teradataml 20.0.0.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +2762 -0
- teradataml/__init__.py +78 -0
- teradataml/_version.py +11 -0
- teradataml/analytics/Transformations.py +2996 -0
- teradataml/analytics/__init__.py +82 -0
- teradataml/analytics/analytic_function_executor.py +2416 -0
- teradataml/analytics/analytic_query_generator.py +1050 -0
- teradataml/analytics/byom/H2OPredict.py +514 -0
- teradataml/analytics/byom/PMMLPredict.py +437 -0
- teradataml/analytics/byom/__init__.py +16 -0
- teradataml/analytics/json_parser/__init__.py +133 -0
- teradataml/analytics/json_parser/analytic_functions_argument.py +1805 -0
- teradataml/analytics/json_parser/json_store.py +191 -0
- teradataml/analytics/json_parser/metadata.py +1666 -0
- teradataml/analytics/json_parser/utils.py +805 -0
- teradataml/analytics/meta_class.py +236 -0
- teradataml/analytics/sqle/DecisionTreePredict.py +456 -0
- teradataml/analytics/sqle/NaiveBayesPredict.py +420 -0
- teradataml/analytics/sqle/__init__.py +128 -0
- teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -0
- teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -0
- teradataml/analytics/table_operator/__init__.py +11 -0
- teradataml/analytics/uaf/__init__.py +82 -0
- teradataml/analytics/utils.py +828 -0
- teradataml/analytics/valib.py +1617 -0
- teradataml/automl/__init__.py +5835 -0
- teradataml/automl/autodataprep/__init__.py +493 -0
- teradataml/automl/custom_json_utils.py +1625 -0
- teradataml/automl/data_preparation.py +1384 -0
- teradataml/automl/data_transformation.py +1254 -0
- teradataml/automl/feature_engineering.py +2273 -0
- teradataml/automl/feature_exploration.py +1873 -0
- teradataml/automl/model_evaluation.py +488 -0
- teradataml/automl/model_training.py +1407 -0
- teradataml/catalog/__init__.py +2 -0
- teradataml/catalog/byom.py +1759 -0
- teradataml/catalog/function_argument_mapper.py +859 -0
- teradataml/catalog/model_cataloging_utils.py +491 -0
- teradataml/clients/__init__.py +0 -0
- teradataml/clients/auth_client.py +137 -0
- teradataml/clients/keycloak_client.py +165 -0
- teradataml/clients/pkce_client.py +481 -0
- teradataml/common/__init__.py +1 -0
- teradataml/common/aed_utils.py +2078 -0
- teradataml/common/bulk_exposed_utils.py +113 -0
- teradataml/common/constants.py +1669 -0
- teradataml/common/deprecations.py +166 -0
- teradataml/common/exceptions.py +147 -0
- teradataml/common/formula.py +743 -0
- teradataml/common/garbagecollector.py +666 -0
- teradataml/common/logger.py +1261 -0
- teradataml/common/messagecodes.py +518 -0
- teradataml/common/messages.py +262 -0
- teradataml/common/pylogger.py +67 -0
- teradataml/common/sqlbundle.py +764 -0
- teradataml/common/td_coltype_code_to_tdtype.py +48 -0
- teradataml/common/utils.py +3166 -0
- teradataml/common/warnings.py +36 -0
- teradataml/common/wrapper_utils.py +625 -0
- teradataml/config/__init__.py +0 -0
- teradataml/config/dummy_file1.cfg +5 -0
- teradataml/config/dummy_file2.cfg +3 -0
- teradataml/config/sqlengine_alias_definitions_v1.0 +14 -0
- teradataml/config/sqlengine_alias_definitions_v1.1 +20 -0
- teradataml/config/sqlengine_alias_definitions_v1.3 +19 -0
- teradataml/context/__init__.py +0 -0
- teradataml/context/aed_context.py +223 -0
- teradataml/context/context.py +1462 -0
- teradataml/data/A_loan.csv +19 -0
- teradataml/data/BINARY_REALS_LEFT.csv +11 -0
- teradataml/data/BINARY_REALS_RIGHT.csv +11 -0
- teradataml/data/B_loan.csv +49 -0
- teradataml/data/BuoyData2.csv +17 -0
- teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -0
- teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -0
- teradataml/data/Convolve2RealsLeft.csv +5 -0
- teradataml/data/Convolve2RealsRight.csv +5 -0
- teradataml/data/Convolve2ValidLeft.csv +11 -0
- teradataml/data/Convolve2ValidRight.csv +11 -0
- teradataml/data/DFFTConv_Real_8_8.csv +65 -0
- teradataml/data/Employee.csv +5 -0
- teradataml/data/Employee_Address.csv +4 -0
- teradataml/data/Employee_roles.csv +5 -0
- teradataml/data/JulesBelvezeDummyData.csv +100 -0
- teradataml/data/Mall_customer_data.csv +201 -0
- teradataml/data/Orders1_12mf.csv +25 -0
- teradataml/data/Pi_loan.csv +7 -0
- teradataml/data/SMOOTHED_DATA.csv +7 -0
- teradataml/data/TestDFFT8.csv +9 -0
- teradataml/data/TestRiver.csv +109 -0
- teradataml/data/Traindata.csv +28 -0
- teradataml/data/__init__.py +0 -0
- teradataml/data/acf.csv +17 -0
- teradataml/data/adaboost_example.json +34 -0
- teradataml/data/adaboostpredict_example.json +24 -0
- teradataml/data/additional_table.csv +11 -0
- teradataml/data/admissions_test.csv +21 -0
- teradataml/data/admissions_train.csv +41 -0
- teradataml/data/admissions_train_nulls.csv +41 -0
- teradataml/data/advertising.csv +201 -0
- teradataml/data/ageandheight.csv +13 -0
- teradataml/data/ageandpressure.csv +31 -0
- teradataml/data/amazon_reviews_25.csv +26 -0
- teradataml/data/antiselect_example.json +36 -0
- teradataml/data/antiselect_input.csv +8 -0
- teradataml/data/antiselect_input_mixed_case.csv +8 -0
- teradataml/data/applicant_external.csv +7 -0
- teradataml/data/applicant_reference.csv +7 -0
- teradataml/data/apriori_example.json +22 -0
- teradataml/data/arima_example.json +9 -0
- teradataml/data/assortedtext_input.csv +8 -0
- teradataml/data/attribution_example.json +34 -0
- teradataml/data/attribution_sample_table.csv +27 -0
- teradataml/data/attribution_sample_table1.csv +6 -0
- teradataml/data/attribution_sample_table2.csv +11 -0
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bank_marketing.csv +11163 -0
- teradataml/data/bank_web_clicks1.csv +43 -0
- teradataml/data/bank_web_clicks2.csv +91 -0
- teradataml/data/bank_web_url.csv +85 -0
- teradataml/data/barrier.csv +2 -0
- teradataml/data/barrier_new.csv +3 -0
- teradataml/data/betweenness_example.json +14 -0
- teradataml/data/bike_sharing.csv +732 -0
- teradataml/data/bin_breaks.csv +8 -0
- teradataml/data/bin_fit_ip.csv +4 -0
- teradataml/data/binary_complex_left.csv +11 -0
- teradataml/data/binary_complex_right.csv +11 -0
- teradataml/data/binary_matrix_complex_left.csv +21 -0
- teradataml/data/binary_matrix_complex_right.csv +21 -0
- teradataml/data/binary_matrix_real_left.csv +21 -0
- teradataml/data/binary_matrix_real_right.csv +21 -0
- teradataml/data/blood2ageandweight.csv +26 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/boston.csv +507 -0
- teradataml/data/boston2cols.csv +721 -0
- teradataml/data/breast_cancer.csv +570 -0
- teradataml/data/buoydata_mix.csv +11 -0
- teradataml/data/burst_data.csv +5 -0
- teradataml/data/burst_example.json +21 -0
- teradataml/data/byom_example.json +34 -0
- teradataml/data/bytes_table.csv +4 -0
- teradataml/data/cal_housing_ex_raw.csv +70 -0
- teradataml/data/callers.csv +7 -0
- teradataml/data/calls.csv +10 -0
- teradataml/data/cars_hist.csv +33 -0
- teradataml/data/cat_table.csv +25 -0
- teradataml/data/ccm_example.json +32 -0
- teradataml/data/ccm_input.csv +91 -0
- teradataml/data/ccm_input2.csv +13 -0
- teradataml/data/ccmexample.csv +101 -0
- teradataml/data/ccmprepare_example.json +9 -0
- teradataml/data/ccmprepare_input.csv +91 -0
- teradataml/data/cfilter_example.json +12 -0
- teradataml/data/changepointdetection_example.json +18 -0
- teradataml/data/changepointdetectionrt_example.json +8 -0
- teradataml/data/chi_sq.csv +3 -0
- teradataml/data/churn_data.csv +14 -0
- teradataml/data/churn_emission.csv +35 -0
- teradataml/data/churn_initial.csv +3 -0
- teradataml/data/churn_state_transition.csv +5 -0
- teradataml/data/citedges_2.csv +745 -0
- teradataml/data/citvertices_2.csv +1210 -0
- teradataml/data/clicks2.csv +16 -0
- teradataml/data/clickstream.csv +13 -0
- teradataml/data/clickstream1.csv +11 -0
- teradataml/data/closeness_example.json +16 -0
- teradataml/data/complaints.csv +21 -0
- teradataml/data/complaints_mini.csv +3 -0
- teradataml/data/complaints_test_tokenized.csv +353 -0
- teradataml/data/complaints_testtoken.csv +224 -0
- teradataml/data/complaints_tokens_model.csv +348 -0
- teradataml/data/complaints_tokens_test.csv +353 -0
- teradataml/data/complaints_traintoken.csv +472 -0
- teradataml/data/computers_category.csv +1001 -0
- teradataml/data/computers_test1.csv +1252 -0
- teradataml/data/computers_train1.csv +5009 -0
- teradataml/data/computers_train1_clustered.csv +5009 -0
- teradataml/data/confusionmatrix_example.json +9 -0
- teradataml/data/conversion_event_table.csv +3 -0
- teradataml/data/corr_input.csv +17 -0
- teradataml/data/correlation_example.json +11 -0
- teradataml/data/covid_confirm_sd.csv +83 -0
- teradataml/data/coxhazardratio_example.json +39 -0
- teradataml/data/coxph_example.json +15 -0
- teradataml/data/coxsurvival_example.json +28 -0
- teradataml/data/cpt.csv +41 -0
- teradataml/data/credit_ex_merged.csv +45 -0
- teradataml/data/creditcard_data.csv +1001 -0
- teradataml/data/customer_loyalty.csv +301 -0
- teradataml/data/customer_loyalty_newseq.csv +31 -0
- teradataml/data/customer_segmentation_test.csv +2628 -0
- teradataml/data/customer_segmentation_train.csv +8069 -0
- teradataml/data/dataframe_example.json +173 -0
- teradataml/data/decisionforest_example.json +37 -0
- teradataml/data/decisionforestpredict_example.json +38 -0
- teradataml/data/decisiontree_example.json +21 -0
- teradataml/data/decisiontreepredict_example.json +45 -0
- teradataml/data/dfft2_size4_real.csv +17 -0
- teradataml/data/dfft2_test_matrix16.csv +17 -0
- teradataml/data/dfft2conv_real_4_4.csv +65 -0
- teradataml/data/diabetes.csv +443 -0
- teradataml/data/diabetes_test.csv +89 -0
- teradataml/data/dict_table.csv +5 -0
- teradataml/data/docperterm_table.csv +4 -0
- teradataml/data/docs/__init__.py +1 -0
- teradataml/data/docs/byom/__init__.py +0 -0
- teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -0
- teradataml/data/docs/byom/docs/DataikuPredict.py +217 -0
- teradataml/data/docs/byom/docs/H2OPredict.py +325 -0
- teradataml/data/docs/byom/docs/ONNXEmbeddings.py +242 -0
- teradataml/data/docs/byom/docs/ONNXPredict.py +283 -0
- teradataml/data/docs/byom/docs/ONNXSeq2Seq.py +255 -0
- teradataml/data/docs/byom/docs/PMMLPredict.py +278 -0
- teradataml/data/docs/byom/docs/__init__.py +0 -0
- teradataml/data/docs/sqle/__init__.py +0 -0
- teradataml/data/docs/sqle/docs_17_10/Antiselect.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/Attribution.py +200 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +172 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -0
- teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -0
- teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +96 -0
- teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -0
- teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +152 -0
- teradataml/data/docs/sqle/docs_17_10/FTest.py +161 -0
- teradataml/data/docs/sqle/docs_17_10/FillRowId.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/Fit.py +88 -0
- teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +85 -0
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +82 -0
- teradataml/data/docs/sqle/docs_17_10/Histogram.py +165 -0
- teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -0
- teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +209 -0
- teradataml/data/docs/sqle/docs_17_10/NPath.py +266 -0
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -0
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -0
- teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +135 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +166 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -0
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +112 -0
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -0
- teradataml/data/docs/sqle/docs_17_10/QQNorm.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +110 -0
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +118 -0
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -0
- teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +153 -0
- teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -0
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -0
- teradataml/data/docs/sqle/docs_17_10/Sessionize.py +114 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -0
- teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -0
- teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +146 -0
- teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +142 -0
- teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -0
- teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -0
- teradataml/data/docs/sqle/docs_17_10/__init__.py +0 -0
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -0
- teradataml/data/docs/sqle/docs_17_20/Antiselect.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/Apriori.py +138 -0
- teradataml/data/docs/sqle/docs_17_20/Attribution.py +201 -0
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +172 -0
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -0
- teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
- teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -0
- teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +246 -0
- teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +280 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +136 -0
- teradataml/data/docs/sqle/docs_17_20/FTest.py +240 -0
- teradataml/data/docs/sqle/docs_17_20/FillRowId.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/Fit.py +88 -0
- teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +415 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -0
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -0
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +106 -0
- teradataml/data/docs/sqle/docs_17_20/Histogram.py +224 -0
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -0
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/KNN.py +215 -0
- teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -0
- teradataml/data/docs/sqle/docs_17_20/NERExtractor.py +121 -0
- teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +209 -0
- teradataml/data/docs/sqle/docs_17_20/NPath.py +266 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +127 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +119 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -0
- teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -0
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +231 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -0
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +220 -0
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +191 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -0
- teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -0
- teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/QQNorm.py +105 -0
- teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +155 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -0
- teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -0
- teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +118 -0
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -0
- teradataml/data/docs/sqle/docs_17_20/SMOTE.py +212 -0
- teradataml/data/docs/sqle/docs_17_20/SVM.py +414 -0
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -0
- teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +153 -0
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -0
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -0
- teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -0
- teradataml/data/docs/sqle/docs_17_20/Sessionize.py +114 -0
- teradataml/data/docs/sqle/docs_17_20/Shap.py +225 -0
- teradataml/data/docs/sqle/docs_17_20/Silhouette.py +153 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -0
- teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +146 -0
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -0
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -0
- teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
- teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +267 -0
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -0
- teradataml/data/docs/sqle/docs_17_20/TextMorph.py +119 -0
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +224 -0
- teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +160 -0
- teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -0
- teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -0
- teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
- teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +169 -0
- teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +237 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +362 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -0
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -0
- teradataml/data/docs/sqle/docs_17_20/__init__.py +0 -0
- teradataml/data/docs/tableoperator/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +430 -0
- teradataml/data/docs/tableoperator/docs_17_00/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +430 -0
- teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +348 -0
- teradataml/data/docs/tableoperator/docs_17_05/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +429 -0
- teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +348 -0
- teradataml/data/docs/tableoperator/docs_17_10/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
- teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +440 -0
- teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +387 -0
- teradataml/data/docs/tableoperator/docs_17_20/__init__.py +0 -0
- teradataml/data/docs/uaf/__init__.py +0 -0
- teradataml/data/docs/uaf/docs_17_20/ACF.py +186 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +370 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +172 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +161 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
- teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
- teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +248 -0
- teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +178 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +175 -0
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +230 -0
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +218 -0
- teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +185 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT.py +204 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +216 -0
- teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +192 -0
- teradataml/data/docs/uaf/docs_17_20/DIFF.py +175 -0
- teradataml/data/docs/uaf/docs_17_20/DTW.py +180 -0
- teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
- teradataml/data/docs/uaf/docs_17_20/DWT2D.py +217 -0
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +142 -0
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +184 -0
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +185 -0
- teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
- teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +206 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +143 -0
- teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +198 -0
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +260 -0
- teradataml/data/docs/uaf/docs_17_20/IDFFT.py +165 -0
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +191 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
- teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/InputValidator.py +121 -0
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +156 -0
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +215 -0
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +174 -0
- teradataml/data/docs/uaf/docs_17_20/MInfo.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +145 -0
- teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +191 -0
- teradataml/data/docs/uaf/docs_17_20/PACF.py +157 -0
- teradataml/data/docs/uaf/docs_17_20/Portman.py +217 -0
- teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +203 -0
- teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +155 -0
- teradataml/data/docs/uaf/docs_17_20/Resample.py +237 -0
- teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
- teradataml/data/docs/uaf/docs_17_20/SInfo.py +123 -0
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +173 -0
- teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +174 -0
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +164 -0
- teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +180 -0
- teradataml/data/docs/uaf/docs_17_20/Smoothma.py +208 -0
- teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +151 -0
- teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +202 -0
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
- teradataml/data/docs/uaf/docs_17_20/__init__.py +0 -0
- teradataml/data/dtw_example.json +18 -0
- teradataml/data/dtw_t1.csv +11 -0
- teradataml/data/dtw_t2.csv +4 -0
- teradataml/data/dwt2d_dataTable.csv +65 -0
- teradataml/data/dwt2d_example.json +16 -0
- teradataml/data/dwt_dataTable.csv +8 -0
- teradataml/data/dwt_example.json +15 -0
- teradataml/data/dwt_filterTable.csv +3 -0
- teradataml/data/dwt_filter_dim.csv +5 -0
- teradataml/data/emission.csv +9 -0
- teradataml/data/emp_table_by_dept.csv +19 -0
- teradataml/data/employee_info.csv +4 -0
- teradataml/data/employee_table.csv +6 -0
- teradataml/data/excluding_event_table.csv +2 -0
- teradataml/data/finance_data.csv +6 -0
- teradataml/data/finance_data2.csv +61 -0
- teradataml/data/finance_data3.csv +93 -0
- teradataml/data/finance_data4.csv +13 -0
- teradataml/data/fish.csv +160 -0
- teradataml/data/fm_blood2ageandweight.csv +26 -0
- teradataml/data/fmeasure_example.json +12 -0
- teradataml/data/followers_leaders.csv +10 -0
- teradataml/data/fpgrowth_example.json +12 -0
- teradataml/data/frequentpaths_example.json +29 -0
- teradataml/data/friends.csv +9 -0
- teradataml/data/fs_input.csv +33 -0
- teradataml/data/fs_input1.csv +33 -0
- teradataml/data/genData.csv +513 -0
- teradataml/data/geodataframe_example.json +40 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/glm_admissions_model.csv +12 -0
- teradataml/data/glm_example.json +56 -0
- teradataml/data/glml1l2_example.json +28 -0
- teradataml/data/glml1l2predict_example.json +54 -0
- teradataml/data/glmpredict_example.json +54 -0
- teradataml/data/gq_t1.csv +21 -0
- teradataml/data/grocery_transaction.csv +19 -0
- teradataml/data/hconvolve_complex_right.csv +5 -0
- teradataml/data/hconvolve_complex_rightmulti.csv +5 -0
- teradataml/data/histogram_example.json +12 -0
- teradataml/data/hmmdecoder_example.json +79 -0
- teradataml/data/hmmevaluator_example.json +25 -0
- teradataml/data/hmmsupervised_example.json +10 -0
- teradataml/data/hmmunsupervised_example.json +8 -0
- teradataml/data/hnsw_alter_data.csv +5 -0
- teradataml/data/hnsw_data.csv +10 -0
- teradataml/data/house_values.csv +12 -0
- teradataml/data/house_values2.csv +13 -0
- teradataml/data/housing_cat.csv +7 -0
- teradataml/data/housing_data.csv +9 -0
- teradataml/data/housing_test.csv +47 -0
- teradataml/data/housing_test_binary.csv +47 -0
- teradataml/data/housing_train.csv +493 -0
- teradataml/data/housing_train_attribute.csv +5 -0
- teradataml/data/housing_train_binary.csv +437 -0
- teradataml/data/housing_train_parameter.csv +2 -0
- teradataml/data/housing_train_response.csv +493 -0
- teradataml/data/housing_train_segment.csv +201 -0
- teradataml/data/ibm_stock.csv +370 -0
- teradataml/data/ibm_stock1.csv +370 -0
- teradataml/data/identitymatch_example.json +22 -0
- teradataml/data/idf_table.csv +4 -0
- teradataml/data/idwt2d_dataTable.csv +5 -0
- teradataml/data/idwt_dataTable.csv +8 -0
- teradataml/data/idwt_filterTable.csv +3 -0
- teradataml/data/impressions.csv +101 -0
- teradataml/data/inflation.csv +21 -0
- teradataml/data/initial.csv +3 -0
- teradataml/data/insect2Cols.csv +61 -0
- teradataml/data/insect_sprays.csv +13 -0
- teradataml/data/insurance.csv +1339 -0
- teradataml/data/interpolator_example.json +13 -0
- teradataml/data/interval_data.csv +5 -0
- teradataml/data/iris_altinput.csv +481 -0
- teradataml/data/iris_attribute_output.csv +8 -0
- teradataml/data/iris_attribute_test.csv +121 -0
- teradataml/data/iris_attribute_train.csv +481 -0
- teradataml/data/iris_category_expect_predict.csv +31 -0
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/iris_input.csv +151 -0
- teradataml/data/iris_response_train.csv +121 -0
- teradataml/data/iris_test.csv +31 -0
- teradataml/data/iris_train.csv +121 -0
- teradataml/data/join_table1.csv +4 -0
- teradataml/data/join_table2.csv +4 -0
- teradataml/data/jsons/anly_function_name.json +7 -0
- teradataml/data/jsons/byom/ONNXSeq2Seq.json +287 -0
- teradataml/data/jsons/byom/dataikupredict.json +148 -0
- teradataml/data/jsons/byom/datarobotpredict.json +147 -0
- teradataml/data/jsons/byom/h2opredict.json +195 -0
- teradataml/data/jsons/byom/onnxembeddings.json +267 -0
- teradataml/data/jsons/byom/onnxpredict.json +187 -0
- teradataml/data/jsons/byom/pmmlpredict.json +147 -0
- teradataml/data/jsons/paired_functions.json +450 -0
- teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/16.20/Attribution.json +249 -0
- teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/16.20/Pack.json +98 -0
- teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/16.20/Unpack.json +166 -0
- teradataml/data/jsons/sqle/16.20/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.00/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/17.00/Pack.json +98 -0
- teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.00/Unpack.json +166 -0
- teradataml/data/jsons/sqle/17.00/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.05/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/17.05/Pack.json +98 -0
- teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.05/Unpack.json +166 -0
- teradataml/data/jsons/sqle/17.05/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.10/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -0
- teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +172 -0
- teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -0
- teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -0
- teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -0
- teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -0
- teradataml/data/jsons/sqle/17.10/Pack.json +133 -0
- teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -0
- teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -0
- teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -0
- teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +54 -0
- teradataml/data/jsons/sqle/17.10/TD_Chisq.json +68 -0
- teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +54 -0
- teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +69 -0
- teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -0
- teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +52 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -0
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_Histogram.json +133 -0
- teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +183 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +66 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +197 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -0
- teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +112 -0
- teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +128 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +157 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +71 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +148 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -0
- teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -0
- teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +119 -0
- teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -0
- teradataml/data/jsons/sqle/17.10/Unpack.json +188 -0
- teradataml/data/jsons/sqle/17.10/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.20/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -0
- teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -0
- teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -0
- teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -0
- teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -0
- teradataml/data/jsons/sqle/17.20/Pack.json +133 -0
- teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -0
- teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +149 -0
- teradataml/data/jsons/sqle/17.20/TD_Apriori.json +181 -0
- teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -0
- teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
- teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_Chisq.json +68 -0
- teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +146 -0
- teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -0
- teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -0
- teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +260 -0
- teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -0
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -0
- teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -0
- teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -0
- teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -0
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -0
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -0
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -0
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -0
- teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -0
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +232 -0
- teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +87 -0
- teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -0
- teradataml/data/jsons/sqle/17.20/TD_NERExtractor.json +145 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -0
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +316 -0
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +124 -0
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -0
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -0
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -0
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -0
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -0
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -0
- teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -0
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -0
- teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -0
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +179 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +179 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +74 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -0
- teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +138 -0
- teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -0
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +128 -0
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_SMOTE.json +267 -0
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -0
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -0
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +310 -0
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +120 -0
- teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +194 -0
- teradataml/data/jsons/sqle/17.20/TD_Shap.json +221 -0
- teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +143 -0
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -0
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -0
- teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -0
- teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -0
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -0
- teradataml/data/jsons/sqle/17.20/TD_TextMorph.json +134 -0
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json +297 -0
- teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -0
- teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -0
- teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
- teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +183 -0
- teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -0
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -0
- teradataml/data/jsons/sqle/17.20/Unpack.json +188 -0
- teradataml/data/jsons/sqle/17.20/nPath.json +269 -0
- teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json +370 -0
- teradataml/data/jsons/sqle/20.00/AI_AskLLM.json +460 -0
- teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json +385 -0
- teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_MaskPII.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json +400 -0
- teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json +401 -0
- teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json +384 -0
- teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json +384 -0
- teradataml/data/jsons/sqle/20.00/TD_API_AzureML.json +151 -0
- teradataml/data/jsons/sqle/20.00/TD_API_Sagemaker.json +182 -0
- teradataml/data/jsons/sqle/20.00/TD_API_VertexAI.json +183 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSW.json +296 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json +206 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json +32 -0
- teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
- teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
- teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
- teradataml/data/jsons/tableoperator/17.00/read_nos.json +198 -0
- teradataml/data/jsons/tableoperator/17.05/read_nos.json +198 -0
- teradataml/data/jsons/tableoperator/17.05/write_nos.json +195 -0
- teradataml/data/jsons/tableoperator/17.10/read_nos.json +184 -0
- teradataml/data/jsons/tableoperator/17.10/write_nos.json +195 -0
- teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
- teradataml/data/jsons/tableoperator/17.20/read_nos.json +183 -0
- teradataml/data/jsons/tableoperator/17.20/write_nos.json +224 -0
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +132 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +396 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +77 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +153 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
- teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +107 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +106 -0
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +89 -0
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +104 -0
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +66 -0
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +87 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +134 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +144 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +108 -0
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_DIFF.json +92 -0
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +114 -0
- teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
- teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +39 -0
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +85 -0
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +71 -0
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +139 -0
- teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECASTER.json +313 -0
- teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +58 -0
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +81 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
- teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +64 -0
- teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +182 -0
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +103 -0
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +181 -0
- teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
- teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +68 -0
- teradataml/data/jsons/uaf/17.20/TD_MINFO.json +67 -0
- teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +179 -0
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -0
- teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +119 -0
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -0
- teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +98 -0
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +194 -0
- teradataml/data/jsons/uaf/17.20/TD_SAX.json +210 -0
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +143 -0
- teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +90 -0
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +80 -0
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +68 -0
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -0
- teradataml/data/jsons/uaf/17.20/TD_SINFO.json +58 -0
- teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +163 -0
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +112 -0
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -0
- teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +410 -0
- teradataml/data/kmeans_example.json +23 -0
- teradataml/data/kmeans_table.csv +10 -0
- teradataml/data/kmeans_us_arrests_data.csv +51 -0
- teradataml/data/knn_example.json +19 -0
- teradataml/data/knnrecommender_example.json +7 -0
- teradataml/data/knnrecommenderpredict_example.json +12 -0
- teradataml/data/lar_example.json +17 -0
- teradataml/data/larpredict_example.json +30 -0
- teradataml/data/lc_new_predictors.csv +5 -0
- teradataml/data/lc_new_reference.csv +9 -0
- teradataml/data/lda_example.json +9 -0
- teradataml/data/ldainference_example.json +15 -0
- teradataml/data/ldatopicsummary_example.json +9 -0
- teradataml/data/levendist_input.csv +13 -0
- teradataml/data/levenshteindistance_example.json +10 -0
- teradataml/data/linreg_example.json +10 -0
- teradataml/data/load_example_data.py +350 -0
- teradataml/data/loan_prediction.csv +295 -0
- teradataml/data/lungcancer.csv +138 -0
- teradataml/data/mappingdata.csv +12 -0
- teradataml/data/medical_readings.csv +101 -0
- teradataml/data/milk_timeseries.csv +157 -0
- teradataml/data/min_max_titanic.csv +4 -0
- teradataml/data/minhash_example.json +6 -0
- teradataml/data/ml_ratings.csv +7547 -0
- teradataml/data/ml_ratings_10.csv +2445 -0
- teradataml/data/mobile_data.csv +13 -0
- teradataml/data/model1_table.csv +5 -0
- teradataml/data/model2_table.csv +5 -0
- teradataml/data/models/License_file.txt +1 -0
- teradataml/data/models/License_file_empty.txt +0 -0
- teradataml/data/models/dataiku_iris_data_ann_thin +0 -0
- teradataml/data/models/dr_iris_rf +0 -0
- teradataml/data/models/iris_db_dt_model_sklearn.onnx +0 -0
- teradataml/data/models/iris_db_dt_model_sklearn_floattensor.onnx +0 -0
- teradataml/data/models/iris_db_glm_model.pmml +57 -0
- teradataml/data/models/iris_db_xgb_model.pmml +4471 -0
- teradataml/data/models/iris_kmeans_model +0 -0
- teradataml/data/models/iris_mojo_glm_h2o_model +0 -0
- teradataml/data/models/iris_mojo_xgb_h2o_model +0 -0
- teradataml/data/modularity_example.json +12 -0
- teradataml/data/movavg_example.json +8 -0
- teradataml/data/mtx1.csv +7 -0
- teradataml/data/mtx2.csv +13 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/mvdfft8.csv +9 -0
- teradataml/data/naivebayes_example.json +10 -0
- teradataml/data/naivebayespredict_example.json +19 -0
- teradataml/data/naivebayestextclassifier2_example.json +7 -0
- teradataml/data/naivebayestextclassifier_example.json +8 -0
- teradataml/data/naivebayestextclassifierpredict_example.json +32 -0
- teradataml/data/name_Find_configure.csv +10 -0
- teradataml/data/namedentityfinder_example.json +14 -0
- teradataml/data/namedentityfinderevaluator_example.json +10 -0
- teradataml/data/namedentityfindertrainer_example.json +6 -0
- teradataml/data/nb_iris_input_test.csv +31 -0
- teradataml/data/nb_iris_input_train.csv +121 -0
- teradataml/data/nbp_iris_model.csv +13 -0
- teradataml/data/ner_dict.csv +8 -0
- teradataml/data/ner_extractor_text.csv +2 -0
- teradataml/data/ner_input_eng.csv +7 -0
- teradataml/data/ner_rule.csv +5 -0
- teradataml/data/ner_sports_test2.csv +29 -0
- teradataml/data/ner_sports_train.csv +501 -0
- teradataml/data/nerevaluator_example.json +6 -0
- teradataml/data/nerextractor_example.json +18 -0
- teradataml/data/nermem_sports_test.csv +18 -0
- teradataml/data/nermem_sports_train.csv +51 -0
- teradataml/data/nertrainer_example.json +7 -0
- teradataml/data/ngrams_example.json +7 -0
- teradataml/data/notebooks/__init__.py +0 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -0
- teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -0
- teradataml/data/notebooks/sqlalchemy/__init__.py +0 -0
- teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -0
- teradataml/data/npath_example.json +23 -0
- teradataml/data/ntree_example.json +14 -0
- teradataml/data/numeric_strings.csv +5 -0
- teradataml/data/numerics.csv +4 -0
- teradataml/data/ocean_buoy.csv +17 -0
- teradataml/data/ocean_buoy2.csv +17 -0
- teradataml/data/ocean_buoys.csv +28 -0
- teradataml/data/ocean_buoys2.csv +10 -0
- teradataml/data/ocean_buoys_nonpti.csv +28 -0
- teradataml/data/ocean_buoys_seq.csv +29 -0
- teradataml/data/onehot_encoder_train.csv +4 -0
- teradataml/data/openml_example.json +92 -0
- teradataml/data/optional_event_table.csv +4 -0
- teradataml/data/orders1.csv +11 -0
- teradataml/data/orders1_12.csv +13 -0
- teradataml/data/orders_ex.csv +4 -0
- teradataml/data/pack_example.json +9 -0
- teradataml/data/package_tracking.csv +19 -0
- teradataml/data/package_tracking_pti.csv +19 -0
- teradataml/data/pagerank_example.json +13 -0
- teradataml/data/paragraphs_input.csv +6 -0
- teradataml/data/pathanalyzer_example.json +8 -0
- teradataml/data/pathgenerator_example.json +8 -0
- teradataml/data/patient_profile.csv +101 -0
- teradataml/data/pattern_matching_data.csv +11 -0
- teradataml/data/payment_fraud_dataset.csv +10001 -0
- teradataml/data/peppers.png +0 -0
- teradataml/data/phrases.csv +7 -0
- teradataml/data/pivot_example.json +9 -0
- teradataml/data/pivot_input.csv +22 -0
- teradataml/data/playerRating.csv +31 -0
- teradataml/data/pos_input.csv +40 -0
- teradataml/data/postagger_example.json +7 -0
- teradataml/data/posttagger_output.csv +44 -0
- teradataml/data/production_data.csv +17 -0
- teradataml/data/production_data2.csv +7 -0
- teradataml/data/randomsample_example.json +32 -0
- teradataml/data/randomwalksample_example.json +9 -0
- teradataml/data/rank_table.csv +6 -0
- teradataml/data/real_values.csv +14 -0
- teradataml/data/ref_mobile_data.csv +4 -0
- teradataml/data/ref_mobile_data_dense.csv +2 -0
- teradataml/data/ref_url.csv +17 -0
- teradataml/data/restaurant_reviews.csv +7 -0
- teradataml/data/retail_churn_table.csv +27772 -0
- teradataml/data/river_data.csv +145 -0
- teradataml/data/roc_example.json +8 -0
- teradataml/data/roc_input.csv +101 -0
- teradataml/data/rule_inputs.csv +6 -0
- teradataml/data/rule_table.csv +2 -0
- teradataml/data/sales.csv +7 -0
- teradataml/data/sales_transaction.csv +501 -0
- teradataml/data/salesdata.csv +342 -0
- teradataml/data/sample_cities.csv +3 -0
- teradataml/data/sample_shapes.csv +11 -0
- teradataml/data/sample_streets.csv +3 -0
- teradataml/data/sampling_example.json +16 -0
- teradataml/data/sax_example.json +17 -0
- teradataml/data/scale_attributes.csv +3 -0
- teradataml/data/scale_example.json +74 -0
- teradataml/data/scale_housing.csv +11 -0
- teradataml/data/scale_housing_test.csv +6 -0
- teradataml/data/scale_input_part_sparse.csv +31 -0
- teradataml/data/scale_input_partitioned.csv +16 -0
- teradataml/data/scale_input_sparse.csv +11 -0
- teradataml/data/scale_parameters.csv +3 -0
- teradataml/data/scale_stat.csv +11 -0
- teradataml/data/scalebypartition_example.json +13 -0
- teradataml/data/scalemap_example.json +13 -0
- teradataml/data/scalesummary_example.json +12 -0
- teradataml/data/score_category.csv +101 -0
- teradataml/data/score_summary.csv +4 -0
- teradataml/data/script_example.json +10 -0
- teradataml/data/scripts/deploy_script.py +84 -0
- teradataml/data/scripts/lightgbm/dataset.template +175 -0
- teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +264 -0
- teradataml/data/scripts/lightgbm/lightgbm_function.template +234 -0
- teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +177 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/mapper.py +16 -0
- teradataml/data/scripts/mapper_replace.py +16 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +205 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +148 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +144 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +166 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +161 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +145 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +327 -0
- teradataml/data/sdk/modelops/modelops_spec.json +101737 -0
- teradataml/data/seeds.csv +10 -0
- teradataml/data/sentenceextractor_example.json +7 -0
- teradataml/data/sentiment_extract_input.csv +11 -0
- teradataml/data/sentiment_train.csv +16 -0
- teradataml/data/sentiment_word.csv +20 -0
- teradataml/data/sentiment_word_input.csv +20 -0
- teradataml/data/sentimentextractor_example.json +24 -0
- teradataml/data/sentimenttrainer_example.json +8 -0
- teradataml/data/sequence_table.csv +10 -0
- teradataml/data/seriessplitter_example.json +8 -0
- teradataml/data/sessionize_example.json +17 -0
- teradataml/data/sessionize_table.csv +116 -0
- teradataml/data/setop_test1.csv +24 -0
- teradataml/data/setop_test2.csv +22 -0
- teradataml/data/soc_nw_edges.csv +11 -0
- teradataml/data/soc_nw_vertices.csv +8 -0
- teradataml/data/souvenir_timeseries.csv +168 -0
- teradataml/data/sparse_iris_attribute.csv +5 -0
- teradataml/data/sparse_iris_test.csv +121 -0
- teradataml/data/sparse_iris_train.csv +601 -0
- teradataml/data/star1.csv +6 -0
- teradataml/data/star_pivot.csv +8 -0
- teradataml/data/state_transition.csv +5 -0
- teradataml/data/stock_data.csv +53 -0
- teradataml/data/stock_movement.csv +11 -0
- teradataml/data/stock_vol.csv +76 -0
- teradataml/data/stop_words.csv +8 -0
- teradataml/data/store_sales.csv +37 -0
- teradataml/data/stringsimilarity_example.json +8 -0
- teradataml/data/strsimilarity_input.csv +13 -0
- teradataml/data/students.csv +101 -0
- teradataml/data/svm_iris_input_test.csv +121 -0
- teradataml/data/svm_iris_input_train.csv +481 -0
- teradataml/data/svm_iris_model.csv +7 -0
- teradataml/data/svmdense_example.json +10 -0
- teradataml/data/svmdensepredict_example.json +19 -0
- teradataml/data/svmsparse_example.json +8 -0
- teradataml/data/svmsparsepredict_example.json +14 -0
- teradataml/data/svmsparsesummary_example.json +8 -0
- teradataml/data/target_mobile_data.csv +13 -0
- teradataml/data/target_mobile_data_dense.csv +5 -0
- teradataml/data/target_udt_data.csv +8 -0
- teradataml/data/tdnerextractor_example.json +14 -0
- teradataml/data/templatedata.csv +1201 -0
- teradataml/data/templates/open_source_ml.json +11 -0
- teradataml/data/teradata_icon.ico +0 -0
- teradataml/data/teradataml_example.json +1473 -0
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_loan_prediction.csv +53 -0
- teradataml/data/test_pacf_12.csv +37 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/test_river2.csv +109 -0
- teradataml/data/text_inputs.csv +6 -0
- teradataml/data/textchunker_example.json +8 -0
- teradataml/data/textclassifier_example.json +7 -0
- teradataml/data/textclassifier_input.csv +7 -0
- teradataml/data/textclassifiertrainer_example.json +7 -0
- teradataml/data/textmorph_example.json +11 -0
- teradataml/data/textparser_example.json +15 -0
- teradataml/data/texttagger_example.json +12 -0
- teradataml/data/texttokenizer_example.json +7 -0
- teradataml/data/texttrainer_input.csv +11 -0
- teradataml/data/tf_example.json +7 -0
- teradataml/data/tfidf_example.json +14 -0
- teradataml/data/tfidf_input1.csv +201 -0
- teradataml/data/tfidf_train.csv +6 -0
- teradataml/data/time_table1.csv +535 -0
- teradataml/data/time_table2.csv +14 -0
- teradataml/data/timeseriesdata.csv +1601 -0
- teradataml/data/timeseriesdatasetsd4.csv +105 -0
- teradataml/data/timestamp_data.csv +4 -0
- teradataml/data/titanic.csv +892 -0
- teradataml/data/titanic_dataset_unpivoted.csv +19 -0
- teradataml/data/to_num_data.csv +4 -0
- teradataml/data/tochar_data.csv +5 -0
- teradataml/data/token_table.csv +696 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/train_tracking.csv +28 -0
- teradataml/data/trans_dense.csv +16 -0
- teradataml/data/trans_sparse.csv +55 -0
- teradataml/data/transformation_table.csv +6 -0
- teradataml/data/transformation_table_new.csv +2 -0
- teradataml/data/tv_spots.csv +16 -0
- teradataml/data/twod_climate_data.csv +117 -0
- teradataml/data/uaf_example.json +529 -0
- teradataml/data/univariatestatistics_example.json +9 -0
- teradataml/data/unpack_example.json +10 -0
- teradataml/data/unpivot_example.json +25 -0
- teradataml/data/unpivot_input.csv +8 -0
- teradataml/data/url_data.csv +10 -0
- teradataml/data/us_air_pass.csv +37 -0
- teradataml/data/us_population.csv +624 -0
- teradataml/data/us_states_shapes.csv +52 -0
- teradataml/data/varmax_example.json +18 -0
- teradataml/data/vectordistance_example.json +30 -0
- teradataml/data/ville_climatedata.csv +121 -0
- teradataml/data/ville_tempdata.csv +12 -0
- teradataml/data/ville_tempdata1.csv +12 -0
- teradataml/data/ville_temperature.csv +11 -0
- teradataml/data/waveletTable.csv +1605 -0
- teradataml/data/waveletTable2.csv +1605 -0
- teradataml/data/weightedmovavg_example.json +9 -0
- teradataml/data/wft_testing.csv +5 -0
- teradataml/data/windowdfft.csv +16 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/data/word_embed_input_table1.csv +6 -0
- teradataml/data/word_embed_input_table2.csv +5 -0
- teradataml/data/word_embed_model.csv +23 -0
- teradataml/data/words_input.csv +13 -0
- teradataml/data/xconvolve_complex_left.csv +6 -0
- teradataml/data/xconvolve_complex_leftmulti.csv +6 -0
- teradataml/data/xgboost_example.json +36 -0
- teradataml/data/xgboostpredict_example.json +32 -0
- teradataml/data/ztest_example.json +16 -0
- teradataml/dataframe/__init__.py +0 -0
- teradataml/dataframe/copy_to.py +2446 -0
- teradataml/dataframe/data_transfer.py +2840 -0
- teradataml/dataframe/dataframe.py +20908 -0
- teradataml/dataframe/dataframe_utils.py +2114 -0
- teradataml/dataframe/fastload.py +794 -0
- teradataml/dataframe/functions.py +2110 -0
- teradataml/dataframe/indexer.py +424 -0
- teradataml/dataframe/row.py +160 -0
- teradataml/dataframe/setop.py +1171 -0
- teradataml/dataframe/sql.py +10904 -0
- teradataml/dataframe/sql_function_parameters.py +440 -0
- teradataml/dataframe/sql_functions.py +652 -0
- teradataml/dataframe/sql_interfaces.py +220 -0
- teradataml/dataframe/vantage_function_types.py +675 -0
- teradataml/dataframe/window.py +694 -0
- teradataml/dbutils/__init__.py +3 -0
- teradataml/dbutils/dbutils.py +2871 -0
- teradataml/dbutils/filemgr.py +318 -0
- teradataml/gen_ai/__init__.py +2 -0
- teradataml/gen_ai/convAI.py +473 -0
- teradataml/geospatial/__init__.py +4 -0
- teradataml/geospatial/geodataframe.py +1105 -0
- teradataml/geospatial/geodataframecolumn.py +392 -0
- teradataml/geospatial/geometry_types.py +926 -0
- teradataml/hyperparameter_tuner/__init__.py +1 -0
- teradataml/hyperparameter_tuner/optimizer.py +4115 -0
- teradataml/hyperparameter_tuner/utils.py +303 -0
- teradataml/lib/__init__.py +0 -0
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/lib/libaed_0_1_aarch64.so +0 -0
- teradataml/lib/libaed_0_1_ppc64le.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/_base.py +1321 -0
- teradataml/opensource/_class.py +464 -0
- teradataml/opensource/_constants.py +61 -0
- teradataml/opensource/_lightgbm.py +949 -0
- teradataml/opensource/_sklearn.py +1008 -0
- teradataml/opensource/_wrapper_utils.py +267 -0
- teradataml/options/__init__.py +148 -0
- teradataml/options/configure.py +489 -0
- teradataml/options/display.py +187 -0
- teradataml/plot/__init__.py +3 -0
- teradataml/plot/axis.py +1427 -0
- teradataml/plot/constants.py +15 -0
- teradataml/plot/figure.py +431 -0
- teradataml/plot/plot.py +810 -0
- teradataml/plot/query_generator.py +83 -0
- teradataml/plot/subplot.py +216 -0
- teradataml/scriptmgmt/UserEnv.py +4273 -0
- teradataml/scriptmgmt/__init__.py +3 -0
- teradataml/scriptmgmt/lls_utils.py +2157 -0
- teradataml/sdk/README.md +79 -0
- teradataml/sdk/__init__.py +4 -0
- teradataml/sdk/_auth_modes.py +422 -0
- teradataml/sdk/_func_params.py +487 -0
- teradataml/sdk/_json_parser.py +453 -0
- teradataml/sdk/_openapi_spec_constants.py +249 -0
- teradataml/sdk/_utils.py +236 -0
- teradataml/sdk/api_client.py +900 -0
- teradataml/sdk/constants.py +62 -0
- teradataml/sdk/modelops/__init__.py +98 -0
- teradataml/sdk/modelops/_client.py +409 -0
- teradataml/sdk/modelops/_constants.py +304 -0
- teradataml/sdk/modelops/models.py +2308 -0
- teradataml/sdk/spinner.py +107 -0
- teradataml/series/__init__.py +0 -0
- teradataml/series/series.py +537 -0
- teradataml/series/series_utils.py +71 -0
- teradataml/store/__init__.py +12 -0
- teradataml/store/feature_store/__init__.py +0 -0
- teradataml/store/feature_store/constants.py +658 -0
- teradataml/store/feature_store/feature_store.py +4814 -0
- teradataml/store/feature_store/mind_map.py +639 -0
- teradataml/store/feature_store/models.py +7330 -0
- teradataml/store/feature_store/utils.py +390 -0
- teradataml/table_operators/Apply.py +979 -0
- teradataml/table_operators/Script.py +1739 -0
- teradataml/table_operators/TableOperator.py +1343 -0
- teradataml/table_operators/__init__.py +2 -0
- teradataml/table_operators/apply_query_generator.py +262 -0
- teradataml/table_operators/query_generator.py +493 -0
- teradataml/table_operators/table_operator_query_generator.py +462 -0
- teradataml/table_operators/table_operator_util.py +726 -0
- teradataml/table_operators/templates/dataframe_apply.template +184 -0
- teradataml/table_operators/templates/dataframe_map.template +176 -0
- teradataml/table_operators/templates/dataframe_register.template +73 -0
- teradataml/table_operators/templates/dataframe_udf.template +67 -0
- teradataml/table_operators/templates/script_executor.template +170 -0
- teradataml/telemetry_utils/__init__.py +0 -0
- teradataml/telemetry_utils/queryband.py +53 -0
- teradataml/utils/__init__.py +0 -0
- teradataml/utils/docstring.py +527 -0
- teradataml/utils/dtypes.py +943 -0
- teradataml/utils/internal_buffer.py +122 -0
- teradataml/utils/print_versions.py +206 -0
- teradataml/utils/utils.py +451 -0
- teradataml/utils/validators.py +3305 -0
- teradataml-20.0.0.8.dist-info/METADATA +2804 -0
- teradataml-20.0.0.8.dist-info/RECORD +1208 -0
- teradataml-20.0.0.8.dist-info/WHEEL +5 -0
- teradataml-20.0.0.8.dist-info/top_level.txt +1 -0
- teradataml-20.0.0.8.dist-info/zip-safe +1 -0
|
@@ -0,0 +1,859 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Unpublished work.
|
|
3
|
+
Copyright (c) 2020 by Teradata Corporation. All rights reserved.
|
|
4
|
+
TERADATA CORPORATION CONFIDENTIAL AND TRADE SECRET
|
|
5
|
+
|
|
6
|
+
Primary Owner: Rohit.Khurd@teradata.com
|
|
7
|
+
Secondary Owner:
|
|
8
|
+
|
|
9
|
+
This file is for creating a two way mapper between client specific attribute/input/output names to
|
|
10
|
+
their SQL specific counterparts.
|
|
11
|
+
"""
|
|
12
|
+
from teradataml.common.exceptions import TeradataMlException
|
|
13
|
+
from teradataml.common.messages import Messages
|
|
14
|
+
from teradataml.common.messagecodes import MessageCodes
|
|
15
|
+
from teradataml.common.constants import ModelCatalogingConstants
|
|
16
|
+
from teradataml.context.context import _get_vantage_version
|
|
17
|
+
from teradataml.utils.validators import _Validators
|
|
18
|
+
from teradataml.common.constants import ModelCatalogingConstants as mac, \
|
|
19
|
+
FunctionArgumentMapperConstants as famc
|
|
20
|
+
import inspect
|
|
21
|
+
import json
|
|
22
|
+
import os
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
class _ArgumentMapperSuper(object):
|
|
26
|
+
"""
|
|
27
|
+
The parent class for the function argument mapper with simple functions to
|
|
28
|
+
set and get attribute values.
|
|
29
|
+
"""
|
|
30
|
+
|
|
31
|
+
def __init__(self):
|
|
32
|
+
pass
|
|
33
|
+
|
|
34
|
+
def _SetKeyValue(self, name, value):
|
|
35
|
+
super().__setattr__(name, value)
|
|
36
|
+
|
|
37
|
+
def _GetValue(self, name):
|
|
38
|
+
return super().__getattribute__(name)
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
def _create_property(name):
|
|
42
|
+
"""
|
|
43
|
+
Internal function to create a property with getter and setter with the required name.
|
|
44
|
+
"""
|
|
45
|
+
storage_name = '_' + name
|
|
46
|
+
|
|
47
|
+
@property
|
|
48
|
+
def prop(self):
|
|
49
|
+
return self._GetValue(storage_name)
|
|
50
|
+
|
|
51
|
+
@prop.setter
|
|
52
|
+
def prop(self, value):
|
|
53
|
+
self._SetKeyValue(storage_name, value)
|
|
54
|
+
|
|
55
|
+
return prop
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
class _ArgumentMapper(_ArgumentMapperSuper):
|
|
59
|
+
"""
|
|
60
|
+
Dictionary to map teradataml argument names to SQL argument names and vice-versa.
|
|
61
|
+
"""
|
|
62
|
+
input_output_arg_map = _create_property('input_output_arg_map')
|
|
63
|
+
|
|
64
|
+
def __init__(self):
|
|
65
|
+
"""
|
|
66
|
+
PARAMETERS:
|
|
67
|
+
None.
|
|
68
|
+
"""
|
|
69
|
+
super().__init__()
|
|
70
|
+
# input_output_arg_map: It is required to create the dictionary to hold the map.
|
|
71
|
+
# Types: dict
|
|
72
|
+
super().__setattr__('input_output_arg_map', {})
|
|
73
|
+
|
|
74
|
+
def __setattr__(self, name, value):
|
|
75
|
+
if hasattr(self, name):
|
|
76
|
+
# We will set the 'input_output_arg_map' argument map when it is updated from
|
|
77
|
+
# the __load_function_map method
|
|
78
|
+
if name == 'input_output_arg_map' and inspect.stack()[1][3] == '__load_function_map':
|
|
79
|
+
if not isinstance(value, dict):
|
|
80
|
+
raise TypeError(Messages.get_message(MessageCodes.UNSUPPORTED_DATATYPE,
|
|
81
|
+
name, 'dict'),
|
|
82
|
+
MessageCodes.UNSUPPORTED_DATATYPE)
|
|
83
|
+
super().__setattr__(name, value)
|
|
84
|
+
else:
|
|
85
|
+
raise AttributeError("'{}' object has no attribute '{}'".format(self.__class__.__name__, name))
|
|
86
|
+
|
|
87
|
+
def _get_function_map(self, engine, function_name):
|
|
88
|
+
"""
|
|
89
|
+
DESCRIPTION:
|
|
90
|
+
Function to return the function argument mapper for a given function.
|
|
91
|
+
|
|
92
|
+
PARAMETERS:
|
|
93
|
+
engine:
|
|
94
|
+
Required Argument.
|
|
95
|
+
Specifies the analytics engine to which the function belongs to.
|
|
96
|
+
Supported values: 'ML Engine', 'Advanced SQL Engine'
|
|
97
|
+
Types: str
|
|
98
|
+
|
|
99
|
+
function_name:
|
|
100
|
+
Required Argument.
|
|
101
|
+
Specifies the name of the function on the analytics engine provided to get the map for.
|
|
102
|
+
Types: str
|
|
103
|
+
|
|
104
|
+
RAISES:
|
|
105
|
+
None.
|
|
106
|
+
|
|
107
|
+
RETURNS:
|
|
108
|
+
A dictionary mapping the teradataml equivalent argument, input table,
|
|
109
|
+
and output table names to SQL names, and vice-versa.
|
|
110
|
+
|
|
111
|
+
EXAMPLES:
|
|
112
|
+
>>> from teradataml.catalog.function_argument_mapper import _argument_mapper
|
|
113
|
+
>>> _argument_mapper._get_function_map('ML Engine', 'GLM')
|
|
114
|
+
|
|
115
|
+
"""
|
|
116
|
+
arg_info_matrix = []
|
|
117
|
+
arg_info_matrix.append(["engine", engine, False, (str), True, [mac.MODEL_ENGINE_ADVSQL.value,
|
|
118
|
+
mac.MODEL_ENGINE_ML.value]])
|
|
119
|
+
arg_info_matrix.append(["function_name", function_name, False, (str), True])
|
|
120
|
+
|
|
121
|
+
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
122
|
+
_Validators._validate_missing_required_arguments(arg_info_matrix)
|
|
123
|
+
|
|
124
|
+
# Validate argument types
|
|
125
|
+
_Validators._validate_function_arguments(arg_info_matrix)
|
|
126
|
+
|
|
127
|
+
# Set the Vantage version attribute when required, i.e. when attempting to populate the Function map
|
|
128
|
+
# for the first time.
|
|
129
|
+
# Setting it to 'Vantage 1.1 GA' by default, just as in 'configure'.
|
|
130
|
+
if not hasattr(self, '_vantage_version'):
|
|
131
|
+
vantage_version = _get_vantage_version()
|
|
132
|
+
super().__setattr__('_vantage_version', vantage_version if vantage_version else 'Vantage 1.1 GA')
|
|
133
|
+
|
|
134
|
+
# Standardise the engine name to use in the mapper
|
|
135
|
+
if engine.lower() == ModelCatalogingConstants.MODEL_ENGINE_ML.value.lower():
|
|
136
|
+
engine = ModelCatalogingConstants.MODEL_ENGINE_ML.value
|
|
137
|
+
elif engine.lower() == ModelCatalogingConstants.MODEL_ENGINE_ADVSQL.value.lower():
|
|
138
|
+
engine = ModelCatalogingConstants.MODEL_ENGINE_ADVSQL.value
|
|
139
|
+
|
|
140
|
+
# Also use lower case algorithm names for case insensitive checks
|
|
141
|
+
self.__load_function_map(engine, function_name.lower())
|
|
142
|
+
return self.input_output_arg_map[engine][function_name.lower()]
|
|
143
|
+
|
|
144
|
+
def __load_function_map(self, engine, function_name):
|
|
145
|
+
"""
|
|
146
|
+
DESCRIPTION:
|
|
147
|
+
Internal function to check for the presence of the given function in the mapper, and when not found,
|
|
148
|
+
load the function argument mapping for function specified by the engine and function_name arguments.
|
|
149
|
+
|
|
150
|
+
PARAMETERS:
|
|
151
|
+
engine:
|
|
152
|
+
Required Argument.
|
|
153
|
+
Specifies the name of the engine the function belongs to.
|
|
154
|
+
Acceptable values: 'ML Engine', 'Advanced SQL Engine'
|
|
155
|
+
Types: str
|
|
156
|
+
|
|
157
|
+
function_name:
|
|
158
|
+
Required Argument.
|
|
159
|
+
Specifies the name of the function to check and load the argument mapping for.
|
|
160
|
+
Types: str
|
|
161
|
+
|
|
162
|
+
RAISES:
|
|
163
|
+
TeradataMlException
|
|
164
|
+
|
|
165
|
+
RETURNS:
|
|
166
|
+
NA
|
|
167
|
+
|
|
168
|
+
EXAMPLES:
|
|
169
|
+
>>> self.__load_function_map('ML Engine', 'GLM')
|
|
170
|
+
|
|
171
|
+
"""
|
|
172
|
+
if engine not in self.input_output_arg_map or \
|
|
173
|
+
function_name not in self.input_output_arg_map[engine]:
|
|
174
|
+
|
|
175
|
+
curr_dir = os.path.dirname(os.path.abspath(__file__))
|
|
176
|
+
function_json_file = None
|
|
177
|
+
|
|
178
|
+
# The path of the JSON files for the function is expected to be:
|
|
179
|
+
# teradataml/analytics/sqle/<function_name>_sqle.json - for SQLE functions
|
|
180
|
+
if engine == ModelCatalogingConstants.MODEL_ENGINE_ML.value:
|
|
181
|
+
function_json_file = os.path.join(curr_dir,
|
|
182
|
+
'../analytics/mle/json/{}_mle.json'.format(function_name))
|
|
183
|
+
elif engine == ModelCatalogingConstants.MODEL_ENGINE_ADVSQL.value:
|
|
184
|
+
function_json_file = os.path.join(curr_dir,
|
|
185
|
+
'../analytics/sqle/json/{}_sqle.json'.format(function_name))
|
|
186
|
+
|
|
187
|
+
try:
|
|
188
|
+
function_json = json.load(open(function_json_file, 'r'))
|
|
189
|
+
except Exception:
|
|
190
|
+
raise TeradataMlException(Messages.get_message(MessageCodes.FUNCTION_JSON_MISSING,
|
|
191
|
+
function_name, engine),
|
|
192
|
+
MessageCodes.FUNCTION_JSON_MISSING)
|
|
193
|
+
|
|
194
|
+
self.__setattr__('input_output_arg_map',
|
|
195
|
+
self.__update_json_dict_for_function(self.input_output_arg_map, engine,
|
|
196
|
+
function_name,
|
|
197
|
+
function_json))
|
|
198
|
+
|
|
199
|
+
def __resolve_arg_types(self, arg):
|
|
200
|
+
"""
|
|
201
|
+
DESCRIPTION:
|
|
202
|
+
Internal function to return the python data type corresponding to the acceptable SQL data type
|
|
203
|
+
for an argument.
|
|
204
|
+
|
|
205
|
+
PARAMETERS:
|
|
206
|
+
arg:
|
|
207
|
+
Required Argument.
|
|
208
|
+
Specifies a dictionary related to the function argument from the function argument map.
|
|
209
|
+
Types: dict
|
|
210
|
+
|
|
211
|
+
RAISES:
|
|
212
|
+
TypeError
|
|
213
|
+
|
|
214
|
+
RETURNS:
|
|
215
|
+
Python data type for the argument specified.
|
|
216
|
+
|
|
217
|
+
EXAMPLES:
|
|
218
|
+
>>> expected_python_types = self.__resolve_arg_types(arg)
|
|
219
|
+
|
|
220
|
+
"""
|
|
221
|
+
# Raise and error if the type is not expected
|
|
222
|
+
if not isinstance(arg, dict):
|
|
223
|
+
raise TypeError(Messages.get_message(MessageCodes.UNSUPPORTED_DATATYPE,
|
|
224
|
+
'arg', 'dict'),
|
|
225
|
+
MessageCodes.UNSUPPORTED_DATATYPE)
|
|
226
|
+
|
|
227
|
+
# Let's check if the argument accepts lists
|
|
228
|
+
allows_lists = False
|
|
229
|
+
if famc.ALLOWS_LISTS.value in arg:
|
|
230
|
+
allows_lists = arg[famc.ALLOWS_LISTS.value]
|
|
231
|
+
|
|
232
|
+
# The default type of argument is str
|
|
233
|
+
python_type = str
|
|
234
|
+
if arg[famc.DATATYPE.value] == famc.BOOL_TYPE.value:
|
|
235
|
+
python_type = bool
|
|
236
|
+
elif arg[famc.DATATYPE.value] in famc.INT_TYPE.value:
|
|
237
|
+
python_type = int
|
|
238
|
+
elif arg[famc.DATATYPE.value] in famc.FLOAT_TYPE.value:
|
|
239
|
+
python_type = float
|
|
240
|
+
|
|
241
|
+
# When the argument accepts lists, we create a 2-tuple of expected types,
|
|
242
|
+
# where 'list' is the second item in the tuple.
|
|
243
|
+
if allows_lists:
|
|
244
|
+
python_type = (python_type, list)
|
|
245
|
+
|
|
246
|
+
return python_type
|
|
247
|
+
|
|
248
|
+
def __resolve_sequence_input_args(self, function_map, sequence_arg):
|
|
249
|
+
"""
|
|
250
|
+
DESCRIPTION:
|
|
251
|
+
Internal function to add mapping for SequenceInputBy argument between its SQL and teradataml counterparts.
|
|
252
|
+
|
|
253
|
+
PARAMETERS:
|
|
254
|
+
function_map:
|
|
255
|
+
Required Argument.
|
|
256
|
+
Specifies the function argument map to update with the information related
|
|
257
|
+
to the SequenceInputBy argument.
|
|
258
|
+
Types: dict
|
|
259
|
+
|
|
260
|
+
sequence_arg:
|
|
261
|
+
Required Argument.
|
|
262
|
+
Specifies the dictionary element from the function JSON file corresponding
|
|
263
|
+
to the SequenceInputBy argument.
|
|
264
|
+
Types: dict
|
|
265
|
+
|
|
266
|
+
RAISES:
|
|
267
|
+
None
|
|
268
|
+
|
|
269
|
+
RETURNS:
|
|
270
|
+
A dictionary - the updated function argument map.
|
|
271
|
+
|
|
272
|
+
EXAMPLES:
|
|
273
|
+
>>> self.__resolve_sequence_input_args(function_map, sequence_arg)
|
|
274
|
+
|
|
275
|
+
"""
|
|
276
|
+
arg_info_matrix = []
|
|
277
|
+
arg_info_matrix.append(["function_map", function_map, False, (dict)])
|
|
278
|
+
arg_info_matrix.append(["sequence_arg", sequence_arg, False, (dict)])
|
|
279
|
+
|
|
280
|
+
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
281
|
+
_Validators._validate_missing_required_arguments(arg_info_matrix)
|
|
282
|
+
|
|
283
|
+
# Validate argument types
|
|
284
|
+
_Validators._validate_function_arguments(arg_info_matrix)
|
|
285
|
+
|
|
286
|
+
# First, make a list of all tdml names for inputs
|
|
287
|
+
input_tdml_names = set([key for key in function_map[famc.INPUTS.value][famc.TDML_TO_SQL.value]])
|
|
288
|
+
|
|
289
|
+
# Python type for sequenceBy argument is always str or a list of strs
|
|
290
|
+
python_type = (str, list)
|
|
291
|
+
|
|
292
|
+
# Convert the rName to teradataml name
|
|
293
|
+
r_name = self.__convert_rName_to_tdml(sequence_arg[famc.R_NAME.value])
|
|
294
|
+
|
|
295
|
+
# All teradataml sequence arguments are names <input_name>_sequence_column
|
|
296
|
+
tdml_name = [ '{}_{}'.format(input_name, r_name) for input_name in input_tdml_names ]
|
|
297
|
+
|
|
298
|
+
arg_name = sequence_arg[famc.NAME.value]
|
|
299
|
+
sql_name_to_use = self.__resolve_name(arg_name).lower()
|
|
300
|
+
|
|
301
|
+
if isinstance(arg_name, list):
|
|
302
|
+
for i in range(len(arg_name)):
|
|
303
|
+
# We can use only one of the SQL equivalents
|
|
304
|
+
if i == 0:
|
|
305
|
+
function_map = self.__add_sql_to_tdml_entry(function_map=function_map,
|
|
306
|
+
sql_name=arg_name[i],
|
|
307
|
+
tdml_name=tdml_name,
|
|
308
|
+
tdml_type=python_type)
|
|
309
|
+
function_map[famc.ARGUMENTS.value][famc.SQL_TO_TDML.value][arg_name[i].lower()][
|
|
310
|
+
famc.USED_IN_SEQUENCE_INPUT_BY.value] = True
|
|
311
|
+
for name in tdml_name:
|
|
312
|
+
function_map[famc.ARGUMENTS.value][famc.TDML_TO_SQL.value][name] = sql_name_to_use
|
|
313
|
+
# The rest of the SQL equivalents can be treated as alternate names
|
|
314
|
+
else:
|
|
315
|
+
function_map = self.__add_sql_to_tdml_entry(function_map=function_map,
|
|
316
|
+
sql_name=arg_name[i],
|
|
317
|
+
sql_name_to_use=sql_name_to_use,
|
|
318
|
+
alternate_to=True)
|
|
319
|
+
|
|
320
|
+
# The arg_name can be a dictionary where the keys are the Vantage versions,
|
|
321
|
+
# and each version has it's own list of acceptable names
|
|
322
|
+
if isinstance(arg_name, dict):
|
|
323
|
+
for vv, value in arg_name.items():
|
|
324
|
+
for i in range(len(value)):
|
|
325
|
+
if i == 0:
|
|
326
|
+
function_map = self.__add_sql_to_tdml_entry(function_map=function_map,
|
|
327
|
+
sql_name=value[i],
|
|
328
|
+
tdml_name=tdml_name,
|
|
329
|
+
tdml_type=python_type)
|
|
330
|
+
function_map[famc.ARGUMENTS.value][famc.SQL_TO_TDML.value][value[i].lower()][
|
|
331
|
+
famc.USED_IN_SEQUENCE_INPUT_BY.value] = True
|
|
332
|
+
for name in tdml_name:
|
|
333
|
+
function_map[famc.ARGUMENTS.value][famc.TDML_TO_SQL.value][name] = sql_name_to_use
|
|
334
|
+
else:
|
|
335
|
+
function_map = self.__add_sql_to_tdml_entry(function_map=function_map,
|
|
336
|
+
sql_name=value[i],
|
|
337
|
+
sql_name_to_use=sql_name_to_use,
|
|
338
|
+
alternate_to=True)
|
|
339
|
+
|
|
340
|
+
return function_map
|
|
341
|
+
|
|
342
|
+
def __resolve_formula_args(self, function_map, formula_args):
|
|
343
|
+
"""
|
|
344
|
+
DESCRIPTION:
|
|
345
|
+
Internal function to add mapping for formula argument between it's SQL and teradataml counterparts.
|
|
346
|
+
|
|
347
|
+
PARAMETERS:
|
|
348
|
+
function_map:
|
|
349
|
+
Required Argument.
|
|
350
|
+
Specifies the function argument map to update with the information related to the formula argument.
|
|
351
|
+
Types: dict
|
|
352
|
+
|
|
353
|
+
formula_args:
|
|
354
|
+
Required Argument.
|
|
355
|
+
Specifies the list of dictionary elements from the function JSON file corresponding
|
|
356
|
+
to the formula argument.
|
|
357
|
+
Types: list
|
|
358
|
+
|
|
359
|
+
RAISES:
|
|
360
|
+
None.
|
|
361
|
+
|
|
362
|
+
RETURNS:
|
|
363
|
+
A dictionary - the updated function argument map.
|
|
364
|
+
|
|
365
|
+
EXAMPLES:
|
|
366
|
+
>>> self.__resolve_formula_args(function_map, formula_args)
|
|
367
|
+
|
|
368
|
+
"""
|
|
369
|
+
arg_info_matrix = []
|
|
370
|
+
arg_info_matrix.append(["function_map", function_map, False, (dict)])
|
|
371
|
+
arg_info_matrix.append(["formula_args", formula_args, False, (list)])
|
|
372
|
+
|
|
373
|
+
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
374
|
+
_Validators._validate_missing_required_arguments(arg_info_matrix)
|
|
375
|
+
|
|
376
|
+
# Validate argument types
|
|
377
|
+
_Validators._validate_function_arguments(arg_info_matrix)
|
|
378
|
+
|
|
379
|
+
# Check if formula is split into dependent and independent clauses
|
|
380
|
+
found_dependent = False
|
|
381
|
+
for arg in formula_args:
|
|
382
|
+
# rOrderNum = 0 indicates it is dependent variable in the formula
|
|
383
|
+
if arg[famc.R_ORDER_NUM.value] == 0:
|
|
384
|
+
found_dependent = True
|
|
385
|
+
break
|
|
386
|
+
|
|
387
|
+
# Python type for formula is always str
|
|
388
|
+
python_type = str
|
|
389
|
+
tdml_name = famc.TDML_FORMULA_NAME.value
|
|
390
|
+
arg_counter = 0
|
|
391
|
+
for arg in formula_args:
|
|
392
|
+
arg_counter = arg_counter + 1
|
|
393
|
+
# Either the function needs a clear distinction between dependent
|
|
394
|
+
# and independent variables (Like DecisionForest), or just the list (like GLM)
|
|
395
|
+
if arg[famc.R_ORDER_NUM.value] == 0:
|
|
396
|
+
used_in_formula = famc.DEPENDENT_ATTR.value
|
|
397
|
+
else:
|
|
398
|
+
if found_dependent:
|
|
399
|
+
used_in_formula = famc.INDEPENDENT_ATTR.value
|
|
400
|
+
else:
|
|
401
|
+
used_in_formula = True
|
|
402
|
+
|
|
403
|
+
arg_name = arg[famc.NAME.value]
|
|
404
|
+
sql_name_to_use = self.__resolve_name(arg_name).lower()
|
|
405
|
+
|
|
406
|
+
if isinstance(arg_name, list):
|
|
407
|
+
for i in range(len(arg_name)):
|
|
408
|
+
if i == 0:
|
|
409
|
+
function_map = self.__add_sql_to_tdml_entry(function_map=function_map,
|
|
410
|
+
sql_name=arg_name[i],
|
|
411
|
+
tdml_name=tdml_name,
|
|
412
|
+
tdml_type=python_type)
|
|
413
|
+
function_map[famc.ARGUMENTS.value][famc.SQL_TO_TDML.value][arg_name[i].lower()][
|
|
414
|
+
famc.USED_IN_FORMULA.value] = used_in_formula
|
|
415
|
+
if arg_counter > 1:
|
|
416
|
+
function_map[famc.ARGUMENTS.value][famc.TDML_TO_SQL.value][
|
|
417
|
+
tdml_name] = function_map[famc.ARGUMENTS.value][famc.TDML_TO_SQL.value][
|
|
418
|
+
tdml_name] + [sql_name_to_use]
|
|
419
|
+
else:
|
|
420
|
+
function_map[famc.ARGUMENTS.value][famc.TDML_TO_SQL.value][
|
|
421
|
+
tdml_name] = [sql_name_to_use]
|
|
422
|
+
else:
|
|
423
|
+
function_map = self.__add_sql_to_tdml_entry(function_map=function_map,
|
|
424
|
+
sql_name=arg_name[i],
|
|
425
|
+
sql_name_to_use=sql_name_to_use,
|
|
426
|
+
alternate_to=True)
|
|
427
|
+
|
|
428
|
+
# The arg_name can be a dictionary where the keys are the Vantage versions,
|
|
429
|
+
# and each version has it's own list of acceptable names
|
|
430
|
+
if isinstance(arg_name, dict):
|
|
431
|
+
for vv, value in arg_name.items():
|
|
432
|
+
for i in range(len(value)):
|
|
433
|
+
# Handle all other arguments
|
|
434
|
+
if i == 0:
|
|
435
|
+
function_map = self.__add_sql_to_tdml_entry(function_map=function_map,
|
|
436
|
+
sql_name=value[i],
|
|
437
|
+
tdml_name=tdml_name,
|
|
438
|
+
tdml_type=python_type)
|
|
439
|
+
function_map[famc.ARGUMENTS.value][famc.SQL_TO_TDML.value][value[i].lower()][
|
|
440
|
+
famc.USED_IN_FORMULA.value] = used_in_formula
|
|
441
|
+
if arg_counter > 1:
|
|
442
|
+
function_map[famc.ARGUMENTS.value][famc.TDML_TO_SQL.value][
|
|
443
|
+
tdml_name] = function_map[famc.ARGUMENTS.value][famc.TDML_TO_SQL.value][
|
|
444
|
+
tdml_name] + [sql_name_to_use]
|
|
445
|
+
else:
|
|
446
|
+
function_map[famc.ARGUMENTS.value][famc.TDML_TO_SQL.value][
|
|
447
|
+
tdml_name] = [sql_name_to_use]
|
|
448
|
+
else:
|
|
449
|
+
function_map = self.__add_sql_to_tdml_entry(function_map=function_map,
|
|
450
|
+
sql_name=value[i],
|
|
451
|
+
sql_name_to_use=sql_name_to_use,
|
|
452
|
+
alternate_to=True)
|
|
453
|
+
|
|
454
|
+
return function_map
|
|
455
|
+
|
|
456
|
+
def __resolve_name(self, name_arg):
|
|
457
|
+
"""
|
|
458
|
+
DESCRIPTION:
|
|
459
|
+
Internal function to resolve the SQL name for a given argument based on the Vantage version.
|
|
460
|
+
|
|
461
|
+
PARAMETERS:
|
|
462
|
+
name_arg:
|
|
463
|
+
Required Argument.
|
|
464
|
+
Specifies the name as defined in the function JSON file corresponding
|
|
465
|
+
to any argument.
|
|
466
|
+
Types: dict or list
|
|
467
|
+
|
|
468
|
+
RAISES:
|
|
469
|
+
None.
|
|
470
|
+
|
|
471
|
+
RETURNS:
|
|
472
|
+
A String representing the SQL name to use based on the Vantage version.
|
|
473
|
+
|
|
474
|
+
EXAMPLES:
|
|
475
|
+
>>> self.__resolve_name(['InputColumns', 'TargetColumns'])
|
|
476
|
+
InputColumns
|
|
477
|
+
>>> # Assuming Vantage version is 1.1
|
|
478
|
+
>>> self.__resolve_name({'Vantage 1.0': ['InputCols'], 'Vantage 1.1 GA': ['InputColumns', 'TargetColumns'])
|
|
479
|
+
InputColumns
|
|
480
|
+
|
|
481
|
+
"""
|
|
482
|
+
# If the name_arg is of type dict, it means the argument has different names based on the Vantage version.
|
|
483
|
+
# If name_arg is of type list, it means the argument has alternate names too, and they haven't changed since
|
|
484
|
+
# the last release.
|
|
485
|
+
# If name_arg is of type str, it means that the it points to the name to use which hasn't changed.
|
|
486
|
+
|
|
487
|
+
if isinstance(name_arg, dict):
|
|
488
|
+
name_arg = name_arg[self._vantage_version]
|
|
489
|
+
|
|
490
|
+
if isinstance(name_arg, list):
|
|
491
|
+
name_arg = name_arg[0]
|
|
492
|
+
|
|
493
|
+
return name_arg
|
|
494
|
+
|
|
495
|
+
def __convert_rName_to_tdml(self, r_name):
|
|
496
|
+
"""
|
|
497
|
+
DESCRIPTION:
|
|
498
|
+
Internal function to replace r_name to tdml_name by replacing '.' with '_'.
|
|
499
|
+
|
|
500
|
+
PARAMETERS:
|
|
501
|
+
r_name:
|
|
502
|
+
Required Argument.
|
|
503
|
+
A String representing the r name of any argument, input, output of a function, as mentioned in the
|
|
504
|
+
corresponding JSON file.
|
|
505
|
+
Types: str
|
|
506
|
+
|
|
507
|
+
RAISES:
|
|
508
|
+
TypeError
|
|
509
|
+
|
|
510
|
+
RETURNS:
|
|
511
|
+
A String representing the teradataml equivalent name for the given r name.
|
|
512
|
+
|
|
513
|
+
EXAMPLES:
|
|
514
|
+
>>> self.__convert_rName_to_tdml('sequence.column')
|
|
515
|
+
sequence_column
|
|
516
|
+
|
|
517
|
+
"""
|
|
518
|
+
if not isinstance(r_name, str):
|
|
519
|
+
raise TypeError(Messages.get_message(MessageCodes.UNSUPPORTED_DATATYPE,
|
|
520
|
+
'r_name', 'str'),
|
|
521
|
+
MessageCodes.UNSUPPORTED_DATATYPE)
|
|
522
|
+
|
|
523
|
+
if r_name is not None:
|
|
524
|
+
return r_name.replace(".", "_")
|
|
525
|
+
|
|
526
|
+
return r_name
|
|
527
|
+
|
|
528
|
+
def __add_function_input_output_entries(self, field, func_ip_op, function_map):
|
|
529
|
+
"""
|
|
530
|
+
DESCRIPTION:
|
|
531
|
+
Internal function to add entries for the functions inputs or outputs to the function argument map.
|
|
532
|
+
|
|
533
|
+
PARAMETERS:
|
|
534
|
+
field:
|
|
535
|
+
Required Argument.
|
|
536
|
+
Specifies one of 'inputs' or 'outputs'.
|
|
537
|
+
Types: str
|
|
538
|
+
|
|
539
|
+
func_ip_op:
|
|
540
|
+
Required Argument.
|
|
541
|
+
Specifies the dictionary from the JSON corresponding to the the 'inputs' or 'ouputs'.
|
|
542
|
+
Types: dict
|
|
543
|
+
|
|
544
|
+
function_map:
|
|
545
|
+
Required Argument.
|
|
546
|
+
Specifies the function argument map to updated and return.
|
|
547
|
+
Types: dict
|
|
548
|
+
|
|
549
|
+
RAISES:
|
|
550
|
+
None.
|
|
551
|
+
|
|
552
|
+
RETURNS:
|
|
553
|
+
dict - function argument map updated with the requested information, 'input' or 'outputs'.
|
|
554
|
+
|
|
555
|
+
EXAMPLES:
|
|
556
|
+
>>> function_map = self.__add_function_input_output_entries(self, 'inputs', func_inputs, function_map)
|
|
557
|
+
"""
|
|
558
|
+
for entry in func_ip_op:
|
|
559
|
+
sql_name = entry[famc.NAME.value]
|
|
560
|
+
tdml_name = self.__convert_rName_to_tdml(entry[famc.R_NAME.value])
|
|
561
|
+
sql_name_to_use = self.__resolve_name(sql_name).lower()
|
|
562
|
+
|
|
563
|
+
if isinstance(sql_name, list):
|
|
564
|
+
for i in range(len(sql_name)):
|
|
565
|
+
function_map[field][famc.SQL_TO_TDML.value][sql_name[i].lower()] = tdml_name
|
|
566
|
+
function_map[field][famc.TDML_TO_SQL.value][tdml_name] = sql_name_to_use
|
|
567
|
+
|
|
568
|
+
if isinstance(sql_name, dict):
|
|
569
|
+
for vv, value in sql_name.items():
|
|
570
|
+
for i in range(len(value)):
|
|
571
|
+
function_map[field][famc.SQL_TO_TDML.value][value[i].lower()] = tdml_name
|
|
572
|
+
function_map[field][famc.TDML_TO_SQL.value][tdml_name] = sql_name_to_use
|
|
573
|
+
|
|
574
|
+
return function_map
|
|
575
|
+
|
|
576
|
+
def __update_json_dict_for_function(self, input_output_arg_map, engine, function_name, function_json):
|
|
577
|
+
"""
|
|
578
|
+
DESCRIPTION:
|
|
579
|
+
Internal function to load or update the input_output_arg_map property for the function specified.
|
|
580
|
+
|
|
581
|
+
PARAMETERS:
|
|
582
|
+
input_output_arg_map:
|
|
583
|
+
Required Argument.
|
|
584
|
+
Specified the dictionary to be updated with the map for the given function from the given engine.
|
|
585
|
+
Types: dict
|
|
586
|
+
|
|
587
|
+
engine:
|
|
588
|
+
Required Argument.
|
|
589
|
+
Specifies the name of the engine the function belongs to.
|
|
590
|
+
Acceptable values: 'ML Engine', 'Advanced SQL Engine'
|
|
591
|
+
Types: str
|
|
592
|
+
|
|
593
|
+
function_name:
|
|
594
|
+
Required Argument.
|
|
595
|
+
Specifies the name of the function to check and load the argument mapping for.
|
|
596
|
+
Types: str
|
|
597
|
+
|
|
598
|
+
function_json:
|
|
599
|
+
Required Argument.
|
|
600
|
+
Specified the dictionary representing the Json file for the function.
|
|
601
|
+
Types: dict
|
|
602
|
+
|
|
603
|
+
RAISES:
|
|
604
|
+
None.
|
|
605
|
+
|
|
606
|
+
RETURNS:
|
|
607
|
+
The updated input_output_arg dictionary.
|
|
608
|
+
|
|
609
|
+
Note:
|
|
610
|
+
The input_output_arg dictionary is of the following form:
|
|
611
|
+
{
|
|
612
|
+
'ML Engine' : {
|
|
613
|
+
<func_name_11>: {
|
|
614
|
+
'input': {
|
|
615
|
+
'sql_to_tdml' : {
|
|
616
|
+
'<sql_input_name_1>': '<tdml_input_name_1>',
|
|
617
|
+
'<sql_input_name_2>': '<tdml_input_name_2>'
|
|
618
|
+
},
|
|
619
|
+
'tdml_to_sql' : {
|
|
620
|
+
'<tdml_input_name_1>': '<sql_input_name_1>',
|
|
621
|
+
'<tdml_input_name_2>': '<sql_input_name_2>',
|
|
622
|
+
}
|
|
623
|
+
},
|
|
624
|
+
'output': {
|
|
625
|
+
'sql_to_tdml' : {
|
|
626
|
+
'<sql_input_name_1>': '<tdml_input_name_1>',
|
|
627
|
+
'<sql_input_name_2>': '<tdml_input_name_2>'
|
|
628
|
+
},
|
|
629
|
+
'tdml_to_sql' : {
|
|
630
|
+
'<tdml_input_name_1>': '<sql_input_name_1>',
|
|
631
|
+
'<tdml_input_name_2>': '<sql_input_name_2>',
|
|
632
|
+
}
|
|
633
|
+
},
|
|
634
|
+
'arguments': {
|
|
635
|
+
'sql_to_tdml' : {
|
|
636
|
+
'TargetColumns' : {
|
|
637
|
+
'tdml_name': '<tdml_name>',
|
|
638
|
+
'tdml_type': <python_type_tuple>,
|
|
639
|
+
'used_in_formula': True or 'dependent' or 'independent',
|
|
640
|
+
'alternate_to' : None
|
|
641
|
+
},
|
|
642
|
+
'CategoricalColumns': {
|
|
643
|
+
'tdml_name': '<tdml_name>',
|
|
644
|
+
'tdml_type': <python_type_tuple>,
|
|
645
|
+
'used_in_formula': True or 'dependent' or 'independent',
|
|
646
|
+
'alternate_to' : None
|
|
647
|
+
},
|
|
648
|
+
'Intercept1.0' : {
|
|
649
|
+
'tdml_name': '<tdml_name>',
|
|
650
|
+
'tdml_type': <python_type_tuple>,
|
|
651
|
+
'used_in_formula': True or 'dependent' or 'independent',
|
|
652
|
+
'alternate_to' : None
|
|
653
|
+
},
|
|
654
|
+
# This is how you would define an alternate name
|
|
655
|
+
'InterceptNew1.1' : {
|
|
656
|
+
'alternate_to' : 'sqlname1'
|
|
657
|
+
},
|
|
658
|
+
'UniqueId': {
|
|
659
|
+
'tdml_name': ['data_sequence_input_by', 'data1_sequence_input_by']
|
|
660
|
+
'tdml_type': str,
|
|
661
|
+
'used_in_sequence_by': True
|
|
662
|
+
}
|
|
663
|
+
},
|
|
664
|
+
'tdml_to_sql' : {
|
|
665
|
+
# Keep one to one
|
|
666
|
+
'formula' : ['<sql_name_1>', 'sql_name_2'],
|
|
667
|
+
'data_sequence_input_by': ['UniqueId', 'SequenceInputBy'],
|
|
668
|
+
'data1_sequence_input_by': ['UniqueId', 'SequenceInputBy'],
|
|
669
|
+
'weight': 'WeightColumns'
|
|
670
|
+
}
|
|
671
|
+
}
|
|
672
|
+
},
|
|
673
|
+
<func_name_12>: {
|
|
674
|
+
}
|
|
675
|
+
},
|
|
676
|
+
'Advanced SQL Engine' : {
|
|
677
|
+
<func_name_21>: {
|
|
678
|
+
},
|
|
679
|
+
<func_name_22>: {
|
|
680
|
+
}
|
|
681
|
+
}
|
|
682
|
+
}
|
|
683
|
+
|
|
684
|
+
EXAMPLE:
|
|
685
|
+
>>> self.__update_json_dict_for_function(input_output_arg_map, 'ML Engine', 'GLM', glm_json)
|
|
686
|
+
|
|
687
|
+
"""
|
|
688
|
+
function_map = {}
|
|
689
|
+
# First, let's add the tdml name for the function
|
|
690
|
+
function_map[famc.FUNCTION_TDML_NAME.value] = function_json[famc.FUNCTION_TDML_NAME.value]
|
|
691
|
+
# Section corresponding to arguments
|
|
692
|
+
function_args = function_json[famc.ARGUMENT_CLAUSES.value]
|
|
693
|
+
# Section corresponding to inputs
|
|
694
|
+
function_inputs = function_json[famc.INPUT_TABLES.value]
|
|
695
|
+
function_outputs = None
|
|
696
|
+
if famc.OUTPUT_TABLES.value in function_json:
|
|
697
|
+
# Section corresponding to outputs
|
|
698
|
+
function_outputs = function_json[famc.OUTPUT_TABLES.value]
|
|
699
|
+
|
|
700
|
+
# Create Input dict
|
|
701
|
+
function_map[famc.INPUTS.value] = {}
|
|
702
|
+
function_map[famc.INPUTS.value][famc.SQL_TO_TDML.value] = {}
|
|
703
|
+
function_map[famc.INPUTS.value][famc.TDML_TO_SQL.value] = {}
|
|
704
|
+
function_map = self.__add_function_input_output_entries(field=famc.INPUTS.value,
|
|
705
|
+
func_ip_op=function_inputs,
|
|
706
|
+
function_map=function_map)
|
|
707
|
+
|
|
708
|
+
# Create output dict
|
|
709
|
+
function_map[famc.OUTPUTS.value] = {}
|
|
710
|
+
function_map[famc.OUTPUTS.value][famc.SQL_TO_TDML.value] = {}
|
|
711
|
+
function_map[famc.OUTPUTS.value][famc.TDML_TO_SQL.value] = {}
|
|
712
|
+
if function_outputs is not None:
|
|
713
|
+
function_map = self.__add_function_input_output_entries(field=famc.OUTPUTS.value,
|
|
714
|
+
func_ip_op=function_outputs,
|
|
715
|
+
function_map=function_map)
|
|
716
|
+
# Default output thrown back at the prompt - tdml_name is 'output'
|
|
717
|
+
function_map[famc.OUTPUTS.value][famc.SQL_TO_TDML.value][
|
|
718
|
+
famc.DEFAULT_OUTPUT.value] = famc.DEFAULT_OUTPUT_TDML_NAME_MULTIPLE.value
|
|
719
|
+
function_map[famc.OUTPUTS.value][famc.TDML_TO_SQL.value][
|
|
720
|
+
famc.DEFAULT_OUTPUT_TDML_NAME_MULTIPLE.value] = famc.DEFAULT_OUTPUT.value
|
|
721
|
+
else:
|
|
722
|
+
# Default output thrown back at the prompt - tdml_name is 'result'
|
|
723
|
+
function_map[famc.OUTPUTS.value][famc.SQL_TO_TDML.value][
|
|
724
|
+
famc.DEFAULT_OUTPUT.value] = famc.DEFAULT_OUTPUT_TDML_NAME_SINGLE.value
|
|
725
|
+
function_map[famc.OUTPUTS.value][famc.TDML_TO_SQL.value][
|
|
726
|
+
famc.DEFAULT_OUTPUT_TDML_NAME_SINGLE.value] = famc.DEFAULT_OUTPUT.value
|
|
727
|
+
|
|
728
|
+
# Create argument dict
|
|
729
|
+
function_map[famc.ARGUMENTS.value] = {}
|
|
730
|
+
function_map[famc.ARGUMENTS.value][famc.SQL_TO_TDML.value] = {}
|
|
731
|
+
function_map[famc.ARGUMENTS.value][famc.TDML_TO_SQL.value] = {}
|
|
732
|
+
formula_args = []
|
|
733
|
+
sequence_arg = None
|
|
734
|
+
for arg in function_args:
|
|
735
|
+
# Handle formula related args separately
|
|
736
|
+
if famc.R_FOMULA_USAGE.value in arg and arg[famc.R_FOMULA_USAGE.value] == True:
|
|
737
|
+
formula_args.append(arg)
|
|
738
|
+
continue
|
|
739
|
+
|
|
740
|
+
arg_name = arg[famc.NAME.value]
|
|
741
|
+
tdml_name = self.__convert_rName_to_tdml(arg[famc.R_NAME.value])
|
|
742
|
+
sql_name_to_use = self.__resolve_name(arg_name).lower()
|
|
743
|
+
|
|
744
|
+
# Handle sequence input arg separately
|
|
745
|
+
if tdml_name == famc.TDML_SEQUENCE_COLUMN_NAME.value:
|
|
746
|
+
sequence_arg = arg
|
|
747
|
+
continue
|
|
748
|
+
|
|
749
|
+
python_type = self.__resolve_arg_types(arg)
|
|
750
|
+
|
|
751
|
+
if isinstance(arg_name, list):
|
|
752
|
+
for i in range(len(arg_name)):
|
|
753
|
+
# Handle all other arguments
|
|
754
|
+
if i == 0:
|
|
755
|
+
function_map = self.__add_sql_to_tdml_entry(function_map=function_map,
|
|
756
|
+
sql_name=arg_name[i],
|
|
757
|
+
tdml_name=tdml_name,
|
|
758
|
+
tdml_type=python_type)
|
|
759
|
+
function_map[famc.ARGUMENTS.value][famc.TDML_TO_SQL.value][
|
|
760
|
+
tdml_name] = sql_name_to_use
|
|
761
|
+
else:
|
|
762
|
+
function_map = self.__add_sql_to_tdml_entry(function_map=function_map,
|
|
763
|
+
sql_name=arg_name[i],
|
|
764
|
+
sql_name_to_use=sql_name_to_use,
|
|
765
|
+
alternate_to=True)
|
|
766
|
+
|
|
767
|
+
if isinstance(arg_name, dict):
|
|
768
|
+
for vv, value in arg_name.items():
|
|
769
|
+
for i in range(len(value)):
|
|
770
|
+
# Handle all other arguments
|
|
771
|
+
if i == 0:
|
|
772
|
+
function_map = self.__add_sql_to_tdml_entry(function_map=function_map,
|
|
773
|
+
sql_name=value[i],
|
|
774
|
+
tdml_name=tdml_name,
|
|
775
|
+
tdml_type=python_type)
|
|
776
|
+
function_map[famc.ARGUMENTS.value][famc.TDML_TO_SQL.value][
|
|
777
|
+
tdml_name] = sql_name_to_use
|
|
778
|
+
else:
|
|
779
|
+
function_map = self.__add_sql_to_tdml_entry(function_map=function_map,
|
|
780
|
+
sql_name=value[i],
|
|
781
|
+
sql_name_to_use=sql_name_to_use,
|
|
782
|
+
alternate_to=True)
|
|
783
|
+
|
|
784
|
+
if len(formula_args) > 0:
|
|
785
|
+
function_map = self.__resolve_formula_args(function_map, formula_args)
|
|
786
|
+
|
|
787
|
+
if sequence_arg is not None:
|
|
788
|
+
function_map = self.__resolve_sequence_input_args(function_map, sequence_arg)
|
|
789
|
+
|
|
790
|
+
# Finally, update the input_output_arg_map with an entry for the function
|
|
791
|
+
if engine not in input_output_arg_map:
|
|
792
|
+
input_output_arg_map[engine] = {}
|
|
793
|
+
input_output_arg_map[engine][function_name] = function_map
|
|
794
|
+
|
|
795
|
+
return input_output_arg_map
|
|
796
|
+
|
|
797
|
+
def __add_sql_to_tdml_entry(self, function_map, sql_name, tdml_name=None,
|
|
798
|
+
tdml_type=None, sql_name_to_use=None, alternate_to=False):
|
|
799
|
+
"""
|
|
800
|
+
DESCRIPTION:
|
|
801
|
+
Internal function to add the SQL to teradataml entry for a function argument.
|
|
802
|
+
|
|
803
|
+
PARAMETERS:
|
|
804
|
+
function_map:
|
|
805
|
+
Required Argument.
|
|
806
|
+
Specifies the function argument map to update with the SQL to teradataml
|
|
807
|
+
entries for the arguments.
|
|
808
|
+
Types: dict
|
|
809
|
+
|
|
810
|
+
sql_name:
|
|
811
|
+
Required argument.
|
|
812
|
+
Specifies the SQL name of the argumemnt to add the mapper entry for.
|
|
813
|
+
Types: str
|
|
814
|
+
|
|
815
|
+
tdml_name:
|
|
816
|
+
Optional Argument. Required when alternate_to is set to False.
|
|
817
|
+
Specifies the teradataml name corresponding to the given SQL name.
|
|
818
|
+
When specified, must also specify tdml_type.
|
|
819
|
+
Types: str
|
|
820
|
+
|
|
821
|
+
tdml_type:
|
|
822
|
+
Optional Argument. Required when alternate_to is set to False.
|
|
823
|
+
Specifies the acceptable python data type for the argument.
|
|
824
|
+
When specified, must also specify tdml_name.
|
|
825
|
+
Types: Python type or tuple of Python types
|
|
826
|
+
|
|
827
|
+
sql_name_to_use:
|
|
828
|
+
Specifies the teradataml name to use in case there are alternate names.
|
|
829
|
+
Types: str
|
|
830
|
+
|
|
831
|
+
alternate_to:
|
|
832
|
+
Specifies whether the SQL Name is an alternate to another SQL name that we wish to use.
|
|
833
|
+
When set to True, must also specify sql_name and sql_name_to_use.
|
|
834
|
+
Types: bool
|
|
835
|
+
Default Value: False
|
|
836
|
+
|
|
837
|
+
RAISES:
|
|
838
|
+
None.
|
|
839
|
+
|
|
840
|
+
RETURNS:
|
|
841
|
+
dict - the updated function_map with the newly added entries.
|
|
842
|
+
|
|
843
|
+
EXAMPLES:
|
|
844
|
+
>>> function_map = self.__add_sql_to_tdml_entry(function_map, tdml_name, tdml_type)
|
|
845
|
+
"""
|
|
846
|
+
if alternate_to:
|
|
847
|
+
function_map[famc.ARGUMENTS.value][famc.SQL_TO_TDML.value][sql_name.lower()] = {}
|
|
848
|
+
function_map[famc.ARGUMENTS.value][famc.SQL_TO_TDML.value][sql_name.lower()][
|
|
849
|
+
famc.ALTERNATE_TO.value] = sql_name_to_use
|
|
850
|
+
else:
|
|
851
|
+
function_map[famc.ARGUMENTS.value][famc.SQL_TO_TDML.value][sql_name.lower()] = {}
|
|
852
|
+
function_map[famc.ARGUMENTS.value][famc.SQL_TO_TDML.value][sql_name.lower()][
|
|
853
|
+
famc.TDML_NAME.value] = tdml_name
|
|
854
|
+
function_map[famc.ARGUMENTS.value][famc.SQL_TO_TDML.value][sql_name.lower()][
|
|
855
|
+
famc.TDML_TYPE.value] = tdml_type
|
|
856
|
+
|
|
857
|
+
return function_map
|
|
858
|
+
|
|
859
|
+
_argument_mapper = _ArgumentMapper()
|