teradataml 20.0.0.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1208) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +2762 -0
  4. teradataml/__init__.py +78 -0
  5. teradataml/_version.py +11 -0
  6. teradataml/analytics/Transformations.py +2996 -0
  7. teradataml/analytics/__init__.py +82 -0
  8. teradataml/analytics/analytic_function_executor.py +2416 -0
  9. teradataml/analytics/analytic_query_generator.py +1050 -0
  10. teradataml/analytics/byom/H2OPredict.py +514 -0
  11. teradataml/analytics/byom/PMMLPredict.py +437 -0
  12. teradataml/analytics/byom/__init__.py +16 -0
  13. teradataml/analytics/json_parser/__init__.py +133 -0
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1805 -0
  15. teradataml/analytics/json_parser/json_store.py +191 -0
  16. teradataml/analytics/json_parser/metadata.py +1666 -0
  17. teradataml/analytics/json_parser/utils.py +805 -0
  18. teradataml/analytics/meta_class.py +236 -0
  19. teradataml/analytics/sqle/DecisionTreePredict.py +456 -0
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +420 -0
  21. teradataml/analytics/sqle/__init__.py +128 -0
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -0
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -0
  24. teradataml/analytics/table_operator/__init__.py +11 -0
  25. teradataml/analytics/uaf/__init__.py +82 -0
  26. teradataml/analytics/utils.py +828 -0
  27. teradataml/analytics/valib.py +1617 -0
  28. teradataml/automl/__init__.py +5835 -0
  29. teradataml/automl/autodataprep/__init__.py +493 -0
  30. teradataml/automl/custom_json_utils.py +1625 -0
  31. teradataml/automl/data_preparation.py +1384 -0
  32. teradataml/automl/data_transformation.py +1254 -0
  33. teradataml/automl/feature_engineering.py +2273 -0
  34. teradataml/automl/feature_exploration.py +1873 -0
  35. teradataml/automl/model_evaluation.py +488 -0
  36. teradataml/automl/model_training.py +1407 -0
  37. teradataml/catalog/__init__.py +2 -0
  38. teradataml/catalog/byom.py +1759 -0
  39. teradataml/catalog/function_argument_mapper.py +859 -0
  40. teradataml/catalog/model_cataloging_utils.py +491 -0
  41. teradataml/clients/__init__.py +0 -0
  42. teradataml/clients/auth_client.py +137 -0
  43. teradataml/clients/keycloak_client.py +165 -0
  44. teradataml/clients/pkce_client.py +481 -0
  45. teradataml/common/__init__.py +1 -0
  46. teradataml/common/aed_utils.py +2078 -0
  47. teradataml/common/bulk_exposed_utils.py +113 -0
  48. teradataml/common/constants.py +1669 -0
  49. teradataml/common/deprecations.py +166 -0
  50. teradataml/common/exceptions.py +147 -0
  51. teradataml/common/formula.py +743 -0
  52. teradataml/common/garbagecollector.py +666 -0
  53. teradataml/common/logger.py +1261 -0
  54. teradataml/common/messagecodes.py +518 -0
  55. teradataml/common/messages.py +262 -0
  56. teradataml/common/pylogger.py +67 -0
  57. teradataml/common/sqlbundle.py +764 -0
  58. teradataml/common/td_coltype_code_to_tdtype.py +48 -0
  59. teradataml/common/utils.py +3166 -0
  60. teradataml/common/warnings.py +36 -0
  61. teradataml/common/wrapper_utils.py +625 -0
  62. teradataml/config/__init__.py +0 -0
  63. teradataml/config/dummy_file1.cfg +5 -0
  64. teradataml/config/dummy_file2.cfg +3 -0
  65. teradataml/config/sqlengine_alias_definitions_v1.0 +14 -0
  66. teradataml/config/sqlengine_alias_definitions_v1.1 +20 -0
  67. teradataml/config/sqlengine_alias_definitions_v1.3 +19 -0
  68. teradataml/context/__init__.py +0 -0
  69. teradataml/context/aed_context.py +223 -0
  70. teradataml/context/context.py +1462 -0
  71. teradataml/data/A_loan.csv +19 -0
  72. teradataml/data/BINARY_REALS_LEFT.csv +11 -0
  73. teradataml/data/BINARY_REALS_RIGHT.csv +11 -0
  74. teradataml/data/B_loan.csv +49 -0
  75. teradataml/data/BuoyData2.csv +17 -0
  76. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -0
  77. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -0
  78. teradataml/data/Convolve2RealsLeft.csv +5 -0
  79. teradataml/data/Convolve2RealsRight.csv +5 -0
  80. teradataml/data/Convolve2ValidLeft.csv +11 -0
  81. teradataml/data/Convolve2ValidRight.csv +11 -0
  82. teradataml/data/DFFTConv_Real_8_8.csv +65 -0
  83. teradataml/data/Employee.csv +5 -0
  84. teradataml/data/Employee_Address.csv +4 -0
  85. teradataml/data/Employee_roles.csv +5 -0
  86. teradataml/data/JulesBelvezeDummyData.csv +100 -0
  87. teradataml/data/Mall_customer_data.csv +201 -0
  88. teradataml/data/Orders1_12mf.csv +25 -0
  89. teradataml/data/Pi_loan.csv +7 -0
  90. teradataml/data/SMOOTHED_DATA.csv +7 -0
  91. teradataml/data/TestDFFT8.csv +9 -0
  92. teradataml/data/TestRiver.csv +109 -0
  93. teradataml/data/Traindata.csv +28 -0
  94. teradataml/data/__init__.py +0 -0
  95. teradataml/data/acf.csv +17 -0
  96. teradataml/data/adaboost_example.json +34 -0
  97. teradataml/data/adaboostpredict_example.json +24 -0
  98. teradataml/data/additional_table.csv +11 -0
  99. teradataml/data/admissions_test.csv +21 -0
  100. teradataml/data/admissions_train.csv +41 -0
  101. teradataml/data/admissions_train_nulls.csv +41 -0
  102. teradataml/data/advertising.csv +201 -0
  103. teradataml/data/ageandheight.csv +13 -0
  104. teradataml/data/ageandpressure.csv +31 -0
  105. teradataml/data/amazon_reviews_25.csv +26 -0
  106. teradataml/data/antiselect_example.json +36 -0
  107. teradataml/data/antiselect_input.csv +8 -0
  108. teradataml/data/antiselect_input_mixed_case.csv +8 -0
  109. teradataml/data/applicant_external.csv +7 -0
  110. teradataml/data/applicant_reference.csv +7 -0
  111. teradataml/data/apriori_example.json +22 -0
  112. teradataml/data/arima_example.json +9 -0
  113. teradataml/data/assortedtext_input.csv +8 -0
  114. teradataml/data/attribution_example.json +34 -0
  115. teradataml/data/attribution_sample_table.csv +27 -0
  116. teradataml/data/attribution_sample_table1.csv +6 -0
  117. teradataml/data/attribution_sample_table2.csv +11 -0
  118. teradataml/data/bank_churn.csv +10001 -0
  119. teradataml/data/bank_marketing.csv +11163 -0
  120. teradataml/data/bank_web_clicks1.csv +43 -0
  121. teradataml/data/bank_web_clicks2.csv +91 -0
  122. teradataml/data/bank_web_url.csv +85 -0
  123. teradataml/data/barrier.csv +2 -0
  124. teradataml/data/barrier_new.csv +3 -0
  125. teradataml/data/betweenness_example.json +14 -0
  126. teradataml/data/bike_sharing.csv +732 -0
  127. teradataml/data/bin_breaks.csv +8 -0
  128. teradataml/data/bin_fit_ip.csv +4 -0
  129. teradataml/data/binary_complex_left.csv +11 -0
  130. teradataml/data/binary_complex_right.csv +11 -0
  131. teradataml/data/binary_matrix_complex_left.csv +21 -0
  132. teradataml/data/binary_matrix_complex_right.csv +21 -0
  133. teradataml/data/binary_matrix_real_left.csv +21 -0
  134. teradataml/data/binary_matrix_real_right.csv +21 -0
  135. teradataml/data/blood2ageandweight.csv +26 -0
  136. teradataml/data/bmi.csv +501 -0
  137. teradataml/data/boston.csv +507 -0
  138. teradataml/data/boston2cols.csv +721 -0
  139. teradataml/data/breast_cancer.csv +570 -0
  140. teradataml/data/buoydata_mix.csv +11 -0
  141. teradataml/data/burst_data.csv +5 -0
  142. teradataml/data/burst_example.json +21 -0
  143. teradataml/data/byom_example.json +34 -0
  144. teradataml/data/bytes_table.csv +4 -0
  145. teradataml/data/cal_housing_ex_raw.csv +70 -0
  146. teradataml/data/callers.csv +7 -0
  147. teradataml/data/calls.csv +10 -0
  148. teradataml/data/cars_hist.csv +33 -0
  149. teradataml/data/cat_table.csv +25 -0
  150. teradataml/data/ccm_example.json +32 -0
  151. teradataml/data/ccm_input.csv +91 -0
  152. teradataml/data/ccm_input2.csv +13 -0
  153. teradataml/data/ccmexample.csv +101 -0
  154. teradataml/data/ccmprepare_example.json +9 -0
  155. teradataml/data/ccmprepare_input.csv +91 -0
  156. teradataml/data/cfilter_example.json +12 -0
  157. teradataml/data/changepointdetection_example.json +18 -0
  158. teradataml/data/changepointdetectionrt_example.json +8 -0
  159. teradataml/data/chi_sq.csv +3 -0
  160. teradataml/data/churn_data.csv +14 -0
  161. teradataml/data/churn_emission.csv +35 -0
  162. teradataml/data/churn_initial.csv +3 -0
  163. teradataml/data/churn_state_transition.csv +5 -0
  164. teradataml/data/citedges_2.csv +745 -0
  165. teradataml/data/citvertices_2.csv +1210 -0
  166. teradataml/data/clicks2.csv +16 -0
  167. teradataml/data/clickstream.csv +13 -0
  168. teradataml/data/clickstream1.csv +11 -0
  169. teradataml/data/closeness_example.json +16 -0
  170. teradataml/data/complaints.csv +21 -0
  171. teradataml/data/complaints_mini.csv +3 -0
  172. teradataml/data/complaints_test_tokenized.csv +353 -0
  173. teradataml/data/complaints_testtoken.csv +224 -0
  174. teradataml/data/complaints_tokens_model.csv +348 -0
  175. teradataml/data/complaints_tokens_test.csv +353 -0
  176. teradataml/data/complaints_traintoken.csv +472 -0
  177. teradataml/data/computers_category.csv +1001 -0
  178. teradataml/data/computers_test1.csv +1252 -0
  179. teradataml/data/computers_train1.csv +5009 -0
  180. teradataml/data/computers_train1_clustered.csv +5009 -0
  181. teradataml/data/confusionmatrix_example.json +9 -0
  182. teradataml/data/conversion_event_table.csv +3 -0
  183. teradataml/data/corr_input.csv +17 -0
  184. teradataml/data/correlation_example.json +11 -0
  185. teradataml/data/covid_confirm_sd.csv +83 -0
  186. teradataml/data/coxhazardratio_example.json +39 -0
  187. teradataml/data/coxph_example.json +15 -0
  188. teradataml/data/coxsurvival_example.json +28 -0
  189. teradataml/data/cpt.csv +41 -0
  190. teradataml/data/credit_ex_merged.csv +45 -0
  191. teradataml/data/creditcard_data.csv +1001 -0
  192. teradataml/data/customer_loyalty.csv +301 -0
  193. teradataml/data/customer_loyalty_newseq.csv +31 -0
  194. teradataml/data/customer_segmentation_test.csv +2628 -0
  195. teradataml/data/customer_segmentation_train.csv +8069 -0
  196. teradataml/data/dataframe_example.json +173 -0
  197. teradataml/data/decisionforest_example.json +37 -0
  198. teradataml/data/decisionforestpredict_example.json +38 -0
  199. teradataml/data/decisiontree_example.json +21 -0
  200. teradataml/data/decisiontreepredict_example.json +45 -0
  201. teradataml/data/dfft2_size4_real.csv +17 -0
  202. teradataml/data/dfft2_test_matrix16.csv +17 -0
  203. teradataml/data/dfft2conv_real_4_4.csv +65 -0
  204. teradataml/data/diabetes.csv +443 -0
  205. teradataml/data/diabetes_test.csv +89 -0
  206. teradataml/data/dict_table.csv +5 -0
  207. teradataml/data/docperterm_table.csv +4 -0
  208. teradataml/data/docs/__init__.py +1 -0
  209. teradataml/data/docs/byom/__init__.py +0 -0
  210. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -0
  211. teradataml/data/docs/byom/docs/DataikuPredict.py +217 -0
  212. teradataml/data/docs/byom/docs/H2OPredict.py +325 -0
  213. teradataml/data/docs/byom/docs/ONNXEmbeddings.py +242 -0
  214. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -0
  215. teradataml/data/docs/byom/docs/ONNXSeq2Seq.py +255 -0
  216. teradataml/data/docs/byom/docs/PMMLPredict.py +278 -0
  217. teradataml/data/docs/byom/docs/__init__.py +0 -0
  218. teradataml/data/docs/sqle/__init__.py +0 -0
  219. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +83 -0
  220. teradataml/data/docs/sqle/docs_17_10/Attribution.py +200 -0
  221. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +172 -0
  222. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -0
  223. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -0
  224. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -0
  225. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +86 -0
  226. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +96 -0
  227. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -0
  228. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +152 -0
  229. teradataml/data/docs/sqle/docs_17_10/FTest.py +161 -0
  230. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +83 -0
  231. teradataml/data/docs/sqle/docs_17_10/Fit.py +88 -0
  232. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -0
  233. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +85 -0
  234. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +82 -0
  235. teradataml/data/docs/sqle/docs_17_10/Histogram.py +165 -0
  236. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -0
  237. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +209 -0
  238. teradataml/data/docs/sqle/docs_17_10/NPath.py +266 -0
  239. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -0
  240. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -0
  241. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -0
  242. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +135 -0
  243. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -0
  244. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +166 -0
  245. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -0
  246. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -0
  247. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +112 -0
  248. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -0
  249. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +105 -0
  250. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +110 -0
  251. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +118 -0
  252. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -0
  253. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +153 -0
  254. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -0
  255. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -0
  256. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +114 -0
  257. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -0
  258. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -0
  259. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -0
  260. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +146 -0
  261. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -0
  262. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +142 -0
  263. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -0
  264. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -0
  265. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -0
  266. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -0
  267. teradataml/data/docs/sqle/docs_17_10/__init__.py +0 -0
  268. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -0
  269. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +83 -0
  270. teradataml/data/docs/sqle/docs_17_20/Apriori.py +138 -0
  271. teradataml/data/docs/sqle/docs_17_20/Attribution.py +201 -0
  272. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +172 -0
  273. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -0
  274. teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
  275. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -0
  276. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -0
  277. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -0
  278. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +86 -0
  279. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +246 -0
  280. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -0
  281. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +280 -0
  282. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -0
  283. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +136 -0
  284. teradataml/data/docs/sqle/docs_17_20/FTest.py +240 -0
  285. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +83 -0
  286. teradataml/data/docs/sqle/docs_17_20/Fit.py +88 -0
  287. teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -0
  288. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +415 -0
  289. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -0
  290. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -0
  291. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -0
  292. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +109 -0
  293. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +106 -0
  294. teradataml/data/docs/sqle/docs_17_20/Histogram.py +224 -0
  295. teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -0
  296. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -0
  297. teradataml/data/docs/sqle/docs_17_20/KNN.py +215 -0
  298. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -0
  299. teradataml/data/docs/sqle/docs_17_20/NERExtractor.py +121 -0
  300. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +209 -0
  301. teradataml/data/docs/sqle/docs_17_20/NPath.py +266 -0
  302. teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
  303. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -0
  304. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -0
  305. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +127 -0
  306. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +119 -0
  307. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -0
  308. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -0
  309. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -0
  310. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -0
  311. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +231 -0
  312. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -0
  313. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +220 -0
  314. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -0
  315. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +191 -0
  316. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -0
  317. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -0
  318. teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
  319. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +112 -0
  320. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -0
  321. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +105 -0
  322. teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -0
  323. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +155 -0
  324. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -0
  325. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -0
  326. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -0
  327. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +109 -0
  328. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +118 -0
  329. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -0
  330. teradataml/data/docs/sqle/docs_17_20/SMOTE.py +212 -0
  331. teradataml/data/docs/sqle/docs_17_20/SVM.py +414 -0
  332. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -0
  333. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +153 -0
  334. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -0
  335. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -0
  336. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -0
  337. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +114 -0
  338. teradataml/data/docs/sqle/docs_17_20/Shap.py +225 -0
  339. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +153 -0
  340. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -0
  341. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -0
  342. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -0
  343. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +146 -0
  344. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -0
  345. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -0
  346. teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
  347. teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
  348. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +267 -0
  349. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -0
  350. teradataml/data/docs/sqle/docs_17_20/TextMorph.py +119 -0
  351. teradataml/data/docs/sqle/docs_17_20/TextParser.py +224 -0
  352. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +160 -0
  353. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -0
  354. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +142 -0
  355. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -0
  356. teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
  357. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +169 -0
  358. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -0
  359. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -0
  360. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +237 -0
  361. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +362 -0
  362. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -0
  363. teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -0
  364. teradataml/data/docs/sqle/docs_17_20/__init__.py +0 -0
  365. teradataml/data/docs/tableoperator/__init__.py +0 -0
  366. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +430 -0
  367. teradataml/data/docs/tableoperator/docs_17_00/__init__.py +0 -0
  368. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +430 -0
  369. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +348 -0
  370. teradataml/data/docs/tableoperator/docs_17_05/__init__.py +0 -0
  371. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +429 -0
  372. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +348 -0
  373. teradataml/data/docs/tableoperator/docs_17_10/__init__.py +0 -0
  374. teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
  375. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +440 -0
  376. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +387 -0
  377. teradataml/data/docs/tableoperator/docs_17_20/__init__.py +0 -0
  378. teradataml/data/docs/uaf/__init__.py +0 -0
  379. teradataml/data/docs/uaf/docs_17_20/ACF.py +186 -0
  380. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +370 -0
  381. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +172 -0
  382. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +161 -0
  383. teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
  384. teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
  385. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +248 -0
  386. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -0
  387. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +178 -0
  388. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +175 -0
  389. teradataml/data/docs/uaf/docs_17_20/Convolve.py +230 -0
  390. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +218 -0
  391. teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
  392. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +185 -0
  393. teradataml/data/docs/uaf/docs_17_20/DFFT.py +204 -0
  394. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -0
  395. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +216 -0
  396. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +192 -0
  397. teradataml/data/docs/uaf/docs_17_20/DIFF.py +175 -0
  398. teradataml/data/docs/uaf/docs_17_20/DTW.py +180 -0
  399. teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
  400. teradataml/data/docs/uaf/docs_17_20/DWT2D.py +217 -0
  401. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +142 -0
  402. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +184 -0
  403. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +185 -0
  404. teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
  405. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -0
  406. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +206 -0
  407. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +143 -0
  408. teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +198 -0
  409. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +260 -0
  410. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +165 -0
  411. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +191 -0
  412. teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
  413. teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
  414. teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
  415. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +121 -0
  416. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +156 -0
  417. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +215 -0
  418. teradataml/data/docs/uaf/docs_17_20/MAMean.py +174 -0
  419. teradataml/data/docs/uaf/docs_17_20/MInfo.py +134 -0
  420. teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
  421. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +145 -0
  422. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +191 -0
  423. teradataml/data/docs/uaf/docs_17_20/PACF.py +157 -0
  424. teradataml/data/docs/uaf/docs_17_20/Portman.py +217 -0
  425. teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +203 -0
  426. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +155 -0
  427. teradataml/data/docs/uaf/docs_17_20/Resample.py +237 -0
  428. teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
  429. teradataml/data/docs/uaf/docs_17_20/SInfo.py +123 -0
  430. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +173 -0
  431. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +174 -0
  432. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +171 -0
  433. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +164 -0
  434. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +180 -0
  435. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +208 -0
  436. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +151 -0
  437. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -0
  438. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +202 -0
  439. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +171 -0
  440. teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
  441. teradataml/data/docs/uaf/docs_17_20/__init__.py +0 -0
  442. teradataml/data/dtw_example.json +18 -0
  443. teradataml/data/dtw_t1.csv +11 -0
  444. teradataml/data/dtw_t2.csv +4 -0
  445. teradataml/data/dwt2d_dataTable.csv +65 -0
  446. teradataml/data/dwt2d_example.json +16 -0
  447. teradataml/data/dwt_dataTable.csv +8 -0
  448. teradataml/data/dwt_example.json +15 -0
  449. teradataml/data/dwt_filterTable.csv +3 -0
  450. teradataml/data/dwt_filter_dim.csv +5 -0
  451. teradataml/data/emission.csv +9 -0
  452. teradataml/data/emp_table_by_dept.csv +19 -0
  453. teradataml/data/employee_info.csv +4 -0
  454. teradataml/data/employee_table.csv +6 -0
  455. teradataml/data/excluding_event_table.csv +2 -0
  456. teradataml/data/finance_data.csv +6 -0
  457. teradataml/data/finance_data2.csv +61 -0
  458. teradataml/data/finance_data3.csv +93 -0
  459. teradataml/data/finance_data4.csv +13 -0
  460. teradataml/data/fish.csv +160 -0
  461. teradataml/data/fm_blood2ageandweight.csv +26 -0
  462. teradataml/data/fmeasure_example.json +12 -0
  463. teradataml/data/followers_leaders.csv +10 -0
  464. teradataml/data/fpgrowth_example.json +12 -0
  465. teradataml/data/frequentpaths_example.json +29 -0
  466. teradataml/data/friends.csv +9 -0
  467. teradataml/data/fs_input.csv +33 -0
  468. teradataml/data/fs_input1.csv +33 -0
  469. teradataml/data/genData.csv +513 -0
  470. teradataml/data/geodataframe_example.json +40 -0
  471. teradataml/data/glass_types.csv +215 -0
  472. teradataml/data/glm_admissions_model.csv +12 -0
  473. teradataml/data/glm_example.json +56 -0
  474. teradataml/data/glml1l2_example.json +28 -0
  475. teradataml/data/glml1l2predict_example.json +54 -0
  476. teradataml/data/glmpredict_example.json +54 -0
  477. teradataml/data/gq_t1.csv +21 -0
  478. teradataml/data/grocery_transaction.csv +19 -0
  479. teradataml/data/hconvolve_complex_right.csv +5 -0
  480. teradataml/data/hconvolve_complex_rightmulti.csv +5 -0
  481. teradataml/data/histogram_example.json +12 -0
  482. teradataml/data/hmmdecoder_example.json +79 -0
  483. teradataml/data/hmmevaluator_example.json +25 -0
  484. teradataml/data/hmmsupervised_example.json +10 -0
  485. teradataml/data/hmmunsupervised_example.json +8 -0
  486. teradataml/data/hnsw_alter_data.csv +5 -0
  487. teradataml/data/hnsw_data.csv +10 -0
  488. teradataml/data/house_values.csv +12 -0
  489. teradataml/data/house_values2.csv +13 -0
  490. teradataml/data/housing_cat.csv +7 -0
  491. teradataml/data/housing_data.csv +9 -0
  492. teradataml/data/housing_test.csv +47 -0
  493. teradataml/data/housing_test_binary.csv +47 -0
  494. teradataml/data/housing_train.csv +493 -0
  495. teradataml/data/housing_train_attribute.csv +5 -0
  496. teradataml/data/housing_train_binary.csv +437 -0
  497. teradataml/data/housing_train_parameter.csv +2 -0
  498. teradataml/data/housing_train_response.csv +493 -0
  499. teradataml/data/housing_train_segment.csv +201 -0
  500. teradataml/data/ibm_stock.csv +370 -0
  501. teradataml/data/ibm_stock1.csv +370 -0
  502. teradataml/data/identitymatch_example.json +22 -0
  503. teradataml/data/idf_table.csv +4 -0
  504. teradataml/data/idwt2d_dataTable.csv +5 -0
  505. teradataml/data/idwt_dataTable.csv +8 -0
  506. teradataml/data/idwt_filterTable.csv +3 -0
  507. teradataml/data/impressions.csv +101 -0
  508. teradataml/data/inflation.csv +21 -0
  509. teradataml/data/initial.csv +3 -0
  510. teradataml/data/insect2Cols.csv +61 -0
  511. teradataml/data/insect_sprays.csv +13 -0
  512. teradataml/data/insurance.csv +1339 -0
  513. teradataml/data/interpolator_example.json +13 -0
  514. teradataml/data/interval_data.csv +5 -0
  515. teradataml/data/iris_altinput.csv +481 -0
  516. teradataml/data/iris_attribute_output.csv +8 -0
  517. teradataml/data/iris_attribute_test.csv +121 -0
  518. teradataml/data/iris_attribute_train.csv +481 -0
  519. teradataml/data/iris_category_expect_predict.csv +31 -0
  520. teradataml/data/iris_data.csv +151 -0
  521. teradataml/data/iris_input.csv +151 -0
  522. teradataml/data/iris_response_train.csv +121 -0
  523. teradataml/data/iris_test.csv +31 -0
  524. teradataml/data/iris_train.csv +121 -0
  525. teradataml/data/join_table1.csv +4 -0
  526. teradataml/data/join_table2.csv +4 -0
  527. teradataml/data/jsons/anly_function_name.json +7 -0
  528. teradataml/data/jsons/byom/ONNXSeq2Seq.json +287 -0
  529. teradataml/data/jsons/byom/dataikupredict.json +148 -0
  530. teradataml/data/jsons/byom/datarobotpredict.json +147 -0
  531. teradataml/data/jsons/byom/h2opredict.json +195 -0
  532. teradataml/data/jsons/byom/onnxembeddings.json +267 -0
  533. teradataml/data/jsons/byom/onnxpredict.json +187 -0
  534. teradataml/data/jsons/byom/pmmlpredict.json +147 -0
  535. teradataml/data/jsons/paired_functions.json +450 -0
  536. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -0
  537. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -0
  538. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -0
  539. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -0
  540. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -0
  541. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -0
  542. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -0
  543. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -0
  544. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -0
  545. teradataml/data/jsons/sqle/16.20/Pack.json +98 -0
  546. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -0
  547. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -0
  548. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -0
  549. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -0
  550. teradataml/data/jsons/sqle/16.20/nPath.json +269 -0
  551. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -0
  552. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -0
  553. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -0
  554. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -0
  555. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -0
  556. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -0
  557. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -0
  558. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -0
  559. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -0
  560. teradataml/data/jsons/sqle/17.00/Pack.json +98 -0
  561. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -0
  562. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -0
  563. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -0
  564. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -0
  565. teradataml/data/jsons/sqle/17.00/nPath.json +269 -0
  566. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -0
  567. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -0
  568. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -0
  569. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -0
  570. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -0
  571. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -0
  572. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -0
  573. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -0
  574. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -0
  575. teradataml/data/jsons/sqle/17.05/Pack.json +98 -0
  576. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -0
  577. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -0
  578. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -0
  579. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -0
  580. teradataml/data/jsons/sqle/17.05/nPath.json +269 -0
  581. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -0
  582. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -0
  583. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -0
  584. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +172 -0
  585. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -0
  586. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -0
  587. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -0
  588. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -0
  589. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -0
  590. teradataml/data/jsons/sqle/17.10/Pack.json +133 -0
  591. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -0
  592. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -0
  593. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -0
  594. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -0
  595. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -0
  596. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +54 -0
  597. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +68 -0
  598. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +54 -0
  599. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +69 -0
  600. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -0
  601. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +52 -0
  602. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -0
  603. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -0
  604. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +53 -0
  605. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +53 -0
  606. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +133 -0
  607. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -0
  608. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +183 -0
  609. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +66 -0
  610. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +197 -0
  611. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -0
  612. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -0
  613. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -0
  614. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +112 -0
  615. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -0
  616. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +128 -0
  617. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +71 -0
  618. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +157 -0
  619. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +71 -0
  620. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +148 -0
  621. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -0
  622. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -0
  623. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +119 -0
  624. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +53 -0
  625. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +53 -0
  626. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -0
  627. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -0
  628. teradataml/data/jsons/sqle/17.10/nPath.json +269 -0
  629. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -0
  630. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -0
  631. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -0
  632. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -0
  633. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -0
  634. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -0
  635. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -0
  636. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -0
  637. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -0
  638. teradataml/data/jsons/sqle/17.20/Pack.json +133 -0
  639. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -0
  640. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -0
  641. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -0
  642. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +149 -0
  643. teradataml/data/jsons/sqle/17.20/TD_Apriori.json +181 -0
  644. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -0
  645. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -0
  646. teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
  647. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -0
  648. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +68 -0
  649. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +146 -0
  650. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -0
  651. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -0
  652. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -0
  653. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +260 -0
  654. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -0
  655. teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -0
  656. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -0
  657. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -0
  658. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -0
  659. teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -0
  660. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -0
  661. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -0
  662. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -0
  663. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -0
  664. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -0
  665. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -0
  666. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -0
  667. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +232 -0
  668. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +87 -0
  669. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -0
  670. teradataml/data/jsons/sqle/17.20/TD_NERExtractor.json +145 -0
  671. teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
  672. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
  673. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -0
  674. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -0
  675. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -0
  676. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -0
  677. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +316 -0
  678. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +124 -0
  679. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -0
  680. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -0
  681. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -0
  682. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -0
  683. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -0
  684. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -0
  685. teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
  686. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -0
  687. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -0
  688. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -0
  689. teradataml/data/jsons/sqle/17.20/TD_ROC.json +179 -0
  690. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +179 -0
  691. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +74 -0
  692. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -0
  693. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +138 -0
  694. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -0
  695. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +128 -0
  696. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +71 -0
  697. teradataml/data/jsons/sqle/17.20/TD_SMOTE.json +267 -0
  698. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -0
  699. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -0
  700. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +310 -0
  701. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +120 -0
  702. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +194 -0
  703. teradataml/data/jsons/sqle/17.20/TD_Shap.json +221 -0
  704. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +143 -0
  705. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -0
  706. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -0
  707. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -0
  708. teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
  709. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -0
  710. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -0
  711. teradataml/data/jsons/sqle/17.20/TD_TextMorph.json +134 -0
  712. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +297 -0
  713. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -0
  714. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -0
  715. teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
  716. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +183 -0
  717. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +53 -0
  718. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +53 -0
  719. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -0
  720. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -0
  721. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -0
  722. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -0
  723. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -0
  724. teradataml/data/jsons/sqle/17.20/nPath.json +269 -0
  725. teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json +370 -0
  726. teradataml/data/jsons/sqle/20.00/AI_AskLLM.json +460 -0
  727. teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json +385 -0
  728. teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json +369 -0
  729. teradataml/data/jsons/sqle/20.00/AI_MaskPII.json +369 -0
  730. teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json +369 -0
  731. teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json +369 -0
  732. teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json +400 -0
  733. teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json +401 -0
  734. teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json +384 -0
  735. teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json +384 -0
  736. teradataml/data/jsons/sqle/20.00/TD_API_AzureML.json +151 -0
  737. teradataml/data/jsons/sqle/20.00/TD_API_Sagemaker.json +182 -0
  738. teradataml/data/jsons/sqle/20.00/TD_API_VertexAI.json +183 -0
  739. teradataml/data/jsons/sqle/20.00/TD_HNSW.json +296 -0
  740. teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json +206 -0
  741. teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json +32 -0
  742. teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
  743. teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
  744. teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
  745. teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
  746. teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
  747. teradataml/data/jsons/tableoperator/17.00/read_nos.json +198 -0
  748. teradataml/data/jsons/tableoperator/17.05/read_nos.json +198 -0
  749. teradataml/data/jsons/tableoperator/17.05/write_nos.json +195 -0
  750. teradataml/data/jsons/tableoperator/17.10/read_nos.json +184 -0
  751. teradataml/data/jsons/tableoperator/17.10/write_nos.json +195 -0
  752. teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
  753. teradataml/data/jsons/tableoperator/17.20/read_nos.json +183 -0
  754. teradataml/data/jsons/tableoperator/17.20/write_nos.json +224 -0
  755. teradataml/data/jsons/uaf/17.20/TD_ACF.json +132 -0
  756. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +396 -0
  757. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +77 -0
  758. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +153 -0
  759. teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
  760. teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
  761. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +107 -0
  762. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +106 -0
  763. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +89 -0
  764. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +104 -0
  765. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +78 -0
  766. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +66 -0
  767. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +87 -0
  768. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +134 -0
  769. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +144 -0
  770. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -0
  771. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +108 -0
  772. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +78 -0
  773. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +92 -0
  774. teradataml/data/jsons/uaf/17.20/TD_DTW.json +114 -0
  775. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +101 -0
  776. teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
  777. teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
  778. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +39 -0
  779. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +101 -0
  780. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +85 -0
  781. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +71 -0
  782. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +139 -0
  783. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECASTER.json +313 -0
  784. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +58 -0
  785. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +81 -0
  786. teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
  787. teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
  788. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +64 -0
  789. teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
  790. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +182 -0
  791. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +103 -0
  792. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +181 -0
  793. teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
  794. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +68 -0
  795. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +67 -0
  796. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +179 -0
  797. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -0
  798. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +119 -0
  799. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -0
  800. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +98 -0
  801. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +194 -0
  802. teradataml/data/jsons/uaf/17.20/TD_SAX.json +210 -0
  803. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +143 -0
  804. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +90 -0
  805. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +80 -0
  806. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +68 -0
  807. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -0
  808. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +58 -0
  809. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +163 -0
  810. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +101 -0
  811. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +112 -0
  812. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -0
  813. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +78 -0
  814. teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +410 -0
  815. teradataml/data/kmeans_example.json +23 -0
  816. teradataml/data/kmeans_table.csv +10 -0
  817. teradataml/data/kmeans_us_arrests_data.csv +51 -0
  818. teradataml/data/knn_example.json +19 -0
  819. teradataml/data/knnrecommender_example.json +7 -0
  820. teradataml/data/knnrecommenderpredict_example.json +12 -0
  821. teradataml/data/lar_example.json +17 -0
  822. teradataml/data/larpredict_example.json +30 -0
  823. teradataml/data/lc_new_predictors.csv +5 -0
  824. teradataml/data/lc_new_reference.csv +9 -0
  825. teradataml/data/lda_example.json +9 -0
  826. teradataml/data/ldainference_example.json +15 -0
  827. teradataml/data/ldatopicsummary_example.json +9 -0
  828. teradataml/data/levendist_input.csv +13 -0
  829. teradataml/data/levenshteindistance_example.json +10 -0
  830. teradataml/data/linreg_example.json +10 -0
  831. teradataml/data/load_example_data.py +350 -0
  832. teradataml/data/loan_prediction.csv +295 -0
  833. teradataml/data/lungcancer.csv +138 -0
  834. teradataml/data/mappingdata.csv +12 -0
  835. teradataml/data/medical_readings.csv +101 -0
  836. teradataml/data/milk_timeseries.csv +157 -0
  837. teradataml/data/min_max_titanic.csv +4 -0
  838. teradataml/data/minhash_example.json +6 -0
  839. teradataml/data/ml_ratings.csv +7547 -0
  840. teradataml/data/ml_ratings_10.csv +2445 -0
  841. teradataml/data/mobile_data.csv +13 -0
  842. teradataml/data/model1_table.csv +5 -0
  843. teradataml/data/model2_table.csv +5 -0
  844. teradataml/data/models/License_file.txt +1 -0
  845. teradataml/data/models/License_file_empty.txt +0 -0
  846. teradataml/data/models/dataiku_iris_data_ann_thin +0 -0
  847. teradataml/data/models/dr_iris_rf +0 -0
  848. teradataml/data/models/iris_db_dt_model_sklearn.onnx +0 -0
  849. teradataml/data/models/iris_db_dt_model_sklearn_floattensor.onnx +0 -0
  850. teradataml/data/models/iris_db_glm_model.pmml +57 -0
  851. teradataml/data/models/iris_db_xgb_model.pmml +4471 -0
  852. teradataml/data/models/iris_kmeans_model +0 -0
  853. teradataml/data/models/iris_mojo_glm_h2o_model +0 -0
  854. teradataml/data/models/iris_mojo_xgb_h2o_model +0 -0
  855. teradataml/data/modularity_example.json +12 -0
  856. teradataml/data/movavg_example.json +8 -0
  857. teradataml/data/mtx1.csv +7 -0
  858. teradataml/data/mtx2.csv +13 -0
  859. teradataml/data/multi_model_classification.csv +401 -0
  860. teradataml/data/multi_model_regression.csv +401 -0
  861. teradataml/data/mvdfft8.csv +9 -0
  862. teradataml/data/naivebayes_example.json +10 -0
  863. teradataml/data/naivebayespredict_example.json +19 -0
  864. teradataml/data/naivebayestextclassifier2_example.json +7 -0
  865. teradataml/data/naivebayestextclassifier_example.json +8 -0
  866. teradataml/data/naivebayestextclassifierpredict_example.json +32 -0
  867. teradataml/data/name_Find_configure.csv +10 -0
  868. teradataml/data/namedentityfinder_example.json +14 -0
  869. teradataml/data/namedentityfinderevaluator_example.json +10 -0
  870. teradataml/data/namedentityfindertrainer_example.json +6 -0
  871. teradataml/data/nb_iris_input_test.csv +31 -0
  872. teradataml/data/nb_iris_input_train.csv +121 -0
  873. teradataml/data/nbp_iris_model.csv +13 -0
  874. teradataml/data/ner_dict.csv +8 -0
  875. teradataml/data/ner_extractor_text.csv +2 -0
  876. teradataml/data/ner_input_eng.csv +7 -0
  877. teradataml/data/ner_rule.csv +5 -0
  878. teradataml/data/ner_sports_test2.csv +29 -0
  879. teradataml/data/ner_sports_train.csv +501 -0
  880. teradataml/data/nerevaluator_example.json +6 -0
  881. teradataml/data/nerextractor_example.json +18 -0
  882. teradataml/data/nermem_sports_test.csv +18 -0
  883. teradataml/data/nermem_sports_train.csv +51 -0
  884. teradataml/data/nertrainer_example.json +7 -0
  885. teradataml/data/ngrams_example.json +7 -0
  886. teradataml/data/notebooks/__init__.py +0 -0
  887. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -0
  888. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -0
  889. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -0
  890. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -0
  891. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -0
  892. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -0
  893. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -0
  894. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -0
  895. teradataml/data/notebooks/sqlalchemy/__init__.py +0 -0
  896. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -0
  897. teradataml/data/npath_example.json +23 -0
  898. teradataml/data/ntree_example.json +14 -0
  899. teradataml/data/numeric_strings.csv +5 -0
  900. teradataml/data/numerics.csv +4 -0
  901. teradataml/data/ocean_buoy.csv +17 -0
  902. teradataml/data/ocean_buoy2.csv +17 -0
  903. teradataml/data/ocean_buoys.csv +28 -0
  904. teradataml/data/ocean_buoys2.csv +10 -0
  905. teradataml/data/ocean_buoys_nonpti.csv +28 -0
  906. teradataml/data/ocean_buoys_seq.csv +29 -0
  907. teradataml/data/onehot_encoder_train.csv +4 -0
  908. teradataml/data/openml_example.json +92 -0
  909. teradataml/data/optional_event_table.csv +4 -0
  910. teradataml/data/orders1.csv +11 -0
  911. teradataml/data/orders1_12.csv +13 -0
  912. teradataml/data/orders_ex.csv +4 -0
  913. teradataml/data/pack_example.json +9 -0
  914. teradataml/data/package_tracking.csv +19 -0
  915. teradataml/data/package_tracking_pti.csv +19 -0
  916. teradataml/data/pagerank_example.json +13 -0
  917. teradataml/data/paragraphs_input.csv +6 -0
  918. teradataml/data/pathanalyzer_example.json +8 -0
  919. teradataml/data/pathgenerator_example.json +8 -0
  920. teradataml/data/patient_profile.csv +101 -0
  921. teradataml/data/pattern_matching_data.csv +11 -0
  922. teradataml/data/payment_fraud_dataset.csv +10001 -0
  923. teradataml/data/peppers.png +0 -0
  924. teradataml/data/phrases.csv +7 -0
  925. teradataml/data/pivot_example.json +9 -0
  926. teradataml/data/pivot_input.csv +22 -0
  927. teradataml/data/playerRating.csv +31 -0
  928. teradataml/data/pos_input.csv +40 -0
  929. teradataml/data/postagger_example.json +7 -0
  930. teradataml/data/posttagger_output.csv +44 -0
  931. teradataml/data/production_data.csv +17 -0
  932. teradataml/data/production_data2.csv +7 -0
  933. teradataml/data/randomsample_example.json +32 -0
  934. teradataml/data/randomwalksample_example.json +9 -0
  935. teradataml/data/rank_table.csv +6 -0
  936. teradataml/data/real_values.csv +14 -0
  937. teradataml/data/ref_mobile_data.csv +4 -0
  938. teradataml/data/ref_mobile_data_dense.csv +2 -0
  939. teradataml/data/ref_url.csv +17 -0
  940. teradataml/data/restaurant_reviews.csv +7 -0
  941. teradataml/data/retail_churn_table.csv +27772 -0
  942. teradataml/data/river_data.csv +145 -0
  943. teradataml/data/roc_example.json +8 -0
  944. teradataml/data/roc_input.csv +101 -0
  945. teradataml/data/rule_inputs.csv +6 -0
  946. teradataml/data/rule_table.csv +2 -0
  947. teradataml/data/sales.csv +7 -0
  948. teradataml/data/sales_transaction.csv +501 -0
  949. teradataml/data/salesdata.csv +342 -0
  950. teradataml/data/sample_cities.csv +3 -0
  951. teradataml/data/sample_shapes.csv +11 -0
  952. teradataml/data/sample_streets.csv +3 -0
  953. teradataml/data/sampling_example.json +16 -0
  954. teradataml/data/sax_example.json +17 -0
  955. teradataml/data/scale_attributes.csv +3 -0
  956. teradataml/data/scale_example.json +74 -0
  957. teradataml/data/scale_housing.csv +11 -0
  958. teradataml/data/scale_housing_test.csv +6 -0
  959. teradataml/data/scale_input_part_sparse.csv +31 -0
  960. teradataml/data/scale_input_partitioned.csv +16 -0
  961. teradataml/data/scale_input_sparse.csv +11 -0
  962. teradataml/data/scale_parameters.csv +3 -0
  963. teradataml/data/scale_stat.csv +11 -0
  964. teradataml/data/scalebypartition_example.json +13 -0
  965. teradataml/data/scalemap_example.json +13 -0
  966. teradataml/data/scalesummary_example.json +12 -0
  967. teradataml/data/score_category.csv +101 -0
  968. teradataml/data/score_summary.csv +4 -0
  969. teradataml/data/script_example.json +10 -0
  970. teradataml/data/scripts/deploy_script.py +84 -0
  971. teradataml/data/scripts/lightgbm/dataset.template +175 -0
  972. teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +264 -0
  973. teradataml/data/scripts/lightgbm/lightgbm_function.template +234 -0
  974. teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +177 -0
  975. teradataml/data/scripts/mapper.R +20 -0
  976. teradataml/data/scripts/mapper.py +16 -0
  977. teradataml/data/scripts/mapper_replace.py +16 -0
  978. teradataml/data/scripts/sklearn/__init__.py +0 -0
  979. teradataml/data/scripts/sklearn/sklearn_fit.py +205 -0
  980. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +148 -0
  981. teradataml/data/scripts/sklearn/sklearn_function.template +144 -0
  982. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +166 -0
  983. teradataml/data/scripts/sklearn/sklearn_neighbors.py +161 -0
  984. teradataml/data/scripts/sklearn/sklearn_score.py +145 -0
  985. teradataml/data/scripts/sklearn/sklearn_transform.py +327 -0
  986. teradataml/data/sdk/modelops/modelops_spec.json +101737 -0
  987. teradataml/data/seeds.csv +10 -0
  988. teradataml/data/sentenceextractor_example.json +7 -0
  989. teradataml/data/sentiment_extract_input.csv +11 -0
  990. teradataml/data/sentiment_train.csv +16 -0
  991. teradataml/data/sentiment_word.csv +20 -0
  992. teradataml/data/sentiment_word_input.csv +20 -0
  993. teradataml/data/sentimentextractor_example.json +24 -0
  994. teradataml/data/sentimenttrainer_example.json +8 -0
  995. teradataml/data/sequence_table.csv +10 -0
  996. teradataml/data/seriessplitter_example.json +8 -0
  997. teradataml/data/sessionize_example.json +17 -0
  998. teradataml/data/sessionize_table.csv +116 -0
  999. teradataml/data/setop_test1.csv +24 -0
  1000. teradataml/data/setop_test2.csv +22 -0
  1001. teradataml/data/soc_nw_edges.csv +11 -0
  1002. teradataml/data/soc_nw_vertices.csv +8 -0
  1003. teradataml/data/souvenir_timeseries.csv +168 -0
  1004. teradataml/data/sparse_iris_attribute.csv +5 -0
  1005. teradataml/data/sparse_iris_test.csv +121 -0
  1006. teradataml/data/sparse_iris_train.csv +601 -0
  1007. teradataml/data/star1.csv +6 -0
  1008. teradataml/data/star_pivot.csv +8 -0
  1009. teradataml/data/state_transition.csv +5 -0
  1010. teradataml/data/stock_data.csv +53 -0
  1011. teradataml/data/stock_movement.csv +11 -0
  1012. teradataml/data/stock_vol.csv +76 -0
  1013. teradataml/data/stop_words.csv +8 -0
  1014. teradataml/data/store_sales.csv +37 -0
  1015. teradataml/data/stringsimilarity_example.json +8 -0
  1016. teradataml/data/strsimilarity_input.csv +13 -0
  1017. teradataml/data/students.csv +101 -0
  1018. teradataml/data/svm_iris_input_test.csv +121 -0
  1019. teradataml/data/svm_iris_input_train.csv +481 -0
  1020. teradataml/data/svm_iris_model.csv +7 -0
  1021. teradataml/data/svmdense_example.json +10 -0
  1022. teradataml/data/svmdensepredict_example.json +19 -0
  1023. teradataml/data/svmsparse_example.json +8 -0
  1024. teradataml/data/svmsparsepredict_example.json +14 -0
  1025. teradataml/data/svmsparsesummary_example.json +8 -0
  1026. teradataml/data/target_mobile_data.csv +13 -0
  1027. teradataml/data/target_mobile_data_dense.csv +5 -0
  1028. teradataml/data/target_udt_data.csv +8 -0
  1029. teradataml/data/tdnerextractor_example.json +14 -0
  1030. teradataml/data/templatedata.csv +1201 -0
  1031. teradataml/data/templates/open_source_ml.json +11 -0
  1032. teradataml/data/teradata_icon.ico +0 -0
  1033. teradataml/data/teradataml_example.json +1473 -0
  1034. teradataml/data/test_classification.csv +101 -0
  1035. teradataml/data/test_loan_prediction.csv +53 -0
  1036. teradataml/data/test_pacf_12.csv +37 -0
  1037. teradataml/data/test_prediction.csv +101 -0
  1038. teradataml/data/test_regression.csv +101 -0
  1039. teradataml/data/test_river2.csv +109 -0
  1040. teradataml/data/text_inputs.csv +6 -0
  1041. teradataml/data/textchunker_example.json +8 -0
  1042. teradataml/data/textclassifier_example.json +7 -0
  1043. teradataml/data/textclassifier_input.csv +7 -0
  1044. teradataml/data/textclassifiertrainer_example.json +7 -0
  1045. teradataml/data/textmorph_example.json +11 -0
  1046. teradataml/data/textparser_example.json +15 -0
  1047. teradataml/data/texttagger_example.json +12 -0
  1048. teradataml/data/texttokenizer_example.json +7 -0
  1049. teradataml/data/texttrainer_input.csv +11 -0
  1050. teradataml/data/tf_example.json +7 -0
  1051. teradataml/data/tfidf_example.json +14 -0
  1052. teradataml/data/tfidf_input1.csv +201 -0
  1053. teradataml/data/tfidf_train.csv +6 -0
  1054. teradataml/data/time_table1.csv +535 -0
  1055. teradataml/data/time_table2.csv +14 -0
  1056. teradataml/data/timeseriesdata.csv +1601 -0
  1057. teradataml/data/timeseriesdatasetsd4.csv +105 -0
  1058. teradataml/data/timestamp_data.csv +4 -0
  1059. teradataml/data/titanic.csv +892 -0
  1060. teradataml/data/titanic_dataset_unpivoted.csv +19 -0
  1061. teradataml/data/to_num_data.csv +4 -0
  1062. teradataml/data/tochar_data.csv +5 -0
  1063. teradataml/data/token_table.csv +696 -0
  1064. teradataml/data/train_multiclass.csv +101 -0
  1065. teradataml/data/train_regression.csv +101 -0
  1066. teradataml/data/train_regression_multiple_labels.csv +101 -0
  1067. teradataml/data/train_tracking.csv +28 -0
  1068. teradataml/data/trans_dense.csv +16 -0
  1069. teradataml/data/trans_sparse.csv +55 -0
  1070. teradataml/data/transformation_table.csv +6 -0
  1071. teradataml/data/transformation_table_new.csv +2 -0
  1072. teradataml/data/tv_spots.csv +16 -0
  1073. teradataml/data/twod_climate_data.csv +117 -0
  1074. teradataml/data/uaf_example.json +529 -0
  1075. teradataml/data/univariatestatistics_example.json +9 -0
  1076. teradataml/data/unpack_example.json +10 -0
  1077. teradataml/data/unpivot_example.json +25 -0
  1078. teradataml/data/unpivot_input.csv +8 -0
  1079. teradataml/data/url_data.csv +10 -0
  1080. teradataml/data/us_air_pass.csv +37 -0
  1081. teradataml/data/us_population.csv +624 -0
  1082. teradataml/data/us_states_shapes.csv +52 -0
  1083. teradataml/data/varmax_example.json +18 -0
  1084. teradataml/data/vectordistance_example.json +30 -0
  1085. teradataml/data/ville_climatedata.csv +121 -0
  1086. teradataml/data/ville_tempdata.csv +12 -0
  1087. teradataml/data/ville_tempdata1.csv +12 -0
  1088. teradataml/data/ville_temperature.csv +11 -0
  1089. teradataml/data/waveletTable.csv +1605 -0
  1090. teradataml/data/waveletTable2.csv +1605 -0
  1091. teradataml/data/weightedmovavg_example.json +9 -0
  1092. teradataml/data/wft_testing.csv +5 -0
  1093. teradataml/data/windowdfft.csv +16 -0
  1094. teradataml/data/wine_data.csv +1600 -0
  1095. teradataml/data/word_embed_input_table1.csv +6 -0
  1096. teradataml/data/word_embed_input_table2.csv +5 -0
  1097. teradataml/data/word_embed_model.csv +23 -0
  1098. teradataml/data/words_input.csv +13 -0
  1099. teradataml/data/xconvolve_complex_left.csv +6 -0
  1100. teradataml/data/xconvolve_complex_leftmulti.csv +6 -0
  1101. teradataml/data/xgboost_example.json +36 -0
  1102. teradataml/data/xgboostpredict_example.json +32 -0
  1103. teradataml/data/ztest_example.json +16 -0
  1104. teradataml/dataframe/__init__.py +0 -0
  1105. teradataml/dataframe/copy_to.py +2446 -0
  1106. teradataml/dataframe/data_transfer.py +2840 -0
  1107. teradataml/dataframe/dataframe.py +20908 -0
  1108. teradataml/dataframe/dataframe_utils.py +2114 -0
  1109. teradataml/dataframe/fastload.py +794 -0
  1110. teradataml/dataframe/functions.py +2110 -0
  1111. teradataml/dataframe/indexer.py +424 -0
  1112. teradataml/dataframe/row.py +160 -0
  1113. teradataml/dataframe/setop.py +1171 -0
  1114. teradataml/dataframe/sql.py +10904 -0
  1115. teradataml/dataframe/sql_function_parameters.py +440 -0
  1116. teradataml/dataframe/sql_functions.py +652 -0
  1117. teradataml/dataframe/sql_interfaces.py +220 -0
  1118. teradataml/dataframe/vantage_function_types.py +675 -0
  1119. teradataml/dataframe/window.py +694 -0
  1120. teradataml/dbutils/__init__.py +3 -0
  1121. teradataml/dbutils/dbutils.py +2871 -0
  1122. teradataml/dbutils/filemgr.py +318 -0
  1123. teradataml/gen_ai/__init__.py +2 -0
  1124. teradataml/gen_ai/convAI.py +473 -0
  1125. teradataml/geospatial/__init__.py +4 -0
  1126. teradataml/geospatial/geodataframe.py +1105 -0
  1127. teradataml/geospatial/geodataframecolumn.py +392 -0
  1128. teradataml/geospatial/geometry_types.py +926 -0
  1129. teradataml/hyperparameter_tuner/__init__.py +1 -0
  1130. teradataml/hyperparameter_tuner/optimizer.py +4115 -0
  1131. teradataml/hyperparameter_tuner/utils.py +303 -0
  1132. teradataml/lib/__init__.py +0 -0
  1133. teradataml/lib/aed_0_1.dll +0 -0
  1134. teradataml/lib/libaed_0_1.dylib +0 -0
  1135. teradataml/lib/libaed_0_1.so +0 -0
  1136. teradataml/lib/libaed_0_1_aarch64.so +0 -0
  1137. teradataml/lib/libaed_0_1_ppc64le.so +0 -0
  1138. teradataml/opensource/__init__.py +1 -0
  1139. teradataml/opensource/_base.py +1321 -0
  1140. teradataml/opensource/_class.py +464 -0
  1141. teradataml/opensource/_constants.py +61 -0
  1142. teradataml/opensource/_lightgbm.py +949 -0
  1143. teradataml/opensource/_sklearn.py +1008 -0
  1144. teradataml/opensource/_wrapper_utils.py +267 -0
  1145. teradataml/options/__init__.py +148 -0
  1146. teradataml/options/configure.py +489 -0
  1147. teradataml/options/display.py +187 -0
  1148. teradataml/plot/__init__.py +3 -0
  1149. teradataml/plot/axis.py +1427 -0
  1150. teradataml/plot/constants.py +15 -0
  1151. teradataml/plot/figure.py +431 -0
  1152. teradataml/plot/plot.py +810 -0
  1153. teradataml/plot/query_generator.py +83 -0
  1154. teradataml/plot/subplot.py +216 -0
  1155. teradataml/scriptmgmt/UserEnv.py +4273 -0
  1156. teradataml/scriptmgmt/__init__.py +3 -0
  1157. teradataml/scriptmgmt/lls_utils.py +2157 -0
  1158. teradataml/sdk/README.md +79 -0
  1159. teradataml/sdk/__init__.py +4 -0
  1160. teradataml/sdk/_auth_modes.py +422 -0
  1161. teradataml/sdk/_func_params.py +487 -0
  1162. teradataml/sdk/_json_parser.py +453 -0
  1163. teradataml/sdk/_openapi_spec_constants.py +249 -0
  1164. teradataml/sdk/_utils.py +236 -0
  1165. teradataml/sdk/api_client.py +900 -0
  1166. teradataml/sdk/constants.py +62 -0
  1167. teradataml/sdk/modelops/__init__.py +98 -0
  1168. teradataml/sdk/modelops/_client.py +409 -0
  1169. teradataml/sdk/modelops/_constants.py +304 -0
  1170. teradataml/sdk/modelops/models.py +2308 -0
  1171. teradataml/sdk/spinner.py +107 -0
  1172. teradataml/series/__init__.py +0 -0
  1173. teradataml/series/series.py +537 -0
  1174. teradataml/series/series_utils.py +71 -0
  1175. teradataml/store/__init__.py +12 -0
  1176. teradataml/store/feature_store/__init__.py +0 -0
  1177. teradataml/store/feature_store/constants.py +658 -0
  1178. teradataml/store/feature_store/feature_store.py +4814 -0
  1179. teradataml/store/feature_store/mind_map.py +639 -0
  1180. teradataml/store/feature_store/models.py +7330 -0
  1181. teradataml/store/feature_store/utils.py +390 -0
  1182. teradataml/table_operators/Apply.py +979 -0
  1183. teradataml/table_operators/Script.py +1739 -0
  1184. teradataml/table_operators/TableOperator.py +1343 -0
  1185. teradataml/table_operators/__init__.py +2 -0
  1186. teradataml/table_operators/apply_query_generator.py +262 -0
  1187. teradataml/table_operators/query_generator.py +493 -0
  1188. teradataml/table_operators/table_operator_query_generator.py +462 -0
  1189. teradataml/table_operators/table_operator_util.py +726 -0
  1190. teradataml/table_operators/templates/dataframe_apply.template +184 -0
  1191. teradataml/table_operators/templates/dataframe_map.template +176 -0
  1192. teradataml/table_operators/templates/dataframe_register.template +73 -0
  1193. teradataml/table_operators/templates/dataframe_udf.template +67 -0
  1194. teradataml/table_operators/templates/script_executor.template +170 -0
  1195. teradataml/telemetry_utils/__init__.py +0 -0
  1196. teradataml/telemetry_utils/queryband.py +53 -0
  1197. teradataml/utils/__init__.py +0 -0
  1198. teradataml/utils/docstring.py +527 -0
  1199. teradataml/utils/dtypes.py +943 -0
  1200. teradataml/utils/internal_buffer.py +122 -0
  1201. teradataml/utils/print_versions.py +206 -0
  1202. teradataml/utils/utils.py +451 -0
  1203. teradataml/utils/validators.py +3305 -0
  1204. teradataml-20.0.0.8.dist-info/METADATA +2804 -0
  1205. teradataml-20.0.0.8.dist-info/RECORD +1208 -0
  1206. teradataml-20.0.0.8.dist-info/WHEEL +5 -0
  1207. teradataml-20.0.0.8.dist-info/top_level.txt +1 -0
  1208. teradataml-20.0.0.8.dist-info/zip-safe +1 -0
@@ -0,0 +1,2445 @@
1
+ "userid","itemid","rating"
2
+ 5,1,4
3
+ 9,17,3
4
+ 7,50,4.5
5
+ 6,1,4
6
+ 5,5,3
7
+ 9,32,2
8
+ 7,58,3.5
9
+ 6,2,3
10
+ 5,6,4
11
+ 9,34,5
12
+ 7,112,4.5
13
+ 6,6,4
14
+ 5,11,4
15
+ 9,36,4
16
+ 7,520,4
17
+ 6,10,4
18
+ 5,14,4
19
+ 9,39,2
20
+ 7,745,4.5
21
+ 6,16,4
22
+ 5,16,5
23
+ 9,43,3
24
+ 7,1094,4
25
+ 6,19,3
26
+ 5,21,5
27
+ 9,50,5
28
+ 7,1234,4
29
+ 6,21,4
30
+ 5,32,5
31
+ 9,110,5
32
+ 7,1252,5
33
+ 6,39,3
34
+ 5,39,4
35
+ 9,150,4
36
+ 7,1358,3.5
37
+ 6,47,4
38
+ 5,45,4
39
+ 9,223,3
40
+ 7,1380,3
41
+ 6,50,4
42
+ 5,47,5
43
+ 9,235,4
44
+ 7,1639,3.5
45
+ 6,62,4
46
+ 5,50,5
47
+ 9,247,3
48
+ 7,2194,4
49
+ 6,63,3
50
+ 5,52,5
51
+ 9,253,4
52
+ 7,2268,2
53
+ 6,70,3.5
54
+ 5,89,3
55
+ 9,265,3
56
+ 7,2302,3.5
57
+ 6,72,3
58
+ 5,105,5
59
+ 9,300,3
60
+ 7,2406,3.5
61
+ 6,104,4
62
+ 5,110,4
63
+ 9,318,5
64
+ 7,2599,3
65
+ 6,111,4
66
+ 5,111,5
67
+ 9,407,4
68
+ 7,3751,4
69
+ 6,145,4
70
+ 5,141,5
71
+ 9,428,3
72
+ 7,3801,4.5
73
+ 6,153,3
74
+ 5,150,4
75
+ 9,434,3
76
+ 7,4034,4.5
77
+ 6,165,3.5
78
+ 5,151,4
79
+ 9,481,4
80
+ 7,5008,4
81
+ 6,215,5
82
+ 5,161,4
83
+ 9,482,4
84
+ 7,5060,4
85
+ 6,223,4
86
+ 5,162,5
87
+ 9,527,4
88
+ 7,5637,4
89
+ 6,231,3
90
+ 5,171,5
91
+ 9,555,4
92
+ 7,6777,4.5
93
+ 6,260,4
94
+ 5,175,4
95
+ 9,562,4
96
+ 7,6787,4.5
97
+ 6,293,5
98
+ 5,180,4
99
+ 9,593,5
100
+ 4,32,4.5
101
+ 6,316,2.5
102
+ 5,194,5
103
+ 9,608,4
104
+ 4,163,3
105
+ 6,318,5
106
+ 5,223,5
107
+ 9,671,1
108
+ 4,172,3
109
+ 6,344,2.5
110
+ 5,225,3
111
+ 9,780,3
112
+ 4,315,3
113
+ 6,353,4
114
+ 5,231,2
115
+ 9,785,3
116
+ 4,318,5
117
+ 6,356,4
118
+ 5,235,4
119
+ 9,898,5
120
+ 4,370,3
121
+ 6,364,3
122
+ 5,253,5
123
+ 9,902,3
124
+ 4,435,2
125
+ 6,367,2.5
126
+ 5,260,3
127
+ 9,903,4
128
+ 4,555,4
129
+ 6,368,4
130
+ 5,265,4
131
+ 9,904,5
132
+ 4,805,4
133
+ 6,377,3.5
134
+ 5,272,4
135
+ 9,908,5
136
+ 4,1242,5
137
+ 6,380,3.5
138
+ 5,282,4
139
+ 9,915,5
140
+ 4,1252,5
141
+ 6,413,3.5
142
+ 5,296,5
143
+ 9,923,4
144
+ 4,1278,3.5
145
+ 6,420,3.5
146
+ 5,299,3
147
+ 9,930,5
148
+ 4,1302,5
149
+ 6,434,3
150
+ 5,300,5
151
+ 9,932,5
152
+ 4,1500,3.5
153
+ 6,442,4
154
+ 5,318,5
155
+ 9,948,3
156
+ 4,1639,4
157
+ 6,454,3.5
158
+ 5,321,5
159
+ 9,949,4
160
+ 4,2353,4
161
+ 6,466,3
162
+ 5,322,4
163
+ 9,951,5
164
+ 4,2572,3.5
165
+ 6,480,3.5
166
+ 5,337,4
167
+ 9,956,4
168
+ 4,2699,4
169
+ 6,500,3
170
+ 5,345,5
171
+ 9,1010,5
172
+ 4,2890,4.5
173
+ 6,520,2.5
174
+ 5,349,4
175
+ 9,1013,4
176
+ 4,3101,4
177
+ 6,553,3.5
178
+ 5,353,4
179
+ 9,1041,4
180
+ 4,3112,4
181
+ 6,586,3.5
182
+ 5,356,2
183
+ 9,1090,5
184
+ 4,8169,3
185
+ 6,588,4
186
+ 5,363,5
187
+ 9,1093,4
188
+ 4,8636,3
189
+ 6,589,4
190
+ 5,364,3
191
+ 9,1103,3
192
+ 4,69757,3.5
193
+ 6,592,4
194
+ 5,367,4
195
+ 9,1104,5
196
+ 6,595,3
197
+ 5,373,5
198
+ 9,1179,4
199
+ 6,608,3
200
+ 5,377,4
201
+ 9,1201,4
202
+ 6,628,4
203
+ 5,380,3
204
+ 9,1203,4
205
+ 6,648,4
206
+ 5,428,4
207
+ 9,1213,5
208
+ 6,733,5
209
+ 5,431,4
210
+ 9,1215,3
211
+ 6,736,3
212
+ 5,441,4
213
+ 9,1219,4
214
+ 6,750,4
215
+ 5,446,4
216
+ 9,1265,4
217
+ 6,778,4
218
+ 5,457,3
219
+ 9,1269,5
220
+ 6,780,5
221
+ 5,471,5
222
+ 9,1304,5
223
+ 6,788,3
224
+ 5,477,5
225
+ 9,1334,4
226
+ 6,832,3.5
227
+ 5,480,4
228
+ 9,1387,4
229
+ 6,852,3.5
230
+ 5,486,2
231
+ 9,1513,2
232
+ 6,858,4
233
+ 5,488,5
234
+ 9,1580,3
235
+ 6,953,5
236
+ 5,491,4
237
+ 9,1587,3
238
+ 6,1036,4
239
+ 5,508,5
240
+ 9,1617,3
241
+ 6,1059,5
242
+ 5,509,5
243
+ 9,1639,2
244
+ 6,1060,4
245
+ 5,515,4
246
+ 9,1641,4
247
+ 6,1073,4
248
+ 5,527,5
249
+ 9,1673,4
250
+ 6,1097,3.5
251
+ 5,532,4
252
+ 9,1885,3
253
+ 6,1101,4
254
+ 5,538,5
255
+ 9,1911,3
256
+ 6,1148,4
257
+ 5,539,3
258
+ 9,1963,4
259
+ 6,1196,5
260
+ 5,541,5
261
+ 9,2160,5
262
+ 6,1202,3.5
263
+ 5,551,4
264
+ 9,2176,5
265
+ 6,1210,5
266
+ 5,553,3
267
+ 9,2188,3
268
+ 6,1213,4.5
269
+ 5,581,5
270
+ 9,2321,2
271
+ 6,1221,4
272
+ 5,585,3
273
+ 9,2336,4
274
+ 6,1234,5
275
+ 5,588,4
276
+ 9,2340,2
277
+ 6,1240,4
278
+ 5,589,4
279
+ 9,2355,3
280
+ 6,1246,4
281
+ 5,590,4
282
+ 9,2395,4
283
+ 6,1247,4.5
284
+ 5,592,4
285
+ 9,2413,2
286
+ 6,1259,4
287
+ 5,593,5
288
+ 9,2490,3
289
+ 6,1265,5
290
+ 5,594,5
291
+ 9,2502,3
292
+ 6,1270,4
293
+ 5,595,3
294
+ 9,2541,3
295
+ 6,1288,4
296
+ 5,596,3
297
+ 9,2546,2
298
+ 6,1291,3.5
299
+ 5,597,3
300
+ 9,2550,4
301
+ 6,1370,3.5
302
+ 5,599,3
303
+ 9,2572,4
304
+ 6,1377,3.5
305
+ 5,608,5
306
+ 9,2581,3
307
+ 6,1380,3.5
308
+ 5,610,4
309
+ 9,2598,3
310
+ 6,1391,3
311
+ 5,628,4
312
+ 9,2599,4
313
+ 6,1485,3
314
+ 5,648,4
315
+ 9,2605,3
316
+ 6,1527,3.5
317
+ 5,663,4
318
+ 9,2676,1
319
+ 6,1552,4
320
+ 5,671,4
321
+ 9,2683,2
322
+ 6,1573,4
323
+ 5,708,4
324
+ 9,2686,5
325
+ 6,1580,3
326
+ 5,722,5
327
+ 9,2694,2
328
+ 6,1610,4
329
+ 5,733,3
330
+ 9,2699,3
331
+ 6,1617,4
332
+ 5,750,5
333
+ 9,2702,3
334
+ 6,1653,5
335
+ 5,766,5
336
+ 9,2706,5
337
+ 6,1658,5
338
+ 5,778,5
339
+ 9,2707,4
340
+ 6,1676,3.5
341
+ 5,832,4
342
+ 9,2710,4
343
+ 6,1680,4
344
+ 5,851,5
345
+ 9,2712,2
346
+ 6,1682,4
347
+ 5,858,5
348
+ 9,2718,4
349
+ 6,1704,4
350
+ 5,897,3
351
+ 9,2719,3
352
+ 6,1721,3.5
353
+ 5,898,4
354
+ 9,2723,4
355
+ 6,1722,3.5
356
+ 5,899,3
357
+ 9,2724,1
358
+ 6,1732,4.5
359
+ 5,900,3
360
+ 9,2729,5
361
+ 6,1747,4
362
+ 5,902,4
363
+ 9,2734,2
364
+ 6,1755,4
365
+ 5,903,5
366
+ 9,2759,3
367
+ 6,1831,3.5
368
+ 5,904,5
369
+ 9,2762,4
370
+ 6,1876,2.5
371
+ 5,905,3
372
+ 9,2763,2
373
+ 6,1884,3.5
374
+ 5,908,5
375
+ 9,2770,3
376
+ 6,1917,4
377
+ 5,909,3
378
+ 9,2771,2
379
+ 6,1923,3.5
380
+ 5,910,5
381
+ 9,2772,3
382
+ 6,1954,4.5
383
+ 5,911,4
384
+ 9,2805,2
385
+ 6,1961,4
386
+ 5,912,4
387
+ 9,2826,4
388
+ 6,2000,3.5
389
+ 5,913,4
390
+ 9,2827,3
391
+ 6,2003,4
392
+ 5,914,3
393
+ 9,2840,3
394
+ 6,2005,4.5
395
+ 5,915,4
396
+ 9,2858,3
397
+ 6,2011,3.5
398
+ 5,916,3
399
+ 9,2861,3
400
+ 6,2012,3.5
401
+ 5,918,2
402
+ 9,2870,4
403
+ 6,2028,4
404
+ 5,919,5
405
+ 9,2881,3
406
+ 6,2054,3
407
+ 5,920,5
408
+ 9,2906,2
409
+ 6,2081,3
410
+ 5,921,4
411
+ 9,2947,4
412
+ 6,2082,4
413
+ 5,922,5
414
+ 9,2949,4
415
+ 6,2115,4
416
+ 5,923,5
417
+ 9,2961,3
418
+ 6,2134,2.5
419
+ 5,924,5
420
+ 9,2993,4
421
+ 6,2161,4
422
+ 5,926,3
423
+ 9,2995,2
424
+ 6,2167,4
425
+ 5,927,4
426
+ 9,2997,5
427
+ 6,2194,4
428
+ 5,928,5
429
+ 9,3005,3
430
+ 6,2291,4
431
+ 5,930,4
432
+ 9,3016,5
433
+ 6,2296,4.5
434
+ 5,931,4
435
+ 9,3074,5
436
+ 6,2302,3.5
437
+ 5,933,4
438
+ 9,3079,2
439
+ 6,2324,5
440
+ 5,934,4
441
+ 9,3081,3
442
+ 6,2329,4
443
+ 5,938,4
444
+ 9,3113,3
445
+ 6,2335,4
446
+ 5,940,3
447
+ 9,3146,4
448
+ 6,2340,4
449
+ 5,941,3
450
+ 9,3168,5
451
+ 6,2355,2.5
452
+ 5,942,4
453
+ 9,3203,3
454
+ 6,2378,2.5
455
+ 5,943,4
456
+ 9,3219,4
457
+ 6,2380,4
458
+ 5,944,3
459
+ 9,3238,3
460
+ 6,2381,4
461
+ 5,945,4
462
+ 9,3263,2
463
+ 6,2382,3.5
464
+ 5,946,3
465
+ 9,3296,3
466
+ 6,2383,4
467
+ 5,947,4
468
+ 9,3501,3
469
+ 6,2396,3.5
470
+ 5,948,5
471
+ 9,3565,3
472
+ 6,2406,2.5
473
+ 5,949,5
474
+ 9,3578,5
475
+ 6,2411,3.5
476
+ 5,950,3
477
+ 9,3623,4
478
+ 6,2412,2
479
+ 5,951,4
480
+ 9,3633,4
481
+ 6,2420,5
482
+ 5,952,4
483
+ 9,3635,4
484
+ 6,2421,3.5
485
+ 5,953,2
486
+ 9,3638,4
487
+ 6,2424,3.5
488
+ 5,954,3
489
+ 9,3752,4
490
+ 6,2470,3.5
491
+ 5,955,3
492
+ 9,3769,5
493
+ 6,2502,4
494
+ 5,965,3
495
+ 9,3809,4
496
+ 6,2541,3.5
497
+ 5,968,3
498
+ 9,3835,4
499
+ 6,2542,5
500
+ 5,969,5
501
+ 9,3844,4
502
+ 6,2571,5
503
+ 5,971,4
504
+ 9,3846,4
505
+ 6,2572,5
506
+ 5,982,3
507
+ 9,3869,4
508
+ 6,2617,3
509
+ 5,1012,3
510
+ 9,4148,5
511
+ 6,2628,3.5
512
+ 5,1018,3
513
+ 10,207,3.5
514
+ 6,2671,3
515
+ 5,1019,5
516
+ 10,595,3.5
517
+ 6,2683,3.5
518
+ 5,1022,3
519
+ 10,596,4
520
+ 6,2699,3
521
+ 5,1029,4
522
+ 10,832,4
523
+ 6,2700,4
524
+ 5,1034,4
525
+ 10,851,2
526
+ 6,2706,4
527
+ 5,1035,2
528
+ 10,899,4.5
529
+ 6,2716,4
530
+ 5,1036,3
531
+ 10,1092,3.5
532
+ 6,2763,4
533
+ 5,1044,4
534
+ 10,1101,3
535
+ 6,2797,4.5
536
+ 5,1046,5
537
+ 10,1263,4
538
+ 6,2858,4.5
539
+ 5,1059,4
540
+ 10,1485,3
541
+ 6,2916,4
542
+ 5,1060,4
543
+ 10,2054,4
544
+ 6,2918,4.5
545
+ 5,1073,3
546
+ 10,2081,3
547
+ 6,2959,5
548
+ 5,1076,5
549
+ 10,2096,3
550
+ 6,2985,4
551
+ 5,1077,4
552
+ 10,2273,4
553
+ 6,2987,4
554
+ 5,1078,3
555
+ 10,2687,3.5
556
+ 6,3020,4.5
557
+ 5,1079,5
558
+ 10,3114,4
559
+ 6,3039,4.5
560
+ 5,1080,4
561
+ 10,4310,3.5
562
+ 6,3087,4.5
563
+ 5,1081,4
564
+ 10,5060,2
565
+ 6,3114,4
566
+ 5,1082,3
567
+ 10,5377,3
568
+ 6,3146,3.5
569
+ 5,1083,4
570
+ 10,5632,2
571
+ 6,3147,3.5
572
+ 5,1084,4
573
+ 10,5952,4
574
+ 6,3160,3.5
575
+ 5,1086,4
576
+ 6,3253,4
577
+ 5,1089,5
578
+ 6,3254,4
579
+ 5,1090,3
580
+ 6,3271,4.5
581
+ 5,1093,5
582
+ 6,3408,3
583
+ 5,1094,4
584
+ 6,3479,3
585
+ 5,1095,4
586
+ 6,3481,5
587
+ 5,1096,4
588
+ 6,3513,3.5
589
+ 5,1097,3
590
+ 6,3578,4.5
591
+ 5,1099,3
592
+ 6,3740,4
593
+ 5,1101,2
594
+ 6,3751,4
595
+ 5,1103,5
596
+ 6,3753,3.5
597
+ 5,1104,5
598
+ 6,3897,4.5
599
+ 5,1120,5
600
+ 6,3948,2.5
601
+ 5,1124,4
602
+ 6,3949,4
603
+ 5,1128,3
604
+ 6,3996,4
605
+ 5,1129,4
606
+ 6,4006,4.5
607
+ 5,1130,3
608
+ 6,4011,5
609
+ 5,1132,4
610
+ 6,4014,4
611
+ 5,1136,5
612
+ 6,4018,4
613
+ 5,1161,4
614
+ 6,4022,3.5
615
+ 5,1162,4
616
+ 6,4084,3
617
+ 5,1171,5
618
+ 6,4085,3.5
619
+ 5,1172,3
620
+ 6,4223,4
621
+ 5,1175,5
622
+ 6,4226,4.5
623
+ 5,1179,4
624
+ 6,4235,4
625
+ 5,1186,4
626
+ 6,4246,3.5
627
+ 5,1187,3
628
+ 6,4306,4
629
+ 5,1189,5
630
+ 6,4308,5
631
+ 5,1190,3
632
+ 6,4370,3.5
633
+ 5,1191,4
634
+ 6,4487,3.5
635
+ 5,1192,5
636
+ 6,4489,4
637
+ 5,1193,4
638
+ 6,4545,3.5
639
+ 5,1196,3
640
+ 6,4571,4
641
+ 5,1197,3
642
+ 6,4614,3.5
643
+ 5,1198,4
644
+ 6,4673,4
645
+ 5,1199,5
646
+ 6,4720,4
647
+ 5,1200,4
648
+ 6,4776,4
649
+ 5,1201,3
650
+ 6,4816,5
651
+ 5,1203,4
652
+ 6,4848,4
653
+ 5,1204,5
654
+ 6,4878,4
655
+ 5,1206,5
656
+ 6,4963,4.5
657
+ 5,1207,5
658
+ 6,4973,5
659
+ 5,1208,5
660
+ 6,4975,4
661
+ 5,1209,3
662
+ 6,4979,3.5
663
+ 5,1210,3
664
+ 6,4980,3
665
+ 5,1212,4
666
+ 6,4993,3.5
667
+ 5,1213,5
668
+ 6,4995,3.5
669
+ 5,1214,5
670
+ 6,5055,4
671
+ 5,1217,5
672
+ 6,5137,4.5
673
+ 5,1219,5
674
+ 6,5151,3.5
675
+ 5,1220,4
676
+ 6,5283,4
677
+ 5,1222,5
678
+ 6,5377,4
679
+ 5,1225,4
680
+ 6,5378,4
681
+ 5,1226,4
682
+ 6,5418,4
683
+ 5,1227,4
684
+ 6,5445,3.5
685
+ 5,1228,4
686
+ 6,5459,2.5
687
+ 5,1230,5
688
+ 6,5618,3.5
689
+ 5,1231,3
690
+ 6,5669,3.5
691
+ 5,1233,3
692
+ 6,5673,4
693
+ 5,1234,3
694
+ 6,5810,4.5
695
+ 5,1235,4
696
+ 6,5876,3.5
697
+ 5,1238,4
698
+ 6,5903,3
699
+ 5,1240,4
700
+ 6,5952,4
701
+ 5,1244,5
702
+ 6,5956,3.5
703
+ 5,1246,5
704
+ 6,5989,4
705
+ 5,1247,4
706
+ 6,6016,5
707
+ 5,1249,5
708
+ 6,6188,4.5
709
+ 5,1250,4
710
+ 6,6218,3.5
711
+ 5,1251,3
712
+ 6,6281,3.5
713
+ 5,1252,4
714
+ 6,6365,3.5
715
+ 5,1253,5
716
+ 6,6377,4
717
+ 5,1254,5
718
+ 6,6502,4
719
+ 5,1256,5
720
+ 6,6548,4
721
+ 5,1258,5
722
+ 6,6618,3.5
723
+ 5,1259,4
724
+ 6,6664,5
725
+ 5,1262,3
726
+ 6,6711,5
727
+ 5,1263,4
728
+ 6,6796,3.5
729
+ 5,1264,5
730
+ 6,6863,4
731
+ 5,1265,3
732
+ 6,6874,4
733
+ 5,1266,5
734
+ 6,6936,5
735
+ 5,1267,5
736
+ 6,6942,4.5
737
+ 5,1268,4
738
+ 6,7033,4
739
+ 5,1269,4
740
+ 6,7090,4
741
+ 5,1270,3
742
+ 6,7147,4
743
+ 5,1271,4
744
+ 6,7153,4
745
+ 5,1272,5
746
+ 6,7254,4
747
+ 5,1274,5
748
+ 6,7259,2
749
+ 5,1275,4
750
+ 6,7325,3.5
751
+ 5,1276,3
752
+ 6,7361,5
753
+ 5,1278,5
754
+ 6,7438,4
755
+ 5,1279,4
756
+ 6,7762,4
757
+ 5,1282,4
758
+ 6,7844,4.5
759
+ 5,1283,3
760
+ 6,7981,4.5
761
+ 5,1285,4
762
+ 6,8360,3.5
763
+ 5,1286,4
764
+ 6,8376,4
765
+ 5,1287,4
766
+ 6,8464,3.5
767
+ 5,1288,4
768
+ 6,8528,4.5
769
+ 5,1291,3
770
+ 6,8529,4
771
+ 5,1292,4
772
+ 6,8533,4
773
+ 5,1293,5
774
+ 6,8638,5
775
+ 5,1295,5
776
+ 6,8641,5
777
+ 5,1296,4
778
+ 6,8665,4
779
+ 5,1297,3
780
+ 6,8784,4.5
781
+ 5,1298,5
782
+ 6,8798,3.5
783
+ 5,1299,5
784
+ 6,8873,4
785
+ 5,1302,3
786
+ 6,8874,4
787
+ 5,1303,4
788
+ 6,8910,4.5
789
+ 5,1304,3
790
+ 6,8917,4
791
+ 5,1305,4
792
+ 6,8961,4
793
+ 5,1307,3
794
+ 6,8983,3.5
795
+ 5,1321,5
796
+ 6,25941,4
797
+ 5,1329,2
798
+ 6,26547,4.5
799
+ 5,1332,3
800
+ 6,26614,4.5
801
+ 5,1333,5
802
+ 6,26865,3.5
803
+ 5,1340,5
804
+ 6,27592,4
805
+ 5,1343,5
806
+ 6,27773,5
807
+ 5,1345,4
808
+ 6,27801,4.5
809
+ 5,1346,4
810
+ 6,27808,4
811
+ 5,1347,3
812
+ 6,27831,4.5
813
+ 5,1348,3
814
+ 6,30707,4
815
+ 5,1350,4
816
+ 6,30793,3
817
+ 5,1355,3
818
+ 6,30810,4.5
819
+ 5,1356,3
820
+ 6,31878,4
821
+ 5,1358,5
822
+ 6,33493,4
823
+ 5,1370,2
824
+ 6,33679,3.5
825
+ 5,1372,3
826
+ 6,33794,4.5
827
+ 5,1374,4
828
+ 6,34048,3.5
829
+ 5,1378,3
830
+ 6,34162,4
831
+ 5,1380,3
832
+ 6,35836,3.5
833
+ 5,1387,4
834
+ 6,35957,3
835
+ 5,1391,4
836
+ 6,38038,3.5
837
+ 5,1393,4
838
+ 6,38061,4.5
839
+ 5,1394,5
840
+ 6,40629,3.5
841
+ 5,1396,4
842
+ 6,42632,4.5
843
+ 5,1401,4
844
+ 6,44195,4
845
+ 5,1405,4
846
+ 6,44199,4.5
847
+ 5,1408,5
848
+ 6,44665,4
849
+ 5,1419,4
850
+ 6,45183,4.5
851
+ 5,1449,4
852
+ 6,45728,4
853
+ 5,1466,4
854
+ 6,46578,3.5
855
+ 5,1480,4
856
+ 6,46970,3.5
857
+ 5,1517,5
858
+ 6,46976,5
859
+ 5,1580,2
860
+ 6,47200,2
861
+ 5,1584,5
862
+ 6,47610,4
863
+ 5,1587,2
864
+ 6,48385,4
865
+ 5,1589,2
866
+ 6,48394,3.5
867
+ 5,1594,3
868
+ 6,48516,4
869
+ 5,1610,4
870
+ 6,48774,4.5
871
+ 5,1611,5
872
+ 6,48780,4
873
+ 5,1613,4
874
+ 6,49272,4.5
875
+ 5,1617,4
876
+ 6,51662,3.5
877
+ 5,1625,4
878
+ 6,51939,4
879
+ 5,1627,4
880
+ 6,52973,4
881
+ 5,1639,5
882
+ 6,53972,3.5
883
+ 5,1641,5
884
+ 6,53996,3
885
+ 5,1645,4
886
+ 6,54286,4.5
887
+ 5,1653,5
888
+ 6,54503,4
889
+ 5,1663,4
890
+ 6,54997,4.5
891
+ 5,1673,4
892
+ 6,55267,4
893
+ 5,1674,4
894
+ 6,55442,4
895
+ 5,1678,4
896
+ 6,56174,3.5
897
+ 5,1682,4
898
+ 6,56367,4
899
+ 5,1690,4
900
+ 6,56587,3.5
901
+ 5,1694,5
902
+ 6,56941,4
903
+ 5,1699,4
904
+ 6,58246,3
905
+ 5,1701,4
906
+ 6,58297,1.5
907
+ 5,1704,5
908
+ 6,58334,4
909
+ 5,1711,5
910
+ 6,58559,4.5
911
+ 5,1727,5
912
+ 6,59315,4
913
+ 5,1729,5
914
+ 6,59369,5
915
+ 5,1732,4
916
+ 6,59784,4
917
+ 5,1747,4
918
+ 6,59900,2.5
919
+ 5,1784,4
920
+ 6,60069,4
921
+ 5,1805,2
922
+ 6,61132,3.5
923
+ 5,1883,4
924
+ 6,62511,3
925
+ 5,1884,3
926
+ 6,63082,4
927
+ 5,1885,4
928
+ 6,63113,4
929
+ 5,1909,4
930
+ 6,63859,4
931
+ 5,1913,3
932
+ 6,64285,3
933
+ 5,1921,2
934
+ 6,64499,4
935
+ 5,1923,5
936
+ 6,64614,4
937
+ 5,1924,4
938
+ 6,64839,4
939
+ 5,1925,4
940
+ 6,65514,5
941
+ 5,1927,3
942
+ 6,65810,3
943
+ 5,1935,4
944
+ 6,66509,4.5
945
+ 5,1936,5
946
+ 6,66665,4.5
947
+ 5,1937,3
948
+ 6,67255,3.5
949
+ 5,1939,4
950
+ 6,68237,4.5
951
+ 5,1942,4
952
+ 6,68319,3.5
953
+ 5,1944,4
954
+ 6,69122,4
955
+ 5,1945,4
956
+ 6,69757,4.5
957
+ 5,1946,4
958
+ 6,69951,4
959
+ 5,1947,5
960
+ 6,70286,4
961
+ 5,1948,3
962
+ 6,71254,3
963
+ 5,1949,4
964
+ 6,71520,3.5
965
+ 5,1950,4
966
+ 6,71535,4.5
967
+ 5,1952,3
968
+ 6,71899,4.5
969
+ 5,1953,4
970
+ 6,72011,4
971
+ 5,1954,2
972
+ 6,73266,4
973
+ 5,1955,4
974
+ 6,73323,3.5
975
+ 5,1956,4
976
+ 6,74510,4
977
+ 5,1957,4
978
+ 6,76093,4
979
+ 5,1959,5
980
+ 6,76251,4.5
981
+ 5,1961,3
982
+ 6,77800,4
983
+ 5,1962,4
984
+ 6,78499,4
985
+ 5,1963,3
986
+ 6,79132,5
987
+ 5,1964,3
988
+ 6,79134,3.5
989
+ 5,1965,5
990
+ 6,79553,3.5
991
+ 5,1967,4
992
+ 6,79695,1
993
+ 5,1968,2
994
+ 6,79702,4
995
+ 5,1982,1
996
+ 6,80463,4
997
+ 5,1994,4
998
+ 6,80693,3.5
999
+ 5,1997,4
1000
+ 6,81591,3.5
1001
+ 5,2000,2
1002
+ 6,81932,4
1003
+ 5,2001,3
1004
+ 6,82093,3.5
1005
+ 5,2009,3
1006
+ 6,84152,3.5
1007
+ 5,2010,4
1008
+ 6,84601,3.5
1009
+ 5,2011,3
1010
+ 6,84772,4
1011
+ 5,2017,3
1012
+ 6,85401,3.5
1013
+ 5,2018,3
1014
+ 6,85414,4
1015
+ 5,2020,5
1016
+ 6,86190,4
1017
+ 5,2022,4
1018
+ 6,86332,4
1019
+ 5,2023,5
1020
+ 6,86882,4.5
1021
+ 5,2028,5
1022
+ 6,87192,4.5
1023
+ 5,2046,3
1024
+ 6,87222,4
1025
+ 5,2064,5
1026
+ 6,87232,4
1027
+ 5,2065,3
1028
+ 6,87306,3.5
1029
+ 5,2067,4
1030
+ 6,88129,3.5
1031
+ 5,2068,4
1032
+ 6,88810,4
1033
+ 5,2070,4
1034
+ 6,89305,3.5
1035
+ 5,2076,5
1036
+ 6,89492,4
1037
+ 5,2078,2
1038
+ 6,89745,4
1039
+ 5,2085,3
1040
+ 6,89753,4
1041
+ 5,2094,3
1042
+ 6,89774,5
1043
+ 5,2096,4
1044
+ 6,89864,4.5
1045
+ 5,2097,3
1046
+ 6,90405,3.5
1047
+ 5,2100,4
1048
+ 6,90866,4
1049
+ 5,2102,5
1050
+ 6,91529,4.5
1051
+ 5,2105,4
1052
+ 6,91630,4
1053
+ 5,2108,4
1054
+ 6,91653,3.5
1055
+ 5,2109,3
1056
+ 6,92393,4
1057
+ 5,2110,3
1058
+ 6,93510,4
1059
+ 5,2112,5
1060
+ 6,94864,3
1061
+ 5,2114,4
1062
+ 6,95441,3.5
1063
+ 5,2115,4
1064
+ 6,95873,4
1065
+ 5,2117,3
1066
+ 6,96079,4
1067
+ 5,2124,4
1068
+ 6,96610,4
1069
+ 5,2130,5
1070
+ 6,96693,2.5
1071
+ 5,2132,4
1072
+ 6,96728,1
1073
+ 5,2133,3
1074
+ 6,96737,3.5
1075
+ 5,2138,3
1076
+ 6,96811,3
1077
+ 5,2143,3
1078
+ 6,96821,4.5
1079
+ 5,2145,3
1080
+ 6,96861,3.5
1081
+ 5,2150,3
1082
+ 6,97304,4
1083
+ 5,2155,4
1084
+ 6,97913,4
1085
+ 5,2160,5
1086
+ 6,97921,4
1087
+ 5,2161,3
1088
+ 6,97938,4
1089
+ 5,2165,4
1090
+ 6,98809,3
1091
+ 5,2174,3
1092
+ 6,99149,3
1093
+ 5,2176,5
1094
+ 6,99728,3.5
1095
+ 5,2178,4
1096
+ 6,99813,3.5
1097
+ 5,2180,3
1098
+ 6,100714,3.5
1099
+ 5,2181,4
1100
+ 6,102445,4
1101
+ 5,2183,5
1102
+ 6,102819,4
1103
+ 5,2184,4
1104
+ 6,103042,4
1105
+ 5,2194,3
1106
+ 6,103141,4
1107
+ 5,2202,3
1108
+ 6,103606,3.5
1109
+ 5,2212,5
1110
+ 6,104841,4
1111
+ 5,2231,4
1112
+ 6,106920,4.5
1113
+ 5,2240,4
1114
+ 6,108932,4
1115
+ 5,2242,3
1116
+ 6,109487,4.5
1117
+ 5,2243,3
1118
+ 6,111360,3.5
1119
+ 5,2245,3
1120
+ 6,111362,3.5
1121
+ 5,2247,4
1122
+ 6,111759,4
1123
+ 5,2261,3
1124
+ 6,111815,4
1125
+ 5,2268,4
1126
+ 6,112290,4.5
1127
+ 5,2271,3
1128
+ 6,112623,4
1129
+ 5,2273,3
1130
+ 6,112852,4
1131
+ 5,2278,4
1132
+ 6,115617,4
1133
+ 5,2280,5
1134
+ 6,122892,3
1135
+ 5,2282,4
1136
+ 5,2287,4
1137
+ 5,2288,4
1138
+ 5,2289,5
1139
+ 5,2291,2
1140
+ 5,2294,4
1141
+ 5,2300,5
1142
+ 5,2301,4
1143
+ 5,2302,3
1144
+ 5,2303,5
1145
+ 5,2313,4
1146
+ 5,2320,3
1147
+ 5,2321,3
1148
+ 5,2329,5
1149
+ 5,2331,4
1150
+ 5,2333,5
1151
+ 5,2336,5
1152
+ 5,2337,4
1153
+ 5,2344,4
1154
+ 5,2345,4
1155
+ 5,2348,4
1156
+ 5,2349,4
1157
+ 5,2352,4
1158
+ 5,2353,4
1159
+ 5,2355,4
1160
+ 5,2359,4
1161
+ 5,2361,5
1162
+ 5,2362,4
1163
+ 5,2366,3
1164
+ 5,2370,4
1165
+ 5,2371,2
1166
+ 5,2372,2
1167
+ 5,2378,2
1168
+ 5,2395,4
1169
+ 5,2396,4
1170
+ 5,2398,3
1171
+ 5,2401,3
1172
+ 5,2406,3
1173
+ 5,2414,2
1174
+ 5,2437,5
1175
+ 5,2454,5
1176
+ 5,2455,3
1177
+ 5,2463,4
1178
+ 5,2467,4
1179
+ 5,2469,4
1180
+ 5,2495,4
1181
+ 5,2496,5
1182
+ 5,2501,5
1183
+ 5,2502,5
1184
+ 5,2504,4
1185
+ 5,2518,4
1186
+ 5,2519,4
1187
+ 5,2527,4
1188
+ 5,2528,4
1189
+ 5,2529,3
1190
+ 5,2541,4
1191
+ 5,2542,5
1192
+ 5,2550,5
1193
+ 5,2551,4
1194
+ 5,2553,3
1195
+ 5,2565,4
1196
+ 5,2571,5
1197
+ 5,2580,3
1198
+ 5,2583,4
1199
+ 5,2596,3
1200
+ 5,2613,3
1201
+ 5,2633,3
1202
+ 5,2637,4
1203
+ 5,2648,5
1204
+ 5,2649,4
1205
+ 5,2654,3
1206
+ 5,2657,5
1207
+ 5,2659,5
1208
+ 5,2661,5
1209
+ 5,2662,4
1210
+ 5,2664,4
1211
+ 5,2671,4
1212
+ 5,2677,4
1213
+ 5,2689,4
1214
+ 5,2693,4
1215
+ 5,2706,1
1216
+ 5,2707,4
1217
+ 5,2710,4
1218
+ 5,2712,3
1219
+ 5,2716,4
1220
+ 5,2728,4
1221
+ 5,2729,4
1222
+ 5,2730,4
1223
+ 5,2734,4
1224
+ 5,2739,5
1225
+ 5,2747,2
1226
+ 5,2759,4
1227
+ 5,2762,5
1228
+ 5,2763,5
1229
+ 5,2764,4
1230
+ 5,2779,4
1231
+ 5,2780,2
1232
+ 5,2781,4
1233
+ 5,2782,3
1234
+ 5,2784,2
1235
+ 5,2788,4
1236
+ 5,2791,3
1237
+ 5,2792,2
1238
+ 5,2797,4
1239
+ 5,2804,4
1240
+ 5,2819,3
1241
+ 5,2829,5
1242
+ 5,2841,3
1243
+ 5,2858,5
1244
+ 5,2859,5
1245
+ 5,2863,5
1246
+ 5,2867,4
1247
+ 5,2871,4
1248
+ 5,2872,3
1249
+ 5,2890,5
1250
+ 5,2899,4
1251
+ 5,2901,2
1252
+ 5,2904,4
1253
+ 5,2908,5
1254
+ 5,2912,4
1255
+ 5,2915,3
1256
+ 5,2916,4
1257
+ 5,2917,4
1258
+ 5,2918,3
1259
+ 5,2919,4
1260
+ 5,2921,3
1261
+ 5,2922,3
1262
+ 5,2926,5
1263
+ 5,2932,3
1264
+ 5,2940,4
1265
+ 5,2941,3
1266
+ 5,2944,3
1267
+ 5,2946,5
1268
+ 5,2947,3
1269
+ 5,2948,3
1270
+ 5,2949,3
1271
+ 5,2951,3
1272
+ 5,2959,5
1273
+ 5,2967,5
1274
+ 5,2968,3
1275
+ 5,2970,5
1276
+ 5,2971,5
1277
+ 5,2973,3
1278
+ 5,2983,3
1279
+ 5,2985,2
1280
+ 5,2987,3
1281
+ 5,2988,4
1282
+ 5,2993,3
1283
+ 5,2997,5
1284
+ 5,3006,4
1285
+ 5,3007,5
1286
+ 5,3011,4
1287
+ 5,3016,2
1288
+ 5,3018,2
1289
+ 5,3019,5
1290
+ 5,3022,3
1291
+ 5,3028,4
1292
+ 5,3035,3
1293
+ 5,3037,4
1294
+ 5,3039,3
1295
+ 5,3040,3
1296
+ 5,3044,2
1297
+ 5,3046,4
1298
+ 5,3049,3
1299
+ 5,3052,4
1300
+ 5,3060,4
1301
+ 5,3061,3
1302
+ 5,3066,3
1303
+ 5,3068,4
1304
+ 5,3072,5
1305
+ 5,3073,4
1306
+ 5,3074,3
1307
+ 5,3079,4
1308
+ 5,3088,4
1309
+ 5,3093,2
1310
+ 5,3094,5
1311
+ 5,3095,3
1312
+ 5,3096,3
1313
+ 5,3098,4
1314
+ 5,3099,4
1315
+ 5,3100,4
1316
+ 5,3101,4
1317
+ 5,3102,4
1318
+ 5,3104,4
1319
+ 5,3105,4
1320
+ 5,3107,2
1321
+ 5,3108,4
1322
+ 5,3111,3
1323
+ 5,3133,4
1324
+ 5,3134,4
1325
+ 5,3135,3
1326
+ 5,3148,4
1327
+ 5,3152,4
1328
+ 5,3153,3
1329
+ 5,3157,3
1330
+ 5,3159,5
1331
+ 5,3160,5
1332
+ 5,3168,4
1333
+ 5,3169,4
1334
+ 5,3172,4
1335
+ 5,3174,1
1336
+ 5,3175,4
1337
+ 5,3176,5
1338
+ 5,3182,5
1339
+ 5,3194,2
1340
+ 5,3196,3
1341
+ 5,3197,4
1342
+ 5,3198,2
1343
+ 5,3200,3
1344
+ 5,3201,5
1345
+ 5,3203,4
1346
+ 5,3204,3
1347
+ 5,3210,5
1348
+ 5,3244,3
1349
+ 5,3252,4
1350
+ 5,3253,5
1351
+ 5,3255,4
1352
+ 5,3256,4
1353
+ 5,3260,5
1354
+ 5,3262,4
1355
+ 5,3266,5
1356
+ 5,3274,3
1357
+ 5,3281,5
1358
+ 5,3282,5
1359
+ 5,3284,4
1360
+ 5,3296,3
1361
+ 5,3307,3
1362
+ 5,3330,3
1363
+ 5,3334,4
1364
+ 5,3342,3
1365
+ 5,3350,4
1366
+ 5,3358,5
1367
+ 5,3359,4
1368
+ 5,3361,3
1369
+ 5,3362,4
1370
+ 5,3363,5
1371
+ 5,3379,5
1372
+ 5,3384,3
1373
+ 5,3386,4
1374
+ 5,3404,4
1375
+ 5,3408,5
1376
+ 5,3417,3
1377
+ 5,3418,4
1378
+ 5,3420,4
1379
+ 5,3424,3
1380
+ 5,3435,3
1381
+ 5,3447,3
1382
+ 5,3448,4
1383
+ 5,3451,5
1384
+ 5,3461,4
1385
+ 5,3462,3
1386
+ 5,3467,3
1387
+ 5,3468,4
1388
+ 5,3469,4
1389
+ 5,3471,5
1390
+ 5,3475,4
1391
+ 5,3476,4
1392
+ 5,3478,4
1393
+ 5,3494,3
1394
+ 5,3498,4
1395
+ 5,3499,5
1396
+ 5,3504,5
1397
+ 5,3505,4
1398
+ 5,3507,4
1399
+ 5,3508,3
1400
+ 5,3516,5
1401
+ 5,3521,4
1402
+ 5,3524,4
1403
+ 5,3526,4
1404
+ 5,3527,4
1405
+ 5,3535,4
1406
+ 5,3543,3
1407
+ 5,3544,1
1408
+ 5,3545,4
1409
+ 5,3546,5
1410
+ 5,3547,5
1411
+ 5,3548,5
1412
+ 5,3549,2
1413
+ 5,3550,4
1414
+ 5,3551,4
1415
+ 5,3552,4
1416
+ 5,3556,4
1417
+ 5,3576,4
1418
+ 5,3578,4
1419
+ 5,3604,5
1420
+ 5,3606,3
1421
+ 5,3608,5
1422
+ 5,3629,3
1423
+ 5,3634,3
1424
+ 5,3635,3
1425
+ 5,3639,3
1426
+ 5,3649,4
1427
+ 5,3654,3
1428
+ 5,3668,3
1429
+ 5,3671,5
1430
+ 5,3675,4
1431
+ 5,3676,2
1432
+ 5,3678,3
1433
+ 5,3679,4
1434
+ 5,3681,3
1435
+ 5,3683,5
1436
+ 5,3684,3
1437
+ 5,3685,5
1438
+ 5,3686,4
1439
+ 5,3698,4
1440
+ 5,3699,4
1441
+ 5,3700,4
1442
+ 5,3701,3
1443
+ 5,3702,4
1444
+ 5,3703,5
1445
+ 5,3706,4
1446
+ 5,3712,4
1447
+ 5,3718,4
1448
+ 5,3724,3
1449
+ 5,3727,4
1450
+ 5,3730,5
1451
+ 5,3732,3
1452
+ 5,3733,3
1453
+ 5,3734,3
1454
+ 5,3735,4
1455
+ 5,3736,4
1456
+ 5,3738,4
1457
+ 5,3740,4
1458
+ 5,3741,4
1459
+ 5,3742,4
1460
+ 5,3751,3
1461
+ 5,3755,3
1462
+ 5,3760,3
1463
+ 5,3763,3
1464
+ 5,3769,3
1465
+ 5,3788,4
1466
+ 5,3793,5
1467
+ 5,3794,5
1468
+ 5,3809,4
1469
+ 5,3810,4
1470
+ 5,3811,3
1471
+ 5,3812,3
1472
+ 5,3814,3
1473
+ 5,3836,2
1474
+ 5,3844,4
1475
+ 5,3864,1
1476
+ 5,3868,3
1477
+ 5,3871,3
1478
+ 5,3872,5
1479
+ 5,3873,4
1480
+ 5,3880,3
1481
+ 5,3893,5
1482
+ 5,3897,5
1483
+ 5,3911,4
1484
+ 5,3913,4
1485
+ 5,3917,2
1486
+ 5,3922,2
1487
+ 5,3924,2
1488
+ 5,3927,3
1489
+ 5,3928,3
1490
+ 5,3929,4
1491
+ 5,3930,4
1492
+ 5,3932,4
1493
+ 5,3948,4
1494
+ 5,3949,3
1495
+ 5,3952,4
1496
+ 5,3959,4
1497
+ 5,3984,3
1498
+ 5,3993,5
1499
+ 5,3996,5
1500
+ 5,4000,3
1501
+ 5,4002,4
1502
+ 5,4005,3
1503
+ 5,4007,3
1504
+ 5,4009,3
1505
+ 5,4011,5
1506
+ 5,4014,4
1507
+ 5,4017,4
1508
+ 5,4019,3
1509
+ 5,4021,5
1510
+ 5,4022,4
1511
+ 5,4025,3
1512
+ 5,4027,5
1513
+ 5,4029,4
1514
+ 5,4034,5
1515
+ 5,4037,4
1516
+ 5,4066,4
1517
+ 5,4085,3
1518
+ 5,4086,3
1519
+ 5,4103,4
1520
+ 5,4116,5
1521
+ 5,4117,5
1522
+ 5,4178,4
1523
+ 5,4185,2
1524
+ 5,4186,4
1525
+ 5,4187,3
1526
+ 5,4189,3
1527
+ 5,4190,4
1528
+ 5,4191,3
1529
+ 5,4195,2
1530
+ 5,4205,3
1531
+ 5,4210,4
1532
+ 5,4211,5
1533
+ 5,4212,3
1534
+ 5,4216,5
1535
+ 5,4218,4
1536
+ 5,4226,5
1537
+ 5,4239,5
1538
+ 5,4254,1
1539
+ 5,4262,5
1540
+ 5,4276,5
1541
+ 5,4277,3
1542
+ 5,4278,5
1543
+ 5,4279,4
1544
+ 5,4280,4
1545
+ 5,4282,4
1546
+ 5,4291,4
1547
+ 5,4292,3
1548
+ 5,4294,3
1549
+ 5,4304,5
1550
+ 5,4306,4
1551
+ 5,4308,5
1552
+ 5,4321,4
1553
+ 5,4326,3
1554
+ 5,4329,3
1555
+ 5,4332,4
1556
+ 5,4333,3
1557
+ 5,4349,3
1558
+ 5,4351,2
1559
+ 5,4356,3
1560
+ 5,4357,4
1561
+ 5,4359,3
1562
+ 5,4360,3
1563
+ 5,4361,4
1564
+ 5,4369,4
1565
+ 5,4370,4
1566
+ 5,4401,2
1567
+ 5,4406,3
1568
+ 5,4407,4
1569
+ 5,4410,3
1570
+ 5,4427,4
1571
+ 5,4428,5
1572
+ 5,4443,3
1573
+ 5,4464,4
1574
+ 5,4465,4
1575
+ 5,4467,4
1576
+ 5,4489,4
1577
+ 5,4499,3
1578
+ 5,4506,4
1579
+ 5,4508,4
1580
+ 5,4515,4
1581
+ 5,4522,4
1582
+ 5,4529,4
1583
+ 5,4537,4
1584
+ 5,4552,2
1585
+ 5,4555,5
1586
+ 5,4557,3
1587
+ 5,4571,4
1588
+ 5,4588,1
1589
+ 5,4641,5
1590
+ 5,4642,5
1591
+ 5,4660,4
1592
+ 5,4661,4
1593
+ 5,4681,3
1594
+ 5,4690,3
1595
+ 5,4703,4
1596
+ 5,4705,5
1597
+ 5,4708,4
1598
+ 5,4710,3
1599
+ 5,4713,5
1600
+ 5,4734,5
1601
+ 5,4769,4
1602
+ 5,4783,4
1603
+ 5,4787,4
1604
+ 5,4789,4
1605
+ 5,4795,3
1606
+ 5,4799,5
1607
+ 5,4800,4
1608
+ 5,4801,4
1609
+ 5,4802,4
1610
+ 5,4803,4
1611
+ 5,4804,3
1612
+ 5,4809,5
1613
+ 5,4811,4
1614
+ 5,4813,4
1615
+ 5,4816,4
1616
+ 5,4835,5
1617
+ 5,4841,3
1618
+ 5,4848,4
1619
+ 5,4855,4
1620
+ 5,4857,3
1621
+ 5,4886,3
1622
+ 5,4896,3
1623
+ 5,4917,4
1624
+ 5,4932,4
1625
+ 5,4956,4
1626
+ 5,4958,4
1627
+ 5,4966,4
1628
+ 5,4979,5
1629
+ 5,4981,4
1630
+ 5,4984,3
1631
+ 5,4993,4
1632
+ 5,4995,4
1633
+ 5,5007,4
1634
+ 5,5010,5
1635
+ 5,5013,5
1636
+ 5,5015,5
1637
+ 5,5016,2
1638
+ 5,5049,3
1639
+ 5,5054,4
1640
+ 5,5055,4
1641
+ 5,5060,3
1642
+ 5,5062,4
1643
+ 5,5065,4
1644
+ 5,5099,2
1645
+ 5,5101,4
1646
+ 5,5120,4
1647
+ 5,5123,4
1648
+ 5,5158,4
1649
+ 5,5179,3
1650
+ 5,5184,4
1651
+ 5,5187,3
1652
+ 5,5190,3
1653
+ 5,5231,4
1654
+ 5,5232,4
1655
+ 5,5233,4
1656
+ 5,5249,4
1657
+ 5,5265,4
1658
+ 5,5299,5
1659
+ 5,5339,3
1660
+ 5,5367,5
1661
+ 5,5372,2
1662
+ 5,5383,3
1663
+ 5,5384,3
1664
+ 5,5385,3
1665
+ 5,5392,4
1666
+ 5,5434,4
1667
+ 5,5493,3
1668
+ 5,5497,3
1669
+ 5,5500,3
1670
+ 5,5540,4
1671
+ 5,5544,4
1672
+ 5,5548,5
1673
+ 5,5568,2
1674
+ 5,5588,2
1675
+ 5,5630,3
1676
+ 5,5638,1
1677
+ 5,5642,4
1678
+ 5,5646,4
1679
+ 5,5650,2
1680
+ 5,5689,4
1681
+ 5,5693,2
1682
+ 5,5696,4
1683
+ 5,5705,2
1684
+ 5,5707,4
1685
+ 5,5732,4
1686
+ 5,5745,4
1687
+ 5,5747,3
1688
+ 5,5772,5
1689
+ 5,5777,3
1690
+ 5,5780,3
1691
+ 5,5801,4
1692
+ 5,5802,3
1693
+ 5,5816,4
1694
+ 5,5826,3
1695
+ 5,5836,4
1696
+ 5,5847,4
1697
+ 5,5853,4
1698
+ 5,5862,3
1699
+ 5,5868,2
1700
+ 5,5899,4
1701
+ 5,5902,5
1702
+ 5,5911,5
1703
+ 5,5933,4
1704
+ 5,5938,4
1705
+ 5,5940,4
1706
+ 5,5983,4
1707
+ 5,6001,4
1708
+ 5,6184,3
1709
+ 3,163,4.5
1710
+ 3,172,2
1711
+ 3,260,5
1712
+ 3,370,4
1713
+ 3,432,3
1714
+ 3,466,3
1715
+ 3,502,3.5
1716
+ 3,832,3.5
1717
+ 3,919,5
1718
+ 3,1259,4
1719
+ 3,1270,5
1720
+ 3,1288,4.5
1721
+ 3,1380,5
1722
+ 3,1485,3
1723
+ 3,2012,4
1724
+ 3,2054,3
1725
+ 3,2134,4.5
1726
+ 3,2406,4
1727
+ 3,2420,4
1728
+ 3,2640,2.5
1729
+ 3,2791,4
1730
+ 3,3508,4
1731
+ 3,3897,3.5
1732
+ 3,4025,2.5
1733
+ 3,4621,3
1734
+ 3,6744,4
1735
+ 3,7361,4
1736
+ 3,8641,2
1737
+ 3,8865,3.5
1738
+ 1,1,5
1739
+ 1,2,3
1740
+ 1,10,3
1741
+ 1,32,4
1742
+ 1,34,4
1743
+ 1,47,3
1744
+ 1,50,4
1745
+ 1,62,4
1746
+ 1,150,4
1747
+ 1,153,3
1748
+ 1,160,3
1749
+ 1,161,4
1750
+ 1,165,4
1751
+ 1,185,3
1752
+ 1,208,3
1753
+ 1,253,3
1754
+ 1,265,5
1755
+ 1,266,3
1756
+ 1,288,5
1757
+ 1,292,4
1758
+ 1,296,5
1759
+ 1,300,5
1760
+ 1,316,3
1761
+ 1,318,5
1762
+ 1,329,4
1763
+ 1,344,3
1764
+ 1,349,4
1765
+ 1,350,4
1766
+ 1,356,5
1767
+ 1,357,4
1768
+ 1,364,4
1769
+ 1,367,4
1770
+ 1,377,3
1771
+ 1,380,4
1772
+ 1,434,3
1773
+ 1,454,4
1774
+ 1,457,4
1775
+ 1,480,5
1776
+ 1,500,3
1777
+ 1,508,5
1778
+ 1,509,4
1779
+ 1,515,5
1780
+ 1,539,3
1781
+ 1,588,4
1782
+ 1,589,3
1783
+ 1,592,3
1784
+ 1,597,4
1785
+ 1,648,5
1786
+ 8,1,3
1787
+ 8,2,2.5
1788
+ 8,6,3
1789
+ 8,10,2.5
1790
+ 8,16,4.5
1791
+ 8,18,4
1792
+ 8,19,2
1793
+ 8,21,2.5
1794
+ 8,24,3.5
1795
+ 8,25,3.5
1796
+ 8,29,4.5
1797
+ 8,32,4
1798
+ 8,34,2.5
1799
+ 8,47,4.5
1800
+ 8,50,4.5
1801
+ 8,70,3.5
1802
+ 8,110,3
1803
+ 8,111,4.5
1804
+ 8,153,2.5
1805
+ 8,163,3.5
1806
+ 8,165,4
1807
+ 8,170,2
1808
+ 8,172,4
1809
+ 8,173,4
1810
+ 8,208,4.5
1811
+ 8,231,3
1812
+ 8,235,3
1813
+ 8,253,4
1814
+ 8,256,1.5
1815
+ 8,260,4
1816
+ 8,261,2.5
1817
+ 8,288,4.5
1818
+ 8,292,3
1819
+ 8,293,5
1820
+ 8,296,4.5
1821
+ 8,316,3
1822
+ 8,318,4
1823
+ 8,319,4
1824
+ 8,327,3.5
1825
+ 8,344,2.5
1826
+ 8,345,2.5
1827
+ 8,353,4.5
1828
+ 8,356,4.5
1829
+ 8,357,3
1830
+ 8,364,2.5
1831
+ 8,367,2.5
1832
+ 8,368,3
1833
+ 8,370,3.5
1834
+ 8,377,3
1835
+ 8,380,3
1836
+ 8,413,3
1837
+ 8,420,2
1838
+ 8,428,4
1839
+ 8,434,4
1840
+ 8,435,2.5
1841
+ 8,442,4
1842
+ 8,455,2.5
1843
+ 8,457,2.5
1844
+ 8,466,3
1845
+ 8,480,4
1846
+ 8,485,2.5
1847
+ 8,500,2
1848
+ 8,509,4
1849
+ 8,520,2
1850
+ 8,527,4
1851
+ 8,541,4
1852
+ 8,551,4.5
1853
+ 8,586,2
1854
+ 8,589,4
1855
+ 8,590,4.5
1856
+ 8,592,4
1857
+ 8,593,4.5
1858
+ 8,597,3
1859
+ 8,608,4
1860
+ 8,610,2
1861
+ 8,648,3.5
1862
+ 8,733,3.5
1863
+ 8,737,2.5
1864
+ 8,741,4
1865
+ 8,743,2.5
1866
+ 8,750,4.5
1867
+ 8,778,5
1868
+ 8,780,3
1869
+ 8,784,2
1870
+ 8,786,3.5
1871
+ 8,788,1.5
1872
+ 8,832,3.5
1873
+ 8,839,4
1874
+ 8,858,4.5
1875
+ 8,912,3.5
1876
+ 8,923,3
1877
+ 8,924,4
1878
+ 8,1036,4
1879
+ 8,1047,3.5
1880
+ 8,1073,2.5
1881
+ 8,1079,4.5
1882
+ 8,1080,5
1883
+ 8,1084,4.5
1884
+ 8,1089,4.5
1885
+ 8,1090,3
1886
+ 8,1092,3
1887
+ 8,1093,3
1888
+ 8,1094,3.5
1889
+ 8,1097,3
1890
+ 8,1101,3
1891
+ 8,1125,4.5
1892
+ 8,1136,5
1893
+ 8,1175,4.5
1894
+ 8,1193,4.5
1895
+ 8,1196,4
1896
+ 8,1197,2
1897
+ 8,1198,4
1898
+ 8,1199,4.5
1899
+ 8,1200,4.5
1900
+ 8,1201,4
1901
+ 8,1203,3.5
1902
+ 8,1206,5
1903
+ 8,1208,4
1904
+ 8,1210,4
1905
+ 8,1213,5
1906
+ 8,1214,3.5
1907
+ 8,1215,3.5
1908
+ 8,1220,5
1909
+ 8,1221,4.5
1910
+ 8,1222,4.5
1911
+ 8,1228,4.5
1912
+ 8,1233,2.5
1913
+ 8,1234,4
1914
+ 8,1240,4.5
1915
+ 8,1246,3
1916
+ 8,1249,5
1917
+ 8,1250,3.5
1918
+ 8,1251,4
1919
+ 8,1252,3.5
1920
+ 8,1258,5
1921
+ 8,1259,3
1922
+ 8,1262,3.5
1923
+ 8,1265,4
1924
+ 8,1270,4
1925
+ 8,1271,2.5
1926
+ 8,1274,3.5
1927
+ 8,1275,3
1928
+ 8,1276,4.5
1929
+ 8,1278,3.5
1930
+ 8,1281,4
1931
+ 8,1288,4
1932
+ 8,1291,4
1933
+ 8,1293,3
1934
+ 8,1298,3.5
1935
+ 8,1320,4.5
1936
+ 8,1333,4
1937
+ 8,1343,4.5
1938
+ 8,1345,3.5
1939
+ 8,1347,4
1940
+ 8,1350,3
1941
+ 8,1370,4
1942
+ 8,1374,4.5
1943
+ 8,1377,3.5
1944
+ 8,1387,3
1945
+ 8,1391,3.5
1946
+ 8,1394,4
1947
+ 8,1396,4.5
1948
+ 8,1407,3
1949
+ 8,1466,3
1950
+ 8,1485,2.5
1951
+ 8,1500,3.5
1952
+ 8,1517,3
1953
+ 8,1527,5
1954
+ 8,1544,2
1955
+ 8,1562,2
1956
+ 8,1573,4
1957
+ 8,1580,4
1958
+ 8,1584,4
1959
+ 8,1587,4.5
1960
+ 8,1617,4
1961
+ 8,1641,3.5
1962
+ 8,1653,4.5
1963
+ 8,1673,2.5
1964
+ 8,1676,3
1965
+ 8,1682,3.5
1966
+ 8,1687,3
1967
+ 8,1690,4
1968
+ 8,1704,3
1969
+ 8,1717,2
1970
+ 8,1721,2.5
1971
+ 8,1722,2.5
1972
+ 8,1729,4
1973
+ 8,1732,3
1974
+ 8,1748,4
1975
+ 8,1784,3.5
1976
+ 8,1884,4.5
1977
+ 8,1917,2.5
1978
+ 8,1921,5
1979
+ 8,1923,2.5
1980
+ 8,1952,4
1981
+ 8,1954,4.5
1982
+ 8,1961,3.5
1983
+ 8,1965,3.5
1984
+ 8,1967,3.5
1985
+ 8,1968,2
1986
+ 8,1997,3
1987
+ 8,2000,3
1988
+ 8,2001,2
1989
+ 8,2003,4.5
1990
+ 8,2004,4
1991
+ 8,2011,3
1992
+ 8,2012,2
1993
+ 8,2021,2.5
1994
+ 8,2023,4
1995
+ 8,2028,3
1996
+ 8,2054,3
1997
+ 8,2076,4
1998
+ 8,2105,2.5
1999
+ 8,2115,4.5
2000
+ 8,2116,2
2001
+ 8,2143,3
2002
+ 8,2159,3
2003
+ 8,2160,4
2004
+ 8,2174,4.5
2005
+ 8,2193,3.5
2006
+ 8,2194,4.5
2007
+ 8,2232,4.5
2008
+ 8,2288,3
2009
+ 8,2291,4.5
2010
+ 8,2294,4
2011
+ 8,2324,3.5
2012
+ 8,2329,4.5
2013
+ 8,2355,3.5
2014
+ 8,2371,2.5
2015
+ 8,2373,2.5
2016
+ 8,2378,4
2017
+ 8,2402,3.5
2018
+ 8,2403,5
2019
+ 8,2409,3.5
2020
+ 8,2410,3.5
2021
+ 8,2411,3.5
2022
+ 8,2420,3.5
2023
+ 8,2421,2
2024
+ 8,2424,2
2025
+ 8,2467,3.5
2026
+ 8,2470,4
2027
+ 8,2471,3.5
2028
+ 8,2513,4.5
2029
+ 8,2514,2
2030
+ 8,2542,4
2031
+ 8,2571,4.5
2032
+ 8,2572,2
2033
+ 8,2580,3.5
2034
+ 8,2600,4
2035
+ 8,2616,3.5
2036
+ 8,2617,2
2037
+ 8,2628,3.5
2038
+ 8,2641,2
2039
+ 8,2657,4.5
2040
+ 8,2672,4
2041
+ 8,2683,3
2042
+ 8,2699,4
2043
+ 8,2700,4
2044
+ 8,2706,2
2045
+ 8,2710,3
2046
+ 8,2712,3.5
2047
+ 8,2716,4
2048
+ 8,2717,3
2049
+ 8,2722,3
2050
+ 8,2729,3
2051
+ 8,2731,4
2052
+ 8,2746,4
2053
+ 8,2761,4
2054
+ 8,2762,4
2055
+ 8,2788,5
2056
+ 8,2791,4
2057
+ 8,2792,4
2058
+ 8,2794,3
2059
+ 8,2797,3
2060
+ 8,2858,3
2061
+ 8,2916,4.5
2062
+ 8,2944,4
2063
+ 8,2947,4
2064
+ 8,2948,3.5
2065
+ 8,2951,4.5
2066
+ 8,2953,2
2067
+ 8,2959,4.5
2068
+ 8,2985,5
2069
+ 8,2986,2
2070
+ 8,2987,4
2071
+ 8,2993,3.5
2072
+ 8,2997,4.5
2073
+ 8,3000,4.5
2074
+ 8,3005,3.5
2075
+ 8,3019,4
2076
+ 8,3081,3
2077
+ 8,3104,3.5
2078
+ 8,3108,2.5
2079
+ 8,3114,3
2080
+ 8,3147,4
2081
+ 8,3168,4.5
2082
+ 8,3198,3
2083
+ 8,3208,3.5
2084
+ 8,3252,3
2085
+ 8,3253,3
2086
+ 8,3254,2.5
2087
+ 8,3257,3
2088
+ 8,3273,2
2089
+ 8,3275,4.5
2090
+ 8,3306,4
2091
+ 8,3307,3.5
2092
+ 8,3310,4
2093
+ 8,3418,4
2094
+ 8,3421,3
2095
+ 8,3424,3
2096
+ 8,3448,3
2097
+ 8,3462,4.5
2098
+ 8,3468,4
2099
+ 8,3471,4
2100
+ 8,3527,5
2101
+ 8,3552,3
2102
+ 8,3556,2.5
2103
+ 8,3578,2.5
2104
+ 8,3608,3
2105
+ 8,3623,3
2106
+ 8,3624,2.5
2107
+ 8,3629,4.5
2108
+ 8,3635,3.5
2109
+ 8,3638,4
2110
+ 8,3681,4
2111
+ 8,3697,4.5
2112
+ 8,3702,5
2113
+ 8,3703,5
2114
+ 8,3704,4
2115
+ 8,3717,3
2116
+ 8,3740,3
2117
+ 8,3745,3.5
2118
+ 8,3751,4
2119
+ 8,3752,2.5
2120
+ 8,3753,2
2121
+ 8,3785,3
2122
+ 8,3793,4
2123
+ 8,3863,3.5
2124
+ 8,3868,4
2125
+ 8,3869,3.5
2126
+ 8,3910,4.5
2127
+ 8,3917,4
2128
+ 8,3918,3.5
2129
+ 8,3949,3
2130
+ 8,3984,4
2131
+ 8,3996,3
2132
+ 8,4011,4
2133
+ 8,4022,3.5
2134
+ 8,4027,4
2135
+ 8,4034,4
2136
+ 8,4084,2
2137
+ 8,4085,2.5
2138
+ 8,4092,5
2139
+ 8,4105,3
2140
+ 8,4128,3.5
2141
+ 8,4148,3.5
2142
+ 8,4223,4.5
2143
+ 8,4226,4
2144
+ 8,4239,4.5
2145
+ 8,4246,2
2146
+ 8,4254,3
2147
+ 8,4262,4.5
2148
+ 8,4306,3.5
2149
+ 8,4308,4
2150
+ 8,4327,4
2151
+ 8,4343,2
2152
+ 8,4344,2
2153
+ 8,4351,4.5
2154
+ 8,4446,3
2155
+ 8,4487,3
2156
+ 8,4489,3
2157
+ 8,4638,2
2158
+ 8,4673,4
2159
+ 8,4718,1.5
2160
+ 8,4720,4
2161
+ 8,4776,3.5
2162
+ 8,4848,4
2163
+ 8,4855,4
2164
+ 8,4874,3
2165
+ 8,4878,4
2166
+ 8,4886,3.5
2167
+ 8,4896,2
2168
+ 8,4963,2.5
2169
+ 8,4973,4
2170
+ 8,4975,3.5
2171
+ 8,4993,3.5
2172
+ 8,4995,4
2173
+ 8,5040,4.5
2174
+ 8,5049,3.5
2175
+ 8,5218,4
2176
+ 8,5349,2.5
2177
+ 8,5378,4
2178
+ 8,5418,2
2179
+ 8,5445,4.5
2180
+ 8,5459,2.5
2181
+ 8,5481,2.5
2182
+ 8,5500,4
2183
+ 8,5502,3.5
2184
+ 8,5541,4
2185
+ 8,5618,4
2186
+ 8,5630,3.5
2187
+ 8,5669,3
2188
+ 8,5679,4
2189
+ 8,5690,4
2190
+ 8,5816,2
2191
+ 8,5902,3
2192
+ 8,5903,4
2193
+ 8,5952,3.5
2194
+ 8,5956,4
2195
+ 8,5971,4
2196
+ 8,5995,4
2197
+ 8,6003,4
2198
+ 8,6016,4.5
2199
+ 8,6104,4
2200
+ 8,6155,1
2201
+ 8,6250,3.5
2202
+ 8,6281,4
2203
+ 8,6333,2.5
2204
+ 8,6365,3
2205
+ 8,6373,2.5
2206
+ 8,6377,3
2207
+ 8,6502,4.5
2208
+ 8,6537,2.5
2209
+ 8,6539,4
2210
+ 8,6595,2.5
2211
+ 8,6664,4.5
2212
+ 8,6711,2.5
2213
+ 8,6800,4.5
2214
+ 8,6807,4
2215
+ 8,6812,2.5
2216
+ 8,6863,2.5
2217
+ 8,6874,4.5
2218
+ 8,6888,2
2219
+ 8,6934,2.5
2220
+ 8,6953,2.5
2221
+ 8,6957,3
2222
+ 8,6979,4.5
2223
+ 8,7004,2.5
2224
+ 8,7022,4
2225
+ 8,7099,4
2226
+ 8,7101,2
2227
+ 8,7147,3.5
2228
+ 8,7153,3
2229
+ 8,7254,3
2230
+ 8,7310,4.5
2231
+ 8,7318,2.5
2232
+ 8,7347,4
2233
+ 8,7361,4.5
2234
+ 8,7371,4.5
2235
+ 8,7387,3
2236
+ 8,7438,4.5
2237
+ 8,7569,3.5
2238
+ 8,7570,3.5
2239
+ 8,7573,4
2240
+ 8,8360,2
2241
+ 8,8361,2.5
2242
+ 8,8376,4.5
2243
+ 8,8464,3
2244
+ 8,8529,3
2245
+ 8,8622,3
2246
+ 8,8636,2
2247
+ 8,8644,3
2248
+ 8,8665,2
2249
+ 8,8783,4
2250
+ 8,8874,3.5
2251
+ 8,8957,3
2252
+ 8,26614,2.5
2253
+ 8,26776,4.5
2254
+ 8,26819,4
2255
+ 8,27660,4.5
2256
+ 8,27728,4
2257
+ 8,27773,4.5
2258
+ 8,27788,4
2259
+ 8,27831,4
2260
+ 8,27904,4.5
2261
+ 8,30707,3.5
2262
+ 8,30749,3.5
2263
+ 8,30793,3
2264
+ 8,30810,4
2265
+ 8,30812,2.5
2266
+ 8,31410,2.5
2267
+ 8,31413,4.5
2268
+ 8,32587,4
2269
+ 8,33004,3
2270
+ 8,33493,3.5
2271
+ 8,33794,4
2272
+ 8,34048,3
2273
+ 8,34405,4
2274
+ 8,35836,2.5
2275
+ 8,36363,4.5
2276
+ 8,36519,2.5
2277
+ 8,37729,4
2278
+ 8,37830,3.5
2279
+ 8,38038,3.5
2280
+ 8,39183,3
2281
+ 8,40819,3.5
2282
+ 8,41997,4
2283
+ 8,44022,2.5
2284
+ 8,44191,3.5
2285
+ 8,44195,4.5
2286
+ 8,44665,4
2287
+ 8,45447,2.5
2288
+ 8,45550,3.5
2289
+ 8,45722,2.5
2290
+ 8,46578,4
2291
+ 8,46723,3
2292
+ 8,46972,2.5
2293
+ 8,46976,3.5
2294
+ 8,47200,3.5
2295
+ 8,47610,4
2296
+ 8,48043,3.5
2297
+ 8,48082,4.5
2298
+ 8,48394,4
2299
+ 8,48516,4
2300
+ 8,48738,4
2301
+ 8,48774,4
2302
+ 8,48780,4
2303
+ 8,49272,3
2304
+ 8,50794,4
2305
+ 8,51086,3
2306
+ 8,51255,3.5
2307
+ 8,51662,4.5
2308
+ 8,52281,4
2309
+ 8,52328,3
2310
+ 8,52604,3
2311
+ 8,53000,4
2312
+ 8,53322,3.5
2313
+ 8,53519,3.5
2314
+ 8,53953,4
2315
+ 8,53972,4
2316
+ 8,53996,2
2317
+ 8,54286,2.5
2318
+ 8,54997,4
2319
+ 8,55069,4
2320
+ 8,55247,4.5
2321
+ 8,55269,3.5
2322
+ 8,55442,4
2323
+ 8,55765,4
2324
+ 8,55820,4
2325
+ 8,56367,4
2326
+ 8,56757,4.5
2327
+ 8,57528,3
2328
+ 8,57669,3
2329
+ 8,58295,3
2330
+ 8,58559,4
2331
+ 8,58803,3.5
2332
+ 8,59315,4
2333
+ 8,59501,2.5
2334
+ 8,59784,3
2335
+ 8,60069,4.5
2336
+ 8,60074,3
2337
+ 8,60684,4.5
2338
+ 8,61160,2
2339
+ 8,61236,3
2340
+ 8,61248,3
2341
+ 8,61634,2
2342
+ 8,63082,3.5
2343
+ 8,64614,3.5
2344
+ 8,66097,3
2345
+ 8,67508,4.5
2346
+ 8,68157,2
2347
+ 8,68237,4
2348
+ 8,68319,4
2349
+ 8,68791,2.5
2350
+ 8,68954,4.5
2351
+ 8,69122,3
2352
+ 8,69134,3.5
2353
+ 8,69844,2
2354
+ 8,70286,4
2355
+ 8,71108,3
2356
+ 8,71535,3.5
2357
+ 8,72998,3
2358
+ 8,73017,3.5
2359
+ 8,73321,4
2360
+ 8,74458,4
2361
+ 8,74789,3.5
2362
+ 8,76251,4
2363
+ 8,77328,4.5
2364
+ 8,77330,4.5
2365
+ 8,77359,4.5
2366
+ 8,77561,2
2367
+ 8,77629,4.5
2368
+ 8,78469,2
2369
+ 8,79057,2.5
2370
+ 8,79132,4
2371
+ 8,79185,2
2372
+ 8,79627,3
2373
+ 8,80463,3.5
2374
+ 8,81591,3
2375
+ 8,81845,3.5
2376
+ 8,82461,2
2377
+ 8,83827,4
2378
+ 8,85774,3
2379
+ 8,86320,4
2380
+ 8,91529,4
2381
+ 8,91542,4
2382
+ 8,91658,4.5
2383
+ 8,92259,4
2384
+ 8,94864,3.5
2385
+ 8,96079,4
2386
+ 8,97938,4
2387
+ 8,99813,4
2388
+ 8,100843,4
2389
+ 8,103253,3.5
2390
+ 8,103306,4.5
2391
+ 8,104283,4
2392
+ 8,104841,4.5
2393
+ 8,105355,4.5
2394
+ 8,108727,4.5
2395
+ 8,108981,4.5
2396
+ 2,1,3
2397
+ 2,2,3
2398
+ 2,11,3
2399
+ 2,17,5
2400
+ 2,19,4
2401
+ 2,21,3
2402
+ 2,34,5
2403
+ 2,39,3
2404
+ 2,47,2
2405
+ 2,95,3
2406
+ 2,150,4
2407
+ 2,153,3
2408
+ 2,160,3
2409
+ 2,161,4
2410
+ 2,165,2
2411
+ 2,173,2
2412
+ 2,185,3
2413
+ 2,186,3
2414
+ 2,196,2
2415
+ 2,208,3
2416
+ 2,225,3
2417
+ 2,231,3
2418
+ 2,236,4
2419
+ 2,252,3
2420
+ 2,253,4
2421
+ 2,266,4
2422
+ 2,282,4
2423
+ 2,288,1
2424
+ 2,293,3
2425
+ 2,300,4
2426
+ 2,317,5
2427
+ 2,318,5
2428
+ 2,329,3
2429
+ 2,337,4
2430
+ 2,339,4
2431
+ 2,344,4
2432
+ 2,349,4
2433
+ 2,364,5
2434
+ 2,367,5
2435
+ 2,410,3
2436
+ 2,420,5
2437
+ 2,432,4
2438
+ 2,434,4
2439
+ 2,454,5
2440
+ 2,457,5
2441
+ 2,553,5
2442
+ 2,588,4
2443
+ 2,590,4
2444
+ 2,593,5
2445
+ 2,595,5