teradataml 20.0.0.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1208) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +2762 -0
  4. teradataml/__init__.py +78 -0
  5. teradataml/_version.py +11 -0
  6. teradataml/analytics/Transformations.py +2996 -0
  7. teradataml/analytics/__init__.py +82 -0
  8. teradataml/analytics/analytic_function_executor.py +2416 -0
  9. teradataml/analytics/analytic_query_generator.py +1050 -0
  10. teradataml/analytics/byom/H2OPredict.py +514 -0
  11. teradataml/analytics/byom/PMMLPredict.py +437 -0
  12. teradataml/analytics/byom/__init__.py +16 -0
  13. teradataml/analytics/json_parser/__init__.py +133 -0
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1805 -0
  15. teradataml/analytics/json_parser/json_store.py +191 -0
  16. teradataml/analytics/json_parser/metadata.py +1666 -0
  17. teradataml/analytics/json_parser/utils.py +805 -0
  18. teradataml/analytics/meta_class.py +236 -0
  19. teradataml/analytics/sqle/DecisionTreePredict.py +456 -0
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +420 -0
  21. teradataml/analytics/sqle/__init__.py +128 -0
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -0
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -0
  24. teradataml/analytics/table_operator/__init__.py +11 -0
  25. teradataml/analytics/uaf/__init__.py +82 -0
  26. teradataml/analytics/utils.py +828 -0
  27. teradataml/analytics/valib.py +1617 -0
  28. teradataml/automl/__init__.py +5835 -0
  29. teradataml/automl/autodataprep/__init__.py +493 -0
  30. teradataml/automl/custom_json_utils.py +1625 -0
  31. teradataml/automl/data_preparation.py +1384 -0
  32. teradataml/automl/data_transformation.py +1254 -0
  33. teradataml/automl/feature_engineering.py +2273 -0
  34. teradataml/automl/feature_exploration.py +1873 -0
  35. teradataml/automl/model_evaluation.py +488 -0
  36. teradataml/automl/model_training.py +1407 -0
  37. teradataml/catalog/__init__.py +2 -0
  38. teradataml/catalog/byom.py +1759 -0
  39. teradataml/catalog/function_argument_mapper.py +859 -0
  40. teradataml/catalog/model_cataloging_utils.py +491 -0
  41. teradataml/clients/__init__.py +0 -0
  42. teradataml/clients/auth_client.py +137 -0
  43. teradataml/clients/keycloak_client.py +165 -0
  44. teradataml/clients/pkce_client.py +481 -0
  45. teradataml/common/__init__.py +1 -0
  46. teradataml/common/aed_utils.py +2078 -0
  47. teradataml/common/bulk_exposed_utils.py +113 -0
  48. teradataml/common/constants.py +1669 -0
  49. teradataml/common/deprecations.py +166 -0
  50. teradataml/common/exceptions.py +147 -0
  51. teradataml/common/formula.py +743 -0
  52. teradataml/common/garbagecollector.py +666 -0
  53. teradataml/common/logger.py +1261 -0
  54. teradataml/common/messagecodes.py +518 -0
  55. teradataml/common/messages.py +262 -0
  56. teradataml/common/pylogger.py +67 -0
  57. teradataml/common/sqlbundle.py +764 -0
  58. teradataml/common/td_coltype_code_to_tdtype.py +48 -0
  59. teradataml/common/utils.py +3166 -0
  60. teradataml/common/warnings.py +36 -0
  61. teradataml/common/wrapper_utils.py +625 -0
  62. teradataml/config/__init__.py +0 -0
  63. teradataml/config/dummy_file1.cfg +5 -0
  64. teradataml/config/dummy_file2.cfg +3 -0
  65. teradataml/config/sqlengine_alias_definitions_v1.0 +14 -0
  66. teradataml/config/sqlengine_alias_definitions_v1.1 +20 -0
  67. teradataml/config/sqlengine_alias_definitions_v1.3 +19 -0
  68. teradataml/context/__init__.py +0 -0
  69. teradataml/context/aed_context.py +223 -0
  70. teradataml/context/context.py +1462 -0
  71. teradataml/data/A_loan.csv +19 -0
  72. teradataml/data/BINARY_REALS_LEFT.csv +11 -0
  73. teradataml/data/BINARY_REALS_RIGHT.csv +11 -0
  74. teradataml/data/B_loan.csv +49 -0
  75. teradataml/data/BuoyData2.csv +17 -0
  76. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -0
  77. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -0
  78. teradataml/data/Convolve2RealsLeft.csv +5 -0
  79. teradataml/data/Convolve2RealsRight.csv +5 -0
  80. teradataml/data/Convolve2ValidLeft.csv +11 -0
  81. teradataml/data/Convolve2ValidRight.csv +11 -0
  82. teradataml/data/DFFTConv_Real_8_8.csv +65 -0
  83. teradataml/data/Employee.csv +5 -0
  84. teradataml/data/Employee_Address.csv +4 -0
  85. teradataml/data/Employee_roles.csv +5 -0
  86. teradataml/data/JulesBelvezeDummyData.csv +100 -0
  87. teradataml/data/Mall_customer_data.csv +201 -0
  88. teradataml/data/Orders1_12mf.csv +25 -0
  89. teradataml/data/Pi_loan.csv +7 -0
  90. teradataml/data/SMOOTHED_DATA.csv +7 -0
  91. teradataml/data/TestDFFT8.csv +9 -0
  92. teradataml/data/TestRiver.csv +109 -0
  93. teradataml/data/Traindata.csv +28 -0
  94. teradataml/data/__init__.py +0 -0
  95. teradataml/data/acf.csv +17 -0
  96. teradataml/data/adaboost_example.json +34 -0
  97. teradataml/data/adaboostpredict_example.json +24 -0
  98. teradataml/data/additional_table.csv +11 -0
  99. teradataml/data/admissions_test.csv +21 -0
  100. teradataml/data/admissions_train.csv +41 -0
  101. teradataml/data/admissions_train_nulls.csv +41 -0
  102. teradataml/data/advertising.csv +201 -0
  103. teradataml/data/ageandheight.csv +13 -0
  104. teradataml/data/ageandpressure.csv +31 -0
  105. teradataml/data/amazon_reviews_25.csv +26 -0
  106. teradataml/data/antiselect_example.json +36 -0
  107. teradataml/data/antiselect_input.csv +8 -0
  108. teradataml/data/antiselect_input_mixed_case.csv +8 -0
  109. teradataml/data/applicant_external.csv +7 -0
  110. teradataml/data/applicant_reference.csv +7 -0
  111. teradataml/data/apriori_example.json +22 -0
  112. teradataml/data/arima_example.json +9 -0
  113. teradataml/data/assortedtext_input.csv +8 -0
  114. teradataml/data/attribution_example.json +34 -0
  115. teradataml/data/attribution_sample_table.csv +27 -0
  116. teradataml/data/attribution_sample_table1.csv +6 -0
  117. teradataml/data/attribution_sample_table2.csv +11 -0
  118. teradataml/data/bank_churn.csv +10001 -0
  119. teradataml/data/bank_marketing.csv +11163 -0
  120. teradataml/data/bank_web_clicks1.csv +43 -0
  121. teradataml/data/bank_web_clicks2.csv +91 -0
  122. teradataml/data/bank_web_url.csv +85 -0
  123. teradataml/data/barrier.csv +2 -0
  124. teradataml/data/barrier_new.csv +3 -0
  125. teradataml/data/betweenness_example.json +14 -0
  126. teradataml/data/bike_sharing.csv +732 -0
  127. teradataml/data/bin_breaks.csv +8 -0
  128. teradataml/data/bin_fit_ip.csv +4 -0
  129. teradataml/data/binary_complex_left.csv +11 -0
  130. teradataml/data/binary_complex_right.csv +11 -0
  131. teradataml/data/binary_matrix_complex_left.csv +21 -0
  132. teradataml/data/binary_matrix_complex_right.csv +21 -0
  133. teradataml/data/binary_matrix_real_left.csv +21 -0
  134. teradataml/data/binary_matrix_real_right.csv +21 -0
  135. teradataml/data/blood2ageandweight.csv +26 -0
  136. teradataml/data/bmi.csv +501 -0
  137. teradataml/data/boston.csv +507 -0
  138. teradataml/data/boston2cols.csv +721 -0
  139. teradataml/data/breast_cancer.csv +570 -0
  140. teradataml/data/buoydata_mix.csv +11 -0
  141. teradataml/data/burst_data.csv +5 -0
  142. teradataml/data/burst_example.json +21 -0
  143. teradataml/data/byom_example.json +34 -0
  144. teradataml/data/bytes_table.csv +4 -0
  145. teradataml/data/cal_housing_ex_raw.csv +70 -0
  146. teradataml/data/callers.csv +7 -0
  147. teradataml/data/calls.csv +10 -0
  148. teradataml/data/cars_hist.csv +33 -0
  149. teradataml/data/cat_table.csv +25 -0
  150. teradataml/data/ccm_example.json +32 -0
  151. teradataml/data/ccm_input.csv +91 -0
  152. teradataml/data/ccm_input2.csv +13 -0
  153. teradataml/data/ccmexample.csv +101 -0
  154. teradataml/data/ccmprepare_example.json +9 -0
  155. teradataml/data/ccmprepare_input.csv +91 -0
  156. teradataml/data/cfilter_example.json +12 -0
  157. teradataml/data/changepointdetection_example.json +18 -0
  158. teradataml/data/changepointdetectionrt_example.json +8 -0
  159. teradataml/data/chi_sq.csv +3 -0
  160. teradataml/data/churn_data.csv +14 -0
  161. teradataml/data/churn_emission.csv +35 -0
  162. teradataml/data/churn_initial.csv +3 -0
  163. teradataml/data/churn_state_transition.csv +5 -0
  164. teradataml/data/citedges_2.csv +745 -0
  165. teradataml/data/citvertices_2.csv +1210 -0
  166. teradataml/data/clicks2.csv +16 -0
  167. teradataml/data/clickstream.csv +13 -0
  168. teradataml/data/clickstream1.csv +11 -0
  169. teradataml/data/closeness_example.json +16 -0
  170. teradataml/data/complaints.csv +21 -0
  171. teradataml/data/complaints_mini.csv +3 -0
  172. teradataml/data/complaints_test_tokenized.csv +353 -0
  173. teradataml/data/complaints_testtoken.csv +224 -0
  174. teradataml/data/complaints_tokens_model.csv +348 -0
  175. teradataml/data/complaints_tokens_test.csv +353 -0
  176. teradataml/data/complaints_traintoken.csv +472 -0
  177. teradataml/data/computers_category.csv +1001 -0
  178. teradataml/data/computers_test1.csv +1252 -0
  179. teradataml/data/computers_train1.csv +5009 -0
  180. teradataml/data/computers_train1_clustered.csv +5009 -0
  181. teradataml/data/confusionmatrix_example.json +9 -0
  182. teradataml/data/conversion_event_table.csv +3 -0
  183. teradataml/data/corr_input.csv +17 -0
  184. teradataml/data/correlation_example.json +11 -0
  185. teradataml/data/covid_confirm_sd.csv +83 -0
  186. teradataml/data/coxhazardratio_example.json +39 -0
  187. teradataml/data/coxph_example.json +15 -0
  188. teradataml/data/coxsurvival_example.json +28 -0
  189. teradataml/data/cpt.csv +41 -0
  190. teradataml/data/credit_ex_merged.csv +45 -0
  191. teradataml/data/creditcard_data.csv +1001 -0
  192. teradataml/data/customer_loyalty.csv +301 -0
  193. teradataml/data/customer_loyalty_newseq.csv +31 -0
  194. teradataml/data/customer_segmentation_test.csv +2628 -0
  195. teradataml/data/customer_segmentation_train.csv +8069 -0
  196. teradataml/data/dataframe_example.json +173 -0
  197. teradataml/data/decisionforest_example.json +37 -0
  198. teradataml/data/decisionforestpredict_example.json +38 -0
  199. teradataml/data/decisiontree_example.json +21 -0
  200. teradataml/data/decisiontreepredict_example.json +45 -0
  201. teradataml/data/dfft2_size4_real.csv +17 -0
  202. teradataml/data/dfft2_test_matrix16.csv +17 -0
  203. teradataml/data/dfft2conv_real_4_4.csv +65 -0
  204. teradataml/data/diabetes.csv +443 -0
  205. teradataml/data/diabetes_test.csv +89 -0
  206. teradataml/data/dict_table.csv +5 -0
  207. teradataml/data/docperterm_table.csv +4 -0
  208. teradataml/data/docs/__init__.py +1 -0
  209. teradataml/data/docs/byom/__init__.py +0 -0
  210. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -0
  211. teradataml/data/docs/byom/docs/DataikuPredict.py +217 -0
  212. teradataml/data/docs/byom/docs/H2OPredict.py +325 -0
  213. teradataml/data/docs/byom/docs/ONNXEmbeddings.py +242 -0
  214. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -0
  215. teradataml/data/docs/byom/docs/ONNXSeq2Seq.py +255 -0
  216. teradataml/data/docs/byom/docs/PMMLPredict.py +278 -0
  217. teradataml/data/docs/byom/docs/__init__.py +0 -0
  218. teradataml/data/docs/sqle/__init__.py +0 -0
  219. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +83 -0
  220. teradataml/data/docs/sqle/docs_17_10/Attribution.py +200 -0
  221. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +172 -0
  222. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -0
  223. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -0
  224. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -0
  225. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +86 -0
  226. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +96 -0
  227. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -0
  228. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +152 -0
  229. teradataml/data/docs/sqle/docs_17_10/FTest.py +161 -0
  230. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +83 -0
  231. teradataml/data/docs/sqle/docs_17_10/Fit.py +88 -0
  232. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -0
  233. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +85 -0
  234. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +82 -0
  235. teradataml/data/docs/sqle/docs_17_10/Histogram.py +165 -0
  236. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -0
  237. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +209 -0
  238. teradataml/data/docs/sqle/docs_17_10/NPath.py +266 -0
  239. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -0
  240. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -0
  241. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -0
  242. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +135 -0
  243. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -0
  244. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +166 -0
  245. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -0
  246. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -0
  247. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +112 -0
  248. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -0
  249. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +105 -0
  250. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +110 -0
  251. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +118 -0
  252. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -0
  253. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +153 -0
  254. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -0
  255. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -0
  256. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +114 -0
  257. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -0
  258. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -0
  259. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -0
  260. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +146 -0
  261. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -0
  262. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +142 -0
  263. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -0
  264. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -0
  265. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -0
  266. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -0
  267. teradataml/data/docs/sqle/docs_17_10/__init__.py +0 -0
  268. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -0
  269. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +83 -0
  270. teradataml/data/docs/sqle/docs_17_20/Apriori.py +138 -0
  271. teradataml/data/docs/sqle/docs_17_20/Attribution.py +201 -0
  272. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +172 -0
  273. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -0
  274. teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
  275. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -0
  276. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -0
  277. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -0
  278. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +86 -0
  279. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +246 -0
  280. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -0
  281. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +280 -0
  282. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -0
  283. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +136 -0
  284. teradataml/data/docs/sqle/docs_17_20/FTest.py +240 -0
  285. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +83 -0
  286. teradataml/data/docs/sqle/docs_17_20/Fit.py +88 -0
  287. teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -0
  288. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +415 -0
  289. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -0
  290. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -0
  291. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -0
  292. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +109 -0
  293. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +106 -0
  294. teradataml/data/docs/sqle/docs_17_20/Histogram.py +224 -0
  295. teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -0
  296. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -0
  297. teradataml/data/docs/sqle/docs_17_20/KNN.py +215 -0
  298. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -0
  299. teradataml/data/docs/sqle/docs_17_20/NERExtractor.py +121 -0
  300. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +209 -0
  301. teradataml/data/docs/sqle/docs_17_20/NPath.py +266 -0
  302. teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
  303. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -0
  304. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -0
  305. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +127 -0
  306. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +119 -0
  307. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -0
  308. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -0
  309. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -0
  310. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -0
  311. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +231 -0
  312. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -0
  313. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +220 -0
  314. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -0
  315. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +191 -0
  316. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -0
  317. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -0
  318. teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
  319. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +112 -0
  320. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -0
  321. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +105 -0
  322. teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -0
  323. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +155 -0
  324. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -0
  325. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -0
  326. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -0
  327. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +109 -0
  328. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +118 -0
  329. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -0
  330. teradataml/data/docs/sqle/docs_17_20/SMOTE.py +212 -0
  331. teradataml/data/docs/sqle/docs_17_20/SVM.py +414 -0
  332. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -0
  333. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +153 -0
  334. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -0
  335. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -0
  336. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -0
  337. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +114 -0
  338. teradataml/data/docs/sqle/docs_17_20/Shap.py +225 -0
  339. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +153 -0
  340. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -0
  341. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -0
  342. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -0
  343. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +146 -0
  344. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -0
  345. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -0
  346. teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
  347. teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
  348. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +267 -0
  349. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -0
  350. teradataml/data/docs/sqle/docs_17_20/TextMorph.py +119 -0
  351. teradataml/data/docs/sqle/docs_17_20/TextParser.py +224 -0
  352. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +160 -0
  353. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -0
  354. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +142 -0
  355. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -0
  356. teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
  357. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +169 -0
  358. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -0
  359. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -0
  360. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +237 -0
  361. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +362 -0
  362. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -0
  363. teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -0
  364. teradataml/data/docs/sqle/docs_17_20/__init__.py +0 -0
  365. teradataml/data/docs/tableoperator/__init__.py +0 -0
  366. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +430 -0
  367. teradataml/data/docs/tableoperator/docs_17_00/__init__.py +0 -0
  368. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +430 -0
  369. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +348 -0
  370. teradataml/data/docs/tableoperator/docs_17_05/__init__.py +0 -0
  371. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +429 -0
  372. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +348 -0
  373. teradataml/data/docs/tableoperator/docs_17_10/__init__.py +0 -0
  374. teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
  375. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +440 -0
  376. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +387 -0
  377. teradataml/data/docs/tableoperator/docs_17_20/__init__.py +0 -0
  378. teradataml/data/docs/uaf/__init__.py +0 -0
  379. teradataml/data/docs/uaf/docs_17_20/ACF.py +186 -0
  380. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +370 -0
  381. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +172 -0
  382. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +161 -0
  383. teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
  384. teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
  385. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +248 -0
  386. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -0
  387. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +178 -0
  388. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +175 -0
  389. teradataml/data/docs/uaf/docs_17_20/Convolve.py +230 -0
  390. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +218 -0
  391. teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
  392. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +185 -0
  393. teradataml/data/docs/uaf/docs_17_20/DFFT.py +204 -0
  394. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -0
  395. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +216 -0
  396. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +192 -0
  397. teradataml/data/docs/uaf/docs_17_20/DIFF.py +175 -0
  398. teradataml/data/docs/uaf/docs_17_20/DTW.py +180 -0
  399. teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
  400. teradataml/data/docs/uaf/docs_17_20/DWT2D.py +217 -0
  401. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +142 -0
  402. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +184 -0
  403. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +185 -0
  404. teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
  405. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -0
  406. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +206 -0
  407. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +143 -0
  408. teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +198 -0
  409. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +260 -0
  410. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +165 -0
  411. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +191 -0
  412. teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
  413. teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
  414. teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
  415. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +121 -0
  416. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +156 -0
  417. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +215 -0
  418. teradataml/data/docs/uaf/docs_17_20/MAMean.py +174 -0
  419. teradataml/data/docs/uaf/docs_17_20/MInfo.py +134 -0
  420. teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
  421. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +145 -0
  422. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +191 -0
  423. teradataml/data/docs/uaf/docs_17_20/PACF.py +157 -0
  424. teradataml/data/docs/uaf/docs_17_20/Portman.py +217 -0
  425. teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +203 -0
  426. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +155 -0
  427. teradataml/data/docs/uaf/docs_17_20/Resample.py +237 -0
  428. teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
  429. teradataml/data/docs/uaf/docs_17_20/SInfo.py +123 -0
  430. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +173 -0
  431. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +174 -0
  432. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +171 -0
  433. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +164 -0
  434. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +180 -0
  435. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +208 -0
  436. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +151 -0
  437. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -0
  438. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +202 -0
  439. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +171 -0
  440. teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
  441. teradataml/data/docs/uaf/docs_17_20/__init__.py +0 -0
  442. teradataml/data/dtw_example.json +18 -0
  443. teradataml/data/dtw_t1.csv +11 -0
  444. teradataml/data/dtw_t2.csv +4 -0
  445. teradataml/data/dwt2d_dataTable.csv +65 -0
  446. teradataml/data/dwt2d_example.json +16 -0
  447. teradataml/data/dwt_dataTable.csv +8 -0
  448. teradataml/data/dwt_example.json +15 -0
  449. teradataml/data/dwt_filterTable.csv +3 -0
  450. teradataml/data/dwt_filter_dim.csv +5 -0
  451. teradataml/data/emission.csv +9 -0
  452. teradataml/data/emp_table_by_dept.csv +19 -0
  453. teradataml/data/employee_info.csv +4 -0
  454. teradataml/data/employee_table.csv +6 -0
  455. teradataml/data/excluding_event_table.csv +2 -0
  456. teradataml/data/finance_data.csv +6 -0
  457. teradataml/data/finance_data2.csv +61 -0
  458. teradataml/data/finance_data3.csv +93 -0
  459. teradataml/data/finance_data4.csv +13 -0
  460. teradataml/data/fish.csv +160 -0
  461. teradataml/data/fm_blood2ageandweight.csv +26 -0
  462. teradataml/data/fmeasure_example.json +12 -0
  463. teradataml/data/followers_leaders.csv +10 -0
  464. teradataml/data/fpgrowth_example.json +12 -0
  465. teradataml/data/frequentpaths_example.json +29 -0
  466. teradataml/data/friends.csv +9 -0
  467. teradataml/data/fs_input.csv +33 -0
  468. teradataml/data/fs_input1.csv +33 -0
  469. teradataml/data/genData.csv +513 -0
  470. teradataml/data/geodataframe_example.json +40 -0
  471. teradataml/data/glass_types.csv +215 -0
  472. teradataml/data/glm_admissions_model.csv +12 -0
  473. teradataml/data/glm_example.json +56 -0
  474. teradataml/data/glml1l2_example.json +28 -0
  475. teradataml/data/glml1l2predict_example.json +54 -0
  476. teradataml/data/glmpredict_example.json +54 -0
  477. teradataml/data/gq_t1.csv +21 -0
  478. teradataml/data/grocery_transaction.csv +19 -0
  479. teradataml/data/hconvolve_complex_right.csv +5 -0
  480. teradataml/data/hconvolve_complex_rightmulti.csv +5 -0
  481. teradataml/data/histogram_example.json +12 -0
  482. teradataml/data/hmmdecoder_example.json +79 -0
  483. teradataml/data/hmmevaluator_example.json +25 -0
  484. teradataml/data/hmmsupervised_example.json +10 -0
  485. teradataml/data/hmmunsupervised_example.json +8 -0
  486. teradataml/data/hnsw_alter_data.csv +5 -0
  487. teradataml/data/hnsw_data.csv +10 -0
  488. teradataml/data/house_values.csv +12 -0
  489. teradataml/data/house_values2.csv +13 -0
  490. teradataml/data/housing_cat.csv +7 -0
  491. teradataml/data/housing_data.csv +9 -0
  492. teradataml/data/housing_test.csv +47 -0
  493. teradataml/data/housing_test_binary.csv +47 -0
  494. teradataml/data/housing_train.csv +493 -0
  495. teradataml/data/housing_train_attribute.csv +5 -0
  496. teradataml/data/housing_train_binary.csv +437 -0
  497. teradataml/data/housing_train_parameter.csv +2 -0
  498. teradataml/data/housing_train_response.csv +493 -0
  499. teradataml/data/housing_train_segment.csv +201 -0
  500. teradataml/data/ibm_stock.csv +370 -0
  501. teradataml/data/ibm_stock1.csv +370 -0
  502. teradataml/data/identitymatch_example.json +22 -0
  503. teradataml/data/idf_table.csv +4 -0
  504. teradataml/data/idwt2d_dataTable.csv +5 -0
  505. teradataml/data/idwt_dataTable.csv +8 -0
  506. teradataml/data/idwt_filterTable.csv +3 -0
  507. teradataml/data/impressions.csv +101 -0
  508. teradataml/data/inflation.csv +21 -0
  509. teradataml/data/initial.csv +3 -0
  510. teradataml/data/insect2Cols.csv +61 -0
  511. teradataml/data/insect_sprays.csv +13 -0
  512. teradataml/data/insurance.csv +1339 -0
  513. teradataml/data/interpolator_example.json +13 -0
  514. teradataml/data/interval_data.csv +5 -0
  515. teradataml/data/iris_altinput.csv +481 -0
  516. teradataml/data/iris_attribute_output.csv +8 -0
  517. teradataml/data/iris_attribute_test.csv +121 -0
  518. teradataml/data/iris_attribute_train.csv +481 -0
  519. teradataml/data/iris_category_expect_predict.csv +31 -0
  520. teradataml/data/iris_data.csv +151 -0
  521. teradataml/data/iris_input.csv +151 -0
  522. teradataml/data/iris_response_train.csv +121 -0
  523. teradataml/data/iris_test.csv +31 -0
  524. teradataml/data/iris_train.csv +121 -0
  525. teradataml/data/join_table1.csv +4 -0
  526. teradataml/data/join_table2.csv +4 -0
  527. teradataml/data/jsons/anly_function_name.json +7 -0
  528. teradataml/data/jsons/byom/ONNXSeq2Seq.json +287 -0
  529. teradataml/data/jsons/byom/dataikupredict.json +148 -0
  530. teradataml/data/jsons/byom/datarobotpredict.json +147 -0
  531. teradataml/data/jsons/byom/h2opredict.json +195 -0
  532. teradataml/data/jsons/byom/onnxembeddings.json +267 -0
  533. teradataml/data/jsons/byom/onnxpredict.json +187 -0
  534. teradataml/data/jsons/byom/pmmlpredict.json +147 -0
  535. teradataml/data/jsons/paired_functions.json +450 -0
  536. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -0
  537. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -0
  538. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -0
  539. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -0
  540. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -0
  541. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -0
  542. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -0
  543. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -0
  544. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -0
  545. teradataml/data/jsons/sqle/16.20/Pack.json +98 -0
  546. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -0
  547. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -0
  548. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -0
  549. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -0
  550. teradataml/data/jsons/sqle/16.20/nPath.json +269 -0
  551. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -0
  552. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -0
  553. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -0
  554. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -0
  555. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -0
  556. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -0
  557. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -0
  558. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -0
  559. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -0
  560. teradataml/data/jsons/sqle/17.00/Pack.json +98 -0
  561. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -0
  562. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -0
  563. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -0
  564. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -0
  565. teradataml/data/jsons/sqle/17.00/nPath.json +269 -0
  566. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -0
  567. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -0
  568. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -0
  569. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -0
  570. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -0
  571. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -0
  572. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -0
  573. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -0
  574. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -0
  575. teradataml/data/jsons/sqle/17.05/Pack.json +98 -0
  576. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -0
  577. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -0
  578. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -0
  579. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -0
  580. teradataml/data/jsons/sqle/17.05/nPath.json +269 -0
  581. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -0
  582. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -0
  583. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -0
  584. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +172 -0
  585. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -0
  586. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -0
  587. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -0
  588. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -0
  589. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -0
  590. teradataml/data/jsons/sqle/17.10/Pack.json +133 -0
  591. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -0
  592. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -0
  593. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -0
  594. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -0
  595. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -0
  596. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +54 -0
  597. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +68 -0
  598. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +54 -0
  599. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +69 -0
  600. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -0
  601. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +52 -0
  602. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -0
  603. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -0
  604. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +53 -0
  605. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +53 -0
  606. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +133 -0
  607. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -0
  608. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +183 -0
  609. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +66 -0
  610. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +197 -0
  611. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -0
  612. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -0
  613. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -0
  614. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +112 -0
  615. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -0
  616. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +128 -0
  617. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +71 -0
  618. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +157 -0
  619. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +71 -0
  620. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +148 -0
  621. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -0
  622. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -0
  623. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +119 -0
  624. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +53 -0
  625. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +53 -0
  626. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -0
  627. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -0
  628. teradataml/data/jsons/sqle/17.10/nPath.json +269 -0
  629. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -0
  630. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -0
  631. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -0
  632. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -0
  633. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -0
  634. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -0
  635. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -0
  636. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -0
  637. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -0
  638. teradataml/data/jsons/sqle/17.20/Pack.json +133 -0
  639. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -0
  640. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -0
  641. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -0
  642. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +149 -0
  643. teradataml/data/jsons/sqle/17.20/TD_Apriori.json +181 -0
  644. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -0
  645. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -0
  646. teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
  647. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -0
  648. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +68 -0
  649. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +146 -0
  650. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -0
  651. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -0
  652. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -0
  653. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +260 -0
  654. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -0
  655. teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -0
  656. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -0
  657. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -0
  658. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -0
  659. teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -0
  660. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -0
  661. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -0
  662. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -0
  663. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -0
  664. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -0
  665. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -0
  666. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -0
  667. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +232 -0
  668. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +87 -0
  669. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -0
  670. teradataml/data/jsons/sqle/17.20/TD_NERExtractor.json +145 -0
  671. teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
  672. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
  673. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -0
  674. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -0
  675. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -0
  676. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -0
  677. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +316 -0
  678. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +124 -0
  679. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -0
  680. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -0
  681. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -0
  682. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -0
  683. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -0
  684. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -0
  685. teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
  686. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -0
  687. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -0
  688. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -0
  689. teradataml/data/jsons/sqle/17.20/TD_ROC.json +179 -0
  690. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +179 -0
  691. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +74 -0
  692. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -0
  693. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +138 -0
  694. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -0
  695. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +128 -0
  696. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +71 -0
  697. teradataml/data/jsons/sqle/17.20/TD_SMOTE.json +267 -0
  698. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -0
  699. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -0
  700. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +310 -0
  701. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +120 -0
  702. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +194 -0
  703. teradataml/data/jsons/sqle/17.20/TD_Shap.json +221 -0
  704. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +143 -0
  705. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -0
  706. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -0
  707. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -0
  708. teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
  709. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -0
  710. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -0
  711. teradataml/data/jsons/sqle/17.20/TD_TextMorph.json +134 -0
  712. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +297 -0
  713. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -0
  714. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -0
  715. teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
  716. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +183 -0
  717. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +53 -0
  718. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +53 -0
  719. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -0
  720. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -0
  721. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -0
  722. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -0
  723. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -0
  724. teradataml/data/jsons/sqle/17.20/nPath.json +269 -0
  725. teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json +370 -0
  726. teradataml/data/jsons/sqle/20.00/AI_AskLLM.json +460 -0
  727. teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json +385 -0
  728. teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json +369 -0
  729. teradataml/data/jsons/sqle/20.00/AI_MaskPII.json +369 -0
  730. teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json +369 -0
  731. teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json +369 -0
  732. teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json +400 -0
  733. teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json +401 -0
  734. teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json +384 -0
  735. teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json +384 -0
  736. teradataml/data/jsons/sqle/20.00/TD_API_AzureML.json +151 -0
  737. teradataml/data/jsons/sqle/20.00/TD_API_Sagemaker.json +182 -0
  738. teradataml/data/jsons/sqle/20.00/TD_API_VertexAI.json +183 -0
  739. teradataml/data/jsons/sqle/20.00/TD_HNSW.json +296 -0
  740. teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json +206 -0
  741. teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json +32 -0
  742. teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
  743. teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
  744. teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
  745. teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
  746. teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
  747. teradataml/data/jsons/tableoperator/17.00/read_nos.json +198 -0
  748. teradataml/data/jsons/tableoperator/17.05/read_nos.json +198 -0
  749. teradataml/data/jsons/tableoperator/17.05/write_nos.json +195 -0
  750. teradataml/data/jsons/tableoperator/17.10/read_nos.json +184 -0
  751. teradataml/data/jsons/tableoperator/17.10/write_nos.json +195 -0
  752. teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
  753. teradataml/data/jsons/tableoperator/17.20/read_nos.json +183 -0
  754. teradataml/data/jsons/tableoperator/17.20/write_nos.json +224 -0
  755. teradataml/data/jsons/uaf/17.20/TD_ACF.json +132 -0
  756. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +396 -0
  757. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +77 -0
  758. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +153 -0
  759. teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
  760. teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
  761. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +107 -0
  762. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +106 -0
  763. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +89 -0
  764. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +104 -0
  765. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +78 -0
  766. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +66 -0
  767. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +87 -0
  768. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +134 -0
  769. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +144 -0
  770. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -0
  771. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +108 -0
  772. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +78 -0
  773. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +92 -0
  774. teradataml/data/jsons/uaf/17.20/TD_DTW.json +114 -0
  775. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +101 -0
  776. teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
  777. teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
  778. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +39 -0
  779. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +101 -0
  780. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +85 -0
  781. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +71 -0
  782. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +139 -0
  783. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECASTER.json +313 -0
  784. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +58 -0
  785. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +81 -0
  786. teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
  787. teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
  788. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +64 -0
  789. teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
  790. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +182 -0
  791. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +103 -0
  792. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +181 -0
  793. teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
  794. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +68 -0
  795. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +67 -0
  796. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +179 -0
  797. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -0
  798. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +119 -0
  799. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -0
  800. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +98 -0
  801. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +194 -0
  802. teradataml/data/jsons/uaf/17.20/TD_SAX.json +210 -0
  803. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +143 -0
  804. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +90 -0
  805. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +80 -0
  806. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +68 -0
  807. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -0
  808. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +58 -0
  809. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +163 -0
  810. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +101 -0
  811. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +112 -0
  812. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -0
  813. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +78 -0
  814. teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +410 -0
  815. teradataml/data/kmeans_example.json +23 -0
  816. teradataml/data/kmeans_table.csv +10 -0
  817. teradataml/data/kmeans_us_arrests_data.csv +51 -0
  818. teradataml/data/knn_example.json +19 -0
  819. teradataml/data/knnrecommender_example.json +7 -0
  820. teradataml/data/knnrecommenderpredict_example.json +12 -0
  821. teradataml/data/lar_example.json +17 -0
  822. teradataml/data/larpredict_example.json +30 -0
  823. teradataml/data/lc_new_predictors.csv +5 -0
  824. teradataml/data/lc_new_reference.csv +9 -0
  825. teradataml/data/lda_example.json +9 -0
  826. teradataml/data/ldainference_example.json +15 -0
  827. teradataml/data/ldatopicsummary_example.json +9 -0
  828. teradataml/data/levendist_input.csv +13 -0
  829. teradataml/data/levenshteindistance_example.json +10 -0
  830. teradataml/data/linreg_example.json +10 -0
  831. teradataml/data/load_example_data.py +350 -0
  832. teradataml/data/loan_prediction.csv +295 -0
  833. teradataml/data/lungcancer.csv +138 -0
  834. teradataml/data/mappingdata.csv +12 -0
  835. teradataml/data/medical_readings.csv +101 -0
  836. teradataml/data/milk_timeseries.csv +157 -0
  837. teradataml/data/min_max_titanic.csv +4 -0
  838. teradataml/data/minhash_example.json +6 -0
  839. teradataml/data/ml_ratings.csv +7547 -0
  840. teradataml/data/ml_ratings_10.csv +2445 -0
  841. teradataml/data/mobile_data.csv +13 -0
  842. teradataml/data/model1_table.csv +5 -0
  843. teradataml/data/model2_table.csv +5 -0
  844. teradataml/data/models/License_file.txt +1 -0
  845. teradataml/data/models/License_file_empty.txt +0 -0
  846. teradataml/data/models/dataiku_iris_data_ann_thin +0 -0
  847. teradataml/data/models/dr_iris_rf +0 -0
  848. teradataml/data/models/iris_db_dt_model_sklearn.onnx +0 -0
  849. teradataml/data/models/iris_db_dt_model_sklearn_floattensor.onnx +0 -0
  850. teradataml/data/models/iris_db_glm_model.pmml +57 -0
  851. teradataml/data/models/iris_db_xgb_model.pmml +4471 -0
  852. teradataml/data/models/iris_kmeans_model +0 -0
  853. teradataml/data/models/iris_mojo_glm_h2o_model +0 -0
  854. teradataml/data/models/iris_mojo_xgb_h2o_model +0 -0
  855. teradataml/data/modularity_example.json +12 -0
  856. teradataml/data/movavg_example.json +8 -0
  857. teradataml/data/mtx1.csv +7 -0
  858. teradataml/data/mtx2.csv +13 -0
  859. teradataml/data/multi_model_classification.csv +401 -0
  860. teradataml/data/multi_model_regression.csv +401 -0
  861. teradataml/data/mvdfft8.csv +9 -0
  862. teradataml/data/naivebayes_example.json +10 -0
  863. teradataml/data/naivebayespredict_example.json +19 -0
  864. teradataml/data/naivebayestextclassifier2_example.json +7 -0
  865. teradataml/data/naivebayestextclassifier_example.json +8 -0
  866. teradataml/data/naivebayestextclassifierpredict_example.json +32 -0
  867. teradataml/data/name_Find_configure.csv +10 -0
  868. teradataml/data/namedentityfinder_example.json +14 -0
  869. teradataml/data/namedentityfinderevaluator_example.json +10 -0
  870. teradataml/data/namedentityfindertrainer_example.json +6 -0
  871. teradataml/data/nb_iris_input_test.csv +31 -0
  872. teradataml/data/nb_iris_input_train.csv +121 -0
  873. teradataml/data/nbp_iris_model.csv +13 -0
  874. teradataml/data/ner_dict.csv +8 -0
  875. teradataml/data/ner_extractor_text.csv +2 -0
  876. teradataml/data/ner_input_eng.csv +7 -0
  877. teradataml/data/ner_rule.csv +5 -0
  878. teradataml/data/ner_sports_test2.csv +29 -0
  879. teradataml/data/ner_sports_train.csv +501 -0
  880. teradataml/data/nerevaluator_example.json +6 -0
  881. teradataml/data/nerextractor_example.json +18 -0
  882. teradataml/data/nermem_sports_test.csv +18 -0
  883. teradataml/data/nermem_sports_train.csv +51 -0
  884. teradataml/data/nertrainer_example.json +7 -0
  885. teradataml/data/ngrams_example.json +7 -0
  886. teradataml/data/notebooks/__init__.py +0 -0
  887. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -0
  888. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -0
  889. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -0
  890. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -0
  891. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -0
  892. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -0
  893. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -0
  894. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -0
  895. teradataml/data/notebooks/sqlalchemy/__init__.py +0 -0
  896. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -0
  897. teradataml/data/npath_example.json +23 -0
  898. teradataml/data/ntree_example.json +14 -0
  899. teradataml/data/numeric_strings.csv +5 -0
  900. teradataml/data/numerics.csv +4 -0
  901. teradataml/data/ocean_buoy.csv +17 -0
  902. teradataml/data/ocean_buoy2.csv +17 -0
  903. teradataml/data/ocean_buoys.csv +28 -0
  904. teradataml/data/ocean_buoys2.csv +10 -0
  905. teradataml/data/ocean_buoys_nonpti.csv +28 -0
  906. teradataml/data/ocean_buoys_seq.csv +29 -0
  907. teradataml/data/onehot_encoder_train.csv +4 -0
  908. teradataml/data/openml_example.json +92 -0
  909. teradataml/data/optional_event_table.csv +4 -0
  910. teradataml/data/orders1.csv +11 -0
  911. teradataml/data/orders1_12.csv +13 -0
  912. teradataml/data/orders_ex.csv +4 -0
  913. teradataml/data/pack_example.json +9 -0
  914. teradataml/data/package_tracking.csv +19 -0
  915. teradataml/data/package_tracking_pti.csv +19 -0
  916. teradataml/data/pagerank_example.json +13 -0
  917. teradataml/data/paragraphs_input.csv +6 -0
  918. teradataml/data/pathanalyzer_example.json +8 -0
  919. teradataml/data/pathgenerator_example.json +8 -0
  920. teradataml/data/patient_profile.csv +101 -0
  921. teradataml/data/pattern_matching_data.csv +11 -0
  922. teradataml/data/payment_fraud_dataset.csv +10001 -0
  923. teradataml/data/peppers.png +0 -0
  924. teradataml/data/phrases.csv +7 -0
  925. teradataml/data/pivot_example.json +9 -0
  926. teradataml/data/pivot_input.csv +22 -0
  927. teradataml/data/playerRating.csv +31 -0
  928. teradataml/data/pos_input.csv +40 -0
  929. teradataml/data/postagger_example.json +7 -0
  930. teradataml/data/posttagger_output.csv +44 -0
  931. teradataml/data/production_data.csv +17 -0
  932. teradataml/data/production_data2.csv +7 -0
  933. teradataml/data/randomsample_example.json +32 -0
  934. teradataml/data/randomwalksample_example.json +9 -0
  935. teradataml/data/rank_table.csv +6 -0
  936. teradataml/data/real_values.csv +14 -0
  937. teradataml/data/ref_mobile_data.csv +4 -0
  938. teradataml/data/ref_mobile_data_dense.csv +2 -0
  939. teradataml/data/ref_url.csv +17 -0
  940. teradataml/data/restaurant_reviews.csv +7 -0
  941. teradataml/data/retail_churn_table.csv +27772 -0
  942. teradataml/data/river_data.csv +145 -0
  943. teradataml/data/roc_example.json +8 -0
  944. teradataml/data/roc_input.csv +101 -0
  945. teradataml/data/rule_inputs.csv +6 -0
  946. teradataml/data/rule_table.csv +2 -0
  947. teradataml/data/sales.csv +7 -0
  948. teradataml/data/sales_transaction.csv +501 -0
  949. teradataml/data/salesdata.csv +342 -0
  950. teradataml/data/sample_cities.csv +3 -0
  951. teradataml/data/sample_shapes.csv +11 -0
  952. teradataml/data/sample_streets.csv +3 -0
  953. teradataml/data/sampling_example.json +16 -0
  954. teradataml/data/sax_example.json +17 -0
  955. teradataml/data/scale_attributes.csv +3 -0
  956. teradataml/data/scale_example.json +74 -0
  957. teradataml/data/scale_housing.csv +11 -0
  958. teradataml/data/scale_housing_test.csv +6 -0
  959. teradataml/data/scale_input_part_sparse.csv +31 -0
  960. teradataml/data/scale_input_partitioned.csv +16 -0
  961. teradataml/data/scale_input_sparse.csv +11 -0
  962. teradataml/data/scale_parameters.csv +3 -0
  963. teradataml/data/scale_stat.csv +11 -0
  964. teradataml/data/scalebypartition_example.json +13 -0
  965. teradataml/data/scalemap_example.json +13 -0
  966. teradataml/data/scalesummary_example.json +12 -0
  967. teradataml/data/score_category.csv +101 -0
  968. teradataml/data/score_summary.csv +4 -0
  969. teradataml/data/script_example.json +10 -0
  970. teradataml/data/scripts/deploy_script.py +84 -0
  971. teradataml/data/scripts/lightgbm/dataset.template +175 -0
  972. teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +264 -0
  973. teradataml/data/scripts/lightgbm/lightgbm_function.template +234 -0
  974. teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +177 -0
  975. teradataml/data/scripts/mapper.R +20 -0
  976. teradataml/data/scripts/mapper.py +16 -0
  977. teradataml/data/scripts/mapper_replace.py +16 -0
  978. teradataml/data/scripts/sklearn/__init__.py +0 -0
  979. teradataml/data/scripts/sklearn/sklearn_fit.py +205 -0
  980. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +148 -0
  981. teradataml/data/scripts/sklearn/sklearn_function.template +144 -0
  982. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +166 -0
  983. teradataml/data/scripts/sklearn/sklearn_neighbors.py +161 -0
  984. teradataml/data/scripts/sklearn/sklearn_score.py +145 -0
  985. teradataml/data/scripts/sklearn/sklearn_transform.py +327 -0
  986. teradataml/data/sdk/modelops/modelops_spec.json +101737 -0
  987. teradataml/data/seeds.csv +10 -0
  988. teradataml/data/sentenceextractor_example.json +7 -0
  989. teradataml/data/sentiment_extract_input.csv +11 -0
  990. teradataml/data/sentiment_train.csv +16 -0
  991. teradataml/data/sentiment_word.csv +20 -0
  992. teradataml/data/sentiment_word_input.csv +20 -0
  993. teradataml/data/sentimentextractor_example.json +24 -0
  994. teradataml/data/sentimenttrainer_example.json +8 -0
  995. teradataml/data/sequence_table.csv +10 -0
  996. teradataml/data/seriessplitter_example.json +8 -0
  997. teradataml/data/sessionize_example.json +17 -0
  998. teradataml/data/sessionize_table.csv +116 -0
  999. teradataml/data/setop_test1.csv +24 -0
  1000. teradataml/data/setop_test2.csv +22 -0
  1001. teradataml/data/soc_nw_edges.csv +11 -0
  1002. teradataml/data/soc_nw_vertices.csv +8 -0
  1003. teradataml/data/souvenir_timeseries.csv +168 -0
  1004. teradataml/data/sparse_iris_attribute.csv +5 -0
  1005. teradataml/data/sparse_iris_test.csv +121 -0
  1006. teradataml/data/sparse_iris_train.csv +601 -0
  1007. teradataml/data/star1.csv +6 -0
  1008. teradataml/data/star_pivot.csv +8 -0
  1009. teradataml/data/state_transition.csv +5 -0
  1010. teradataml/data/stock_data.csv +53 -0
  1011. teradataml/data/stock_movement.csv +11 -0
  1012. teradataml/data/stock_vol.csv +76 -0
  1013. teradataml/data/stop_words.csv +8 -0
  1014. teradataml/data/store_sales.csv +37 -0
  1015. teradataml/data/stringsimilarity_example.json +8 -0
  1016. teradataml/data/strsimilarity_input.csv +13 -0
  1017. teradataml/data/students.csv +101 -0
  1018. teradataml/data/svm_iris_input_test.csv +121 -0
  1019. teradataml/data/svm_iris_input_train.csv +481 -0
  1020. teradataml/data/svm_iris_model.csv +7 -0
  1021. teradataml/data/svmdense_example.json +10 -0
  1022. teradataml/data/svmdensepredict_example.json +19 -0
  1023. teradataml/data/svmsparse_example.json +8 -0
  1024. teradataml/data/svmsparsepredict_example.json +14 -0
  1025. teradataml/data/svmsparsesummary_example.json +8 -0
  1026. teradataml/data/target_mobile_data.csv +13 -0
  1027. teradataml/data/target_mobile_data_dense.csv +5 -0
  1028. teradataml/data/target_udt_data.csv +8 -0
  1029. teradataml/data/tdnerextractor_example.json +14 -0
  1030. teradataml/data/templatedata.csv +1201 -0
  1031. teradataml/data/templates/open_source_ml.json +11 -0
  1032. teradataml/data/teradata_icon.ico +0 -0
  1033. teradataml/data/teradataml_example.json +1473 -0
  1034. teradataml/data/test_classification.csv +101 -0
  1035. teradataml/data/test_loan_prediction.csv +53 -0
  1036. teradataml/data/test_pacf_12.csv +37 -0
  1037. teradataml/data/test_prediction.csv +101 -0
  1038. teradataml/data/test_regression.csv +101 -0
  1039. teradataml/data/test_river2.csv +109 -0
  1040. teradataml/data/text_inputs.csv +6 -0
  1041. teradataml/data/textchunker_example.json +8 -0
  1042. teradataml/data/textclassifier_example.json +7 -0
  1043. teradataml/data/textclassifier_input.csv +7 -0
  1044. teradataml/data/textclassifiertrainer_example.json +7 -0
  1045. teradataml/data/textmorph_example.json +11 -0
  1046. teradataml/data/textparser_example.json +15 -0
  1047. teradataml/data/texttagger_example.json +12 -0
  1048. teradataml/data/texttokenizer_example.json +7 -0
  1049. teradataml/data/texttrainer_input.csv +11 -0
  1050. teradataml/data/tf_example.json +7 -0
  1051. teradataml/data/tfidf_example.json +14 -0
  1052. teradataml/data/tfidf_input1.csv +201 -0
  1053. teradataml/data/tfidf_train.csv +6 -0
  1054. teradataml/data/time_table1.csv +535 -0
  1055. teradataml/data/time_table2.csv +14 -0
  1056. teradataml/data/timeseriesdata.csv +1601 -0
  1057. teradataml/data/timeseriesdatasetsd4.csv +105 -0
  1058. teradataml/data/timestamp_data.csv +4 -0
  1059. teradataml/data/titanic.csv +892 -0
  1060. teradataml/data/titanic_dataset_unpivoted.csv +19 -0
  1061. teradataml/data/to_num_data.csv +4 -0
  1062. teradataml/data/tochar_data.csv +5 -0
  1063. teradataml/data/token_table.csv +696 -0
  1064. teradataml/data/train_multiclass.csv +101 -0
  1065. teradataml/data/train_regression.csv +101 -0
  1066. teradataml/data/train_regression_multiple_labels.csv +101 -0
  1067. teradataml/data/train_tracking.csv +28 -0
  1068. teradataml/data/trans_dense.csv +16 -0
  1069. teradataml/data/trans_sparse.csv +55 -0
  1070. teradataml/data/transformation_table.csv +6 -0
  1071. teradataml/data/transformation_table_new.csv +2 -0
  1072. teradataml/data/tv_spots.csv +16 -0
  1073. teradataml/data/twod_climate_data.csv +117 -0
  1074. teradataml/data/uaf_example.json +529 -0
  1075. teradataml/data/univariatestatistics_example.json +9 -0
  1076. teradataml/data/unpack_example.json +10 -0
  1077. teradataml/data/unpivot_example.json +25 -0
  1078. teradataml/data/unpivot_input.csv +8 -0
  1079. teradataml/data/url_data.csv +10 -0
  1080. teradataml/data/us_air_pass.csv +37 -0
  1081. teradataml/data/us_population.csv +624 -0
  1082. teradataml/data/us_states_shapes.csv +52 -0
  1083. teradataml/data/varmax_example.json +18 -0
  1084. teradataml/data/vectordistance_example.json +30 -0
  1085. teradataml/data/ville_climatedata.csv +121 -0
  1086. teradataml/data/ville_tempdata.csv +12 -0
  1087. teradataml/data/ville_tempdata1.csv +12 -0
  1088. teradataml/data/ville_temperature.csv +11 -0
  1089. teradataml/data/waveletTable.csv +1605 -0
  1090. teradataml/data/waveletTable2.csv +1605 -0
  1091. teradataml/data/weightedmovavg_example.json +9 -0
  1092. teradataml/data/wft_testing.csv +5 -0
  1093. teradataml/data/windowdfft.csv +16 -0
  1094. teradataml/data/wine_data.csv +1600 -0
  1095. teradataml/data/word_embed_input_table1.csv +6 -0
  1096. teradataml/data/word_embed_input_table2.csv +5 -0
  1097. teradataml/data/word_embed_model.csv +23 -0
  1098. teradataml/data/words_input.csv +13 -0
  1099. teradataml/data/xconvolve_complex_left.csv +6 -0
  1100. teradataml/data/xconvolve_complex_leftmulti.csv +6 -0
  1101. teradataml/data/xgboost_example.json +36 -0
  1102. teradataml/data/xgboostpredict_example.json +32 -0
  1103. teradataml/data/ztest_example.json +16 -0
  1104. teradataml/dataframe/__init__.py +0 -0
  1105. teradataml/dataframe/copy_to.py +2446 -0
  1106. teradataml/dataframe/data_transfer.py +2840 -0
  1107. teradataml/dataframe/dataframe.py +20908 -0
  1108. teradataml/dataframe/dataframe_utils.py +2114 -0
  1109. teradataml/dataframe/fastload.py +794 -0
  1110. teradataml/dataframe/functions.py +2110 -0
  1111. teradataml/dataframe/indexer.py +424 -0
  1112. teradataml/dataframe/row.py +160 -0
  1113. teradataml/dataframe/setop.py +1171 -0
  1114. teradataml/dataframe/sql.py +10904 -0
  1115. teradataml/dataframe/sql_function_parameters.py +440 -0
  1116. teradataml/dataframe/sql_functions.py +652 -0
  1117. teradataml/dataframe/sql_interfaces.py +220 -0
  1118. teradataml/dataframe/vantage_function_types.py +675 -0
  1119. teradataml/dataframe/window.py +694 -0
  1120. teradataml/dbutils/__init__.py +3 -0
  1121. teradataml/dbutils/dbutils.py +2871 -0
  1122. teradataml/dbutils/filemgr.py +318 -0
  1123. teradataml/gen_ai/__init__.py +2 -0
  1124. teradataml/gen_ai/convAI.py +473 -0
  1125. teradataml/geospatial/__init__.py +4 -0
  1126. teradataml/geospatial/geodataframe.py +1105 -0
  1127. teradataml/geospatial/geodataframecolumn.py +392 -0
  1128. teradataml/geospatial/geometry_types.py +926 -0
  1129. teradataml/hyperparameter_tuner/__init__.py +1 -0
  1130. teradataml/hyperparameter_tuner/optimizer.py +4115 -0
  1131. teradataml/hyperparameter_tuner/utils.py +303 -0
  1132. teradataml/lib/__init__.py +0 -0
  1133. teradataml/lib/aed_0_1.dll +0 -0
  1134. teradataml/lib/libaed_0_1.dylib +0 -0
  1135. teradataml/lib/libaed_0_1.so +0 -0
  1136. teradataml/lib/libaed_0_1_aarch64.so +0 -0
  1137. teradataml/lib/libaed_0_1_ppc64le.so +0 -0
  1138. teradataml/opensource/__init__.py +1 -0
  1139. teradataml/opensource/_base.py +1321 -0
  1140. teradataml/opensource/_class.py +464 -0
  1141. teradataml/opensource/_constants.py +61 -0
  1142. teradataml/opensource/_lightgbm.py +949 -0
  1143. teradataml/opensource/_sklearn.py +1008 -0
  1144. teradataml/opensource/_wrapper_utils.py +267 -0
  1145. teradataml/options/__init__.py +148 -0
  1146. teradataml/options/configure.py +489 -0
  1147. teradataml/options/display.py +187 -0
  1148. teradataml/plot/__init__.py +3 -0
  1149. teradataml/plot/axis.py +1427 -0
  1150. teradataml/plot/constants.py +15 -0
  1151. teradataml/plot/figure.py +431 -0
  1152. teradataml/plot/plot.py +810 -0
  1153. teradataml/plot/query_generator.py +83 -0
  1154. teradataml/plot/subplot.py +216 -0
  1155. teradataml/scriptmgmt/UserEnv.py +4273 -0
  1156. teradataml/scriptmgmt/__init__.py +3 -0
  1157. teradataml/scriptmgmt/lls_utils.py +2157 -0
  1158. teradataml/sdk/README.md +79 -0
  1159. teradataml/sdk/__init__.py +4 -0
  1160. teradataml/sdk/_auth_modes.py +422 -0
  1161. teradataml/sdk/_func_params.py +487 -0
  1162. teradataml/sdk/_json_parser.py +453 -0
  1163. teradataml/sdk/_openapi_spec_constants.py +249 -0
  1164. teradataml/sdk/_utils.py +236 -0
  1165. teradataml/sdk/api_client.py +900 -0
  1166. teradataml/sdk/constants.py +62 -0
  1167. teradataml/sdk/modelops/__init__.py +98 -0
  1168. teradataml/sdk/modelops/_client.py +409 -0
  1169. teradataml/sdk/modelops/_constants.py +304 -0
  1170. teradataml/sdk/modelops/models.py +2308 -0
  1171. teradataml/sdk/spinner.py +107 -0
  1172. teradataml/series/__init__.py +0 -0
  1173. teradataml/series/series.py +537 -0
  1174. teradataml/series/series_utils.py +71 -0
  1175. teradataml/store/__init__.py +12 -0
  1176. teradataml/store/feature_store/__init__.py +0 -0
  1177. teradataml/store/feature_store/constants.py +658 -0
  1178. teradataml/store/feature_store/feature_store.py +4814 -0
  1179. teradataml/store/feature_store/mind_map.py +639 -0
  1180. teradataml/store/feature_store/models.py +7330 -0
  1181. teradataml/store/feature_store/utils.py +390 -0
  1182. teradataml/table_operators/Apply.py +979 -0
  1183. teradataml/table_operators/Script.py +1739 -0
  1184. teradataml/table_operators/TableOperator.py +1343 -0
  1185. teradataml/table_operators/__init__.py +2 -0
  1186. teradataml/table_operators/apply_query_generator.py +262 -0
  1187. teradataml/table_operators/query_generator.py +493 -0
  1188. teradataml/table_operators/table_operator_query_generator.py +462 -0
  1189. teradataml/table_operators/table_operator_util.py +726 -0
  1190. teradataml/table_operators/templates/dataframe_apply.template +184 -0
  1191. teradataml/table_operators/templates/dataframe_map.template +176 -0
  1192. teradataml/table_operators/templates/dataframe_register.template +73 -0
  1193. teradataml/table_operators/templates/dataframe_udf.template +67 -0
  1194. teradataml/table_operators/templates/script_executor.template +170 -0
  1195. teradataml/telemetry_utils/__init__.py +0 -0
  1196. teradataml/telemetry_utils/queryband.py +53 -0
  1197. teradataml/utils/__init__.py +0 -0
  1198. teradataml/utils/docstring.py +527 -0
  1199. teradataml/utils/dtypes.py +943 -0
  1200. teradataml/utils/internal_buffer.py +122 -0
  1201. teradataml/utils/print_versions.py +206 -0
  1202. teradataml/utils/utils.py +451 -0
  1203. teradataml/utils/validators.py +3305 -0
  1204. teradataml-20.0.0.8.dist-info/METADATA +2804 -0
  1205. teradataml-20.0.0.8.dist-info/RECORD +1208 -0
  1206. teradataml-20.0.0.8.dist-info/WHEEL +5 -0
  1207. teradataml-20.0.0.8.dist-info/top_level.txt +1 -0
  1208. teradataml-20.0.0.8.dist-info/zip-safe +1 -0
@@ -0,0 +1,1105 @@
1
+ # ##################################################################
2
+ #
3
+ # Copyright 2021 Teradata. All rights reserved.
4
+ # TERADATA CONFIDENTIAL AND TRADE SECRET
5
+ #
6
+ # Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
7
+ # Secondary Owner:
8
+ #
9
+ # This file implements teradataml GeoDataFrame.
10
+ # teradataml GeoDataFrame allows user to access table on Vantage
11
+ # containing Geometry or Geospatial data.
12
+ #
13
+ # ##################################################################
14
+ import sqlalchemy
15
+ from teradataml.common.constants import GeospatialConstants, TeradataTypes
16
+ from teradataml.common.messagecodes import MessageCodes
17
+ from teradataml.common.messages import Messages
18
+ from teradataml.common.utils import UtilFuncs
19
+ from teradataml.common.exceptions import TeradataMlException
20
+ from teradataml.dataframe.dataframe import DataFrame
21
+ from teradataml.geospatial.geodataframecolumn import GeoDataFrameColumn
22
+ from teradataml.plot.plot import _Plot
23
+ from teradataml.utils.validators import _Validators
24
+ from teradatasqlalchemy import (GEOMETRY, MBR, MBB)
25
+ from teradataml.telemetry_utils.queryband import collect_queryband
26
+
27
+ class GeoDataFrame(DataFrame):
28
+ """
29
+ The teradataml GeoDataFrame enables data manipulation, exploration, and
30
+ analysis on tables, views, and queries on Teradata Vantage that contains
31
+ Geospatial data.
32
+ """
33
+
34
+ @collect_queryband(queryband="GDF")
35
+ def __init__(self, table_name=None, index=True, index_label=None,
36
+ query=None, materialize=False):
37
+ """
38
+ Constructor for teradataml GeoDataFrame.
39
+
40
+ PARAMETERS:
41
+ table_name:
42
+ Optional Argument.
43
+ The table name or view name in Teradata Vantage referenced by this DataFrame.
44
+ Types: str
45
+
46
+ index:
47
+ Optional Argument.
48
+ True if using index column for sorting, otherwise False.
49
+ Default Value: True
50
+ Types: bool
51
+
52
+ index_label:
53
+ Optional Argument.
54
+ Column/s used for sorting.
55
+ Types: str OR list of Strings (str)
56
+
57
+ query:
58
+ Optional Argument.
59
+ SQL query for this Dataframe. Used by class method from_query.
60
+ Types: str
61
+
62
+ materialize:
63
+ Optional Argument.
64
+ Whether to materialize DataFrame or not when created.
65
+ Used by class method from_query.
66
+
67
+ One should use enable materialization, when the query passed
68
+ to from_query(), is expected to produce non-deterministic
69
+ results, when it is executed multiple times. Using this option
70
+ will help user to have deterministic results in the resulting
71
+ teradataml GeoDataFrame.
72
+ Default Value: False (No materialization)
73
+ Types: bool
74
+
75
+ EXAMPLES:
76
+ from teradataml.dataframe.dataframe import DataFrame
77
+ df = DataFrame("mytab")
78
+ df = DataFrame("myview")
79
+ df = DataFrame("myview", False)
80
+ df = DataFrame("mytab", True, "Col1, Col2")
81
+
82
+ RAISES:
83
+ TeradataMlException - TDMLDF_CREATE_FAIL
84
+ """
85
+ self.__geom_column = None
86
+ # Call super(), to process the inputs.
87
+ super().__init__(table_name=table_name, index=index,
88
+ index_label=index_label, query=query,
89
+ materialize=materialize)
90
+
91
+ def _check_geom_column(self, metaexpr=None):
92
+ """
93
+ DESCRIPTION:
94
+ Internal function to whether the metaexpr contains a geospatial
95
+ type column or not.
96
+
97
+ PARAMETERS:
98
+ metaexpr:
99
+ Required Argument.
100
+ Specifies the teradataml DataFrame/teradataml GeoDataFrame
101
+ metaexpr to validate for geospatial content.
102
+ Types: _MetaExpression
103
+
104
+ RETURNS:
105
+ boolean.
106
+ True if Geospatial data type column exists, False otherwise.
107
+
108
+ RAISES:
109
+ None.
110
+
111
+ EXAMPLES:
112
+ self._check_geom_column(metaexpr)
113
+ """
114
+ if metaexpr is None:
115
+ metaexpr = self._metaexpr.c
116
+ for col in metaexpr.c:
117
+ if isinstance(col.type, (GEOMETRY, MBR, MBB)):
118
+ return True
119
+ return False
120
+
121
+ @collect_queryband(queryband="GDF_plot")
122
+ def plot(self, x=None, y=None, kind="geometry", **kwargs):
123
+ """
124
+ DESCRIPTION:
125
+ Generate plots on teradataml GeoDataFrame. Following type of plots
126
+ are supported, which can be specified using argument "kind":
127
+ * geometry plot
128
+ * bar plot
129
+ * corr plot
130
+ * line plot
131
+ * mesh plot
132
+ * scatter plot
133
+ * wiggle plot
134
+ Notes:
135
+ * Geometry plot is generated based on geometry column in teradataml GeoDataFrame.
136
+ * Only the columns with ST_GEOMETRY type are allowed for generating geometry plot.
137
+ * The maximum size for ST_GEOMETRY must be less than or equal to 64000.
138
+ * The ST_GEOMETRY shape can be POINT, LINESTRING etc. It is POLGYON that allows
139
+ filling of different colors.
140
+
141
+ PARAMETERS:
142
+ x:
143
+ Optional Argument.
144
+ Specifies a GeoDataFrame column to use for the x-axis data.
145
+ Note:
146
+ "x" is not significant for geometry plots. For other plots
147
+ it is mandatory argument.
148
+ Types: teradataml GeoDataFrame Column
149
+
150
+ y:
151
+ Required Argument.
152
+ Specifies GeoDataFrame column(s) to use for the y-axis data.
153
+ Notes:
154
+ * Geometry plot always requires geometry column and corresponding 'weight'
155
+ column. 'weight' column represents the weight of a shape mentioned in
156
+ geometry column.
157
+ * If user does not specify geometry column, the default geometry column
158
+ is considered for plotting.
159
+ Types: teradataml GeoDataFrame Column OR tuple of GeoDataFrame Column OR list of teradataml GeoDataFrame Columns.
160
+
161
+ scale:
162
+ Optional Argument.
163
+ Specifies GeoDataFrame column to use for scale data to
164
+ wiggle and mesh plots.
165
+ Note:
166
+ "scale" is significant for wiggle and mesh plots. Ignored for other
167
+ type of plots.
168
+ Types: teradataml GeoDataFrame Column.
169
+
170
+ kind:
171
+ Optional Argument.
172
+ Specifies the kind of plot.
173
+ Permitted Values:
174
+ * 'geometry'
175
+ * 'line'
176
+ * 'bar'
177
+ * 'scatter'
178
+ * 'corr'
179
+ * 'wiggle'
180
+ * 'mesh'
181
+ Default Value: geometry
182
+ Types: str
183
+
184
+ ax:
185
+ Optional Argument.
186
+ Specifies the axis for the plot.
187
+ Types: Axis
188
+
189
+ cmap:
190
+ Optional Argument.
191
+ Specifies the name of the colormap to be used for plotting.
192
+ Notes:
193
+ * Significant only when corresponding type of plot is mesh or geometry.
194
+ * Ignored for other type of plots.
195
+ Permitted Values:
196
+ * All the colormaps mentioned in below URLs are supported.
197
+ * https://matplotlib.org/stable/tutorials/colors/colormaps.html
198
+ * https://matplotlib.org/cmocean/
199
+ Types: str
200
+
201
+ color:
202
+ Optional Argument.
203
+ Specifies the color for the plot.
204
+ Note:
205
+ Hexadecimal color codes are not supported.
206
+ Permitted Values:
207
+ * 'blue'
208
+ * 'orange'
209
+ * 'green'
210
+ * 'red'
211
+ * 'purple'
212
+ * 'brown'
213
+ * 'pink'
214
+ * 'gray'
215
+ * 'olive'
216
+ * 'cyan'
217
+ * Apart from above mentioned colors, the colors mentioned in
218
+ https://xkcd.com/color/rgb are also supported.
219
+ Default Value: 'blue'
220
+ Types: str OR list of str
221
+
222
+ figure:
223
+ Optional Argument.
224
+ Specifies the figure for the plot.
225
+ Types: Figure
226
+
227
+ figsize:
228
+ Optional Argument.
229
+ Specifies the size of the figure in a tuple of 2 elements. First
230
+ element represents width of plot image in pixels and second
231
+ element represents height of plot image in pixels.
232
+ Default Value: (640, 480)
233
+ Types: tuple
234
+
235
+ figtype:
236
+ Optional Argument.
237
+ Specifies the type of the image to generate.
238
+ Permitted Values:
239
+ * 'png'
240
+ * 'jpg'
241
+ * 'svg'
242
+ Default Value: png
243
+ Types: str
244
+
245
+ figdpi:
246
+ Optional Argument.
247
+ Specifies the dots per inch for the plot image.
248
+ Note:
249
+ * Valid range for "dpi" is: 72 <= width <= 300.
250
+ Default Value: 100 for PNG and JPG Type image.
251
+ Types: int
252
+
253
+ grid_color:
254
+ Optional Argument.
255
+ Specifies the color of the grid.
256
+ Note:
257
+ Hexadecimal color codes are not supported.
258
+ Permitted Values:
259
+ * 'blue'
260
+ * 'orange'
261
+ * 'green'
262
+ * 'red'
263
+ * 'purple'
264
+ * 'brown'
265
+ * 'pink'
266
+ * 'gray'
267
+ * 'olive'
268
+ * 'cyan'
269
+ * Apart from above mentioned colors, the colors mentioned in
270
+ https://xkcd.com/color/rgb are also supported.
271
+ Default Value: gray
272
+ Types: str
273
+
274
+ grid_format:
275
+ Optional Argument.
276
+ Specifies the format for the grid.
277
+ Types: str
278
+
279
+ grid_linestyle:
280
+ Optional Argument.
281
+ Specifies the line style of the grid.
282
+ Permitted Values:
283
+ * -
284
+ * --
285
+ * -.
286
+ Default Value: -
287
+ Types: str
288
+
289
+ grid_linewidth:
290
+ Optional Argument.
291
+ Specifies the line width of the grid.
292
+ Note:
293
+ Valid range for "grid_linewidth" is: 0.5 <= grid_linewidth <= 10.
294
+ Default Value: 0.8
295
+ Types: int OR float
296
+
297
+ heading:
298
+ Optional Argument.
299
+ Specifies the heading for the plot.
300
+ Types: str
301
+
302
+ legend:
303
+ Optional Argument.
304
+ Specifies the legend(s) for the Plot.
305
+ Types: str OR list of str
306
+
307
+ legend_style:
308
+ Optional Argument.
309
+ Specifies the location for legend to display on Plot image. By default,
310
+ legend is displayed at upper right corner.
311
+ Permitted Values:
312
+ * 'upper right'
313
+ * 'upper left'
314
+ * 'lower right'
315
+ * 'lower left'
316
+ * 'right'
317
+ * 'center left'
318
+ * 'center right'
319
+ * 'lower center'
320
+ * 'upper center'
321
+ * 'center'
322
+ Default Value: 'upper right'
323
+ Types: str
324
+
325
+ linestyle:
326
+ Optional Argument.
327
+ Specifies the line style for the plot.
328
+ Permitted Values:
329
+ * -
330
+ * --
331
+ * -.
332
+ * :
333
+ Default Value: -
334
+ Types: str OR list of str
335
+
336
+ linewidth:
337
+ Optional Argument.
338
+ Specifies the line width for the plot.
339
+ Note:
340
+ Valid range for "linewidth" is: 0.5 <= linewidth <= 10.
341
+ Default Value: 0.8
342
+ Types: int OR float OR list of int OR list of float
343
+
344
+ marker:
345
+ Optional Argument.
346
+ Specifies the type of the marker to be used.
347
+ Permitted Values:
348
+ All the markers mentioned in https://matplotlib.org/stable/api/markers_api.html
349
+ are supported.
350
+ Types: str OR list of str
351
+
352
+ markersize:
353
+ Optional Argument.
354
+ Specifies the size of the marker.
355
+ Note:
356
+ Valid range for "markersize" is: 1 <= markersize <= 20.
357
+ Default Value: 6
358
+ Types: int OR float OR list of int OR list of float
359
+
360
+ position:
361
+ Optional Argument.
362
+ Specifies the position of the axis in the figure. Accepts a tuple
363
+ of two elements where first element represents the row and second
364
+ element represents column.
365
+ Default Value: (1, 1)
366
+ Types: tuple
367
+
368
+ span:
369
+ Optional Argument.
370
+ Specifies the span of the axis in the figure. Accepts a tuple
371
+ of two elements where first element represents the row and second
372
+ element represents column.
373
+ For Example,
374
+ Span of (2, 1) specifies the Axis occupies 2 rows and 1 column
375
+ in Figure.
376
+ Default Value: (1, 1)
377
+ Types: tuple
378
+
379
+ reverse_xaxis:
380
+ Optional Argument.
381
+ Specifies whether to reverse tick values on x-axis or not.
382
+ Default Value: False
383
+ Types: bool
384
+
385
+ reverse_yaxis:
386
+ Optional Argument.
387
+ Specifies whether to reverse tick values on y-axis or not.
388
+ Default Value: False
389
+ Types: bool
390
+
391
+ series_identifier:
392
+ Optional Argument.
393
+ Specifies the teradataml GeoDataFrame Column which represents the
394
+ identifier for the data. As many plots as distinct "series_identifier"
395
+ are generated in a single Axis.
396
+ For example:
397
+ consider the below data in teradataml GeoDataFrame.
398
+ ID x y
399
+ 0 1 1 1
400
+ 1 1 2 2
401
+ 2 2 10 10
402
+ 3 2 20 20
403
+ If "series_identifier" is not specified, simple plot is
404
+ generated where every 'y' is plotted against 'x' in a
405
+ single plot. However, specifying "series_identifier" as 'ID'
406
+ generates two plots in a single axis. One plot is for ID 1
407
+ and another plot is for ID 2.
408
+ Types: teradataml GeoDataFrame Column.
409
+
410
+ title:
411
+ Optional Argument.
412
+ Specifies the title for the Axis.
413
+ Types: str
414
+
415
+ xlabel:
416
+ Optional Argument.
417
+ Specifies the label for x-axis.
418
+ Notes:
419
+ * When set to empty string, label is not displayed for x-axis.
420
+ * When set to None, name of the x-axis column is displayed as
421
+ label.
422
+ Types: str
423
+
424
+ xlim:
425
+ Optional Argument.
426
+ Specifies the range for xtick values.
427
+ Types: tuple
428
+
429
+ xtick_format:
430
+ Optional Argument.
431
+ Specifies whether to format tick values for x-axis or not.
432
+ Types: str
433
+
434
+ ylabel:
435
+ Optional Argument.
436
+ Specifies the label for y-axis.
437
+ Notes:
438
+ * When set to empty string, label is not displayed for y-axis.
439
+ * When set to None, name of the y-axis column(s) is displayed as
440
+ label.
441
+ Types: str
442
+
443
+ ylim:
444
+ Optional Argument.
445
+ Specifies the range for ytick values.
446
+ Types: tuple
447
+
448
+ ytick_format:
449
+ Optional Argument.
450
+ Specifies whether to format tick values for y-axis or not.
451
+ Types: str
452
+
453
+ vmin:
454
+ Optional Argument.
455
+ Specifies the lower range of the color map. By default, the range
456
+ is derived from data and color codes are assigned accordingly.
457
+ Note:
458
+ "vmin" Significant only for Geometry Plot.
459
+ Types: int OR float
460
+
461
+ vmax:
462
+ Optional Argument.
463
+ Specifies the upper range of the color map. By default, the range is
464
+ derived from data and color codes are assigned accordingly.
465
+ Note:
466
+ "vmax" Significant only for Geometry Plot.
467
+ For example:
468
+ Assuming user wants to use colormap 'matter' and derive the colors for
469
+ values which are in between 1 and 100.
470
+ Note:
471
+ colormap 'matter' starts with Pale Yellow and ends with Violet.
472
+ * If "colormap_range" is not specified, then range is derived from
473
+ existing values. Thus, colors are represented as below in the whole range:
474
+ * 1 as Pale Yellow.
475
+ * 100 as Violet.
476
+ * If "colormap_range" is specified as -100 and 100, the value 1 is at middle of
477
+ the specified range. Thus, colors are represented as below in the whole range:
478
+ * -100 as Pale Yellow.
479
+ * 1 as Orange.
480
+ * 100 as Violet.
481
+ Types: int OR float
482
+
483
+ wiggle_fill:
484
+ Optional Argument.
485
+ Specifies whether to fill the wiggle area or not. By default, the right
486
+ positive half of the wiggle is not filled. If specified as True, wiggle
487
+ area is filled.
488
+ Note:
489
+ Applicable only for the wiggle plot.
490
+ Default Value: False
491
+ Types: bool
492
+
493
+ wiggle_scale:
494
+ Optional Argument.
495
+ Specifies the scale of the wiggle. By default, the amplitude of wiggle is scaled
496
+ relative to RMS of the first payload. In certain cases, it can lead to excessively
497
+ large wiggles. Use "wiggle_scale" to adjust the relative size of the wiggle.
498
+ Note:
499
+ Applicable only for the wiggle and mesh plots.
500
+ Types: int OR float
501
+
502
+ ignore_nulls:
503
+ Optional Argument.
504
+ Specifies whether to delete rows with null values or not present in 'x', 'y' and
505
+ 'scale' params.
506
+ Default Value: False
507
+ Types: bool
508
+
509
+
510
+ RAISES:
511
+ TeradataMlException
512
+
513
+ EXAMPLES:
514
+ >>> load_example_data("geodataframe", ["sample_shapes"])
515
+ >>> shapes_df = GeoDataFrame("sample_shapes")
516
+ >>> shapes_df
517
+ points linestrings polygons geom_collections geosequence
518
+ skey
519
+ 1006 POINT (235.52 54.546 7.4564) LINESTRING (1.35 3.6456 4.5,3. POLYGON ((0 0 0,0 0 20,0 20 0, None None
520
+ 1007 MULTIPOINT (1 1,1 3,6 3,10 5,2 MULTILINESTRING ((1 1,1 3,6 3) MULTIPOLYGON (((1 1,1 3,6 3,6 None None
521
+ 1005 POINT (1 3 5) LINESTRING (1 3 6,3 0 6,6 0 1) POLYGON ((0 0 0,0 0 20.435,0.0 GEOMETRYCOLLECTION (POINT (10 None
522
+ 1004 POINT (10 20 30) LINESTRING (10 20 30,40 50 60, POLYGON ((0 0 0,0 10 20,20 20 GEOMETRYCOLLECTION (POINT (10 None
523
+ 1003 POINT (235.52 54.546) LINESTRING (1.35 3.6456,3.6756 POLYGON ((0.6 0.8,0.6 20.8,20. None None
524
+ 1001 POINT (10 20) LINESTRING (1 1,2 2,3 3,4 4) POLYGON ((0 0,0 20,20 20,20 0, GEOMETRYCOLLECTION (POINT (10 GEOSEQUENCE((10 20,30 40,50 60
525
+ 1002 POINT (1 3) LINESTRING (1 3,3 0,0 1) POLYGON ((0 0,0 20,20 20,20 0, None GEOSEQUENCE((10 10,15 15,-2 0)
526
+ 1009 MULTIPOINT (10 20 30,40 50 60, MULTILINESTRING ((10 20 30,40 MULTIPOLYGON (((0 0 0,0 20 20, None None
527
+ 1008 MULTIPOINT (1.65 1.76,1.23 3.7 MULTILINESTRING ((1 3,3 0,0 1) MULTIPOLYGON (((0 0,0 20,20 20 None None
528
+ 1010 MULTIPOINT (10.345 20.32 30.6, MULTILINESTRING ((1 3 6,3 0 6, MULTIPOLYGON (((0 0 0,0 0 20,0 None None
529
+ >>>
530
+ >>> load_example_data("geodataframe", ["us_population", "us_states_shapes"])
531
+ >>> us_population = DataFrame("us_population")
532
+ >>> us_population
533
+ location_type population_year population
534
+ state_name
535
+ Georgia State 1930 2908506.0
536
+ Georgia State 1950 3444578.0
537
+ Georgia State 1960 3943116.0
538
+ Georgia State 1970 4589575.0
539
+ Georgia State 1990 6478216.0
540
+ Georgia State 2000 8186453.0
541
+ Georgia State 1980 5463105.0
542
+ Georgia State 1940 3123723.0
543
+ Georgia State 1920 2895832.0
544
+ Georgia State 1910 2609121.0
545
+ >>> us_states_shapes = GeoDataFrame("us_states_shapes")
546
+ >>> us_states_shapes
547
+ state_name state_shape
548
+ id
549
+ NM New Mexico POLYGON ((472.45213 324.75551,
550
+ VA Virginia POLYGON ((908.75086 270.98255,
551
+ ND North Dakota POLYGON ((556.50879 73.847349,
552
+ OK Oklahoma POLYGON ((609.50526 322.91131,
553
+ WI Wisconsin POLYGON ((705.79187 134.80299,
554
+ RI Rhode Island POLYGON ((946.50841 152.08022,
555
+ HI Hawaii POLYGON ((416.34965 514.99923,
556
+ KY Kentucky POLYGON ((693.17367 317.18459,
557
+ WV West Virginia POLYGON ((836.73002 223.71281,
558
+ NJ New Jersey POLYGON ((916.80709 207.30914,
559
+ >>>
560
+ >>> # Join shapes with population and filter only 1990 data.
561
+ >>> population_data = us_states_shapes.join(us_population,
562
+ ... on=us_population.state_name == us_states_shapes.state_name,
563
+ ... lsuffix="us",
564
+ ... rsuffix="t2")
565
+ >>> population_data = population_data.select(["us_state_name", "state_shape", "population_year", "population"])
566
+ >>> type(population_data)
567
+ teradataml.geospatial.geodataframe.GeoDataFrame
568
+ >>>
569
+
570
+ # Example 1: Generate the geometry plot to show the density of population
571
+ # across the US states in year 1990.
572
+ >>> population_data_1990 = population_data[population_data.population_year == 1990]
573
+ >>> population_data_1990
574
+ us_state_name state_shape population_year population
575
+ 0 New Mexico POLYGON ((472.45213 324.75551, 1990 1515069.0
576
+ 1 Hawaii POLYGON ((416.34965 514.99923, 1990 1108229.0
577
+ 2 Kentucky POLYGON ((693.17367 317.18459, 1990 3685296.0
578
+ 3 New Jersey POLYGON ((916.80709 207.30914, 1990 7730188.0
579
+ 4 North Dakota POLYGON ((556.50879 73.847349, 1990 638800.0
580
+ 5 Oklahoma POLYGON ((609.50526 322.91131, 1990 3145585.0
581
+ 6 West Virginia POLYGON ((836.73002 223.71281, 1990 1793477.0
582
+ 7 Wisconsin POLYGON ((705.79187 134.80299, 1990 4891769.0
583
+ 8 Virginia POLYGON ((908.75086 270.98255, 1990 6187358.0
584
+ 9 Rhode Island POLYGON ((946.50841 152.08022, 1990 1003464.0
585
+ >>>
586
+ >>> # Define Figure.
587
+ >>> from teradataml import Figure
588
+ >>> figure = Figure(width=1500, height=862, heading="Geometry Plot")
589
+ >>> figure.heading = "Geometry Plot"
590
+ >>>
591
+ >>> plot_1990 = population_data_1990.plot(y=population_data_1990.population,
592
+ ... cmap='rainbow',
593
+ ... figure=figure,
594
+ ... reverse_yaxis=True,
595
+ ... title="US 1990 Population",
596
+ ... xlabel="",
597
+ ... ylabel="")
598
+ >>>
599
+ >>> plot_1990.show()
600
+
601
+ # Example 2: Plot a geometry plot for a single polygon to visualize the shape.
602
+ # Note: X-axis is not significant in geometry plot. Y-axis can be a tuple,
603
+ # first element represents weight of geometry shape and second element
604
+ # represents the geometry column. Since color of geometry shape is generated
605
+ # based on first column and since the example is to plot a single polygon,
606
+ # the first element in tuple is not significant.
607
+ >>> # Generate GeoDataFrame which has single Polygon.
608
+ >>> single_polygon_df = shapes_df[shapes_df.skey==1004]
609
+ >>> single_polygon_df.plot(y=(single_polygon_df.skey, single_polygon_df.polygons))
610
+
611
+ # Example 3: Generate a bar plot on a GeoDataFrame.
612
+ # Note: The below example shows how the population of the United States
613
+ # changed from 1910 to 2020.
614
+ >>> population_data.plot(x=population_data.population_year, y=population_data.population, kind="bar")
615
+
616
+ # Example 4: Generate a subplot on a GeoDataFrame to show the rate of population increase over 4 decades.
617
+ # Create DataFrames for population in the year 2020, 2010, 2000, 1990.
618
+ >>> df_2020 = population_data[population_data.population_year == 2020]
619
+ >>> df_2010 = population_data[population_data.population_year == 2010]
620
+ >>> df_2000 = population_data[population_data.population_year == 2000]
621
+ >>> df_1990 = population_data[population_data.population_year == 1990]
622
+
623
+ # Define subplot.
624
+ >>> fig, axes = subplots(nrows=2, ncols=2)
625
+
626
+ >>> plot_population = df_1990.plot(y=(df_1990.population, df_1990.state_shape),
627
+ ... cmap='rainbow',
628
+ ... figure=fig,
629
+ ... ax=axes[0],
630
+ ... reverse_yaxis=True,
631
+ ... vmin=55036.0,
632
+ ... vmax=39538223.0,
633
+ ... heading="US Population growth over 4 decades",
634
+ ... title="US 1990 Population",
635
+ ... xlabel="",
636
+ ... yylabel="")
637
+ >>> plot_population = df_2000.plot(y=(df_2000.population, df_2000.state_shape),
638
+ ... cmap='rainbow',
639
+ ... figure=fig,
640
+ ... ax=axes[1],
641
+ ... reverse_yaxis=True,
642
+ ... vmin=55036.0,
643
+ ... vmax=39538223.0,
644
+ ... heading="US Population growth over 4 decades",
645
+ ... title="US 2000 Population",
646
+ ... xlabel="",
647
+ ... ylabel="")
648
+ >>> plot_population = df_2010.plot(x=df_2010.population_year,
649
+ ... y=(df_2010.population, df_2010.state_shape),
650
+ ... cmap='rainbow',
651
+ ... figure=fig,
652
+ ... ax=axes[2],
653
+ ... reverse_yaxis=True,
654
+ ... vmin=55036.0,
655
+ ... vmax=39538223.0,
656
+ ... heading="US Population growth over 4 decades",
657
+ ... title="US 2010 Population",
658
+ ... xlabel="",
659
+ ... ylabel="",
660
+ ... xtick_values_format="")
661
+ >>> plot_population = df_2020.plot(x=df_2020.population_year,
662
+ ... y=(df_2020.population, df_2020.state_shape),
663
+ ... cmap='rainbow',
664
+ ... figure=fig,
665
+ ... ax=axes[3],
666
+ ... reverse_yaxis=True,
667
+ ... vmin=55036.0,
668
+ ... vmax=39538223.0,
669
+ ... heading="US Population growth over 4 decades",
670
+ ... title="US 2020 Population",
671
+ ... xlabel="",
672
+ ... ylabel="",
673
+ ... xtick_values_format="")
674
+ >>> # Show the plot.
675
+ >>> plot_population.show()
676
+
677
+ """
678
+ if kind == "geometry":
679
+ # x is not really required for geometry plot. So, users can pass a None here.
680
+ # However, UAF needs all the records to be a Non NULL value. So, construct x with
681
+ # a dummy value.
682
+ x = x if x is not None else 1
683
+ y = UtilFuncs._as_list(y)
684
+
685
+ # For geometry plot, x axis is not significant really.
686
+ # They do not mean any thing.
687
+ kwargs["xlabel"] = ""
688
+ kwargs["xtick_values_format"] = ""
689
+
690
+ # Geometry plot always need a tuple. Second
691
+ # element should be a Geometry column. If user does not
692
+ # specify a tuple, convert it to tuple by using default geometry column.
693
+ # use "geometry" API.
694
+ _get_y_axis = lambda x: x if isinstance(x, tuple) else (x, self.geometry)
695
+ y = [_get_y_axis(arg) for arg in y]
696
+
697
+ plot = _Plot(x=x, y=y, kind=kind, **kwargs)
698
+ return plot
699
+
700
+ def __getattr__(self, name):
701
+ """
702
+ Returns an attribute of the GeoDataFrame.
703
+
704
+ PARAMETERS:
705
+ name:
706
+ Required Argument.
707
+ Specifies the name of the attribute.
708
+ Types: str
709
+
710
+ RETURNS:
711
+ Return the value of the named attribute of object (if found).
712
+
713
+ EXAMPLES:
714
+ df = GeoDataFrame('table')
715
+
716
+ # You can access a column from the teradataml GeoDataFrame.
717
+ df.c1
718
+
719
+ RAISES:
720
+ Attribute Error when the named attribute is not found.
721
+ """
722
+
723
+ # Look in the underlying _MetaExpression for columns
724
+ for col in self._metaexpr.c:
725
+ if col.name == name:
726
+ col._parent_df = self
727
+ return col
728
+
729
+ # If "name" is present in any of the following 'GeospatialConstants'
730
+ # 1. GeospatialConstants.PROPERTY_TO_NO_ARG_SQL_FUNCTION_NAME
731
+ # 2. GeospatialConstants.METHOD_TO_ARG_ACCEPTING_SQL_FUNCTION_NAME
732
+ # 3. GeospatialConstants.METHOD_TO_NO_ARG_SQL_FUNCTION_NAME
733
+ # that means, it's a function that operates on Geometry Data.
734
+ #
735
+ # Look for such function names.
736
+ if name in GeospatialConstants.PROPERTY_TO_NO_ARG_SQL_FUNCTION_NAME.value:
737
+ # Geospatial functions which are exposed as property of teradataml
738
+ # GeoDataFrame.
739
+ return self.__process_geometry(func_name=name, all_geom=False,
740
+ property=True)
741
+
742
+ if name in GeospatialConstants.METHOD_TO_ARG_ACCEPTING_SQL_FUNCTION_NAME.value \
743
+ or name in GeospatialConstants.METHOD_TO_NO_ARG_SQL_FUNCTION_NAME.value:
744
+ # Geospatial functions which are exposed as method of teradataml
745
+ # GeoDataFrame.
746
+ return lambda *args, **kwargs: \
747
+ self.__process_geometry(name, *args, **kwargs)
748
+
749
+ # TODO - Raise error or Keep it open ended to accept SQL Function names.
750
+ raise AttributeError("'GeoDataFrame' object has no attribute %s" % name)
751
+
752
+ @collect_queryband(arg_name="func_name", prefix="GDF")
753
+ def __process_geometry(self, func_name, *args, **kwargs):
754
+ """
755
+ Function helps to execute the Geospatial function on the column(s)
756
+ containing geometry data.
757
+
758
+ PARAMETERS:
759
+ func_name:
760
+ Required Argument.
761
+ Specifies the name of the function to execute.
762
+ Types: string
763
+
764
+ all_geom:
765
+ Optional Argument.
766
+ Specifies whether to execute the function on all geometry
767
+ columns in the GeoDataFrame or not.
768
+ When set to 'True', geospatial function specified in
769
+ "func_name", is executed on all the columns containing
770
+ geometry data, i.e., geospatial data.
771
+ When set to 'False', geospatial function specified in
772
+ "func_name", is executed only on the column represented
773
+ by the 'GeoDataFrame.geometry' property.
774
+ Default Value: False
775
+ Types: bool
776
+
777
+ property:
778
+ Optional Argument.
779
+ Specifies whether the function being executed should be treated
780
+ as GeoDataFrame property or not.
781
+ When set to 'True', geospatial function specified in
782
+ "func_name", is treated as property, otherwise treated as
783
+ method.
784
+ Default Value: False
785
+ Types: bool
786
+
787
+ *args:
788
+ Positional arguments passed to the method, i.e., geospatial
789
+ function.
790
+
791
+ **kwargs:
792
+ Keyword arguments passed to the method, i.e., geospatial
793
+ function.
794
+
795
+ RETURNS:
796
+ DataFrame or GeoDataFrame
797
+
798
+ RAISES:
799
+ None.
800
+
801
+ EXAMPLES:
802
+ self.__process_geometry(fname, all_geom, False, *c, **kwargs)
803
+ """
804
+ property = kwargs.pop("property", False)
805
+ all_geom = kwargs.pop("all_geom", False)
806
+ assign_args = {}
807
+ if not all_geom:
808
+ # Function will be run only on column represented by
809
+ # 'GeoDataFrame.geometry' property.
810
+ new_col = "{}_{}_geom".format(func_name, self.geometry.name)
811
+ if property:
812
+ # If property is set to True, then no need to pass **kwargs and
813
+ # no need to invoke the call with parenthesis '()'.
814
+ assign_args[new_col] = self.geometry[func_name]
815
+ else:
816
+ # Pass *args and **kwargs as function accepts arguments.
817
+ assign_args[new_col] = self.geometry[func_name](*args, **kwargs)
818
+ else:
819
+ # Function will be run on all column(s) containing geometry data.
820
+ # Columns containing geometry data can be following types:
821
+ # 1. ST_GEOMETRY
822
+ # 2. MBR
823
+ # 3. MBB
824
+ for col in self._metaexpr.c:
825
+ if col.type in [GEOMETRY, MBR, MBB]:
826
+ new_col = "{}_{}".format(func_name, col.name)
827
+ if property:
828
+ # If property is set to True, then no need to pass
829
+ # **kwargs and no need to invoke the call with
830
+ # parenthesis '()'.
831
+ assign_args[new_col] = self[col.name][func_name]
832
+ else:
833
+ # Pass *args and **kwargs as function accepts arguments.
834
+ assign_args[new_col] = self[col.name][func_name](*args,
835
+ **kwargs)
836
+
837
+ return self.assign(**assign_args)
838
+
839
+ @property
840
+ def geometry(self):
841
+ """
842
+ DESCRIPTION:
843
+ Returns a GeoColumnExpression for a column containing geometry data.
844
+ If GeoDataFrame contains, multiple columns containing geometry data,
845
+ then it returns reference to only one of them.
846
+ Columns containing geometry data can be of following types:
847
+ 1. ST_GEOMETRY
848
+ 2. MBB
849
+ 3. MBR
850
+ Refer 'GeoDataFrame.tdtypes' to view the Teradata column data types.
851
+
852
+ Note:
853
+ This property is used to execute any geospatial operation on
854
+ GeoDataFrame, i.e., any geospatial function executed on
855
+ GeoDataFrame, is executed on the geomtry column referenced by
856
+ this property.
857
+
858
+ RETURNS:
859
+ GeoDataFrameColumn
860
+
861
+ EXAMPLES:
862
+ >>> load_example_data("geodataframe", ["sample_cities", "sample_streets"])
863
+ >>> cities = GeoDataFrame("sample_cities")
864
+ >>> streets = GeoDataFrame("sample_streets")
865
+ >>> city_streets = cities.join(streets, how="cross", lsuffix="l", rsuffix="r")
866
+ >>> city_streets
867
+ l_skey r_skey city_name city_shape street_name street_shape
868
+ 0 0 1 Oceanville POLYGON ((1 1,1 3,6 3,6 0,1 1)) Main Street LINESTRING (2 2,3 2,4 1)
869
+ 1 0 1 Oceanville POLYGON ((1 1,1 3,6 3,6 0,1 1)) Coast Blvd LINESTRING (12 12,18 17)
870
+ 2 1 1 Seaside POLYGON ((10 10,10 20,20 20,20 15,10 10)) Coast Blvd LINESTRING (12 12,18 17)
871
+ 3 1 1 Seaside POLYGON ((10 10,10 20,20 20,20 15,10 10)) Main Street LINESTRING (2 2,3 2,4 1)
872
+ >>>
873
+
874
+ # Check the name of the column containing geometry data, where
875
+ # 'geometry' property references.
876
+ >>> city_streets.geometry.name
877
+ 'city_shape'
878
+ >>>
879
+
880
+ # Check all the column types.
881
+ >>> city_streets.tdtypes
882
+ l_skey INTEGER()
883
+ r_skey INTEGER()
884
+ city_name VARCHAR(length=40, charset='LATIN')
885
+ city_shape GEOMETRY()
886
+ street_name VARCHAR(length=40, charset='LATIN')
887
+ street_shape GEOMETRY()
888
+ >>>
889
+ >>>
890
+
891
+ # Set the 'geometry' property to refer 'street_shape' column.
892
+ >>> city_streets.geometry = city_streets.street_shape
893
+ >>> city_streets.geometry.name
894
+ 'street_shape'
895
+ >>>
896
+
897
+ # Check whether the geometry referenced by 'geometry' property are 3D
898
+ # or not.
899
+ >>> city_streets.is_3D
900
+ l_skey r_skey city_name city_shape street_name street_shape is_3D_street_shape_geom
901
+ 0 1 1 Seaside POLYGON ((10 10,10 20,20 20,20 15,10 10)) Main Street LINESTRING (2 2,3 2,4 1) 0
902
+ 1 1 1 Seaside POLYGON ((10 10,10 20,20 20,20 15,10 10)) Coast Blvd LINESTRING (12 12,18 17) 0
903
+ 2 0 1 Oceanville POLYGON ((1 1,1 3,6 3,6 0,1 1)) Coast Blvd LINESTRING (12 12,18 17) 0
904
+ 3 0 1 Oceanville POLYGON ((1 1,1 3,6 3,6 0,1 1)) Main Street LINESTRING (2 2,3 2,4 1) 0
905
+ >>>
906
+
907
+ # Use the geometry property to execute multiple geospatial functions
908
+ # in conjunctions with GeoDataFrame.assign()
909
+ # Get the geometry type.
910
+ >>> geom_type = city_streets.geometry.geom_type
911
+ # Check if geometry is simple or not.
912
+ >>> is_simple = city_streets.geometry.is_simple
913
+ # Check if geometry is valid or not.
914
+ >>> is_valid = city_streets.geometry.is_valid
915
+ >>>
916
+ # Call GeoDataFrame.assign() and pass the above GeoDataFrameColumn, i.e.,
917
+ # ColumnExpressions as input.
918
+ >>> city_streets.assign(geom_type = geom_type,
919
+ ... is_simple = is_simple,
920
+ ... is_valid = is_valid
921
+ ... )
922
+ l_skey r_skey city_name city_shape street_name street_shape geom_type is_simple is_valid
923
+ 0 0 1 Oceanville POLYGON ((1 1,1 3,6 3,6 0,1 1)) Main Street LINESTRING (2 2,3 2,4 1) ST_LineString 1 1
924
+ 1 0 1 Oceanville POLYGON ((1 1,1 3,6 3,6 0,1 1)) Coast Blvd LINESTRING (12 12,18 17) ST_LineString 1 1
925
+ 2 1 1 Seaside POLYGON ((10 10,10 20,20 20,20 15,10 10)) Coast Blvd LINESTRING (12 12,18 17) ST_LineString 1 1
926
+ 3 1 1 Seaside POLYGON ((10 10,10 20,20 20,20 15,10 10)) Main Street LINESTRING (2 2,3 2,4 1) ST_LineString 1 1
927
+ >>>
928
+ """
929
+ # Check if attribute __geom_column is already set or not.
930
+ if self.__geom_column is not None:
931
+ return self.__geom_column
932
+ else:
933
+ # No geom column identified, iterate over the columns
934
+ # and set the attribute and return the same.
935
+ for col in self._metaexpr.c:
936
+ if isinstance(col.type, (GEOMETRY, MBR, MBB)):
937
+ self.__geom_column = col
938
+ return col
939
+
940
+ @geometry.setter
941
+ def geometry(self, column):
942
+ """
943
+ DESCRIPTION:
944
+ Sets the geometry property to new geometry column.
945
+
946
+ PARAMETERS:
947
+ column:
948
+ Required Argument.
949
+ Specifies the column used for setting the 'geometry'
950
+ property. Column passed to the function must contain the
951
+ geometry data, i.e., column should be of type GEOMETRY, MBR,
952
+ or MBB.
953
+ Types: str or GeoDataFrameColumn
954
+
955
+ RAISES:
956
+ TeradataMlException
957
+
958
+ EXAMPLES:
959
+ # Set the property by passing the column name.
960
+ df.geometry = "geom_column"
961
+
962
+ # Set the property by passing the GeoDataFrameColumn.
963
+ df.geometry = df.geom_column
964
+ """
965
+ awu_matrix = []
966
+ awu_matrix.append(["column", column, False, (str, GeoDataFrameColumn),
967
+ True])
968
+
969
+ # Validate argument types
970
+ _Validators._validate_function_arguments(awu_matrix)
971
+
972
+ if isinstance(column, str):
973
+ column = getattr(self, column)
974
+
975
+ supported_types = (GEOMETRY, MBR, MBB)
976
+ if not isinstance(column.type, supported_types):
977
+ err_fmt = Messages.get_message(MessageCodes.INVALID_COLUMN_DATATYPE)
978
+ err_ = err_fmt.format(column.name, "column", "Supported",
979
+ supported_types)
980
+ raise TeradataMlException(err_, MessageCodes.INVALID_COLUMN_DATATYPE)
981
+
982
+ self.__geom_column = column
983
+
984
+ def _create_dataframe_from_node(self, nodeid, metaexpr, index_label, undropped_columns=None):
985
+ """
986
+ DESCRIPTION:
987
+ This function overrides the parent method, that creates the
988
+ dataframe from node, i.e., using '_Parent_from_node' function.
989
+
990
+ Parent class always returns a teradataml DataFrame, but for
991
+ GeoDataFrame, we will return teradataml DataFrame or teradataml
992
+ GeoDataFrame, based on whether the resultant DataFrame contains
993
+ geometry column or not.
994
+
995
+ PARAMETERS:
996
+ nodeid:
997
+ Required Argument.
998
+ Specifies the nodeid for the DataFrame or GeoDataFrame.
999
+ Types: str
1000
+
1001
+ metaexpr:
1002
+ Required Argument.
1003
+ Specifies the metadata for the resultant object.
1004
+ Types: _MetaExpression
1005
+
1006
+ index_label:
1007
+ Required Argument.
1008
+ Specifies list specifying index column(s) for the DataFrame.
1009
+ Types: str OR list of Strings (str)
1010
+
1011
+ undropped_columns:
1012
+ Optional Argument.
1013
+ Specifies list of index column(s) to be retained as columns for printing.
1014
+ Types: list
1015
+
1016
+ RETURNS:
1017
+ teradataml DataFrame or teradataml GeoDataFrame
1018
+
1019
+ RAISES:
1020
+ None
1021
+
1022
+ EXAMPLES:
1023
+ self._create_dataframe_from_node(new_nodeid, new_meta,
1024
+ self._index_label, undropped_columns)
1025
+ """
1026
+ # TODO: <DEPENDENT_ON_GEOMETRY_DATATYPES_SUPPORT_IN_teradatasqlalchemy>
1027
+ # 1. Add the test cases.
1028
+ # a. Run teradataml DataFrame functions, that will result in
1029
+ # dropping the geometry datatype columns.
1030
+ # b. Run GeoDataFrame.assign() with "drop_columns=True" and
1031
+ # run geospatial function on a column, a function that will
1032
+ # not return the Geometry data type column.
1033
+ # All other cases, this should return the object of this class.
1034
+ if not self._check_geom_column(metaexpr):
1035
+ # If generated metaexpr does not contain a geometry column
1036
+ # then we should return the teradataml DataFrame.
1037
+ return DataFrame._from_node(nodeid, metaexpr, index_label, undropped_columns)
1038
+ else:
1039
+ # Return the teradataml GeoDataFrame.
1040
+ return self._from_node(nodeid, metaexpr, index_label, undropped_columns)
1041
+
1042
+ def _get_metadata_from_metaexpr(self, metaexpr):
1043
+ """
1044
+ Private method for setting _metaexpr and retrieving column names and types.
1045
+
1046
+ PARAMETERS:
1047
+ metaexpr - Parent meta data (_MetaExpression object).
1048
+
1049
+ RETURNS:
1050
+ None
1051
+
1052
+ RAISES:
1053
+ None
1054
+
1055
+ EXAMPLE:
1056
+ self._get_metadata_from_metaexpr(metaexpr)
1057
+ """
1058
+ self._metaexpr = self._generate_child_metaexpr(metaexpr)
1059
+ self._column_names_and_types = []
1060
+ self._td_column_names_and_types = []
1061
+ self._td_column_names_and_sqlalchemy_types = {}
1062
+ for col in self._metaexpr.c:
1063
+ if isinstance(col.type, sqlalchemy.sql.sqltypes.NullType):
1064
+ tdtype = TeradataTypes.TD_NULL_TYPE.value
1065
+ else:
1066
+ tdtype = "{}".format(col.type)
1067
+
1068
+ self._column_names_and_types.append((str(col.name), UtilFuncs._teradata_type_to_python_type(col.type)))
1069
+ self._td_column_names_and_types.append((str(col.name), tdtype))
1070
+ self._td_column_names_and_sqlalchemy_types[(str(col.name)).lower()] = col.type
1071
+
1072
+ # Set the Geometry column, which will be used as "geometry"
1073
+ # property.
1074
+ if self.__geom_column is None and \
1075
+ isinstance(col.type, (GEOMETRY, MBR, MBB)):
1076
+ self.__geom_column = col
1077
+
1078
+ if self.__geom_column is None:
1079
+ error_code = MessageCodes.NO_GEOM_COLUMN_EXIST
1080
+ raise TeradataMlException(Messages.get_message(error_code), error_code)
1081
+
1082
+ def _generate_child_metaexpr(self, metaexpr):
1083
+ """
1084
+ Internal function that generates the metaexpression by converting
1085
+ _SQLColumnExpression to GeoDataFrameColumn.
1086
+
1087
+ PARAMETERS:
1088
+ metaexpr:
1089
+ Required Arguments.
1090
+ Specifies the metaexpression to update.
1091
+ Types: _MetaExpression
1092
+
1093
+ RETURNS:
1094
+ _MetaExpression
1095
+
1096
+ RAISES:
1097
+ None.
1098
+
1099
+ EXAMPLES:
1100
+ self._metaexpr = self._generate_child_metaexpr(metaexpr)
1101
+ """
1102
+ metaexpr.c = [GeoDataFrameColumn(col.expression)
1103
+ if not isinstance(col, GeoDataFrameColumn) else col
1104
+ for col in metaexpr.c]
1105
+ return metaexpr