teradataml 20.0.0.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +2762 -0
- teradataml/__init__.py +78 -0
- teradataml/_version.py +11 -0
- teradataml/analytics/Transformations.py +2996 -0
- teradataml/analytics/__init__.py +82 -0
- teradataml/analytics/analytic_function_executor.py +2416 -0
- teradataml/analytics/analytic_query_generator.py +1050 -0
- teradataml/analytics/byom/H2OPredict.py +514 -0
- teradataml/analytics/byom/PMMLPredict.py +437 -0
- teradataml/analytics/byom/__init__.py +16 -0
- teradataml/analytics/json_parser/__init__.py +133 -0
- teradataml/analytics/json_parser/analytic_functions_argument.py +1805 -0
- teradataml/analytics/json_parser/json_store.py +191 -0
- teradataml/analytics/json_parser/metadata.py +1666 -0
- teradataml/analytics/json_parser/utils.py +805 -0
- teradataml/analytics/meta_class.py +236 -0
- teradataml/analytics/sqle/DecisionTreePredict.py +456 -0
- teradataml/analytics/sqle/NaiveBayesPredict.py +420 -0
- teradataml/analytics/sqle/__init__.py +128 -0
- teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -0
- teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -0
- teradataml/analytics/table_operator/__init__.py +11 -0
- teradataml/analytics/uaf/__init__.py +82 -0
- teradataml/analytics/utils.py +828 -0
- teradataml/analytics/valib.py +1617 -0
- teradataml/automl/__init__.py +5835 -0
- teradataml/automl/autodataprep/__init__.py +493 -0
- teradataml/automl/custom_json_utils.py +1625 -0
- teradataml/automl/data_preparation.py +1384 -0
- teradataml/automl/data_transformation.py +1254 -0
- teradataml/automl/feature_engineering.py +2273 -0
- teradataml/automl/feature_exploration.py +1873 -0
- teradataml/automl/model_evaluation.py +488 -0
- teradataml/automl/model_training.py +1407 -0
- teradataml/catalog/__init__.py +2 -0
- teradataml/catalog/byom.py +1759 -0
- teradataml/catalog/function_argument_mapper.py +859 -0
- teradataml/catalog/model_cataloging_utils.py +491 -0
- teradataml/clients/__init__.py +0 -0
- teradataml/clients/auth_client.py +137 -0
- teradataml/clients/keycloak_client.py +165 -0
- teradataml/clients/pkce_client.py +481 -0
- teradataml/common/__init__.py +1 -0
- teradataml/common/aed_utils.py +2078 -0
- teradataml/common/bulk_exposed_utils.py +113 -0
- teradataml/common/constants.py +1669 -0
- teradataml/common/deprecations.py +166 -0
- teradataml/common/exceptions.py +147 -0
- teradataml/common/formula.py +743 -0
- teradataml/common/garbagecollector.py +666 -0
- teradataml/common/logger.py +1261 -0
- teradataml/common/messagecodes.py +518 -0
- teradataml/common/messages.py +262 -0
- teradataml/common/pylogger.py +67 -0
- teradataml/common/sqlbundle.py +764 -0
- teradataml/common/td_coltype_code_to_tdtype.py +48 -0
- teradataml/common/utils.py +3166 -0
- teradataml/common/warnings.py +36 -0
- teradataml/common/wrapper_utils.py +625 -0
- teradataml/config/__init__.py +0 -0
- teradataml/config/dummy_file1.cfg +5 -0
- teradataml/config/dummy_file2.cfg +3 -0
- teradataml/config/sqlengine_alias_definitions_v1.0 +14 -0
- teradataml/config/sqlengine_alias_definitions_v1.1 +20 -0
- teradataml/config/sqlengine_alias_definitions_v1.3 +19 -0
- teradataml/context/__init__.py +0 -0
- teradataml/context/aed_context.py +223 -0
- teradataml/context/context.py +1462 -0
- teradataml/data/A_loan.csv +19 -0
- teradataml/data/BINARY_REALS_LEFT.csv +11 -0
- teradataml/data/BINARY_REALS_RIGHT.csv +11 -0
- teradataml/data/B_loan.csv +49 -0
- teradataml/data/BuoyData2.csv +17 -0
- teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -0
- teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -0
- teradataml/data/Convolve2RealsLeft.csv +5 -0
- teradataml/data/Convolve2RealsRight.csv +5 -0
- teradataml/data/Convolve2ValidLeft.csv +11 -0
- teradataml/data/Convolve2ValidRight.csv +11 -0
- teradataml/data/DFFTConv_Real_8_8.csv +65 -0
- teradataml/data/Employee.csv +5 -0
- teradataml/data/Employee_Address.csv +4 -0
- teradataml/data/Employee_roles.csv +5 -0
- teradataml/data/JulesBelvezeDummyData.csv +100 -0
- teradataml/data/Mall_customer_data.csv +201 -0
- teradataml/data/Orders1_12mf.csv +25 -0
- teradataml/data/Pi_loan.csv +7 -0
- teradataml/data/SMOOTHED_DATA.csv +7 -0
- teradataml/data/TestDFFT8.csv +9 -0
- teradataml/data/TestRiver.csv +109 -0
- teradataml/data/Traindata.csv +28 -0
- teradataml/data/__init__.py +0 -0
- teradataml/data/acf.csv +17 -0
- teradataml/data/adaboost_example.json +34 -0
- teradataml/data/adaboostpredict_example.json +24 -0
- teradataml/data/additional_table.csv +11 -0
- teradataml/data/admissions_test.csv +21 -0
- teradataml/data/admissions_train.csv +41 -0
- teradataml/data/admissions_train_nulls.csv +41 -0
- teradataml/data/advertising.csv +201 -0
- teradataml/data/ageandheight.csv +13 -0
- teradataml/data/ageandpressure.csv +31 -0
- teradataml/data/amazon_reviews_25.csv +26 -0
- teradataml/data/antiselect_example.json +36 -0
- teradataml/data/antiselect_input.csv +8 -0
- teradataml/data/antiselect_input_mixed_case.csv +8 -0
- teradataml/data/applicant_external.csv +7 -0
- teradataml/data/applicant_reference.csv +7 -0
- teradataml/data/apriori_example.json +22 -0
- teradataml/data/arima_example.json +9 -0
- teradataml/data/assortedtext_input.csv +8 -0
- teradataml/data/attribution_example.json +34 -0
- teradataml/data/attribution_sample_table.csv +27 -0
- teradataml/data/attribution_sample_table1.csv +6 -0
- teradataml/data/attribution_sample_table2.csv +11 -0
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bank_marketing.csv +11163 -0
- teradataml/data/bank_web_clicks1.csv +43 -0
- teradataml/data/bank_web_clicks2.csv +91 -0
- teradataml/data/bank_web_url.csv +85 -0
- teradataml/data/barrier.csv +2 -0
- teradataml/data/barrier_new.csv +3 -0
- teradataml/data/betweenness_example.json +14 -0
- teradataml/data/bike_sharing.csv +732 -0
- teradataml/data/bin_breaks.csv +8 -0
- teradataml/data/bin_fit_ip.csv +4 -0
- teradataml/data/binary_complex_left.csv +11 -0
- teradataml/data/binary_complex_right.csv +11 -0
- teradataml/data/binary_matrix_complex_left.csv +21 -0
- teradataml/data/binary_matrix_complex_right.csv +21 -0
- teradataml/data/binary_matrix_real_left.csv +21 -0
- teradataml/data/binary_matrix_real_right.csv +21 -0
- teradataml/data/blood2ageandweight.csv +26 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/boston.csv +507 -0
- teradataml/data/boston2cols.csv +721 -0
- teradataml/data/breast_cancer.csv +570 -0
- teradataml/data/buoydata_mix.csv +11 -0
- teradataml/data/burst_data.csv +5 -0
- teradataml/data/burst_example.json +21 -0
- teradataml/data/byom_example.json +34 -0
- teradataml/data/bytes_table.csv +4 -0
- teradataml/data/cal_housing_ex_raw.csv +70 -0
- teradataml/data/callers.csv +7 -0
- teradataml/data/calls.csv +10 -0
- teradataml/data/cars_hist.csv +33 -0
- teradataml/data/cat_table.csv +25 -0
- teradataml/data/ccm_example.json +32 -0
- teradataml/data/ccm_input.csv +91 -0
- teradataml/data/ccm_input2.csv +13 -0
- teradataml/data/ccmexample.csv +101 -0
- teradataml/data/ccmprepare_example.json +9 -0
- teradataml/data/ccmprepare_input.csv +91 -0
- teradataml/data/cfilter_example.json +12 -0
- teradataml/data/changepointdetection_example.json +18 -0
- teradataml/data/changepointdetectionrt_example.json +8 -0
- teradataml/data/chi_sq.csv +3 -0
- teradataml/data/churn_data.csv +14 -0
- teradataml/data/churn_emission.csv +35 -0
- teradataml/data/churn_initial.csv +3 -0
- teradataml/data/churn_state_transition.csv +5 -0
- teradataml/data/citedges_2.csv +745 -0
- teradataml/data/citvertices_2.csv +1210 -0
- teradataml/data/clicks2.csv +16 -0
- teradataml/data/clickstream.csv +13 -0
- teradataml/data/clickstream1.csv +11 -0
- teradataml/data/closeness_example.json +16 -0
- teradataml/data/complaints.csv +21 -0
- teradataml/data/complaints_mini.csv +3 -0
- teradataml/data/complaints_test_tokenized.csv +353 -0
- teradataml/data/complaints_testtoken.csv +224 -0
- teradataml/data/complaints_tokens_model.csv +348 -0
- teradataml/data/complaints_tokens_test.csv +353 -0
- teradataml/data/complaints_traintoken.csv +472 -0
- teradataml/data/computers_category.csv +1001 -0
- teradataml/data/computers_test1.csv +1252 -0
- teradataml/data/computers_train1.csv +5009 -0
- teradataml/data/computers_train1_clustered.csv +5009 -0
- teradataml/data/confusionmatrix_example.json +9 -0
- teradataml/data/conversion_event_table.csv +3 -0
- teradataml/data/corr_input.csv +17 -0
- teradataml/data/correlation_example.json +11 -0
- teradataml/data/covid_confirm_sd.csv +83 -0
- teradataml/data/coxhazardratio_example.json +39 -0
- teradataml/data/coxph_example.json +15 -0
- teradataml/data/coxsurvival_example.json +28 -0
- teradataml/data/cpt.csv +41 -0
- teradataml/data/credit_ex_merged.csv +45 -0
- teradataml/data/creditcard_data.csv +1001 -0
- teradataml/data/customer_loyalty.csv +301 -0
- teradataml/data/customer_loyalty_newseq.csv +31 -0
- teradataml/data/customer_segmentation_test.csv +2628 -0
- teradataml/data/customer_segmentation_train.csv +8069 -0
- teradataml/data/dataframe_example.json +173 -0
- teradataml/data/decisionforest_example.json +37 -0
- teradataml/data/decisionforestpredict_example.json +38 -0
- teradataml/data/decisiontree_example.json +21 -0
- teradataml/data/decisiontreepredict_example.json +45 -0
- teradataml/data/dfft2_size4_real.csv +17 -0
- teradataml/data/dfft2_test_matrix16.csv +17 -0
- teradataml/data/dfft2conv_real_4_4.csv +65 -0
- teradataml/data/diabetes.csv +443 -0
- teradataml/data/diabetes_test.csv +89 -0
- teradataml/data/dict_table.csv +5 -0
- teradataml/data/docperterm_table.csv +4 -0
- teradataml/data/docs/__init__.py +1 -0
- teradataml/data/docs/byom/__init__.py +0 -0
- teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -0
- teradataml/data/docs/byom/docs/DataikuPredict.py +217 -0
- teradataml/data/docs/byom/docs/H2OPredict.py +325 -0
- teradataml/data/docs/byom/docs/ONNXEmbeddings.py +242 -0
- teradataml/data/docs/byom/docs/ONNXPredict.py +283 -0
- teradataml/data/docs/byom/docs/ONNXSeq2Seq.py +255 -0
- teradataml/data/docs/byom/docs/PMMLPredict.py +278 -0
- teradataml/data/docs/byom/docs/__init__.py +0 -0
- teradataml/data/docs/sqle/__init__.py +0 -0
- teradataml/data/docs/sqle/docs_17_10/Antiselect.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/Attribution.py +200 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +172 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -0
- teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -0
- teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +96 -0
- teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -0
- teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +152 -0
- teradataml/data/docs/sqle/docs_17_10/FTest.py +161 -0
- teradataml/data/docs/sqle/docs_17_10/FillRowId.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/Fit.py +88 -0
- teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +85 -0
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +82 -0
- teradataml/data/docs/sqle/docs_17_10/Histogram.py +165 -0
- teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -0
- teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +209 -0
- teradataml/data/docs/sqle/docs_17_10/NPath.py +266 -0
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -0
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -0
- teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +135 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +166 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -0
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +112 -0
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -0
- teradataml/data/docs/sqle/docs_17_10/QQNorm.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +110 -0
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +118 -0
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -0
- teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +153 -0
- teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -0
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -0
- teradataml/data/docs/sqle/docs_17_10/Sessionize.py +114 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -0
- teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -0
- teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +146 -0
- teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +142 -0
- teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -0
- teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -0
- teradataml/data/docs/sqle/docs_17_10/__init__.py +0 -0
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -0
- teradataml/data/docs/sqle/docs_17_20/Antiselect.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/Apriori.py +138 -0
- teradataml/data/docs/sqle/docs_17_20/Attribution.py +201 -0
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +172 -0
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -0
- teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
- teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -0
- teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +246 -0
- teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +280 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +136 -0
- teradataml/data/docs/sqle/docs_17_20/FTest.py +240 -0
- teradataml/data/docs/sqle/docs_17_20/FillRowId.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/Fit.py +88 -0
- teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +415 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -0
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -0
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +106 -0
- teradataml/data/docs/sqle/docs_17_20/Histogram.py +224 -0
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -0
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/KNN.py +215 -0
- teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -0
- teradataml/data/docs/sqle/docs_17_20/NERExtractor.py +121 -0
- teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +209 -0
- teradataml/data/docs/sqle/docs_17_20/NPath.py +266 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +127 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +119 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -0
- teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -0
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +231 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -0
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +220 -0
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +191 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -0
- teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -0
- teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/QQNorm.py +105 -0
- teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +155 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -0
- teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -0
- teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +118 -0
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -0
- teradataml/data/docs/sqle/docs_17_20/SMOTE.py +212 -0
- teradataml/data/docs/sqle/docs_17_20/SVM.py +414 -0
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -0
- teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +153 -0
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -0
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -0
- teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -0
- teradataml/data/docs/sqle/docs_17_20/Sessionize.py +114 -0
- teradataml/data/docs/sqle/docs_17_20/Shap.py +225 -0
- teradataml/data/docs/sqle/docs_17_20/Silhouette.py +153 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -0
- teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +146 -0
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -0
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -0
- teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
- teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +267 -0
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -0
- teradataml/data/docs/sqle/docs_17_20/TextMorph.py +119 -0
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +224 -0
- teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +160 -0
- teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -0
- teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -0
- teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
- teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +169 -0
- teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +237 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +362 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -0
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -0
- teradataml/data/docs/sqle/docs_17_20/__init__.py +0 -0
- teradataml/data/docs/tableoperator/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +430 -0
- teradataml/data/docs/tableoperator/docs_17_00/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +430 -0
- teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +348 -0
- teradataml/data/docs/tableoperator/docs_17_05/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +429 -0
- teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +348 -0
- teradataml/data/docs/tableoperator/docs_17_10/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
- teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +440 -0
- teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +387 -0
- teradataml/data/docs/tableoperator/docs_17_20/__init__.py +0 -0
- teradataml/data/docs/uaf/__init__.py +0 -0
- teradataml/data/docs/uaf/docs_17_20/ACF.py +186 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +370 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +172 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +161 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
- teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
- teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +248 -0
- teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +178 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +175 -0
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +230 -0
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +218 -0
- teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +185 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT.py +204 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +216 -0
- teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +192 -0
- teradataml/data/docs/uaf/docs_17_20/DIFF.py +175 -0
- teradataml/data/docs/uaf/docs_17_20/DTW.py +180 -0
- teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
- teradataml/data/docs/uaf/docs_17_20/DWT2D.py +217 -0
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +142 -0
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +184 -0
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +185 -0
- teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
- teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +206 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +143 -0
- teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +198 -0
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +260 -0
- teradataml/data/docs/uaf/docs_17_20/IDFFT.py +165 -0
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +191 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
- teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/InputValidator.py +121 -0
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +156 -0
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +215 -0
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +174 -0
- teradataml/data/docs/uaf/docs_17_20/MInfo.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +145 -0
- teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +191 -0
- teradataml/data/docs/uaf/docs_17_20/PACF.py +157 -0
- teradataml/data/docs/uaf/docs_17_20/Portman.py +217 -0
- teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +203 -0
- teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +155 -0
- teradataml/data/docs/uaf/docs_17_20/Resample.py +237 -0
- teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
- teradataml/data/docs/uaf/docs_17_20/SInfo.py +123 -0
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +173 -0
- teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +174 -0
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +164 -0
- teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +180 -0
- teradataml/data/docs/uaf/docs_17_20/Smoothma.py +208 -0
- teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +151 -0
- teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +202 -0
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
- teradataml/data/docs/uaf/docs_17_20/__init__.py +0 -0
- teradataml/data/dtw_example.json +18 -0
- teradataml/data/dtw_t1.csv +11 -0
- teradataml/data/dtw_t2.csv +4 -0
- teradataml/data/dwt2d_dataTable.csv +65 -0
- teradataml/data/dwt2d_example.json +16 -0
- teradataml/data/dwt_dataTable.csv +8 -0
- teradataml/data/dwt_example.json +15 -0
- teradataml/data/dwt_filterTable.csv +3 -0
- teradataml/data/dwt_filter_dim.csv +5 -0
- teradataml/data/emission.csv +9 -0
- teradataml/data/emp_table_by_dept.csv +19 -0
- teradataml/data/employee_info.csv +4 -0
- teradataml/data/employee_table.csv +6 -0
- teradataml/data/excluding_event_table.csv +2 -0
- teradataml/data/finance_data.csv +6 -0
- teradataml/data/finance_data2.csv +61 -0
- teradataml/data/finance_data3.csv +93 -0
- teradataml/data/finance_data4.csv +13 -0
- teradataml/data/fish.csv +160 -0
- teradataml/data/fm_blood2ageandweight.csv +26 -0
- teradataml/data/fmeasure_example.json +12 -0
- teradataml/data/followers_leaders.csv +10 -0
- teradataml/data/fpgrowth_example.json +12 -0
- teradataml/data/frequentpaths_example.json +29 -0
- teradataml/data/friends.csv +9 -0
- teradataml/data/fs_input.csv +33 -0
- teradataml/data/fs_input1.csv +33 -0
- teradataml/data/genData.csv +513 -0
- teradataml/data/geodataframe_example.json +40 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/glm_admissions_model.csv +12 -0
- teradataml/data/glm_example.json +56 -0
- teradataml/data/glml1l2_example.json +28 -0
- teradataml/data/glml1l2predict_example.json +54 -0
- teradataml/data/glmpredict_example.json +54 -0
- teradataml/data/gq_t1.csv +21 -0
- teradataml/data/grocery_transaction.csv +19 -0
- teradataml/data/hconvolve_complex_right.csv +5 -0
- teradataml/data/hconvolve_complex_rightmulti.csv +5 -0
- teradataml/data/histogram_example.json +12 -0
- teradataml/data/hmmdecoder_example.json +79 -0
- teradataml/data/hmmevaluator_example.json +25 -0
- teradataml/data/hmmsupervised_example.json +10 -0
- teradataml/data/hmmunsupervised_example.json +8 -0
- teradataml/data/hnsw_alter_data.csv +5 -0
- teradataml/data/hnsw_data.csv +10 -0
- teradataml/data/house_values.csv +12 -0
- teradataml/data/house_values2.csv +13 -0
- teradataml/data/housing_cat.csv +7 -0
- teradataml/data/housing_data.csv +9 -0
- teradataml/data/housing_test.csv +47 -0
- teradataml/data/housing_test_binary.csv +47 -0
- teradataml/data/housing_train.csv +493 -0
- teradataml/data/housing_train_attribute.csv +5 -0
- teradataml/data/housing_train_binary.csv +437 -0
- teradataml/data/housing_train_parameter.csv +2 -0
- teradataml/data/housing_train_response.csv +493 -0
- teradataml/data/housing_train_segment.csv +201 -0
- teradataml/data/ibm_stock.csv +370 -0
- teradataml/data/ibm_stock1.csv +370 -0
- teradataml/data/identitymatch_example.json +22 -0
- teradataml/data/idf_table.csv +4 -0
- teradataml/data/idwt2d_dataTable.csv +5 -0
- teradataml/data/idwt_dataTable.csv +8 -0
- teradataml/data/idwt_filterTable.csv +3 -0
- teradataml/data/impressions.csv +101 -0
- teradataml/data/inflation.csv +21 -0
- teradataml/data/initial.csv +3 -0
- teradataml/data/insect2Cols.csv +61 -0
- teradataml/data/insect_sprays.csv +13 -0
- teradataml/data/insurance.csv +1339 -0
- teradataml/data/interpolator_example.json +13 -0
- teradataml/data/interval_data.csv +5 -0
- teradataml/data/iris_altinput.csv +481 -0
- teradataml/data/iris_attribute_output.csv +8 -0
- teradataml/data/iris_attribute_test.csv +121 -0
- teradataml/data/iris_attribute_train.csv +481 -0
- teradataml/data/iris_category_expect_predict.csv +31 -0
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/iris_input.csv +151 -0
- teradataml/data/iris_response_train.csv +121 -0
- teradataml/data/iris_test.csv +31 -0
- teradataml/data/iris_train.csv +121 -0
- teradataml/data/join_table1.csv +4 -0
- teradataml/data/join_table2.csv +4 -0
- teradataml/data/jsons/anly_function_name.json +7 -0
- teradataml/data/jsons/byom/ONNXSeq2Seq.json +287 -0
- teradataml/data/jsons/byom/dataikupredict.json +148 -0
- teradataml/data/jsons/byom/datarobotpredict.json +147 -0
- teradataml/data/jsons/byom/h2opredict.json +195 -0
- teradataml/data/jsons/byom/onnxembeddings.json +267 -0
- teradataml/data/jsons/byom/onnxpredict.json +187 -0
- teradataml/data/jsons/byom/pmmlpredict.json +147 -0
- teradataml/data/jsons/paired_functions.json +450 -0
- teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/16.20/Attribution.json +249 -0
- teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/16.20/Pack.json +98 -0
- teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/16.20/Unpack.json +166 -0
- teradataml/data/jsons/sqle/16.20/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.00/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/17.00/Pack.json +98 -0
- teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.00/Unpack.json +166 -0
- teradataml/data/jsons/sqle/17.00/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.05/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/17.05/Pack.json +98 -0
- teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.05/Unpack.json +166 -0
- teradataml/data/jsons/sqle/17.05/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.10/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -0
- teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +172 -0
- teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -0
- teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -0
- teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -0
- teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -0
- teradataml/data/jsons/sqle/17.10/Pack.json +133 -0
- teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -0
- teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -0
- teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -0
- teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +54 -0
- teradataml/data/jsons/sqle/17.10/TD_Chisq.json +68 -0
- teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +54 -0
- teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +69 -0
- teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -0
- teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +52 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -0
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_Histogram.json +133 -0
- teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +183 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +66 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +197 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -0
- teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +112 -0
- teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +128 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +157 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +71 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +148 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -0
- teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -0
- teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +119 -0
- teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -0
- teradataml/data/jsons/sqle/17.10/Unpack.json +188 -0
- teradataml/data/jsons/sqle/17.10/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.20/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -0
- teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -0
- teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -0
- teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -0
- teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -0
- teradataml/data/jsons/sqle/17.20/Pack.json +133 -0
- teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -0
- teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +149 -0
- teradataml/data/jsons/sqle/17.20/TD_Apriori.json +181 -0
- teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -0
- teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
- teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_Chisq.json +68 -0
- teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +146 -0
- teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -0
- teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -0
- teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +260 -0
- teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -0
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -0
- teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -0
- teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -0
- teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -0
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -0
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -0
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -0
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -0
- teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -0
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +232 -0
- teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +87 -0
- teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -0
- teradataml/data/jsons/sqle/17.20/TD_NERExtractor.json +145 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -0
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +316 -0
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +124 -0
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -0
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -0
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -0
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -0
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -0
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -0
- teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -0
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -0
- teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -0
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +179 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +179 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +74 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -0
- teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +138 -0
- teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -0
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +128 -0
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_SMOTE.json +267 -0
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -0
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -0
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +310 -0
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +120 -0
- teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +194 -0
- teradataml/data/jsons/sqle/17.20/TD_Shap.json +221 -0
- teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +143 -0
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -0
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -0
- teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -0
- teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -0
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -0
- teradataml/data/jsons/sqle/17.20/TD_TextMorph.json +134 -0
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json +297 -0
- teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -0
- teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -0
- teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
- teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +183 -0
- teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -0
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -0
- teradataml/data/jsons/sqle/17.20/Unpack.json +188 -0
- teradataml/data/jsons/sqle/17.20/nPath.json +269 -0
- teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json +370 -0
- teradataml/data/jsons/sqle/20.00/AI_AskLLM.json +460 -0
- teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json +385 -0
- teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_MaskPII.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json +400 -0
- teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json +401 -0
- teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json +384 -0
- teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json +384 -0
- teradataml/data/jsons/sqle/20.00/TD_API_AzureML.json +151 -0
- teradataml/data/jsons/sqle/20.00/TD_API_Sagemaker.json +182 -0
- teradataml/data/jsons/sqle/20.00/TD_API_VertexAI.json +183 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSW.json +296 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json +206 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json +32 -0
- teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
- teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
- teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
- teradataml/data/jsons/tableoperator/17.00/read_nos.json +198 -0
- teradataml/data/jsons/tableoperator/17.05/read_nos.json +198 -0
- teradataml/data/jsons/tableoperator/17.05/write_nos.json +195 -0
- teradataml/data/jsons/tableoperator/17.10/read_nos.json +184 -0
- teradataml/data/jsons/tableoperator/17.10/write_nos.json +195 -0
- teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
- teradataml/data/jsons/tableoperator/17.20/read_nos.json +183 -0
- teradataml/data/jsons/tableoperator/17.20/write_nos.json +224 -0
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +132 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +396 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +77 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +153 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
- teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +107 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +106 -0
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +89 -0
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +104 -0
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +66 -0
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +87 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +134 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +144 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +108 -0
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_DIFF.json +92 -0
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +114 -0
- teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
- teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +39 -0
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +85 -0
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +71 -0
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +139 -0
- teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECASTER.json +313 -0
- teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +58 -0
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +81 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
- teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +64 -0
- teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +182 -0
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +103 -0
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +181 -0
- teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
- teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +68 -0
- teradataml/data/jsons/uaf/17.20/TD_MINFO.json +67 -0
- teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +179 -0
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -0
- teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +119 -0
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -0
- teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +98 -0
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +194 -0
- teradataml/data/jsons/uaf/17.20/TD_SAX.json +210 -0
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +143 -0
- teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +90 -0
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +80 -0
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +68 -0
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -0
- teradataml/data/jsons/uaf/17.20/TD_SINFO.json +58 -0
- teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +163 -0
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +112 -0
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -0
- teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +410 -0
- teradataml/data/kmeans_example.json +23 -0
- teradataml/data/kmeans_table.csv +10 -0
- teradataml/data/kmeans_us_arrests_data.csv +51 -0
- teradataml/data/knn_example.json +19 -0
- teradataml/data/knnrecommender_example.json +7 -0
- teradataml/data/knnrecommenderpredict_example.json +12 -0
- teradataml/data/lar_example.json +17 -0
- teradataml/data/larpredict_example.json +30 -0
- teradataml/data/lc_new_predictors.csv +5 -0
- teradataml/data/lc_new_reference.csv +9 -0
- teradataml/data/lda_example.json +9 -0
- teradataml/data/ldainference_example.json +15 -0
- teradataml/data/ldatopicsummary_example.json +9 -0
- teradataml/data/levendist_input.csv +13 -0
- teradataml/data/levenshteindistance_example.json +10 -0
- teradataml/data/linreg_example.json +10 -0
- teradataml/data/load_example_data.py +350 -0
- teradataml/data/loan_prediction.csv +295 -0
- teradataml/data/lungcancer.csv +138 -0
- teradataml/data/mappingdata.csv +12 -0
- teradataml/data/medical_readings.csv +101 -0
- teradataml/data/milk_timeseries.csv +157 -0
- teradataml/data/min_max_titanic.csv +4 -0
- teradataml/data/minhash_example.json +6 -0
- teradataml/data/ml_ratings.csv +7547 -0
- teradataml/data/ml_ratings_10.csv +2445 -0
- teradataml/data/mobile_data.csv +13 -0
- teradataml/data/model1_table.csv +5 -0
- teradataml/data/model2_table.csv +5 -0
- teradataml/data/models/License_file.txt +1 -0
- teradataml/data/models/License_file_empty.txt +0 -0
- teradataml/data/models/dataiku_iris_data_ann_thin +0 -0
- teradataml/data/models/dr_iris_rf +0 -0
- teradataml/data/models/iris_db_dt_model_sklearn.onnx +0 -0
- teradataml/data/models/iris_db_dt_model_sklearn_floattensor.onnx +0 -0
- teradataml/data/models/iris_db_glm_model.pmml +57 -0
- teradataml/data/models/iris_db_xgb_model.pmml +4471 -0
- teradataml/data/models/iris_kmeans_model +0 -0
- teradataml/data/models/iris_mojo_glm_h2o_model +0 -0
- teradataml/data/models/iris_mojo_xgb_h2o_model +0 -0
- teradataml/data/modularity_example.json +12 -0
- teradataml/data/movavg_example.json +8 -0
- teradataml/data/mtx1.csv +7 -0
- teradataml/data/mtx2.csv +13 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/mvdfft8.csv +9 -0
- teradataml/data/naivebayes_example.json +10 -0
- teradataml/data/naivebayespredict_example.json +19 -0
- teradataml/data/naivebayestextclassifier2_example.json +7 -0
- teradataml/data/naivebayestextclassifier_example.json +8 -0
- teradataml/data/naivebayestextclassifierpredict_example.json +32 -0
- teradataml/data/name_Find_configure.csv +10 -0
- teradataml/data/namedentityfinder_example.json +14 -0
- teradataml/data/namedentityfinderevaluator_example.json +10 -0
- teradataml/data/namedentityfindertrainer_example.json +6 -0
- teradataml/data/nb_iris_input_test.csv +31 -0
- teradataml/data/nb_iris_input_train.csv +121 -0
- teradataml/data/nbp_iris_model.csv +13 -0
- teradataml/data/ner_dict.csv +8 -0
- teradataml/data/ner_extractor_text.csv +2 -0
- teradataml/data/ner_input_eng.csv +7 -0
- teradataml/data/ner_rule.csv +5 -0
- teradataml/data/ner_sports_test2.csv +29 -0
- teradataml/data/ner_sports_train.csv +501 -0
- teradataml/data/nerevaluator_example.json +6 -0
- teradataml/data/nerextractor_example.json +18 -0
- teradataml/data/nermem_sports_test.csv +18 -0
- teradataml/data/nermem_sports_train.csv +51 -0
- teradataml/data/nertrainer_example.json +7 -0
- teradataml/data/ngrams_example.json +7 -0
- teradataml/data/notebooks/__init__.py +0 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -0
- teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -0
- teradataml/data/notebooks/sqlalchemy/__init__.py +0 -0
- teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -0
- teradataml/data/npath_example.json +23 -0
- teradataml/data/ntree_example.json +14 -0
- teradataml/data/numeric_strings.csv +5 -0
- teradataml/data/numerics.csv +4 -0
- teradataml/data/ocean_buoy.csv +17 -0
- teradataml/data/ocean_buoy2.csv +17 -0
- teradataml/data/ocean_buoys.csv +28 -0
- teradataml/data/ocean_buoys2.csv +10 -0
- teradataml/data/ocean_buoys_nonpti.csv +28 -0
- teradataml/data/ocean_buoys_seq.csv +29 -0
- teradataml/data/onehot_encoder_train.csv +4 -0
- teradataml/data/openml_example.json +92 -0
- teradataml/data/optional_event_table.csv +4 -0
- teradataml/data/orders1.csv +11 -0
- teradataml/data/orders1_12.csv +13 -0
- teradataml/data/orders_ex.csv +4 -0
- teradataml/data/pack_example.json +9 -0
- teradataml/data/package_tracking.csv +19 -0
- teradataml/data/package_tracking_pti.csv +19 -0
- teradataml/data/pagerank_example.json +13 -0
- teradataml/data/paragraphs_input.csv +6 -0
- teradataml/data/pathanalyzer_example.json +8 -0
- teradataml/data/pathgenerator_example.json +8 -0
- teradataml/data/patient_profile.csv +101 -0
- teradataml/data/pattern_matching_data.csv +11 -0
- teradataml/data/payment_fraud_dataset.csv +10001 -0
- teradataml/data/peppers.png +0 -0
- teradataml/data/phrases.csv +7 -0
- teradataml/data/pivot_example.json +9 -0
- teradataml/data/pivot_input.csv +22 -0
- teradataml/data/playerRating.csv +31 -0
- teradataml/data/pos_input.csv +40 -0
- teradataml/data/postagger_example.json +7 -0
- teradataml/data/posttagger_output.csv +44 -0
- teradataml/data/production_data.csv +17 -0
- teradataml/data/production_data2.csv +7 -0
- teradataml/data/randomsample_example.json +32 -0
- teradataml/data/randomwalksample_example.json +9 -0
- teradataml/data/rank_table.csv +6 -0
- teradataml/data/real_values.csv +14 -0
- teradataml/data/ref_mobile_data.csv +4 -0
- teradataml/data/ref_mobile_data_dense.csv +2 -0
- teradataml/data/ref_url.csv +17 -0
- teradataml/data/restaurant_reviews.csv +7 -0
- teradataml/data/retail_churn_table.csv +27772 -0
- teradataml/data/river_data.csv +145 -0
- teradataml/data/roc_example.json +8 -0
- teradataml/data/roc_input.csv +101 -0
- teradataml/data/rule_inputs.csv +6 -0
- teradataml/data/rule_table.csv +2 -0
- teradataml/data/sales.csv +7 -0
- teradataml/data/sales_transaction.csv +501 -0
- teradataml/data/salesdata.csv +342 -0
- teradataml/data/sample_cities.csv +3 -0
- teradataml/data/sample_shapes.csv +11 -0
- teradataml/data/sample_streets.csv +3 -0
- teradataml/data/sampling_example.json +16 -0
- teradataml/data/sax_example.json +17 -0
- teradataml/data/scale_attributes.csv +3 -0
- teradataml/data/scale_example.json +74 -0
- teradataml/data/scale_housing.csv +11 -0
- teradataml/data/scale_housing_test.csv +6 -0
- teradataml/data/scale_input_part_sparse.csv +31 -0
- teradataml/data/scale_input_partitioned.csv +16 -0
- teradataml/data/scale_input_sparse.csv +11 -0
- teradataml/data/scale_parameters.csv +3 -0
- teradataml/data/scale_stat.csv +11 -0
- teradataml/data/scalebypartition_example.json +13 -0
- teradataml/data/scalemap_example.json +13 -0
- teradataml/data/scalesummary_example.json +12 -0
- teradataml/data/score_category.csv +101 -0
- teradataml/data/score_summary.csv +4 -0
- teradataml/data/script_example.json +10 -0
- teradataml/data/scripts/deploy_script.py +84 -0
- teradataml/data/scripts/lightgbm/dataset.template +175 -0
- teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +264 -0
- teradataml/data/scripts/lightgbm/lightgbm_function.template +234 -0
- teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +177 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/mapper.py +16 -0
- teradataml/data/scripts/mapper_replace.py +16 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +205 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +148 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +144 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +166 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +161 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +145 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +327 -0
- teradataml/data/sdk/modelops/modelops_spec.json +101737 -0
- teradataml/data/seeds.csv +10 -0
- teradataml/data/sentenceextractor_example.json +7 -0
- teradataml/data/sentiment_extract_input.csv +11 -0
- teradataml/data/sentiment_train.csv +16 -0
- teradataml/data/sentiment_word.csv +20 -0
- teradataml/data/sentiment_word_input.csv +20 -0
- teradataml/data/sentimentextractor_example.json +24 -0
- teradataml/data/sentimenttrainer_example.json +8 -0
- teradataml/data/sequence_table.csv +10 -0
- teradataml/data/seriessplitter_example.json +8 -0
- teradataml/data/sessionize_example.json +17 -0
- teradataml/data/sessionize_table.csv +116 -0
- teradataml/data/setop_test1.csv +24 -0
- teradataml/data/setop_test2.csv +22 -0
- teradataml/data/soc_nw_edges.csv +11 -0
- teradataml/data/soc_nw_vertices.csv +8 -0
- teradataml/data/souvenir_timeseries.csv +168 -0
- teradataml/data/sparse_iris_attribute.csv +5 -0
- teradataml/data/sparse_iris_test.csv +121 -0
- teradataml/data/sparse_iris_train.csv +601 -0
- teradataml/data/star1.csv +6 -0
- teradataml/data/star_pivot.csv +8 -0
- teradataml/data/state_transition.csv +5 -0
- teradataml/data/stock_data.csv +53 -0
- teradataml/data/stock_movement.csv +11 -0
- teradataml/data/stock_vol.csv +76 -0
- teradataml/data/stop_words.csv +8 -0
- teradataml/data/store_sales.csv +37 -0
- teradataml/data/stringsimilarity_example.json +8 -0
- teradataml/data/strsimilarity_input.csv +13 -0
- teradataml/data/students.csv +101 -0
- teradataml/data/svm_iris_input_test.csv +121 -0
- teradataml/data/svm_iris_input_train.csv +481 -0
- teradataml/data/svm_iris_model.csv +7 -0
- teradataml/data/svmdense_example.json +10 -0
- teradataml/data/svmdensepredict_example.json +19 -0
- teradataml/data/svmsparse_example.json +8 -0
- teradataml/data/svmsparsepredict_example.json +14 -0
- teradataml/data/svmsparsesummary_example.json +8 -0
- teradataml/data/target_mobile_data.csv +13 -0
- teradataml/data/target_mobile_data_dense.csv +5 -0
- teradataml/data/target_udt_data.csv +8 -0
- teradataml/data/tdnerextractor_example.json +14 -0
- teradataml/data/templatedata.csv +1201 -0
- teradataml/data/templates/open_source_ml.json +11 -0
- teradataml/data/teradata_icon.ico +0 -0
- teradataml/data/teradataml_example.json +1473 -0
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_loan_prediction.csv +53 -0
- teradataml/data/test_pacf_12.csv +37 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/test_river2.csv +109 -0
- teradataml/data/text_inputs.csv +6 -0
- teradataml/data/textchunker_example.json +8 -0
- teradataml/data/textclassifier_example.json +7 -0
- teradataml/data/textclassifier_input.csv +7 -0
- teradataml/data/textclassifiertrainer_example.json +7 -0
- teradataml/data/textmorph_example.json +11 -0
- teradataml/data/textparser_example.json +15 -0
- teradataml/data/texttagger_example.json +12 -0
- teradataml/data/texttokenizer_example.json +7 -0
- teradataml/data/texttrainer_input.csv +11 -0
- teradataml/data/tf_example.json +7 -0
- teradataml/data/tfidf_example.json +14 -0
- teradataml/data/tfidf_input1.csv +201 -0
- teradataml/data/tfidf_train.csv +6 -0
- teradataml/data/time_table1.csv +535 -0
- teradataml/data/time_table2.csv +14 -0
- teradataml/data/timeseriesdata.csv +1601 -0
- teradataml/data/timeseriesdatasetsd4.csv +105 -0
- teradataml/data/timestamp_data.csv +4 -0
- teradataml/data/titanic.csv +892 -0
- teradataml/data/titanic_dataset_unpivoted.csv +19 -0
- teradataml/data/to_num_data.csv +4 -0
- teradataml/data/tochar_data.csv +5 -0
- teradataml/data/token_table.csv +696 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/train_tracking.csv +28 -0
- teradataml/data/trans_dense.csv +16 -0
- teradataml/data/trans_sparse.csv +55 -0
- teradataml/data/transformation_table.csv +6 -0
- teradataml/data/transformation_table_new.csv +2 -0
- teradataml/data/tv_spots.csv +16 -0
- teradataml/data/twod_climate_data.csv +117 -0
- teradataml/data/uaf_example.json +529 -0
- teradataml/data/univariatestatistics_example.json +9 -0
- teradataml/data/unpack_example.json +10 -0
- teradataml/data/unpivot_example.json +25 -0
- teradataml/data/unpivot_input.csv +8 -0
- teradataml/data/url_data.csv +10 -0
- teradataml/data/us_air_pass.csv +37 -0
- teradataml/data/us_population.csv +624 -0
- teradataml/data/us_states_shapes.csv +52 -0
- teradataml/data/varmax_example.json +18 -0
- teradataml/data/vectordistance_example.json +30 -0
- teradataml/data/ville_climatedata.csv +121 -0
- teradataml/data/ville_tempdata.csv +12 -0
- teradataml/data/ville_tempdata1.csv +12 -0
- teradataml/data/ville_temperature.csv +11 -0
- teradataml/data/waveletTable.csv +1605 -0
- teradataml/data/waveletTable2.csv +1605 -0
- teradataml/data/weightedmovavg_example.json +9 -0
- teradataml/data/wft_testing.csv +5 -0
- teradataml/data/windowdfft.csv +16 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/data/word_embed_input_table1.csv +6 -0
- teradataml/data/word_embed_input_table2.csv +5 -0
- teradataml/data/word_embed_model.csv +23 -0
- teradataml/data/words_input.csv +13 -0
- teradataml/data/xconvolve_complex_left.csv +6 -0
- teradataml/data/xconvolve_complex_leftmulti.csv +6 -0
- teradataml/data/xgboost_example.json +36 -0
- teradataml/data/xgboostpredict_example.json +32 -0
- teradataml/data/ztest_example.json +16 -0
- teradataml/dataframe/__init__.py +0 -0
- teradataml/dataframe/copy_to.py +2446 -0
- teradataml/dataframe/data_transfer.py +2840 -0
- teradataml/dataframe/dataframe.py +20908 -0
- teradataml/dataframe/dataframe_utils.py +2114 -0
- teradataml/dataframe/fastload.py +794 -0
- teradataml/dataframe/functions.py +2110 -0
- teradataml/dataframe/indexer.py +424 -0
- teradataml/dataframe/row.py +160 -0
- teradataml/dataframe/setop.py +1171 -0
- teradataml/dataframe/sql.py +10904 -0
- teradataml/dataframe/sql_function_parameters.py +440 -0
- teradataml/dataframe/sql_functions.py +652 -0
- teradataml/dataframe/sql_interfaces.py +220 -0
- teradataml/dataframe/vantage_function_types.py +675 -0
- teradataml/dataframe/window.py +694 -0
- teradataml/dbutils/__init__.py +3 -0
- teradataml/dbutils/dbutils.py +2871 -0
- teradataml/dbutils/filemgr.py +318 -0
- teradataml/gen_ai/__init__.py +2 -0
- teradataml/gen_ai/convAI.py +473 -0
- teradataml/geospatial/__init__.py +4 -0
- teradataml/geospatial/geodataframe.py +1105 -0
- teradataml/geospatial/geodataframecolumn.py +392 -0
- teradataml/geospatial/geometry_types.py +926 -0
- teradataml/hyperparameter_tuner/__init__.py +1 -0
- teradataml/hyperparameter_tuner/optimizer.py +4115 -0
- teradataml/hyperparameter_tuner/utils.py +303 -0
- teradataml/lib/__init__.py +0 -0
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/lib/libaed_0_1_aarch64.so +0 -0
- teradataml/lib/libaed_0_1_ppc64le.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/_base.py +1321 -0
- teradataml/opensource/_class.py +464 -0
- teradataml/opensource/_constants.py +61 -0
- teradataml/opensource/_lightgbm.py +949 -0
- teradataml/opensource/_sklearn.py +1008 -0
- teradataml/opensource/_wrapper_utils.py +267 -0
- teradataml/options/__init__.py +148 -0
- teradataml/options/configure.py +489 -0
- teradataml/options/display.py +187 -0
- teradataml/plot/__init__.py +3 -0
- teradataml/plot/axis.py +1427 -0
- teradataml/plot/constants.py +15 -0
- teradataml/plot/figure.py +431 -0
- teradataml/plot/plot.py +810 -0
- teradataml/plot/query_generator.py +83 -0
- teradataml/plot/subplot.py +216 -0
- teradataml/scriptmgmt/UserEnv.py +4273 -0
- teradataml/scriptmgmt/__init__.py +3 -0
- teradataml/scriptmgmt/lls_utils.py +2157 -0
- teradataml/sdk/README.md +79 -0
- teradataml/sdk/__init__.py +4 -0
- teradataml/sdk/_auth_modes.py +422 -0
- teradataml/sdk/_func_params.py +487 -0
- teradataml/sdk/_json_parser.py +453 -0
- teradataml/sdk/_openapi_spec_constants.py +249 -0
- teradataml/sdk/_utils.py +236 -0
- teradataml/sdk/api_client.py +900 -0
- teradataml/sdk/constants.py +62 -0
- teradataml/sdk/modelops/__init__.py +98 -0
- teradataml/sdk/modelops/_client.py +409 -0
- teradataml/sdk/modelops/_constants.py +304 -0
- teradataml/sdk/modelops/models.py +2308 -0
- teradataml/sdk/spinner.py +107 -0
- teradataml/series/__init__.py +0 -0
- teradataml/series/series.py +537 -0
- teradataml/series/series_utils.py +71 -0
- teradataml/store/__init__.py +12 -0
- teradataml/store/feature_store/__init__.py +0 -0
- teradataml/store/feature_store/constants.py +658 -0
- teradataml/store/feature_store/feature_store.py +4814 -0
- teradataml/store/feature_store/mind_map.py +639 -0
- teradataml/store/feature_store/models.py +7330 -0
- teradataml/store/feature_store/utils.py +390 -0
- teradataml/table_operators/Apply.py +979 -0
- teradataml/table_operators/Script.py +1739 -0
- teradataml/table_operators/TableOperator.py +1343 -0
- teradataml/table_operators/__init__.py +2 -0
- teradataml/table_operators/apply_query_generator.py +262 -0
- teradataml/table_operators/query_generator.py +493 -0
- teradataml/table_operators/table_operator_query_generator.py +462 -0
- teradataml/table_operators/table_operator_util.py +726 -0
- teradataml/table_operators/templates/dataframe_apply.template +184 -0
- teradataml/table_operators/templates/dataframe_map.template +176 -0
- teradataml/table_operators/templates/dataframe_register.template +73 -0
- teradataml/table_operators/templates/dataframe_udf.template +67 -0
- teradataml/table_operators/templates/script_executor.template +170 -0
- teradataml/telemetry_utils/__init__.py +0 -0
- teradataml/telemetry_utils/queryband.py +53 -0
- teradataml/utils/__init__.py +0 -0
- teradataml/utils/docstring.py +527 -0
- teradataml/utils/dtypes.py +943 -0
- teradataml/utils/internal_buffer.py +122 -0
- teradataml/utils/print_versions.py +206 -0
- teradataml/utils/utils.py +451 -0
- teradataml/utils/validators.py +3305 -0
- teradataml-20.0.0.8.dist-info/METADATA +2804 -0
- teradataml-20.0.0.8.dist-info/RECORD +1208 -0
- teradataml-20.0.0.8.dist-info/WHEEL +5 -0
- teradataml-20.0.0.8.dist-info/top_level.txt +1 -0
- teradataml-20.0.0.8.dist-info/zip-safe +1 -0
|
@@ -0,0 +1,1105 @@
|
|
|
1
|
+
# ##################################################################
|
|
2
|
+
#
|
|
3
|
+
# Copyright 2021 Teradata. All rights reserved.
|
|
4
|
+
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
5
|
+
#
|
|
6
|
+
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
7
|
+
# Secondary Owner:
|
|
8
|
+
#
|
|
9
|
+
# This file implements teradataml GeoDataFrame.
|
|
10
|
+
# teradataml GeoDataFrame allows user to access table on Vantage
|
|
11
|
+
# containing Geometry or Geospatial data.
|
|
12
|
+
#
|
|
13
|
+
# ##################################################################
|
|
14
|
+
import sqlalchemy
|
|
15
|
+
from teradataml.common.constants import GeospatialConstants, TeradataTypes
|
|
16
|
+
from teradataml.common.messagecodes import MessageCodes
|
|
17
|
+
from teradataml.common.messages import Messages
|
|
18
|
+
from teradataml.common.utils import UtilFuncs
|
|
19
|
+
from teradataml.common.exceptions import TeradataMlException
|
|
20
|
+
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
+
from teradataml.geospatial.geodataframecolumn import GeoDataFrameColumn
|
|
22
|
+
from teradataml.plot.plot import _Plot
|
|
23
|
+
from teradataml.utils.validators import _Validators
|
|
24
|
+
from teradatasqlalchemy import (GEOMETRY, MBR, MBB)
|
|
25
|
+
from teradataml.telemetry_utils.queryband import collect_queryband
|
|
26
|
+
|
|
27
|
+
class GeoDataFrame(DataFrame):
|
|
28
|
+
"""
|
|
29
|
+
The teradataml GeoDataFrame enables data manipulation, exploration, and
|
|
30
|
+
analysis on tables, views, and queries on Teradata Vantage that contains
|
|
31
|
+
Geospatial data.
|
|
32
|
+
"""
|
|
33
|
+
|
|
34
|
+
@collect_queryband(queryband="GDF")
|
|
35
|
+
def __init__(self, table_name=None, index=True, index_label=None,
|
|
36
|
+
query=None, materialize=False):
|
|
37
|
+
"""
|
|
38
|
+
Constructor for teradataml GeoDataFrame.
|
|
39
|
+
|
|
40
|
+
PARAMETERS:
|
|
41
|
+
table_name:
|
|
42
|
+
Optional Argument.
|
|
43
|
+
The table name or view name in Teradata Vantage referenced by this DataFrame.
|
|
44
|
+
Types: str
|
|
45
|
+
|
|
46
|
+
index:
|
|
47
|
+
Optional Argument.
|
|
48
|
+
True if using index column for sorting, otherwise False.
|
|
49
|
+
Default Value: True
|
|
50
|
+
Types: bool
|
|
51
|
+
|
|
52
|
+
index_label:
|
|
53
|
+
Optional Argument.
|
|
54
|
+
Column/s used for sorting.
|
|
55
|
+
Types: str OR list of Strings (str)
|
|
56
|
+
|
|
57
|
+
query:
|
|
58
|
+
Optional Argument.
|
|
59
|
+
SQL query for this Dataframe. Used by class method from_query.
|
|
60
|
+
Types: str
|
|
61
|
+
|
|
62
|
+
materialize:
|
|
63
|
+
Optional Argument.
|
|
64
|
+
Whether to materialize DataFrame or not when created.
|
|
65
|
+
Used by class method from_query.
|
|
66
|
+
|
|
67
|
+
One should use enable materialization, when the query passed
|
|
68
|
+
to from_query(), is expected to produce non-deterministic
|
|
69
|
+
results, when it is executed multiple times. Using this option
|
|
70
|
+
will help user to have deterministic results in the resulting
|
|
71
|
+
teradataml GeoDataFrame.
|
|
72
|
+
Default Value: False (No materialization)
|
|
73
|
+
Types: bool
|
|
74
|
+
|
|
75
|
+
EXAMPLES:
|
|
76
|
+
from teradataml.dataframe.dataframe import DataFrame
|
|
77
|
+
df = DataFrame("mytab")
|
|
78
|
+
df = DataFrame("myview")
|
|
79
|
+
df = DataFrame("myview", False)
|
|
80
|
+
df = DataFrame("mytab", True, "Col1, Col2")
|
|
81
|
+
|
|
82
|
+
RAISES:
|
|
83
|
+
TeradataMlException - TDMLDF_CREATE_FAIL
|
|
84
|
+
"""
|
|
85
|
+
self.__geom_column = None
|
|
86
|
+
# Call super(), to process the inputs.
|
|
87
|
+
super().__init__(table_name=table_name, index=index,
|
|
88
|
+
index_label=index_label, query=query,
|
|
89
|
+
materialize=materialize)
|
|
90
|
+
|
|
91
|
+
def _check_geom_column(self, metaexpr=None):
|
|
92
|
+
"""
|
|
93
|
+
DESCRIPTION:
|
|
94
|
+
Internal function to whether the metaexpr contains a geospatial
|
|
95
|
+
type column or not.
|
|
96
|
+
|
|
97
|
+
PARAMETERS:
|
|
98
|
+
metaexpr:
|
|
99
|
+
Required Argument.
|
|
100
|
+
Specifies the teradataml DataFrame/teradataml GeoDataFrame
|
|
101
|
+
metaexpr to validate for geospatial content.
|
|
102
|
+
Types: _MetaExpression
|
|
103
|
+
|
|
104
|
+
RETURNS:
|
|
105
|
+
boolean.
|
|
106
|
+
True if Geospatial data type column exists, False otherwise.
|
|
107
|
+
|
|
108
|
+
RAISES:
|
|
109
|
+
None.
|
|
110
|
+
|
|
111
|
+
EXAMPLES:
|
|
112
|
+
self._check_geom_column(metaexpr)
|
|
113
|
+
"""
|
|
114
|
+
if metaexpr is None:
|
|
115
|
+
metaexpr = self._metaexpr.c
|
|
116
|
+
for col in metaexpr.c:
|
|
117
|
+
if isinstance(col.type, (GEOMETRY, MBR, MBB)):
|
|
118
|
+
return True
|
|
119
|
+
return False
|
|
120
|
+
|
|
121
|
+
@collect_queryband(queryband="GDF_plot")
|
|
122
|
+
def plot(self, x=None, y=None, kind="geometry", **kwargs):
|
|
123
|
+
"""
|
|
124
|
+
DESCRIPTION:
|
|
125
|
+
Generate plots on teradataml GeoDataFrame. Following type of plots
|
|
126
|
+
are supported, which can be specified using argument "kind":
|
|
127
|
+
* geometry plot
|
|
128
|
+
* bar plot
|
|
129
|
+
* corr plot
|
|
130
|
+
* line plot
|
|
131
|
+
* mesh plot
|
|
132
|
+
* scatter plot
|
|
133
|
+
* wiggle plot
|
|
134
|
+
Notes:
|
|
135
|
+
* Geometry plot is generated based on geometry column in teradataml GeoDataFrame.
|
|
136
|
+
* Only the columns with ST_GEOMETRY type are allowed for generating geometry plot.
|
|
137
|
+
* The maximum size for ST_GEOMETRY must be less than or equal to 64000.
|
|
138
|
+
* The ST_GEOMETRY shape can be POINT, LINESTRING etc. It is POLGYON that allows
|
|
139
|
+
filling of different colors.
|
|
140
|
+
|
|
141
|
+
PARAMETERS:
|
|
142
|
+
x:
|
|
143
|
+
Optional Argument.
|
|
144
|
+
Specifies a GeoDataFrame column to use for the x-axis data.
|
|
145
|
+
Note:
|
|
146
|
+
"x" is not significant for geometry plots. For other plots
|
|
147
|
+
it is mandatory argument.
|
|
148
|
+
Types: teradataml GeoDataFrame Column
|
|
149
|
+
|
|
150
|
+
y:
|
|
151
|
+
Required Argument.
|
|
152
|
+
Specifies GeoDataFrame column(s) to use for the y-axis data.
|
|
153
|
+
Notes:
|
|
154
|
+
* Geometry plot always requires geometry column and corresponding 'weight'
|
|
155
|
+
column. 'weight' column represents the weight of a shape mentioned in
|
|
156
|
+
geometry column.
|
|
157
|
+
* If user does not specify geometry column, the default geometry column
|
|
158
|
+
is considered for plotting.
|
|
159
|
+
Types: teradataml GeoDataFrame Column OR tuple of GeoDataFrame Column OR list of teradataml GeoDataFrame Columns.
|
|
160
|
+
|
|
161
|
+
scale:
|
|
162
|
+
Optional Argument.
|
|
163
|
+
Specifies GeoDataFrame column to use for scale data to
|
|
164
|
+
wiggle and mesh plots.
|
|
165
|
+
Note:
|
|
166
|
+
"scale" is significant for wiggle and mesh plots. Ignored for other
|
|
167
|
+
type of plots.
|
|
168
|
+
Types: teradataml GeoDataFrame Column.
|
|
169
|
+
|
|
170
|
+
kind:
|
|
171
|
+
Optional Argument.
|
|
172
|
+
Specifies the kind of plot.
|
|
173
|
+
Permitted Values:
|
|
174
|
+
* 'geometry'
|
|
175
|
+
* 'line'
|
|
176
|
+
* 'bar'
|
|
177
|
+
* 'scatter'
|
|
178
|
+
* 'corr'
|
|
179
|
+
* 'wiggle'
|
|
180
|
+
* 'mesh'
|
|
181
|
+
Default Value: geometry
|
|
182
|
+
Types: str
|
|
183
|
+
|
|
184
|
+
ax:
|
|
185
|
+
Optional Argument.
|
|
186
|
+
Specifies the axis for the plot.
|
|
187
|
+
Types: Axis
|
|
188
|
+
|
|
189
|
+
cmap:
|
|
190
|
+
Optional Argument.
|
|
191
|
+
Specifies the name of the colormap to be used for plotting.
|
|
192
|
+
Notes:
|
|
193
|
+
* Significant only when corresponding type of plot is mesh or geometry.
|
|
194
|
+
* Ignored for other type of plots.
|
|
195
|
+
Permitted Values:
|
|
196
|
+
* All the colormaps mentioned in below URLs are supported.
|
|
197
|
+
* https://matplotlib.org/stable/tutorials/colors/colormaps.html
|
|
198
|
+
* https://matplotlib.org/cmocean/
|
|
199
|
+
Types: str
|
|
200
|
+
|
|
201
|
+
color:
|
|
202
|
+
Optional Argument.
|
|
203
|
+
Specifies the color for the plot.
|
|
204
|
+
Note:
|
|
205
|
+
Hexadecimal color codes are not supported.
|
|
206
|
+
Permitted Values:
|
|
207
|
+
* 'blue'
|
|
208
|
+
* 'orange'
|
|
209
|
+
* 'green'
|
|
210
|
+
* 'red'
|
|
211
|
+
* 'purple'
|
|
212
|
+
* 'brown'
|
|
213
|
+
* 'pink'
|
|
214
|
+
* 'gray'
|
|
215
|
+
* 'olive'
|
|
216
|
+
* 'cyan'
|
|
217
|
+
* Apart from above mentioned colors, the colors mentioned in
|
|
218
|
+
https://xkcd.com/color/rgb are also supported.
|
|
219
|
+
Default Value: 'blue'
|
|
220
|
+
Types: str OR list of str
|
|
221
|
+
|
|
222
|
+
figure:
|
|
223
|
+
Optional Argument.
|
|
224
|
+
Specifies the figure for the plot.
|
|
225
|
+
Types: Figure
|
|
226
|
+
|
|
227
|
+
figsize:
|
|
228
|
+
Optional Argument.
|
|
229
|
+
Specifies the size of the figure in a tuple of 2 elements. First
|
|
230
|
+
element represents width of plot image in pixels and second
|
|
231
|
+
element represents height of plot image in pixels.
|
|
232
|
+
Default Value: (640, 480)
|
|
233
|
+
Types: tuple
|
|
234
|
+
|
|
235
|
+
figtype:
|
|
236
|
+
Optional Argument.
|
|
237
|
+
Specifies the type of the image to generate.
|
|
238
|
+
Permitted Values:
|
|
239
|
+
* 'png'
|
|
240
|
+
* 'jpg'
|
|
241
|
+
* 'svg'
|
|
242
|
+
Default Value: png
|
|
243
|
+
Types: str
|
|
244
|
+
|
|
245
|
+
figdpi:
|
|
246
|
+
Optional Argument.
|
|
247
|
+
Specifies the dots per inch for the plot image.
|
|
248
|
+
Note:
|
|
249
|
+
* Valid range for "dpi" is: 72 <= width <= 300.
|
|
250
|
+
Default Value: 100 for PNG and JPG Type image.
|
|
251
|
+
Types: int
|
|
252
|
+
|
|
253
|
+
grid_color:
|
|
254
|
+
Optional Argument.
|
|
255
|
+
Specifies the color of the grid.
|
|
256
|
+
Note:
|
|
257
|
+
Hexadecimal color codes are not supported.
|
|
258
|
+
Permitted Values:
|
|
259
|
+
* 'blue'
|
|
260
|
+
* 'orange'
|
|
261
|
+
* 'green'
|
|
262
|
+
* 'red'
|
|
263
|
+
* 'purple'
|
|
264
|
+
* 'brown'
|
|
265
|
+
* 'pink'
|
|
266
|
+
* 'gray'
|
|
267
|
+
* 'olive'
|
|
268
|
+
* 'cyan'
|
|
269
|
+
* Apart from above mentioned colors, the colors mentioned in
|
|
270
|
+
https://xkcd.com/color/rgb are also supported.
|
|
271
|
+
Default Value: gray
|
|
272
|
+
Types: str
|
|
273
|
+
|
|
274
|
+
grid_format:
|
|
275
|
+
Optional Argument.
|
|
276
|
+
Specifies the format for the grid.
|
|
277
|
+
Types: str
|
|
278
|
+
|
|
279
|
+
grid_linestyle:
|
|
280
|
+
Optional Argument.
|
|
281
|
+
Specifies the line style of the grid.
|
|
282
|
+
Permitted Values:
|
|
283
|
+
* -
|
|
284
|
+
* --
|
|
285
|
+
* -.
|
|
286
|
+
Default Value: -
|
|
287
|
+
Types: str
|
|
288
|
+
|
|
289
|
+
grid_linewidth:
|
|
290
|
+
Optional Argument.
|
|
291
|
+
Specifies the line width of the grid.
|
|
292
|
+
Note:
|
|
293
|
+
Valid range for "grid_linewidth" is: 0.5 <= grid_linewidth <= 10.
|
|
294
|
+
Default Value: 0.8
|
|
295
|
+
Types: int OR float
|
|
296
|
+
|
|
297
|
+
heading:
|
|
298
|
+
Optional Argument.
|
|
299
|
+
Specifies the heading for the plot.
|
|
300
|
+
Types: str
|
|
301
|
+
|
|
302
|
+
legend:
|
|
303
|
+
Optional Argument.
|
|
304
|
+
Specifies the legend(s) for the Plot.
|
|
305
|
+
Types: str OR list of str
|
|
306
|
+
|
|
307
|
+
legend_style:
|
|
308
|
+
Optional Argument.
|
|
309
|
+
Specifies the location for legend to display on Plot image. By default,
|
|
310
|
+
legend is displayed at upper right corner.
|
|
311
|
+
Permitted Values:
|
|
312
|
+
* 'upper right'
|
|
313
|
+
* 'upper left'
|
|
314
|
+
* 'lower right'
|
|
315
|
+
* 'lower left'
|
|
316
|
+
* 'right'
|
|
317
|
+
* 'center left'
|
|
318
|
+
* 'center right'
|
|
319
|
+
* 'lower center'
|
|
320
|
+
* 'upper center'
|
|
321
|
+
* 'center'
|
|
322
|
+
Default Value: 'upper right'
|
|
323
|
+
Types: str
|
|
324
|
+
|
|
325
|
+
linestyle:
|
|
326
|
+
Optional Argument.
|
|
327
|
+
Specifies the line style for the plot.
|
|
328
|
+
Permitted Values:
|
|
329
|
+
* -
|
|
330
|
+
* --
|
|
331
|
+
* -.
|
|
332
|
+
* :
|
|
333
|
+
Default Value: -
|
|
334
|
+
Types: str OR list of str
|
|
335
|
+
|
|
336
|
+
linewidth:
|
|
337
|
+
Optional Argument.
|
|
338
|
+
Specifies the line width for the plot.
|
|
339
|
+
Note:
|
|
340
|
+
Valid range for "linewidth" is: 0.5 <= linewidth <= 10.
|
|
341
|
+
Default Value: 0.8
|
|
342
|
+
Types: int OR float OR list of int OR list of float
|
|
343
|
+
|
|
344
|
+
marker:
|
|
345
|
+
Optional Argument.
|
|
346
|
+
Specifies the type of the marker to be used.
|
|
347
|
+
Permitted Values:
|
|
348
|
+
All the markers mentioned in https://matplotlib.org/stable/api/markers_api.html
|
|
349
|
+
are supported.
|
|
350
|
+
Types: str OR list of str
|
|
351
|
+
|
|
352
|
+
markersize:
|
|
353
|
+
Optional Argument.
|
|
354
|
+
Specifies the size of the marker.
|
|
355
|
+
Note:
|
|
356
|
+
Valid range for "markersize" is: 1 <= markersize <= 20.
|
|
357
|
+
Default Value: 6
|
|
358
|
+
Types: int OR float OR list of int OR list of float
|
|
359
|
+
|
|
360
|
+
position:
|
|
361
|
+
Optional Argument.
|
|
362
|
+
Specifies the position of the axis in the figure. Accepts a tuple
|
|
363
|
+
of two elements where first element represents the row and second
|
|
364
|
+
element represents column.
|
|
365
|
+
Default Value: (1, 1)
|
|
366
|
+
Types: tuple
|
|
367
|
+
|
|
368
|
+
span:
|
|
369
|
+
Optional Argument.
|
|
370
|
+
Specifies the span of the axis in the figure. Accepts a tuple
|
|
371
|
+
of two elements where first element represents the row and second
|
|
372
|
+
element represents column.
|
|
373
|
+
For Example,
|
|
374
|
+
Span of (2, 1) specifies the Axis occupies 2 rows and 1 column
|
|
375
|
+
in Figure.
|
|
376
|
+
Default Value: (1, 1)
|
|
377
|
+
Types: tuple
|
|
378
|
+
|
|
379
|
+
reverse_xaxis:
|
|
380
|
+
Optional Argument.
|
|
381
|
+
Specifies whether to reverse tick values on x-axis or not.
|
|
382
|
+
Default Value: False
|
|
383
|
+
Types: bool
|
|
384
|
+
|
|
385
|
+
reverse_yaxis:
|
|
386
|
+
Optional Argument.
|
|
387
|
+
Specifies whether to reverse tick values on y-axis or not.
|
|
388
|
+
Default Value: False
|
|
389
|
+
Types: bool
|
|
390
|
+
|
|
391
|
+
series_identifier:
|
|
392
|
+
Optional Argument.
|
|
393
|
+
Specifies the teradataml GeoDataFrame Column which represents the
|
|
394
|
+
identifier for the data. As many plots as distinct "series_identifier"
|
|
395
|
+
are generated in a single Axis.
|
|
396
|
+
For example:
|
|
397
|
+
consider the below data in teradataml GeoDataFrame.
|
|
398
|
+
ID x y
|
|
399
|
+
0 1 1 1
|
|
400
|
+
1 1 2 2
|
|
401
|
+
2 2 10 10
|
|
402
|
+
3 2 20 20
|
|
403
|
+
If "series_identifier" is not specified, simple plot is
|
|
404
|
+
generated where every 'y' is plotted against 'x' in a
|
|
405
|
+
single plot. However, specifying "series_identifier" as 'ID'
|
|
406
|
+
generates two plots in a single axis. One plot is for ID 1
|
|
407
|
+
and another plot is for ID 2.
|
|
408
|
+
Types: teradataml GeoDataFrame Column.
|
|
409
|
+
|
|
410
|
+
title:
|
|
411
|
+
Optional Argument.
|
|
412
|
+
Specifies the title for the Axis.
|
|
413
|
+
Types: str
|
|
414
|
+
|
|
415
|
+
xlabel:
|
|
416
|
+
Optional Argument.
|
|
417
|
+
Specifies the label for x-axis.
|
|
418
|
+
Notes:
|
|
419
|
+
* When set to empty string, label is not displayed for x-axis.
|
|
420
|
+
* When set to None, name of the x-axis column is displayed as
|
|
421
|
+
label.
|
|
422
|
+
Types: str
|
|
423
|
+
|
|
424
|
+
xlim:
|
|
425
|
+
Optional Argument.
|
|
426
|
+
Specifies the range for xtick values.
|
|
427
|
+
Types: tuple
|
|
428
|
+
|
|
429
|
+
xtick_format:
|
|
430
|
+
Optional Argument.
|
|
431
|
+
Specifies whether to format tick values for x-axis or not.
|
|
432
|
+
Types: str
|
|
433
|
+
|
|
434
|
+
ylabel:
|
|
435
|
+
Optional Argument.
|
|
436
|
+
Specifies the label for y-axis.
|
|
437
|
+
Notes:
|
|
438
|
+
* When set to empty string, label is not displayed for y-axis.
|
|
439
|
+
* When set to None, name of the y-axis column(s) is displayed as
|
|
440
|
+
label.
|
|
441
|
+
Types: str
|
|
442
|
+
|
|
443
|
+
ylim:
|
|
444
|
+
Optional Argument.
|
|
445
|
+
Specifies the range for ytick values.
|
|
446
|
+
Types: tuple
|
|
447
|
+
|
|
448
|
+
ytick_format:
|
|
449
|
+
Optional Argument.
|
|
450
|
+
Specifies whether to format tick values for y-axis or not.
|
|
451
|
+
Types: str
|
|
452
|
+
|
|
453
|
+
vmin:
|
|
454
|
+
Optional Argument.
|
|
455
|
+
Specifies the lower range of the color map. By default, the range
|
|
456
|
+
is derived from data and color codes are assigned accordingly.
|
|
457
|
+
Note:
|
|
458
|
+
"vmin" Significant only for Geometry Plot.
|
|
459
|
+
Types: int OR float
|
|
460
|
+
|
|
461
|
+
vmax:
|
|
462
|
+
Optional Argument.
|
|
463
|
+
Specifies the upper range of the color map. By default, the range is
|
|
464
|
+
derived from data and color codes are assigned accordingly.
|
|
465
|
+
Note:
|
|
466
|
+
"vmax" Significant only for Geometry Plot.
|
|
467
|
+
For example:
|
|
468
|
+
Assuming user wants to use colormap 'matter' and derive the colors for
|
|
469
|
+
values which are in between 1 and 100.
|
|
470
|
+
Note:
|
|
471
|
+
colormap 'matter' starts with Pale Yellow and ends with Violet.
|
|
472
|
+
* If "colormap_range" is not specified, then range is derived from
|
|
473
|
+
existing values. Thus, colors are represented as below in the whole range:
|
|
474
|
+
* 1 as Pale Yellow.
|
|
475
|
+
* 100 as Violet.
|
|
476
|
+
* If "colormap_range" is specified as -100 and 100, the value 1 is at middle of
|
|
477
|
+
the specified range. Thus, colors are represented as below in the whole range:
|
|
478
|
+
* -100 as Pale Yellow.
|
|
479
|
+
* 1 as Orange.
|
|
480
|
+
* 100 as Violet.
|
|
481
|
+
Types: int OR float
|
|
482
|
+
|
|
483
|
+
wiggle_fill:
|
|
484
|
+
Optional Argument.
|
|
485
|
+
Specifies whether to fill the wiggle area or not. By default, the right
|
|
486
|
+
positive half of the wiggle is not filled. If specified as True, wiggle
|
|
487
|
+
area is filled.
|
|
488
|
+
Note:
|
|
489
|
+
Applicable only for the wiggle plot.
|
|
490
|
+
Default Value: False
|
|
491
|
+
Types: bool
|
|
492
|
+
|
|
493
|
+
wiggle_scale:
|
|
494
|
+
Optional Argument.
|
|
495
|
+
Specifies the scale of the wiggle. By default, the amplitude of wiggle is scaled
|
|
496
|
+
relative to RMS of the first payload. In certain cases, it can lead to excessively
|
|
497
|
+
large wiggles. Use "wiggle_scale" to adjust the relative size of the wiggle.
|
|
498
|
+
Note:
|
|
499
|
+
Applicable only for the wiggle and mesh plots.
|
|
500
|
+
Types: int OR float
|
|
501
|
+
|
|
502
|
+
ignore_nulls:
|
|
503
|
+
Optional Argument.
|
|
504
|
+
Specifies whether to delete rows with null values or not present in 'x', 'y' and
|
|
505
|
+
'scale' params.
|
|
506
|
+
Default Value: False
|
|
507
|
+
Types: bool
|
|
508
|
+
|
|
509
|
+
|
|
510
|
+
RAISES:
|
|
511
|
+
TeradataMlException
|
|
512
|
+
|
|
513
|
+
EXAMPLES:
|
|
514
|
+
>>> load_example_data("geodataframe", ["sample_shapes"])
|
|
515
|
+
>>> shapes_df = GeoDataFrame("sample_shapes")
|
|
516
|
+
>>> shapes_df
|
|
517
|
+
points linestrings polygons geom_collections geosequence
|
|
518
|
+
skey
|
|
519
|
+
1006 POINT (235.52 54.546 7.4564) LINESTRING (1.35 3.6456 4.5,3. POLYGON ((0 0 0,0 0 20,0 20 0, None None
|
|
520
|
+
1007 MULTIPOINT (1 1,1 3,6 3,10 5,2 MULTILINESTRING ((1 1,1 3,6 3) MULTIPOLYGON (((1 1,1 3,6 3,6 None None
|
|
521
|
+
1005 POINT (1 3 5) LINESTRING (1 3 6,3 0 6,6 0 1) POLYGON ((0 0 0,0 0 20.435,0.0 GEOMETRYCOLLECTION (POINT (10 None
|
|
522
|
+
1004 POINT (10 20 30) LINESTRING (10 20 30,40 50 60, POLYGON ((0 0 0,0 10 20,20 20 GEOMETRYCOLLECTION (POINT (10 None
|
|
523
|
+
1003 POINT (235.52 54.546) LINESTRING (1.35 3.6456,3.6756 POLYGON ((0.6 0.8,0.6 20.8,20. None None
|
|
524
|
+
1001 POINT (10 20) LINESTRING (1 1,2 2,3 3,4 4) POLYGON ((0 0,0 20,20 20,20 0, GEOMETRYCOLLECTION (POINT (10 GEOSEQUENCE((10 20,30 40,50 60
|
|
525
|
+
1002 POINT (1 3) LINESTRING (1 3,3 0,0 1) POLYGON ((0 0,0 20,20 20,20 0, None GEOSEQUENCE((10 10,15 15,-2 0)
|
|
526
|
+
1009 MULTIPOINT (10 20 30,40 50 60, MULTILINESTRING ((10 20 30,40 MULTIPOLYGON (((0 0 0,0 20 20, None None
|
|
527
|
+
1008 MULTIPOINT (1.65 1.76,1.23 3.7 MULTILINESTRING ((1 3,3 0,0 1) MULTIPOLYGON (((0 0,0 20,20 20 None None
|
|
528
|
+
1010 MULTIPOINT (10.345 20.32 30.6, MULTILINESTRING ((1 3 6,3 0 6, MULTIPOLYGON (((0 0 0,0 0 20,0 None None
|
|
529
|
+
>>>
|
|
530
|
+
>>> load_example_data("geodataframe", ["us_population", "us_states_shapes"])
|
|
531
|
+
>>> us_population = DataFrame("us_population")
|
|
532
|
+
>>> us_population
|
|
533
|
+
location_type population_year population
|
|
534
|
+
state_name
|
|
535
|
+
Georgia State 1930 2908506.0
|
|
536
|
+
Georgia State 1950 3444578.0
|
|
537
|
+
Georgia State 1960 3943116.0
|
|
538
|
+
Georgia State 1970 4589575.0
|
|
539
|
+
Georgia State 1990 6478216.0
|
|
540
|
+
Georgia State 2000 8186453.0
|
|
541
|
+
Georgia State 1980 5463105.0
|
|
542
|
+
Georgia State 1940 3123723.0
|
|
543
|
+
Georgia State 1920 2895832.0
|
|
544
|
+
Georgia State 1910 2609121.0
|
|
545
|
+
>>> us_states_shapes = GeoDataFrame("us_states_shapes")
|
|
546
|
+
>>> us_states_shapes
|
|
547
|
+
state_name state_shape
|
|
548
|
+
id
|
|
549
|
+
NM New Mexico POLYGON ((472.45213 324.75551,
|
|
550
|
+
VA Virginia POLYGON ((908.75086 270.98255,
|
|
551
|
+
ND North Dakota POLYGON ((556.50879 73.847349,
|
|
552
|
+
OK Oklahoma POLYGON ((609.50526 322.91131,
|
|
553
|
+
WI Wisconsin POLYGON ((705.79187 134.80299,
|
|
554
|
+
RI Rhode Island POLYGON ((946.50841 152.08022,
|
|
555
|
+
HI Hawaii POLYGON ((416.34965 514.99923,
|
|
556
|
+
KY Kentucky POLYGON ((693.17367 317.18459,
|
|
557
|
+
WV West Virginia POLYGON ((836.73002 223.71281,
|
|
558
|
+
NJ New Jersey POLYGON ((916.80709 207.30914,
|
|
559
|
+
>>>
|
|
560
|
+
>>> # Join shapes with population and filter only 1990 data.
|
|
561
|
+
>>> population_data = us_states_shapes.join(us_population,
|
|
562
|
+
... on=us_population.state_name == us_states_shapes.state_name,
|
|
563
|
+
... lsuffix="us",
|
|
564
|
+
... rsuffix="t2")
|
|
565
|
+
>>> population_data = population_data.select(["us_state_name", "state_shape", "population_year", "population"])
|
|
566
|
+
>>> type(population_data)
|
|
567
|
+
teradataml.geospatial.geodataframe.GeoDataFrame
|
|
568
|
+
>>>
|
|
569
|
+
|
|
570
|
+
# Example 1: Generate the geometry plot to show the density of population
|
|
571
|
+
# across the US states in year 1990.
|
|
572
|
+
>>> population_data_1990 = population_data[population_data.population_year == 1990]
|
|
573
|
+
>>> population_data_1990
|
|
574
|
+
us_state_name state_shape population_year population
|
|
575
|
+
0 New Mexico POLYGON ((472.45213 324.75551, 1990 1515069.0
|
|
576
|
+
1 Hawaii POLYGON ((416.34965 514.99923, 1990 1108229.0
|
|
577
|
+
2 Kentucky POLYGON ((693.17367 317.18459, 1990 3685296.0
|
|
578
|
+
3 New Jersey POLYGON ((916.80709 207.30914, 1990 7730188.0
|
|
579
|
+
4 North Dakota POLYGON ((556.50879 73.847349, 1990 638800.0
|
|
580
|
+
5 Oklahoma POLYGON ((609.50526 322.91131, 1990 3145585.0
|
|
581
|
+
6 West Virginia POLYGON ((836.73002 223.71281, 1990 1793477.0
|
|
582
|
+
7 Wisconsin POLYGON ((705.79187 134.80299, 1990 4891769.0
|
|
583
|
+
8 Virginia POLYGON ((908.75086 270.98255, 1990 6187358.0
|
|
584
|
+
9 Rhode Island POLYGON ((946.50841 152.08022, 1990 1003464.0
|
|
585
|
+
>>>
|
|
586
|
+
>>> # Define Figure.
|
|
587
|
+
>>> from teradataml import Figure
|
|
588
|
+
>>> figure = Figure(width=1500, height=862, heading="Geometry Plot")
|
|
589
|
+
>>> figure.heading = "Geometry Plot"
|
|
590
|
+
>>>
|
|
591
|
+
>>> plot_1990 = population_data_1990.plot(y=population_data_1990.population,
|
|
592
|
+
... cmap='rainbow',
|
|
593
|
+
... figure=figure,
|
|
594
|
+
... reverse_yaxis=True,
|
|
595
|
+
... title="US 1990 Population",
|
|
596
|
+
... xlabel="",
|
|
597
|
+
... ylabel="")
|
|
598
|
+
>>>
|
|
599
|
+
>>> plot_1990.show()
|
|
600
|
+
|
|
601
|
+
# Example 2: Plot a geometry plot for a single polygon to visualize the shape.
|
|
602
|
+
# Note: X-axis is not significant in geometry plot. Y-axis can be a tuple,
|
|
603
|
+
# first element represents weight of geometry shape and second element
|
|
604
|
+
# represents the geometry column. Since color of geometry shape is generated
|
|
605
|
+
# based on first column and since the example is to plot a single polygon,
|
|
606
|
+
# the first element in tuple is not significant.
|
|
607
|
+
>>> # Generate GeoDataFrame which has single Polygon.
|
|
608
|
+
>>> single_polygon_df = shapes_df[shapes_df.skey==1004]
|
|
609
|
+
>>> single_polygon_df.plot(y=(single_polygon_df.skey, single_polygon_df.polygons))
|
|
610
|
+
|
|
611
|
+
# Example 3: Generate a bar plot on a GeoDataFrame.
|
|
612
|
+
# Note: The below example shows how the population of the United States
|
|
613
|
+
# changed from 1910 to 2020.
|
|
614
|
+
>>> population_data.plot(x=population_data.population_year, y=population_data.population, kind="bar")
|
|
615
|
+
|
|
616
|
+
# Example 4: Generate a subplot on a GeoDataFrame to show the rate of population increase over 4 decades.
|
|
617
|
+
# Create DataFrames for population in the year 2020, 2010, 2000, 1990.
|
|
618
|
+
>>> df_2020 = population_data[population_data.population_year == 2020]
|
|
619
|
+
>>> df_2010 = population_data[population_data.population_year == 2010]
|
|
620
|
+
>>> df_2000 = population_data[population_data.population_year == 2000]
|
|
621
|
+
>>> df_1990 = population_data[population_data.population_year == 1990]
|
|
622
|
+
|
|
623
|
+
# Define subplot.
|
|
624
|
+
>>> fig, axes = subplots(nrows=2, ncols=2)
|
|
625
|
+
|
|
626
|
+
>>> plot_population = df_1990.plot(y=(df_1990.population, df_1990.state_shape),
|
|
627
|
+
... cmap='rainbow',
|
|
628
|
+
... figure=fig,
|
|
629
|
+
... ax=axes[0],
|
|
630
|
+
... reverse_yaxis=True,
|
|
631
|
+
... vmin=55036.0,
|
|
632
|
+
... vmax=39538223.0,
|
|
633
|
+
... heading="US Population growth over 4 decades",
|
|
634
|
+
... title="US 1990 Population",
|
|
635
|
+
... xlabel="",
|
|
636
|
+
... yylabel="")
|
|
637
|
+
>>> plot_population = df_2000.plot(y=(df_2000.population, df_2000.state_shape),
|
|
638
|
+
... cmap='rainbow',
|
|
639
|
+
... figure=fig,
|
|
640
|
+
... ax=axes[1],
|
|
641
|
+
... reverse_yaxis=True,
|
|
642
|
+
... vmin=55036.0,
|
|
643
|
+
... vmax=39538223.0,
|
|
644
|
+
... heading="US Population growth over 4 decades",
|
|
645
|
+
... title="US 2000 Population",
|
|
646
|
+
... xlabel="",
|
|
647
|
+
... ylabel="")
|
|
648
|
+
>>> plot_population = df_2010.plot(x=df_2010.population_year,
|
|
649
|
+
... y=(df_2010.population, df_2010.state_shape),
|
|
650
|
+
... cmap='rainbow',
|
|
651
|
+
... figure=fig,
|
|
652
|
+
... ax=axes[2],
|
|
653
|
+
... reverse_yaxis=True,
|
|
654
|
+
... vmin=55036.0,
|
|
655
|
+
... vmax=39538223.0,
|
|
656
|
+
... heading="US Population growth over 4 decades",
|
|
657
|
+
... title="US 2010 Population",
|
|
658
|
+
... xlabel="",
|
|
659
|
+
... ylabel="",
|
|
660
|
+
... xtick_values_format="")
|
|
661
|
+
>>> plot_population = df_2020.plot(x=df_2020.population_year,
|
|
662
|
+
... y=(df_2020.population, df_2020.state_shape),
|
|
663
|
+
... cmap='rainbow',
|
|
664
|
+
... figure=fig,
|
|
665
|
+
... ax=axes[3],
|
|
666
|
+
... reverse_yaxis=True,
|
|
667
|
+
... vmin=55036.0,
|
|
668
|
+
... vmax=39538223.0,
|
|
669
|
+
... heading="US Population growth over 4 decades",
|
|
670
|
+
... title="US 2020 Population",
|
|
671
|
+
... xlabel="",
|
|
672
|
+
... ylabel="",
|
|
673
|
+
... xtick_values_format="")
|
|
674
|
+
>>> # Show the plot.
|
|
675
|
+
>>> plot_population.show()
|
|
676
|
+
|
|
677
|
+
"""
|
|
678
|
+
if kind == "geometry":
|
|
679
|
+
# x is not really required for geometry plot. So, users can pass a None here.
|
|
680
|
+
# However, UAF needs all the records to be a Non NULL value. So, construct x with
|
|
681
|
+
# a dummy value.
|
|
682
|
+
x = x if x is not None else 1
|
|
683
|
+
y = UtilFuncs._as_list(y)
|
|
684
|
+
|
|
685
|
+
# For geometry plot, x axis is not significant really.
|
|
686
|
+
# They do not mean any thing.
|
|
687
|
+
kwargs["xlabel"] = ""
|
|
688
|
+
kwargs["xtick_values_format"] = ""
|
|
689
|
+
|
|
690
|
+
# Geometry plot always need a tuple. Second
|
|
691
|
+
# element should be a Geometry column. If user does not
|
|
692
|
+
# specify a tuple, convert it to tuple by using default geometry column.
|
|
693
|
+
# use "geometry" API.
|
|
694
|
+
_get_y_axis = lambda x: x if isinstance(x, tuple) else (x, self.geometry)
|
|
695
|
+
y = [_get_y_axis(arg) for arg in y]
|
|
696
|
+
|
|
697
|
+
plot = _Plot(x=x, y=y, kind=kind, **kwargs)
|
|
698
|
+
return plot
|
|
699
|
+
|
|
700
|
+
def __getattr__(self, name):
|
|
701
|
+
"""
|
|
702
|
+
Returns an attribute of the GeoDataFrame.
|
|
703
|
+
|
|
704
|
+
PARAMETERS:
|
|
705
|
+
name:
|
|
706
|
+
Required Argument.
|
|
707
|
+
Specifies the name of the attribute.
|
|
708
|
+
Types: str
|
|
709
|
+
|
|
710
|
+
RETURNS:
|
|
711
|
+
Return the value of the named attribute of object (if found).
|
|
712
|
+
|
|
713
|
+
EXAMPLES:
|
|
714
|
+
df = GeoDataFrame('table')
|
|
715
|
+
|
|
716
|
+
# You can access a column from the teradataml GeoDataFrame.
|
|
717
|
+
df.c1
|
|
718
|
+
|
|
719
|
+
RAISES:
|
|
720
|
+
Attribute Error when the named attribute is not found.
|
|
721
|
+
"""
|
|
722
|
+
|
|
723
|
+
# Look in the underlying _MetaExpression for columns
|
|
724
|
+
for col in self._metaexpr.c:
|
|
725
|
+
if col.name == name:
|
|
726
|
+
col._parent_df = self
|
|
727
|
+
return col
|
|
728
|
+
|
|
729
|
+
# If "name" is present in any of the following 'GeospatialConstants'
|
|
730
|
+
# 1. GeospatialConstants.PROPERTY_TO_NO_ARG_SQL_FUNCTION_NAME
|
|
731
|
+
# 2. GeospatialConstants.METHOD_TO_ARG_ACCEPTING_SQL_FUNCTION_NAME
|
|
732
|
+
# 3. GeospatialConstants.METHOD_TO_NO_ARG_SQL_FUNCTION_NAME
|
|
733
|
+
# that means, it's a function that operates on Geometry Data.
|
|
734
|
+
#
|
|
735
|
+
# Look for such function names.
|
|
736
|
+
if name in GeospatialConstants.PROPERTY_TO_NO_ARG_SQL_FUNCTION_NAME.value:
|
|
737
|
+
# Geospatial functions which are exposed as property of teradataml
|
|
738
|
+
# GeoDataFrame.
|
|
739
|
+
return self.__process_geometry(func_name=name, all_geom=False,
|
|
740
|
+
property=True)
|
|
741
|
+
|
|
742
|
+
if name in GeospatialConstants.METHOD_TO_ARG_ACCEPTING_SQL_FUNCTION_NAME.value \
|
|
743
|
+
or name in GeospatialConstants.METHOD_TO_NO_ARG_SQL_FUNCTION_NAME.value:
|
|
744
|
+
# Geospatial functions which are exposed as method of teradataml
|
|
745
|
+
# GeoDataFrame.
|
|
746
|
+
return lambda *args, **kwargs: \
|
|
747
|
+
self.__process_geometry(name, *args, **kwargs)
|
|
748
|
+
|
|
749
|
+
# TODO - Raise error or Keep it open ended to accept SQL Function names.
|
|
750
|
+
raise AttributeError("'GeoDataFrame' object has no attribute %s" % name)
|
|
751
|
+
|
|
752
|
+
@collect_queryband(arg_name="func_name", prefix="GDF")
|
|
753
|
+
def __process_geometry(self, func_name, *args, **kwargs):
|
|
754
|
+
"""
|
|
755
|
+
Function helps to execute the Geospatial function on the column(s)
|
|
756
|
+
containing geometry data.
|
|
757
|
+
|
|
758
|
+
PARAMETERS:
|
|
759
|
+
func_name:
|
|
760
|
+
Required Argument.
|
|
761
|
+
Specifies the name of the function to execute.
|
|
762
|
+
Types: string
|
|
763
|
+
|
|
764
|
+
all_geom:
|
|
765
|
+
Optional Argument.
|
|
766
|
+
Specifies whether to execute the function on all geometry
|
|
767
|
+
columns in the GeoDataFrame or not.
|
|
768
|
+
When set to 'True', geospatial function specified in
|
|
769
|
+
"func_name", is executed on all the columns containing
|
|
770
|
+
geometry data, i.e., geospatial data.
|
|
771
|
+
When set to 'False', geospatial function specified in
|
|
772
|
+
"func_name", is executed only on the column represented
|
|
773
|
+
by the 'GeoDataFrame.geometry' property.
|
|
774
|
+
Default Value: False
|
|
775
|
+
Types: bool
|
|
776
|
+
|
|
777
|
+
property:
|
|
778
|
+
Optional Argument.
|
|
779
|
+
Specifies whether the function being executed should be treated
|
|
780
|
+
as GeoDataFrame property or not.
|
|
781
|
+
When set to 'True', geospatial function specified in
|
|
782
|
+
"func_name", is treated as property, otherwise treated as
|
|
783
|
+
method.
|
|
784
|
+
Default Value: False
|
|
785
|
+
Types: bool
|
|
786
|
+
|
|
787
|
+
*args:
|
|
788
|
+
Positional arguments passed to the method, i.e., geospatial
|
|
789
|
+
function.
|
|
790
|
+
|
|
791
|
+
**kwargs:
|
|
792
|
+
Keyword arguments passed to the method, i.e., geospatial
|
|
793
|
+
function.
|
|
794
|
+
|
|
795
|
+
RETURNS:
|
|
796
|
+
DataFrame or GeoDataFrame
|
|
797
|
+
|
|
798
|
+
RAISES:
|
|
799
|
+
None.
|
|
800
|
+
|
|
801
|
+
EXAMPLES:
|
|
802
|
+
self.__process_geometry(fname, all_geom, False, *c, **kwargs)
|
|
803
|
+
"""
|
|
804
|
+
property = kwargs.pop("property", False)
|
|
805
|
+
all_geom = kwargs.pop("all_geom", False)
|
|
806
|
+
assign_args = {}
|
|
807
|
+
if not all_geom:
|
|
808
|
+
# Function will be run only on column represented by
|
|
809
|
+
# 'GeoDataFrame.geometry' property.
|
|
810
|
+
new_col = "{}_{}_geom".format(func_name, self.geometry.name)
|
|
811
|
+
if property:
|
|
812
|
+
# If property is set to True, then no need to pass **kwargs and
|
|
813
|
+
# no need to invoke the call with parenthesis '()'.
|
|
814
|
+
assign_args[new_col] = self.geometry[func_name]
|
|
815
|
+
else:
|
|
816
|
+
# Pass *args and **kwargs as function accepts arguments.
|
|
817
|
+
assign_args[new_col] = self.geometry[func_name](*args, **kwargs)
|
|
818
|
+
else:
|
|
819
|
+
# Function will be run on all column(s) containing geometry data.
|
|
820
|
+
# Columns containing geometry data can be following types:
|
|
821
|
+
# 1. ST_GEOMETRY
|
|
822
|
+
# 2. MBR
|
|
823
|
+
# 3. MBB
|
|
824
|
+
for col in self._metaexpr.c:
|
|
825
|
+
if col.type in [GEOMETRY, MBR, MBB]:
|
|
826
|
+
new_col = "{}_{}".format(func_name, col.name)
|
|
827
|
+
if property:
|
|
828
|
+
# If property is set to True, then no need to pass
|
|
829
|
+
# **kwargs and no need to invoke the call with
|
|
830
|
+
# parenthesis '()'.
|
|
831
|
+
assign_args[new_col] = self[col.name][func_name]
|
|
832
|
+
else:
|
|
833
|
+
# Pass *args and **kwargs as function accepts arguments.
|
|
834
|
+
assign_args[new_col] = self[col.name][func_name](*args,
|
|
835
|
+
**kwargs)
|
|
836
|
+
|
|
837
|
+
return self.assign(**assign_args)
|
|
838
|
+
|
|
839
|
+
@property
|
|
840
|
+
def geometry(self):
|
|
841
|
+
"""
|
|
842
|
+
DESCRIPTION:
|
|
843
|
+
Returns a GeoColumnExpression for a column containing geometry data.
|
|
844
|
+
If GeoDataFrame contains, multiple columns containing geometry data,
|
|
845
|
+
then it returns reference to only one of them.
|
|
846
|
+
Columns containing geometry data can be of following types:
|
|
847
|
+
1. ST_GEOMETRY
|
|
848
|
+
2. MBB
|
|
849
|
+
3. MBR
|
|
850
|
+
Refer 'GeoDataFrame.tdtypes' to view the Teradata column data types.
|
|
851
|
+
|
|
852
|
+
Note:
|
|
853
|
+
This property is used to execute any geospatial operation on
|
|
854
|
+
GeoDataFrame, i.e., any geospatial function executed on
|
|
855
|
+
GeoDataFrame, is executed on the geomtry column referenced by
|
|
856
|
+
this property.
|
|
857
|
+
|
|
858
|
+
RETURNS:
|
|
859
|
+
GeoDataFrameColumn
|
|
860
|
+
|
|
861
|
+
EXAMPLES:
|
|
862
|
+
>>> load_example_data("geodataframe", ["sample_cities", "sample_streets"])
|
|
863
|
+
>>> cities = GeoDataFrame("sample_cities")
|
|
864
|
+
>>> streets = GeoDataFrame("sample_streets")
|
|
865
|
+
>>> city_streets = cities.join(streets, how="cross", lsuffix="l", rsuffix="r")
|
|
866
|
+
>>> city_streets
|
|
867
|
+
l_skey r_skey city_name city_shape street_name street_shape
|
|
868
|
+
0 0 1 Oceanville POLYGON ((1 1,1 3,6 3,6 0,1 1)) Main Street LINESTRING (2 2,3 2,4 1)
|
|
869
|
+
1 0 1 Oceanville POLYGON ((1 1,1 3,6 3,6 0,1 1)) Coast Blvd LINESTRING (12 12,18 17)
|
|
870
|
+
2 1 1 Seaside POLYGON ((10 10,10 20,20 20,20 15,10 10)) Coast Blvd LINESTRING (12 12,18 17)
|
|
871
|
+
3 1 1 Seaside POLYGON ((10 10,10 20,20 20,20 15,10 10)) Main Street LINESTRING (2 2,3 2,4 1)
|
|
872
|
+
>>>
|
|
873
|
+
|
|
874
|
+
# Check the name of the column containing geometry data, where
|
|
875
|
+
# 'geometry' property references.
|
|
876
|
+
>>> city_streets.geometry.name
|
|
877
|
+
'city_shape'
|
|
878
|
+
>>>
|
|
879
|
+
|
|
880
|
+
# Check all the column types.
|
|
881
|
+
>>> city_streets.tdtypes
|
|
882
|
+
l_skey INTEGER()
|
|
883
|
+
r_skey INTEGER()
|
|
884
|
+
city_name VARCHAR(length=40, charset='LATIN')
|
|
885
|
+
city_shape GEOMETRY()
|
|
886
|
+
street_name VARCHAR(length=40, charset='LATIN')
|
|
887
|
+
street_shape GEOMETRY()
|
|
888
|
+
>>>
|
|
889
|
+
>>>
|
|
890
|
+
|
|
891
|
+
# Set the 'geometry' property to refer 'street_shape' column.
|
|
892
|
+
>>> city_streets.geometry = city_streets.street_shape
|
|
893
|
+
>>> city_streets.geometry.name
|
|
894
|
+
'street_shape'
|
|
895
|
+
>>>
|
|
896
|
+
|
|
897
|
+
# Check whether the geometry referenced by 'geometry' property are 3D
|
|
898
|
+
# or not.
|
|
899
|
+
>>> city_streets.is_3D
|
|
900
|
+
l_skey r_skey city_name city_shape street_name street_shape is_3D_street_shape_geom
|
|
901
|
+
0 1 1 Seaside POLYGON ((10 10,10 20,20 20,20 15,10 10)) Main Street LINESTRING (2 2,3 2,4 1) 0
|
|
902
|
+
1 1 1 Seaside POLYGON ((10 10,10 20,20 20,20 15,10 10)) Coast Blvd LINESTRING (12 12,18 17) 0
|
|
903
|
+
2 0 1 Oceanville POLYGON ((1 1,1 3,6 3,6 0,1 1)) Coast Blvd LINESTRING (12 12,18 17) 0
|
|
904
|
+
3 0 1 Oceanville POLYGON ((1 1,1 3,6 3,6 0,1 1)) Main Street LINESTRING (2 2,3 2,4 1) 0
|
|
905
|
+
>>>
|
|
906
|
+
|
|
907
|
+
# Use the geometry property to execute multiple geospatial functions
|
|
908
|
+
# in conjunctions with GeoDataFrame.assign()
|
|
909
|
+
# Get the geometry type.
|
|
910
|
+
>>> geom_type = city_streets.geometry.geom_type
|
|
911
|
+
# Check if geometry is simple or not.
|
|
912
|
+
>>> is_simple = city_streets.geometry.is_simple
|
|
913
|
+
# Check if geometry is valid or not.
|
|
914
|
+
>>> is_valid = city_streets.geometry.is_valid
|
|
915
|
+
>>>
|
|
916
|
+
# Call GeoDataFrame.assign() and pass the above GeoDataFrameColumn, i.e.,
|
|
917
|
+
# ColumnExpressions as input.
|
|
918
|
+
>>> city_streets.assign(geom_type = geom_type,
|
|
919
|
+
... is_simple = is_simple,
|
|
920
|
+
... is_valid = is_valid
|
|
921
|
+
... )
|
|
922
|
+
l_skey r_skey city_name city_shape street_name street_shape geom_type is_simple is_valid
|
|
923
|
+
0 0 1 Oceanville POLYGON ((1 1,1 3,6 3,6 0,1 1)) Main Street LINESTRING (2 2,3 2,4 1) ST_LineString 1 1
|
|
924
|
+
1 0 1 Oceanville POLYGON ((1 1,1 3,6 3,6 0,1 1)) Coast Blvd LINESTRING (12 12,18 17) ST_LineString 1 1
|
|
925
|
+
2 1 1 Seaside POLYGON ((10 10,10 20,20 20,20 15,10 10)) Coast Blvd LINESTRING (12 12,18 17) ST_LineString 1 1
|
|
926
|
+
3 1 1 Seaside POLYGON ((10 10,10 20,20 20,20 15,10 10)) Main Street LINESTRING (2 2,3 2,4 1) ST_LineString 1 1
|
|
927
|
+
>>>
|
|
928
|
+
"""
|
|
929
|
+
# Check if attribute __geom_column is already set or not.
|
|
930
|
+
if self.__geom_column is not None:
|
|
931
|
+
return self.__geom_column
|
|
932
|
+
else:
|
|
933
|
+
# No geom column identified, iterate over the columns
|
|
934
|
+
# and set the attribute and return the same.
|
|
935
|
+
for col in self._metaexpr.c:
|
|
936
|
+
if isinstance(col.type, (GEOMETRY, MBR, MBB)):
|
|
937
|
+
self.__geom_column = col
|
|
938
|
+
return col
|
|
939
|
+
|
|
940
|
+
@geometry.setter
|
|
941
|
+
def geometry(self, column):
|
|
942
|
+
"""
|
|
943
|
+
DESCRIPTION:
|
|
944
|
+
Sets the geometry property to new geometry column.
|
|
945
|
+
|
|
946
|
+
PARAMETERS:
|
|
947
|
+
column:
|
|
948
|
+
Required Argument.
|
|
949
|
+
Specifies the column used for setting the 'geometry'
|
|
950
|
+
property. Column passed to the function must contain the
|
|
951
|
+
geometry data, i.e., column should be of type GEOMETRY, MBR,
|
|
952
|
+
or MBB.
|
|
953
|
+
Types: str or GeoDataFrameColumn
|
|
954
|
+
|
|
955
|
+
RAISES:
|
|
956
|
+
TeradataMlException
|
|
957
|
+
|
|
958
|
+
EXAMPLES:
|
|
959
|
+
# Set the property by passing the column name.
|
|
960
|
+
df.geometry = "geom_column"
|
|
961
|
+
|
|
962
|
+
# Set the property by passing the GeoDataFrameColumn.
|
|
963
|
+
df.geometry = df.geom_column
|
|
964
|
+
"""
|
|
965
|
+
awu_matrix = []
|
|
966
|
+
awu_matrix.append(["column", column, False, (str, GeoDataFrameColumn),
|
|
967
|
+
True])
|
|
968
|
+
|
|
969
|
+
# Validate argument types
|
|
970
|
+
_Validators._validate_function_arguments(awu_matrix)
|
|
971
|
+
|
|
972
|
+
if isinstance(column, str):
|
|
973
|
+
column = getattr(self, column)
|
|
974
|
+
|
|
975
|
+
supported_types = (GEOMETRY, MBR, MBB)
|
|
976
|
+
if not isinstance(column.type, supported_types):
|
|
977
|
+
err_fmt = Messages.get_message(MessageCodes.INVALID_COLUMN_DATATYPE)
|
|
978
|
+
err_ = err_fmt.format(column.name, "column", "Supported",
|
|
979
|
+
supported_types)
|
|
980
|
+
raise TeradataMlException(err_, MessageCodes.INVALID_COLUMN_DATATYPE)
|
|
981
|
+
|
|
982
|
+
self.__geom_column = column
|
|
983
|
+
|
|
984
|
+
def _create_dataframe_from_node(self, nodeid, metaexpr, index_label, undropped_columns=None):
|
|
985
|
+
"""
|
|
986
|
+
DESCRIPTION:
|
|
987
|
+
This function overrides the parent method, that creates the
|
|
988
|
+
dataframe from node, i.e., using '_Parent_from_node' function.
|
|
989
|
+
|
|
990
|
+
Parent class always returns a teradataml DataFrame, but for
|
|
991
|
+
GeoDataFrame, we will return teradataml DataFrame or teradataml
|
|
992
|
+
GeoDataFrame, based on whether the resultant DataFrame contains
|
|
993
|
+
geometry column or not.
|
|
994
|
+
|
|
995
|
+
PARAMETERS:
|
|
996
|
+
nodeid:
|
|
997
|
+
Required Argument.
|
|
998
|
+
Specifies the nodeid for the DataFrame or GeoDataFrame.
|
|
999
|
+
Types: str
|
|
1000
|
+
|
|
1001
|
+
metaexpr:
|
|
1002
|
+
Required Argument.
|
|
1003
|
+
Specifies the metadata for the resultant object.
|
|
1004
|
+
Types: _MetaExpression
|
|
1005
|
+
|
|
1006
|
+
index_label:
|
|
1007
|
+
Required Argument.
|
|
1008
|
+
Specifies list specifying index column(s) for the DataFrame.
|
|
1009
|
+
Types: str OR list of Strings (str)
|
|
1010
|
+
|
|
1011
|
+
undropped_columns:
|
|
1012
|
+
Optional Argument.
|
|
1013
|
+
Specifies list of index column(s) to be retained as columns for printing.
|
|
1014
|
+
Types: list
|
|
1015
|
+
|
|
1016
|
+
RETURNS:
|
|
1017
|
+
teradataml DataFrame or teradataml GeoDataFrame
|
|
1018
|
+
|
|
1019
|
+
RAISES:
|
|
1020
|
+
None
|
|
1021
|
+
|
|
1022
|
+
EXAMPLES:
|
|
1023
|
+
self._create_dataframe_from_node(new_nodeid, new_meta,
|
|
1024
|
+
self._index_label, undropped_columns)
|
|
1025
|
+
"""
|
|
1026
|
+
# TODO: <DEPENDENT_ON_GEOMETRY_DATATYPES_SUPPORT_IN_teradatasqlalchemy>
|
|
1027
|
+
# 1. Add the test cases.
|
|
1028
|
+
# a. Run teradataml DataFrame functions, that will result in
|
|
1029
|
+
# dropping the geometry datatype columns.
|
|
1030
|
+
# b. Run GeoDataFrame.assign() with "drop_columns=True" and
|
|
1031
|
+
# run geospatial function on a column, a function that will
|
|
1032
|
+
# not return the Geometry data type column.
|
|
1033
|
+
# All other cases, this should return the object of this class.
|
|
1034
|
+
if not self._check_geom_column(metaexpr):
|
|
1035
|
+
# If generated metaexpr does not contain a geometry column
|
|
1036
|
+
# then we should return the teradataml DataFrame.
|
|
1037
|
+
return DataFrame._from_node(nodeid, metaexpr, index_label, undropped_columns)
|
|
1038
|
+
else:
|
|
1039
|
+
# Return the teradataml GeoDataFrame.
|
|
1040
|
+
return self._from_node(nodeid, metaexpr, index_label, undropped_columns)
|
|
1041
|
+
|
|
1042
|
+
def _get_metadata_from_metaexpr(self, metaexpr):
|
|
1043
|
+
"""
|
|
1044
|
+
Private method for setting _metaexpr and retrieving column names and types.
|
|
1045
|
+
|
|
1046
|
+
PARAMETERS:
|
|
1047
|
+
metaexpr - Parent meta data (_MetaExpression object).
|
|
1048
|
+
|
|
1049
|
+
RETURNS:
|
|
1050
|
+
None
|
|
1051
|
+
|
|
1052
|
+
RAISES:
|
|
1053
|
+
None
|
|
1054
|
+
|
|
1055
|
+
EXAMPLE:
|
|
1056
|
+
self._get_metadata_from_metaexpr(metaexpr)
|
|
1057
|
+
"""
|
|
1058
|
+
self._metaexpr = self._generate_child_metaexpr(metaexpr)
|
|
1059
|
+
self._column_names_and_types = []
|
|
1060
|
+
self._td_column_names_and_types = []
|
|
1061
|
+
self._td_column_names_and_sqlalchemy_types = {}
|
|
1062
|
+
for col in self._metaexpr.c:
|
|
1063
|
+
if isinstance(col.type, sqlalchemy.sql.sqltypes.NullType):
|
|
1064
|
+
tdtype = TeradataTypes.TD_NULL_TYPE.value
|
|
1065
|
+
else:
|
|
1066
|
+
tdtype = "{}".format(col.type)
|
|
1067
|
+
|
|
1068
|
+
self._column_names_and_types.append((str(col.name), UtilFuncs._teradata_type_to_python_type(col.type)))
|
|
1069
|
+
self._td_column_names_and_types.append((str(col.name), tdtype))
|
|
1070
|
+
self._td_column_names_and_sqlalchemy_types[(str(col.name)).lower()] = col.type
|
|
1071
|
+
|
|
1072
|
+
# Set the Geometry column, which will be used as "geometry"
|
|
1073
|
+
# property.
|
|
1074
|
+
if self.__geom_column is None and \
|
|
1075
|
+
isinstance(col.type, (GEOMETRY, MBR, MBB)):
|
|
1076
|
+
self.__geom_column = col
|
|
1077
|
+
|
|
1078
|
+
if self.__geom_column is None:
|
|
1079
|
+
error_code = MessageCodes.NO_GEOM_COLUMN_EXIST
|
|
1080
|
+
raise TeradataMlException(Messages.get_message(error_code), error_code)
|
|
1081
|
+
|
|
1082
|
+
def _generate_child_metaexpr(self, metaexpr):
|
|
1083
|
+
"""
|
|
1084
|
+
Internal function that generates the metaexpression by converting
|
|
1085
|
+
_SQLColumnExpression to GeoDataFrameColumn.
|
|
1086
|
+
|
|
1087
|
+
PARAMETERS:
|
|
1088
|
+
metaexpr:
|
|
1089
|
+
Required Arguments.
|
|
1090
|
+
Specifies the metaexpression to update.
|
|
1091
|
+
Types: _MetaExpression
|
|
1092
|
+
|
|
1093
|
+
RETURNS:
|
|
1094
|
+
_MetaExpression
|
|
1095
|
+
|
|
1096
|
+
RAISES:
|
|
1097
|
+
None.
|
|
1098
|
+
|
|
1099
|
+
EXAMPLES:
|
|
1100
|
+
self._metaexpr = self._generate_child_metaexpr(metaexpr)
|
|
1101
|
+
"""
|
|
1102
|
+
metaexpr.c = [GeoDataFrameColumn(col.expression)
|
|
1103
|
+
if not isinstance(col, GeoDataFrameColumn) else col
|
|
1104
|
+
for col in metaexpr.c]
|
|
1105
|
+
return metaexpr
|