841
|
+
8,442,4
|
|
1842
|
+
8,455,2.5
|
|
1843
|
+
8,457,2.5
|
|
1844
|
+
8,466,3
|
|
1845
|
+
8,480,4
|
|
1846
|
+
8,485,2.5
|
|
1847
|
+
8,500,2
|
|
1848
|
+
8,509,4
|
|
1849
|
+
8,520,2
|
|
1850
|
+
8,527,4
|
|
1851
|
+
8,541,4
|
|
1852
|
+
8,551,4.5
|
|
1853
|
+
8,586,2
|
|
1854
|
+
8,589,4
|
|
1855
|
+
8,590,4.5
|
|
1856
|
+
8,592,4
|
|
1857
|
+
8,593,4.5
|
|
1858
|
+
8,597,3
|
|
1859
|
+
8,608,4
|
|
1860
|
+
8,610,2
|
|
1861
|
+
8,648,3.5
|
|
1862
|
+
8,733,3.5
|
|
1863
|
+
8,737,2.5
|
|
1864
|
+
8,741,4
|
|
1865
|
+
8,743,2.5
|
|
1866
|
+
8,750,4.5
|
|
1867
|
+
8,778,5
|
|
1868
|
+
8,780,3
|
|
1869
|
+
8,784,2
|
|
1870
|
+
8,786,3.5
|
|
1871
|
+
8,788,1.5
|
|
1872
|
+
8,832,3.5
|
|
1873
|
+
8,839,4
|
|
1874
|
+
8,858,4.5
|
|
1875
|
+
8,912,3.5
|
|
1876
|
+
8,923,3
|
|
1877
|
+
8,924,4
|
|
1878
|
+
8,1036,4
|
|
1879
|
+
8,1047,3.5
|
|
1880
|
+
8,1073,2.5
|
|
1881
|
+
8,1079,4.5
|
|
1882
|
+
8,1080,5
|
|
1883
|
+
8,1084,4.5
|
|
1884
|
+
8,1089,4.5
|
|
1885
|
+
8,1090,3
|
|
1886
|
+
8,1092,3
|
|
1887
|
+
8,1093,3
|
|
1888
|
+
8,1094,3.5
|
|
1889
|
+
8,1097,3
|
|
1890
|
+
8,1101,3
|
|
1891
|
+
8,1125,4.5
|
|
1892
|
+
8,1136,5
|
|
1893
|
+
8,1175,4.5
|
|
1894
|
+
8,1193,4.5
|
|
1895
|
+
8,1196,4
|
|
1896
|
+
8,1197,2
|
|
1897
|
+
8,1198,4
|
|
1898
|
+
8,1199,4.5
|
|
1899
|
+
8,1200,4.5
|
|
1900
|
+
8,1201,4
|
|
1901
|
+
8,1203,3.5
|
|
1902
|
+
8,1206,5
|
|
1903
|
+
8,1208,4
|
|
1904
|
+
8,1210,4
|
|
1905
|
+
8,1213,5
|
|
1906
|
+
8,1214,3.5
|
|
1907
|
+
8,1215,3.5
|
|
1908
|
+
8,1220,5
|
|
1909
|
+
8,1221,4.5
|
|
1910
|
+
8,1222,4.5
|
|
1911
|
+
8,1228,4.5
|
|
1912
|
+
8,1233,2.5
|
|
1913
|
+
8,1234,4
|
|
1914
|
+
8,1240,4.5
|
|
1915
|
+
8,1246,3
|
|
1916
|
+
8,1249,5
|
|
1917
|
+
8,1250,3.5
|
|
1918
|
+
8,1251,4
|
|
1919
|
+
8,1252,3.5
|
|
1920
|
+
8,1258,5
|
|
1921
|
+
8,1259,3
|
|
1922
|
+
8,1262,3.5
|
|
1923
|
+
8,1265,4
|
|
1924
|
+
8,1270,4
|
|
1925
|
+
8,1271,2.5
|
|
1926
|
+
8,1274,3.5
|
|
1927
|
+
8,1275,3
|
|
1928
|
+
8,1276,4.5
|
|
1929
|
+
8,1278,3.5
|
|
1930
|
+
8,1281,4
|
|
1931
|
+
8,1288,4
|
|
1932
|
+
8,1291,4
|
|
1933
|
+
8,1293,3
|
|
1934
|
+
8,1298,3.5
|
|
1935
|
+
8,1320,4.5
|
|
1936
|
+
8,1333,4
|
|
1937
|
+
8,1343,4.5
|
|
1938
|
+
8,1345,3.5
|
|
1939
|
+
8,1347,4
|
|
1940
|
+
8,1350,3
|
|
1941
|
+
8,1370,4
|
|
1942
|
+
8,1374,4.5
|
|
1943
|
+
8,1377,3.5
|
|
1944
|
+
8,1387,3
|
|
1945
|
+
8,1391,3.5
|
|
1946
|
+
8,1394,4
|
|
1947
|
+
8,1396,4.5
|
|
1948
|
+
8,1407,3
|
|
1949
|
+
8,1466,3
|
|
1950
|
+
8,1485,2.5
|
|
1951
|
+
8,1500,3.5
|
|
1952
|
+
8,1517,3
|
|
1953
|
+
8,1527,5
|
|
1954
|
+
8,1544,2
|
|
1955
|
+
8,1562,2
|
|
1956
|
+
8,1573,4
|
|
1957
|
+
8,1580,4
|
|
1958
|
+
8,1584,4
|
|
1959
|
+
8,1587,4.5
|
|
1960
|
+
8,1617,4
|
|
1961
|
+
8,1641,3.5
|
|
1962
|
+
8,1653,4.5
|
|
1963
|
+
8,1673,2.5
|
|
1964
|
+
8,1676,3
|
|
1965
|
+
8,1682,3.5
|
|
1966
|
+
8,1687,3
|
|
1967
|
+
8,1690,4
|
|
1968
|
+
8,1704,3
|
|
1969
|
+
8,1717,2
|
|
1970
|
+
8,1721,2.5
|
|
1971
|
+
8,1722,2.5
|
|
1972
|
+
8,1729,4
|
|
1973
|
+
8,1732,3
|
|
1974
|
+
8,1748,4
|
|
1975
|
+
8,1784,3.5
|
|
1976
|
+
8,1884,4.5
|
|
1977
|
+
8,1917,2.5
|
|
1978
|
+
8,1921,5
|
|
1979
|
+
8,1923,2.5
|
|
1980
|
+
8,1952,4
|
|
1981
|
+
8,1954,4.5
|
|
1982
|
+
8,1961,3.5
|
|
1983
|
+
8,1965,3.5
|
|
1984
|
+
8,1967,3.5
|
|
1985
|
+
8,1968,2
|
|
1986
|
+
8,1997,3
|
|
1987
|
+
8,2000,3
|
|
1988
|
+
8,2001,2
|
|
1989
|
+
8,2003,4.5
|
|
1990
|
+
8,2004,4
|
|
1991
|
+
8,2011,3
|
|
1992
|
+
8,2012,2
|
|
1993
|
+
8,2021,2.5
|
|
1994
|
+
8,2023,4
|
|
1995
|
+
8,2028,3
|
|
1996
|
+
8,2054,3
|
|
1997
|
+
8,2076,4
|
|
1998
|
+
8,2105,2.5
|
|
1999
|
+
8,2115,4.5
|
|
2000
|
+
8,2116,2
|
|
2001
|
+
8,2143,3
|
|
2002
|
+
8,2159,3
|
|
2003
|
+
8,2160,4
|
|
2004
|
+
8,2174,4.5
|
|
2005
|
+
8,2193,3.5
|
|
2006
|
+
8,2194,4.5
|
|
2007
|
+
8,2232,4.5
|
|
2008
|
+
8,2288,3
|
|
2009
|
+
8,2291,4.5
|
|
2010
|
+
8,2294,4
|
|
2011
|
+
8,2324,3.5
|
|
2012
|
+
8,2329,4.5
|
|
2013
|
+
8,2355,3.5
|
|
2014
|
+
8,2371,2.5
|
|
2015
|
+
8,2373,2.5
|
|
2016
|
+
8,2378,4
|
|
2017
|
+
8,2402,3.5
|
|
2018
|
+
8,2403,5
|
|
2019
|
+
8,2409,3.5
|
|
2020
|
+
8,2410,3.5
|
|
2021
|
+
8,2411,3.5
|
|
2022
|
+
8,2420,3.5
|
|
2023
|
+
8,2421,2
|
|
2024
|
+
8,2424,2
|
|
2025
|
+
8,2467,3.5
|
|
2026
|
+
8,2470,4
|
|
2027
|
+
8,2471,3.5
|
|
2028
|
+
8,2513,4.5
|
|
2029
|
+
8,2514,2
|
|
2030
|
+
8,2542,4
|
|
2031
|
+
8,2571,4.5
|
|
2032
|
+
8,2572,2
|
|
2033
|
+
8,2580,3.5
|
|
2034
|
+
8,2600,4
|
|
2035
|
+
8,2616,3.5
|
|
2036
|
+
8,2617,2
|
|
2037
|
+
8,2628,3.5
|
|
2038
|
+
8,2641,2
|
|
2039
|
+
8,2657,4.5
|
|
2040
|
+
8,2672,4
|
|
2041
|
+
8,2683,3
|
|
2042
|
+
8,2699,4
|
|
2043
|
+
8,2700,4
|
|
2044
|
+
8,2706,2
|
|
2045
|
+
8,2710,3
|
|
2046
|
+
8,2712,3.5
|
|
2047
|
+
8,2716,4
|
|
2048
|
+
8,2717,3
|
|
2049
|
+
8,2722,3
|
|
2050
|
+
8,2729,3
|
|
2051
|
+
8,2731,4
|
|
2052
|
+
8,2746,4
|
|
2053
|
+
8,2761,4
|
|
2054
|
+
8,2762,4
|
|
2055
|
+
8,2788,5
|
|
2056
|
+
8,2791,4
|
|
2057
|
+
8,2792,4
|
|
2058
|
+
8,2794,3
|
|
2059
|
+
8,2797,3
|
|
2060
|
+
8,2858,3
|
|
2061
|
+
8,2916,4.5
|
|
2062
|
+
8,2944,4
|
|
2063
|
+
8,2947,4
|
|
2064
|
+
8,2948,3.5
|
|
2065
|
+
8,2951,4.5
|
|
2066
|
+
8,2953,2
|
|
2067
|
+
8,2959,4.5
|
|
2068
|
+
8,2985,5
|
|
2069
|
+
8,2986,2
|
|
2070
|
+
8,2987,4
|
|
2071
|
+
8,2993,3.5
|
|
2072
|
+
8,2997,4.5
|
|
2073
|
+
8,3000,4.5
|
|
2074
|
+
8,3005,3.5
|
|
2075
|
+
8,3019,4
|
|
2076
|
+
8,3081,3
|
|
2077
|
+
8,3104,3.5
|
|
2078
|
+
8,3108,2.5
|
|
2079
|
+
8,3114,3
|
|
2080
|
+
8,3147,4
|
|
2081
|
+
8,3168,4.5
|
|
2082
|
+
8,3198,3
|
|
2083
|
+
8,3208,3.5
|
|
2084
|
+
8,3252,3
|
|
2085
|
+
8,3253,3
|
|
2086
|
+
8,3254,2.5
|
|
2087
|
+
8,3257,3
|
|
2088
|
+
8,3273,2
|
|
2089
|
+
8,3275,4.5
|
|
2090
|
+
8,3306,4
|
|
2091
|
+
8,3307,3.5
|
|
2092
|
+
8,3310,4
|
|
2093
|
+
8,3418,4
|
|
2094
|
+
8,3421,3
|
|
2095
|
+
8,3424,3
|
|
2096
|
+
8,3448,3
|
|
2097
|
+
8,3462,4.5
|
|
2098
|
+
8,3468,4
|
|
2099
|
+
8,3471,4
|
|
2100
|
+
8,3527,5
|
|
2101
|
+
8,3552,3
|
|
2102
|
+
8,3556,2.5
|
|
2103
|
+
8,3578,2.5
|
|
2104
|
+
8,3608,3
|
|
2105
|
+
8,3623,3
|
|
2106
|
+
8,3624,2.5
|
|
2107
|
+
8,3629,4.5
|
|
2108
|
+
8,3635,3.5
|
|
2109
|
+
8,3638,4
|
|
2110
|
+
8,3681,4
|
|
2111
|
+
8,3697,4.5
|
|
2112
|
+
8,3702,5
|
|
2113
|
+
8,3703,5
|
|
2114
|
+
8,3704,4
|
|
2115
|
+
8,3717,3
|
|
2116
|
+
8,3740,3
|
|
2117
|
+
8,3745,3.5
|
|
2118
|
+
8,3751,4
|
|
2119
|
+
8,3752,2.5
|
|
2120
|
+
8,3753,2
|
|
2121
|
+
8,3785,3
|
|
2122
|
+
8,3793,4
|
|
2123
|
+
8,3863,3.5
|
|
2124
|
+
8,3868,4
|
|
2125
|
+
8,3869,3.5
|
|
2126
|
+
8,3910,4.5
|
|
2127
|
+
8,3917,4
|
|
2128
|
+
8,3918,3.5
|
|
2129
|
+
8,3949,3
|
|
2130
|
+
8,3984,4
|
|
2131
|
+
8,3996,3
|
|
2132
|
+
8,4011,4
|
|
2133
|
+
8,4022,3.5
|
|
2134
|
+
8,4027,4
|
|
2135
|
+
8,4034,4
|
|
2136
|
+
8,4084,2
|
|
2137
|
+
8,4085,2.5
|
|
2138
|
+
8,4092,5
|
|
2139
|
+
8,4105,3
|
|
2140
|
+
8,4128,3.5
|
|
2141
|
+
8,4148,3.5
|
|
2142
|
+
8,4223,4.5
|
|
2143
|
+
8,4226,4
|
|
2144
|
+
8,4239,4.5
|
|
2145
|
+
8,4246,2
|
|
2146
|
+
8,4254,3
|
|
2147
|
+
8,4262,4.5
|
|
2148
|
+
8,4306,3.5
|
|
2149
|
+
8,4308,4
|
|
2150
|
+
8,4327,4
|
|
2151
|
+
8,4343,2
|
|
2152
|
+
8,4344,2
|
|
2153
|
+
8,4351,4.5
|
|
2154
|
+
8,4446,3
|
|
2155
|
+
8,4487,3
|
|
2156
|
+
8,4489,3
|
|
2157
|
+
8,4638,2
|
|
2158
|
+
8,4673,4
|
|
2159
|
+
8,4718,1.5
|
|
2160
|
+
8,4720,4
|
|
2161
|
+
8,4776,3.5
|
|
2162
|
+
8,4848,4
|
|
2163
|
+
8,4855,4
|
|
2164
|
+
8,4874,3
|
|
2165
|
+
8,4878,4
|
|
2166
|
+
8,4886,3.5
|
|
2167
|
+
8,4896,2
|
|
2168
|
+
8,4963,2.5
|
|
2169
|
+
8,4973,4
|
|
2170
|
+
8,4975,3.5
|
|
2171
|
+
8,4993,3.5
|
|
2172
|
+
8,4995,4
|
|
2173
|
+
8,5040,4.5
|
|
2174
|
+
8,5049,3.5
|
|
2175
|
+
8,5218,4
|
|
2176
|
+
8,5349,2.5
|
|
2177
|
+
8,5378,4
|
|
2178
|
+
8,5418,2
|
|
2179
|
+
8,5445,4.5
|
|
2180
|
+
8,5459,2.5
|
|
2181
|
+
8,5481,2.5
|
|
2182
|
+
8,5500,4
|
|
2183
|
+
8,5502,3.5
|
|
2184
|
+
8,5541,4
|
|
2185
|
+
8,5618,4
|
|
2186
|
+
8,5630,3.5
|
|
2187
|
+
8,5669,3
|
|
2188
|
+
8,5679,4
|
|
2189
|
+
8,5690,4
|
|
2190
|
+
8,5816,2
|
|
2191
|
+
8,5902,3
|
|
2192
|
+
8,5903,4
|
|
2193
|
+
8,5952,3.5
|
|
2194
|
+
8,5956,4
|
|
2195
|
+
8,5971,4
|
|
2196
|
+
8,5995,4
|
|
2197
|
+
8,6003,4
|
|
2198
|
+
8,6016,4.5
|
|
2199
|
+
8,6104,4
|
|
2200
|
+
8,6155,1
|
|
2201
|
+
8,6250,3.5
|
|
2202
|
+
8,6281,4
|
|
2203
|
+
8,6333,2.5
|
|
2204
|
+
8,6365,3
|
|
2205
|
+
8,6373,2.5
|
|
2206
|
+
8,6377,3
|
|
2207
|
+
8,6502,4.5
|
|
2208
|
+
8,6537,2.5
|
|
2209
|
+
8,6539,4
|
|
2210
|
+
8,6595,2.5
|
|
2211
|
+
8,6664,4.5
|
|
2212
|
+
8,6711,2.5
|
|
2213
|
+
8,6800,4.5
|
|
2214
|
+
8,6807,4
|
|
2215
|
+
8,6812,2.5
|
|
2216
|
+
8,6863,2.5
|
|
2217
|
+
8,6874,4.5
|
|
2218
|
+
8,6888,2
|
|
2219
|
+
8,6934,2.5
|
|
2220
|
+
8,6953,2.5
|
|
2221
|
+
8,6957,3
|
|
2222
|
+
8,6979,4.5
|
|
2223
|
+
8,7004,2.5
|
|
2224
|
+
8,7022,4
|
|
2225
|
+
8,7099,4
|
|
2226
|
+
8,7101,2
|
|
2227
|
+
8,7147,3.5
|
|
2228
|
+
8,7153,3
|
|
2229
|
+
8,7254,3
|
|
2230
|
+
8,7310,4.5
|
|
2231
|
+
8,7318,2.5
|
|
2232
|
+
8,7347,4
|
|
2233
|
+
8,7361,4.5
|
|
2234
|
+
8,7371,4.5
|
|
2235
|
+
8,7387,3
|
|
2236
|
+
8,7438,4.5
|
|
2237
|
+
8,7569,3.5
|
|
2238
|
+
8,7570,3.5
|
|
2239
|
+
8,7573,4
|
|
2240
|
+
8,8360,2
|
|
2241
|
+
8,8361,2.5
|
|
2242
|
+
8,8376,4.5
|
|
2243
|
+
8,8464,3
|
|
2244
|
+
8,8529,3
|
|
2245
|
+
8,8622,3
|
|
2246
|
+
8,8636,2
|
|
2247
|
+
8,8644,3
|
|
2248
|
+
8,8665,2
|
|
2249
|
+
8,8783,4
|
|
2250
|
+
8,8874,3.5
|
|
2251
|
+
8,8957,3
|
|
2252
|
+
8,26614,2.5
|
|
2253
|
+
8,26776,4.5
|
|
2254
|
+
8,26819,4
|
|
2255
|
+
8,27660,4.5
|
|
2256
|
+
8,27728,4
|
|
2257
|
+
8,27773,4.5
|
|
2258
|
+
8,27788,4
|
|
2259
|
+
8,27831,4
|
|
2260
|
+
8,27904,4.5
|
|
2261
|
+
8,30707,3.5
|
|
2262
|
+
8,30749,3.5
|
|
2263
|
+
8,30793,3
|
|
2264
|
+
8,30810,4
|
|
2265
|
+
8,30812,2.5
|
|
2266
|
+
8,31410,2.5
|
|
2267
|
+
8,31413,4.5
|
|
2268
|
+
8,32587,4
|
|
2269
|
+
8,33004,3
|
|
2270
|
+
8,33493,3.5
|
|
2271
|
+
8,33794,4
|
|
2272
|
+
8,34048,3
|
|
2273
|
+
8,34405,4
|
|
2274
|
+
8,35836,2.5
|
|
2275
|
+
8,36363,4.5
|
|
2276
|
+
8,36519,2.5
|
|
2277
|
+
8,37729,4
|
|
2278
|
+
8,37830,3.5
|
|
2279
|
+
8,38038,3.5
|
|
2280
|
+
8,39183,3
|
|
2281
|
+
8,40819,3.5
|
|
2282
|
+
8,41997,4
|
|
2283
|
+
8,44022,2.5
|
|
2284
|
+
8,44191,3.5
|
|
2285
|
+
8,44195,4.5
|
|
2286
|
+
8,44665,4
|
|
2287
|
+
8,45447,2.5
|
|
2288
|
+
8,45550,3.5
|
|
2289
|
+
8,45722,2.5
|
|
2290
|
+
8,46578,4
|
|
2291
|
+
8,46723,3
|
|
2292
|
+
8,46972,2.5
|
|
2293
|
+
8,46976,3.5
|
|
2294
|
+
8,47200,3.5
|
|
2295
|
+
8,47610,4
|
|
2296
|
+
8,48043,3.5
|
|
2297
|
+
8,48082,4.5
|
|
2298
|
+
8,48394,4
|
|
2299
|
+
8,48516,4
|
|
2300
|
+
8,48738,4
|
|
2301
|
+
8,48774,4
|
|
2302
|
+
8,48780,4
|
|
2303
|
+
8,49272,3
|
|
2304
|
+
8,50794,4
|
|
2305
|
+
8,51086,3
|
|
2306
|
+
8,51255,3.5
|
|
2307
|
+
8,51662,4.5
|
|
2308
|
+
8,52281,4
|
|
2309
|
+
8,52328,3
|
|
2310
|
+
8,52604,3
|
|
2311
|
+
8,53000,4
|
|
2312
|
+
8,53322,3.5
|
|
2313
|
+
8,53519,3.5
|
|
2314
|
+
8,53953,4
|
|
2315
|
+
8,53972,4
|
|
2316
|
+
8,53996,2
|
|
2317
|
+
8,54286,2.5
|
|
2318
|
+
8,54997,4
|
|
2319
|
+
8,55069,4
|
|
2320
|
+
8,55247,4.5
|
|
2321
|
+
8,55269,3.5
|
|
2322
|
+
8,55442,4
|
|
2323
|
+
8,55765,4
|
|
2324
|
+
8,55820,4
|
|
2325
|
+
8,56367,4
|
|
2326
|
+
8,56757,4.5
|
|
2327
|
+
8,57528,3
|
|
2328
|
+
8,57669,3
|
|
2329
|
+
8,58295,3
|
|
2330
|
+
8,58559,4
|
|
2331
|
+
8,58803,3.5
|
|
2332
|
+
8,59315,4
|
|
2333
|
+
8,59501,2.5
|
|
2334
|
+
8,59784,3
|
|
2335
|
+
8,60069,4.5
|
|
2336
|
+
8,60074,3
|
|
2337
|
+
8,60684,4.5
|
|
2338
|
+
8,61160,2
|
|
2339
|
+
8,61236,3
|
|
2340
|
+
8,61248,3
|
|
2341
|
+
8,61634,2
|
|
2342
|
+
8,63082,3.5
|
|
2343
|
+
8,64614,3.5
|
|
2344
|
+
8,66097,3
|
|
2345
|
+
8,67508,4.5
|
|
2346
|
+
8,68157,2
|
|
2347
|
+
8,68237,4
|
|
2348
|
+
8,68319,4
|
|
2349
|
+
8,68791,2.5
|
|
2350
|
+
8,68954,4.5
|
|
2351
|
+
8,69122,3
|
|
2352
|
+
8,69134,3.5
|
|
2353
|
+
8,69844,2
|
|
2354
|
+
8,70286,4
|
|
2355
|
+
8,71108,3
|
|
2356
|
+
8,71535,3.5
|
|
2357
|
+
8,72998,3
|
|
2358
|
+
8,73017,3.5
|
|
2359
|
+
8,73321,4
|
|
2360
|
+
8,74458,4
|
|
2361
|
+
8,74789,3.5
|
|
2362
|
+
8,76251,4
|
|
2363
|
+
8,77328,4.5
|
|
2364
|
+
8,77330,4.5
|
|
2365
|
+
8,77359,4.5
|
|
2366
|
+
8,77561,2
|
|
2367
|
+
8,77629,4.5
|
|
2368
|
+
8,78469,2
|
|
2369
|
+
8,79057,2.5
|
|
2370
|
+
8,79132,4
|
|
2371
|
+
8,79185,2
|
|
2372
|
+
8,79627,3
|
|
2373
|
+
8,80463,3.5
|
|
2374
|
+
8,81591,3
|
|
2375
|
+
8,81845,3.5
|
|
2376
|
+
8,82461,2
|
|
2377
|
+
8,83827,4
|
|
2378
|
+
8,85774,3
|
|
2379
|
+
8,86320,4
|
|
2380
|
+
8,91529,4
|
|
2381
|
+
8,91542,4
|
|
2382
|
+
8,91658,4.5
|
|
2383
|
+
8,92259,4
|
|
2384
|
+
8,94864,3.5
|
|
2385
|
+
8,96079,4
|
|
2386
|
+
8,97938,4
|
|
2387
|
+
8,99813,4
|
|
2388
|
+
8,100843,4
|
|
2389
|
+
8,103253,3.5
|
|
2390
|
+
8,103306,4.5
|
|
2391
|
+
8,104283,4
|
|
2392
|
+
8,104841,4.5
|
|
2393
|
+
8,105355,4.5
|
|
2394
|
+
8,108727,4.5
|
|
2395
|
+
8,108981,4.5
|
|
2396
|
+
2,1,3
|
|
2397
|
+
2,2,3
|
|
2398
|
+
2,11,3
|
|
2399
|
+
2,17,5
|
|
2400
|
+
2,19,4
|
|
2401
|
+
2,21,3
|
|
2402
|
+
2,34,5
|
|
2403
|
+
2,39,3
|
|
2404
|
+
2,47,2
|
|
2405
|
+
2,95,3
|
|
2406
|
+
2,150,4
|
|
2407
|
+
2,153,3
|
|
2408
|
+
2,160,3
|
|
2409
|
+
2,161,4
|
|
2410
|
+
2,165,2
|
|
2411
|
+
2,173,2
|
|
2412
|
+
2,185,3
|
|
2413
|
+
2,186,3
|
|
2414
|
+
2,196,2
|
|
2415
|
+
2,208,3
|
|
2416
|
+
2,225,3
|
|
2417
|
+
2,231,3
|
|
2418
|
+
2,236,4
|
|
2419
|
+
2,252,3
|
|
2420
|
+
2,253,4
|
|
2421
|
+
2,266,4
|
|
2422
|
+
2,282,4
|
|
2423
|
+
2,288,1
|
|
2424
|
+
2,293,3
|
|
2425
|
+
2,300,4
|
|
2426
|
+
2,317,5
|
|
2427
|
+
2,318,5
|
|
2428
|
+
2,329,3
|
|
2429
|
+
2,337,4
|
|
2430
|
+
2,339,4
|
|
2431
|
+
2,344,4
|
|
2432
|
+
2,349,4
|
|
2433
|
+
2,364,5
|
|
2434
|
+
2,367,5
|
|
2435
|
+
2,410,3
|
|
2436
|
+
2,420,5
|
|
2437
|
+
2,432,4
|
|
2438
|
+
2,434,4
|
|
2439
|
+
2,454,5
|
|
2440
|
+
2,457,5
|
|
2441
|
+
2,553,5
|
|
2442
|
+
2,588,4
|
|
2443
|
+
2,590,4
|
|
2444
|
+
2,593,5
|
|
2445
|
+
2,595,5
|