teradataml 20.0.0.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1208) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +2762 -0
  4. teradataml/__init__.py +78 -0
  5. teradataml/_version.py +11 -0
  6. teradataml/analytics/Transformations.py +2996 -0
  7. teradataml/analytics/__init__.py +82 -0
  8. teradataml/analytics/analytic_function_executor.py +2416 -0
  9. teradataml/analytics/analytic_query_generator.py +1050 -0
  10. teradataml/analytics/byom/H2OPredict.py +514 -0
  11. teradataml/analytics/byom/PMMLPredict.py +437 -0
  12. teradataml/analytics/byom/__init__.py +16 -0
  13. teradataml/analytics/json_parser/__init__.py +133 -0
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1805 -0
  15. teradataml/analytics/json_parser/json_store.py +191 -0
  16. teradataml/analytics/json_parser/metadata.py +1666 -0
  17. teradataml/analytics/json_parser/utils.py +805 -0
  18. teradataml/analytics/meta_class.py +236 -0
  19. teradataml/analytics/sqle/DecisionTreePredict.py +456 -0
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +420 -0
  21. teradataml/analytics/sqle/__init__.py +128 -0
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -0
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -0
  24. teradataml/analytics/table_operator/__init__.py +11 -0
  25. teradataml/analytics/uaf/__init__.py +82 -0
  26. teradataml/analytics/utils.py +828 -0
  27. teradataml/analytics/valib.py +1617 -0
  28. teradataml/automl/__init__.py +5835 -0
  29. teradataml/automl/autodataprep/__init__.py +493 -0
  30. teradataml/automl/custom_json_utils.py +1625 -0
  31. teradataml/automl/data_preparation.py +1384 -0
  32. teradataml/automl/data_transformation.py +1254 -0
  33. teradataml/automl/feature_engineering.py +2273 -0
  34. teradataml/automl/feature_exploration.py +1873 -0
  35. teradataml/automl/model_evaluation.py +488 -0
  36. teradataml/automl/model_training.py +1407 -0
  37. teradataml/catalog/__init__.py +2 -0
  38. teradataml/catalog/byom.py +1759 -0
  39. teradataml/catalog/function_argument_mapper.py +859 -0
  40. teradataml/catalog/model_cataloging_utils.py +491 -0
  41. teradataml/clients/__init__.py +0 -0
  42. teradataml/clients/auth_client.py +137 -0
  43. teradataml/clients/keycloak_client.py +165 -0
  44. teradataml/clients/pkce_client.py +481 -0
  45. teradataml/common/__init__.py +1 -0
  46. teradataml/common/aed_utils.py +2078 -0
  47. teradataml/common/bulk_exposed_utils.py +113 -0
  48. teradataml/common/constants.py +1669 -0
  49. teradataml/common/deprecations.py +166 -0
  50. teradataml/common/exceptions.py +147 -0
  51. teradataml/common/formula.py +743 -0
  52. teradataml/common/garbagecollector.py +666 -0
  53. teradataml/common/logger.py +1261 -0
  54. teradataml/common/messagecodes.py +518 -0
  55. teradataml/common/messages.py +262 -0
  56. teradataml/common/pylogger.py +67 -0
  57. teradataml/common/sqlbundle.py +764 -0
  58. teradataml/common/td_coltype_code_to_tdtype.py +48 -0
  59. teradataml/common/utils.py +3166 -0
  60. teradataml/common/warnings.py +36 -0
  61. teradataml/common/wrapper_utils.py +625 -0
  62. teradataml/config/__init__.py +0 -0
  63. teradataml/config/dummy_file1.cfg +5 -0
  64. teradataml/config/dummy_file2.cfg +3 -0
  65. teradataml/config/sqlengine_alias_definitions_v1.0 +14 -0
  66. teradataml/config/sqlengine_alias_definitions_v1.1 +20 -0
  67. teradataml/config/sqlengine_alias_definitions_v1.3 +19 -0
  68. teradataml/context/__init__.py +0 -0
  69. teradataml/context/aed_context.py +223 -0
  70. teradataml/context/context.py +1462 -0
  71. teradataml/data/A_loan.csv +19 -0
  72. teradataml/data/BINARY_REALS_LEFT.csv +11 -0
  73. teradataml/data/BINARY_REALS_RIGHT.csv +11 -0
  74. teradataml/data/B_loan.csv +49 -0
  75. teradataml/data/BuoyData2.csv +17 -0
  76. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -0
  77. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -0
  78. teradataml/data/Convolve2RealsLeft.csv +5 -0
  79. teradataml/data/Convolve2RealsRight.csv +5 -0
  80. teradataml/data/Convolve2ValidLeft.csv +11 -0
  81. teradataml/data/Convolve2ValidRight.csv +11 -0
  82. teradataml/data/DFFTConv_Real_8_8.csv +65 -0
  83. teradataml/data/Employee.csv +5 -0
  84. teradataml/data/Employee_Address.csv +4 -0
  85. teradataml/data/Employee_roles.csv +5 -0
  86. teradataml/data/JulesBelvezeDummyData.csv +100 -0
  87. teradataml/data/Mall_customer_data.csv +201 -0
  88. teradataml/data/Orders1_12mf.csv +25 -0
  89. teradataml/data/Pi_loan.csv +7 -0
  90. teradataml/data/SMOOTHED_DATA.csv +7 -0
  91. teradataml/data/TestDFFT8.csv +9 -0
  92. teradataml/data/TestRiver.csv +109 -0
  93. teradataml/data/Traindata.csv +28 -0
  94. teradataml/data/__init__.py +0 -0
  95. teradataml/data/acf.csv +17 -0
  96. teradataml/data/adaboost_example.json +34 -0
  97. teradataml/data/adaboostpredict_example.json +24 -0
  98. teradataml/data/additional_table.csv +11 -0
  99. teradataml/data/admissions_test.csv +21 -0
  100. teradataml/data/admissions_train.csv +41 -0
  101. teradataml/data/admissions_train_nulls.csv +41 -0
  102. teradataml/data/advertising.csv +201 -0
  103. teradataml/data/ageandheight.csv +13 -0
  104. teradataml/data/ageandpressure.csv +31 -0
  105. teradataml/data/amazon_reviews_25.csv +26 -0
  106. teradataml/data/antiselect_example.json +36 -0
  107. teradataml/data/antiselect_input.csv +8 -0
  108. teradataml/data/antiselect_input_mixed_case.csv +8 -0
  109. teradataml/data/applicant_external.csv +7 -0
  110. teradataml/data/applicant_reference.csv +7 -0
  111. teradataml/data/apriori_example.json +22 -0
  112. teradataml/data/arima_example.json +9 -0
  113. teradataml/data/assortedtext_input.csv +8 -0
  114. teradataml/data/attribution_example.json +34 -0
  115. teradataml/data/attribution_sample_table.csv +27 -0
  116. teradataml/data/attribution_sample_table1.csv +6 -0
  117. teradataml/data/attribution_sample_table2.csv +11 -0
  118. teradataml/data/bank_churn.csv +10001 -0
  119. teradataml/data/bank_marketing.csv +11163 -0
  120. teradataml/data/bank_web_clicks1.csv +43 -0
  121. teradataml/data/bank_web_clicks2.csv +91 -0
  122. teradataml/data/bank_web_url.csv +85 -0
  123. teradataml/data/barrier.csv +2 -0
  124. teradataml/data/barrier_new.csv +3 -0
  125. teradataml/data/betweenness_example.json +14 -0
  126. teradataml/data/bike_sharing.csv +732 -0
  127. teradataml/data/bin_breaks.csv +8 -0
  128. teradataml/data/bin_fit_ip.csv +4 -0
  129. teradataml/data/binary_complex_left.csv +11 -0
  130. teradataml/data/binary_complex_right.csv +11 -0
  131. teradataml/data/binary_matrix_complex_left.csv +21 -0
  132. teradataml/data/binary_matrix_complex_right.csv +21 -0
  133. teradataml/data/binary_matrix_real_left.csv +21 -0
  134. teradataml/data/binary_matrix_real_right.csv +21 -0
  135. teradataml/data/blood2ageandweight.csv +26 -0
  136. teradataml/data/bmi.csv +501 -0
  137. teradataml/data/boston.csv +507 -0
  138. teradataml/data/boston2cols.csv +721 -0
  139. teradataml/data/breast_cancer.csv +570 -0
  140. teradataml/data/buoydata_mix.csv +11 -0
  141. teradataml/data/burst_data.csv +5 -0
  142. teradataml/data/burst_example.json +21 -0
  143. teradataml/data/byom_example.json +34 -0
  144. teradataml/data/bytes_table.csv +4 -0
  145. teradataml/data/cal_housing_ex_raw.csv +70 -0
  146. teradataml/data/callers.csv +7 -0
  147. teradataml/data/calls.csv +10 -0
  148. teradataml/data/cars_hist.csv +33 -0
  149. teradataml/data/cat_table.csv +25 -0
  150. teradataml/data/ccm_example.json +32 -0
  151. teradataml/data/ccm_input.csv +91 -0
  152. teradataml/data/ccm_input2.csv +13 -0
  153. teradataml/data/ccmexample.csv +101 -0
  154. teradataml/data/ccmprepare_example.json +9 -0
  155. teradataml/data/ccmprepare_input.csv +91 -0
  156. teradataml/data/cfilter_example.json +12 -0
  157. teradataml/data/changepointdetection_example.json +18 -0
  158. teradataml/data/changepointdetectionrt_example.json +8 -0
  159. teradataml/data/chi_sq.csv +3 -0
  160. teradataml/data/churn_data.csv +14 -0
  161. teradataml/data/churn_emission.csv +35 -0
  162. teradataml/data/churn_initial.csv +3 -0
  163. teradataml/data/churn_state_transition.csv +5 -0
  164. teradataml/data/citedges_2.csv +745 -0
  165. teradataml/data/citvertices_2.csv +1210 -0
  166. teradataml/data/clicks2.csv +16 -0
  167. teradataml/data/clickstream.csv +13 -0
  168. teradataml/data/clickstream1.csv +11 -0
  169. teradataml/data/closeness_example.json +16 -0
  170. teradataml/data/complaints.csv +21 -0
  171. teradataml/data/complaints_mini.csv +3 -0
  172. teradataml/data/complaints_test_tokenized.csv +353 -0
  173. teradataml/data/complaints_testtoken.csv +224 -0
  174. teradataml/data/complaints_tokens_model.csv +348 -0
  175. teradataml/data/complaints_tokens_test.csv +353 -0
  176. teradataml/data/complaints_traintoken.csv +472 -0
  177. teradataml/data/computers_category.csv +1001 -0
  178. teradataml/data/computers_test1.csv +1252 -0
  179. teradataml/data/computers_train1.csv +5009 -0
  180. teradataml/data/computers_train1_clustered.csv +5009 -0
  181. teradataml/data/confusionmatrix_example.json +9 -0
  182. teradataml/data/conversion_event_table.csv +3 -0
  183. teradataml/data/corr_input.csv +17 -0
  184. teradataml/data/correlation_example.json +11 -0
  185. teradataml/data/covid_confirm_sd.csv +83 -0
  186. teradataml/data/coxhazardratio_example.json +39 -0
  187. teradataml/data/coxph_example.json +15 -0
  188. teradataml/data/coxsurvival_example.json +28 -0
  189. teradataml/data/cpt.csv +41 -0
  190. teradataml/data/credit_ex_merged.csv +45 -0
  191. teradataml/data/creditcard_data.csv +1001 -0
  192. teradataml/data/customer_loyalty.csv +301 -0
  193. teradataml/data/customer_loyalty_newseq.csv +31 -0
  194. teradataml/data/customer_segmentation_test.csv +2628 -0
  195. teradataml/data/customer_segmentation_train.csv +8069 -0
  196. teradataml/data/dataframe_example.json +173 -0
  197. teradataml/data/decisionforest_example.json +37 -0
  198. teradataml/data/decisionforestpredict_example.json +38 -0
  199. teradataml/data/decisiontree_example.json +21 -0
  200. teradataml/data/decisiontreepredict_example.json +45 -0
  201. teradataml/data/dfft2_size4_real.csv +17 -0
  202. teradataml/data/dfft2_test_matrix16.csv +17 -0
  203. teradataml/data/dfft2conv_real_4_4.csv +65 -0
  204. teradataml/data/diabetes.csv +443 -0
  205. teradataml/data/diabetes_test.csv +89 -0
  206. teradataml/data/dict_table.csv +5 -0
  207. teradataml/data/docperterm_table.csv +4 -0
  208. teradataml/data/docs/__init__.py +1 -0
  209. teradataml/data/docs/byom/__init__.py +0 -0
  210. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -0
  211. teradataml/data/docs/byom/docs/DataikuPredict.py +217 -0
  212. teradataml/data/docs/byom/docs/H2OPredict.py +325 -0
  213. teradataml/data/docs/byom/docs/ONNXEmbeddings.py +242 -0
  214. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -0
  215. teradataml/data/docs/byom/docs/ONNXSeq2Seq.py +255 -0
  216. teradataml/data/docs/byom/docs/PMMLPredict.py +278 -0
  217. teradataml/data/docs/byom/docs/__init__.py +0 -0
  218. teradataml/data/docs/sqle/__init__.py +0 -0
  219. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +83 -0
  220. teradataml/data/docs/sqle/docs_17_10/Attribution.py +200 -0
  221. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +172 -0
  222. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -0
  223. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -0
  224. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -0
  225. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +86 -0
  226. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +96 -0
  227. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -0
  228. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +152 -0
  229. teradataml/data/docs/sqle/docs_17_10/FTest.py +161 -0
  230. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +83 -0
  231. teradataml/data/docs/sqle/docs_17_10/Fit.py +88 -0
  232. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -0
  233. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +85 -0
  234. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +82 -0
  235. teradataml/data/docs/sqle/docs_17_10/Histogram.py +165 -0
  236. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -0
  237. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +209 -0
  238. teradataml/data/docs/sqle/docs_17_10/NPath.py +266 -0
  239. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -0
  240. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -0
  241. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -0
  242. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +135 -0
  243. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -0
  244. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +166 -0
  245. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -0
  246. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -0
  247. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +112 -0
  248. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -0
  249. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +105 -0
  250. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +110 -0
  251. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +118 -0
  252. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -0
  253. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +153 -0
  254. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -0
  255. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -0
  256. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +114 -0
  257. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -0
  258. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -0
  259. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -0
  260. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +146 -0
  261. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -0
  262. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +142 -0
  263. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -0
  264. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -0
  265. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -0
  266. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -0
  267. teradataml/data/docs/sqle/docs_17_10/__init__.py +0 -0
  268. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -0
  269. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +83 -0
  270. teradataml/data/docs/sqle/docs_17_20/Apriori.py +138 -0
  271. teradataml/data/docs/sqle/docs_17_20/Attribution.py +201 -0
  272. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +172 -0
  273. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -0
  274. teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
  275. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -0
  276. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -0
  277. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -0
  278. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +86 -0
  279. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +246 -0
  280. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -0
  281. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +280 -0
  282. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -0
  283. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +136 -0
  284. teradataml/data/docs/sqle/docs_17_20/FTest.py +240 -0
  285. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +83 -0
  286. teradataml/data/docs/sqle/docs_17_20/Fit.py +88 -0
  287. teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -0
  288. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +415 -0
  289. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -0
  290. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -0
  291. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -0
  292. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +109 -0
  293. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +106 -0
  294. teradataml/data/docs/sqle/docs_17_20/Histogram.py +224 -0
  295. teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -0
  296. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -0
  297. teradataml/data/docs/sqle/docs_17_20/KNN.py +215 -0
  298. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -0
  299. teradataml/data/docs/sqle/docs_17_20/NERExtractor.py +121 -0
  300. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +209 -0
  301. teradataml/data/docs/sqle/docs_17_20/NPath.py +266 -0
  302. teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
  303. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -0
  304. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -0
  305. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +127 -0
  306. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +119 -0
  307. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -0
  308. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -0
  309. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -0
  310. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -0
  311. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +231 -0
  312. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -0
  313. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +220 -0
  314. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -0
  315. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +191 -0
  316. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -0
  317. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -0
  318. teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
  319. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +112 -0
  320. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -0
  321. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +105 -0
  322. teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -0
  323. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +155 -0
  324. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -0
  325. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -0
  326. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -0
  327. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +109 -0
  328. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +118 -0
  329. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -0
  330. teradataml/data/docs/sqle/docs_17_20/SMOTE.py +212 -0
  331. teradataml/data/docs/sqle/docs_17_20/SVM.py +414 -0
  332. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -0
  333. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +153 -0
  334. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -0
  335. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -0
  336. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -0
  337. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +114 -0
  338. teradataml/data/docs/sqle/docs_17_20/Shap.py +225 -0
  339. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +153 -0
  340. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -0
  341. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -0
  342. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -0
  343. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +146 -0
  344. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -0
  345. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -0
  346. teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
  347. teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
  348. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +267 -0
  349. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -0
  350. teradataml/data/docs/sqle/docs_17_20/TextMorph.py +119 -0
  351. teradataml/data/docs/sqle/docs_17_20/TextParser.py +224 -0
  352. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +160 -0
  353. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -0
  354. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +142 -0
  355. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -0
  356. teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
  357. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +169 -0
  358. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -0
  359. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -0
  360. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +237 -0
  361. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +362 -0
  362. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -0
  363. teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -0
  364. teradataml/data/docs/sqle/docs_17_20/__init__.py +0 -0
  365. teradataml/data/docs/tableoperator/__init__.py +0 -0
  366. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +430 -0
  367. teradataml/data/docs/tableoperator/docs_17_00/__init__.py +0 -0
  368. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +430 -0
  369. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +348 -0
  370. teradataml/data/docs/tableoperator/docs_17_05/__init__.py +0 -0
  371. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +429 -0
  372. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +348 -0
  373. teradataml/data/docs/tableoperator/docs_17_10/__init__.py +0 -0
  374. teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
  375. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +440 -0
  376. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +387 -0
  377. teradataml/data/docs/tableoperator/docs_17_20/__init__.py +0 -0
  378. teradataml/data/docs/uaf/__init__.py +0 -0
  379. teradataml/data/docs/uaf/docs_17_20/ACF.py +186 -0
  380. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +370 -0
  381. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +172 -0
  382. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +161 -0
  383. teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
  384. teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
  385. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +248 -0
  386. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -0
  387. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +178 -0
  388. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +175 -0
  389. teradataml/data/docs/uaf/docs_17_20/Convolve.py +230 -0
  390. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +218 -0
  391. teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
  392. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +185 -0
  393. teradataml/data/docs/uaf/docs_17_20/DFFT.py +204 -0
  394. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -0
  395. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +216 -0
  396. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +192 -0
  397. teradataml/data/docs/uaf/docs_17_20/DIFF.py +175 -0
  398. teradataml/data/docs/uaf/docs_17_20/DTW.py +180 -0
  399. teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
  400. teradataml/data/docs/uaf/docs_17_20/DWT2D.py +217 -0
  401. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +142 -0
  402. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +184 -0
  403. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +185 -0
  404. teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
  405. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -0
  406. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +206 -0
  407. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +143 -0
  408. teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +198 -0
  409. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +260 -0
  410. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +165 -0
  411. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +191 -0
  412. teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
  413. teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
  414. teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
  415. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +121 -0
  416. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +156 -0
  417. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +215 -0
  418. teradataml/data/docs/uaf/docs_17_20/MAMean.py +174 -0
  419. teradataml/data/docs/uaf/docs_17_20/MInfo.py +134 -0
  420. teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
  421. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +145 -0
  422. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +191 -0
  423. teradataml/data/docs/uaf/docs_17_20/PACF.py +157 -0
  424. teradataml/data/docs/uaf/docs_17_20/Portman.py +217 -0
  425. teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +203 -0
  426. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +155 -0
  427. teradataml/data/docs/uaf/docs_17_20/Resample.py +237 -0
  428. teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
  429. teradataml/data/docs/uaf/docs_17_20/SInfo.py +123 -0
  430. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +173 -0
  431. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +174 -0
  432. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +171 -0
  433. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +164 -0
  434. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +180 -0
  435. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +208 -0
  436. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +151 -0
  437. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -0
  438. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +202 -0
  439. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +171 -0
  440. teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
  441. teradataml/data/docs/uaf/docs_17_20/__init__.py +0 -0
  442. teradataml/data/dtw_example.json +18 -0
  443. teradataml/data/dtw_t1.csv +11 -0
  444. teradataml/data/dtw_t2.csv +4 -0
  445. teradataml/data/dwt2d_dataTable.csv +65 -0
  446. teradataml/data/dwt2d_example.json +16 -0
  447. teradataml/data/dwt_dataTable.csv +8 -0
  448. teradataml/data/dwt_example.json +15 -0
  449. teradataml/data/dwt_filterTable.csv +3 -0
  450. teradataml/data/dwt_filter_dim.csv +5 -0
  451. teradataml/data/emission.csv +9 -0
  452. teradataml/data/emp_table_by_dept.csv +19 -0
  453. teradataml/data/employee_info.csv +4 -0
  454. teradataml/data/employee_table.csv +6 -0
  455. teradataml/data/excluding_event_table.csv +2 -0
  456. teradataml/data/finance_data.csv +6 -0
  457. teradataml/data/finance_data2.csv +61 -0
  458. teradataml/data/finance_data3.csv +93 -0
  459. teradataml/data/finance_data4.csv +13 -0
  460. teradataml/data/fish.csv +160 -0
  461. teradataml/data/fm_blood2ageandweight.csv +26 -0
  462. teradataml/data/fmeasure_example.json +12 -0
  463. teradataml/data/followers_leaders.csv +10 -0
  464. teradataml/data/fpgrowth_example.json +12 -0
  465. teradataml/data/frequentpaths_example.json +29 -0
  466. teradataml/data/friends.csv +9 -0
  467. teradataml/data/fs_input.csv +33 -0
  468. teradataml/data/fs_input1.csv +33 -0
  469. teradataml/data/genData.csv +513 -0
  470. teradataml/data/geodataframe_example.json +40 -0
  471. teradataml/data/glass_types.csv +215 -0
  472. teradataml/data/glm_admissions_model.csv +12 -0
  473. teradataml/data/glm_example.json +56 -0
  474. teradataml/data/glml1l2_example.json +28 -0
  475. teradataml/data/glml1l2predict_example.json +54 -0
  476. teradataml/data/glmpredict_example.json +54 -0
  477. teradataml/data/gq_t1.csv +21 -0
  478. teradataml/data/grocery_transaction.csv +19 -0
  479. teradataml/data/hconvolve_complex_right.csv +5 -0
  480. teradataml/data/hconvolve_complex_rightmulti.csv +5 -0
  481. teradataml/data/histogram_example.json +12 -0
  482. teradataml/data/hmmdecoder_example.json +79 -0
  483. teradataml/data/hmmevaluator_example.json +25 -0
  484. teradataml/data/hmmsupervised_example.json +10 -0
  485. teradataml/data/hmmunsupervised_example.json +8 -0
  486. teradataml/data/hnsw_alter_data.csv +5 -0
  487. teradataml/data/hnsw_data.csv +10 -0
  488. teradataml/data/house_values.csv +12 -0
  489. teradataml/data/house_values2.csv +13 -0
  490. teradataml/data/housing_cat.csv +7 -0
  491. teradataml/data/housing_data.csv +9 -0
  492. teradataml/data/housing_test.csv +47 -0
  493. teradataml/data/housing_test_binary.csv +47 -0
  494. teradataml/data/housing_train.csv +493 -0
  495. teradataml/data/housing_train_attribute.csv +5 -0
  496. teradataml/data/housing_train_binary.csv +437 -0
  497. teradataml/data/housing_train_parameter.csv +2 -0
  498. teradataml/data/housing_train_response.csv +493 -0
  499. teradataml/data/housing_train_segment.csv +201 -0
  500. teradataml/data/ibm_stock.csv +370 -0
  501. teradataml/data/ibm_stock1.csv +370 -0
  502. teradataml/data/identitymatch_example.json +22 -0
  503. teradataml/data/idf_table.csv +4 -0
  504. teradataml/data/idwt2d_dataTable.csv +5 -0
  505. teradataml/data/idwt_dataTable.csv +8 -0
  506. teradataml/data/idwt_filterTable.csv +3 -0
  507. teradataml/data/impressions.csv +101 -0
  508. teradataml/data/inflation.csv +21 -0
  509. teradataml/data/initial.csv +3 -0
  510. teradataml/data/insect2Cols.csv +61 -0
  511. teradataml/data/insect_sprays.csv +13 -0
  512. teradataml/data/insurance.csv +1339 -0
  513. teradataml/data/interpolator_example.json +13 -0
  514. teradataml/data/interval_data.csv +5 -0
  515. teradataml/data/iris_altinput.csv +481 -0
  516. teradataml/data/iris_attribute_output.csv +8 -0
  517. teradataml/data/iris_attribute_test.csv +121 -0
  518. teradataml/data/iris_attribute_train.csv +481 -0
  519. teradataml/data/iris_category_expect_predict.csv +31 -0
  520. teradataml/data/iris_data.csv +151 -0
  521. teradataml/data/iris_input.csv +151 -0
  522. teradataml/data/iris_response_train.csv +121 -0
  523. teradataml/data/iris_test.csv +31 -0
  524. teradataml/data/iris_train.csv +121 -0
  525. teradataml/data/join_table1.csv +4 -0
  526. teradataml/data/join_table2.csv +4 -0
  527. teradataml/data/jsons/anly_function_name.json +7 -0
  528. teradataml/data/jsons/byom/ONNXSeq2Seq.json +287 -0
  529. teradataml/data/jsons/byom/dataikupredict.json +148 -0
  530. teradataml/data/jsons/byom/datarobotpredict.json +147 -0
  531. teradataml/data/jsons/byom/h2opredict.json +195 -0
  532. teradataml/data/jsons/byom/onnxembeddings.json +267 -0
  533. teradataml/data/jsons/byom/onnxpredict.json +187 -0
  534. teradataml/data/jsons/byom/pmmlpredict.json +147 -0
  535. teradataml/data/jsons/paired_functions.json +450 -0
  536. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -0
  537. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -0
  538. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -0
  539. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -0
  540. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -0
  541. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -0
  542. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -0
  543. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -0
  544. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -0
  545. teradataml/data/jsons/sqle/16.20/Pack.json +98 -0
  546. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -0
  547. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -0
  548. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -0
  549. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -0
  550. teradataml/data/jsons/sqle/16.20/nPath.json +269 -0
  551. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -0
  552. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -0
  553. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -0
  554. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -0
  555. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -0
  556. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -0
  557. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -0
  558. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -0
  559. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -0
  560. teradataml/data/jsons/sqle/17.00/Pack.json +98 -0
  561. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -0
  562. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -0
  563. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -0
  564. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -0
  565. teradataml/data/jsons/sqle/17.00/nPath.json +269 -0
  566. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -0
  567. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -0
  568. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -0
  569. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -0
  570. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -0
  571. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -0
  572. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -0
  573. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -0
  574. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -0
  575. teradataml/data/jsons/sqle/17.05/Pack.json +98 -0
  576. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -0
  577. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -0
  578. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -0
  579. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -0
  580. teradataml/data/jsons/sqle/17.05/nPath.json +269 -0
  581. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -0
  582. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -0
  583. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -0
  584. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +172 -0
  585. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -0
  586. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -0
  587. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -0
  588. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -0
  589. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -0
  590. teradataml/data/jsons/sqle/17.10/Pack.json +133 -0
  591. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -0
  592. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -0
  593. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -0
  594. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -0
  595. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -0
  596. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +54 -0
  597. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +68 -0
  598. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +54 -0
  599. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +69 -0
  600. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -0
  601. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +52 -0
  602. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -0
  603. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -0
  604. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +53 -0
  605. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +53 -0
  606. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +133 -0
  607. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -0
  608. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +183 -0
  609. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +66 -0
  610. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +197 -0
  611. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -0
  612. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -0
  613. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -0
  614. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +112 -0
  615. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -0
  616. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +128 -0
  617. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +71 -0
  618. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +157 -0
  619. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +71 -0
  620. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +148 -0
  621. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -0
  622. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -0
  623. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +119 -0
  624. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +53 -0
  625. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +53 -0
  626. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -0
  627. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -0
  628. teradataml/data/jsons/sqle/17.10/nPath.json +269 -0
  629. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -0
  630. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -0
  631. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -0
  632. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -0
  633. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -0
  634. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -0
  635. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -0
  636. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -0
  637. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -0
  638. teradataml/data/jsons/sqle/17.20/Pack.json +133 -0
  639. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -0
  640. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -0
  641. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -0
  642. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +149 -0
  643. teradataml/data/jsons/sqle/17.20/TD_Apriori.json +181 -0
  644. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -0
  645. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -0
  646. teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
  647. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -0
  648. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +68 -0
  649. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +146 -0
  650. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -0
  651. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -0
  652. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -0
  653. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +260 -0
  654. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -0
  655. teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -0
  656. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -0
  657. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -0
  658. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -0
  659. teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -0
  660. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -0
  661. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -0
  662. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -0
  663. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -0
  664. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -0
  665. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -0
  666. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -0
  667. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +232 -0
  668. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +87 -0
  669. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -0
  670. teradataml/data/jsons/sqle/17.20/TD_NERExtractor.json +145 -0
  671. teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
  672. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
  673. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -0
  674. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -0
  675. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -0
  676. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -0
  677. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +316 -0
  678. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +124 -0
  679. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -0
  680. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -0
  681. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -0
  682. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -0
  683. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -0
  684. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -0
  685. teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
  686. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -0
  687. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -0
  688. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -0
  689. teradataml/data/jsons/sqle/17.20/TD_ROC.json +179 -0
  690. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +179 -0
  691. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +74 -0
  692. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -0
  693. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +138 -0
  694. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -0
  695. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +128 -0
  696. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +71 -0
  697. teradataml/data/jsons/sqle/17.20/TD_SMOTE.json +267 -0
  698. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -0
  699. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -0
  700. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +310 -0
  701. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +120 -0
  702. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +194 -0
  703. teradataml/data/jsons/sqle/17.20/TD_Shap.json +221 -0
  704. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +143 -0
  705. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -0
  706. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -0
  707. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -0
  708. teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
  709. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -0
  710. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -0
  711. teradataml/data/jsons/sqle/17.20/TD_TextMorph.json +134 -0
  712. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +297 -0
  713. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -0
  714. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -0
  715. teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
  716. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +183 -0
  717. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +53 -0
  718. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +53 -0
  719. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -0
  720. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -0
  721. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -0
  722. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -0
  723. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -0
  724. teradataml/data/jsons/sqle/17.20/nPath.json +269 -0
  725. teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json +370 -0
  726. teradataml/data/jsons/sqle/20.00/AI_AskLLM.json +460 -0
  727. teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json +385 -0
  728. teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json +369 -0
  729. teradataml/data/jsons/sqle/20.00/AI_MaskPII.json +369 -0
  730. teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json +369 -0
  731. teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json +369 -0
  732. teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json +400 -0
  733. teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json +401 -0
  734. teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json +384 -0
  735. teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json +384 -0
  736. teradataml/data/jsons/sqle/20.00/TD_API_AzureML.json +151 -0
  737. teradataml/data/jsons/sqle/20.00/TD_API_Sagemaker.json +182 -0
  738. teradataml/data/jsons/sqle/20.00/TD_API_VertexAI.json +183 -0
  739. teradataml/data/jsons/sqle/20.00/TD_HNSW.json +296 -0
  740. teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json +206 -0
  741. teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json +32 -0
  742. teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
  743. teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
  744. teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
  745. teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
  746. teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
  747. teradataml/data/jsons/tableoperator/17.00/read_nos.json +198 -0
  748. teradataml/data/jsons/tableoperator/17.05/read_nos.json +198 -0
  749. teradataml/data/jsons/tableoperator/17.05/write_nos.json +195 -0
  750. teradataml/data/jsons/tableoperator/17.10/read_nos.json +184 -0
  751. teradataml/data/jsons/tableoperator/17.10/write_nos.json +195 -0
  752. teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
  753. teradataml/data/jsons/tableoperator/17.20/read_nos.json +183 -0
  754. teradataml/data/jsons/tableoperator/17.20/write_nos.json +224 -0
  755. teradataml/data/jsons/uaf/17.20/TD_ACF.json +132 -0
  756. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +396 -0
  757. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +77 -0
  758. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +153 -0
  759. teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
  760. teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
  761. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +107 -0
  762. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +106 -0
  763. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +89 -0
  764. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +104 -0
  765. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +78 -0
  766. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +66 -0
  767. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +87 -0
  768. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +134 -0
  769. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +144 -0
  770. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -0
  771. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +108 -0
  772. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +78 -0
  773. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +92 -0
  774. teradataml/data/jsons/uaf/17.20/TD_DTW.json +114 -0
  775. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +101 -0
  776. teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
  777. teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
  778. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +39 -0
  779. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +101 -0
  780. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +85 -0
  781. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +71 -0
  782. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +139 -0
  783. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECASTER.json +313 -0
  784. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +58 -0
  785. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +81 -0
  786. teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
  787. teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
  788. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +64 -0
  789. teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
  790. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +182 -0
  791. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +103 -0
  792. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +181 -0
  793. teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
  794. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +68 -0
  795. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +67 -0
  796. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +179 -0
  797. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -0
  798. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +119 -0
  799. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -0
  800. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +98 -0
  801. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +194 -0
  802. teradataml/data/jsons/uaf/17.20/TD_SAX.json +210 -0
  803. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +143 -0
  804. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +90 -0
  805. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +80 -0
  806. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +68 -0
  807. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -0
  808. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +58 -0
  809. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +163 -0
  810. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +101 -0
  811. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +112 -0
  812. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -0
  813. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +78 -0
  814. teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +410 -0
  815. teradataml/data/kmeans_example.json +23 -0
  816. teradataml/data/kmeans_table.csv +10 -0
  817. teradataml/data/kmeans_us_arrests_data.csv +51 -0
  818. teradataml/data/knn_example.json +19 -0
  819. teradataml/data/knnrecommender_example.json +7 -0
  820. teradataml/data/knnrecommenderpredict_example.json +12 -0
  821. teradataml/data/lar_example.json +17 -0
  822. teradataml/data/larpredict_example.json +30 -0
  823. teradataml/data/lc_new_predictors.csv +5 -0
  824. teradataml/data/lc_new_reference.csv +9 -0
  825. teradataml/data/lda_example.json +9 -0
  826. teradataml/data/ldainference_example.json +15 -0
  827. teradataml/data/ldatopicsummary_example.json +9 -0
  828. teradataml/data/levendist_input.csv +13 -0
  829. teradataml/data/levenshteindistance_example.json +10 -0
  830. teradataml/data/linreg_example.json +10 -0
  831. teradataml/data/load_example_data.py +350 -0
  832. teradataml/data/loan_prediction.csv +295 -0
  833. teradataml/data/lungcancer.csv +138 -0
  834. teradataml/data/mappingdata.csv +12 -0
  835. teradataml/data/medical_readings.csv +101 -0
  836. teradataml/data/milk_timeseries.csv +157 -0
  837. teradataml/data/min_max_titanic.csv +4 -0
  838. teradataml/data/minhash_example.json +6 -0
  839. teradataml/data/ml_ratings.csv +7547 -0
  840. teradataml/data/ml_ratings_10.csv +2445 -0
  841. teradataml/data/mobile_data.csv +13 -0
  842. teradataml/data/model1_table.csv +5 -0
  843. teradataml/data/model2_table.csv +5 -0
  844. teradataml/data/models/License_file.txt +1 -0
  845. teradataml/data/models/License_file_empty.txt +0 -0
  846. teradataml/data/models/dataiku_iris_data_ann_thin +0 -0
  847. teradataml/data/models/dr_iris_rf +0 -0
  848. teradataml/data/models/iris_db_dt_model_sklearn.onnx +0 -0
  849. teradataml/data/models/iris_db_dt_model_sklearn_floattensor.onnx +0 -0
  850. teradataml/data/models/iris_db_glm_model.pmml +57 -0
  851. teradataml/data/models/iris_db_xgb_model.pmml +4471 -0
  852. teradataml/data/models/iris_kmeans_model +0 -0
  853. teradataml/data/models/iris_mojo_glm_h2o_model +0 -0
  854. teradataml/data/models/iris_mojo_xgb_h2o_model +0 -0
  855. teradataml/data/modularity_example.json +12 -0
  856. teradataml/data/movavg_example.json +8 -0
  857. teradataml/data/mtx1.csv +7 -0
  858. teradataml/data/mtx2.csv +13 -0
  859. teradataml/data/multi_model_classification.csv +401 -0
  860. teradataml/data/multi_model_regression.csv +401 -0
  861. teradataml/data/mvdfft8.csv +9 -0
  862. teradataml/data/naivebayes_example.json +10 -0
  863. teradataml/data/naivebayespredict_example.json +19 -0
  864. teradataml/data/naivebayestextclassifier2_example.json +7 -0
  865. teradataml/data/naivebayestextclassifier_example.json +8 -0
  866. teradataml/data/naivebayestextclassifierpredict_example.json +32 -0
  867. teradataml/data/name_Find_configure.csv +10 -0
  868. teradataml/data/namedentityfinder_example.json +14 -0
  869. teradataml/data/namedentityfinderevaluator_example.json +10 -0
  870. teradataml/data/namedentityfindertrainer_example.json +6 -0
  871. teradataml/data/nb_iris_input_test.csv +31 -0
  872. teradataml/data/nb_iris_input_train.csv +121 -0
  873. teradataml/data/nbp_iris_model.csv +13 -0
  874. teradataml/data/ner_dict.csv +8 -0
  875. teradataml/data/ner_extractor_text.csv +2 -0
  876. teradataml/data/ner_input_eng.csv +7 -0
  877. teradataml/data/ner_rule.csv +5 -0
  878. teradataml/data/ner_sports_test2.csv +29 -0
  879. teradataml/data/ner_sports_train.csv +501 -0
  880. teradataml/data/nerevaluator_example.json +6 -0
  881. teradataml/data/nerextractor_example.json +18 -0
  882. teradataml/data/nermem_sports_test.csv +18 -0
  883. teradataml/data/nermem_sports_train.csv +51 -0
  884. teradataml/data/nertrainer_example.json +7 -0
  885. teradataml/data/ngrams_example.json +7 -0
  886. teradataml/data/notebooks/__init__.py +0 -0
  887. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -0
  888. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -0
  889. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -0
  890. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -0
  891. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -0
  892. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -0
  893. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -0
  894. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -0
  895. teradataml/data/notebooks/sqlalchemy/__init__.py +0 -0
  896. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -0
  897. teradataml/data/npath_example.json +23 -0
  898. teradataml/data/ntree_example.json +14 -0
  899. teradataml/data/numeric_strings.csv +5 -0
  900. teradataml/data/numerics.csv +4 -0
  901. teradataml/data/ocean_buoy.csv +17 -0
  902. teradataml/data/ocean_buoy2.csv +17 -0
  903. teradataml/data/ocean_buoys.csv +28 -0
  904. teradataml/data/ocean_buoys2.csv +10 -0
  905. teradataml/data/ocean_buoys_nonpti.csv +28 -0
  906. teradataml/data/ocean_buoys_seq.csv +29 -0
  907. teradataml/data/onehot_encoder_train.csv +4 -0
  908. teradataml/data/openml_example.json +92 -0
  909. teradataml/data/optional_event_table.csv +4 -0
  910. teradataml/data/orders1.csv +11 -0
  911. teradataml/data/orders1_12.csv +13 -0
  912. teradataml/data/orders_ex.csv +4 -0
  913. teradataml/data/pack_example.json +9 -0
  914. teradataml/data/package_tracking.csv +19 -0
  915. teradataml/data/package_tracking_pti.csv +19 -0
  916. teradataml/data/pagerank_example.json +13 -0
  917. teradataml/data/paragraphs_input.csv +6 -0
  918. teradataml/data/pathanalyzer_example.json +8 -0
  919. teradataml/data/pathgenerator_example.json +8 -0
  920. teradataml/data/patient_profile.csv +101 -0
  921. teradataml/data/pattern_matching_data.csv +11 -0
  922. teradataml/data/payment_fraud_dataset.csv +10001 -0
  923. teradataml/data/peppers.png +0 -0
  924. teradataml/data/phrases.csv +7 -0
  925. teradataml/data/pivot_example.json +9 -0
  926. teradataml/data/pivot_input.csv +22 -0
  927. teradataml/data/playerRating.csv +31 -0
  928. teradataml/data/pos_input.csv +40 -0
  929. teradataml/data/postagger_example.json +7 -0
  930. teradataml/data/posttagger_output.csv +44 -0
  931. teradataml/data/production_data.csv +17 -0
  932. teradataml/data/production_data2.csv +7 -0
  933. teradataml/data/randomsample_example.json +32 -0
  934. teradataml/data/randomwalksample_example.json +9 -0
  935. teradataml/data/rank_table.csv +6 -0
  936. teradataml/data/real_values.csv +14 -0
  937. teradataml/data/ref_mobile_data.csv +4 -0
  938. teradataml/data/ref_mobile_data_dense.csv +2 -0
  939. teradataml/data/ref_url.csv +17 -0
  940. teradataml/data/restaurant_reviews.csv +7 -0
  941. teradataml/data/retail_churn_table.csv +27772 -0
  942. teradataml/data/river_data.csv +145 -0
  943. teradataml/data/roc_example.json +8 -0
  944. teradataml/data/roc_input.csv +101 -0
  945. teradataml/data/rule_inputs.csv +6 -0
  946. teradataml/data/rule_table.csv +2 -0
  947. teradataml/data/sales.csv +7 -0
  948. teradataml/data/sales_transaction.csv +501 -0
  949. teradataml/data/salesdata.csv +342 -0
  950. teradataml/data/sample_cities.csv +3 -0
  951. teradataml/data/sample_shapes.csv +11 -0
  952. teradataml/data/sample_streets.csv +3 -0
  953. teradataml/data/sampling_example.json +16 -0
  954. teradataml/data/sax_example.json +17 -0
  955. teradataml/data/scale_attributes.csv +3 -0
  956. teradataml/data/scale_example.json +74 -0
  957. teradataml/data/scale_housing.csv +11 -0
  958. teradataml/data/scale_housing_test.csv +6 -0
  959. teradataml/data/scale_input_part_sparse.csv +31 -0
  960. teradataml/data/scale_input_partitioned.csv +16 -0
  961. teradataml/data/scale_input_sparse.csv +11 -0
  962. teradataml/data/scale_parameters.csv +3 -0
  963. teradataml/data/scale_stat.csv +11 -0
  964. teradataml/data/scalebypartition_example.json +13 -0
  965. teradataml/data/scalemap_example.json +13 -0
  966. teradataml/data/scalesummary_example.json +12 -0
  967. teradataml/data/score_category.csv +101 -0
  968. teradataml/data/score_summary.csv +4 -0
  969. teradataml/data/script_example.json +10 -0
  970. teradataml/data/scripts/deploy_script.py +84 -0
  971. teradataml/data/scripts/lightgbm/dataset.template +175 -0
  972. teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +264 -0
  973. teradataml/data/scripts/lightgbm/lightgbm_function.template +234 -0
  974. teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +177 -0
  975. teradataml/data/scripts/mapper.R +20 -0
  976. teradataml/data/scripts/mapper.py +16 -0
  977. teradataml/data/scripts/mapper_replace.py +16 -0
  978. teradataml/data/scripts/sklearn/__init__.py +0 -0
  979. teradataml/data/scripts/sklearn/sklearn_fit.py +205 -0
  980. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +148 -0
  981. teradataml/data/scripts/sklearn/sklearn_function.template +144 -0
  982. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +166 -0
  983. teradataml/data/scripts/sklearn/sklearn_neighbors.py +161 -0
  984. teradataml/data/scripts/sklearn/sklearn_score.py +145 -0
  985. teradataml/data/scripts/sklearn/sklearn_transform.py +327 -0
  986. teradataml/data/sdk/modelops/modelops_spec.json +101737 -0
  987. teradataml/data/seeds.csv +10 -0
  988. teradataml/data/sentenceextractor_example.json +7 -0
  989. teradataml/data/sentiment_extract_input.csv +11 -0
  990. teradataml/data/sentiment_train.csv +16 -0
  991. teradataml/data/sentiment_word.csv +20 -0
  992. teradataml/data/sentiment_word_input.csv +20 -0
  993. teradataml/data/sentimentextractor_example.json +24 -0
  994. teradataml/data/sentimenttrainer_example.json +8 -0
  995. teradataml/data/sequence_table.csv +10 -0
  996. teradataml/data/seriessplitter_example.json +8 -0
  997. teradataml/data/sessionize_example.json +17 -0
  998. teradataml/data/sessionize_table.csv +116 -0
  999. teradataml/data/setop_test1.csv +24 -0
  1000. teradataml/data/setop_test2.csv +22 -0
  1001. teradataml/data/soc_nw_edges.csv +11 -0
  1002. teradataml/data/soc_nw_vertices.csv +8 -0
  1003. teradataml/data/souvenir_timeseries.csv +168 -0
  1004. teradataml/data/sparse_iris_attribute.csv +5 -0
  1005. teradataml/data/sparse_iris_test.csv +121 -0
  1006. teradataml/data/sparse_iris_train.csv +601 -0
  1007. teradataml/data/star1.csv +6 -0
  1008. teradataml/data/star_pivot.csv +8 -0
  1009. teradataml/data/state_transition.csv +5 -0
  1010. teradataml/data/stock_data.csv +53 -0
  1011. teradataml/data/stock_movement.csv +11 -0
  1012. teradataml/data/stock_vol.csv +76 -0
  1013. teradataml/data/stop_words.csv +8 -0
  1014. teradataml/data/store_sales.csv +37 -0
  1015. teradataml/data/stringsimilarity_example.json +8 -0
  1016. teradataml/data/strsimilarity_input.csv +13 -0
  1017. teradataml/data/students.csv +101 -0
  1018. teradataml/data/svm_iris_input_test.csv +121 -0
  1019. teradataml/data/svm_iris_input_train.csv +481 -0
  1020. teradataml/data/svm_iris_model.csv +7 -0
  1021. teradataml/data/svmdense_example.json +10 -0
  1022. teradataml/data/svmdensepredict_example.json +19 -0
  1023. teradataml/data/svmsparse_example.json +8 -0
  1024. teradataml/data/svmsparsepredict_example.json +14 -0
  1025. teradataml/data/svmsparsesummary_example.json +8 -0
  1026. teradataml/data/target_mobile_data.csv +13 -0
  1027. teradataml/data/target_mobile_data_dense.csv +5 -0
  1028. teradataml/data/target_udt_data.csv +8 -0
  1029. teradataml/data/tdnerextractor_example.json +14 -0
  1030. teradataml/data/templatedata.csv +1201 -0
  1031. teradataml/data/templates/open_source_ml.json +11 -0
  1032. teradataml/data/teradata_icon.ico +0 -0
  1033. teradataml/data/teradataml_example.json +1473 -0
  1034. teradataml/data/test_classification.csv +101 -0
  1035. teradataml/data/test_loan_prediction.csv +53 -0
  1036. teradataml/data/test_pacf_12.csv +37 -0
  1037. teradataml/data/test_prediction.csv +101 -0
  1038. teradataml/data/test_regression.csv +101 -0
  1039. teradataml/data/test_river2.csv +109 -0
  1040. teradataml/data/text_inputs.csv +6 -0
  1041. teradataml/data/textchunker_example.json +8 -0
  1042. teradataml/data/textclassifier_example.json +7 -0
  1043. teradataml/data/textclassifier_input.csv +7 -0
  1044. teradataml/data/textclassifiertrainer_example.json +7 -0
  1045. teradataml/data/textmorph_example.json +11 -0
  1046. teradataml/data/textparser_example.json +15 -0
  1047. teradataml/data/texttagger_example.json +12 -0
  1048. teradataml/data/texttokenizer_example.json +7 -0
  1049. teradataml/data/texttrainer_input.csv +11 -0
  1050. teradataml/data/tf_example.json +7 -0
  1051. teradataml/data/tfidf_example.json +14 -0
  1052. teradataml/data/tfidf_input1.csv +201 -0
  1053. teradataml/data/tfidf_train.csv +6 -0
  1054. teradataml/data/time_table1.csv +535 -0
  1055. teradataml/data/time_table2.csv +14 -0
  1056. teradataml/data/timeseriesdata.csv +1601 -0
  1057. teradataml/data/timeseriesdatasetsd4.csv +105 -0
  1058. teradataml/data/timestamp_data.csv +4 -0
  1059. teradataml/data/titanic.csv +892 -0
  1060. teradataml/data/titanic_dataset_unpivoted.csv +19 -0
  1061. teradataml/data/to_num_data.csv +4 -0
  1062. teradataml/data/tochar_data.csv +5 -0
  1063. teradataml/data/token_table.csv +696 -0
  1064. teradataml/data/train_multiclass.csv +101 -0
  1065. teradataml/data/train_regression.csv +101 -0
  1066. teradataml/data/train_regression_multiple_labels.csv +101 -0
  1067. teradataml/data/train_tracking.csv +28 -0
  1068. teradataml/data/trans_dense.csv +16 -0
  1069. teradataml/data/trans_sparse.csv +55 -0
  1070. teradataml/data/transformation_table.csv +6 -0
  1071. teradataml/data/transformation_table_new.csv +2 -0
  1072. teradataml/data/tv_spots.csv +16 -0
  1073. teradataml/data/twod_climate_data.csv +117 -0
  1074. teradataml/data/uaf_example.json +529 -0
  1075. teradataml/data/univariatestatistics_example.json +9 -0
  1076. teradataml/data/unpack_example.json +10 -0
  1077. teradataml/data/unpivot_example.json +25 -0
  1078. teradataml/data/unpivot_input.csv +8 -0
  1079. teradataml/data/url_data.csv +10 -0
  1080. teradataml/data/us_air_pass.csv +37 -0
  1081. teradataml/data/us_population.csv +624 -0
  1082. teradataml/data/us_states_shapes.csv +52 -0
  1083. teradataml/data/varmax_example.json +18 -0
  1084. teradataml/data/vectordistance_example.json +30 -0
  1085. teradataml/data/ville_climatedata.csv +121 -0
  1086. teradataml/data/ville_tempdata.csv +12 -0
  1087. teradataml/data/ville_tempdata1.csv +12 -0
  1088. teradataml/data/ville_temperature.csv +11 -0
  1089. teradataml/data/waveletTable.csv +1605 -0
  1090. teradataml/data/waveletTable2.csv +1605 -0
  1091. teradataml/data/weightedmovavg_example.json +9 -0
  1092. teradataml/data/wft_testing.csv +5 -0
  1093. teradataml/data/windowdfft.csv +16 -0
  1094. teradataml/data/wine_data.csv +1600 -0
  1095. teradataml/data/word_embed_input_table1.csv +6 -0
  1096. teradataml/data/word_embed_input_table2.csv +5 -0
  1097. teradataml/data/word_embed_model.csv +23 -0
  1098. teradataml/data/words_input.csv +13 -0
  1099. teradataml/data/xconvolve_complex_left.csv +6 -0
  1100. teradataml/data/xconvolve_complex_leftmulti.csv +6 -0
  1101. teradataml/data/xgboost_example.json +36 -0
  1102. teradataml/data/xgboostpredict_example.json +32 -0
  1103. teradataml/data/ztest_example.json +16 -0
  1104. teradataml/dataframe/__init__.py +0 -0
  1105. teradataml/dataframe/copy_to.py +2446 -0
  1106. teradataml/dataframe/data_transfer.py +2840 -0
  1107. teradataml/dataframe/dataframe.py +20908 -0
  1108. teradataml/dataframe/dataframe_utils.py +2114 -0
  1109. teradataml/dataframe/fastload.py +794 -0
  1110. teradataml/dataframe/functions.py +2110 -0
  1111. teradataml/dataframe/indexer.py +424 -0
  1112. teradataml/dataframe/row.py +160 -0
  1113. teradataml/dataframe/setop.py +1171 -0
  1114. teradataml/dataframe/sql.py +10904 -0
  1115. teradataml/dataframe/sql_function_parameters.py +440 -0
  1116. teradataml/dataframe/sql_functions.py +652 -0
  1117. teradataml/dataframe/sql_interfaces.py +220 -0
  1118. teradataml/dataframe/vantage_function_types.py +675 -0
  1119. teradataml/dataframe/window.py +694 -0
  1120. teradataml/dbutils/__init__.py +3 -0
  1121. teradataml/dbutils/dbutils.py +2871 -0
  1122. teradataml/dbutils/filemgr.py +318 -0
  1123. teradataml/gen_ai/__init__.py +2 -0
  1124. teradataml/gen_ai/convAI.py +473 -0
  1125. teradataml/geospatial/__init__.py +4 -0
  1126. teradataml/geospatial/geodataframe.py +1105 -0
  1127. teradataml/geospatial/geodataframecolumn.py +392 -0
  1128. teradataml/geospatial/geometry_types.py +926 -0
  1129. teradataml/hyperparameter_tuner/__init__.py +1 -0
  1130. teradataml/hyperparameter_tuner/optimizer.py +4115 -0
  1131. teradataml/hyperparameter_tuner/utils.py +303 -0
  1132. teradataml/lib/__init__.py +0 -0
  1133. teradataml/lib/aed_0_1.dll +0 -0
  1134. teradataml/lib/libaed_0_1.dylib +0 -0
  1135. teradataml/lib/libaed_0_1.so +0 -0
  1136. teradataml/lib/libaed_0_1_aarch64.so +0 -0
  1137. teradataml/lib/libaed_0_1_ppc64le.so +0 -0
  1138. teradataml/opensource/__init__.py +1 -0
  1139. teradataml/opensource/_base.py +1321 -0
  1140. teradataml/opensource/_class.py +464 -0
  1141. teradataml/opensource/_constants.py +61 -0
  1142. teradataml/opensource/_lightgbm.py +949 -0
  1143. teradataml/opensource/_sklearn.py +1008 -0
  1144. teradataml/opensource/_wrapper_utils.py +267 -0
  1145. teradataml/options/__init__.py +148 -0
  1146. teradataml/options/configure.py +489 -0
  1147. teradataml/options/display.py +187 -0
  1148. teradataml/plot/__init__.py +3 -0
  1149. teradataml/plot/axis.py +1427 -0
  1150. teradataml/plot/constants.py +15 -0
  1151. teradataml/plot/figure.py +431 -0
  1152. teradataml/plot/plot.py +810 -0
  1153. teradataml/plot/query_generator.py +83 -0
  1154. teradataml/plot/subplot.py +216 -0
  1155. teradataml/scriptmgmt/UserEnv.py +4273 -0
  1156. teradataml/scriptmgmt/__init__.py +3 -0
  1157. teradataml/scriptmgmt/lls_utils.py +2157 -0
  1158. teradataml/sdk/README.md +79 -0
  1159. teradataml/sdk/__init__.py +4 -0
  1160. teradataml/sdk/_auth_modes.py +422 -0
  1161. teradataml/sdk/_func_params.py +487 -0
  1162. teradataml/sdk/_json_parser.py +453 -0
  1163. teradataml/sdk/_openapi_spec_constants.py +249 -0
  1164. teradataml/sdk/_utils.py +236 -0
  1165. teradataml/sdk/api_client.py +900 -0
  1166. teradataml/sdk/constants.py +62 -0
  1167. teradataml/sdk/modelops/__init__.py +98 -0
  1168. teradataml/sdk/modelops/_client.py +409 -0
  1169. teradataml/sdk/modelops/_constants.py +304 -0
  1170. teradataml/sdk/modelops/models.py +2308 -0
  1171. teradataml/sdk/spinner.py +107 -0
  1172. teradataml/series/__init__.py +0 -0
  1173. teradataml/series/series.py +537 -0
  1174. teradataml/series/series_utils.py +71 -0
  1175. teradataml/store/__init__.py +12 -0
  1176. teradataml/store/feature_store/__init__.py +0 -0
  1177. teradataml/store/feature_store/constants.py +658 -0
  1178. teradataml/store/feature_store/feature_store.py +4814 -0
  1179. teradataml/store/feature_store/mind_map.py +639 -0
  1180. teradataml/store/feature_store/models.py +7330 -0
  1181. teradataml/store/feature_store/utils.py +390 -0
  1182. teradataml/table_operators/Apply.py +979 -0
  1183. teradataml/table_operators/Script.py +1739 -0
  1184. teradataml/table_operators/TableOperator.py +1343 -0
  1185. teradataml/table_operators/__init__.py +2 -0
  1186. teradataml/table_operators/apply_query_generator.py +262 -0
  1187. teradataml/table_operators/query_generator.py +493 -0
  1188. teradataml/table_operators/table_operator_query_generator.py +462 -0
  1189. teradataml/table_operators/table_operator_util.py +726 -0
  1190. teradataml/table_operators/templates/dataframe_apply.template +184 -0
  1191. teradataml/table_operators/templates/dataframe_map.template +176 -0
  1192. teradataml/table_operators/templates/dataframe_register.template +73 -0
  1193. teradataml/table_operators/templates/dataframe_udf.template +67 -0
  1194. teradataml/table_operators/templates/script_executor.template +170 -0
  1195. teradataml/telemetry_utils/__init__.py +0 -0
  1196. teradataml/telemetry_utils/queryband.py +53 -0
  1197. teradataml/utils/__init__.py +0 -0
  1198. teradataml/utils/docstring.py +527 -0
  1199. teradataml/utils/dtypes.py +943 -0
  1200. teradataml/utils/internal_buffer.py +122 -0
  1201. teradataml/utils/print_versions.py +206 -0
  1202. teradataml/utils/utils.py +451 -0
  1203. teradataml/utils/validators.py +3305 -0
  1204. teradataml-20.0.0.8.dist-info/METADATA +2804 -0
  1205. teradataml-20.0.0.8.dist-info/RECORD +1208 -0
  1206. teradataml-20.0.0.8.dist-info/WHEEL +5 -0
  1207. teradataml-20.0.0.8.dist-info/top_level.txt +1 -0
  1208. teradataml-20.0.0.8.dist-info/zip-safe +1 -0
@@ -0,0 +1,1427 @@
1
+ # ##################################################################
2
+ #
3
+ # Copyright 2023 Teradata. All rights reserved.
4
+ # TERADATA CONFIDENTIAL AND TRADE SECRET
5
+ #
6
+ # Primary Owner: Pradeep Garre (pradeep.garre@teradata.com)
7
+ # Secondary Owner:
8
+ #
9
+ # This file implements Axis, which is used for plotting. Axis holds all
10
+ # the properties related to axis such as grid color, x-axis label, y-axis
11
+ # label etc.
12
+ #
13
+ # ##################################################################
14
+
15
+ from teradataml.common.exceptions import TeradataMlException
16
+ from teradataml.common.messages import Messages
17
+ from teradataml.common.messagecodes import MessageCodes
18
+ from teradataml.common.utils import UtilFuncs
19
+ from teradataml.dataframe.sql import ColumnExpression
20
+ from teradataml.plot.constants import MapType
21
+ from teradataml.utils.validators import _Validators
22
+
23
+
24
+ class Axis:
25
+ def __init__(self, **kwargs):
26
+ """
27
+ Constructor for Axis.
28
+
29
+ PARAMETERS:
30
+ cmap:
31
+ Optional Argument.
32
+ Specifies the name of the colormap to be used for plotting.
33
+ Notes:
34
+ * Significant only when corresponding type of plots is mesh or geometry.
35
+ * Ignored for other type of plots.
36
+ Permitted Values:
37
+ * All the colormaps mentioned in below URL's are supported.
38
+ * https://matplotlib.org/stable/tutorials/colors/colormaps.html
39
+ * https://matplotlib.org/cmocean/
40
+ Types: str
41
+
42
+ color:
43
+ Optional Argument.
44
+ Specifies the color for the plot.
45
+ Note:
46
+ Hexadecimal color codes are not supported.
47
+ Permitted Values:
48
+ * blue
49
+ * orange
50
+ * green
51
+ * red
52
+ * purple
53
+ * brown
54
+ * pink
55
+ * gray
56
+ * olive
57
+ * cyan
58
+ * Apart from above mentioned colors, the colors mentioned in
59
+ https://xkcd.com/color/rgb are also supported.
60
+ Default Value: blue
61
+ Types: str OR list of str
62
+
63
+ grid_color:
64
+ Optional Argument.
65
+ Specifies the color of the grid. By default, grid is generated with
66
+ Gray69(#b0b0b0) color.
67
+ Note:
68
+ Hexadecimal color codes are not supported.
69
+ Permitted Values:
70
+ * 'blue'
71
+ * 'orange'
72
+ * 'green'
73
+ * 'red'
74
+ * 'purple'
75
+ * 'brown'
76
+ * 'pink'
77
+ * 'gray'
78
+ * 'olive'
79
+ * 'cyan'
80
+ * Apart from above mentioned colors, the colors mentioned in
81
+ https://xkcd.com/color/rgb are also supported.
82
+ Default Value: 'gray'
83
+ Types: str
84
+
85
+ grid_format:
86
+ Optional Argument.
87
+ Specifies the format for the grid.
88
+ Types: str
89
+
90
+ grid_linestyle:
91
+ Optional Argument.
92
+ Specifies the line style of the grid.
93
+ Default Value: -
94
+ Permitted Values:
95
+ * -
96
+ * --
97
+ * -.
98
+ Types: str
99
+
100
+ grid_linewidth:
101
+ Optional Argument.
102
+ Specifies the line width of the grid.
103
+ Note:
104
+ Valid range for "grid_linewidth" is: 0.5 <= grid_linewidth <= 10.
105
+ Default Value: 0.8
106
+ Types: int OR float
107
+
108
+ legend:
109
+ Optional Argument.
110
+ Specifies the legend(s) for the Plot.
111
+ Types: str OR list of str
112
+
113
+ legend_style:
114
+ Optional Argument.
115
+ Specifies the location for legend to display on Plot image. By default,
116
+ legend is displayed at upper right corner.
117
+ * 'upper right'
118
+ * 'upper left'
119
+ * 'lower right'
120
+ * 'lower left'
121
+ * 'right'
122
+ * 'center left'
123
+ * 'center right'
124
+ * 'lower center'
125
+ * 'upper center'
126
+ * 'center'
127
+ Default Value: 'upper right'
128
+ Types: str
129
+
130
+ linestyle:
131
+ Optional Argument.
132
+ Specifies the line style for the plot.
133
+ Permitted Values:
134
+ * -
135
+ * --
136
+ * -.
137
+ * :
138
+ Default Value: -
139
+ Types: str OR list of str
140
+
141
+ linewidth:
142
+ Optional Argument.
143
+ Specifies the line width for the plot.
144
+ Note:
145
+ Valid range for "linewidth" is: 0.5 <= linewidth <= 10.
146
+ Default Value: 0.8
147
+ Types: int OR float OR list of int OR list of float
148
+
149
+ marker:
150
+ Optional Argument.
151
+ Specifies the type of the marker to be used.
152
+ Permitted Values:
153
+ All the markers mentioned in https://matplotlib.org/stable/api/markers_api.html
154
+ are supported.
155
+ Types: str OR list of str
156
+
157
+ markersize:
158
+ Optional Argument.
159
+ Specifies the size of the marker.
160
+ Note:
161
+ Valid range for "markersize" is: 1 <= markersize <= 20.
162
+ Default Value: 6
163
+ Types: int OR float OR list of int OR list of float
164
+
165
+ position:
166
+ Optional Argument.
167
+ Specifies the position of the axis in the Figure. 1st element
168
+ represents the row and second element represents column.
169
+ Default Value: (1, 1)
170
+ Types: tuple
171
+
172
+ reverse_xaxis:
173
+ Optional Argument.
174
+ Specifies whether to reverse tick values on x-axis or not.
175
+ Default Value: False
176
+ Types: bool
177
+
178
+ reverse_yaxis:
179
+ Optional Argument.
180
+ Specifies whether to reverse tick values on y-axis or not.
181
+ Default Value: False
182
+ Types: bool
183
+
184
+ span:
185
+ Optional Argument.
186
+ Specifies the span of the axis in the Figure. 1st element
187
+ represents the row and second element represents column.
188
+ For Example,
189
+ Span of (2, 1) specifies the Axis occupies 2 rows and 1 column
190
+ in Figure.
191
+ Default Value: (1, 1)
192
+ Types: tuple
193
+
194
+ series_identifier:
195
+ Optional Argument.
196
+ Specifies the teradataml GeoDataFrame Column which represents the
197
+ identifier for the data. As many plots as distinct "series_identifier"
198
+ are generated in a single Axis.
199
+ For example:
200
+ consider the below data in teradataml GeoDataFrame.
201
+ ID x y
202
+ 0 1 1 1
203
+ 1 1 2 2
204
+ 2 2 10 10
205
+ 3 2 20 20
206
+ If "series_identifier" is not specified, simple plot is
207
+ generated where every 'y' is plotted against 'x' in a
208
+ single plot. However, specifying "series_identifier" as 'ID'
209
+ generates two plots in a single axis. One plot is for ID 1
210
+ and another plot is for ID 2.
211
+ Types: teradataml GeoDataFrame Column.
212
+
213
+ title:
214
+ Optional Argument.
215
+ Specifies the title for the Axis.
216
+ Types: str
217
+
218
+ xlabel:
219
+ Optional Argument.
220
+ Specifies the label for x-axis.
221
+ Notes:
222
+ * When set to empty string, label is not displayed for x-axis.
223
+ * When set to None, name of the x-axis column is displayed as
224
+ label.
225
+ Types: str
226
+
227
+ xlim:
228
+ Optional Argument.
229
+ Specifies the range for xtick values.
230
+ Types: tuple
231
+
232
+ xtick_format:
233
+ Optional Argument.
234
+ Specifies how to format tick values for x-axis.
235
+ Types: str
236
+
237
+ ylabel:
238
+ Optional Argument.
239
+ Specifies the label for y-axis.
240
+ Notes:
241
+ * When set to empty string, label is not displayed for y-axis.
242
+ * When set to None, name of the y-axis column(s) is displayed as
243
+ label.
244
+ Types: str
245
+
246
+ ylim:
247
+ Optional Argument.
248
+ Specifies the range for ytick values.
249
+ Types: tuple
250
+
251
+ ytick_format:
252
+ Optional Argument.
253
+ Specifies how to format tick values for y-axis.
254
+ Types: str
255
+
256
+ vmin:
257
+ Optional Argument.
258
+ Specifies the lower range of the color map. By default, the range
259
+ is derived from data and color codes are assigned accordingly.
260
+ Note:
261
+ "vmin" significant only for Mesh and Geometry Plot.
262
+ Types: int OR float
263
+
264
+ vmax:
265
+ Optional Argument.
266
+ Specifies the upper range of the color map. By default, the range is
267
+ derived from data and color codes are assigned accordingly.
268
+ Note:
269
+ "vmax" significant only for Mesh and Geometry Plot.
270
+ For example:
271
+ Assuming user wants to use colormap 'matter' and derive the colors for
272
+ values which are in between 1 and 100.
273
+ Note:
274
+ Colormap 'matter' starts with Pale Yellow and ends with Violet.
275
+ * If "colormap_range" is not specified, then range is derived from
276
+ existing values. Thus, colors are represented as below in the whole range:
277
+ * 1 as Pale Yellow.
278
+ * 100 as Violet.
279
+ * If "colormap_range" is specified as -100 and 100, the value 1 is at middle of
280
+ the specified range. Thus, colors are represented as below in the whole range:
281
+ * -100 as Pale Yellow.
282
+ * 1 as Orange.
283
+ * 100 as Violet.
284
+ Types: int OR float
285
+
286
+ EXAMPLES:
287
+ # Example 1: Create an Axis with marker as 'Pentagon'.
288
+ >>> from teradataml import Axis
289
+ >>> ax = Axis(marker="p")
290
+
291
+ # Example 2: Create an Axis which does not have x-tick values
292
+ # and y-tick values but it should have grid.
293
+ # Note that the grid lines should be in the format of '-.'
294
+ >>> from teradataml import Axis
295
+ >>> ax = Axis(xtick_format="", ytick_format="", grid_linestyle="-.")
296
+
297
+ # Example 3: Create an Axis which should plot only for the values
298
+ # between -10 to 100 on x-axis.
299
+ >>> from teradataml import Axis
300
+ >>> ax = Axis(xlim=(-10, 100))
301
+
302
+ # Example 4: Create an Axis which should display legend at upper left
303
+ # corner and it should disable both x and y axis labels.
304
+ >>> from teradataml import Axis
305
+ >>> ax = Axis(legend_style="upper left", xlabel="", ylabel="")
306
+
307
+ # Example 5: Create an Axis to format the y-axis tick values to
308
+ # display up to two decimal points. Also, use the color
309
+ # 'dark green' for plotting.
310
+ # Note: Consider y-axis data has 5 digit floating numbers.
311
+ >>> from teradataml import Axis
312
+ >>> ax = Axis(ytick_format="99999.99", color='dark green')
313
+
314
+ RAISES:
315
+ TeradataMlException
316
+ """
317
+ self.__params = {**kwargs}
318
+
319
+ self.__x_axis_data = []
320
+ self.__y_axis_data = []
321
+ self.__scale_data = []
322
+
323
+ arg_info_matrix = []
324
+
325
+ # Retrieve arg value from corresponding property.
326
+ arg_info_matrix.append((["ignore_nulls", self.ignore_nulls, True, bool]))
327
+
328
+ arg_info_matrix.append((["cmap", self.cmap, True, (str), True]))
329
+
330
+ arg_info_matrix.append((["grid_color", self.grid_color, True, (str), True]))
331
+
332
+ arg_info_matrix.append((["grid_format", self.grid_format, True, (str), True]))
333
+
334
+ arg_info_matrix.append((["grid_linestyle", self.grid_linestyle, True, (str),
335
+ True, ['-', '--', '-.']]))
336
+
337
+ arg_info_matrix.append((["grid_linewidth", self.grid_linewidth, True, (int, float)]))
338
+
339
+ arg_info_matrix.append((["legend", self.legend, True, (str, list), True]))
340
+
341
+ permitted_legend_style = ['upper right', 'upper left', 'lower right',
342
+ 'lower left', 'right', 'center left',
343
+ 'center right', 'lower center',
344
+ 'upper center', 'center']
345
+ arg_info_matrix.append((["legend_style", self.legend_style, True,
346
+ (str), True, permitted_legend_style]))
347
+
348
+ arg_info_matrix.append((["linestyle", self.linestyle, True, (str, list),
349
+ True, ['-', '--', '-.', ':']]))
350
+
351
+ arg_info_matrix.append((["linewidth", self.linewidth, True, (int, float, list), True]))
352
+
353
+ arg_info_matrix.append((["marker", self.marker, True, (str, list), True]))
354
+
355
+ arg_info_matrix.append((["markersize", self.markersize, True, (int, float, list)]))
356
+
357
+ arg_info_matrix.append((["position", self.position, True, (tuple)]))
358
+
359
+ arg_info_matrix.append((["span", self.span, True, (tuple)]))
360
+
361
+ arg_info_matrix.append((["reverse_xaxis", self.reverse_xaxis, True, (bool)]))
362
+
363
+ arg_info_matrix.append((["reverse_yaxis", self.reverse_yaxis, True, (bool)]))
364
+
365
+ series_identifier = kwargs.get("series_identifier")
366
+ arg_info_matrix.append((["series_identifier", series_identifier, True,
367
+ (ColumnExpression)]))
368
+
369
+ arg_info_matrix.append((["color", self.color, True, (str, list), True]))
370
+
371
+ arg_info_matrix.append((["title", self.title, True, (str), True]))
372
+
373
+ arg_info_matrix.append((["xlabel", self.xlabel, True, (str), False]))
374
+
375
+ arg_info_matrix.append((["ylabel", self.ylabel, True, (str), False]))
376
+
377
+ arg_info_matrix.append((["xlim", self.xlim, True, (tuple)]))
378
+
379
+ arg_info_matrix.append((["ylim", self.ylim, True, (tuple)]))
380
+
381
+ arg_info_matrix.append((["xtick_format", self.xtick_format, True, (str)]))
382
+
383
+ arg_info_matrix.append((["ytick_format", self.ytick_format, True, (str)]))
384
+
385
+ arg_info_matrix.append((["vmin", self.vmin, True, (int, float)]))
386
+ arg_info_matrix.append((["vmax", self.vmax, True, (int, float)]))
387
+
388
+ # 'vmin' and 'vmax' is applicable only for Mesh and Geometry plot.
389
+ if self.kind.lower() not in ['geometry', 'mesh']:
390
+ if self.vmin is not None:
391
+ _Validators._validate_dependent_argument("vmin", self.vmin,
392
+ "kind", None, "'geometry' or 'mesh'")
393
+ if self.vmax is not None:
394
+ _Validators._validate_dependent_argument("vmax", self.vmax,
395
+ "kind", None, "'geometry' or 'mesh'")
396
+
397
+ # Argument validations.
398
+ # Skip empty check for 'xlabel', 'ylabel'.
399
+ _Validators._validate_function_arguments(
400
+ arg_info_matrix,
401
+ skip_empty_check={"xlabel": [''], "ylabel": ['']}
402
+ )
403
+
404
+ # Argument range check.
405
+ _Validators._validate_argument_range(self.grid_linewidth, "grid_linewidth",
406
+ 0.5, lbound_inclusive=True,
407
+ ubound=10, ubound_inclusive=True)
408
+ # Convert linewidth to list
409
+ linewidth = UtilFuncs._as_list(self.linewidth)
410
+ [_Validators._validate_argument_range(lw, "linewidth",
411
+ 0.5, lbound_inclusive=True,
412
+ ubound=10, ubound_inclusive=True)
413
+ for lw in linewidth]
414
+
415
+ # Convert markersize to list
416
+ markersize = UtilFuncs._as_list(self.markersize)
417
+ [_Validators._validate_argument_range(ms, "markersize",
418
+ 1, lbound_inclusive=True,
419
+ ubound=20, ubound_inclusive=True)
420
+ for ms in markersize]
421
+
422
+ self.__series_options = kwargs.get("series_options") # Specifies SQL element - ID_SEQUENCE
423
+
424
+ # Get the series identifier. If it is a column expression, get the column name from it.
425
+ self.series_identifier = kwargs.get("series_identifier")
426
+ if not isinstance(self.series_identifier, str) and self.series_identifier is not None:
427
+ self.series_identifier = self.series_identifier.name
428
+
429
+ def __eq__(self, other):
430
+ """
431
+ DESCRIPTION:
432
+ Magic method to check if two Axis objects are equal or not.
433
+ If all the associated parameters are same, then two Axis objects
434
+ are equal. Else, they are not equal.
435
+
436
+ PARAMETERS:
437
+ other:
438
+ Required Argument.
439
+ Specifies the object of Axis.
440
+ Types: Axis
441
+
442
+ RETURNS:
443
+ bool
444
+
445
+ RAISES:
446
+ None.
447
+
448
+ EXAMPLES:
449
+ >>> Axis() == Axis()
450
+ """
451
+ attrs = ["cmap", "color", "grid_color",
452
+ "grid_format", "grid_linestyle", "grid_linewidth",
453
+ "legend", "legend_style", "linestyle",
454
+ "linewidth", "marker", "markersize", "position",
455
+ "span", "reverse_xaxis", "reverse_yaxis", "series_identifier",
456
+ "title", "xlabel", "xlim", "xtick_format", "ylabel", "ylim", "ytick_format",
457
+ "vmin", "vmax", "ignore_nulls", "kind"]
458
+
459
+ for attr in attrs:
460
+ if getattr(self, attr) == getattr(other, attr):
461
+ continue
462
+ else:
463
+ return False
464
+
465
+ return True
466
+
467
+ def __get_param(self, param):
468
+ """
469
+ DESCRIPTION:
470
+ Internal function to get the parameter from private variable __params.
471
+
472
+ PARAMETERS:
473
+ param:
474
+ Required Argument.
475
+ Specifies the name of the parameter.
476
+ Types: str
477
+
478
+ RETURNS:
479
+ str OR int OR float OR list
480
+
481
+ RAISES:
482
+ None.
483
+
484
+ EXAMPLES:
485
+ self.__get_param("xlim")
486
+ """
487
+ return self.__params.get(param)
488
+
489
+ def __set_param(self, param_name, param_value):
490
+ """
491
+ DESCRIPTION:
492
+ Internal function to set the parameter.
493
+
494
+ PARAMETERS:
495
+ param_name:
496
+ Required Argument.
497
+ Specifies the name of the parameter.
498
+ Types: str
499
+
500
+ param_value:
501
+ Required Argument.
502
+ Specifies the value for the parameter mentioned in "param_name".
503
+ Types: str OR int OR float OR list
504
+
505
+ RETURNS:
506
+ bool
507
+
508
+ RAISES:
509
+ None.
510
+
511
+ EXAMPLES:
512
+ self.__set_param("xlim", (1, 100))
513
+ """
514
+ self.__params[param_name] = param_value
515
+ return True
516
+
517
+ @property
518
+ def ignore_nulls(self):
519
+ """ Getter for argument "ignore_nulls". """
520
+ return self.__get_param("ignore_nulls")
521
+
522
+ @ignore_nulls.setter
523
+ def ignore_nulls(self, value):
524
+ """ Setter for argument "ignore_nulls". """
525
+ return self.__set_param("ignore_nulls", value)
526
+
527
+ @property
528
+ def cmap(self):
529
+ """ Getter for argument "cmap". """
530
+ return self.__get_param("cmap")
531
+
532
+ @cmap.setter
533
+ def cmap(self, value):
534
+ """ Setter for argument "cmap". """
535
+ return self.__set_param("cmap", value)
536
+
537
+ @property
538
+ def vmin(self):
539
+ """ Getter for argument "vmin". """
540
+ return self.__get_param("vmin")
541
+
542
+ @vmin.setter
543
+ def vmin(self, value):
544
+ """ Setter for argument "vmin". """
545
+ return self.__set_param("vmin", value)
546
+
547
+ @property
548
+ def vmax(self):
549
+ """ Getter for argument "vmax". """
550
+ return self.__get_param("vmax")
551
+
552
+ @vmax.setter
553
+ def vmax(self, value):
554
+ """ Setter for argument "vmax". """
555
+ return self.__set_param("vmax", value)
556
+
557
+ @property
558
+ def grid_color(self):
559
+ """ Getter for argument "grid_color". """
560
+ return self.__get_param("grid_color")
561
+
562
+ @grid_color.setter
563
+ def grid_color(self, value):
564
+ """ Setter for argument "grid_color". """
565
+ return self.__set_param("grid_color", value)
566
+
567
+ @property
568
+ def grid_format(self):
569
+ """ Getter for argument "grid_format". """
570
+ return self.__get_param("grid_format")
571
+
572
+ @grid_format.setter
573
+ def grid_format(self, value):
574
+ """ Setter for argument "grid_format". """
575
+ return self.__set_param("grid_format", value)
576
+
577
+ @property
578
+ def grid_linestyle(self):
579
+ """ Getter for argument "grid_linestyle". """
580
+ return self.__get_param("grid_linestyle")
581
+
582
+ @grid_linestyle.setter
583
+ def grid_linestyle(self, value):
584
+ """ Setter for argument "grid_linestyle". """
585
+ return self.__set_param("grid_linestyle", value)
586
+
587
+ @property
588
+ def grid_linewidth(self):
589
+ """ Getter for argument "grid_linewidth". """
590
+ return self.__get_param("grid_linewidth")
591
+
592
+ @grid_linewidth.setter
593
+ def grid_linewidth(self, value):
594
+ """ Setter for argument "grid_linewidth". """
595
+ return self.__set_param("grid_linewidth", value)
596
+
597
+ @property
598
+ def legend(self):
599
+ """ Getter for argument "legend". """
600
+ return self.__get_param("legend")
601
+
602
+ @legend.setter
603
+ def legend(self, value):
604
+ """ Setter for argument "legend". """
605
+ return self.__set_param("legend", value)
606
+
607
+ @property
608
+ def legend_style(self):
609
+ """ Getter for argument "legend_style". """
610
+ return self.__get_param("legend_style")
611
+
612
+ @legend_style.setter
613
+ def legend_style(self, value):
614
+ """ Setter for argument "legend_style". """
615
+ return self.__set_param("legend_style", value)
616
+
617
+ @property
618
+ def linestyle(self):
619
+ """ Getter for argument "linestyle". """
620
+ return self.__get_param("linestyle")
621
+
622
+ @linestyle.setter
623
+ def linestyle(self, value):
624
+ """ Setter for argument "linestyle". """
625
+ return self.__set_param("linestyle", value)
626
+
627
+ @property
628
+ def linewidth(self):
629
+ """ Getter for argument "linewidth". """
630
+ return self.__get_param("linewidth")
631
+
632
+ @linewidth.setter
633
+ def linewidth(self, value):
634
+ """ Setter for argument "linewidth". """
635
+ return self.__set_param("linewidth", value)
636
+
637
+ @property
638
+ def marker(self):
639
+ """ Getter for argument "marker". """
640
+ return self.__get_param("marker")
641
+
642
+ @marker.setter
643
+ def marker(self, value):
644
+ """ Setter for argument "marker". """
645
+ return self.__set_param("marker", value)
646
+
647
+ @property
648
+ def markersize(self):
649
+ """ Getter for argument "markersize". """
650
+ return self.__get_param("markersize")
651
+
652
+ @markersize.setter
653
+ def markersize(self, value):
654
+ """ Setter for argument "markersize". """
655
+ return self.__set_param("markersize", value)
656
+
657
+ @property
658
+ def reverse_xaxis(self):
659
+ """ Getter for argument "reverse_xaxis". """
660
+ return self.__get_param("reverse_xaxis")
661
+
662
+ @reverse_xaxis.setter
663
+ def reverse_xaxis(self, value):
664
+ """ Setter for argument "reverse_xaxis". """
665
+ return self.__set_param("reverse_xaxis", value)
666
+
667
+ @property
668
+ def reverse_yaxis(self):
669
+ """ Getter for argument "reverse_yaxis". """
670
+ return self.__get_param("reverse_yaxis")
671
+
672
+ @reverse_yaxis.setter
673
+ def reverse_yaxis(self, value):
674
+ """ Setter for argument "reverse_yaxis". """
675
+ return self.__set_param("reverse_yaxis", value)
676
+
677
+ @property
678
+ def color(self):
679
+ """ Getter for argument "color". """
680
+ return self.__get_param("color")
681
+
682
+ @color.setter
683
+ def color(self, value):
684
+ """ Setter for argument "color". """
685
+ return self.__set_param("color", value)
686
+
687
+ @property
688
+ def xlabel(self):
689
+ """ Getter for argument "xlabel". """
690
+ return self.__get_param("xlabel")
691
+
692
+ @xlabel.setter
693
+ def xlabel(self, value):
694
+ """ Setter for argument "xlabel". """
695
+ return self.__set_param("xlabel", value)
696
+
697
+ @property
698
+ def xlim(self):
699
+ """ Getter for argument "xlim". """
700
+ return self.__get_param("xlim")
701
+
702
+ @xlim.setter
703
+ def xlim(self, value):
704
+ """ Setter for argument "xlim". """
705
+ return self.__set_param("xlim", value)
706
+
707
+ @property
708
+ def xtick_format(self):
709
+ """ Getter for argument "xtick_format". """
710
+ return self.__get_param("xtick_format")
711
+
712
+ @xtick_format.setter
713
+ def xtick_format(self, value):
714
+ """ Setter for argument "xtick_format". """
715
+ return self.__set_param("xtick_format", value)
716
+
717
+ @property
718
+ def ylabel(self):
719
+ """ Getter for argument "ylabel". """
720
+ return self.__get_param("ylabel")
721
+
722
+ @ylabel.setter
723
+ def ylabel(self, value):
724
+ """ Setter for argument "ylabel". """
725
+ return self.__set_param("ylabel", value)
726
+
727
+ @property
728
+ def ylim(self):
729
+ """ Getter for argument "ylim". """
730
+ return self.__get_param("ylim")
731
+
732
+ @ylim.setter
733
+ def ylim(self, value):
734
+ """ Setter for argument "ylim". """
735
+ return self.__set_param("ylim", value)
736
+
737
+ @property
738
+ def ytick_format(self):
739
+ """ Getter for argument "ytick_format". """
740
+ return self.__get_param("ytick_format")
741
+
742
+ @ytick_format.setter
743
+ def ytick_format(self, value):
744
+ """ Setter for argument "ytick_format". """
745
+ return self.__set_param("ytick_format", value)
746
+
747
+ @property
748
+ def title(self):
749
+ """ Getter for argument "title". """
750
+ return self.__get_param("title")
751
+
752
+ @title.setter
753
+ def title(self, value):
754
+ """ Setter for argument "title". """
755
+ return self.__set_param("title", value)
756
+
757
+ @property
758
+ def kind(self):
759
+ """ Getter for argument "kind". """
760
+ _k = self.__get_param("kind")
761
+ return _k if _k is not None else "line"
762
+
763
+ @kind.setter
764
+ def kind(self, value):
765
+ """ Setter for argument "kind". """
766
+ return self.__set_param("kind", value)
767
+
768
+ @property
769
+ def position(self):
770
+ """ Getter for argument "position". """
771
+ _p = self.__get_param("position")
772
+ return (1, 1) if _p is None else _p
773
+
774
+ @position.setter
775
+ def position(self, value):
776
+ """ Setter for argument "position". """
777
+ return self.__set_param("position", value)
778
+
779
+ @property
780
+ def span(self):
781
+ """ Getter for argument "span". """
782
+ _s = self.__get_param("span")
783
+ return (1, 1) if _s is None else _s
784
+
785
+ @span.setter
786
+ def span(self, value):
787
+ """ Setter for argument "span". """
788
+ return self.__set_param("span", value)
789
+
790
+ def set_params(self, **kwargs):
791
+ """
792
+ DESCRIPTION:
793
+ Function to set the parameters for Axis object.
794
+
795
+ PARAMETERS:
796
+ **kwargs:
797
+ Keyword arguments passed to the method, i.e., set_params.
798
+ All the arguments supported for Axis object are supported here.
799
+ Refer to 'Axis' documentation for arguments supported by it.
800
+
801
+ RETURNS:
802
+ True, if successful.
803
+
804
+ EXAMPLES:
805
+ # Create a default Axis object.
806
+ >>> from teradataml import Axis
807
+ >>> ax = Axis()
808
+
809
+ # Example 1: Disable x-axis label for an existing Axis object.
810
+ >>> ax.set_params(xlabel="")
811
+
812
+ # Example 2: Set the title for an existing Axis object. Also, disable
813
+ # x-tick values.
814
+ >>> ax.set_params(title="Title", xtick_values="")
815
+ """
816
+ self.__params.update(kwargs)
817
+ return True
818
+
819
+ def _set_data(self, x, y, scale=None):
820
+ """
821
+ DESCRIPTION:
822
+ Internal function to set the x-axis and y-axis data to Axis object.
823
+
824
+ PARAMETERS:
825
+ x:
826
+ Required Argument.
827
+ Specifies the x-axis data.
828
+ Types: teradataml DataFrame Column
829
+
830
+ y:
831
+ Required Argument.
832
+ Specifies the y-axis data.
833
+ Types: teradataml DataFrame Column OR list of teradataml DataFrame Column.
834
+
835
+ scale:
836
+ Optional Argument.
837
+ Specifies the scale data which is required for wiggle and mesh plots.
838
+ Note:
839
+ "scale" is significant for wiggle and mesh plots. Ignored for other
840
+ type of plots.
841
+ Types: teradataml DataFrame Column OR list of teradataml DataFrame Column.
842
+
843
+ EXAMPLES:
844
+ >>> ax = Axis()
845
+ >>> ax._set_data(df.col1, [df.col2, df.col3])
846
+ """
847
+ # Before setting the data, clear it first.
848
+ self.__clear_axis_data()
849
+
850
+ y = UtilFuncs._as_list(y)
851
+
852
+ # Make sure number of columns mentioned in x-axis is
853
+ # same as number of columns mentioned in y-axis.
854
+ x = UtilFuncs._as_list(x)
855
+ if len(x) != len(y):
856
+ x = x * len(y)
857
+
858
+ scale = UtilFuncs._as_list(scale)
859
+
860
+ self.__x_axis_data.extend(x)
861
+ self.__y_axis_data.extend(y)
862
+ self.__scale_data.extend(scale)
863
+
864
+ def __clear_axis_data(self):
865
+ """
866
+ DESCRIPTION:
867
+ Internal function to clear the axis data.
868
+
869
+ RETURNS:
870
+ bool
871
+
872
+ EXAMPLES:
873
+ >>> ax = Axis()
874
+ >>> ax._Axis__clear_axis_data()
875
+ """
876
+ self.__x_axis_data.clear()
877
+ self.__y_axis_data.clear()
878
+ self.__scale_data.clear()
879
+
880
+ return True
881
+
882
+ def _has_data(self):
883
+ """
884
+ DESCRIPTION:
885
+ Internal function to check whether axis is associated with data or not.
886
+
887
+ RETURNS:
888
+ bool
889
+
890
+ EXAMPLES:
891
+ >>> ax = Axis()
892
+ >>> ax._has_data()
893
+ """
894
+ return bool(self.__x_axis_data)
895
+
896
+ def __repr__(self):
897
+ """
898
+ DESCRIPTION:
899
+ String representation of Axis Object.
900
+
901
+ RETURNS:
902
+ str.
903
+
904
+ RAISES:
905
+ None.
906
+
907
+ EXAMPLES:
908
+ # Create an Axis Object.
909
+ >>> from teradataml import Axis
910
+ >>> axis = Axis()
911
+ >>> print(axis)
912
+ """
913
+ return "{}(position={}, span={})".format(self.__class__.__name__, self.position, self.span)
914
+
915
+ def _get_plot_data(self):
916
+ """
917
+ DESCRIPTION:
918
+ Internal function to get the plot data. The function, which is called from Plot object
919
+ gets all the corresponding information to generate the plot.
920
+
921
+ RETURNS:
922
+ tuple, with 3 elements.
923
+ * element 1 represents again a tuple - 2nd element represents a SELECT statement
924
+ and 1st element represents a string which is the alias table name of SELECT
925
+ statement. It is necessary to get the alias table name also as series spec
926
+ references alias table names.
927
+ * element 2 represents either a series spec or matrix spec in string format.
928
+ * element 3 represents a dictionary with all the parameters for Plot.
929
+
930
+ RAISES:
931
+ None.
932
+
933
+ EXAMPLES:
934
+ >>> from teradataml import Axis
935
+ >>> axis = Axis()
936
+ >>> axis._get_plot_data()
937
+ """
938
+
939
+ # TODO: Run only once and store this information. Also, df.concat is a costly operation.
940
+ # Will be implemented with ELE-5803.
941
+ _virtual_table, _spec = self.__get_matrix_spec() if self.kind in (MapType.MESH.value, MapType.WIGGLE.value) \
942
+ else self.__get_series_spec()
943
+
944
+ return (_virtual_table, _spec, self._get_params())
945
+
946
+ def __get_series_spec(self):
947
+ """
948
+ DESCRIPTION:
949
+ Internal function to generate TDSeries Spec.
950
+ * If user pass 'series_id' by using the argument "series_identifier", then consider 'series_id'
951
+ as "series_identifier", x-axis data for 'row_axis' and y-axis data for 'payload_field' in
952
+ TDSeries object. Both, 'row_index_style' and 'payload_content' can be derived
953
+ programatically using __get_index_style() and __get_payload_content() respectively.
954
+ * If user do not pass 'series_id', then the function constructs the series spec as below:
955
+ * walk through x-axis and y-axis data.
956
+ * Construct a new teradataml DataFrame by generating a new column for ID field
957
+ along with x and y axis columns.
958
+ * ID Column value can be either str or float or int. Since the column will be
959
+ used as legend if user do not specify the legend, make sure ID Column value
960
+ is Y-Axis column name. This makes a very good user experience in Composite plots.
961
+ * For geometry and corr plot, y axis can be a tuple. In such cases, make sure to generate
962
+ the ID Column Value with all the columns mentioned in tuple.
963
+ * Note that, if it is tuple, Columns mentioned in tuple can have same name. Make
964
+ sure to generate the ID Column value as a unique value.
965
+ * With the above information, i.e, ID Column, x-axis data and y-axis data, construct a
966
+ new teradataml DataFrame.
967
+ * Repeat the above process if user pass multiple ColumnExpression(s) for y-axis data and
968
+ concatenate the generated DataFrame with previously generated DataFrame vertically.
969
+
970
+ RAISES:
971
+ TeradatamlException - If all the ColumnExpression(s) mentioned in y-axis are of not same type.
972
+
973
+ RETURNS:
974
+ tuple
975
+
976
+ EXAMPLES:
977
+ >>> from teradataml import Axis
978
+ >>> Axis()._Axis__get_series_spec()
979
+ """
980
+ from teradataml.dataframe.dataframe import TDSeries
981
+
982
+ if self.series_identifier:
983
+ # Remove null values from DataFrame
984
+ if self.ignore_nulls:
985
+ _df = self.__x_axis_data[0]._parent_df
986
+ _subset = [column_name.name for column_name in self.__y_axis_data]
987
+ _subset.append(self.__x_axis_data[0].name)
988
+ _df = _df.dropna(how='any', subset=_subset)
989
+
990
+ # Execute the node and create the table in Vantage.
991
+ if self.__y_axis_data[0]._parent_df._table_name is None:
992
+ # Assuming all the columns are from same DataFrame.
993
+ self.__y_axis_data[0]._parent_df.materialize()
994
+
995
+ series = TDSeries(data=_df if self.ignore_nulls else self.__x_axis_data[0]._parent_df,
996
+ id=self.series_identifier,
997
+ row_index=self.__x_axis_data[0].name,
998
+ row_index_style=self.__get_index_style(self.__x_axis_data[0]),
999
+ payload_field=self.__y_axis_data[0].name,
1000
+ payload_content=self.__get_payload_content(self.__y_axis_data[0]))
1001
+ return "", series._get_sql_repr(True)
1002
+
1003
+ # Since user does not pass series identifier, convert the data in to TDSeries spec.
1004
+ _index = 1
1005
+ _previous_df = None
1006
+
1007
+ # Loop through every element and concatenate the dataframes vertically, i.e.,
1008
+ # using UNION ALL clause.
1009
+ for index, (_x, _y) in enumerate(zip(self.__x_axis_data, self.__y_axis_data)):
1010
+ _df = _y._parent_df if not isinstance(_y, tuple) else _y[0]._parent_df
1011
+ # For correlated and geometry graph, user can pass two params for PAYLOAD FIELD.
1012
+ if isinstance(_y, tuple):
1013
+ # Generate the id_column name programatically. This appears at legend
1014
+ # if legend is shown. So, build it meaningfully.
1015
+ _id_column = "{}_{}_{}".format(_y[0].compile(), _y[1].compile(), _index)
1016
+ columns = {"y_identifier":UtilFuncs._replace_special_chars(_id_column), "id":index, "x":_x, "y1":_y[0], "y2":_y[1]}
1017
+ payload_field = ["y1", "y2"]
1018
+ else:
1019
+ columns = {"y_identifier":UtilFuncs._replace_special_chars(_y.compile()), "id":index, "x":_x, "y":_y}
1020
+ payload_field = "y"
1021
+
1022
+ _df = _df.assign(**columns, drop_columns=True)
1023
+ # Concatenate with previous DataFrame.
1024
+ if _previous_df:
1025
+ # TODO: Note that concat is a very costly operation. Infact, it is very very slow.
1026
+ # Consider generating VIRTUAL tables or UNPIVOT.
1027
+ # Will be addressed with ELE-5808.
1028
+ _df = _previous_df.concat(_df)
1029
+
1030
+ _previous_df = _df
1031
+ # Flatten the DataFrame.
1032
+ _index = _index + 1
1033
+ # Remove null values from DataFrame
1034
+ if self.ignore_nulls:
1035
+ _df = _df.dropna()
1036
+ _df.materialize()
1037
+ series = TDSeries(data=_df,
1038
+ id="id",
1039
+ row_index="x",
1040
+ row_index_style=self.__get_index_style(_df.x),
1041
+ payload_field=payload_field,
1042
+ payload_content=self.__get_payload_content(self.__y_axis_data[0]))
1043
+
1044
+ # TODO: Should return a virtual table at first element if required.
1045
+ # Will be addressed with ELE-5808.
1046
+ return "", series._get_sql_repr(True)
1047
+
1048
+ def __get_matrix_spec(self):
1049
+ """
1050
+ DESCRIPTION:
1051
+ Internal function to generate TDMatrix Spec.
1052
+ * If user pass 'matrix_id' by using the argument "series_identifier", then consider 'matrix_id'
1053
+ as "series_identifier", x-axis data for 'row_axis' and y-axis data for 'column_axis' and
1054
+ scale data for 'payload_field' in TDMatrix object. Both, 'row_index_style' and 'payload_content'
1055
+ can be derived programatically using __get_index_style() and __get_payload_content()
1056
+ respectively.
1057
+ * If user do not pass 'matrix_id', then the function constructs the matrix spec as below:
1058
+ * walk through x-axis, y-axis and scale data.
1059
+ * Construct a new teradataml DataFrame by generating a new column for ID field
1060
+ * ID Column value can be either str or float or int. Since the column will be
1061
+ used as legend if user do not specify the legend, make sure ID Column value
1062
+ is Y-Axis column name. This makes a very good user experience in Composite plots.
1063
+ * With the above information, i.e, ID Column, x-axis data, y-axis data and scale data,
1064
+ construct a new teradataml DataFrame.
1065
+ * Repeat the above process if user pass multiple ColumnExpression(s) for y-axis data and
1066
+ concatenate the generated DataFrame with previously generated DataFrame vertically.
1067
+
1068
+ RAISES:
1069
+ TeradatamlException - If all the ColumnExpression(s) mentioned in y-axis are of not same type.
1070
+
1071
+ RETURNS:
1072
+ tuple
1073
+
1074
+ EXAMPLES:
1075
+ >>> from teradataml import Axis
1076
+ >>> Axis()._Axis__get_matrix_spec()
1077
+ """
1078
+ from teradataml.dataframe.dataframe import TDMatrix
1079
+
1080
+ if self.series_identifier:
1081
+ # Remove null values from DataFrame
1082
+ if self.ignore_nulls:
1083
+ _df = self.__x_axis_data[0]._parent_df
1084
+ _subset = [column_name.name for column_name in self.__y_axis_data]
1085
+ _subset.append(self.__x_axis_data[0].name)
1086
+ _subset.extend(column_name.name for column_name in self.__scale_data)
1087
+ _df = _df.dropna(how='any', subset=_subset)
1088
+
1089
+ # Execute the node and create the table/view in Vantage.
1090
+ if self.__y_axis_data[0]._parent_df._table_name is None:
1091
+ self.__y_axis_data[0]._parent_df.materialize()
1092
+
1093
+ matrix = TDMatrix(data=_df if self.ignore_nulls else self.__x_axis_data[0]._parent_df,
1094
+ id=self.series_identifier,
1095
+ row_index=self.__x_axis_data[0].name,
1096
+ row_index_style=self.__get_index_style(self.__x_axis_data[0]),
1097
+ column_index=self.__y_axis_data[0].name,
1098
+ column_index_style=self.__get_index_style(self.__y_axis_data[0]),
1099
+ payload_field=self.__scale_data[0].name,
1100
+ payload_content=self.__get_payload_content(self.__scale_data[0]))
1101
+ return "", matrix._get_sql_repr(True)
1102
+
1103
+ # Since user do not pass matrix identifier, convert the data in to TDMatrix spec.
1104
+ _previous_df = None
1105
+ for index, (_x, _y, _data) in enumerate(zip(self.__x_axis_data, self.__y_axis_data, self.__scale_data)):
1106
+ _df = _x._parent_df
1107
+ columns = {"y_identifier": UtilFuncs._replace_special_chars(_y.compile()), "id":index, "x": _x, "y": _y, "data": _data}
1108
+ _df = _df.assign(**columns, drop_columns=True)
1109
+ if _previous_df:
1110
+ # TODO: Note that concat is a very costly operation. Infact, it is very very slow.
1111
+ # Consider generating VIRTUAL tables or UNPIVOT.
1112
+ # Will be addressed with ELE-5808.
1113
+ _df = _previous_df.concat(_df)
1114
+
1115
+ _previous_df = _df
1116
+ # Remove null values from DataFrame
1117
+ if self.ignore_nulls:
1118
+ _df = _df.dropna()
1119
+ _df.materialize()
1120
+ matrix = TDMatrix(data=_df,
1121
+ id="id",
1122
+ row_index="x",
1123
+ row_index_style=self.__get_index_style(_df.x),
1124
+ column_index="y",
1125
+ column_index_style=self.__get_index_style(_df.y),
1126
+ payload_field="data",
1127
+ payload_content="REAL")
1128
+
1129
+ # TODO: Should return a virtual table at first element if required.
1130
+ # Will be addressed with ELE-5808.
1131
+ return "", matrix._get_sql_repr(True)
1132
+
1133
+ def __get_index_style(self, _x):
1134
+ """
1135
+ DESCRIPTION:
1136
+ Internal function to generate the value for argument "row_index_style"
1137
+ in TDSeries/TDMatrix objects.
1138
+
1139
+ PARAMETERS:
1140
+ _x:
1141
+ Required Argument.
1142
+ Specifies the ColumnExpression of x-axis data.
1143
+ Types: teradataml ColumnExpression.
1144
+
1145
+ RETURNS:
1146
+ str
1147
+
1148
+ EXAMPLES:
1149
+ >>> from teradataml import Axis
1150
+ >>> Axis()._Axis__get_index_style()
1151
+ """
1152
+ if UtilFuncs._teradata_type_to_python_type(_x.type) in ('int', 'float', 'str'):
1153
+ return "SEQUENCE"
1154
+ return "TIMECODE"
1155
+
1156
+ def __get_payload_content(self, _y):
1157
+ """
1158
+ DESCRIPTION:
1159
+ Internal function to generate the value for argument "payload_content"
1160
+ in TDSeries/TDMatrix objects.
1161
+
1162
+ PARAMETERS:
1163
+ _y:
1164
+ Required Argument.
1165
+ Specifies the ColumnExpression of y-axis data.
1166
+ Note that y-axis can be a list of ColumnExpression(s) also.
1167
+ Since all the Columns are concatenated vertically, every column
1168
+ type should be same. So, deriving "payload_content" value for 1st
1169
+ element is suffice.
1170
+ Types: teradataml ColumnExpression.
1171
+
1172
+ RETURNS:
1173
+ str
1174
+
1175
+ EXAMPLES:
1176
+ >>> from teradataml import Axis
1177
+ >>> Axis()._Axis__get_payload_content()
1178
+ """
1179
+ # If y-axis is a tuple, return MULTIVAR_ANYTYPE.
1180
+ if self.kind == MapType.GEOMETRY.value:
1181
+ return "MULTIVAR_ANYTYPE"
1182
+
1183
+ if self.kind == MapType.CORR.value:
1184
+ return "MULTIVAR_REAL" if isinstance(_y, tuple) else "REAL"
1185
+
1186
+ return "REAL"
1187
+
1188
+ @staticmethod
1189
+ def __get_color_code(color):
1190
+ """
1191
+ DESCRIPTION:
1192
+ Internal function to get the string for a color which is recognised by TD_PLOT.
1193
+
1194
+ RETURNS:
1195
+ str
1196
+
1197
+ EXAMPLES:
1198
+ >>> from teradataml import Axis
1199
+ >>> Axis()._Axis__get_color_code("orange")
1200
+ """
1201
+ default_colors = {'blue', 'orange', 'green', 'red', 'purple', 'brown', 'pink', 'gray', 'olive', 'cyan'}
1202
+ return "tab:{}".format(color) if color in default_colors else "xkcd:{}".format(color)
1203
+
1204
+ def __get_series_parameters(self):
1205
+ """
1206
+ DESCRIPTION:
1207
+ Internal function to generate the parameters for individual Series.
1208
+
1209
+ RETURNS:
1210
+ list
1211
+
1212
+ EXAMPLES:
1213
+ >>> from teradataml import Axis
1214
+ >>> Axis()._Axis__get_series_parameters()
1215
+ """
1216
+ _series_params = []
1217
+ for index in range(len(self.__y_axis_data)):
1218
+ _series_param = {"ID": index+1}
1219
+ color = self._get_series_param(self.color, index)
1220
+ if color:
1221
+ _series_param["COLOR"] = "'{}'".format(self.__get_color_code(color))
1222
+
1223
+ line_style = self._get_series_param(self.linestyle, index)
1224
+ self.__update_plot_params(_series_param, "LINESTYLE", line_style)
1225
+
1226
+ line_width = self._get_series_param(self.linewidth, index)
1227
+ self.__update_plot_params(_series_param, "LINEWIDTH", line_width)
1228
+
1229
+ marker = self._get_series_param(self.marker, index)
1230
+ self.__update_plot_params(_series_param, "MARKER", marker)
1231
+
1232
+ marker_size = self._get_series_param(self.markersize, index)
1233
+ self.__update_plot_params(_series_param, "MARKERSIZE", marker_size)
1234
+
1235
+ # If user pass legend name use it. Else, derive it from Y-Axis.
1236
+ # Legend is not applicable for wiggle and mesh plots.
1237
+ if self.kind not in (MapType.MESH.value, MapType.WIGGLE.value):
1238
+ legend_name = self._get_series_param(self.legend, index)
1239
+ if legend_name:
1240
+ _series_param["NAME"] = "'{}'".format(legend_name)
1241
+ else:
1242
+ columns = self.__y_axis_data[index] if isinstance(self.__y_axis_data[index], tuple) else \
1243
+ [self.__y_axis_data[index]]
1244
+ columns = [UtilFuncs._replace_special_chars(col.compile()) for col in columns]
1245
+ _series_param["NAME"] = "'{}'".format(" / ".join(columns))
1246
+
1247
+ _series_params.append(_series_param)
1248
+ return _series_params
1249
+
1250
+ def _get_params(self):
1251
+ """
1252
+ DESCRIPTION:
1253
+ Internal function to generate the parameters for the plot.
1254
+
1255
+ RETURNS:
1256
+ dict
1257
+
1258
+ EXAMPLES:
1259
+ >>> from teradataml import Axis
1260
+ >>> Axis()._Axis_get_params()
1261
+ """
1262
+ func_params = {"CELL": (self.position[1], self.position[0]),
1263
+ "SPAN": (self.span[1], self.span[0]),
1264
+ "TYPE": "'{}'".format(self.kind),
1265
+ "XLABEL": "'{}'".format(self.get_xaxis_label()),
1266
+ "YLABEL": "'{}'".format(self.get_yaxis_label()),
1267
+ "SERIES": self.__get_series_parameters()
1268
+ }
1269
+
1270
+ self.__update_plot_params(func_params, "TITLE", self.title)
1271
+ self.__update_plot_params(func_params, "XFORMAT", self.xtick_format)
1272
+ self.__update_plot_params(func_params, "YFORMAT", self.ytick_format)
1273
+ self.__update_plot_params(func_params, "XRANGE", self.xlim)
1274
+ self.__update_plot_params(func_params, "YRANGE", self.ylim)
1275
+
1276
+ if self.reverse_xaxis is True:
1277
+ func_params["FLIPX"] = 1
1278
+
1279
+ if self.reverse_yaxis is True:
1280
+ func_params["FLIPY"] = 1
1281
+
1282
+ # For subplot or multiple series, make sure to populate legend.
1283
+ # For mainplot, leave it to user's choice.
1284
+ if self._is_sub_plot() or self.series_identifier or (len(self.__y_axis_data) > 1) and \
1285
+ self.kind not in (MapType.MESH.value, MapType.WIGGLE.value):
1286
+ func_params["LEGEND"] = "'{}'".format("best" if not self.legend_style else self.legend_style)
1287
+ else:
1288
+ self.__update_plot_params(func_params, "LEGEND", self.legend_style)
1289
+
1290
+ # Populate GRID parameters.
1291
+ if self.grid_format or self.grid_color or self.grid_linestyle or self.grid_linewidth:
1292
+ _grid_params = {}
1293
+ self.__update_plot_params(_grid_params, "COLOR", self.__get_color_code(self.grid_color))
1294
+ self.__update_plot_params(_grid_params, "FORMAT", self.grid_format)
1295
+ self.__update_plot_params(_grid_params, "LINESTYLE", self.grid_linestyle)
1296
+ self.__update_plot_params(_grid_params, "LINEWIDTH", self.grid_linewidth)
1297
+ func_params["GRID"] = _grid_params
1298
+
1299
+ # Populate color map parameters.
1300
+ if self.cmap or self.vmin:
1301
+ # TODO: User should control the COLORBAR. Expose a parameter to user.
1302
+ _color_map_params = {"COLORBAR": 1}
1303
+ self.__update_plot_params(_color_map_params, "RANGE", None if self.vmin is None else (self.vmin, self.vmax))
1304
+ self.__update_plot_params(_color_map_params, "NAME", self.cmap)
1305
+ func_params["COLORMAP"] = _color_map_params
1306
+
1307
+ return func_params
1308
+
1309
+ @staticmethod
1310
+ def __update_plot_params(func_params, plot_param, value):
1311
+ """
1312
+ DESCRIPTION:
1313
+ Internal function to update the Plot parameter.
1314
+ The function check whether "value" is None or not. If None,
1315
+ no action from this function on "func_params". Else, "func_params"
1316
+ is updated with "plot_param".
1317
+
1318
+ EXAMPLES:
1319
+ >>> from teradataml import Axis
1320
+ >>> Axis()._Axis__update_plot_params({}, "a", "b")
1321
+ """
1322
+ if value is not None:
1323
+ func_params[plot_param] = "'{}'".format(value) if isinstance(value, str) else value
1324
+
1325
+ @staticmethod
1326
+ def _get_series_param(param, index):
1327
+ """
1328
+ DESCRIPTION:
1329
+ Internal function to get the series parameter.
1330
+ User can pass a list of values or a single value for series parameter's.
1331
+ The function get's the corresponding element based on the index. If
1332
+ element is not found, the function returns a None.
1333
+
1334
+ EXAMPLES:
1335
+ >>> from teradataml import Axis
1336
+ >>> Axis()._Axis_get_series_param(["a"], 1)
1337
+ """
1338
+ try:
1339
+ return UtilFuncs._as_list(param)[index]
1340
+ except IndexError:
1341
+ return None
1342
+
1343
+ def get_xaxis_label(self):
1344
+ """
1345
+ DESCRIPTION:
1346
+ The function generates the x-axis label based on user input. If user specifies x-axis
1347
+ label, the function returns the same. Otherwise, the function generates the x-axis
1348
+ label from x-axis Column Name.
1349
+
1350
+ RETURNS:
1351
+ str
1352
+
1353
+ EXAMPLES:
1354
+ >>> from teradataml import Axis
1355
+ >>> Axis().get_xaxis_label()
1356
+ """
1357
+ return self.xlabel if self.xlabel is not None else self.__get_label([self.__x_axis_data[0]])
1358
+
1359
+ def get_yaxis_label(self):
1360
+ """
1361
+ DESCRIPTION:
1362
+ The function generates the y-axis label based on user input. If user specifies y-axis
1363
+ label, the function returns the same. Otherwise, the function generates the y-axis
1364
+ label from y-axis Column Name.
1365
+
1366
+ RETURNS:
1367
+ str
1368
+
1369
+ EXAMPLES:
1370
+ >>> from teradataml import Axis
1371
+ >>> Axis().get_yaxis_label()
1372
+ """
1373
+ return self.ylabel if self.ylabel is not None else self.__get_label(self.__y_axis_data)
1374
+
1375
+ @staticmethod
1376
+ def __get_label(data):
1377
+ """
1378
+ DESCRIPTION:
1379
+ Internal function to generate the label.
1380
+
1381
+ RETURNS:
1382
+ str
1383
+
1384
+ EXAMPLES:
1385
+ >>> from teradataml import Axis
1386
+ >>> Axis()._Axis__get_label()
1387
+ """
1388
+ _rpl_spcl_chars = UtilFuncs._replace_special_chars
1389
+ # For correlation graph and GeoSpatial, user can pass a tuple of columns. Basically,
1390
+ # the SERIES_SPEC accepts 2 values for FIELD column.
1391
+ if isinstance(data[0], tuple):
1392
+ # If it is a tuple, it has only two elements, both represents DataFrame columns.
1393
+ # Generate the label based on two column names.
1394
+ return " / ".join(
1395
+ ("{} - {}".format(_rpl_spcl_chars(c[0].compile()), _rpl_spcl_chars(c[1].compile())) for c in data))
1396
+
1397
+ return " / ".join((_rpl_spcl_chars(c_name.compile()) for c_name in data))
1398
+
1399
+ def _is_sub_plot(self):
1400
+ """
1401
+ DESCRIPTION:
1402
+ Internal function to check if the Axis is for subplot or not.
1403
+
1404
+ RETURNS:
1405
+ bool
1406
+
1407
+ EXAMPLES:
1408
+ >>> from teradataml import Axis
1409
+ >>> Axis()._is_sub_plot()
1410
+ """
1411
+ return False
1412
+
1413
+
1414
+ class AxesSubplot(Axis):
1415
+ def _is_sub_plot(self):
1416
+ """
1417
+ DESCRIPTION:
1418
+ Internal function to check if the Axis is for subplot or not.
1419
+
1420
+ RETURNS:
1421
+ bool
1422
+
1423
+ EXAMPLES:
1424
+ >>> from teradataml import Axis
1425
+ >>> Axis()._is_sub_plot()
1426
+ """
1427
+ return True