teradataml 20.0.0.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +2762 -0
- teradataml/__init__.py +78 -0
- teradataml/_version.py +11 -0
- teradataml/analytics/Transformations.py +2996 -0
- teradataml/analytics/__init__.py +82 -0
- teradataml/analytics/analytic_function_executor.py +2416 -0
- teradataml/analytics/analytic_query_generator.py +1050 -0
- teradataml/analytics/byom/H2OPredict.py +514 -0
- teradataml/analytics/byom/PMMLPredict.py +437 -0
- teradataml/analytics/byom/__init__.py +16 -0
- teradataml/analytics/json_parser/__init__.py +133 -0
- teradataml/analytics/json_parser/analytic_functions_argument.py +1805 -0
- teradataml/analytics/json_parser/json_store.py +191 -0
- teradataml/analytics/json_parser/metadata.py +1666 -0
- teradataml/analytics/json_parser/utils.py +805 -0
- teradataml/analytics/meta_class.py +236 -0
- teradataml/analytics/sqle/DecisionTreePredict.py +456 -0
- teradataml/analytics/sqle/NaiveBayesPredict.py +420 -0
- teradataml/analytics/sqle/__init__.py +128 -0
- teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -0
- teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -0
- teradataml/analytics/table_operator/__init__.py +11 -0
- teradataml/analytics/uaf/__init__.py +82 -0
- teradataml/analytics/utils.py +828 -0
- teradataml/analytics/valib.py +1617 -0
- teradataml/automl/__init__.py +5835 -0
- teradataml/automl/autodataprep/__init__.py +493 -0
- teradataml/automl/custom_json_utils.py +1625 -0
- teradataml/automl/data_preparation.py +1384 -0
- teradataml/automl/data_transformation.py +1254 -0
- teradataml/automl/feature_engineering.py +2273 -0
- teradataml/automl/feature_exploration.py +1873 -0
- teradataml/automl/model_evaluation.py +488 -0
- teradataml/automl/model_training.py +1407 -0
- teradataml/catalog/__init__.py +2 -0
- teradataml/catalog/byom.py +1759 -0
- teradataml/catalog/function_argument_mapper.py +859 -0
- teradataml/catalog/model_cataloging_utils.py +491 -0
- teradataml/clients/__init__.py +0 -0
- teradataml/clients/auth_client.py +137 -0
- teradataml/clients/keycloak_client.py +165 -0
- teradataml/clients/pkce_client.py +481 -0
- teradataml/common/__init__.py +1 -0
- teradataml/common/aed_utils.py +2078 -0
- teradataml/common/bulk_exposed_utils.py +113 -0
- teradataml/common/constants.py +1669 -0
- teradataml/common/deprecations.py +166 -0
- teradataml/common/exceptions.py +147 -0
- teradataml/common/formula.py +743 -0
- teradataml/common/garbagecollector.py +666 -0
- teradataml/common/logger.py +1261 -0
- teradataml/common/messagecodes.py +518 -0
- teradataml/common/messages.py +262 -0
- teradataml/common/pylogger.py +67 -0
- teradataml/common/sqlbundle.py +764 -0
- teradataml/common/td_coltype_code_to_tdtype.py +48 -0
- teradataml/common/utils.py +3166 -0
- teradataml/common/warnings.py +36 -0
- teradataml/common/wrapper_utils.py +625 -0
- teradataml/config/__init__.py +0 -0
- teradataml/config/dummy_file1.cfg +5 -0
- teradataml/config/dummy_file2.cfg +3 -0
- teradataml/config/sqlengine_alias_definitions_v1.0 +14 -0
- teradataml/config/sqlengine_alias_definitions_v1.1 +20 -0
- teradataml/config/sqlengine_alias_definitions_v1.3 +19 -0
- teradataml/context/__init__.py +0 -0
- teradataml/context/aed_context.py +223 -0
- teradataml/context/context.py +1462 -0
- teradataml/data/A_loan.csv +19 -0
- teradataml/data/BINARY_REALS_LEFT.csv +11 -0
- teradataml/data/BINARY_REALS_RIGHT.csv +11 -0
- teradataml/data/B_loan.csv +49 -0
- teradataml/data/BuoyData2.csv +17 -0
- teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -0
- teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -0
- teradataml/data/Convolve2RealsLeft.csv +5 -0
- teradataml/data/Convolve2RealsRight.csv +5 -0
- teradataml/data/Convolve2ValidLeft.csv +11 -0
- teradataml/data/Convolve2ValidRight.csv +11 -0
- teradataml/data/DFFTConv_Real_8_8.csv +65 -0
- teradataml/data/Employee.csv +5 -0
- teradataml/data/Employee_Address.csv +4 -0
- teradataml/data/Employee_roles.csv +5 -0
- teradataml/data/JulesBelvezeDummyData.csv +100 -0
- teradataml/data/Mall_customer_data.csv +201 -0
- teradataml/data/Orders1_12mf.csv +25 -0
- teradataml/data/Pi_loan.csv +7 -0
- teradataml/data/SMOOTHED_DATA.csv +7 -0
- teradataml/data/TestDFFT8.csv +9 -0
- teradataml/data/TestRiver.csv +109 -0
- teradataml/data/Traindata.csv +28 -0
- teradataml/data/__init__.py +0 -0
- teradataml/data/acf.csv +17 -0
- teradataml/data/adaboost_example.json +34 -0
- teradataml/data/adaboostpredict_example.json +24 -0
- teradataml/data/additional_table.csv +11 -0
- teradataml/data/admissions_test.csv +21 -0
- teradataml/data/admissions_train.csv +41 -0
- teradataml/data/admissions_train_nulls.csv +41 -0
- teradataml/data/advertising.csv +201 -0
- teradataml/data/ageandheight.csv +13 -0
- teradataml/data/ageandpressure.csv +31 -0
- teradataml/data/amazon_reviews_25.csv +26 -0
- teradataml/data/antiselect_example.json +36 -0
- teradataml/data/antiselect_input.csv +8 -0
- teradataml/data/antiselect_input_mixed_case.csv +8 -0
- teradataml/data/applicant_external.csv +7 -0
- teradataml/data/applicant_reference.csv +7 -0
- teradataml/data/apriori_example.json +22 -0
- teradataml/data/arima_example.json +9 -0
- teradataml/data/assortedtext_input.csv +8 -0
- teradataml/data/attribution_example.json +34 -0
- teradataml/data/attribution_sample_table.csv +27 -0
- teradataml/data/attribution_sample_table1.csv +6 -0
- teradataml/data/attribution_sample_table2.csv +11 -0
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bank_marketing.csv +11163 -0
- teradataml/data/bank_web_clicks1.csv +43 -0
- teradataml/data/bank_web_clicks2.csv +91 -0
- teradataml/data/bank_web_url.csv +85 -0
- teradataml/data/barrier.csv +2 -0
- teradataml/data/barrier_new.csv +3 -0
- teradataml/data/betweenness_example.json +14 -0
- teradataml/data/bike_sharing.csv +732 -0
- teradataml/data/bin_breaks.csv +8 -0
- teradataml/data/bin_fit_ip.csv +4 -0
- teradataml/data/binary_complex_left.csv +11 -0
- teradataml/data/binary_complex_right.csv +11 -0
- teradataml/data/binary_matrix_complex_left.csv +21 -0
- teradataml/data/binary_matrix_complex_right.csv +21 -0
- teradataml/data/binary_matrix_real_left.csv +21 -0
- teradataml/data/binary_matrix_real_right.csv +21 -0
- teradataml/data/blood2ageandweight.csv +26 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/boston.csv +507 -0
- teradataml/data/boston2cols.csv +721 -0
- teradataml/data/breast_cancer.csv +570 -0
- teradataml/data/buoydata_mix.csv +11 -0
- teradataml/data/burst_data.csv +5 -0
- teradataml/data/burst_example.json +21 -0
- teradataml/data/byom_example.json +34 -0
- teradataml/data/bytes_table.csv +4 -0
- teradataml/data/cal_housing_ex_raw.csv +70 -0
- teradataml/data/callers.csv +7 -0
- teradataml/data/calls.csv +10 -0
- teradataml/data/cars_hist.csv +33 -0
- teradataml/data/cat_table.csv +25 -0
- teradataml/data/ccm_example.json +32 -0
- teradataml/data/ccm_input.csv +91 -0
- teradataml/data/ccm_input2.csv +13 -0
- teradataml/data/ccmexample.csv +101 -0
- teradataml/data/ccmprepare_example.json +9 -0
- teradataml/data/ccmprepare_input.csv +91 -0
- teradataml/data/cfilter_example.json +12 -0
- teradataml/data/changepointdetection_example.json +18 -0
- teradataml/data/changepointdetectionrt_example.json +8 -0
- teradataml/data/chi_sq.csv +3 -0
- teradataml/data/churn_data.csv +14 -0
- teradataml/data/churn_emission.csv +35 -0
- teradataml/data/churn_initial.csv +3 -0
- teradataml/data/churn_state_transition.csv +5 -0
- teradataml/data/citedges_2.csv +745 -0
- teradataml/data/citvertices_2.csv +1210 -0
- teradataml/data/clicks2.csv +16 -0
- teradataml/data/clickstream.csv +13 -0
- teradataml/data/clickstream1.csv +11 -0
- teradataml/data/closeness_example.json +16 -0
- teradataml/data/complaints.csv +21 -0
- teradataml/data/complaints_mini.csv +3 -0
- teradataml/data/complaints_test_tokenized.csv +353 -0
- teradataml/data/complaints_testtoken.csv +224 -0
- teradataml/data/complaints_tokens_model.csv +348 -0
- teradataml/data/complaints_tokens_test.csv +353 -0
- teradataml/data/complaints_traintoken.csv +472 -0
- teradataml/data/computers_category.csv +1001 -0
- teradataml/data/computers_test1.csv +1252 -0
- teradataml/data/computers_train1.csv +5009 -0
- teradataml/data/computers_train1_clustered.csv +5009 -0
- teradataml/data/confusionmatrix_example.json +9 -0
- teradataml/data/conversion_event_table.csv +3 -0
- teradataml/data/corr_input.csv +17 -0
- teradataml/data/correlation_example.json +11 -0
- teradataml/data/covid_confirm_sd.csv +83 -0
- teradataml/data/coxhazardratio_example.json +39 -0
- teradataml/data/coxph_example.json +15 -0
- teradataml/data/coxsurvival_example.json +28 -0
- teradataml/data/cpt.csv +41 -0
- teradataml/data/credit_ex_merged.csv +45 -0
- teradataml/data/creditcard_data.csv +1001 -0
- teradataml/data/customer_loyalty.csv +301 -0
- teradataml/data/customer_loyalty_newseq.csv +31 -0
- teradataml/data/customer_segmentation_test.csv +2628 -0
- teradataml/data/customer_segmentation_train.csv +8069 -0
- teradataml/data/dataframe_example.json +173 -0
- teradataml/data/decisionforest_example.json +37 -0
- teradataml/data/decisionforestpredict_example.json +38 -0
- teradataml/data/decisiontree_example.json +21 -0
- teradataml/data/decisiontreepredict_example.json +45 -0
- teradataml/data/dfft2_size4_real.csv +17 -0
- teradataml/data/dfft2_test_matrix16.csv +17 -0
- teradataml/data/dfft2conv_real_4_4.csv +65 -0
- teradataml/data/diabetes.csv +443 -0
- teradataml/data/diabetes_test.csv +89 -0
- teradataml/data/dict_table.csv +5 -0
- teradataml/data/docperterm_table.csv +4 -0
- teradataml/data/docs/__init__.py +1 -0
- teradataml/data/docs/byom/__init__.py +0 -0
- teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -0
- teradataml/data/docs/byom/docs/DataikuPredict.py +217 -0
- teradataml/data/docs/byom/docs/H2OPredict.py +325 -0
- teradataml/data/docs/byom/docs/ONNXEmbeddings.py +242 -0
- teradataml/data/docs/byom/docs/ONNXPredict.py +283 -0
- teradataml/data/docs/byom/docs/ONNXSeq2Seq.py +255 -0
- teradataml/data/docs/byom/docs/PMMLPredict.py +278 -0
- teradataml/data/docs/byom/docs/__init__.py +0 -0
- teradataml/data/docs/sqle/__init__.py +0 -0
- teradataml/data/docs/sqle/docs_17_10/Antiselect.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/Attribution.py +200 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +172 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -0
- teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -0
- teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +96 -0
- teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -0
- teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +152 -0
- teradataml/data/docs/sqle/docs_17_10/FTest.py +161 -0
- teradataml/data/docs/sqle/docs_17_10/FillRowId.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/Fit.py +88 -0
- teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +85 -0
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +82 -0
- teradataml/data/docs/sqle/docs_17_10/Histogram.py +165 -0
- teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -0
- teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +209 -0
- teradataml/data/docs/sqle/docs_17_10/NPath.py +266 -0
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -0
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -0
- teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +135 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +166 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -0
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +112 -0
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -0
- teradataml/data/docs/sqle/docs_17_10/QQNorm.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +110 -0
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +118 -0
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -0
- teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +153 -0
- teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -0
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -0
- teradataml/data/docs/sqle/docs_17_10/Sessionize.py +114 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -0
- teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -0
- teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +146 -0
- teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +142 -0
- teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -0
- teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -0
- teradataml/data/docs/sqle/docs_17_10/__init__.py +0 -0
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -0
- teradataml/data/docs/sqle/docs_17_20/Antiselect.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/Apriori.py +138 -0
- teradataml/data/docs/sqle/docs_17_20/Attribution.py +201 -0
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +172 -0
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -0
- teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
- teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -0
- teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +246 -0
- teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +280 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +136 -0
- teradataml/data/docs/sqle/docs_17_20/FTest.py +240 -0
- teradataml/data/docs/sqle/docs_17_20/FillRowId.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/Fit.py +88 -0
- teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +415 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -0
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -0
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +106 -0
- teradataml/data/docs/sqle/docs_17_20/Histogram.py +224 -0
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -0
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/KNN.py +215 -0
- teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -0
- teradataml/data/docs/sqle/docs_17_20/NERExtractor.py +121 -0
- teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +209 -0
- teradataml/data/docs/sqle/docs_17_20/NPath.py +266 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +127 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +119 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -0
- teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -0
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +231 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -0
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +220 -0
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +191 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -0
- teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -0
- teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/QQNorm.py +105 -0
- teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +155 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -0
- teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -0
- teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +118 -0
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -0
- teradataml/data/docs/sqle/docs_17_20/SMOTE.py +212 -0
- teradataml/data/docs/sqle/docs_17_20/SVM.py +414 -0
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -0
- teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +153 -0
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -0
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -0
- teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -0
- teradataml/data/docs/sqle/docs_17_20/Sessionize.py +114 -0
- teradataml/data/docs/sqle/docs_17_20/Shap.py +225 -0
- teradataml/data/docs/sqle/docs_17_20/Silhouette.py +153 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -0
- teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +146 -0
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -0
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -0
- teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
- teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +267 -0
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -0
- teradataml/data/docs/sqle/docs_17_20/TextMorph.py +119 -0
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +224 -0
- teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +160 -0
- teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -0
- teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -0
- teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
- teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +169 -0
- teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +237 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +362 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -0
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -0
- teradataml/data/docs/sqle/docs_17_20/__init__.py +0 -0
- teradataml/data/docs/tableoperator/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +430 -0
- teradataml/data/docs/tableoperator/docs_17_00/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +430 -0
- teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +348 -0
- teradataml/data/docs/tableoperator/docs_17_05/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +429 -0
- teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +348 -0
- teradataml/data/docs/tableoperator/docs_17_10/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
- teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +440 -0
- teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +387 -0
- teradataml/data/docs/tableoperator/docs_17_20/__init__.py +0 -0
- teradataml/data/docs/uaf/__init__.py +0 -0
- teradataml/data/docs/uaf/docs_17_20/ACF.py +186 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +370 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +172 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +161 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
- teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
- teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +248 -0
- teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +178 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +175 -0
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +230 -0
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +218 -0
- teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +185 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT.py +204 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +216 -0
- teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +192 -0
- teradataml/data/docs/uaf/docs_17_20/DIFF.py +175 -0
- teradataml/data/docs/uaf/docs_17_20/DTW.py +180 -0
- teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
- teradataml/data/docs/uaf/docs_17_20/DWT2D.py +217 -0
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +142 -0
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +184 -0
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +185 -0
- teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
- teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +206 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +143 -0
- teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +198 -0
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +260 -0
- teradataml/data/docs/uaf/docs_17_20/IDFFT.py +165 -0
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +191 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
- teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/InputValidator.py +121 -0
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +156 -0
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +215 -0
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +174 -0
- teradataml/data/docs/uaf/docs_17_20/MInfo.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +145 -0
- teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +191 -0
- teradataml/data/docs/uaf/docs_17_20/PACF.py +157 -0
- teradataml/data/docs/uaf/docs_17_20/Portman.py +217 -0
- teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +203 -0
- teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +155 -0
- teradataml/data/docs/uaf/docs_17_20/Resample.py +237 -0
- teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
- teradataml/data/docs/uaf/docs_17_20/SInfo.py +123 -0
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +173 -0
- teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +174 -0
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +164 -0
- teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +180 -0
- teradataml/data/docs/uaf/docs_17_20/Smoothma.py +208 -0
- teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +151 -0
- teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +202 -0
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
- teradataml/data/docs/uaf/docs_17_20/__init__.py +0 -0
- teradataml/data/dtw_example.json +18 -0
- teradataml/data/dtw_t1.csv +11 -0
- teradataml/data/dtw_t2.csv +4 -0
- teradataml/data/dwt2d_dataTable.csv +65 -0
- teradataml/data/dwt2d_example.json +16 -0
- teradataml/data/dwt_dataTable.csv +8 -0
- teradataml/data/dwt_example.json +15 -0
- teradataml/data/dwt_filterTable.csv +3 -0
- teradataml/data/dwt_filter_dim.csv +5 -0
- teradataml/data/emission.csv +9 -0
- teradataml/data/emp_table_by_dept.csv +19 -0
- teradataml/data/employee_info.csv +4 -0
- teradataml/data/employee_table.csv +6 -0
- teradataml/data/excluding_event_table.csv +2 -0
- teradataml/data/finance_data.csv +6 -0
- teradataml/data/finance_data2.csv +61 -0
- teradataml/data/finance_data3.csv +93 -0
- teradataml/data/finance_data4.csv +13 -0
- teradataml/data/fish.csv +160 -0
- teradataml/data/fm_blood2ageandweight.csv +26 -0
- teradataml/data/fmeasure_example.json +12 -0
- teradataml/data/followers_leaders.csv +10 -0
- teradataml/data/fpgrowth_example.json +12 -0
- teradataml/data/frequentpaths_example.json +29 -0
- teradataml/data/friends.csv +9 -0
- teradataml/data/fs_input.csv +33 -0
- teradataml/data/fs_input1.csv +33 -0
- teradataml/data/genData.csv +513 -0
- teradataml/data/geodataframe_example.json +40 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/glm_admissions_model.csv +12 -0
- teradataml/data/glm_example.json +56 -0
- teradataml/data/glml1l2_example.json +28 -0
- teradataml/data/glml1l2predict_example.json +54 -0
- teradataml/data/glmpredict_example.json +54 -0
- teradataml/data/gq_t1.csv +21 -0
- teradataml/data/grocery_transaction.csv +19 -0
- teradataml/data/hconvolve_complex_right.csv +5 -0
- teradataml/data/hconvolve_complex_rightmulti.csv +5 -0
- teradataml/data/histogram_example.json +12 -0
- teradataml/data/hmmdecoder_example.json +79 -0
- teradataml/data/hmmevaluator_example.json +25 -0
- teradataml/data/hmmsupervised_example.json +10 -0
- teradataml/data/hmmunsupervised_example.json +8 -0
- teradataml/data/hnsw_alter_data.csv +5 -0
- teradataml/data/hnsw_data.csv +10 -0
- teradataml/data/house_values.csv +12 -0
- teradataml/data/house_values2.csv +13 -0
- teradataml/data/housing_cat.csv +7 -0
- teradataml/data/housing_data.csv +9 -0
- teradataml/data/housing_test.csv +47 -0
- teradataml/data/housing_test_binary.csv +47 -0
- teradataml/data/housing_train.csv +493 -0
- teradataml/data/housing_train_attribute.csv +5 -0
- teradataml/data/housing_train_binary.csv +437 -0
- teradataml/data/housing_train_parameter.csv +2 -0
- teradataml/data/housing_train_response.csv +493 -0
- teradataml/data/housing_train_segment.csv +201 -0
- teradataml/data/ibm_stock.csv +370 -0
- teradataml/data/ibm_stock1.csv +370 -0
- teradataml/data/identitymatch_example.json +22 -0
- teradataml/data/idf_table.csv +4 -0
- teradataml/data/idwt2d_dataTable.csv +5 -0
- teradataml/data/idwt_dataTable.csv +8 -0
- teradataml/data/idwt_filterTable.csv +3 -0
- teradataml/data/impressions.csv +101 -0
- teradataml/data/inflation.csv +21 -0
- teradataml/data/initial.csv +3 -0
- teradataml/data/insect2Cols.csv +61 -0
- teradataml/data/insect_sprays.csv +13 -0
- teradataml/data/insurance.csv +1339 -0
- teradataml/data/interpolator_example.json +13 -0
- teradataml/data/interval_data.csv +5 -0
- teradataml/data/iris_altinput.csv +481 -0
- teradataml/data/iris_attribute_output.csv +8 -0
- teradataml/data/iris_attribute_test.csv +121 -0
- teradataml/data/iris_attribute_train.csv +481 -0
- teradataml/data/iris_category_expect_predict.csv +31 -0
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/iris_input.csv +151 -0
- teradataml/data/iris_response_train.csv +121 -0
- teradataml/data/iris_test.csv +31 -0
- teradataml/data/iris_train.csv +121 -0
- teradataml/data/join_table1.csv +4 -0
- teradataml/data/join_table2.csv +4 -0
- teradataml/data/jsons/anly_function_name.json +7 -0
- teradataml/data/jsons/byom/ONNXSeq2Seq.json +287 -0
- teradataml/data/jsons/byom/dataikupredict.json +148 -0
- teradataml/data/jsons/byom/datarobotpredict.json +147 -0
- teradataml/data/jsons/byom/h2opredict.json +195 -0
- teradataml/data/jsons/byom/onnxembeddings.json +267 -0
- teradataml/data/jsons/byom/onnxpredict.json +187 -0
- teradataml/data/jsons/byom/pmmlpredict.json +147 -0
- teradataml/data/jsons/paired_functions.json +450 -0
- teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/16.20/Attribution.json +249 -0
- teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/16.20/Pack.json +98 -0
- teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/16.20/Unpack.json +166 -0
- teradataml/data/jsons/sqle/16.20/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.00/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/17.00/Pack.json +98 -0
- teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.00/Unpack.json +166 -0
- teradataml/data/jsons/sqle/17.00/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.05/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/17.05/Pack.json +98 -0
- teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.05/Unpack.json +166 -0
- teradataml/data/jsons/sqle/17.05/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.10/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -0
- teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +172 -0
- teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -0
- teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -0
- teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -0
- teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -0
- teradataml/data/jsons/sqle/17.10/Pack.json +133 -0
- teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -0
- teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -0
- teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -0
- teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +54 -0
- teradataml/data/jsons/sqle/17.10/TD_Chisq.json +68 -0
- teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +54 -0
- teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +69 -0
- teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -0
- teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +52 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -0
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_Histogram.json +133 -0
- teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +183 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +66 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +197 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -0
- teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +112 -0
- teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +128 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +157 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +71 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +148 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -0
- teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -0
- teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +119 -0
- teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -0
- teradataml/data/jsons/sqle/17.10/Unpack.json +188 -0
- teradataml/data/jsons/sqle/17.10/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.20/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -0
- teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -0
- teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -0
- teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -0
- teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -0
- teradataml/data/jsons/sqle/17.20/Pack.json +133 -0
- teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -0
- teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +149 -0
- teradataml/data/jsons/sqle/17.20/TD_Apriori.json +181 -0
- teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -0
- teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
- teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_Chisq.json +68 -0
- teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +146 -0
- teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -0
- teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -0
- teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +260 -0
- teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -0
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -0
- teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -0
- teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -0
- teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -0
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -0
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -0
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -0
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -0
- teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -0
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +232 -0
- teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +87 -0
- teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -0
- teradataml/data/jsons/sqle/17.20/TD_NERExtractor.json +145 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -0
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +316 -0
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +124 -0
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -0
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -0
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -0
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -0
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -0
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -0
- teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -0
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -0
- teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -0
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +179 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +179 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +74 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -0
- teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +138 -0
- teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -0
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +128 -0
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_SMOTE.json +267 -0
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -0
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -0
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +310 -0
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +120 -0
- teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +194 -0
- teradataml/data/jsons/sqle/17.20/TD_Shap.json +221 -0
- teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +143 -0
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -0
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -0
- teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -0
- teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -0
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -0
- teradataml/data/jsons/sqle/17.20/TD_TextMorph.json +134 -0
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json +297 -0
- teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -0
- teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -0
- teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
- teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +183 -0
- teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -0
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -0
- teradataml/data/jsons/sqle/17.20/Unpack.json +188 -0
- teradataml/data/jsons/sqle/17.20/nPath.json +269 -0
- teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json +370 -0
- teradataml/data/jsons/sqle/20.00/AI_AskLLM.json +460 -0
- teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json +385 -0
- teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_MaskPII.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json +400 -0
- teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json +401 -0
- teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json +384 -0
- teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json +384 -0
- teradataml/data/jsons/sqle/20.00/TD_API_AzureML.json +151 -0
- teradataml/data/jsons/sqle/20.00/TD_API_Sagemaker.json +182 -0
- teradataml/data/jsons/sqle/20.00/TD_API_VertexAI.json +183 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSW.json +296 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json +206 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json +32 -0
- teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
- teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
- teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
- teradataml/data/jsons/tableoperator/17.00/read_nos.json +198 -0
- teradataml/data/jsons/tableoperator/17.05/read_nos.json +198 -0
- teradataml/data/jsons/tableoperator/17.05/write_nos.json +195 -0
- teradataml/data/jsons/tableoperator/17.10/read_nos.json +184 -0
- teradataml/data/jsons/tableoperator/17.10/write_nos.json +195 -0
- teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
- teradataml/data/jsons/tableoperator/17.20/read_nos.json +183 -0
- teradataml/data/jsons/tableoperator/17.20/write_nos.json +224 -0
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +132 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +396 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +77 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +153 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
- teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +107 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +106 -0
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +89 -0
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +104 -0
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +66 -0
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +87 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +134 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +144 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +108 -0
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_DIFF.json +92 -0
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +114 -0
- teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
- teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +39 -0
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +85 -0
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +71 -0
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +139 -0
- teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECASTER.json +313 -0
- teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +58 -0
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +81 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
- teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +64 -0
- teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +182 -0
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +103 -0
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +181 -0
- teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
- teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +68 -0
- teradataml/data/jsons/uaf/17.20/TD_MINFO.json +67 -0
- teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +179 -0
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -0
- teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +119 -0
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -0
- teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +98 -0
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +194 -0
- teradataml/data/jsons/uaf/17.20/TD_SAX.json +210 -0
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +143 -0
- teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +90 -0
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +80 -0
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +68 -0
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -0
- teradataml/data/jsons/uaf/17.20/TD_SINFO.json +58 -0
- teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +163 -0
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +112 -0
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -0
- teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +410 -0
- teradataml/data/kmeans_example.json +23 -0
- teradataml/data/kmeans_table.csv +10 -0
- teradataml/data/kmeans_us_arrests_data.csv +51 -0
- teradataml/data/knn_example.json +19 -0
- teradataml/data/knnrecommender_example.json +7 -0
- teradataml/data/knnrecommenderpredict_example.json +12 -0
- teradataml/data/lar_example.json +17 -0
- teradataml/data/larpredict_example.json +30 -0
- teradataml/data/lc_new_predictors.csv +5 -0
- teradataml/data/lc_new_reference.csv +9 -0
- teradataml/data/lda_example.json +9 -0
- teradataml/data/ldainference_example.json +15 -0
- teradataml/data/ldatopicsummary_example.json +9 -0
- teradataml/data/levendist_input.csv +13 -0
- teradataml/data/levenshteindistance_example.json +10 -0
- teradataml/data/linreg_example.json +10 -0
- teradataml/data/load_example_data.py +350 -0
- teradataml/data/loan_prediction.csv +295 -0
- teradataml/data/lungcancer.csv +138 -0
- teradataml/data/mappingdata.csv +12 -0
- teradataml/data/medical_readings.csv +101 -0
- teradataml/data/milk_timeseries.csv +157 -0
- teradataml/data/min_max_titanic.csv +4 -0
- teradataml/data/minhash_example.json +6 -0
- teradataml/data/ml_ratings.csv +7547 -0
- teradataml/data/ml_ratings_10.csv +2445 -0
- teradataml/data/mobile_data.csv +13 -0
- teradataml/data/model1_table.csv +5 -0
- teradataml/data/model2_table.csv +5 -0
- teradataml/data/models/License_file.txt +1 -0
- teradataml/data/models/License_file_empty.txt +0 -0
- teradataml/data/models/dataiku_iris_data_ann_thin +0 -0
- teradataml/data/models/dr_iris_rf +0 -0
- teradataml/data/models/iris_db_dt_model_sklearn.onnx +0 -0
- teradataml/data/models/iris_db_dt_model_sklearn_floattensor.onnx +0 -0
- teradataml/data/models/iris_db_glm_model.pmml +57 -0
- teradataml/data/models/iris_db_xgb_model.pmml +4471 -0
- teradataml/data/models/iris_kmeans_model +0 -0
- teradataml/data/models/iris_mojo_glm_h2o_model +0 -0
- teradataml/data/models/iris_mojo_xgb_h2o_model +0 -0
- teradataml/data/modularity_example.json +12 -0
- teradataml/data/movavg_example.json +8 -0
- teradataml/data/mtx1.csv +7 -0
- teradataml/data/mtx2.csv +13 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/mvdfft8.csv +9 -0
- teradataml/data/naivebayes_example.json +10 -0
- teradataml/data/naivebayespredict_example.json +19 -0
- teradataml/data/naivebayestextclassifier2_example.json +7 -0
- teradataml/data/naivebayestextclassifier_example.json +8 -0
- teradataml/data/naivebayestextclassifierpredict_example.json +32 -0
- teradataml/data/name_Find_configure.csv +10 -0
- teradataml/data/namedentityfinder_example.json +14 -0
- teradataml/data/namedentityfinderevaluator_example.json +10 -0
- teradataml/data/namedentityfindertrainer_example.json +6 -0
- teradataml/data/nb_iris_input_test.csv +31 -0
- teradataml/data/nb_iris_input_train.csv +121 -0
- teradataml/data/nbp_iris_model.csv +13 -0
- teradataml/data/ner_dict.csv +8 -0
- teradataml/data/ner_extractor_text.csv +2 -0
- teradataml/data/ner_input_eng.csv +7 -0
- teradataml/data/ner_rule.csv +5 -0
- teradataml/data/ner_sports_test2.csv +29 -0
- teradataml/data/ner_sports_train.csv +501 -0
- teradataml/data/nerevaluator_example.json +6 -0
- teradataml/data/nerextractor_example.json +18 -0
- teradataml/data/nermem_sports_test.csv +18 -0
- teradataml/data/nermem_sports_train.csv +51 -0
- teradataml/data/nertrainer_example.json +7 -0
- teradataml/data/ngrams_example.json +7 -0
- teradataml/data/notebooks/__init__.py +0 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -0
- teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -0
- teradataml/data/notebooks/sqlalchemy/__init__.py +0 -0
- teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -0
- teradataml/data/npath_example.json +23 -0
- teradataml/data/ntree_example.json +14 -0
- teradataml/data/numeric_strings.csv +5 -0
- teradataml/data/numerics.csv +4 -0
- teradataml/data/ocean_buoy.csv +17 -0
- teradataml/data/ocean_buoy2.csv +17 -0
- teradataml/data/ocean_buoys.csv +28 -0
- teradataml/data/ocean_buoys2.csv +10 -0
- teradataml/data/ocean_buoys_nonpti.csv +28 -0
- teradataml/data/ocean_buoys_seq.csv +29 -0
- teradataml/data/onehot_encoder_train.csv +4 -0
- teradataml/data/openml_example.json +92 -0
- teradataml/data/optional_event_table.csv +4 -0
- teradataml/data/orders1.csv +11 -0
- teradataml/data/orders1_12.csv +13 -0
- teradataml/data/orders_ex.csv +4 -0
- teradataml/data/pack_example.json +9 -0
- teradataml/data/package_tracking.csv +19 -0
- teradataml/data/package_tracking_pti.csv +19 -0
- teradataml/data/pagerank_example.json +13 -0
- teradataml/data/paragraphs_input.csv +6 -0
- teradataml/data/pathanalyzer_example.json +8 -0
- teradataml/data/pathgenerator_example.json +8 -0
- teradataml/data/patient_profile.csv +101 -0
- teradataml/data/pattern_matching_data.csv +11 -0
- teradataml/data/payment_fraud_dataset.csv +10001 -0
- teradataml/data/peppers.png +0 -0
- teradataml/data/phrases.csv +7 -0
- teradataml/data/pivot_example.json +9 -0
- teradataml/data/pivot_input.csv +22 -0
- teradataml/data/playerRating.csv +31 -0
- teradataml/data/pos_input.csv +40 -0
- teradataml/data/postagger_example.json +7 -0
- teradataml/data/posttagger_output.csv +44 -0
- teradataml/data/production_data.csv +17 -0
- teradataml/data/production_data2.csv +7 -0
- teradataml/data/randomsample_example.json +32 -0
- teradataml/data/randomwalksample_example.json +9 -0
- teradataml/data/rank_table.csv +6 -0
- teradataml/data/real_values.csv +14 -0
- teradataml/data/ref_mobile_data.csv +4 -0
- teradataml/data/ref_mobile_data_dense.csv +2 -0
- teradataml/data/ref_url.csv +17 -0
- teradataml/data/restaurant_reviews.csv +7 -0
- teradataml/data/retail_churn_table.csv +27772 -0
- teradataml/data/river_data.csv +145 -0
- teradataml/data/roc_example.json +8 -0
- teradataml/data/roc_input.csv +101 -0
- teradataml/data/rule_inputs.csv +6 -0
- teradataml/data/rule_table.csv +2 -0
- teradataml/data/sales.csv +7 -0
- teradataml/data/sales_transaction.csv +501 -0
- teradataml/data/salesdata.csv +342 -0
- teradataml/data/sample_cities.csv +3 -0
- teradataml/data/sample_shapes.csv +11 -0
- teradataml/data/sample_streets.csv +3 -0
- teradataml/data/sampling_example.json +16 -0
- teradataml/data/sax_example.json +17 -0
- teradataml/data/scale_attributes.csv +3 -0
- teradataml/data/scale_example.json +74 -0
- teradataml/data/scale_housing.csv +11 -0
- teradataml/data/scale_housing_test.csv +6 -0
- teradataml/data/scale_input_part_sparse.csv +31 -0
- teradataml/data/scale_input_partitioned.csv +16 -0
- teradataml/data/scale_input_sparse.csv +11 -0
- teradataml/data/scale_parameters.csv +3 -0
- teradataml/data/scale_stat.csv +11 -0
- teradataml/data/scalebypartition_example.json +13 -0
- teradataml/data/scalemap_example.json +13 -0
- teradataml/data/scalesummary_example.json +12 -0
- teradataml/data/score_category.csv +101 -0
- teradataml/data/score_summary.csv +4 -0
- teradataml/data/script_example.json +10 -0
- teradataml/data/scripts/deploy_script.py +84 -0
- teradataml/data/scripts/lightgbm/dataset.template +175 -0
- teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +264 -0
- teradataml/data/scripts/lightgbm/lightgbm_function.template +234 -0
- teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +177 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/mapper.py +16 -0
- teradataml/data/scripts/mapper_replace.py +16 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +205 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +148 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +144 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +166 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +161 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +145 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +327 -0
- teradataml/data/sdk/modelops/modelops_spec.json +101737 -0
- teradataml/data/seeds.csv +10 -0
- teradataml/data/sentenceextractor_example.json +7 -0
- teradataml/data/sentiment_extract_input.csv +11 -0
- teradataml/data/sentiment_train.csv +16 -0
- teradataml/data/sentiment_word.csv +20 -0
- teradataml/data/sentiment_word_input.csv +20 -0
- teradataml/data/sentimentextractor_example.json +24 -0
- teradataml/data/sentimenttrainer_example.json +8 -0
- teradataml/data/sequence_table.csv +10 -0
- teradataml/data/seriessplitter_example.json +8 -0
- teradataml/data/sessionize_example.json +17 -0
- teradataml/data/sessionize_table.csv +116 -0
- teradataml/data/setop_test1.csv +24 -0
- teradataml/data/setop_test2.csv +22 -0
- teradataml/data/soc_nw_edges.csv +11 -0
- teradataml/data/soc_nw_vertices.csv +8 -0
- teradataml/data/souvenir_timeseries.csv +168 -0
- teradataml/data/sparse_iris_attribute.csv +5 -0
- teradataml/data/sparse_iris_test.csv +121 -0
- teradataml/data/sparse_iris_train.csv +601 -0
- teradataml/data/star1.csv +6 -0
- teradataml/data/star_pivot.csv +8 -0
- teradataml/data/state_transition.csv +5 -0
- teradataml/data/stock_data.csv +53 -0
- teradataml/data/stock_movement.csv +11 -0
- teradataml/data/stock_vol.csv +76 -0
- teradataml/data/stop_words.csv +8 -0
- teradataml/data/store_sales.csv +37 -0
- teradataml/data/stringsimilarity_example.json +8 -0
- teradataml/data/strsimilarity_input.csv +13 -0
- teradataml/data/students.csv +101 -0
- teradataml/data/svm_iris_input_test.csv +121 -0
- teradataml/data/svm_iris_input_train.csv +481 -0
- teradataml/data/svm_iris_model.csv +7 -0
- teradataml/data/svmdense_example.json +10 -0
- teradataml/data/svmdensepredict_example.json +19 -0
- teradataml/data/svmsparse_example.json +8 -0
- teradataml/data/svmsparsepredict_example.json +14 -0
- teradataml/data/svmsparsesummary_example.json +8 -0
- teradataml/data/target_mobile_data.csv +13 -0
- teradataml/data/target_mobile_data_dense.csv +5 -0
- teradataml/data/target_udt_data.csv +8 -0
- teradataml/data/tdnerextractor_example.json +14 -0
- teradataml/data/templatedata.csv +1201 -0
- teradataml/data/templates/open_source_ml.json +11 -0
- teradataml/data/teradata_icon.ico +0 -0
- teradataml/data/teradataml_example.json +1473 -0
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_loan_prediction.csv +53 -0
- teradataml/data/test_pacf_12.csv +37 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/test_river2.csv +109 -0
- teradataml/data/text_inputs.csv +6 -0
- teradataml/data/textchunker_example.json +8 -0
- teradataml/data/textclassifier_example.json +7 -0
- teradataml/data/textclassifier_input.csv +7 -0
- teradataml/data/textclassifiertrainer_example.json +7 -0
- teradataml/data/textmorph_example.json +11 -0
- teradataml/data/textparser_example.json +15 -0
- teradataml/data/texttagger_example.json +12 -0
- teradataml/data/texttokenizer_example.json +7 -0
- teradataml/data/texttrainer_input.csv +11 -0
- teradataml/data/tf_example.json +7 -0
- teradataml/data/tfidf_example.json +14 -0
- teradataml/data/tfidf_input1.csv +201 -0
- teradataml/data/tfidf_train.csv +6 -0
- teradataml/data/time_table1.csv +535 -0
- teradataml/data/time_table2.csv +14 -0
- teradataml/data/timeseriesdata.csv +1601 -0
- teradataml/data/timeseriesdatasetsd4.csv +105 -0
- teradataml/data/timestamp_data.csv +4 -0
- teradataml/data/titanic.csv +892 -0
- teradataml/data/titanic_dataset_unpivoted.csv +19 -0
- teradataml/data/to_num_data.csv +4 -0
- teradataml/data/tochar_data.csv +5 -0
- teradataml/data/token_table.csv +696 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/train_tracking.csv +28 -0
- teradataml/data/trans_dense.csv +16 -0
- teradataml/data/trans_sparse.csv +55 -0
- teradataml/data/transformation_table.csv +6 -0
- teradataml/data/transformation_table_new.csv +2 -0
- teradataml/data/tv_spots.csv +16 -0
- teradataml/data/twod_climate_data.csv +117 -0
- teradataml/data/uaf_example.json +529 -0
- teradataml/data/univariatestatistics_example.json +9 -0
- teradataml/data/unpack_example.json +10 -0
- teradataml/data/unpivot_example.json +25 -0
- teradataml/data/unpivot_input.csv +8 -0
- teradataml/data/url_data.csv +10 -0
- teradataml/data/us_air_pass.csv +37 -0
- teradataml/data/us_population.csv +624 -0
- teradataml/data/us_states_shapes.csv +52 -0
- teradataml/data/varmax_example.json +18 -0
- teradataml/data/vectordistance_example.json +30 -0
- teradataml/data/ville_climatedata.csv +121 -0
- teradataml/data/ville_tempdata.csv +12 -0
- teradataml/data/ville_tempdata1.csv +12 -0
- teradataml/data/ville_temperature.csv +11 -0
- teradataml/data/waveletTable.csv +1605 -0
- teradataml/data/waveletTable2.csv +1605 -0
- teradataml/data/weightedmovavg_example.json +9 -0
- teradataml/data/wft_testing.csv +5 -0
- teradataml/data/windowdfft.csv +16 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/data/word_embed_input_table1.csv +6 -0
- teradataml/data/word_embed_input_table2.csv +5 -0
- teradataml/data/word_embed_model.csv +23 -0
- teradataml/data/words_input.csv +13 -0
- teradataml/data/xconvolve_complex_left.csv +6 -0
- teradataml/data/xconvolve_complex_leftmulti.csv +6 -0
- teradataml/data/xgboost_example.json +36 -0
- teradataml/data/xgboostpredict_example.json +32 -0
- teradataml/data/ztest_example.json +16 -0
- teradataml/dataframe/__init__.py +0 -0
- teradataml/dataframe/copy_to.py +2446 -0
- teradataml/dataframe/data_transfer.py +2840 -0
- teradataml/dataframe/dataframe.py +20908 -0
- teradataml/dataframe/dataframe_utils.py +2114 -0
- teradataml/dataframe/fastload.py +794 -0
- teradataml/dataframe/functions.py +2110 -0
- teradataml/dataframe/indexer.py +424 -0
- teradataml/dataframe/row.py +160 -0
- teradataml/dataframe/setop.py +1171 -0
- teradataml/dataframe/sql.py +10904 -0
- teradataml/dataframe/sql_function_parameters.py +440 -0
- teradataml/dataframe/sql_functions.py +652 -0
- teradataml/dataframe/sql_interfaces.py +220 -0
- teradataml/dataframe/vantage_function_types.py +675 -0
- teradataml/dataframe/window.py +694 -0
- teradataml/dbutils/__init__.py +3 -0
- teradataml/dbutils/dbutils.py +2871 -0
- teradataml/dbutils/filemgr.py +318 -0
- teradataml/gen_ai/__init__.py +2 -0
- teradataml/gen_ai/convAI.py +473 -0
- teradataml/geospatial/__init__.py +4 -0
- teradataml/geospatial/geodataframe.py +1105 -0
- teradataml/geospatial/geodataframecolumn.py +392 -0
- teradataml/geospatial/geometry_types.py +926 -0
- teradataml/hyperparameter_tuner/__init__.py +1 -0
- teradataml/hyperparameter_tuner/optimizer.py +4115 -0
- teradataml/hyperparameter_tuner/utils.py +303 -0
- teradataml/lib/__init__.py +0 -0
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/lib/libaed_0_1_aarch64.so +0 -0
- teradataml/lib/libaed_0_1_ppc64le.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/_base.py +1321 -0
- teradataml/opensource/_class.py +464 -0
- teradataml/opensource/_constants.py +61 -0
- teradataml/opensource/_lightgbm.py +949 -0
- teradataml/opensource/_sklearn.py +1008 -0
- teradataml/opensource/_wrapper_utils.py +267 -0
- teradataml/options/__init__.py +148 -0
- teradataml/options/configure.py +489 -0
- teradataml/options/display.py +187 -0
- teradataml/plot/__init__.py +3 -0
- teradataml/plot/axis.py +1427 -0
- teradataml/plot/constants.py +15 -0
- teradataml/plot/figure.py +431 -0
- teradataml/plot/plot.py +810 -0
- teradataml/plot/query_generator.py +83 -0
- teradataml/plot/subplot.py +216 -0
- teradataml/scriptmgmt/UserEnv.py +4273 -0
- teradataml/scriptmgmt/__init__.py +3 -0
- teradataml/scriptmgmt/lls_utils.py +2157 -0
- teradataml/sdk/README.md +79 -0
- teradataml/sdk/__init__.py +4 -0
- teradataml/sdk/_auth_modes.py +422 -0
- teradataml/sdk/_func_params.py +487 -0
- teradataml/sdk/_json_parser.py +453 -0
- teradataml/sdk/_openapi_spec_constants.py +249 -0
- teradataml/sdk/_utils.py +236 -0
- teradataml/sdk/api_client.py +900 -0
- teradataml/sdk/constants.py +62 -0
- teradataml/sdk/modelops/__init__.py +98 -0
- teradataml/sdk/modelops/_client.py +409 -0
- teradataml/sdk/modelops/_constants.py +304 -0
- teradataml/sdk/modelops/models.py +2308 -0
- teradataml/sdk/spinner.py +107 -0
- teradataml/series/__init__.py +0 -0
- teradataml/series/series.py +537 -0
- teradataml/series/series_utils.py +71 -0
- teradataml/store/__init__.py +12 -0
- teradataml/store/feature_store/__init__.py +0 -0
- teradataml/store/feature_store/constants.py +658 -0
- teradataml/store/feature_store/feature_store.py +4814 -0
- teradataml/store/feature_store/mind_map.py +639 -0
- teradataml/store/feature_store/models.py +7330 -0
- teradataml/store/feature_store/utils.py +390 -0
- teradataml/table_operators/Apply.py +979 -0
- teradataml/table_operators/Script.py +1739 -0
- teradataml/table_operators/TableOperator.py +1343 -0
- teradataml/table_operators/__init__.py +2 -0
- teradataml/table_operators/apply_query_generator.py +262 -0
- teradataml/table_operators/query_generator.py +493 -0
- teradataml/table_operators/table_operator_query_generator.py +462 -0
- teradataml/table_operators/table_operator_util.py +726 -0
- teradataml/table_operators/templates/dataframe_apply.template +184 -0
- teradataml/table_operators/templates/dataframe_map.template +176 -0
- teradataml/table_operators/templates/dataframe_register.template +73 -0
- teradataml/table_operators/templates/dataframe_udf.template +67 -0
- teradataml/table_operators/templates/script_executor.template +170 -0
- teradataml/telemetry_utils/__init__.py +0 -0
- teradataml/telemetry_utils/queryband.py +53 -0
- teradataml/utils/__init__.py +0 -0
- teradataml/utils/docstring.py +527 -0
- teradataml/utils/dtypes.py +943 -0
- teradataml/utils/internal_buffer.py +122 -0
- teradataml/utils/print_versions.py +206 -0
- teradataml/utils/utils.py +451 -0
- teradataml/utils/validators.py +3305 -0
- teradataml-20.0.0.8.dist-info/METADATA +2804 -0
- teradataml-20.0.0.8.dist-info/RECORD +1208 -0
- teradataml-20.0.0.8.dist-info/WHEEL +5 -0
- teradataml-20.0.0.8.dist-info/top_level.txt +1 -0
- teradataml-20.0.0.8.dist-info/zip-safe +1 -0
teradataml/plot/axis.py
ADDED
|
@@ -0,0 +1,1427 @@
|
|
|
1
|
+
# ##################################################################
|
|
2
|
+
#
|
|
3
|
+
# Copyright 2023 Teradata. All rights reserved.
|
|
4
|
+
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
5
|
+
#
|
|
6
|
+
# Primary Owner: Pradeep Garre (pradeep.garre@teradata.com)
|
|
7
|
+
# Secondary Owner:
|
|
8
|
+
#
|
|
9
|
+
# This file implements Axis, which is used for plotting. Axis holds all
|
|
10
|
+
# the properties related to axis such as grid color, x-axis label, y-axis
|
|
11
|
+
# label etc.
|
|
12
|
+
#
|
|
13
|
+
# ##################################################################
|
|
14
|
+
|
|
15
|
+
from teradataml.common.exceptions import TeradataMlException
|
|
16
|
+
from teradataml.common.messages import Messages
|
|
17
|
+
from teradataml.common.messagecodes import MessageCodes
|
|
18
|
+
from teradataml.common.utils import UtilFuncs
|
|
19
|
+
from teradataml.dataframe.sql import ColumnExpression
|
|
20
|
+
from teradataml.plot.constants import MapType
|
|
21
|
+
from teradataml.utils.validators import _Validators
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
class Axis:
|
|
25
|
+
def __init__(self, **kwargs):
|
|
26
|
+
"""
|
|
27
|
+
Constructor for Axis.
|
|
28
|
+
|
|
29
|
+
PARAMETERS:
|
|
30
|
+
cmap:
|
|
31
|
+
Optional Argument.
|
|
32
|
+
Specifies the name of the colormap to be used for plotting.
|
|
33
|
+
Notes:
|
|
34
|
+
* Significant only when corresponding type of plots is mesh or geometry.
|
|
35
|
+
* Ignored for other type of plots.
|
|
36
|
+
Permitted Values:
|
|
37
|
+
* All the colormaps mentioned in below URL's are supported.
|
|
38
|
+
* https://matplotlib.org/stable/tutorials/colors/colormaps.html
|
|
39
|
+
* https://matplotlib.org/cmocean/
|
|
40
|
+
Types: str
|
|
41
|
+
|
|
42
|
+
color:
|
|
43
|
+
Optional Argument.
|
|
44
|
+
Specifies the color for the plot.
|
|
45
|
+
Note:
|
|
46
|
+
Hexadecimal color codes are not supported.
|
|
47
|
+
Permitted Values:
|
|
48
|
+
* blue
|
|
49
|
+
* orange
|
|
50
|
+
* green
|
|
51
|
+
* red
|
|
52
|
+
* purple
|
|
53
|
+
* brown
|
|
54
|
+
* pink
|
|
55
|
+
* gray
|
|
56
|
+
* olive
|
|
57
|
+
* cyan
|
|
58
|
+
* Apart from above mentioned colors, the colors mentioned in
|
|
59
|
+
https://xkcd.com/color/rgb are also supported.
|
|
60
|
+
Default Value: blue
|
|
61
|
+
Types: str OR list of str
|
|
62
|
+
|
|
63
|
+
grid_color:
|
|
64
|
+
Optional Argument.
|
|
65
|
+
Specifies the color of the grid. By default, grid is generated with
|
|
66
|
+
Gray69(#b0b0b0) color.
|
|
67
|
+
Note:
|
|
68
|
+
Hexadecimal color codes are not supported.
|
|
69
|
+
Permitted Values:
|
|
70
|
+
* 'blue'
|
|
71
|
+
* 'orange'
|
|
72
|
+
* 'green'
|
|
73
|
+
* 'red'
|
|
74
|
+
* 'purple'
|
|
75
|
+
* 'brown'
|
|
76
|
+
* 'pink'
|
|
77
|
+
* 'gray'
|
|
78
|
+
* 'olive'
|
|
79
|
+
* 'cyan'
|
|
80
|
+
* Apart from above mentioned colors, the colors mentioned in
|
|
81
|
+
https://xkcd.com/color/rgb are also supported.
|
|
82
|
+
Default Value: 'gray'
|
|
83
|
+
Types: str
|
|
84
|
+
|
|
85
|
+
grid_format:
|
|
86
|
+
Optional Argument.
|
|
87
|
+
Specifies the format for the grid.
|
|
88
|
+
Types: str
|
|
89
|
+
|
|
90
|
+
grid_linestyle:
|
|
91
|
+
Optional Argument.
|
|
92
|
+
Specifies the line style of the grid.
|
|
93
|
+
Default Value: -
|
|
94
|
+
Permitted Values:
|
|
95
|
+
* -
|
|
96
|
+
* --
|
|
97
|
+
* -.
|
|
98
|
+
Types: str
|
|
99
|
+
|
|
100
|
+
grid_linewidth:
|
|
101
|
+
Optional Argument.
|
|
102
|
+
Specifies the line width of the grid.
|
|
103
|
+
Note:
|
|
104
|
+
Valid range for "grid_linewidth" is: 0.5 <= grid_linewidth <= 10.
|
|
105
|
+
Default Value: 0.8
|
|
106
|
+
Types: int OR float
|
|
107
|
+
|
|
108
|
+
legend:
|
|
109
|
+
Optional Argument.
|
|
110
|
+
Specifies the legend(s) for the Plot.
|
|
111
|
+
Types: str OR list of str
|
|
112
|
+
|
|
113
|
+
legend_style:
|
|
114
|
+
Optional Argument.
|
|
115
|
+
Specifies the location for legend to display on Plot image. By default,
|
|
116
|
+
legend is displayed at upper right corner.
|
|
117
|
+
* 'upper right'
|
|
118
|
+
* 'upper left'
|
|
119
|
+
* 'lower right'
|
|
120
|
+
* 'lower left'
|
|
121
|
+
* 'right'
|
|
122
|
+
* 'center left'
|
|
123
|
+
* 'center right'
|
|
124
|
+
* 'lower center'
|
|
125
|
+
* 'upper center'
|
|
126
|
+
* 'center'
|
|
127
|
+
Default Value: 'upper right'
|
|
128
|
+
Types: str
|
|
129
|
+
|
|
130
|
+
linestyle:
|
|
131
|
+
Optional Argument.
|
|
132
|
+
Specifies the line style for the plot.
|
|
133
|
+
Permitted Values:
|
|
134
|
+
* -
|
|
135
|
+
* --
|
|
136
|
+
* -.
|
|
137
|
+
* :
|
|
138
|
+
Default Value: -
|
|
139
|
+
Types: str OR list of str
|
|
140
|
+
|
|
141
|
+
linewidth:
|
|
142
|
+
Optional Argument.
|
|
143
|
+
Specifies the line width for the plot.
|
|
144
|
+
Note:
|
|
145
|
+
Valid range for "linewidth" is: 0.5 <= linewidth <= 10.
|
|
146
|
+
Default Value: 0.8
|
|
147
|
+
Types: int OR float OR list of int OR list of float
|
|
148
|
+
|
|
149
|
+
marker:
|
|
150
|
+
Optional Argument.
|
|
151
|
+
Specifies the type of the marker to be used.
|
|
152
|
+
Permitted Values:
|
|
153
|
+
All the markers mentioned in https://matplotlib.org/stable/api/markers_api.html
|
|
154
|
+
are supported.
|
|
155
|
+
Types: str OR list of str
|
|
156
|
+
|
|
157
|
+
markersize:
|
|
158
|
+
Optional Argument.
|
|
159
|
+
Specifies the size of the marker.
|
|
160
|
+
Note:
|
|
161
|
+
Valid range for "markersize" is: 1 <= markersize <= 20.
|
|
162
|
+
Default Value: 6
|
|
163
|
+
Types: int OR float OR list of int OR list of float
|
|
164
|
+
|
|
165
|
+
position:
|
|
166
|
+
Optional Argument.
|
|
167
|
+
Specifies the position of the axis in the Figure. 1st element
|
|
168
|
+
represents the row and second element represents column.
|
|
169
|
+
Default Value: (1, 1)
|
|
170
|
+
Types: tuple
|
|
171
|
+
|
|
172
|
+
reverse_xaxis:
|
|
173
|
+
Optional Argument.
|
|
174
|
+
Specifies whether to reverse tick values on x-axis or not.
|
|
175
|
+
Default Value: False
|
|
176
|
+
Types: bool
|
|
177
|
+
|
|
178
|
+
reverse_yaxis:
|
|
179
|
+
Optional Argument.
|
|
180
|
+
Specifies whether to reverse tick values on y-axis or not.
|
|
181
|
+
Default Value: False
|
|
182
|
+
Types: bool
|
|
183
|
+
|
|
184
|
+
span:
|
|
185
|
+
Optional Argument.
|
|
186
|
+
Specifies the span of the axis in the Figure. 1st element
|
|
187
|
+
represents the row and second element represents column.
|
|
188
|
+
For Example,
|
|
189
|
+
Span of (2, 1) specifies the Axis occupies 2 rows and 1 column
|
|
190
|
+
in Figure.
|
|
191
|
+
Default Value: (1, 1)
|
|
192
|
+
Types: tuple
|
|
193
|
+
|
|
194
|
+
series_identifier:
|
|
195
|
+
Optional Argument.
|
|
196
|
+
Specifies the teradataml GeoDataFrame Column which represents the
|
|
197
|
+
identifier for the data. As many plots as distinct "series_identifier"
|
|
198
|
+
are generated in a single Axis.
|
|
199
|
+
For example:
|
|
200
|
+
consider the below data in teradataml GeoDataFrame.
|
|
201
|
+
ID x y
|
|
202
|
+
0 1 1 1
|
|
203
|
+
1 1 2 2
|
|
204
|
+
2 2 10 10
|
|
205
|
+
3 2 20 20
|
|
206
|
+
If "series_identifier" is not specified, simple plot is
|
|
207
|
+
generated where every 'y' is plotted against 'x' in a
|
|
208
|
+
single plot. However, specifying "series_identifier" as 'ID'
|
|
209
|
+
generates two plots in a single axis. One plot is for ID 1
|
|
210
|
+
and another plot is for ID 2.
|
|
211
|
+
Types: teradataml GeoDataFrame Column.
|
|
212
|
+
|
|
213
|
+
title:
|
|
214
|
+
Optional Argument.
|
|
215
|
+
Specifies the title for the Axis.
|
|
216
|
+
Types: str
|
|
217
|
+
|
|
218
|
+
xlabel:
|
|
219
|
+
Optional Argument.
|
|
220
|
+
Specifies the label for x-axis.
|
|
221
|
+
Notes:
|
|
222
|
+
* When set to empty string, label is not displayed for x-axis.
|
|
223
|
+
* When set to None, name of the x-axis column is displayed as
|
|
224
|
+
label.
|
|
225
|
+
Types: str
|
|
226
|
+
|
|
227
|
+
xlim:
|
|
228
|
+
Optional Argument.
|
|
229
|
+
Specifies the range for xtick values.
|
|
230
|
+
Types: tuple
|
|
231
|
+
|
|
232
|
+
xtick_format:
|
|
233
|
+
Optional Argument.
|
|
234
|
+
Specifies how to format tick values for x-axis.
|
|
235
|
+
Types: str
|
|
236
|
+
|
|
237
|
+
ylabel:
|
|
238
|
+
Optional Argument.
|
|
239
|
+
Specifies the label for y-axis.
|
|
240
|
+
Notes:
|
|
241
|
+
* When set to empty string, label is not displayed for y-axis.
|
|
242
|
+
* When set to None, name of the y-axis column(s) is displayed as
|
|
243
|
+
label.
|
|
244
|
+
Types: str
|
|
245
|
+
|
|
246
|
+
ylim:
|
|
247
|
+
Optional Argument.
|
|
248
|
+
Specifies the range for ytick values.
|
|
249
|
+
Types: tuple
|
|
250
|
+
|
|
251
|
+
ytick_format:
|
|
252
|
+
Optional Argument.
|
|
253
|
+
Specifies how to format tick values for y-axis.
|
|
254
|
+
Types: str
|
|
255
|
+
|
|
256
|
+
vmin:
|
|
257
|
+
Optional Argument.
|
|
258
|
+
Specifies the lower range of the color map. By default, the range
|
|
259
|
+
is derived from data and color codes are assigned accordingly.
|
|
260
|
+
Note:
|
|
261
|
+
"vmin" significant only for Mesh and Geometry Plot.
|
|
262
|
+
Types: int OR float
|
|
263
|
+
|
|
264
|
+
vmax:
|
|
265
|
+
Optional Argument.
|
|
266
|
+
Specifies the upper range of the color map. By default, the range is
|
|
267
|
+
derived from data and color codes are assigned accordingly.
|
|
268
|
+
Note:
|
|
269
|
+
"vmax" significant only for Mesh and Geometry Plot.
|
|
270
|
+
For example:
|
|
271
|
+
Assuming user wants to use colormap 'matter' and derive the colors for
|
|
272
|
+
values which are in between 1 and 100.
|
|
273
|
+
Note:
|
|
274
|
+
Colormap 'matter' starts with Pale Yellow and ends with Violet.
|
|
275
|
+
* If "colormap_range" is not specified, then range is derived from
|
|
276
|
+
existing values. Thus, colors are represented as below in the whole range:
|
|
277
|
+
* 1 as Pale Yellow.
|
|
278
|
+
* 100 as Violet.
|
|
279
|
+
* If "colormap_range" is specified as -100 and 100, the value 1 is at middle of
|
|
280
|
+
the specified range. Thus, colors are represented as below in the whole range:
|
|
281
|
+
* -100 as Pale Yellow.
|
|
282
|
+
* 1 as Orange.
|
|
283
|
+
* 100 as Violet.
|
|
284
|
+
Types: int OR float
|
|
285
|
+
|
|
286
|
+
EXAMPLES:
|
|
287
|
+
# Example 1: Create an Axis with marker as 'Pentagon'.
|
|
288
|
+
>>> from teradataml import Axis
|
|
289
|
+
>>> ax = Axis(marker="p")
|
|
290
|
+
|
|
291
|
+
# Example 2: Create an Axis which does not have x-tick values
|
|
292
|
+
# and y-tick values but it should have grid.
|
|
293
|
+
# Note that the grid lines should be in the format of '-.'
|
|
294
|
+
>>> from teradataml import Axis
|
|
295
|
+
>>> ax = Axis(xtick_format="", ytick_format="", grid_linestyle="-.")
|
|
296
|
+
|
|
297
|
+
# Example 3: Create an Axis which should plot only for the values
|
|
298
|
+
# between -10 to 100 on x-axis.
|
|
299
|
+
>>> from teradataml import Axis
|
|
300
|
+
>>> ax = Axis(xlim=(-10, 100))
|
|
301
|
+
|
|
302
|
+
# Example 4: Create an Axis which should display legend at upper left
|
|
303
|
+
# corner and it should disable both x and y axis labels.
|
|
304
|
+
>>> from teradataml import Axis
|
|
305
|
+
>>> ax = Axis(legend_style="upper left", xlabel="", ylabel="")
|
|
306
|
+
|
|
307
|
+
# Example 5: Create an Axis to format the y-axis tick values to
|
|
308
|
+
# display up to two decimal points. Also, use the color
|
|
309
|
+
# 'dark green' for plotting.
|
|
310
|
+
# Note: Consider y-axis data has 5 digit floating numbers.
|
|
311
|
+
>>> from teradataml import Axis
|
|
312
|
+
>>> ax = Axis(ytick_format="99999.99", color='dark green')
|
|
313
|
+
|
|
314
|
+
RAISES:
|
|
315
|
+
TeradataMlException
|
|
316
|
+
"""
|
|
317
|
+
self.__params = {**kwargs}
|
|
318
|
+
|
|
319
|
+
self.__x_axis_data = []
|
|
320
|
+
self.__y_axis_data = []
|
|
321
|
+
self.__scale_data = []
|
|
322
|
+
|
|
323
|
+
arg_info_matrix = []
|
|
324
|
+
|
|
325
|
+
# Retrieve arg value from corresponding property.
|
|
326
|
+
arg_info_matrix.append((["ignore_nulls", self.ignore_nulls, True, bool]))
|
|
327
|
+
|
|
328
|
+
arg_info_matrix.append((["cmap", self.cmap, True, (str), True]))
|
|
329
|
+
|
|
330
|
+
arg_info_matrix.append((["grid_color", self.grid_color, True, (str), True]))
|
|
331
|
+
|
|
332
|
+
arg_info_matrix.append((["grid_format", self.grid_format, True, (str), True]))
|
|
333
|
+
|
|
334
|
+
arg_info_matrix.append((["grid_linestyle", self.grid_linestyle, True, (str),
|
|
335
|
+
True, ['-', '--', '-.']]))
|
|
336
|
+
|
|
337
|
+
arg_info_matrix.append((["grid_linewidth", self.grid_linewidth, True, (int, float)]))
|
|
338
|
+
|
|
339
|
+
arg_info_matrix.append((["legend", self.legend, True, (str, list), True]))
|
|
340
|
+
|
|
341
|
+
permitted_legend_style = ['upper right', 'upper left', 'lower right',
|
|
342
|
+
'lower left', 'right', 'center left',
|
|
343
|
+
'center right', 'lower center',
|
|
344
|
+
'upper center', 'center']
|
|
345
|
+
arg_info_matrix.append((["legend_style", self.legend_style, True,
|
|
346
|
+
(str), True, permitted_legend_style]))
|
|
347
|
+
|
|
348
|
+
arg_info_matrix.append((["linestyle", self.linestyle, True, (str, list),
|
|
349
|
+
True, ['-', '--', '-.', ':']]))
|
|
350
|
+
|
|
351
|
+
arg_info_matrix.append((["linewidth", self.linewidth, True, (int, float, list), True]))
|
|
352
|
+
|
|
353
|
+
arg_info_matrix.append((["marker", self.marker, True, (str, list), True]))
|
|
354
|
+
|
|
355
|
+
arg_info_matrix.append((["markersize", self.markersize, True, (int, float, list)]))
|
|
356
|
+
|
|
357
|
+
arg_info_matrix.append((["position", self.position, True, (tuple)]))
|
|
358
|
+
|
|
359
|
+
arg_info_matrix.append((["span", self.span, True, (tuple)]))
|
|
360
|
+
|
|
361
|
+
arg_info_matrix.append((["reverse_xaxis", self.reverse_xaxis, True, (bool)]))
|
|
362
|
+
|
|
363
|
+
arg_info_matrix.append((["reverse_yaxis", self.reverse_yaxis, True, (bool)]))
|
|
364
|
+
|
|
365
|
+
series_identifier = kwargs.get("series_identifier")
|
|
366
|
+
arg_info_matrix.append((["series_identifier", series_identifier, True,
|
|
367
|
+
(ColumnExpression)]))
|
|
368
|
+
|
|
369
|
+
arg_info_matrix.append((["color", self.color, True, (str, list), True]))
|
|
370
|
+
|
|
371
|
+
arg_info_matrix.append((["title", self.title, True, (str), True]))
|
|
372
|
+
|
|
373
|
+
arg_info_matrix.append((["xlabel", self.xlabel, True, (str), False]))
|
|
374
|
+
|
|
375
|
+
arg_info_matrix.append((["ylabel", self.ylabel, True, (str), False]))
|
|
376
|
+
|
|
377
|
+
arg_info_matrix.append((["xlim", self.xlim, True, (tuple)]))
|
|
378
|
+
|
|
379
|
+
arg_info_matrix.append((["ylim", self.ylim, True, (tuple)]))
|
|
380
|
+
|
|
381
|
+
arg_info_matrix.append((["xtick_format", self.xtick_format, True, (str)]))
|
|
382
|
+
|
|
383
|
+
arg_info_matrix.append((["ytick_format", self.ytick_format, True, (str)]))
|
|
384
|
+
|
|
385
|
+
arg_info_matrix.append((["vmin", self.vmin, True, (int, float)]))
|
|
386
|
+
arg_info_matrix.append((["vmax", self.vmax, True, (int, float)]))
|
|
387
|
+
|
|
388
|
+
# 'vmin' and 'vmax' is applicable only for Mesh and Geometry plot.
|
|
389
|
+
if self.kind.lower() not in ['geometry', 'mesh']:
|
|
390
|
+
if self.vmin is not None:
|
|
391
|
+
_Validators._validate_dependent_argument("vmin", self.vmin,
|
|
392
|
+
"kind", None, "'geometry' or 'mesh'")
|
|
393
|
+
if self.vmax is not None:
|
|
394
|
+
_Validators._validate_dependent_argument("vmax", self.vmax,
|
|
395
|
+
"kind", None, "'geometry' or 'mesh'")
|
|
396
|
+
|
|
397
|
+
# Argument validations.
|
|
398
|
+
# Skip empty check for 'xlabel', 'ylabel'.
|
|
399
|
+
_Validators._validate_function_arguments(
|
|
400
|
+
arg_info_matrix,
|
|
401
|
+
skip_empty_check={"xlabel": [''], "ylabel": ['']}
|
|
402
|
+
)
|
|
403
|
+
|
|
404
|
+
# Argument range check.
|
|
405
|
+
_Validators._validate_argument_range(self.grid_linewidth, "grid_linewidth",
|
|
406
|
+
0.5, lbound_inclusive=True,
|
|
407
|
+
ubound=10, ubound_inclusive=True)
|
|
408
|
+
# Convert linewidth to list
|
|
409
|
+
linewidth = UtilFuncs._as_list(self.linewidth)
|
|
410
|
+
[_Validators._validate_argument_range(lw, "linewidth",
|
|
411
|
+
0.5, lbound_inclusive=True,
|
|
412
|
+
ubound=10, ubound_inclusive=True)
|
|
413
|
+
for lw in linewidth]
|
|
414
|
+
|
|
415
|
+
# Convert markersize to list
|
|
416
|
+
markersize = UtilFuncs._as_list(self.markersize)
|
|
417
|
+
[_Validators._validate_argument_range(ms, "markersize",
|
|
418
|
+
1, lbound_inclusive=True,
|
|
419
|
+
ubound=20, ubound_inclusive=True)
|
|
420
|
+
for ms in markersize]
|
|
421
|
+
|
|
422
|
+
self.__series_options = kwargs.get("series_options") # Specifies SQL element - ID_SEQUENCE
|
|
423
|
+
|
|
424
|
+
# Get the series identifier. If it is a column expression, get the column name from it.
|
|
425
|
+
self.series_identifier = kwargs.get("series_identifier")
|
|
426
|
+
if not isinstance(self.series_identifier, str) and self.series_identifier is not None:
|
|
427
|
+
self.series_identifier = self.series_identifier.name
|
|
428
|
+
|
|
429
|
+
def __eq__(self, other):
|
|
430
|
+
"""
|
|
431
|
+
DESCRIPTION:
|
|
432
|
+
Magic method to check if two Axis objects are equal or not.
|
|
433
|
+
If all the associated parameters are same, then two Axis objects
|
|
434
|
+
are equal. Else, they are not equal.
|
|
435
|
+
|
|
436
|
+
PARAMETERS:
|
|
437
|
+
other:
|
|
438
|
+
Required Argument.
|
|
439
|
+
Specifies the object of Axis.
|
|
440
|
+
Types: Axis
|
|
441
|
+
|
|
442
|
+
RETURNS:
|
|
443
|
+
bool
|
|
444
|
+
|
|
445
|
+
RAISES:
|
|
446
|
+
None.
|
|
447
|
+
|
|
448
|
+
EXAMPLES:
|
|
449
|
+
>>> Axis() == Axis()
|
|
450
|
+
"""
|
|
451
|
+
attrs = ["cmap", "color", "grid_color",
|
|
452
|
+
"grid_format", "grid_linestyle", "grid_linewidth",
|
|
453
|
+
"legend", "legend_style", "linestyle",
|
|
454
|
+
"linewidth", "marker", "markersize", "position",
|
|
455
|
+
"span", "reverse_xaxis", "reverse_yaxis", "series_identifier",
|
|
456
|
+
"title", "xlabel", "xlim", "xtick_format", "ylabel", "ylim", "ytick_format",
|
|
457
|
+
"vmin", "vmax", "ignore_nulls", "kind"]
|
|
458
|
+
|
|
459
|
+
for attr in attrs:
|
|
460
|
+
if getattr(self, attr) == getattr(other, attr):
|
|
461
|
+
continue
|
|
462
|
+
else:
|
|
463
|
+
return False
|
|
464
|
+
|
|
465
|
+
return True
|
|
466
|
+
|
|
467
|
+
def __get_param(self, param):
|
|
468
|
+
"""
|
|
469
|
+
DESCRIPTION:
|
|
470
|
+
Internal function to get the parameter from private variable __params.
|
|
471
|
+
|
|
472
|
+
PARAMETERS:
|
|
473
|
+
param:
|
|
474
|
+
Required Argument.
|
|
475
|
+
Specifies the name of the parameter.
|
|
476
|
+
Types: str
|
|
477
|
+
|
|
478
|
+
RETURNS:
|
|
479
|
+
str OR int OR float OR list
|
|
480
|
+
|
|
481
|
+
RAISES:
|
|
482
|
+
None.
|
|
483
|
+
|
|
484
|
+
EXAMPLES:
|
|
485
|
+
self.__get_param("xlim")
|
|
486
|
+
"""
|
|
487
|
+
return self.__params.get(param)
|
|
488
|
+
|
|
489
|
+
def __set_param(self, param_name, param_value):
|
|
490
|
+
"""
|
|
491
|
+
DESCRIPTION:
|
|
492
|
+
Internal function to set the parameter.
|
|
493
|
+
|
|
494
|
+
PARAMETERS:
|
|
495
|
+
param_name:
|
|
496
|
+
Required Argument.
|
|
497
|
+
Specifies the name of the parameter.
|
|
498
|
+
Types: str
|
|
499
|
+
|
|
500
|
+
param_value:
|
|
501
|
+
Required Argument.
|
|
502
|
+
Specifies the value for the parameter mentioned in "param_name".
|
|
503
|
+
Types: str OR int OR float OR list
|
|
504
|
+
|
|
505
|
+
RETURNS:
|
|
506
|
+
bool
|
|
507
|
+
|
|
508
|
+
RAISES:
|
|
509
|
+
None.
|
|
510
|
+
|
|
511
|
+
EXAMPLES:
|
|
512
|
+
self.__set_param("xlim", (1, 100))
|
|
513
|
+
"""
|
|
514
|
+
self.__params[param_name] = param_value
|
|
515
|
+
return True
|
|
516
|
+
|
|
517
|
+
@property
|
|
518
|
+
def ignore_nulls(self):
|
|
519
|
+
""" Getter for argument "ignore_nulls". """
|
|
520
|
+
return self.__get_param("ignore_nulls")
|
|
521
|
+
|
|
522
|
+
@ignore_nulls.setter
|
|
523
|
+
def ignore_nulls(self, value):
|
|
524
|
+
""" Setter for argument "ignore_nulls". """
|
|
525
|
+
return self.__set_param("ignore_nulls", value)
|
|
526
|
+
|
|
527
|
+
@property
|
|
528
|
+
def cmap(self):
|
|
529
|
+
""" Getter for argument "cmap". """
|
|
530
|
+
return self.__get_param("cmap")
|
|
531
|
+
|
|
532
|
+
@cmap.setter
|
|
533
|
+
def cmap(self, value):
|
|
534
|
+
""" Setter for argument "cmap". """
|
|
535
|
+
return self.__set_param("cmap", value)
|
|
536
|
+
|
|
537
|
+
@property
|
|
538
|
+
def vmin(self):
|
|
539
|
+
""" Getter for argument "vmin". """
|
|
540
|
+
return self.__get_param("vmin")
|
|
541
|
+
|
|
542
|
+
@vmin.setter
|
|
543
|
+
def vmin(self, value):
|
|
544
|
+
""" Setter for argument "vmin". """
|
|
545
|
+
return self.__set_param("vmin", value)
|
|
546
|
+
|
|
547
|
+
@property
|
|
548
|
+
def vmax(self):
|
|
549
|
+
""" Getter for argument "vmax". """
|
|
550
|
+
return self.__get_param("vmax")
|
|
551
|
+
|
|
552
|
+
@vmax.setter
|
|
553
|
+
def vmax(self, value):
|
|
554
|
+
""" Setter for argument "vmax". """
|
|
555
|
+
return self.__set_param("vmax", value)
|
|
556
|
+
|
|
557
|
+
@property
|
|
558
|
+
def grid_color(self):
|
|
559
|
+
""" Getter for argument "grid_color". """
|
|
560
|
+
return self.__get_param("grid_color")
|
|
561
|
+
|
|
562
|
+
@grid_color.setter
|
|
563
|
+
def grid_color(self, value):
|
|
564
|
+
""" Setter for argument "grid_color". """
|
|
565
|
+
return self.__set_param("grid_color", value)
|
|
566
|
+
|
|
567
|
+
@property
|
|
568
|
+
def grid_format(self):
|
|
569
|
+
""" Getter for argument "grid_format". """
|
|
570
|
+
return self.__get_param("grid_format")
|
|
571
|
+
|
|
572
|
+
@grid_format.setter
|
|
573
|
+
def grid_format(self, value):
|
|
574
|
+
""" Setter for argument "grid_format". """
|
|
575
|
+
return self.__set_param("grid_format", value)
|
|
576
|
+
|
|
577
|
+
@property
|
|
578
|
+
def grid_linestyle(self):
|
|
579
|
+
""" Getter for argument "grid_linestyle". """
|
|
580
|
+
return self.__get_param("grid_linestyle")
|
|
581
|
+
|
|
582
|
+
@grid_linestyle.setter
|
|
583
|
+
def grid_linestyle(self, value):
|
|
584
|
+
""" Setter for argument "grid_linestyle". """
|
|
585
|
+
return self.__set_param("grid_linestyle", value)
|
|
586
|
+
|
|
587
|
+
@property
|
|
588
|
+
def grid_linewidth(self):
|
|
589
|
+
""" Getter for argument "grid_linewidth". """
|
|
590
|
+
return self.__get_param("grid_linewidth")
|
|
591
|
+
|
|
592
|
+
@grid_linewidth.setter
|
|
593
|
+
def grid_linewidth(self, value):
|
|
594
|
+
""" Setter for argument "grid_linewidth". """
|
|
595
|
+
return self.__set_param("grid_linewidth", value)
|
|
596
|
+
|
|
597
|
+
@property
|
|
598
|
+
def legend(self):
|
|
599
|
+
""" Getter for argument "legend". """
|
|
600
|
+
return self.__get_param("legend")
|
|
601
|
+
|
|
602
|
+
@legend.setter
|
|
603
|
+
def legend(self, value):
|
|
604
|
+
""" Setter for argument "legend". """
|
|
605
|
+
return self.__set_param("legend", value)
|
|
606
|
+
|
|
607
|
+
@property
|
|
608
|
+
def legend_style(self):
|
|
609
|
+
""" Getter for argument "legend_style". """
|
|
610
|
+
return self.__get_param("legend_style")
|
|
611
|
+
|
|
612
|
+
@legend_style.setter
|
|
613
|
+
def legend_style(self, value):
|
|
614
|
+
""" Setter for argument "legend_style". """
|
|
615
|
+
return self.__set_param("legend_style", value)
|
|
616
|
+
|
|
617
|
+
@property
|
|
618
|
+
def linestyle(self):
|
|
619
|
+
""" Getter for argument "linestyle". """
|
|
620
|
+
return self.__get_param("linestyle")
|
|
621
|
+
|
|
622
|
+
@linestyle.setter
|
|
623
|
+
def linestyle(self, value):
|
|
624
|
+
""" Setter for argument "linestyle". """
|
|
625
|
+
return self.__set_param("linestyle", value)
|
|
626
|
+
|
|
627
|
+
@property
|
|
628
|
+
def linewidth(self):
|
|
629
|
+
""" Getter for argument "linewidth". """
|
|
630
|
+
return self.__get_param("linewidth")
|
|
631
|
+
|
|
632
|
+
@linewidth.setter
|
|
633
|
+
def linewidth(self, value):
|
|
634
|
+
""" Setter for argument "linewidth". """
|
|
635
|
+
return self.__set_param("linewidth", value)
|
|
636
|
+
|
|
637
|
+
@property
|
|
638
|
+
def marker(self):
|
|
639
|
+
""" Getter for argument "marker". """
|
|
640
|
+
return self.__get_param("marker")
|
|
641
|
+
|
|
642
|
+
@marker.setter
|
|
643
|
+
def marker(self, value):
|
|
644
|
+
""" Setter for argument "marker". """
|
|
645
|
+
return self.__set_param("marker", value)
|
|
646
|
+
|
|
647
|
+
@property
|
|
648
|
+
def markersize(self):
|
|
649
|
+
""" Getter for argument "markersize". """
|
|
650
|
+
return self.__get_param("markersize")
|
|
651
|
+
|
|
652
|
+
@markersize.setter
|
|
653
|
+
def markersize(self, value):
|
|
654
|
+
""" Setter for argument "markersize". """
|
|
655
|
+
return self.__set_param("markersize", value)
|
|
656
|
+
|
|
657
|
+
@property
|
|
658
|
+
def reverse_xaxis(self):
|
|
659
|
+
""" Getter for argument "reverse_xaxis". """
|
|
660
|
+
return self.__get_param("reverse_xaxis")
|
|
661
|
+
|
|
662
|
+
@reverse_xaxis.setter
|
|
663
|
+
def reverse_xaxis(self, value):
|
|
664
|
+
""" Setter for argument "reverse_xaxis". """
|
|
665
|
+
return self.__set_param("reverse_xaxis", value)
|
|
666
|
+
|
|
667
|
+
@property
|
|
668
|
+
def reverse_yaxis(self):
|
|
669
|
+
""" Getter for argument "reverse_yaxis". """
|
|
670
|
+
return self.__get_param("reverse_yaxis")
|
|
671
|
+
|
|
672
|
+
@reverse_yaxis.setter
|
|
673
|
+
def reverse_yaxis(self, value):
|
|
674
|
+
""" Setter for argument "reverse_yaxis". """
|
|
675
|
+
return self.__set_param("reverse_yaxis", value)
|
|
676
|
+
|
|
677
|
+
@property
|
|
678
|
+
def color(self):
|
|
679
|
+
""" Getter for argument "color". """
|
|
680
|
+
return self.__get_param("color")
|
|
681
|
+
|
|
682
|
+
@color.setter
|
|
683
|
+
def color(self, value):
|
|
684
|
+
""" Setter for argument "color". """
|
|
685
|
+
return self.__set_param("color", value)
|
|
686
|
+
|
|
687
|
+
@property
|
|
688
|
+
def xlabel(self):
|
|
689
|
+
""" Getter for argument "xlabel". """
|
|
690
|
+
return self.__get_param("xlabel")
|
|
691
|
+
|
|
692
|
+
@xlabel.setter
|
|
693
|
+
def xlabel(self, value):
|
|
694
|
+
""" Setter for argument "xlabel". """
|
|
695
|
+
return self.__set_param("xlabel", value)
|
|
696
|
+
|
|
697
|
+
@property
|
|
698
|
+
def xlim(self):
|
|
699
|
+
""" Getter for argument "xlim". """
|
|
700
|
+
return self.__get_param("xlim")
|
|
701
|
+
|
|
702
|
+
@xlim.setter
|
|
703
|
+
def xlim(self, value):
|
|
704
|
+
""" Setter for argument "xlim". """
|
|
705
|
+
return self.__set_param("xlim", value)
|
|
706
|
+
|
|
707
|
+
@property
|
|
708
|
+
def xtick_format(self):
|
|
709
|
+
""" Getter for argument "xtick_format". """
|
|
710
|
+
return self.__get_param("xtick_format")
|
|
711
|
+
|
|
712
|
+
@xtick_format.setter
|
|
713
|
+
def xtick_format(self, value):
|
|
714
|
+
""" Setter for argument "xtick_format". """
|
|
715
|
+
return self.__set_param("xtick_format", value)
|
|
716
|
+
|
|
717
|
+
@property
|
|
718
|
+
def ylabel(self):
|
|
719
|
+
""" Getter for argument "ylabel". """
|
|
720
|
+
return self.__get_param("ylabel")
|
|
721
|
+
|
|
722
|
+
@ylabel.setter
|
|
723
|
+
def ylabel(self, value):
|
|
724
|
+
""" Setter for argument "ylabel". """
|
|
725
|
+
return self.__set_param("ylabel", value)
|
|
726
|
+
|
|
727
|
+
@property
|
|
728
|
+
def ylim(self):
|
|
729
|
+
""" Getter for argument "ylim". """
|
|
730
|
+
return self.__get_param("ylim")
|
|
731
|
+
|
|
732
|
+
@ylim.setter
|
|
733
|
+
def ylim(self, value):
|
|
734
|
+
""" Setter for argument "ylim". """
|
|
735
|
+
return self.__set_param("ylim", value)
|
|
736
|
+
|
|
737
|
+
@property
|
|
738
|
+
def ytick_format(self):
|
|
739
|
+
""" Getter for argument "ytick_format". """
|
|
740
|
+
return self.__get_param("ytick_format")
|
|
741
|
+
|
|
742
|
+
@ytick_format.setter
|
|
743
|
+
def ytick_format(self, value):
|
|
744
|
+
""" Setter for argument "ytick_format". """
|
|
745
|
+
return self.__set_param("ytick_format", value)
|
|
746
|
+
|
|
747
|
+
@property
|
|
748
|
+
def title(self):
|
|
749
|
+
""" Getter for argument "title". """
|
|
750
|
+
return self.__get_param("title")
|
|
751
|
+
|
|
752
|
+
@title.setter
|
|
753
|
+
def title(self, value):
|
|
754
|
+
""" Setter for argument "title". """
|
|
755
|
+
return self.__set_param("title", value)
|
|
756
|
+
|
|
757
|
+
@property
|
|
758
|
+
def kind(self):
|
|
759
|
+
""" Getter for argument "kind". """
|
|
760
|
+
_k = self.__get_param("kind")
|
|
761
|
+
return _k if _k is not None else "line"
|
|
762
|
+
|
|
763
|
+
@kind.setter
|
|
764
|
+
def kind(self, value):
|
|
765
|
+
""" Setter for argument "kind". """
|
|
766
|
+
return self.__set_param("kind", value)
|
|
767
|
+
|
|
768
|
+
@property
|
|
769
|
+
def position(self):
|
|
770
|
+
""" Getter for argument "position". """
|
|
771
|
+
_p = self.__get_param("position")
|
|
772
|
+
return (1, 1) if _p is None else _p
|
|
773
|
+
|
|
774
|
+
@position.setter
|
|
775
|
+
def position(self, value):
|
|
776
|
+
""" Setter for argument "position". """
|
|
777
|
+
return self.__set_param("position", value)
|
|
778
|
+
|
|
779
|
+
@property
|
|
780
|
+
def span(self):
|
|
781
|
+
""" Getter for argument "span". """
|
|
782
|
+
_s = self.__get_param("span")
|
|
783
|
+
return (1, 1) if _s is None else _s
|
|
784
|
+
|
|
785
|
+
@span.setter
|
|
786
|
+
def span(self, value):
|
|
787
|
+
""" Setter for argument "span". """
|
|
788
|
+
return self.__set_param("span", value)
|
|
789
|
+
|
|
790
|
+
def set_params(self, **kwargs):
|
|
791
|
+
"""
|
|
792
|
+
DESCRIPTION:
|
|
793
|
+
Function to set the parameters for Axis object.
|
|
794
|
+
|
|
795
|
+
PARAMETERS:
|
|
796
|
+
**kwargs:
|
|
797
|
+
Keyword arguments passed to the method, i.e., set_params.
|
|
798
|
+
All the arguments supported for Axis object are supported here.
|
|
799
|
+
Refer to 'Axis' documentation for arguments supported by it.
|
|
800
|
+
|
|
801
|
+
RETURNS:
|
|
802
|
+
True, if successful.
|
|
803
|
+
|
|
804
|
+
EXAMPLES:
|
|
805
|
+
# Create a default Axis object.
|
|
806
|
+
>>> from teradataml import Axis
|
|
807
|
+
>>> ax = Axis()
|
|
808
|
+
|
|
809
|
+
# Example 1: Disable x-axis label for an existing Axis object.
|
|
810
|
+
>>> ax.set_params(xlabel="")
|
|
811
|
+
|
|
812
|
+
# Example 2: Set the title for an existing Axis object. Also, disable
|
|
813
|
+
# x-tick values.
|
|
814
|
+
>>> ax.set_params(title="Title", xtick_values="")
|
|
815
|
+
"""
|
|
816
|
+
self.__params.update(kwargs)
|
|
817
|
+
return True
|
|
818
|
+
|
|
819
|
+
def _set_data(self, x, y, scale=None):
|
|
820
|
+
"""
|
|
821
|
+
DESCRIPTION:
|
|
822
|
+
Internal function to set the x-axis and y-axis data to Axis object.
|
|
823
|
+
|
|
824
|
+
PARAMETERS:
|
|
825
|
+
x:
|
|
826
|
+
Required Argument.
|
|
827
|
+
Specifies the x-axis data.
|
|
828
|
+
Types: teradataml DataFrame Column
|
|
829
|
+
|
|
830
|
+
y:
|
|
831
|
+
Required Argument.
|
|
832
|
+
Specifies the y-axis data.
|
|
833
|
+
Types: teradataml DataFrame Column OR list of teradataml DataFrame Column.
|
|
834
|
+
|
|
835
|
+
scale:
|
|
836
|
+
Optional Argument.
|
|
837
|
+
Specifies the scale data which is required for wiggle and mesh plots.
|
|
838
|
+
Note:
|
|
839
|
+
"scale" is significant for wiggle and mesh plots. Ignored for other
|
|
840
|
+
type of plots.
|
|
841
|
+
Types: teradataml DataFrame Column OR list of teradataml DataFrame Column.
|
|
842
|
+
|
|
843
|
+
EXAMPLES:
|
|
844
|
+
>>> ax = Axis()
|
|
845
|
+
>>> ax._set_data(df.col1, [df.col2, df.col3])
|
|
846
|
+
"""
|
|
847
|
+
# Before setting the data, clear it first.
|
|
848
|
+
self.__clear_axis_data()
|
|
849
|
+
|
|
850
|
+
y = UtilFuncs._as_list(y)
|
|
851
|
+
|
|
852
|
+
# Make sure number of columns mentioned in x-axis is
|
|
853
|
+
# same as number of columns mentioned in y-axis.
|
|
854
|
+
x = UtilFuncs._as_list(x)
|
|
855
|
+
if len(x) != len(y):
|
|
856
|
+
x = x * len(y)
|
|
857
|
+
|
|
858
|
+
scale = UtilFuncs._as_list(scale)
|
|
859
|
+
|
|
860
|
+
self.__x_axis_data.extend(x)
|
|
861
|
+
self.__y_axis_data.extend(y)
|
|
862
|
+
self.__scale_data.extend(scale)
|
|
863
|
+
|
|
864
|
+
def __clear_axis_data(self):
|
|
865
|
+
"""
|
|
866
|
+
DESCRIPTION:
|
|
867
|
+
Internal function to clear the axis data.
|
|
868
|
+
|
|
869
|
+
RETURNS:
|
|
870
|
+
bool
|
|
871
|
+
|
|
872
|
+
EXAMPLES:
|
|
873
|
+
>>> ax = Axis()
|
|
874
|
+
>>> ax._Axis__clear_axis_data()
|
|
875
|
+
"""
|
|
876
|
+
self.__x_axis_data.clear()
|
|
877
|
+
self.__y_axis_data.clear()
|
|
878
|
+
self.__scale_data.clear()
|
|
879
|
+
|
|
880
|
+
return True
|
|
881
|
+
|
|
882
|
+
def _has_data(self):
|
|
883
|
+
"""
|
|
884
|
+
DESCRIPTION:
|
|
885
|
+
Internal function to check whether axis is associated with data or not.
|
|
886
|
+
|
|
887
|
+
RETURNS:
|
|
888
|
+
bool
|
|
889
|
+
|
|
890
|
+
EXAMPLES:
|
|
891
|
+
>>> ax = Axis()
|
|
892
|
+
>>> ax._has_data()
|
|
893
|
+
"""
|
|
894
|
+
return bool(self.__x_axis_data)
|
|
895
|
+
|
|
896
|
+
def __repr__(self):
|
|
897
|
+
"""
|
|
898
|
+
DESCRIPTION:
|
|
899
|
+
String representation of Axis Object.
|
|
900
|
+
|
|
901
|
+
RETURNS:
|
|
902
|
+
str.
|
|
903
|
+
|
|
904
|
+
RAISES:
|
|
905
|
+
None.
|
|
906
|
+
|
|
907
|
+
EXAMPLES:
|
|
908
|
+
# Create an Axis Object.
|
|
909
|
+
>>> from teradataml import Axis
|
|
910
|
+
>>> axis = Axis()
|
|
911
|
+
>>> print(axis)
|
|
912
|
+
"""
|
|
913
|
+
return "{}(position={}, span={})".format(self.__class__.__name__, self.position, self.span)
|
|
914
|
+
|
|
915
|
+
def _get_plot_data(self):
|
|
916
|
+
"""
|
|
917
|
+
DESCRIPTION:
|
|
918
|
+
Internal function to get the plot data. The function, which is called from Plot object
|
|
919
|
+
gets all the corresponding information to generate the plot.
|
|
920
|
+
|
|
921
|
+
RETURNS:
|
|
922
|
+
tuple, with 3 elements.
|
|
923
|
+
* element 1 represents again a tuple - 2nd element represents a SELECT statement
|
|
924
|
+
and 1st element represents a string which is the alias table name of SELECT
|
|
925
|
+
statement. It is necessary to get the alias table name also as series spec
|
|
926
|
+
references alias table names.
|
|
927
|
+
* element 2 represents either a series spec or matrix spec in string format.
|
|
928
|
+
* element 3 represents a dictionary with all the parameters for Plot.
|
|
929
|
+
|
|
930
|
+
RAISES:
|
|
931
|
+
None.
|
|
932
|
+
|
|
933
|
+
EXAMPLES:
|
|
934
|
+
>>> from teradataml import Axis
|
|
935
|
+
>>> axis = Axis()
|
|
936
|
+
>>> axis._get_plot_data()
|
|
937
|
+
"""
|
|
938
|
+
|
|
939
|
+
# TODO: Run only once and store this information. Also, df.concat is a costly operation.
|
|
940
|
+
# Will be implemented with ELE-5803.
|
|
941
|
+
_virtual_table, _spec = self.__get_matrix_spec() if self.kind in (MapType.MESH.value, MapType.WIGGLE.value) \
|
|
942
|
+
else self.__get_series_spec()
|
|
943
|
+
|
|
944
|
+
return (_virtual_table, _spec, self._get_params())
|
|
945
|
+
|
|
946
|
+
def __get_series_spec(self):
|
|
947
|
+
"""
|
|
948
|
+
DESCRIPTION:
|
|
949
|
+
Internal function to generate TDSeries Spec.
|
|
950
|
+
* If user pass 'series_id' by using the argument "series_identifier", then consider 'series_id'
|
|
951
|
+
as "series_identifier", x-axis data for 'row_axis' and y-axis data for 'payload_field' in
|
|
952
|
+
TDSeries object. Both, 'row_index_style' and 'payload_content' can be derived
|
|
953
|
+
programatically using __get_index_style() and __get_payload_content() respectively.
|
|
954
|
+
* If user do not pass 'series_id', then the function constructs the series spec as below:
|
|
955
|
+
* walk through x-axis and y-axis data.
|
|
956
|
+
* Construct a new teradataml DataFrame by generating a new column for ID field
|
|
957
|
+
along with x and y axis columns.
|
|
958
|
+
* ID Column value can be either str or float or int. Since the column will be
|
|
959
|
+
used as legend if user do not specify the legend, make sure ID Column value
|
|
960
|
+
is Y-Axis column name. This makes a very good user experience in Composite plots.
|
|
961
|
+
* For geometry and corr plot, y axis can be a tuple. In such cases, make sure to generate
|
|
962
|
+
the ID Column Value with all the columns mentioned in tuple.
|
|
963
|
+
* Note that, if it is tuple, Columns mentioned in tuple can have same name. Make
|
|
964
|
+
sure to generate the ID Column value as a unique value.
|
|
965
|
+
* With the above information, i.e, ID Column, x-axis data and y-axis data, construct a
|
|
966
|
+
new teradataml DataFrame.
|
|
967
|
+
* Repeat the above process if user pass multiple ColumnExpression(s) for y-axis data and
|
|
968
|
+
concatenate the generated DataFrame with previously generated DataFrame vertically.
|
|
969
|
+
|
|
970
|
+
RAISES:
|
|
971
|
+
TeradatamlException - If all the ColumnExpression(s) mentioned in y-axis are of not same type.
|
|
972
|
+
|
|
973
|
+
RETURNS:
|
|
974
|
+
tuple
|
|
975
|
+
|
|
976
|
+
EXAMPLES:
|
|
977
|
+
>>> from teradataml import Axis
|
|
978
|
+
>>> Axis()._Axis__get_series_spec()
|
|
979
|
+
"""
|
|
980
|
+
from teradataml.dataframe.dataframe import TDSeries
|
|
981
|
+
|
|
982
|
+
if self.series_identifier:
|
|
983
|
+
# Remove null values from DataFrame
|
|
984
|
+
if self.ignore_nulls:
|
|
985
|
+
_df = self.__x_axis_data[0]._parent_df
|
|
986
|
+
_subset = [column_name.name for column_name in self.__y_axis_data]
|
|
987
|
+
_subset.append(self.__x_axis_data[0].name)
|
|
988
|
+
_df = _df.dropna(how='any', subset=_subset)
|
|
989
|
+
|
|
990
|
+
# Execute the node and create the table in Vantage.
|
|
991
|
+
if self.__y_axis_data[0]._parent_df._table_name is None:
|
|
992
|
+
# Assuming all the columns are from same DataFrame.
|
|
993
|
+
self.__y_axis_data[0]._parent_df.materialize()
|
|
994
|
+
|
|
995
|
+
series = TDSeries(data=_df if self.ignore_nulls else self.__x_axis_data[0]._parent_df,
|
|
996
|
+
id=self.series_identifier,
|
|
997
|
+
row_index=self.__x_axis_data[0].name,
|
|
998
|
+
row_index_style=self.__get_index_style(self.__x_axis_data[0]),
|
|
999
|
+
payload_field=self.__y_axis_data[0].name,
|
|
1000
|
+
payload_content=self.__get_payload_content(self.__y_axis_data[0]))
|
|
1001
|
+
return "", series._get_sql_repr(True)
|
|
1002
|
+
|
|
1003
|
+
# Since user does not pass series identifier, convert the data in to TDSeries spec.
|
|
1004
|
+
_index = 1
|
|
1005
|
+
_previous_df = None
|
|
1006
|
+
|
|
1007
|
+
# Loop through every element and concatenate the dataframes vertically, i.e.,
|
|
1008
|
+
# using UNION ALL clause.
|
|
1009
|
+
for index, (_x, _y) in enumerate(zip(self.__x_axis_data, self.__y_axis_data)):
|
|
1010
|
+
_df = _y._parent_df if not isinstance(_y, tuple) else _y[0]._parent_df
|
|
1011
|
+
# For correlated and geometry graph, user can pass two params for PAYLOAD FIELD.
|
|
1012
|
+
if isinstance(_y, tuple):
|
|
1013
|
+
# Generate the id_column name programatically. This appears at legend
|
|
1014
|
+
# if legend is shown. So, build it meaningfully.
|
|
1015
|
+
_id_column = "{}_{}_{}".format(_y[0].compile(), _y[1].compile(), _index)
|
|
1016
|
+
columns = {"y_identifier":UtilFuncs._replace_special_chars(_id_column), "id":index, "x":_x, "y1":_y[0], "y2":_y[1]}
|
|
1017
|
+
payload_field = ["y1", "y2"]
|
|
1018
|
+
else:
|
|
1019
|
+
columns = {"y_identifier":UtilFuncs._replace_special_chars(_y.compile()), "id":index, "x":_x, "y":_y}
|
|
1020
|
+
payload_field = "y"
|
|
1021
|
+
|
|
1022
|
+
_df = _df.assign(**columns, drop_columns=True)
|
|
1023
|
+
# Concatenate with previous DataFrame.
|
|
1024
|
+
if _previous_df:
|
|
1025
|
+
# TODO: Note that concat is a very costly operation. Infact, it is very very slow.
|
|
1026
|
+
# Consider generating VIRTUAL tables or UNPIVOT.
|
|
1027
|
+
# Will be addressed with ELE-5808.
|
|
1028
|
+
_df = _previous_df.concat(_df)
|
|
1029
|
+
|
|
1030
|
+
_previous_df = _df
|
|
1031
|
+
# Flatten the DataFrame.
|
|
1032
|
+
_index = _index + 1
|
|
1033
|
+
# Remove null values from DataFrame
|
|
1034
|
+
if self.ignore_nulls:
|
|
1035
|
+
_df = _df.dropna()
|
|
1036
|
+
_df.materialize()
|
|
1037
|
+
series = TDSeries(data=_df,
|
|
1038
|
+
id="id",
|
|
1039
|
+
row_index="x",
|
|
1040
|
+
row_index_style=self.__get_index_style(_df.x),
|
|
1041
|
+
payload_field=payload_field,
|
|
1042
|
+
payload_content=self.__get_payload_content(self.__y_axis_data[0]))
|
|
1043
|
+
|
|
1044
|
+
# TODO: Should return a virtual table at first element if required.
|
|
1045
|
+
# Will be addressed with ELE-5808.
|
|
1046
|
+
return "", series._get_sql_repr(True)
|
|
1047
|
+
|
|
1048
|
+
def __get_matrix_spec(self):
|
|
1049
|
+
"""
|
|
1050
|
+
DESCRIPTION:
|
|
1051
|
+
Internal function to generate TDMatrix Spec.
|
|
1052
|
+
* If user pass 'matrix_id' by using the argument "series_identifier", then consider 'matrix_id'
|
|
1053
|
+
as "series_identifier", x-axis data for 'row_axis' and y-axis data for 'column_axis' and
|
|
1054
|
+
scale data for 'payload_field' in TDMatrix object. Both, 'row_index_style' and 'payload_content'
|
|
1055
|
+
can be derived programatically using __get_index_style() and __get_payload_content()
|
|
1056
|
+
respectively.
|
|
1057
|
+
* If user do not pass 'matrix_id', then the function constructs the matrix spec as below:
|
|
1058
|
+
* walk through x-axis, y-axis and scale data.
|
|
1059
|
+
* Construct a new teradataml DataFrame by generating a new column for ID field
|
|
1060
|
+
* ID Column value can be either str or float or int. Since the column will be
|
|
1061
|
+
used as legend if user do not specify the legend, make sure ID Column value
|
|
1062
|
+
is Y-Axis column name. This makes a very good user experience in Composite plots.
|
|
1063
|
+
* With the above information, i.e, ID Column, x-axis data, y-axis data and scale data,
|
|
1064
|
+
construct a new teradataml DataFrame.
|
|
1065
|
+
* Repeat the above process if user pass multiple ColumnExpression(s) for y-axis data and
|
|
1066
|
+
concatenate the generated DataFrame with previously generated DataFrame vertically.
|
|
1067
|
+
|
|
1068
|
+
RAISES:
|
|
1069
|
+
TeradatamlException - If all the ColumnExpression(s) mentioned in y-axis are of not same type.
|
|
1070
|
+
|
|
1071
|
+
RETURNS:
|
|
1072
|
+
tuple
|
|
1073
|
+
|
|
1074
|
+
EXAMPLES:
|
|
1075
|
+
>>> from teradataml import Axis
|
|
1076
|
+
>>> Axis()._Axis__get_matrix_spec()
|
|
1077
|
+
"""
|
|
1078
|
+
from teradataml.dataframe.dataframe import TDMatrix
|
|
1079
|
+
|
|
1080
|
+
if self.series_identifier:
|
|
1081
|
+
# Remove null values from DataFrame
|
|
1082
|
+
if self.ignore_nulls:
|
|
1083
|
+
_df = self.__x_axis_data[0]._parent_df
|
|
1084
|
+
_subset = [column_name.name for column_name in self.__y_axis_data]
|
|
1085
|
+
_subset.append(self.__x_axis_data[0].name)
|
|
1086
|
+
_subset.extend(column_name.name for column_name in self.__scale_data)
|
|
1087
|
+
_df = _df.dropna(how='any', subset=_subset)
|
|
1088
|
+
|
|
1089
|
+
# Execute the node and create the table/view in Vantage.
|
|
1090
|
+
if self.__y_axis_data[0]._parent_df._table_name is None:
|
|
1091
|
+
self.__y_axis_data[0]._parent_df.materialize()
|
|
1092
|
+
|
|
1093
|
+
matrix = TDMatrix(data=_df if self.ignore_nulls else self.__x_axis_data[0]._parent_df,
|
|
1094
|
+
id=self.series_identifier,
|
|
1095
|
+
row_index=self.__x_axis_data[0].name,
|
|
1096
|
+
row_index_style=self.__get_index_style(self.__x_axis_data[0]),
|
|
1097
|
+
column_index=self.__y_axis_data[0].name,
|
|
1098
|
+
column_index_style=self.__get_index_style(self.__y_axis_data[0]),
|
|
1099
|
+
payload_field=self.__scale_data[0].name,
|
|
1100
|
+
payload_content=self.__get_payload_content(self.__scale_data[0]))
|
|
1101
|
+
return "", matrix._get_sql_repr(True)
|
|
1102
|
+
|
|
1103
|
+
# Since user do not pass matrix identifier, convert the data in to TDMatrix spec.
|
|
1104
|
+
_previous_df = None
|
|
1105
|
+
for index, (_x, _y, _data) in enumerate(zip(self.__x_axis_data, self.__y_axis_data, self.__scale_data)):
|
|
1106
|
+
_df = _x._parent_df
|
|
1107
|
+
columns = {"y_identifier": UtilFuncs._replace_special_chars(_y.compile()), "id":index, "x": _x, "y": _y, "data": _data}
|
|
1108
|
+
_df = _df.assign(**columns, drop_columns=True)
|
|
1109
|
+
if _previous_df:
|
|
1110
|
+
# TODO: Note that concat is a very costly operation. Infact, it is very very slow.
|
|
1111
|
+
# Consider generating VIRTUAL tables or UNPIVOT.
|
|
1112
|
+
# Will be addressed with ELE-5808.
|
|
1113
|
+
_df = _previous_df.concat(_df)
|
|
1114
|
+
|
|
1115
|
+
_previous_df = _df
|
|
1116
|
+
# Remove null values from DataFrame
|
|
1117
|
+
if self.ignore_nulls:
|
|
1118
|
+
_df = _df.dropna()
|
|
1119
|
+
_df.materialize()
|
|
1120
|
+
matrix = TDMatrix(data=_df,
|
|
1121
|
+
id="id",
|
|
1122
|
+
row_index="x",
|
|
1123
|
+
row_index_style=self.__get_index_style(_df.x),
|
|
1124
|
+
column_index="y",
|
|
1125
|
+
column_index_style=self.__get_index_style(_df.y),
|
|
1126
|
+
payload_field="data",
|
|
1127
|
+
payload_content="REAL")
|
|
1128
|
+
|
|
1129
|
+
# TODO: Should return a virtual table at first element if required.
|
|
1130
|
+
# Will be addressed with ELE-5808.
|
|
1131
|
+
return "", matrix._get_sql_repr(True)
|
|
1132
|
+
|
|
1133
|
+
def __get_index_style(self, _x):
|
|
1134
|
+
"""
|
|
1135
|
+
DESCRIPTION:
|
|
1136
|
+
Internal function to generate the value for argument "row_index_style"
|
|
1137
|
+
in TDSeries/TDMatrix objects.
|
|
1138
|
+
|
|
1139
|
+
PARAMETERS:
|
|
1140
|
+
_x:
|
|
1141
|
+
Required Argument.
|
|
1142
|
+
Specifies the ColumnExpression of x-axis data.
|
|
1143
|
+
Types: teradataml ColumnExpression.
|
|
1144
|
+
|
|
1145
|
+
RETURNS:
|
|
1146
|
+
str
|
|
1147
|
+
|
|
1148
|
+
EXAMPLES:
|
|
1149
|
+
>>> from teradataml import Axis
|
|
1150
|
+
>>> Axis()._Axis__get_index_style()
|
|
1151
|
+
"""
|
|
1152
|
+
if UtilFuncs._teradata_type_to_python_type(_x.type) in ('int', 'float', 'str'):
|
|
1153
|
+
return "SEQUENCE"
|
|
1154
|
+
return "TIMECODE"
|
|
1155
|
+
|
|
1156
|
+
def __get_payload_content(self, _y):
|
|
1157
|
+
"""
|
|
1158
|
+
DESCRIPTION:
|
|
1159
|
+
Internal function to generate the value for argument "payload_content"
|
|
1160
|
+
in TDSeries/TDMatrix objects.
|
|
1161
|
+
|
|
1162
|
+
PARAMETERS:
|
|
1163
|
+
_y:
|
|
1164
|
+
Required Argument.
|
|
1165
|
+
Specifies the ColumnExpression of y-axis data.
|
|
1166
|
+
Note that y-axis can be a list of ColumnExpression(s) also.
|
|
1167
|
+
Since all the Columns are concatenated vertically, every column
|
|
1168
|
+
type should be same. So, deriving "payload_content" value for 1st
|
|
1169
|
+
element is suffice.
|
|
1170
|
+
Types: teradataml ColumnExpression.
|
|
1171
|
+
|
|
1172
|
+
RETURNS:
|
|
1173
|
+
str
|
|
1174
|
+
|
|
1175
|
+
EXAMPLES:
|
|
1176
|
+
>>> from teradataml import Axis
|
|
1177
|
+
>>> Axis()._Axis__get_payload_content()
|
|
1178
|
+
"""
|
|
1179
|
+
# If y-axis is a tuple, return MULTIVAR_ANYTYPE.
|
|
1180
|
+
if self.kind == MapType.GEOMETRY.value:
|
|
1181
|
+
return "MULTIVAR_ANYTYPE"
|
|
1182
|
+
|
|
1183
|
+
if self.kind == MapType.CORR.value:
|
|
1184
|
+
return "MULTIVAR_REAL" if isinstance(_y, tuple) else "REAL"
|
|
1185
|
+
|
|
1186
|
+
return "REAL"
|
|
1187
|
+
|
|
1188
|
+
@staticmethod
|
|
1189
|
+
def __get_color_code(color):
|
|
1190
|
+
"""
|
|
1191
|
+
DESCRIPTION:
|
|
1192
|
+
Internal function to get the string for a color which is recognised by TD_PLOT.
|
|
1193
|
+
|
|
1194
|
+
RETURNS:
|
|
1195
|
+
str
|
|
1196
|
+
|
|
1197
|
+
EXAMPLES:
|
|
1198
|
+
>>> from teradataml import Axis
|
|
1199
|
+
>>> Axis()._Axis__get_color_code("orange")
|
|
1200
|
+
"""
|
|
1201
|
+
default_colors = {'blue', 'orange', 'green', 'red', 'purple', 'brown', 'pink', 'gray', 'olive', 'cyan'}
|
|
1202
|
+
return "tab:{}".format(color) if color in default_colors else "xkcd:{}".format(color)
|
|
1203
|
+
|
|
1204
|
+
def __get_series_parameters(self):
|
|
1205
|
+
"""
|
|
1206
|
+
DESCRIPTION:
|
|
1207
|
+
Internal function to generate the parameters for individual Series.
|
|
1208
|
+
|
|
1209
|
+
RETURNS:
|
|
1210
|
+
list
|
|
1211
|
+
|
|
1212
|
+
EXAMPLES:
|
|
1213
|
+
>>> from teradataml import Axis
|
|
1214
|
+
>>> Axis()._Axis__get_series_parameters()
|
|
1215
|
+
"""
|
|
1216
|
+
_series_params = []
|
|
1217
|
+
for index in range(len(self.__y_axis_data)):
|
|
1218
|
+
_series_param = {"ID": index+1}
|
|
1219
|
+
color = self._get_series_param(self.color, index)
|
|
1220
|
+
if color:
|
|
1221
|
+
_series_param["COLOR"] = "'{}'".format(self.__get_color_code(color))
|
|
1222
|
+
|
|
1223
|
+
line_style = self._get_series_param(self.linestyle, index)
|
|
1224
|
+
self.__update_plot_params(_series_param, "LINESTYLE", line_style)
|
|
1225
|
+
|
|
1226
|
+
line_width = self._get_series_param(self.linewidth, index)
|
|
1227
|
+
self.__update_plot_params(_series_param, "LINEWIDTH", line_width)
|
|
1228
|
+
|
|
1229
|
+
marker = self._get_series_param(self.marker, index)
|
|
1230
|
+
self.__update_plot_params(_series_param, "MARKER", marker)
|
|
1231
|
+
|
|
1232
|
+
marker_size = self._get_series_param(self.markersize, index)
|
|
1233
|
+
self.__update_plot_params(_series_param, "MARKERSIZE", marker_size)
|
|
1234
|
+
|
|
1235
|
+
# If user pass legend name use it. Else, derive it from Y-Axis.
|
|
1236
|
+
# Legend is not applicable for wiggle and mesh plots.
|
|
1237
|
+
if self.kind not in (MapType.MESH.value, MapType.WIGGLE.value):
|
|
1238
|
+
legend_name = self._get_series_param(self.legend, index)
|
|
1239
|
+
if legend_name:
|
|
1240
|
+
_series_param["NAME"] = "'{}'".format(legend_name)
|
|
1241
|
+
else:
|
|
1242
|
+
columns = self.__y_axis_data[index] if isinstance(self.__y_axis_data[index], tuple) else \
|
|
1243
|
+
[self.__y_axis_data[index]]
|
|
1244
|
+
columns = [UtilFuncs._replace_special_chars(col.compile()) for col in columns]
|
|
1245
|
+
_series_param["NAME"] = "'{}'".format(" / ".join(columns))
|
|
1246
|
+
|
|
1247
|
+
_series_params.append(_series_param)
|
|
1248
|
+
return _series_params
|
|
1249
|
+
|
|
1250
|
+
def _get_params(self):
|
|
1251
|
+
"""
|
|
1252
|
+
DESCRIPTION:
|
|
1253
|
+
Internal function to generate the parameters for the plot.
|
|
1254
|
+
|
|
1255
|
+
RETURNS:
|
|
1256
|
+
dict
|
|
1257
|
+
|
|
1258
|
+
EXAMPLES:
|
|
1259
|
+
>>> from teradataml import Axis
|
|
1260
|
+
>>> Axis()._Axis_get_params()
|
|
1261
|
+
"""
|
|
1262
|
+
func_params = {"CELL": (self.position[1], self.position[0]),
|
|
1263
|
+
"SPAN": (self.span[1], self.span[0]),
|
|
1264
|
+
"TYPE": "'{}'".format(self.kind),
|
|
1265
|
+
"XLABEL": "'{}'".format(self.get_xaxis_label()),
|
|
1266
|
+
"YLABEL": "'{}'".format(self.get_yaxis_label()),
|
|
1267
|
+
"SERIES": self.__get_series_parameters()
|
|
1268
|
+
}
|
|
1269
|
+
|
|
1270
|
+
self.__update_plot_params(func_params, "TITLE", self.title)
|
|
1271
|
+
self.__update_plot_params(func_params, "XFORMAT", self.xtick_format)
|
|
1272
|
+
self.__update_plot_params(func_params, "YFORMAT", self.ytick_format)
|
|
1273
|
+
self.__update_plot_params(func_params, "XRANGE", self.xlim)
|
|
1274
|
+
self.__update_plot_params(func_params, "YRANGE", self.ylim)
|
|
1275
|
+
|
|
1276
|
+
if self.reverse_xaxis is True:
|
|
1277
|
+
func_params["FLIPX"] = 1
|
|
1278
|
+
|
|
1279
|
+
if self.reverse_yaxis is True:
|
|
1280
|
+
func_params["FLIPY"] = 1
|
|
1281
|
+
|
|
1282
|
+
# For subplot or multiple series, make sure to populate legend.
|
|
1283
|
+
# For mainplot, leave it to user's choice.
|
|
1284
|
+
if self._is_sub_plot() or self.series_identifier or (len(self.__y_axis_data) > 1) and \
|
|
1285
|
+
self.kind not in (MapType.MESH.value, MapType.WIGGLE.value):
|
|
1286
|
+
func_params["LEGEND"] = "'{}'".format("best" if not self.legend_style else self.legend_style)
|
|
1287
|
+
else:
|
|
1288
|
+
self.__update_plot_params(func_params, "LEGEND", self.legend_style)
|
|
1289
|
+
|
|
1290
|
+
# Populate GRID parameters.
|
|
1291
|
+
if self.grid_format or self.grid_color or self.grid_linestyle or self.grid_linewidth:
|
|
1292
|
+
_grid_params = {}
|
|
1293
|
+
self.__update_plot_params(_grid_params, "COLOR", self.__get_color_code(self.grid_color))
|
|
1294
|
+
self.__update_plot_params(_grid_params, "FORMAT", self.grid_format)
|
|
1295
|
+
self.__update_plot_params(_grid_params, "LINESTYLE", self.grid_linestyle)
|
|
1296
|
+
self.__update_plot_params(_grid_params, "LINEWIDTH", self.grid_linewidth)
|
|
1297
|
+
func_params["GRID"] = _grid_params
|
|
1298
|
+
|
|
1299
|
+
# Populate color map parameters.
|
|
1300
|
+
if self.cmap or self.vmin:
|
|
1301
|
+
# TODO: User should control the COLORBAR. Expose a parameter to user.
|
|
1302
|
+
_color_map_params = {"COLORBAR": 1}
|
|
1303
|
+
self.__update_plot_params(_color_map_params, "RANGE", None if self.vmin is None else (self.vmin, self.vmax))
|
|
1304
|
+
self.__update_plot_params(_color_map_params, "NAME", self.cmap)
|
|
1305
|
+
func_params["COLORMAP"] = _color_map_params
|
|
1306
|
+
|
|
1307
|
+
return func_params
|
|
1308
|
+
|
|
1309
|
+
@staticmethod
|
|
1310
|
+
def __update_plot_params(func_params, plot_param, value):
|
|
1311
|
+
"""
|
|
1312
|
+
DESCRIPTION:
|
|
1313
|
+
Internal function to update the Plot parameter.
|
|
1314
|
+
The function check whether "value" is None or not. If None,
|
|
1315
|
+
no action from this function on "func_params". Else, "func_params"
|
|
1316
|
+
is updated with "plot_param".
|
|
1317
|
+
|
|
1318
|
+
EXAMPLES:
|
|
1319
|
+
>>> from teradataml import Axis
|
|
1320
|
+
>>> Axis()._Axis__update_plot_params({}, "a", "b")
|
|
1321
|
+
"""
|
|
1322
|
+
if value is not None:
|
|
1323
|
+
func_params[plot_param] = "'{}'".format(value) if isinstance(value, str) else value
|
|
1324
|
+
|
|
1325
|
+
@staticmethod
|
|
1326
|
+
def _get_series_param(param, index):
|
|
1327
|
+
"""
|
|
1328
|
+
DESCRIPTION:
|
|
1329
|
+
Internal function to get the series parameter.
|
|
1330
|
+
User can pass a list of values or a single value for series parameter's.
|
|
1331
|
+
The function get's the corresponding element based on the index. If
|
|
1332
|
+
element is not found, the function returns a None.
|
|
1333
|
+
|
|
1334
|
+
EXAMPLES:
|
|
1335
|
+
>>> from teradataml import Axis
|
|
1336
|
+
>>> Axis()._Axis_get_series_param(["a"], 1)
|
|
1337
|
+
"""
|
|
1338
|
+
try:
|
|
1339
|
+
return UtilFuncs._as_list(param)[index]
|
|
1340
|
+
except IndexError:
|
|
1341
|
+
return None
|
|
1342
|
+
|
|
1343
|
+
def get_xaxis_label(self):
|
|
1344
|
+
"""
|
|
1345
|
+
DESCRIPTION:
|
|
1346
|
+
The function generates the x-axis label based on user input. If user specifies x-axis
|
|
1347
|
+
label, the function returns the same. Otherwise, the function generates the x-axis
|
|
1348
|
+
label from x-axis Column Name.
|
|
1349
|
+
|
|
1350
|
+
RETURNS:
|
|
1351
|
+
str
|
|
1352
|
+
|
|
1353
|
+
EXAMPLES:
|
|
1354
|
+
>>> from teradataml import Axis
|
|
1355
|
+
>>> Axis().get_xaxis_label()
|
|
1356
|
+
"""
|
|
1357
|
+
return self.xlabel if self.xlabel is not None else self.__get_label([self.__x_axis_data[0]])
|
|
1358
|
+
|
|
1359
|
+
def get_yaxis_label(self):
|
|
1360
|
+
"""
|
|
1361
|
+
DESCRIPTION:
|
|
1362
|
+
The function generates the y-axis label based on user input. If user specifies y-axis
|
|
1363
|
+
label, the function returns the same. Otherwise, the function generates the y-axis
|
|
1364
|
+
label from y-axis Column Name.
|
|
1365
|
+
|
|
1366
|
+
RETURNS:
|
|
1367
|
+
str
|
|
1368
|
+
|
|
1369
|
+
EXAMPLES:
|
|
1370
|
+
>>> from teradataml import Axis
|
|
1371
|
+
>>> Axis().get_yaxis_label()
|
|
1372
|
+
"""
|
|
1373
|
+
return self.ylabel if self.ylabel is not None else self.__get_label(self.__y_axis_data)
|
|
1374
|
+
|
|
1375
|
+
@staticmethod
|
|
1376
|
+
def __get_label(data):
|
|
1377
|
+
"""
|
|
1378
|
+
DESCRIPTION:
|
|
1379
|
+
Internal function to generate the label.
|
|
1380
|
+
|
|
1381
|
+
RETURNS:
|
|
1382
|
+
str
|
|
1383
|
+
|
|
1384
|
+
EXAMPLES:
|
|
1385
|
+
>>> from teradataml import Axis
|
|
1386
|
+
>>> Axis()._Axis__get_label()
|
|
1387
|
+
"""
|
|
1388
|
+
_rpl_spcl_chars = UtilFuncs._replace_special_chars
|
|
1389
|
+
# For correlation graph and GeoSpatial, user can pass a tuple of columns. Basically,
|
|
1390
|
+
# the SERIES_SPEC accepts 2 values for FIELD column.
|
|
1391
|
+
if isinstance(data[0], tuple):
|
|
1392
|
+
# If it is a tuple, it has only two elements, both represents DataFrame columns.
|
|
1393
|
+
# Generate the label based on two column names.
|
|
1394
|
+
return " / ".join(
|
|
1395
|
+
("{} - {}".format(_rpl_spcl_chars(c[0].compile()), _rpl_spcl_chars(c[1].compile())) for c in data))
|
|
1396
|
+
|
|
1397
|
+
return " / ".join((_rpl_spcl_chars(c_name.compile()) for c_name in data))
|
|
1398
|
+
|
|
1399
|
+
def _is_sub_plot(self):
|
|
1400
|
+
"""
|
|
1401
|
+
DESCRIPTION:
|
|
1402
|
+
Internal function to check if the Axis is for subplot or not.
|
|
1403
|
+
|
|
1404
|
+
RETURNS:
|
|
1405
|
+
bool
|
|
1406
|
+
|
|
1407
|
+
EXAMPLES:
|
|
1408
|
+
>>> from teradataml import Axis
|
|
1409
|
+
>>> Axis()._is_sub_plot()
|
|
1410
|
+
"""
|
|
1411
|
+
return False
|
|
1412
|
+
|
|
1413
|
+
|
|
1414
|
+
class AxesSubplot(Axis):
|
|
1415
|
+
def _is_sub_plot(self):
|
|
1416
|
+
"""
|
|
1417
|
+
DESCRIPTION:
|
|
1418
|
+
Internal function to check if the Axis is for subplot or not.
|
|
1419
|
+
|
|
1420
|
+
RETURNS:
|
|
1421
|
+
bool
|
|
1422
|
+
|
|
1423
|
+
EXAMPLES:
|
|
1424
|
+
>>> from teradataml import Axis
|
|
1425
|
+
>>> Axis()._is_sub_plot()
|
|
1426
|
+
"""
|
|
1427
|
+
return True
|