teradataml 20.0.0.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +2762 -0
- teradataml/__init__.py +78 -0
- teradataml/_version.py +11 -0
- teradataml/analytics/Transformations.py +2996 -0
- teradataml/analytics/__init__.py +82 -0
- teradataml/analytics/analytic_function_executor.py +2416 -0
- teradataml/analytics/analytic_query_generator.py +1050 -0
- teradataml/analytics/byom/H2OPredict.py +514 -0
- teradataml/analytics/byom/PMMLPredict.py +437 -0
- teradataml/analytics/byom/__init__.py +16 -0
- teradataml/analytics/json_parser/__init__.py +133 -0
- teradataml/analytics/json_parser/analytic_functions_argument.py +1805 -0
- teradataml/analytics/json_parser/json_store.py +191 -0
- teradataml/analytics/json_parser/metadata.py +1666 -0
- teradataml/analytics/json_parser/utils.py +805 -0
- teradataml/analytics/meta_class.py +236 -0
- teradataml/analytics/sqle/DecisionTreePredict.py +456 -0
- teradataml/analytics/sqle/NaiveBayesPredict.py +420 -0
- teradataml/analytics/sqle/__init__.py +128 -0
- teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -0
- teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -0
- teradataml/analytics/table_operator/__init__.py +11 -0
- teradataml/analytics/uaf/__init__.py +82 -0
- teradataml/analytics/utils.py +828 -0
- teradataml/analytics/valib.py +1617 -0
- teradataml/automl/__init__.py +5835 -0
- teradataml/automl/autodataprep/__init__.py +493 -0
- teradataml/automl/custom_json_utils.py +1625 -0
- teradataml/automl/data_preparation.py +1384 -0
- teradataml/automl/data_transformation.py +1254 -0
- teradataml/automl/feature_engineering.py +2273 -0
- teradataml/automl/feature_exploration.py +1873 -0
- teradataml/automl/model_evaluation.py +488 -0
- teradataml/automl/model_training.py +1407 -0
- teradataml/catalog/__init__.py +2 -0
- teradataml/catalog/byom.py +1759 -0
- teradataml/catalog/function_argument_mapper.py +859 -0
- teradataml/catalog/model_cataloging_utils.py +491 -0
- teradataml/clients/__init__.py +0 -0
- teradataml/clients/auth_client.py +137 -0
- teradataml/clients/keycloak_client.py +165 -0
- teradataml/clients/pkce_client.py +481 -0
- teradataml/common/__init__.py +1 -0
- teradataml/common/aed_utils.py +2078 -0
- teradataml/common/bulk_exposed_utils.py +113 -0
- teradataml/common/constants.py +1669 -0
- teradataml/common/deprecations.py +166 -0
- teradataml/common/exceptions.py +147 -0
- teradataml/common/formula.py +743 -0
- teradataml/common/garbagecollector.py +666 -0
- teradataml/common/logger.py +1261 -0
- teradataml/common/messagecodes.py +518 -0
- teradataml/common/messages.py +262 -0
- teradataml/common/pylogger.py +67 -0
- teradataml/common/sqlbundle.py +764 -0
- teradataml/common/td_coltype_code_to_tdtype.py +48 -0
- teradataml/common/utils.py +3166 -0
- teradataml/common/warnings.py +36 -0
- teradataml/common/wrapper_utils.py +625 -0
- teradataml/config/__init__.py +0 -0
- teradataml/config/dummy_file1.cfg +5 -0
- teradataml/config/dummy_file2.cfg +3 -0
- teradataml/config/sqlengine_alias_definitions_v1.0 +14 -0
- teradataml/config/sqlengine_alias_definitions_v1.1 +20 -0
- teradataml/config/sqlengine_alias_definitions_v1.3 +19 -0
- teradataml/context/__init__.py +0 -0
- teradataml/context/aed_context.py +223 -0
- teradataml/context/context.py +1462 -0
- teradataml/data/A_loan.csv +19 -0
- teradataml/data/BINARY_REALS_LEFT.csv +11 -0
- teradataml/data/BINARY_REALS_RIGHT.csv +11 -0
- teradataml/data/B_loan.csv +49 -0
- teradataml/data/BuoyData2.csv +17 -0
- teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -0
- teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -0
- teradataml/data/Convolve2RealsLeft.csv +5 -0
- teradataml/data/Convolve2RealsRight.csv +5 -0
- teradataml/data/Convolve2ValidLeft.csv +11 -0
- teradataml/data/Convolve2ValidRight.csv +11 -0
- teradataml/data/DFFTConv_Real_8_8.csv +65 -0
- teradataml/data/Employee.csv +5 -0
- teradataml/data/Employee_Address.csv +4 -0
- teradataml/data/Employee_roles.csv +5 -0
- teradataml/data/JulesBelvezeDummyData.csv +100 -0
- teradataml/data/Mall_customer_data.csv +201 -0
- teradataml/data/Orders1_12mf.csv +25 -0
- teradataml/data/Pi_loan.csv +7 -0
- teradataml/data/SMOOTHED_DATA.csv +7 -0
- teradataml/data/TestDFFT8.csv +9 -0
- teradataml/data/TestRiver.csv +109 -0
- teradataml/data/Traindata.csv +28 -0
- teradataml/data/__init__.py +0 -0
- teradataml/data/acf.csv +17 -0
- teradataml/data/adaboost_example.json +34 -0
- teradataml/data/adaboostpredict_example.json +24 -0
- teradataml/data/additional_table.csv +11 -0
- teradataml/data/admissions_test.csv +21 -0
- teradataml/data/admissions_train.csv +41 -0
- teradataml/data/admissions_train_nulls.csv +41 -0
- teradataml/data/advertising.csv +201 -0
- teradataml/data/ageandheight.csv +13 -0
- teradataml/data/ageandpressure.csv +31 -0
- teradataml/data/amazon_reviews_25.csv +26 -0
- teradataml/data/antiselect_example.json +36 -0
- teradataml/data/antiselect_input.csv +8 -0
- teradataml/data/antiselect_input_mixed_case.csv +8 -0
- teradataml/data/applicant_external.csv +7 -0
- teradataml/data/applicant_reference.csv +7 -0
- teradataml/data/apriori_example.json +22 -0
- teradataml/data/arima_example.json +9 -0
- teradataml/data/assortedtext_input.csv +8 -0
- teradataml/data/attribution_example.json +34 -0
- teradataml/data/attribution_sample_table.csv +27 -0
- teradataml/data/attribution_sample_table1.csv +6 -0
- teradataml/data/attribution_sample_table2.csv +11 -0
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bank_marketing.csv +11163 -0
- teradataml/data/bank_web_clicks1.csv +43 -0
- teradataml/data/bank_web_clicks2.csv +91 -0
- teradataml/data/bank_web_url.csv +85 -0
- teradataml/data/barrier.csv +2 -0
- teradataml/data/barrier_new.csv +3 -0
- teradataml/data/betweenness_example.json +14 -0
- teradataml/data/bike_sharing.csv +732 -0
- teradataml/data/bin_breaks.csv +8 -0
- teradataml/data/bin_fit_ip.csv +4 -0
- teradataml/data/binary_complex_left.csv +11 -0
- teradataml/data/binary_complex_right.csv +11 -0
- teradataml/data/binary_matrix_complex_left.csv +21 -0
- teradataml/data/binary_matrix_complex_right.csv +21 -0
- teradataml/data/binary_matrix_real_left.csv +21 -0
- teradataml/data/binary_matrix_real_right.csv +21 -0
- teradataml/data/blood2ageandweight.csv +26 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/boston.csv +507 -0
- teradataml/data/boston2cols.csv +721 -0
- teradataml/data/breast_cancer.csv +570 -0
- teradataml/data/buoydata_mix.csv +11 -0
- teradataml/data/burst_data.csv +5 -0
- teradataml/data/burst_example.json +21 -0
- teradataml/data/byom_example.json +34 -0
- teradataml/data/bytes_table.csv +4 -0
- teradataml/data/cal_housing_ex_raw.csv +70 -0
- teradataml/data/callers.csv +7 -0
- teradataml/data/calls.csv +10 -0
- teradataml/data/cars_hist.csv +33 -0
- teradataml/data/cat_table.csv +25 -0
- teradataml/data/ccm_example.json +32 -0
- teradataml/data/ccm_input.csv +91 -0
- teradataml/data/ccm_input2.csv +13 -0
- teradataml/data/ccmexample.csv +101 -0
- teradataml/data/ccmprepare_example.json +9 -0
- teradataml/data/ccmprepare_input.csv +91 -0
- teradataml/data/cfilter_example.json +12 -0
- teradataml/data/changepointdetection_example.json +18 -0
- teradataml/data/changepointdetectionrt_example.json +8 -0
- teradataml/data/chi_sq.csv +3 -0
- teradataml/data/churn_data.csv +14 -0
- teradataml/data/churn_emission.csv +35 -0
- teradataml/data/churn_initial.csv +3 -0
- teradataml/data/churn_state_transition.csv +5 -0
- teradataml/data/citedges_2.csv +745 -0
- teradataml/data/citvertices_2.csv +1210 -0
- teradataml/data/clicks2.csv +16 -0
- teradataml/data/clickstream.csv +13 -0
- teradataml/data/clickstream1.csv +11 -0
- teradataml/data/closeness_example.json +16 -0
- teradataml/data/complaints.csv +21 -0
- teradataml/data/complaints_mini.csv +3 -0
- teradataml/data/complaints_test_tokenized.csv +353 -0
- teradataml/data/complaints_testtoken.csv +224 -0
- teradataml/data/complaints_tokens_model.csv +348 -0
- teradataml/data/complaints_tokens_test.csv +353 -0
- teradataml/data/complaints_traintoken.csv +472 -0
- teradataml/data/computers_category.csv +1001 -0
- teradataml/data/computers_test1.csv +1252 -0
- teradataml/data/computers_train1.csv +5009 -0
- teradataml/data/computers_train1_clustered.csv +5009 -0
- teradataml/data/confusionmatrix_example.json +9 -0
- teradataml/data/conversion_event_table.csv +3 -0
- teradataml/data/corr_input.csv +17 -0
- teradataml/data/correlation_example.json +11 -0
- teradataml/data/covid_confirm_sd.csv +83 -0
- teradataml/data/coxhazardratio_example.json +39 -0
- teradataml/data/coxph_example.json +15 -0
- teradataml/data/coxsurvival_example.json +28 -0
- teradataml/data/cpt.csv +41 -0
- teradataml/data/credit_ex_merged.csv +45 -0
- teradataml/data/creditcard_data.csv +1001 -0
- teradataml/data/customer_loyalty.csv +301 -0
- teradataml/data/customer_loyalty_newseq.csv +31 -0
- teradataml/data/customer_segmentation_test.csv +2628 -0
- teradataml/data/customer_segmentation_train.csv +8069 -0
- teradataml/data/dataframe_example.json +173 -0
- teradataml/data/decisionforest_example.json +37 -0
- teradataml/data/decisionforestpredict_example.json +38 -0
- teradataml/data/decisiontree_example.json +21 -0
- teradataml/data/decisiontreepredict_example.json +45 -0
- teradataml/data/dfft2_size4_real.csv +17 -0
- teradataml/data/dfft2_test_matrix16.csv +17 -0
- teradataml/data/dfft2conv_real_4_4.csv +65 -0
- teradataml/data/diabetes.csv +443 -0
- teradataml/data/diabetes_test.csv +89 -0
- teradataml/data/dict_table.csv +5 -0
- teradataml/data/docperterm_table.csv +4 -0
- teradataml/data/docs/__init__.py +1 -0
- teradataml/data/docs/byom/__init__.py +0 -0
- teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -0
- teradataml/data/docs/byom/docs/DataikuPredict.py +217 -0
- teradataml/data/docs/byom/docs/H2OPredict.py +325 -0
- teradataml/data/docs/byom/docs/ONNXEmbeddings.py +242 -0
- teradataml/data/docs/byom/docs/ONNXPredict.py +283 -0
- teradataml/data/docs/byom/docs/ONNXSeq2Seq.py +255 -0
- teradataml/data/docs/byom/docs/PMMLPredict.py +278 -0
- teradataml/data/docs/byom/docs/__init__.py +0 -0
- teradataml/data/docs/sqle/__init__.py +0 -0
- teradataml/data/docs/sqle/docs_17_10/Antiselect.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/Attribution.py +200 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +172 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -0
- teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -0
- teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +96 -0
- teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -0
- teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +152 -0
- teradataml/data/docs/sqle/docs_17_10/FTest.py +161 -0
- teradataml/data/docs/sqle/docs_17_10/FillRowId.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/Fit.py +88 -0
- teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +85 -0
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +82 -0
- teradataml/data/docs/sqle/docs_17_10/Histogram.py +165 -0
- teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -0
- teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +209 -0
- teradataml/data/docs/sqle/docs_17_10/NPath.py +266 -0
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -0
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -0
- teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +135 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +166 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -0
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +112 -0
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -0
- teradataml/data/docs/sqle/docs_17_10/QQNorm.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +110 -0
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +118 -0
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -0
- teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +153 -0
- teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -0
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -0
- teradataml/data/docs/sqle/docs_17_10/Sessionize.py +114 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -0
- teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -0
- teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +146 -0
- teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +142 -0
- teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -0
- teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -0
- teradataml/data/docs/sqle/docs_17_10/__init__.py +0 -0
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -0
- teradataml/data/docs/sqle/docs_17_20/Antiselect.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/Apriori.py +138 -0
- teradataml/data/docs/sqle/docs_17_20/Attribution.py +201 -0
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +172 -0
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -0
- teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
- teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -0
- teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +246 -0
- teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +280 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +136 -0
- teradataml/data/docs/sqle/docs_17_20/FTest.py +240 -0
- teradataml/data/docs/sqle/docs_17_20/FillRowId.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/Fit.py +88 -0
- teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +415 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -0
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -0
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +106 -0
- teradataml/data/docs/sqle/docs_17_20/Histogram.py +224 -0
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -0
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/KNN.py +215 -0
- teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -0
- teradataml/data/docs/sqle/docs_17_20/NERExtractor.py +121 -0
- teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +209 -0
- teradataml/data/docs/sqle/docs_17_20/NPath.py +266 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +127 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +119 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -0
- teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -0
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +231 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -0
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +220 -0
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +191 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -0
- teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -0
- teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/QQNorm.py +105 -0
- teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +155 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -0
- teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -0
- teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +118 -0
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -0
- teradataml/data/docs/sqle/docs_17_20/SMOTE.py +212 -0
- teradataml/data/docs/sqle/docs_17_20/SVM.py +414 -0
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -0
- teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +153 -0
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -0
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -0
- teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -0
- teradataml/data/docs/sqle/docs_17_20/Sessionize.py +114 -0
- teradataml/data/docs/sqle/docs_17_20/Shap.py +225 -0
- teradataml/data/docs/sqle/docs_17_20/Silhouette.py +153 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -0
- teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +146 -0
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -0
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -0
- teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
- teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +267 -0
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -0
- teradataml/data/docs/sqle/docs_17_20/TextMorph.py +119 -0
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +224 -0
- teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +160 -0
- teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -0
- teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -0
- teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
- teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +169 -0
- teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +237 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +362 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -0
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -0
- teradataml/data/docs/sqle/docs_17_20/__init__.py +0 -0
- teradataml/data/docs/tableoperator/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +430 -0
- teradataml/data/docs/tableoperator/docs_17_00/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +430 -0
- teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +348 -0
- teradataml/data/docs/tableoperator/docs_17_05/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +429 -0
- teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +348 -0
- teradataml/data/docs/tableoperator/docs_17_10/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
- teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +440 -0
- teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +387 -0
- teradataml/data/docs/tableoperator/docs_17_20/__init__.py +0 -0
- teradataml/data/docs/uaf/__init__.py +0 -0
- teradataml/data/docs/uaf/docs_17_20/ACF.py +186 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +370 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +172 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +161 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
- teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
- teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +248 -0
- teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +178 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +175 -0
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +230 -0
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +218 -0
- teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +185 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT.py +204 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +216 -0
- teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +192 -0
- teradataml/data/docs/uaf/docs_17_20/DIFF.py +175 -0
- teradataml/data/docs/uaf/docs_17_20/DTW.py +180 -0
- teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
- teradataml/data/docs/uaf/docs_17_20/DWT2D.py +217 -0
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +142 -0
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +184 -0
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +185 -0
- teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
- teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +206 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +143 -0
- teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +198 -0
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +260 -0
- teradataml/data/docs/uaf/docs_17_20/IDFFT.py +165 -0
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +191 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
- teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/InputValidator.py +121 -0
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +156 -0
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +215 -0
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +174 -0
- teradataml/data/docs/uaf/docs_17_20/MInfo.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +145 -0
- teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +191 -0
- teradataml/data/docs/uaf/docs_17_20/PACF.py +157 -0
- teradataml/data/docs/uaf/docs_17_20/Portman.py +217 -0
- teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +203 -0
- teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +155 -0
- teradataml/data/docs/uaf/docs_17_20/Resample.py +237 -0
- teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
- teradataml/data/docs/uaf/docs_17_20/SInfo.py +123 -0
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +173 -0
- teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +174 -0
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +164 -0
- teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +180 -0
- teradataml/data/docs/uaf/docs_17_20/Smoothma.py +208 -0
- teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +151 -0
- teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +202 -0
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
- teradataml/data/docs/uaf/docs_17_20/__init__.py +0 -0
- teradataml/data/dtw_example.json +18 -0
- teradataml/data/dtw_t1.csv +11 -0
- teradataml/data/dtw_t2.csv +4 -0
- teradataml/data/dwt2d_dataTable.csv +65 -0
- teradataml/data/dwt2d_example.json +16 -0
- teradataml/data/dwt_dataTable.csv +8 -0
- teradataml/data/dwt_example.json +15 -0
- teradataml/data/dwt_filterTable.csv +3 -0
- teradataml/data/dwt_filter_dim.csv +5 -0
- teradataml/data/emission.csv +9 -0
- teradataml/data/emp_table_by_dept.csv +19 -0
- teradataml/data/employee_info.csv +4 -0
- teradataml/data/employee_table.csv +6 -0
- teradataml/data/excluding_event_table.csv +2 -0
- teradataml/data/finance_data.csv +6 -0
- teradataml/data/finance_data2.csv +61 -0
- teradataml/data/finance_data3.csv +93 -0
- teradataml/data/finance_data4.csv +13 -0
- teradataml/data/fish.csv +160 -0
- teradataml/data/fm_blood2ageandweight.csv +26 -0
- teradataml/data/fmeasure_example.json +12 -0
- teradataml/data/followers_leaders.csv +10 -0
- teradataml/data/fpgrowth_example.json +12 -0
- teradataml/data/frequentpaths_example.json +29 -0
- teradataml/data/friends.csv +9 -0
- teradataml/data/fs_input.csv +33 -0
- teradataml/data/fs_input1.csv +33 -0
- teradataml/data/genData.csv +513 -0
- teradataml/data/geodataframe_example.json +40 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/glm_admissions_model.csv +12 -0
- teradataml/data/glm_example.json +56 -0
- teradataml/data/glml1l2_example.json +28 -0
- teradataml/data/glml1l2predict_example.json +54 -0
- teradataml/data/glmpredict_example.json +54 -0
- teradataml/data/gq_t1.csv +21 -0
- teradataml/data/grocery_transaction.csv +19 -0
- teradataml/data/hconvolve_complex_right.csv +5 -0
- teradataml/data/hconvolve_complex_rightmulti.csv +5 -0
- teradataml/data/histogram_example.json +12 -0
- teradataml/data/hmmdecoder_example.json +79 -0
- teradataml/data/hmmevaluator_example.json +25 -0
- teradataml/data/hmmsupervised_example.json +10 -0
- teradataml/data/hmmunsupervised_example.json +8 -0
- teradataml/data/hnsw_alter_data.csv +5 -0
- teradataml/data/hnsw_data.csv +10 -0
- teradataml/data/house_values.csv +12 -0
- teradataml/data/house_values2.csv +13 -0
- teradataml/data/housing_cat.csv +7 -0
- teradataml/data/housing_data.csv +9 -0
- teradataml/data/housing_test.csv +47 -0
- teradataml/data/housing_test_binary.csv +47 -0
- teradataml/data/housing_train.csv +493 -0
- teradataml/data/housing_train_attribute.csv +5 -0
- teradataml/data/housing_train_binary.csv +437 -0
- teradataml/data/housing_train_parameter.csv +2 -0
- teradataml/data/housing_train_response.csv +493 -0
- teradataml/data/housing_train_segment.csv +201 -0
- teradataml/data/ibm_stock.csv +370 -0
- teradataml/data/ibm_stock1.csv +370 -0
- teradataml/data/identitymatch_example.json +22 -0
- teradataml/data/idf_table.csv +4 -0
- teradataml/data/idwt2d_dataTable.csv +5 -0
- teradataml/data/idwt_dataTable.csv +8 -0
- teradataml/data/idwt_filterTable.csv +3 -0
- teradataml/data/impressions.csv +101 -0
- teradataml/data/inflation.csv +21 -0
- teradataml/data/initial.csv +3 -0
- teradataml/data/insect2Cols.csv +61 -0
- teradataml/data/insect_sprays.csv +13 -0
- teradataml/data/insurance.csv +1339 -0
- teradataml/data/interpolator_example.json +13 -0
- teradataml/data/interval_data.csv +5 -0
- teradataml/data/iris_altinput.csv +481 -0
- teradataml/data/iris_attribute_output.csv +8 -0
- teradataml/data/iris_attribute_test.csv +121 -0
- teradataml/data/iris_attribute_train.csv +481 -0
- teradataml/data/iris_category_expect_predict.csv +31 -0
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/iris_input.csv +151 -0
- teradataml/data/iris_response_train.csv +121 -0
- teradataml/data/iris_test.csv +31 -0
- teradataml/data/iris_train.csv +121 -0
- teradataml/data/join_table1.csv +4 -0
- teradataml/data/join_table2.csv +4 -0
- teradataml/data/jsons/anly_function_name.json +7 -0
- teradataml/data/jsons/byom/ONNXSeq2Seq.json +287 -0
- teradataml/data/jsons/byom/dataikupredict.json +148 -0
- teradataml/data/jsons/byom/datarobotpredict.json +147 -0
- teradataml/data/jsons/byom/h2opredict.json +195 -0
- teradataml/data/jsons/byom/onnxembeddings.json +267 -0
- teradataml/data/jsons/byom/onnxpredict.json +187 -0
- teradataml/data/jsons/byom/pmmlpredict.json +147 -0
- teradataml/data/jsons/paired_functions.json +450 -0
- teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/16.20/Attribution.json +249 -0
- teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/16.20/Pack.json +98 -0
- teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/16.20/Unpack.json +166 -0
- teradataml/data/jsons/sqle/16.20/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.00/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/17.00/Pack.json +98 -0
- teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.00/Unpack.json +166 -0
- teradataml/data/jsons/sqle/17.00/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.05/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/17.05/Pack.json +98 -0
- teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.05/Unpack.json +166 -0
- teradataml/data/jsons/sqle/17.05/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.10/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -0
- teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +172 -0
- teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -0
- teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -0
- teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -0
- teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -0
- teradataml/data/jsons/sqle/17.10/Pack.json +133 -0
- teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -0
- teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -0
- teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -0
- teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +54 -0
- teradataml/data/jsons/sqle/17.10/TD_Chisq.json +68 -0
- teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +54 -0
- teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +69 -0
- teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -0
- teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +52 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -0
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_Histogram.json +133 -0
- teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +183 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +66 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +197 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -0
- teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +112 -0
- teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +128 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +157 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +71 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +148 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -0
- teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -0
- teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +119 -0
- teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -0
- teradataml/data/jsons/sqle/17.10/Unpack.json +188 -0
- teradataml/data/jsons/sqle/17.10/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.20/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -0
- teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -0
- teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -0
- teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -0
- teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -0
- teradataml/data/jsons/sqle/17.20/Pack.json +133 -0
- teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -0
- teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +149 -0
- teradataml/data/jsons/sqle/17.20/TD_Apriori.json +181 -0
- teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -0
- teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
- teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_Chisq.json +68 -0
- teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +146 -0
- teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -0
- teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -0
- teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +260 -0
- teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -0
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -0
- teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -0
- teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -0
- teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -0
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -0
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -0
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -0
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -0
- teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -0
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +232 -0
- teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +87 -0
- teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -0
- teradataml/data/jsons/sqle/17.20/TD_NERExtractor.json +145 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -0
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +316 -0
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +124 -0
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -0
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -0
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -0
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -0
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -0
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -0
- teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -0
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -0
- teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -0
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +179 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +179 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +74 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -0
- teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +138 -0
- teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -0
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +128 -0
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_SMOTE.json +267 -0
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -0
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -0
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +310 -0
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +120 -0
- teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +194 -0
- teradataml/data/jsons/sqle/17.20/TD_Shap.json +221 -0
- teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +143 -0
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -0
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -0
- teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -0
- teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -0
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -0
- teradataml/data/jsons/sqle/17.20/TD_TextMorph.json +134 -0
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json +297 -0
- teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -0
- teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -0
- teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
- teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +183 -0
- teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -0
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -0
- teradataml/data/jsons/sqle/17.20/Unpack.json +188 -0
- teradataml/data/jsons/sqle/17.20/nPath.json +269 -0
- teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json +370 -0
- teradataml/data/jsons/sqle/20.00/AI_AskLLM.json +460 -0
- teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json +385 -0
- teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_MaskPII.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json +400 -0
- teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json +401 -0
- teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json +384 -0
- teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json +384 -0
- teradataml/data/jsons/sqle/20.00/TD_API_AzureML.json +151 -0
- teradataml/data/jsons/sqle/20.00/TD_API_Sagemaker.json +182 -0
- teradataml/data/jsons/sqle/20.00/TD_API_VertexAI.json +183 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSW.json +296 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json +206 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json +32 -0
- teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
- teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
- teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
- teradataml/data/jsons/tableoperator/17.00/read_nos.json +198 -0
- teradataml/data/jsons/tableoperator/17.05/read_nos.json +198 -0
- teradataml/data/jsons/tableoperator/17.05/write_nos.json +195 -0
- teradataml/data/jsons/tableoperator/17.10/read_nos.json +184 -0
- teradataml/data/jsons/tableoperator/17.10/write_nos.json +195 -0
- teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
- teradataml/data/jsons/tableoperator/17.20/read_nos.json +183 -0
- teradataml/data/jsons/tableoperator/17.20/write_nos.json +224 -0
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +132 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +396 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +77 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +153 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
- teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +107 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +106 -0
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +89 -0
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +104 -0
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +66 -0
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +87 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +134 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +144 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +108 -0
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_DIFF.json +92 -0
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +114 -0
- teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
- teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +39 -0
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +85 -0
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +71 -0
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +139 -0
- teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECASTER.json +313 -0
- teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +58 -0
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +81 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
- teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +64 -0
- teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +182 -0
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +103 -0
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +181 -0
- teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
- teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +68 -0
- teradataml/data/jsons/uaf/17.20/TD_MINFO.json +67 -0
- teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +179 -0
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -0
- teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +119 -0
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -0
- teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +98 -0
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +194 -0
- teradataml/data/jsons/uaf/17.20/TD_SAX.json +210 -0
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +143 -0
- teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +90 -0
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +80 -0
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +68 -0
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -0
- teradataml/data/jsons/uaf/17.20/TD_SINFO.json +58 -0
- teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +163 -0
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +112 -0
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -0
- teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +410 -0
- teradataml/data/kmeans_example.json +23 -0
- teradataml/data/kmeans_table.csv +10 -0
- teradataml/data/kmeans_us_arrests_data.csv +51 -0
- teradataml/data/knn_example.json +19 -0
- teradataml/data/knnrecommender_example.json +7 -0
- teradataml/data/knnrecommenderpredict_example.json +12 -0
- teradataml/data/lar_example.json +17 -0
- teradataml/data/larpredict_example.json +30 -0
- teradataml/data/lc_new_predictors.csv +5 -0
- teradataml/data/lc_new_reference.csv +9 -0
- teradataml/data/lda_example.json +9 -0
- teradataml/data/ldainference_example.json +15 -0
- teradataml/data/ldatopicsummary_example.json +9 -0
- teradataml/data/levendist_input.csv +13 -0
- teradataml/data/levenshteindistance_example.json +10 -0
- teradataml/data/linreg_example.json +10 -0
- teradataml/data/load_example_data.py +350 -0
- teradataml/data/loan_prediction.csv +295 -0
- teradataml/data/lungcancer.csv +138 -0
- teradataml/data/mappingdata.csv +12 -0
- teradataml/data/medical_readings.csv +101 -0
- teradataml/data/milk_timeseries.csv +157 -0
- teradataml/data/min_max_titanic.csv +4 -0
- teradataml/data/minhash_example.json +6 -0
- teradataml/data/ml_ratings.csv +7547 -0
- teradataml/data/ml_ratings_10.csv +2445 -0
- teradataml/data/mobile_data.csv +13 -0
- teradataml/data/model1_table.csv +5 -0
- teradataml/data/model2_table.csv +5 -0
- teradataml/data/models/License_file.txt +1 -0
- teradataml/data/models/License_file_empty.txt +0 -0
- teradataml/data/models/dataiku_iris_data_ann_thin +0 -0
- teradataml/data/models/dr_iris_rf +0 -0
- teradataml/data/models/iris_db_dt_model_sklearn.onnx +0 -0
- teradataml/data/models/iris_db_dt_model_sklearn_floattensor.onnx +0 -0
- teradataml/data/models/iris_db_glm_model.pmml +57 -0
- teradataml/data/models/iris_db_xgb_model.pmml +4471 -0
- teradataml/data/models/iris_kmeans_model +0 -0
- teradataml/data/models/iris_mojo_glm_h2o_model +0 -0
- teradataml/data/models/iris_mojo_xgb_h2o_model +0 -0
- teradataml/data/modularity_example.json +12 -0
- teradataml/data/movavg_example.json +8 -0
- teradataml/data/mtx1.csv +7 -0
- teradataml/data/mtx2.csv +13 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/mvdfft8.csv +9 -0
- teradataml/data/naivebayes_example.json +10 -0
- teradataml/data/naivebayespredict_example.json +19 -0
- teradataml/data/naivebayestextclassifier2_example.json +7 -0
- teradataml/data/naivebayestextclassifier_example.json +8 -0
- teradataml/data/naivebayestextclassifierpredict_example.json +32 -0
- teradataml/data/name_Find_configure.csv +10 -0
- teradataml/data/namedentityfinder_example.json +14 -0
- teradataml/data/namedentityfinderevaluator_example.json +10 -0
- teradataml/data/namedentityfindertrainer_example.json +6 -0
- teradataml/data/nb_iris_input_test.csv +31 -0
- teradataml/data/nb_iris_input_train.csv +121 -0
- teradataml/data/nbp_iris_model.csv +13 -0
- teradataml/data/ner_dict.csv +8 -0
- teradataml/data/ner_extractor_text.csv +2 -0
- teradataml/data/ner_input_eng.csv +7 -0
- teradataml/data/ner_rule.csv +5 -0
- teradataml/data/ner_sports_test2.csv +29 -0
- teradataml/data/ner_sports_train.csv +501 -0
- teradataml/data/nerevaluator_example.json +6 -0
- teradataml/data/nerextractor_example.json +18 -0
- teradataml/data/nermem_sports_test.csv +18 -0
- teradataml/data/nermem_sports_train.csv +51 -0
- teradataml/data/nertrainer_example.json +7 -0
- teradataml/data/ngrams_example.json +7 -0
- teradataml/data/notebooks/__init__.py +0 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -0
- teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -0
- teradataml/data/notebooks/sqlalchemy/__init__.py +0 -0
- teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -0
- teradataml/data/npath_example.json +23 -0
- teradataml/data/ntree_example.json +14 -0
- teradataml/data/numeric_strings.csv +5 -0
- teradataml/data/numerics.csv +4 -0
- teradataml/data/ocean_buoy.csv +17 -0
- teradataml/data/ocean_buoy2.csv +17 -0
- teradataml/data/ocean_buoys.csv +28 -0
- teradataml/data/ocean_buoys2.csv +10 -0
- teradataml/data/ocean_buoys_nonpti.csv +28 -0
- teradataml/data/ocean_buoys_seq.csv +29 -0
- teradataml/data/onehot_encoder_train.csv +4 -0
- teradataml/data/openml_example.json +92 -0
- teradataml/data/optional_event_table.csv +4 -0
- teradataml/data/orders1.csv +11 -0
- teradataml/data/orders1_12.csv +13 -0
- teradataml/data/orders_ex.csv +4 -0
- teradataml/data/pack_example.json +9 -0
- teradataml/data/package_tracking.csv +19 -0
- teradataml/data/package_tracking_pti.csv +19 -0
- teradataml/data/pagerank_example.json +13 -0
- teradataml/data/paragraphs_input.csv +6 -0
- teradataml/data/pathanalyzer_example.json +8 -0
- teradataml/data/pathgenerator_example.json +8 -0
- teradataml/data/patient_profile.csv +101 -0
- teradataml/data/pattern_matching_data.csv +11 -0
- teradataml/data/payment_fraud_dataset.csv +10001 -0
- teradataml/data/peppers.png +0 -0
- teradataml/data/phrases.csv +7 -0
- teradataml/data/pivot_example.json +9 -0
- teradataml/data/pivot_input.csv +22 -0
- teradataml/data/playerRating.csv +31 -0
- teradataml/data/pos_input.csv +40 -0
- teradataml/data/postagger_example.json +7 -0
- teradataml/data/posttagger_output.csv +44 -0
- teradataml/data/production_data.csv +17 -0
- teradataml/data/production_data2.csv +7 -0
- teradataml/data/randomsample_example.json +32 -0
- teradataml/data/randomwalksample_example.json +9 -0
- teradataml/data/rank_table.csv +6 -0
- teradataml/data/real_values.csv +14 -0
- teradataml/data/ref_mobile_data.csv +4 -0
- teradataml/data/ref_mobile_data_dense.csv +2 -0
- teradataml/data/ref_url.csv +17 -0
- teradataml/data/restaurant_reviews.csv +7 -0
- teradataml/data/retail_churn_table.csv +27772 -0
- teradataml/data/river_data.csv +145 -0
- teradataml/data/roc_example.json +8 -0
- teradataml/data/roc_input.csv +101 -0
- teradataml/data/rule_inputs.csv +6 -0
- teradataml/data/rule_table.csv +2 -0
- teradataml/data/sales.csv +7 -0
- teradataml/data/sales_transaction.csv +501 -0
- teradataml/data/salesdata.csv +342 -0
- teradataml/data/sample_cities.csv +3 -0
- teradataml/data/sample_shapes.csv +11 -0
- teradataml/data/sample_streets.csv +3 -0
- teradataml/data/sampling_example.json +16 -0
- teradataml/data/sax_example.json +17 -0
- teradataml/data/scale_attributes.csv +3 -0
- teradataml/data/scale_example.json +74 -0
- teradataml/data/scale_housing.csv +11 -0
- teradataml/data/scale_housing_test.csv +6 -0
- teradataml/data/scale_input_part_sparse.csv +31 -0
- teradataml/data/scale_input_partitioned.csv +16 -0
- teradataml/data/scale_input_sparse.csv +11 -0
- teradataml/data/scale_parameters.csv +3 -0
- teradataml/data/scale_stat.csv +11 -0
- teradataml/data/scalebypartition_example.json +13 -0
- teradataml/data/scalemap_example.json +13 -0
- teradataml/data/scalesummary_example.json +12 -0
- teradataml/data/score_category.csv +101 -0
- teradataml/data/score_summary.csv +4 -0
- teradataml/data/script_example.json +10 -0
- teradataml/data/scripts/deploy_script.py +84 -0
- teradataml/data/scripts/lightgbm/dataset.template +175 -0
- teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +264 -0
- teradataml/data/scripts/lightgbm/lightgbm_function.template +234 -0
- teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +177 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/mapper.py +16 -0
- teradataml/data/scripts/mapper_replace.py +16 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +205 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +148 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +144 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +166 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +161 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +145 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +327 -0
- teradataml/data/sdk/modelops/modelops_spec.json +101737 -0
- teradataml/data/seeds.csv +10 -0
- teradataml/data/sentenceextractor_example.json +7 -0
- teradataml/data/sentiment_extract_input.csv +11 -0
- teradataml/data/sentiment_train.csv +16 -0
- teradataml/data/sentiment_word.csv +20 -0
- teradataml/data/sentiment_word_input.csv +20 -0
- teradataml/data/sentimentextractor_example.json +24 -0
- teradataml/data/sentimenttrainer_example.json +8 -0
- teradataml/data/sequence_table.csv +10 -0
- teradataml/data/seriessplitter_example.json +8 -0
- teradataml/data/sessionize_example.json +17 -0
- teradataml/data/sessionize_table.csv +116 -0
- teradataml/data/setop_test1.csv +24 -0
- teradataml/data/setop_test2.csv +22 -0
- teradataml/data/soc_nw_edges.csv +11 -0
- teradataml/data/soc_nw_vertices.csv +8 -0
- teradataml/data/souvenir_timeseries.csv +168 -0
- teradataml/data/sparse_iris_attribute.csv +5 -0
- teradataml/data/sparse_iris_test.csv +121 -0
- teradataml/data/sparse_iris_train.csv +601 -0
- teradataml/data/star1.csv +6 -0
- teradataml/data/star_pivot.csv +8 -0
- teradataml/data/state_transition.csv +5 -0
- teradataml/data/stock_data.csv +53 -0
- teradataml/data/stock_movement.csv +11 -0
- teradataml/data/stock_vol.csv +76 -0
- teradataml/data/stop_words.csv +8 -0
- teradataml/data/store_sales.csv +37 -0
- teradataml/data/stringsimilarity_example.json +8 -0
- teradataml/data/strsimilarity_input.csv +13 -0
- teradataml/data/students.csv +101 -0
- teradataml/data/svm_iris_input_test.csv +121 -0
- teradataml/data/svm_iris_input_train.csv +481 -0
- teradataml/data/svm_iris_model.csv +7 -0
- teradataml/data/svmdense_example.json +10 -0
- teradataml/data/svmdensepredict_example.json +19 -0
- teradataml/data/svmsparse_example.json +8 -0
- teradataml/data/svmsparsepredict_example.json +14 -0
- teradataml/data/svmsparsesummary_example.json +8 -0
- teradataml/data/target_mobile_data.csv +13 -0
- teradataml/data/target_mobile_data_dense.csv +5 -0
- teradataml/data/target_udt_data.csv +8 -0
- teradataml/data/tdnerextractor_example.json +14 -0
- teradataml/data/templatedata.csv +1201 -0
- teradataml/data/templates/open_source_ml.json +11 -0
- teradataml/data/teradata_icon.ico +0 -0
- teradataml/data/teradataml_example.json +1473 -0
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_loan_prediction.csv +53 -0
- teradataml/data/test_pacf_12.csv +37 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/test_river2.csv +109 -0
- teradataml/data/text_inputs.csv +6 -0
- teradataml/data/textchunker_example.json +8 -0
- teradataml/data/textclassifier_example.json +7 -0
- teradataml/data/textclassifier_input.csv +7 -0
- teradataml/data/textclassifiertrainer_example.json +7 -0
- teradataml/data/textmorph_example.json +11 -0
- teradataml/data/textparser_example.json +15 -0
- teradataml/data/texttagger_example.json +12 -0
- teradataml/data/texttokenizer_example.json +7 -0
- teradataml/data/texttrainer_input.csv +11 -0
- teradataml/data/tf_example.json +7 -0
- teradataml/data/tfidf_example.json +14 -0
- teradataml/data/tfidf_input1.csv +201 -0
- teradataml/data/tfidf_train.csv +6 -0
- teradataml/data/time_table1.csv +535 -0
- teradataml/data/time_table2.csv +14 -0
- teradataml/data/timeseriesdata.csv +1601 -0
- teradataml/data/timeseriesdatasetsd4.csv +105 -0
- teradataml/data/timestamp_data.csv +4 -0
- teradataml/data/titanic.csv +892 -0
- teradataml/data/titanic_dataset_unpivoted.csv +19 -0
- teradataml/data/to_num_data.csv +4 -0
- teradataml/data/tochar_data.csv +5 -0
- teradataml/data/token_table.csv +696 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/train_tracking.csv +28 -0
- teradataml/data/trans_dense.csv +16 -0
- teradataml/data/trans_sparse.csv +55 -0
- teradataml/data/transformation_table.csv +6 -0
- teradataml/data/transformation_table_new.csv +2 -0
- teradataml/data/tv_spots.csv +16 -0
- teradataml/data/twod_climate_data.csv +117 -0
- teradataml/data/uaf_example.json +529 -0
- teradataml/data/univariatestatistics_example.json +9 -0
- teradataml/data/unpack_example.json +10 -0
- teradataml/data/unpivot_example.json +25 -0
- teradataml/data/unpivot_input.csv +8 -0
- teradataml/data/url_data.csv +10 -0
- teradataml/data/us_air_pass.csv +37 -0
- teradataml/data/us_population.csv +624 -0
- teradataml/data/us_states_shapes.csv +52 -0
- teradataml/data/varmax_example.json +18 -0
- teradataml/data/vectordistance_example.json +30 -0
- teradataml/data/ville_climatedata.csv +121 -0
- teradataml/data/ville_tempdata.csv +12 -0
- teradataml/data/ville_tempdata1.csv +12 -0
- teradataml/data/ville_temperature.csv +11 -0
- teradataml/data/waveletTable.csv +1605 -0
- teradataml/data/waveletTable2.csv +1605 -0
- teradataml/data/weightedmovavg_example.json +9 -0
- teradataml/data/wft_testing.csv +5 -0
- teradataml/data/windowdfft.csv +16 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/data/word_embed_input_table1.csv +6 -0
- teradataml/data/word_embed_input_table2.csv +5 -0
- teradataml/data/word_embed_model.csv +23 -0
- teradataml/data/words_input.csv +13 -0
- teradataml/data/xconvolve_complex_left.csv +6 -0
- teradataml/data/xconvolve_complex_leftmulti.csv +6 -0
- teradataml/data/xgboost_example.json +36 -0
- teradataml/data/xgboostpredict_example.json +32 -0
- teradataml/data/ztest_example.json +16 -0
- teradataml/dataframe/__init__.py +0 -0
- teradataml/dataframe/copy_to.py +2446 -0
- teradataml/dataframe/data_transfer.py +2840 -0
- teradataml/dataframe/dataframe.py +20908 -0
- teradataml/dataframe/dataframe_utils.py +2114 -0
- teradataml/dataframe/fastload.py +794 -0
- teradataml/dataframe/functions.py +2110 -0
- teradataml/dataframe/indexer.py +424 -0
- teradataml/dataframe/row.py +160 -0
- teradataml/dataframe/setop.py +1171 -0
- teradataml/dataframe/sql.py +10904 -0
- teradataml/dataframe/sql_function_parameters.py +440 -0
- teradataml/dataframe/sql_functions.py +652 -0
- teradataml/dataframe/sql_interfaces.py +220 -0
- teradataml/dataframe/vantage_function_types.py +675 -0
- teradataml/dataframe/window.py +694 -0
- teradataml/dbutils/__init__.py +3 -0
- teradataml/dbutils/dbutils.py +2871 -0
- teradataml/dbutils/filemgr.py +318 -0
- teradataml/gen_ai/__init__.py +2 -0
- teradataml/gen_ai/convAI.py +473 -0
- teradataml/geospatial/__init__.py +4 -0
- teradataml/geospatial/geodataframe.py +1105 -0
- teradataml/geospatial/geodataframecolumn.py +392 -0
- teradataml/geospatial/geometry_types.py +926 -0
- teradataml/hyperparameter_tuner/__init__.py +1 -0
- teradataml/hyperparameter_tuner/optimizer.py +4115 -0
- teradataml/hyperparameter_tuner/utils.py +303 -0
- teradataml/lib/__init__.py +0 -0
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/lib/libaed_0_1_aarch64.so +0 -0
- teradataml/lib/libaed_0_1_ppc64le.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/_base.py +1321 -0
- teradataml/opensource/_class.py +464 -0
- teradataml/opensource/_constants.py +61 -0
- teradataml/opensource/_lightgbm.py +949 -0
- teradataml/opensource/_sklearn.py +1008 -0
- teradataml/opensource/_wrapper_utils.py +267 -0
- teradataml/options/__init__.py +148 -0
- teradataml/options/configure.py +489 -0
- teradataml/options/display.py +187 -0
- teradataml/plot/__init__.py +3 -0
- teradataml/plot/axis.py +1427 -0
- teradataml/plot/constants.py +15 -0
- teradataml/plot/figure.py +431 -0
- teradataml/plot/plot.py +810 -0
- teradataml/plot/query_generator.py +83 -0
- teradataml/plot/subplot.py +216 -0
- teradataml/scriptmgmt/UserEnv.py +4273 -0
- teradataml/scriptmgmt/__init__.py +3 -0
- teradataml/scriptmgmt/lls_utils.py +2157 -0
- teradataml/sdk/README.md +79 -0
- teradataml/sdk/__init__.py +4 -0
- teradataml/sdk/_auth_modes.py +422 -0
- teradataml/sdk/_func_params.py +487 -0
- teradataml/sdk/_json_parser.py +453 -0
- teradataml/sdk/_openapi_spec_constants.py +249 -0
- teradataml/sdk/_utils.py +236 -0
- teradataml/sdk/api_client.py +900 -0
- teradataml/sdk/constants.py +62 -0
- teradataml/sdk/modelops/__init__.py +98 -0
- teradataml/sdk/modelops/_client.py +409 -0
- teradataml/sdk/modelops/_constants.py +304 -0
- teradataml/sdk/modelops/models.py +2308 -0
- teradataml/sdk/spinner.py +107 -0
- teradataml/series/__init__.py +0 -0
- teradataml/series/series.py +537 -0
- teradataml/series/series_utils.py +71 -0
- teradataml/store/__init__.py +12 -0
- teradataml/store/feature_store/__init__.py +0 -0
- teradataml/store/feature_store/constants.py +658 -0
- teradataml/store/feature_store/feature_store.py +4814 -0
- teradataml/store/feature_store/mind_map.py +639 -0
- teradataml/store/feature_store/models.py +7330 -0
- teradataml/store/feature_store/utils.py +390 -0
- teradataml/table_operators/Apply.py +979 -0
- teradataml/table_operators/Script.py +1739 -0
- teradataml/table_operators/TableOperator.py +1343 -0
- teradataml/table_operators/__init__.py +2 -0
- teradataml/table_operators/apply_query_generator.py +262 -0
- teradataml/table_operators/query_generator.py +493 -0
- teradataml/table_operators/table_operator_query_generator.py +462 -0
- teradataml/table_operators/table_operator_util.py +726 -0
- teradataml/table_operators/templates/dataframe_apply.template +184 -0
- teradataml/table_operators/templates/dataframe_map.template +176 -0
- teradataml/table_operators/templates/dataframe_register.template +73 -0
- teradataml/table_operators/templates/dataframe_udf.template +67 -0
- teradataml/table_operators/templates/script_executor.template +170 -0
- teradataml/telemetry_utils/__init__.py +0 -0
- teradataml/telemetry_utils/queryband.py +53 -0
- teradataml/utils/__init__.py +0 -0
- teradataml/utils/docstring.py +527 -0
- teradataml/utils/dtypes.py +943 -0
- teradataml/utils/internal_buffer.py +122 -0
- teradataml/utils/print_versions.py +206 -0
- teradataml/utils/utils.py +451 -0
- teradataml/utils/validators.py +3305 -0
- teradataml-20.0.0.8.dist-info/METADATA +2804 -0
- teradataml-20.0.0.8.dist-info/RECORD +1208 -0
- teradataml-20.0.0.8.dist-info/WHEEL +5 -0
- teradataml-20.0.0.8.dist-info/top_level.txt +1 -0
- teradataml-20.0.0.8.dist-info/zip-safe +1 -0
|
@@ -0,0 +1,726 @@
|
|
|
1
|
+
# ##################################################################
|
|
2
|
+
# #
|
|
3
|
+
# Copyright 2020 Teradata. All rights reserved. #
|
|
4
|
+
# TERADATA CONFIDENTIAL AND TRADE SECRET #
|
|
5
|
+
# #
|
|
6
|
+
# Primary Owner: Rohit Khurd (rohit.khurd@teradata.com) #
|
|
7
|
+
# Secondary Owner: Trupti Purohit (trupti.purohit@teradata.com) #
|
|
8
|
+
# #
|
|
9
|
+
# Description: Utilities for Table Operators. #
|
|
10
|
+
# #
|
|
11
|
+
# ##################################################################
|
|
12
|
+
import os, json
|
|
13
|
+
import teradataml.dataframe as tdmldf
|
|
14
|
+
from teradataml.common.constants import TableOperatorConstants, \
|
|
15
|
+
TeradataConstants, OutputStyle
|
|
16
|
+
from teradataml import configure
|
|
17
|
+
from teradataml.common.garbagecollector import GarbageCollector
|
|
18
|
+
from teradataml.common.messages import Messages
|
|
19
|
+
from teradataml.common.messagecodes import MessageCodes
|
|
20
|
+
from teradataml.common.utils import UtilFuncs
|
|
21
|
+
from teradataml.dbutils.filemgr import install_file, remove_file
|
|
22
|
+
from teradataml.scriptmgmt.lls_utils import get_env
|
|
23
|
+
from teradataml.utils.utils import execute_sql
|
|
24
|
+
from teradataml.utils.validators import _Validators
|
|
25
|
+
from functools import partial
|
|
26
|
+
from inspect import isfunction, getsource
|
|
27
|
+
from pathlib import Path
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
class _TableOperatorUtils:
|
|
31
|
+
"""
|
|
32
|
+
Class providing utility functions to execute the different table operator
|
|
33
|
+
and return the required object based on the 'operation'.
|
|
34
|
+
"""
|
|
35
|
+
|
|
36
|
+
def __init__(self,
|
|
37
|
+
arg_info_matrix,
|
|
38
|
+
data,
|
|
39
|
+
operation,
|
|
40
|
+
user_function,
|
|
41
|
+
exec_mode,
|
|
42
|
+
chunk_size,
|
|
43
|
+
data_partition_column=None,
|
|
44
|
+
data_hash_column=None,
|
|
45
|
+
**kwargs):
|
|
46
|
+
"""
|
|
47
|
+
DESCRIPTION:
|
|
48
|
+
Constructor to initialize the object of class _TableOperatorUtils.
|
|
49
|
+
|
|
50
|
+
PARAMETERS:
|
|
51
|
+
arg_info_matrix:
|
|
52
|
+
Required Argument.
|
|
53
|
+
Specifies the caller specific argument information matrix that
|
|
54
|
+
can be readily used with Validators.
|
|
55
|
+
Types: list of lists.
|
|
56
|
+
|
|
57
|
+
data:
|
|
58
|
+
Required Argument.
|
|
59
|
+
Specifies the teradataml DataFrame to apply the table operator
|
|
60
|
+
on.
|
|
61
|
+
|
|
62
|
+
operation:
|
|
63
|
+
Required Argument.
|
|
64
|
+
Specifies the teradataml operation being performed.
|
|
65
|
+
Permitted values: 'map_row', 'map_partition'.
|
|
66
|
+
Types: str
|
|
67
|
+
|
|
68
|
+
user_function:
|
|
69
|
+
Required Argument.
|
|
70
|
+
Specifies the user defined function to apply to every row
|
|
71
|
+
or group of rows in "data".
|
|
72
|
+
Types: function
|
|
73
|
+
|
|
74
|
+
Notes:
|
|
75
|
+
* This can be either a lambda function, a regular python
|
|
76
|
+
function, or an object of functools.partial.
|
|
77
|
+
* The first argument (positional) to the user defined
|
|
78
|
+
function must be an iterator on the partition of rows
|
|
79
|
+
from the teradataml DataFrame represented as a Pandas
|
|
80
|
+
DataFrame to which it is to be applied.
|
|
81
|
+
* A non-lambda function can be passed only when the user
|
|
82
|
+
defined function does not accept any arguments other than
|
|
83
|
+
the mandatory input - the iterator on the partition of
|
|
84
|
+
rows, or the input row.
|
|
85
|
+
A user can also use functools.partial and lambda functions
|
|
86
|
+
for the same, which are especially handy when:
|
|
87
|
+
* there is a need to pass positional and/or keyword
|
|
88
|
+
arguments (lambda).
|
|
89
|
+
* there is a need to pass keyword arguments only
|
|
90
|
+
(functool.partial).
|
|
91
|
+
* The return type of the user defined function must be one
|
|
92
|
+
of the following:
|
|
93
|
+
* numpy ndarray
|
|
94
|
+
* when one-dimensional, having the same number of
|
|
95
|
+
values as output columns.
|
|
96
|
+
* when two-dimensional, every array contained in
|
|
97
|
+
the outer array having the same number of values
|
|
98
|
+
as output columns.
|
|
99
|
+
* pandas Series
|
|
100
|
+
* pandas DataFrame
|
|
101
|
+
|
|
102
|
+
exec_mode:
|
|
103
|
+
Required Argument.
|
|
104
|
+
Specifies the mode of execution for the user defined function.
|
|
105
|
+
It can be either of:
|
|
106
|
+
* IN-DB: Execute the function on data in the teradataml
|
|
107
|
+
DataFrame in Vantage.
|
|
108
|
+
* LOCAL: Execute the function locally on sample data (at
|
|
109
|
+
most "num_rows" rows) from "data".
|
|
110
|
+
Permitted values: 'IN-DB', 'LOCAL', 'REMOTE'
|
|
111
|
+
Types: str
|
|
112
|
+
|
|
113
|
+
chunk_size:
|
|
114
|
+
Required Argument.
|
|
115
|
+
Specifies the number of rows to be read in a each chunk using
|
|
116
|
+
the iterator created on top of the data that will be consumed
|
|
117
|
+
by the user defined function.
|
|
118
|
+
Varying this input affects the performance and the memory
|
|
119
|
+
utilized by the function.
|
|
120
|
+
Types: int
|
|
121
|
+
|
|
122
|
+
data_partition_column:
|
|
123
|
+
Optional Argument.
|
|
124
|
+
Specifies the Partition By columns for data.
|
|
125
|
+
Values to this argument can be provided as a list, if multiple
|
|
126
|
+
columns are used for partition.
|
|
127
|
+
Types: str OR list of Strings (str)
|
|
128
|
+
|
|
129
|
+
data_hash_column:
|
|
130
|
+
Optional Argument.
|
|
131
|
+
Specifies the column to be used for hashing.
|
|
132
|
+
The rows in the data are redistributed to AMPs based on the hash
|
|
133
|
+
value of the column specified.
|
|
134
|
+
Types: str
|
|
135
|
+
|
|
136
|
+
data_order_column:
|
|
137
|
+
Required Argument.
|
|
138
|
+
Specifies the Order By columns for data.
|
|
139
|
+
Values to this argument can be provided as a list, if multiple
|
|
140
|
+
columns are used for ordering.
|
|
141
|
+
This argument is used with in both cases:
|
|
142
|
+
"is_local_order = True" and "is_local_order = False".
|
|
143
|
+
Types: str OR list of Strings (str)
|
|
144
|
+
|
|
145
|
+
is_local_order:
|
|
146
|
+
Required Argument.
|
|
147
|
+
Specifies a boolean value to determine whether the input data
|
|
148
|
+
is to be ordered locally at each AMP or not.
|
|
149
|
+
This argument is ignored, if "data_order_column" is None.
|
|
150
|
+
When set to 'True', data is ordered locally.
|
|
151
|
+
Types: bool
|
|
152
|
+
|
|
153
|
+
nulls_first:
|
|
154
|
+
Required Argument.
|
|
155
|
+
Specifies a boolean value to determine whether NULLS are listed
|
|
156
|
+
first or last during ordering.
|
|
157
|
+
This argument is ignored, if "data_order_column" is None.
|
|
158
|
+
NULLS are listed first when this argument is set to 'True', and
|
|
159
|
+
last when set to 'False'.
|
|
160
|
+
Types: bool
|
|
161
|
+
|
|
162
|
+
sort_ascending:
|
|
163
|
+
Required Argument.
|
|
164
|
+
Specifies a boolean value to determine if the input is to be
|
|
165
|
+
sorted on the "data_order_column" in ascending or descending
|
|
166
|
+
order.
|
|
167
|
+
The sorting is ascending when this argument is set to 'True',
|
|
168
|
+
and descending when set to 'False'.
|
|
169
|
+
This argument is ignored, if "data_order_column" is None.
|
|
170
|
+
Types: bool
|
|
171
|
+
|
|
172
|
+
returns:
|
|
173
|
+
Required Argument.
|
|
174
|
+
Specifies the output column definition corresponding to the
|
|
175
|
+
output of "user_function".
|
|
176
|
+
Types: Dictionary specifying column name to
|
|
177
|
+
teradatasqlalchemy type mapping.
|
|
178
|
+
|
|
179
|
+
num_rows:
|
|
180
|
+
Required Argument.
|
|
181
|
+
Specifies the maximum number of sample rows to use from the
|
|
182
|
+
teradataml DataFrame to apply the user defined function to when
|
|
183
|
+
"exec_mode" is 'LOCAL'.
|
|
184
|
+
Types: int
|
|
185
|
+
|
|
186
|
+
delimiter:
|
|
187
|
+
Required Argument.
|
|
188
|
+
Specifies a delimiter to use when reading columns from a row and
|
|
189
|
+
writing the result columns.
|
|
190
|
+
Types: str
|
|
191
|
+
|
|
192
|
+
quotechar:
|
|
193
|
+
Required Argument.
|
|
194
|
+
Specifies the character to use for quoting values in the input
|
|
195
|
+
and output rows.
|
|
196
|
+
Types: str
|
|
197
|
+
|
|
198
|
+
auth:
|
|
199
|
+
Required Argument.
|
|
200
|
+
Specifies an authorization to use when running the script.
|
|
201
|
+
Types: str
|
|
202
|
+
|
|
203
|
+
charset:
|
|
204
|
+
Required Argument.
|
|
205
|
+
Specifies the character encoding for data in "data".
|
|
206
|
+
Permitted values: 'utf-16', 'latin'
|
|
207
|
+
Types: str
|
|
208
|
+
|
|
209
|
+
env_name:
|
|
210
|
+
Required Argument.
|
|
211
|
+
Specifies the name of the remote user environment or an object of class UserEnv.
|
|
212
|
+
Types: str or oject of class UserEnv.
|
|
213
|
+
|
|
214
|
+
style:
|
|
215
|
+
Optional Argument.
|
|
216
|
+
Specifies how input is passed to and output is generated by the 'apply_command'
|
|
217
|
+
respectively.
|
|
218
|
+
Note:
|
|
219
|
+
This clause only supports 'csv' value for Apply.
|
|
220
|
+
Default value: "csv"
|
|
221
|
+
Types: str
|
|
222
|
+
|
|
223
|
+
RETURNS:
|
|
224
|
+
Object of class _TableOperatorUtils.
|
|
225
|
+
|
|
226
|
+
RAISES:
|
|
227
|
+
TypeError, ValueError, TeradataMlException.
|
|
228
|
+
|
|
229
|
+
EXAMPLES:
|
|
230
|
+
tbl_op_util_obj = _TableOperatorUtils(arg_info_matrix, data,
|
|
231
|
+
operation="map_row",
|
|
232
|
+
user_function, exec_mode,
|
|
233
|
+
chunk_size=chunk_size,
|
|
234
|
+
data_partition_column=None,
|
|
235
|
+
data_hash_column=None,
|
|
236
|
+
data_order_column=data_order_column,
|
|
237
|
+
is_local_order=is_local_order,
|
|
238
|
+
nulls_first=nulls_first,
|
|
239
|
+
sort_ascending=sort_ascending,
|
|
240
|
+
returns=returns, delimiter=delimiter,
|
|
241
|
+
quotechar=quotechar, auth=auth,
|
|
242
|
+
charset=charset, num_rows=num_rows)
|
|
243
|
+
"""
|
|
244
|
+
self.data = data
|
|
245
|
+
self.operation = operation
|
|
246
|
+
self.user_function = user_function
|
|
247
|
+
self.exec_mode = exec_mode
|
|
248
|
+
self.chunk_size = chunk_size
|
|
249
|
+
self.data_partition_column = data_partition_column
|
|
250
|
+
self.data_hash_column = data_hash_column
|
|
251
|
+
self.__env = None
|
|
252
|
+
self.debug = kwargs.pop('debug', False)
|
|
253
|
+
self._validate_version = False
|
|
254
|
+
self.packages = []
|
|
255
|
+
# Add all entries from kwargs as class attributes.
|
|
256
|
+
self.__dict__.update(kwargs)
|
|
257
|
+
|
|
258
|
+
# Validate the inputs.
|
|
259
|
+
self.__validate(arg_info_matrix)
|
|
260
|
+
|
|
261
|
+
# Create the intermediate user script.
|
|
262
|
+
self.__create_user_script()
|
|
263
|
+
|
|
264
|
+
def __validate(self, arg_info_matrix=None):
|
|
265
|
+
"""
|
|
266
|
+
DESCRIPTION:
|
|
267
|
+
Internal function to validate the inputs corresponding to the
|
|
268
|
+
TableOperator utility function.
|
|
269
|
+
|
|
270
|
+
PARAMETERS:
|
|
271
|
+
arg_info_matrix:
|
|
272
|
+
Optional Argument.
|
|
273
|
+
Specifies the caller specific argument information matrix
|
|
274
|
+
that can be readily used with Validators.
|
|
275
|
+
Types: list of lists.
|
|
276
|
+
|
|
277
|
+
RETURNS:
|
|
278
|
+
None.
|
|
279
|
+
|
|
280
|
+
RAISES:
|
|
281
|
+
TypeError, ValueError.
|
|
282
|
+
|
|
283
|
+
EXAMPLES:
|
|
284
|
+
self.__validate()
|
|
285
|
+
"""
|
|
286
|
+
# Validate the user defined function.
|
|
287
|
+
|
|
288
|
+
if self.operation in [TableOperatorConstants.UDF_OP.value,\
|
|
289
|
+
TableOperatorConstants.REGISTER_OP.value]:
|
|
290
|
+
for udf_function in self.user_function:
|
|
291
|
+
if not isfunction(udf_function):
|
|
292
|
+
raise TypeError(Messages.get_message(
|
|
293
|
+
MessageCodes.UNSUPPORTED_DATATYPE, 'user_function', "'function'"))
|
|
294
|
+
else:
|
|
295
|
+
if not (isfunction(self.user_function) or
|
|
296
|
+
isinstance(self.user_function, partial)):
|
|
297
|
+
raise TypeError(Messages.get_message(
|
|
298
|
+
MessageCodes.UNSUPPORTED_DATATYPE, 'user_function',
|
|
299
|
+
"'function' or 'functools.partial'")
|
|
300
|
+
)
|
|
301
|
+
|
|
302
|
+
if arg_info_matrix is None:
|
|
303
|
+
arg_info_matrix = []
|
|
304
|
+
|
|
305
|
+
# Validate arguments.
|
|
306
|
+
_Validators._validate_missing_required_arguments(arg_info_matrix)
|
|
307
|
+
_Validators._validate_function_arguments(arg_info_matrix)
|
|
308
|
+
|
|
309
|
+
# Additional validations for map_row and map_partition and apply operations.
|
|
310
|
+
if self.operation in [TableOperatorConstants.MAP_ROW_OP.value,
|
|
311
|
+
TableOperatorConstants.MAP_PARTITION_OP.value,
|
|
312
|
+
TableOperatorConstants.APPLY_OP.value]:
|
|
313
|
+
# Validate that chunk_size and num_rows are positive integers.
|
|
314
|
+
_Validators._validate_positive_int(self.chunk_size, "chunk_size")
|
|
315
|
+
_Validators._validate_positive_int(self.num_rows, "num_rows")
|
|
316
|
+
|
|
317
|
+
|
|
318
|
+
|
|
319
|
+
def __create_user_script(self):
|
|
320
|
+
"""
|
|
321
|
+
DESCRIPTION:
|
|
322
|
+
Internal function to create the intermediate script and assigning
|
|
323
|
+
class attributes corresponding to the scripts path, name, and alias
|
|
324
|
+
used for installation.
|
|
325
|
+
|
|
326
|
+
PARAMETERS:
|
|
327
|
+
None.
|
|
328
|
+
|
|
329
|
+
RETURNS:
|
|
330
|
+
None.
|
|
331
|
+
|
|
332
|
+
RAISES:
|
|
333
|
+
Exception.
|
|
334
|
+
|
|
335
|
+
EXAMPLES:
|
|
336
|
+
self.__create_user_script()
|
|
337
|
+
"""
|
|
338
|
+
# If operation is register, then generate script name based on the
|
|
339
|
+
# user function name and return type.
|
|
340
|
+
# It has the format "tdml_udf_name_<registered_name>_udf_type_<return_type>_register.py"
|
|
341
|
+
if self.operation == TableOperatorConstants.REGISTER_OP.value:
|
|
342
|
+
registered_name = list(self.returns.keys())[0]
|
|
343
|
+
return_type = self.returns[registered_name]
|
|
344
|
+
self.script_name = "tdml_udf_name_{}_udf_type_{}_register.py".format(registered_name, return_type)
|
|
345
|
+
self.script_base_name = Path(self.script_name).stem
|
|
346
|
+
else:
|
|
347
|
+
# Generate script name and alias, and add entry to a Garbage Collector.
|
|
348
|
+
# script_entry is the string that is added to Garbage collector.
|
|
349
|
+
# It has the format "<databasename>"."<file_id>".
|
|
350
|
+
self.script_entry, self.script_alias, self.script_name, self.script_base_name = self.__get_script_name()
|
|
351
|
+
|
|
352
|
+
if self.operation not in [TableOperatorConstants.UDF_OP.value, TableOperatorConstants.REGISTER_OP.value]:
|
|
353
|
+
# Get the converters to use with pandas.read_csv, and to correctly
|
|
354
|
+
# typecast the numeric data.
|
|
355
|
+
python_input_col_types = [UtilFuncs._teradata_type_to_python_type(col.type)
|
|
356
|
+
for col in self.data._metaexpr.c]
|
|
357
|
+
input_converters = UtilFuncs._get_pandas_converters(python_input_col_types)
|
|
358
|
+
|
|
359
|
+
python_output_col_types = [UtilFuncs._teradata_type_to_python_type(type_)
|
|
360
|
+
for type_ in list(self.returns.values())]
|
|
361
|
+
output_converters = UtilFuncs._get_pandas_converters(python_output_col_types)
|
|
362
|
+
|
|
363
|
+
# Create script in .teradataml directory.
|
|
364
|
+
script_dir = GarbageCollector._get_temp_dir_name()
|
|
365
|
+
# script_path is the actual path where we want to generate the user
|
|
366
|
+
# script at.
|
|
367
|
+
self.script_path = os.path.join(script_dir, self.script_name)
|
|
368
|
+
|
|
369
|
+
template_dir = os.path.join(os.path.dirname(
|
|
370
|
+
os.path.dirname(os.path.abspath(__file__))),
|
|
371
|
+
"table_operators",
|
|
372
|
+
"templates")
|
|
373
|
+
# Get the template.
|
|
374
|
+
template = {TableOperatorConstants.APPLY_OP.value: TableOperatorConstants.APPLY_TEMPLATE.value,
|
|
375
|
+
TableOperatorConstants.UDF_OP.value: TableOperatorConstants.UDF_TEMPLATE.value,
|
|
376
|
+
TableOperatorConstants.REGISTER_OP.value: TableOperatorConstants.REGISTER_TEMPLATE.value }
|
|
377
|
+
template_name = template.get(self.operation, TableOperatorConstants.MAP_TEMPLATE.value)
|
|
378
|
+
# Write to the script based on the template.
|
|
379
|
+
try:
|
|
380
|
+
with open(os.path.join(template_dir, template_name), 'r') as input_file:
|
|
381
|
+
with open(self.script_path, 'w') as output_file:
|
|
382
|
+
if self.operation == TableOperatorConstants.UDF_OP.value:
|
|
383
|
+
|
|
384
|
+
user_function_code = UtilFuncs._func_to_string(self.user_function)
|
|
385
|
+
output_file.write(input_file.read().format(
|
|
386
|
+
DELIMITER=self.delimiter,
|
|
387
|
+
QUOTECHAR=self.quotechar,
|
|
388
|
+
FUNCTION_DEFINITION=user_function_code,
|
|
389
|
+
FUNCTION_ARGS =str(self.function_args),
|
|
390
|
+
INPUT_COLUMNS=json.dumps(self.data.columns),
|
|
391
|
+
OUTPUT_COLUMNS=json.dumps(list(self.returns.keys())),
|
|
392
|
+
COLUMNS_DEFINITIONS=json.dumps(self.columns_definitions),
|
|
393
|
+
OUTPUT_TYPE_CONVERTERS=json.dumps(self.output_type_converters)
|
|
394
|
+
))
|
|
395
|
+
elif self.operation == TableOperatorConstants.REGISTER_OP.value:
|
|
396
|
+
# Get the source code of the user function.
|
|
397
|
+
user_function_code = UtilFuncs._func_to_string(self.user_function)
|
|
398
|
+
output_file.write(input_file.read().format(
|
|
399
|
+
FUNCTION_DEFINITION=user_function_code,
|
|
400
|
+
FUNCTION_NAME = self.user_function[0].__name__
|
|
401
|
+
))
|
|
402
|
+
else:
|
|
403
|
+
# prepare script file from template file for maprow and mappartition.
|
|
404
|
+
output_file.write(
|
|
405
|
+
input_file.read().format(
|
|
406
|
+
DELIMITER=UtilFuncs._serialize_and_encode(
|
|
407
|
+
self.delimiter),
|
|
408
|
+
STO_OPERATION=UtilFuncs._serialize_and_encode(
|
|
409
|
+
self.operation),
|
|
410
|
+
USER_DEF_FUNC=UtilFuncs._serialize_and_encode(
|
|
411
|
+
self.user_function),
|
|
412
|
+
DF_COL_NAMES_LIST=UtilFuncs._serialize_and_encode(
|
|
413
|
+
self.data.columns),
|
|
414
|
+
DF_COL_TYPES_LIST=UtilFuncs._serialize_and_encode(
|
|
415
|
+
python_input_col_types),
|
|
416
|
+
OUTPUT_COL_NAMES_LIST=UtilFuncs._serialize_and_encode(
|
|
417
|
+
list(self.returns.keys())),
|
|
418
|
+
OUTPUT_CONVERTERS=UtilFuncs._serialize_and_encode(
|
|
419
|
+
output_converters),
|
|
420
|
+
QUOTECHAR=UtilFuncs._serialize_and_encode(
|
|
421
|
+
self.quotechar),
|
|
422
|
+
INPUT_CONVERTERS=UtilFuncs._serialize_and_encode(
|
|
423
|
+
input_converters),
|
|
424
|
+
CHUNK_SIZE=UtilFuncs._serialize_and_encode(
|
|
425
|
+
self.chunk_size)
|
|
426
|
+
)
|
|
427
|
+
)
|
|
428
|
+
except Exception:
|
|
429
|
+
# We may end up here if the formatting of the templating to create
|
|
430
|
+
# the user script fails.
|
|
431
|
+
# This would possibly create a incorrect or empty file, which
|
|
432
|
+
# needs to be deleted.
|
|
433
|
+
self.__remove_file_and_delete_entry_from_gc(remove_from_sql_eng=False)
|
|
434
|
+
raise
|
|
435
|
+
|
|
436
|
+
def execute(self):
|
|
437
|
+
"""
|
|
438
|
+
DESCRIPTION:
|
|
439
|
+
Function to call the appropriate table operator function
|
|
440
|
+
based on the 'operation'.
|
|
441
|
+
|
|
442
|
+
PARAMETERS:
|
|
443
|
+
None.
|
|
444
|
+
|
|
445
|
+
RETURNS:
|
|
446
|
+
object.
|
|
447
|
+
The function may return a DataFrame or an object of the operator class
|
|
448
|
+
corresponding to the 'operation'.
|
|
449
|
+
|
|
450
|
+
RAISES:
|
|
451
|
+
Exception.
|
|
452
|
+
|
|
453
|
+
EXAMPLES:
|
|
454
|
+
tbl_operator_obj.execute()
|
|
455
|
+
"""
|
|
456
|
+
try:
|
|
457
|
+
if self.operation in [TableOperatorConstants.MAP_ROW_OP.value,
|
|
458
|
+
TableOperatorConstants.MAP_PARTITION_OP.value] or \
|
|
459
|
+
(self.operation == TableOperatorConstants.UDF_OP.value and self.exec_mode == 'IN-DB'):
|
|
460
|
+
return self.__execute_script_table_operator()
|
|
461
|
+
elif self.operation == TableOperatorConstants.APPLY_OP.value or \
|
|
462
|
+
(self.operation == TableOperatorConstants.UDF_OP.value and self.exec_mode == 'REMOTE'):
|
|
463
|
+
return self.__execute_apply_table_operator()
|
|
464
|
+
except Exception:
|
|
465
|
+
raise
|
|
466
|
+
finally:
|
|
467
|
+
# Remove local copy of file to free up the disk space immediately.
|
|
468
|
+
# Garbage collection will take care of it as a failsafe.
|
|
469
|
+
# We may end up here after the script was created, but even before executing it.
|
|
470
|
+
if not self.debug:
|
|
471
|
+
GarbageCollector._delete_local_file(self.script_path)
|
|
472
|
+
elif not self.__dict__.get('is_printed', False):
|
|
473
|
+
self._print_script_path()
|
|
474
|
+
|
|
475
|
+
def __get_script_name(self):
|
|
476
|
+
"""
|
|
477
|
+
DESCRIPTION:
|
|
478
|
+
Internal function to generate a temporary script name adding it to Garbage Collector's
|
|
479
|
+
persisted file, and also generating the alias of file ID used to install it,
|
|
480
|
+
along with the full entry that goes in the persisted file.
|
|
481
|
+
|
|
482
|
+
PARAMETERS:
|
|
483
|
+
None.
|
|
484
|
+
|
|
485
|
+
RAISES:
|
|
486
|
+
None.
|
|
487
|
+
|
|
488
|
+
RETURNS:
|
|
489
|
+
A 4 -tuple of Strings (str).
|
|
490
|
+
|
|
491
|
+
EXAMPLES:
|
|
492
|
+
script_entry, script_alias, script_name, script_base_name = self.__get_script_name()
|
|
493
|
+
"""
|
|
494
|
+
script_entry = UtilFuncs._generate_temp_script_name(prefix="" if self.operation is None else self.operation,
|
|
495
|
+
extension="py", gc_on_quit=(self.debug^True))
|
|
496
|
+
# script_alias is the file ID.
|
|
497
|
+
script_alias = UtilFuncs._teradata_unquote_arg(UtilFuncs._extract_table_name(script_entry), quote='"')
|
|
498
|
+
|
|
499
|
+
# script_name is the actual file name (basename).
|
|
500
|
+
script_name = script_alias # alias now contains extension also.
|
|
501
|
+
|
|
502
|
+
# Extract the base name without extension.
|
|
503
|
+
script_base_name = Path(script_alias).stem
|
|
504
|
+
return script_entry, script_alias, script_name, script_base_name
|
|
505
|
+
|
|
506
|
+
def __execute_script_table_operator(self):
|
|
507
|
+
"""
|
|
508
|
+
DESCRIPTION:
|
|
509
|
+
Internal function to return the result of Script for operations like
|
|
510
|
+
'map_row' and 'map_partition' while making sure that Script
|
|
511
|
+
generated a temporary table instead of a view for the 'result' when
|
|
512
|
+
the 'self.exec_mode' is 'IN_DB'.
|
|
513
|
+
|
|
514
|
+
PARAMETERS:
|
|
515
|
+
None.
|
|
516
|
+
|
|
517
|
+
RAISES:
|
|
518
|
+
None.
|
|
519
|
+
|
|
520
|
+
RETURNS:
|
|
521
|
+
teradataml DataFrame, if 'self.exec_mode' is 'IN-DB'.
|
|
522
|
+
|
|
523
|
+
EXAMPLES:
|
|
524
|
+
return_obj = self.__execute_script_table_operator()
|
|
525
|
+
"""
|
|
526
|
+
# Get the current database to use for setting search_path.
|
|
527
|
+
import teradataml.context.context as context
|
|
528
|
+
database = context._get_current_databasename()
|
|
529
|
+
|
|
530
|
+
check_reserved_keyword = False if sorted(list(self.returns.keys())) == sorted(self.data.columns) else True
|
|
531
|
+
|
|
532
|
+
# First create Table Object to that validations are done on inputs.
|
|
533
|
+
# For 'script_command' instead of specifying the full path to binary, we are specifying
|
|
534
|
+
# 'configure.indb_install_location' which is pointing to the installation location of In-DB package.
|
|
535
|
+
# Default value is the installation location of 2.0.0 version.
|
|
536
|
+
# User can provide the installation location of previous version in case they are not using the latest.
|
|
537
|
+
# This fix is done for ELE-5958 - https://teradata-pe.atlassian.net/browse/ELE-5958
|
|
538
|
+
|
|
539
|
+
# If operation is map_row or map_partition, then it should validate the python and
|
|
540
|
+
# 'dill' package version mismatch.
|
|
541
|
+
if self.operation in ["map_row", "map_partition"]:
|
|
542
|
+
self._validate_version = True
|
|
543
|
+
self.packages = ['dill']
|
|
544
|
+
|
|
545
|
+
from teradataml.table_operators.Script import Script
|
|
546
|
+
table_op_obj = Script(data=self.data,
|
|
547
|
+
script_name=self.script_name,
|
|
548
|
+
files_local_path=GarbageCollector._get_temp_dir_name(),
|
|
549
|
+
script_command="{}/bin/python3 ./{}/{}".format(
|
|
550
|
+
configure.indb_install_location, database, self.script_name),
|
|
551
|
+
returns=self.returns,
|
|
552
|
+
delimiter=self.delimiter,
|
|
553
|
+
auth=self.auth,
|
|
554
|
+
quotechar=self.quotechar,
|
|
555
|
+
data_order_column=self.data_order_column,
|
|
556
|
+
is_local_order=self.is_local_order,
|
|
557
|
+
sort_ascending=self.sort_ascending,
|
|
558
|
+
nulls_first=self.nulls_first,
|
|
559
|
+
charset=self.charset,
|
|
560
|
+
data_partition_column=self.data_partition_column,
|
|
561
|
+
data_hash_column=self.data_hash_column,
|
|
562
|
+
_validate_version = self._validate_version,
|
|
563
|
+
_func_name = self.operation,
|
|
564
|
+
_packages = self.packages
|
|
565
|
+
)
|
|
566
|
+
table_op_obj.check_reserved_keyword = check_reserved_keyword
|
|
567
|
+
|
|
568
|
+
if self.exec_mode.upper() == TableOperatorConstants.INDB_EXEC.value:
|
|
569
|
+
# If not test mode, execute the script in Vantage.
|
|
570
|
+
try:
|
|
571
|
+
# Install that file, suppressing the output message.
|
|
572
|
+
execute_sql('SET SESSION SEARCHUIFDBPATH = \"{}\"'.format(database))
|
|
573
|
+
install_file(file_identifier=self.script_base_name,
|
|
574
|
+
file_path=self.script_path,
|
|
575
|
+
suppress_output=True)
|
|
576
|
+
|
|
577
|
+
# Execute the script.
|
|
578
|
+
return table_op_obj.execute_script(
|
|
579
|
+
output_style=OutputStyle.OUTPUT_TABLE.value)
|
|
580
|
+
except Exception:
|
|
581
|
+
raise
|
|
582
|
+
finally:
|
|
583
|
+
self.__remove_file_and_delete_entry_from_gc()
|
|
584
|
+
elif self.exec_mode.upper() == TableOperatorConstants.LOCAL_EXEC.value:
|
|
585
|
+
return table_op_obj.test_script(exec_mode='local')
|
|
586
|
+
|
|
587
|
+
def __execute_apply_table_operator(self):
|
|
588
|
+
"""
|
|
589
|
+
DESCRIPTION:
|
|
590
|
+
Internal function to return the result of script execution using Apply
|
|
591
|
+
operation while making sure that Script generated a temporary table
|
|
592
|
+
instead of a view for the 'result' when the 'self.exec_mode' is 'REMOTE'.
|
|
593
|
+
|
|
594
|
+
PARAMETERS:
|
|
595
|
+
None.
|
|
596
|
+
|
|
597
|
+
RAISES:
|
|
598
|
+
None.
|
|
599
|
+
|
|
600
|
+
RETURNS:
|
|
601
|
+
teradataml DataFrame, if 'self.exec_mode' is 'REMOTE'.
|
|
602
|
+
|
|
603
|
+
EXAMPLES:
|
|
604
|
+
return_obj = self.__execute_apply_table_operator()
|
|
605
|
+
"""
|
|
606
|
+
|
|
607
|
+
# If operation is apply, then it should validate the python and 'dill' package version mismatch.
|
|
608
|
+
if self.operation == "apply":
|
|
609
|
+
self._validate_version = True
|
|
610
|
+
self.packages = ['dill']
|
|
611
|
+
|
|
612
|
+
# First create Apply Table operator object so that validations are done on inputs.
|
|
613
|
+
from teradataml.table_operators.Apply import Apply
|
|
614
|
+
apply_op_obj = Apply(data=self.data,
|
|
615
|
+
script_name=self.script_name,
|
|
616
|
+
env_name=self.env_name,
|
|
617
|
+
files_local_path=GarbageCollector._get_temp_dir_name(),
|
|
618
|
+
apply_command="python3 {}".format(self.script_name),
|
|
619
|
+
returns=self.returns,
|
|
620
|
+
delimiter=self.delimiter,
|
|
621
|
+
quotechar=self.quotechar,
|
|
622
|
+
data_order_column=self.data_order_column,
|
|
623
|
+
is_local_order=self.is_local_order,
|
|
624
|
+
sort_ascending=self.sort_ascending,
|
|
625
|
+
nulls_first=self.nulls_first,
|
|
626
|
+
data_partition_column=self.data_partition_column,
|
|
627
|
+
data_hash_column=self.data_hash_column,
|
|
628
|
+
style=self.style,
|
|
629
|
+
_validate_version=self._validate_version,
|
|
630
|
+
_func_name = self.operation,
|
|
631
|
+
_packages = self.packages
|
|
632
|
+
)
|
|
633
|
+
|
|
634
|
+
# APPLY operator requires installation and deletion of script file.
|
|
635
|
+
# Get the UserEnv object and store it in a variable.
|
|
636
|
+
self.__env = get_env(apply_op_obj.env_name) if isinstance(apply_op_obj.env_name, str) \
|
|
637
|
+
else apply_op_obj.env_name
|
|
638
|
+
|
|
639
|
+
if self.exec_mode.upper() == TableOperatorConstants.REMOTE_EXEC.value:
|
|
640
|
+
# If not test mode, execute the script using Apply table operator.
|
|
641
|
+
try:
|
|
642
|
+
# If APPLY or UDF, get environment and use it for installing file.
|
|
643
|
+
if self.operation in [TableOperatorConstants.APPLY_OP.value,
|
|
644
|
+
TableOperatorConstants.UDF_OP.value]:
|
|
645
|
+
self.__env.install_file(self.script_path, suppress_output=True)
|
|
646
|
+
|
|
647
|
+
# Execute the script.
|
|
648
|
+
return apply_op_obj.execute_script(
|
|
649
|
+
output_style=OutputStyle.OUTPUT_TABLE.value)
|
|
650
|
+
|
|
651
|
+
except Exception:
|
|
652
|
+
raise
|
|
653
|
+
finally:
|
|
654
|
+
self.__remove_file_and_delete_entry_from_gc(remove_from_sql_eng=False)
|
|
655
|
+
|
|
656
|
+
def __remove_file_and_delete_entry_from_gc(self,
|
|
657
|
+
remove_from_sql_eng=True):
|
|
658
|
+
"""
|
|
659
|
+
DESCRIPTION:
|
|
660
|
+
Internal function to remove the installed file and delete it's entry
|
|
661
|
+
from GC's persisted file.
|
|
662
|
+
|
|
663
|
+
PARAMETERS:
|
|
664
|
+
remove_from_sql_eng:
|
|
665
|
+
Optional Argument.
|
|
666
|
+
Specifies whether to remove the file from the Advanced SQL
|
|
667
|
+
Engine as well.
|
|
668
|
+
When True, an attempt to remove the file from Advanced SQL
|
|
669
|
+
Engine is made.
|
|
670
|
+
Default value: True
|
|
671
|
+
Types: bool
|
|
672
|
+
|
|
673
|
+
RAISES:
|
|
674
|
+
None.
|
|
675
|
+
|
|
676
|
+
RETURNS:
|
|
677
|
+
None.
|
|
678
|
+
|
|
679
|
+
EXAMPLES:
|
|
680
|
+
self.__remove_file_and_delete_entry_from_gc()
|
|
681
|
+
"""
|
|
682
|
+
if remove_from_sql_eng:
|
|
683
|
+
# Remove file from Vantage, suppressing it's output.
|
|
684
|
+
remove_file(file_identifier=self.script_base_name, force_remove=True,
|
|
685
|
+
suppress_output=True)
|
|
686
|
+
|
|
687
|
+
# For apply, remove file from remote user environment.
|
|
688
|
+
if self.operation == TableOperatorConstants.APPLY_OP.value or \
|
|
689
|
+
(self.operation == TableOperatorConstants.UDF_OP.value and self.exec_mode == 'REMOTE'):
|
|
690
|
+
self.__env.remove_file(self.script_name, suppress_output=True)
|
|
691
|
+
|
|
692
|
+
# Remove the entry from Garbage Collector
|
|
693
|
+
if self.operation in [TableOperatorConstants.MAP_ROW_OP.value,
|
|
694
|
+
TableOperatorConstants.MAP_PARTITION_OP.value,
|
|
695
|
+
TableOperatorConstants.APPLY_OP.value,
|
|
696
|
+
TableOperatorConstants.UDF_OP.value]:
|
|
697
|
+
if self.debug:
|
|
698
|
+
self._print_script_path()
|
|
699
|
+
self.is_printed = True
|
|
700
|
+
else:
|
|
701
|
+
GarbageCollector._delete_object_entry(
|
|
702
|
+
objects_to_delete=self.script_entry,
|
|
703
|
+
object_type=TeradataConstants.TERADATA_SCRIPT,
|
|
704
|
+
remove_entry_from_gc_list=True
|
|
705
|
+
)
|
|
706
|
+
def _print_script_path(self):
|
|
707
|
+
"""
|
|
708
|
+
DESCRIPTION:
|
|
709
|
+
Internal function to print the path of the script file.
|
|
710
|
+
|
|
711
|
+
PARAMETERS:
|
|
712
|
+
None.
|
|
713
|
+
|
|
714
|
+
RAISES:
|
|
715
|
+
None.
|
|
716
|
+
|
|
717
|
+
RETURNS:
|
|
718
|
+
None.
|
|
719
|
+
"""
|
|
720
|
+
mssg1 = f"Path for the script {self.script_path}"
|
|
721
|
+
mssg2 = "The user should delete the script file since it is not being garbage collected."
|
|
722
|
+
mssg_len = max(len(mssg1), len(mssg2))
|
|
723
|
+
print("-" * mssg_len)
|
|
724
|
+
print(mssg1)
|
|
725
|
+
print(mssg2)
|
|
726
|
+
print("-" * mssg_len)
|