teradataml 20.0.0.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1208) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +2762 -0
  4. teradataml/__init__.py +78 -0
  5. teradataml/_version.py +11 -0
  6. teradataml/analytics/Transformations.py +2996 -0
  7. teradataml/analytics/__init__.py +82 -0
  8. teradataml/analytics/analytic_function_executor.py +2416 -0
  9. teradataml/analytics/analytic_query_generator.py +1050 -0
  10. teradataml/analytics/byom/H2OPredict.py +514 -0
  11. teradataml/analytics/byom/PMMLPredict.py +437 -0
  12. teradataml/analytics/byom/__init__.py +16 -0
  13. teradataml/analytics/json_parser/__init__.py +133 -0
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1805 -0
  15. teradataml/analytics/json_parser/json_store.py +191 -0
  16. teradataml/analytics/json_parser/metadata.py +1666 -0
  17. teradataml/analytics/json_parser/utils.py +805 -0
  18. teradataml/analytics/meta_class.py +236 -0
  19. teradataml/analytics/sqle/DecisionTreePredict.py +456 -0
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +420 -0
  21. teradataml/analytics/sqle/__init__.py +128 -0
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -0
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -0
  24. teradataml/analytics/table_operator/__init__.py +11 -0
  25. teradataml/analytics/uaf/__init__.py +82 -0
  26. teradataml/analytics/utils.py +828 -0
  27. teradataml/analytics/valib.py +1617 -0
  28. teradataml/automl/__init__.py +5835 -0
  29. teradataml/automl/autodataprep/__init__.py +493 -0
  30. teradataml/automl/custom_json_utils.py +1625 -0
  31. teradataml/automl/data_preparation.py +1384 -0
  32. teradataml/automl/data_transformation.py +1254 -0
  33. teradataml/automl/feature_engineering.py +2273 -0
  34. teradataml/automl/feature_exploration.py +1873 -0
  35. teradataml/automl/model_evaluation.py +488 -0
  36. teradataml/automl/model_training.py +1407 -0
  37. teradataml/catalog/__init__.py +2 -0
  38. teradataml/catalog/byom.py +1759 -0
  39. teradataml/catalog/function_argument_mapper.py +859 -0
  40. teradataml/catalog/model_cataloging_utils.py +491 -0
  41. teradataml/clients/__init__.py +0 -0
  42. teradataml/clients/auth_client.py +137 -0
  43. teradataml/clients/keycloak_client.py +165 -0
  44. teradataml/clients/pkce_client.py +481 -0
  45. teradataml/common/__init__.py +1 -0
  46. teradataml/common/aed_utils.py +2078 -0
  47. teradataml/common/bulk_exposed_utils.py +113 -0
  48. teradataml/common/constants.py +1669 -0
  49. teradataml/common/deprecations.py +166 -0
  50. teradataml/common/exceptions.py +147 -0
  51. teradataml/common/formula.py +743 -0
  52. teradataml/common/garbagecollector.py +666 -0
  53. teradataml/common/logger.py +1261 -0
  54. teradataml/common/messagecodes.py +518 -0
  55. teradataml/common/messages.py +262 -0
  56. teradataml/common/pylogger.py +67 -0
  57. teradataml/common/sqlbundle.py +764 -0
  58. teradataml/common/td_coltype_code_to_tdtype.py +48 -0
  59. teradataml/common/utils.py +3166 -0
  60. teradataml/common/warnings.py +36 -0
  61. teradataml/common/wrapper_utils.py +625 -0
  62. teradataml/config/__init__.py +0 -0
  63. teradataml/config/dummy_file1.cfg +5 -0
  64. teradataml/config/dummy_file2.cfg +3 -0
  65. teradataml/config/sqlengine_alias_definitions_v1.0 +14 -0
  66. teradataml/config/sqlengine_alias_definitions_v1.1 +20 -0
  67. teradataml/config/sqlengine_alias_definitions_v1.3 +19 -0
  68. teradataml/context/__init__.py +0 -0
  69. teradataml/context/aed_context.py +223 -0
  70. teradataml/context/context.py +1462 -0
  71. teradataml/data/A_loan.csv +19 -0
  72. teradataml/data/BINARY_REALS_LEFT.csv +11 -0
  73. teradataml/data/BINARY_REALS_RIGHT.csv +11 -0
  74. teradataml/data/B_loan.csv +49 -0
  75. teradataml/data/BuoyData2.csv +17 -0
  76. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -0
  77. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -0
  78. teradataml/data/Convolve2RealsLeft.csv +5 -0
  79. teradataml/data/Convolve2RealsRight.csv +5 -0
  80. teradataml/data/Convolve2ValidLeft.csv +11 -0
  81. teradataml/data/Convolve2ValidRight.csv +11 -0
  82. teradataml/data/DFFTConv_Real_8_8.csv +65 -0
  83. teradataml/data/Employee.csv +5 -0
  84. teradataml/data/Employee_Address.csv +4 -0
  85. teradataml/data/Employee_roles.csv +5 -0
  86. teradataml/data/JulesBelvezeDummyData.csv +100 -0
  87. teradataml/data/Mall_customer_data.csv +201 -0
  88. teradataml/data/Orders1_12mf.csv +25 -0
  89. teradataml/data/Pi_loan.csv +7 -0
  90. teradataml/data/SMOOTHED_DATA.csv +7 -0
  91. teradataml/data/TestDFFT8.csv +9 -0
  92. teradataml/data/TestRiver.csv +109 -0
  93. teradataml/data/Traindata.csv +28 -0
  94. teradataml/data/__init__.py +0 -0
  95. teradataml/data/acf.csv +17 -0
  96. teradataml/data/adaboost_example.json +34 -0
  97. teradataml/data/adaboostpredict_example.json +24 -0
  98. teradataml/data/additional_table.csv +11 -0
  99. teradataml/data/admissions_test.csv +21 -0
  100. teradataml/data/admissions_train.csv +41 -0
  101. teradataml/data/admissions_train_nulls.csv +41 -0
  102. teradataml/data/advertising.csv +201 -0
  103. teradataml/data/ageandheight.csv +13 -0
  104. teradataml/data/ageandpressure.csv +31 -0
  105. teradataml/data/amazon_reviews_25.csv +26 -0
  106. teradataml/data/antiselect_example.json +36 -0
  107. teradataml/data/antiselect_input.csv +8 -0
  108. teradataml/data/antiselect_input_mixed_case.csv +8 -0
  109. teradataml/data/applicant_external.csv +7 -0
  110. teradataml/data/applicant_reference.csv +7 -0
  111. teradataml/data/apriori_example.json +22 -0
  112. teradataml/data/arima_example.json +9 -0
  113. teradataml/data/assortedtext_input.csv +8 -0
  114. teradataml/data/attribution_example.json +34 -0
  115. teradataml/data/attribution_sample_table.csv +27 -0
  116. teradataml/data/attribution_sample_table1.csv +6 -0
  117. teradataml/data/attribution_sample_table2.csv +11 -0
  118. teradataml/data/bank_churn.csv +10001 -0
  119. teradataml/data/bank_marketing.csv +11163 -0
  120. teradataml/data/bank_web_clicks1.csv +43 -0
  121. teradataml/data/bank_web_clicks2.csv +91 -0
  122. teradataml/data/bank_web_url.csv +85 -0
  123. teradataml/data/barrier.csv +2 -0
  124. teradataml/data/barrier_new.csv +3 -0
  125. teradataml/data/betweenness_example.json +14 -0
  126. teradataml/data/bike_sharing.csv +732 -0
  127. teradataml/data/bin_breaks.csv +8 -0
  128. teradataml/data/bin_fit_ip.csv +4 -0
  129. teradataml/data/binary_complex_left.csv +11 -0
  130. teradataml/data/binary_complex_right.csv +11 -0
  131. teradataml/data/binary_matrix_complex_left.csv +21 -0
  132. teradataml/data/binary_matrix_complex_right.csv +21 -0
  133. teradataml/data/binary_matrix_real_left.csv +21 -0
  134. teradataml/data/binary_matrix_real_right.csv +21 -0
  135. teradataml/data/blood2ageandweight.csv +26 -0
  136. teradataml/data/bmi.csv +501 -0
  137. teradataml/data/boston.csv +507 -0
  138. teradataml/data/boston2cols.csv +721 -0
  139. teradataml/data/breast_cancer.csv +570 -0
  140. teradataml/data/buoydata_mix.csv +11 -0
  141. teradataml/data/burst_data.csv +5 -0
  142. teradataml/data/burst_example.json +21 -0
  143. teradataml/data/byom_example.json +34 -0
  144. teradataml/data/bytes_table.csv +4 -0
  145. teradataml/data/cal_housing_ex_raw.csv +70 -0
  146. teradataml/data/callers.csv +7 -0
  147. teradataml/data/calls.csv +10 -0
  148. teradataml/data/cars_hist.csv +33 -0
  149. teradataml/data/cat_table.csv +25 -0
  150. teradataml/data/ccm_example.json +32 -0
  151. teradataml/data/ccm_input.csv +91 -0
  152. teradataml/data/ccm_input2.csv +13 -0
  153. teradataml/data/ccmexample.csv +101 -0
  154. teradataml/data/ccmprepare_example.json +9 -0
  155. teradataml/data/ccmprepare_input.csv +91 -0
  156. teradataml/data/cfilter_example.json +12 -0
  157. teradataml/data/changepointdetection_example.json +18 -0
  158. teradataml/data/changepointdetectionrt_example.json +8 -0
  159. teradataml/data/chi_sq.csv +3 -0
  160. teradataml/data/churn_data.csv +14 -0
  161. teradataml/data/churn_emission.csv +35 -0
  162. teradataml/data/churn_initial.csv +3 -0
  163. teradataml/data/churn_state_transition.csv +5 -0
  164. teradataml/data/citedges_2.csv +745 -0
  165. teradataml/data/citvertices_2.csv +1210 -0
  166. teradataml/data/clicks2.csv +16 -0
  167. teradataml/data/clickstream.csv +13 -0
  168. teradataml/data/clickstream1.csv +11 -0
  169. teradataml/data/closeness_example.json +16 -0
  170. teradataml/data/complaints.csv +21 -0
  171. teradataml/data/complaints_mini.csv +3 -0
  172. teradataml/data/complaints_test_tokenized.csv +353 -0
  173. teradataml/data/complaints_testtoken.csv +224 -0
  174. teradataml/data/complaints_tokens_model.csv +348 -0
  175. teradataml/data/complaints_tokens_test.csv +353 -0
  176. teradataml/data/complaints_traintoken.csv +472 -0
  177. teradataml/data/computers_category.csv +1001 -0
  178. teradataml/data/computers_test1.csv +1252 -0
  179. teradataml/data/computers_train1.csv +5009 -0
  180. teradataml/data/computers_train1_clustered.csv +5009 -0
  181. teradataml/data/confusionmatrix_example.json +9 -0
  182. teradataml/data/conversion_event_table.csv +3 -0
  183. teradataml/data/corr_input.csv +17 -0
  184. teradataml/data/correlation_example.json +11 -0
  185. teradataml/data/covid_confirm_sd.csv +83 -0
  186. teradataml/data/coxhazardratio_example.json +39 -0
  187. teradataml/data/coxph_example.json +15 -0
  188. teradataml/data/coxsurvival_example.json +28 -0
  189. teradataml/data/cpt.csv +41 -0
  190. teradataml/data/credit_ex_merged.csv +45 -0
  191. teradataml/data/creditcard_data.csv +1001 -0
  192. teradataml/data/customer_loyalty.csv +301 -0
  193. teradataml/data/customer_loyalty_newseq.csv +31 -0
  194. teradataml/data/customer_segmentation_test.csv +2628 -0
  195. teradataml/data/customer_segmentation_train.csv +8069 -0
  196. teradataml/data/dataframe_example.json +173 -0
  197. teradataml/data/decisionforest_example.json +37 -0
  198. teradataml/data/decisionforestpredict_example.json +38 -0
  199. teradataml/data/decisiontree_example.json +21 -0
  200. teradataml/data/decisiontreepredict_example.json +45 -0
  201. teradataml/data/dfft2_size4_real.csv +17 -0
  202. teradataml/data/dfft2_test_matrix16.csv +17 -0
  203. teradataml/data/dfft2conv_real_4_4.csv +65 -0
  204. teradataml/data/diabetes.csv +443 -0
  205. teradataml/data/diabetes_test.csv +89 -0
  206. teradataml/data/dict_table.csv +5 -0
  207. teradataml/data/docperterm_table.csv +4 -0
  208. teradataml/data/docs/__init__.py +1 -0
  209. teradataml/data/docs/byom/__init__.py +0 -0
  210. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -0
  211. teradataml/data/docs/byom/docs/DataikuPredict.py +217 -0
  212. teradataml/data/docs/byom/docs/H2OPredict.py +325 -0
  213. teradataml/data/docs/byom/docs/ONNXEmbeddings.py +242 -0
  214. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -0
  215. teradataml/data/docs/byom/docs/ONNXSeq2Seq.py +255 -0
  216. teradataml/data/docs/byom/docs/PMMLPredict.py +278 -0
  217. teradataml/data/docs/byom/docs/__init__.py +0 -0
  218. teradataml/data/docs/sqle/__init__.py +0 -0
  219. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +83 -0
  220. teradataml/data/docs/sqle/docs_17_10/Attribution.py +200 -0
  221. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +172 -0
  222. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -0
  223. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -0
  224. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -0
  225. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +86 -0
  226. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +96 -0
  227. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -0
  228. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +152 -0
  229. teradataml/data/docs/sqle/docs_17_10/FTest.py +161 -0
  230. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +83 -0
  231. teradataml/data/docs/sqle/docs_17_10/Fit.py +88 -0
  232. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -0
  233. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +85 -0
  234. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +82 -0
  235. teradataml/data/docs/sqle/docs_17_10/Histogram.py +165 -0
  236. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -0
  237. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +209 -0
  238. teradataml/data/docs/sqle/docs_17_10/NPath.py +266 -0
  239. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -0
  240. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -0
  241. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -0
  242. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +135 -0
  243. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -0
  244. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +166 -0
  245. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -0
  246. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -0
  247. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +112 -0
  248. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -0
  249. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +105 -0
  250. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +110 -0
  251. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +118 -0
  252. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -0
  253. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +153 -0
  254. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -0
  255. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -0
  256. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +114 -0
  257. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -0
  258. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -0
  259. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -0
  260. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +146 -0
  261. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -0
  262. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +142 -0
  263. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -0
  264. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -0
  265. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -0
  266. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -0
  267. teradataml/data/docs/sqle/docs_17_10/__init__.py +0 -0
  268. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -0
  269. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +83 -0
  270. teradataml/data/docs/sqle/docs_17_20/Apriori.py +138 -0
  271. teradataml/data/docs/sqle/docs_17_20/Attribution.py +201 -0
  272. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +172 -0
  273. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -0
  274. teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
  275. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -0
  276. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -0
  277. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -0
  278. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +86 -0
  279. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +246 -0
  280. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -0
  281. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +280 -0
  282. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -0
  283. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +136 -0
  284. teradataml/data/docs/sqle/docs_17_20/FTest.py +240 -0
  285. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +83 -0
  286. teradataml/data/docs/sqle/docs_17_20/Fit.py +88 -0
  287. teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -0
  288. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +415 -0
  289. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -0
  290. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -0
  291. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -0
  292. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +109 -0
  293. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +106 -0
  294. teradataml/data/docs/sqle/docs_17_20/Histogram.py +224 -0
  295. teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -0
  296. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -0
  297. teradataml/data/docs/sqle/docs_17_20/KNN.py +215 -0
  298. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -0
  299. teradataml/data/docs/sqle/docs_17_20/NERExtractor.py +121 -0
  300. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +209 -0
  301. teradataml/data/docs/sqle/docs_17_20/NPath.py +266 -0
  302. teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
  303. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -0
  304. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -0
  305. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +127 -0
  306. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +119 -0
  307. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -0
  308. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -0
  309. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -0
  310. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -0
  311. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +231 -0
  312. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -0
  313. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +220 -0
  314. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -0
  315. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +191 -0
  316. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -0
  317. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -0
  318. teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
  319. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +112 -0
  320. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -0
  321. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +105 -0
  322. teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -0
  323. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +155 -0
  324. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -0
  325. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -0
  326. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -0
  327. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +109 -0
  328. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +118 -0
  329. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -0
  330. teradataml/data/docs/sqle/docs_17_20/SMOTE.py +212 -0
  331. teradataml/data/docs/sqle/docs_17_20/SVM.py +414 -0
  332. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -0
  333. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +153 -0
  334. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -0
  335. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -0
  336. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -0
  337. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +114 -0
  338. teradataml/data/docs/sqle/docs_17_20/Shap.py +225 -0
  339. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +153 -0
  340. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -0
  341. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -0
  342. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -0
  343. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +146 -0
  344. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -0
  345. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -0
  346. teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
  347. teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
  348. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +267 -0
  349. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -0
  350. teradataml/data/docs/sqle/docs_17_20/TextMorph.py +119 -0
  351. teradataml/data/docs/sqle/docs_17_20/TextParser.py +224 -0
  352. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +160 -0
  353. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -0
  354. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +142 -0
  355. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -0
  356. teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
  357. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +169 -0
  358. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -0
  359. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -0
  360. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +237 -0
  361. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +362 -0
  362. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -0
  363. teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -0
  364. teradataml/data/docs/sqle/docs_17_20/__init__.py +0 -0
  365. teradataml/data/docs/tableoperator/__init__.py +0 -0
  366. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +430 -0
  367. teradataml/data/docs/tableoperator/docs_17_00/__init__.py +0 -0
  368. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +430 -0
  369. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +348 -0
  370. teradataml/data/docs/tableoperator/docs_17_05/__init__.py +0 -0
  371. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +429 -0
  372. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +348 -0
  373. teradataml/data/docs/tableoperator/docs_17_10/__init__.py +0 -0
  374. teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
  375. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +440 -0
  376. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +387 -0
  377. teradataml/data/docs/tableoperator/docs_17_20/__init__.py +0 -0
  378. teradataml/data/docs/uaf/__init__.py +0 -0
  379. teradataml/data/docs/uaf/docs_17_20/ACF.py +186 -0
  380. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +370 -0
  381. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +172 -0
  382. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +161 -0
  383. teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
  384. teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
  385. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +248 -0
  386. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -0
  387. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +178 -0
  388. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +175 -0
  389. teradataml/data/docs/uaf/docs_17_20/Convolve.py +230 -0
  390. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +218 -0
  391. teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
  392. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +185 -0
  393. teradataml/data/docs/uaf/docs_17_20/DFFT.py +204 -0
  394. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -0
  395. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +216 -0
  396. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +192 -0
  397. teradataml/data/docs/uaf/docs_17_20/DIFF.py +175 -0
  398. teradataml/data/docs/uaf/docs_17_20/DTW.py +180 -0
  399. teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
  400. teradataml/data/docs/uaf/docs_17_20/DWT2D.py +217 -0
  401. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +142 -0
  402. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +184 -0
  403. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +185 -0
  404. teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
  405. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -0
  406. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +206 -0
  407. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +143 -0
  408. teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +198 -0
  409. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +260 -0
  410. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +165 -0
  411. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +191 -0
  412. teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
  413. teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
  414. teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
  415. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +121 -0
  416. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +156 -0
  417. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +215 -0
  418. teradataml/data/docs/uaf/docs_17_20/MAMean.py +174 -0
  419. teradataml/data/docs/uaf/docs_17_20/MInfo.py +134 -0
  420. teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
  421. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +145 -0
  422. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +191 -0
  423. teradataml/data/docs/uaf/docs_17_20/PACF.py +157 -0
  424. teradataml/data/docs/uaf/docs_17_20/Portman.py +217 -0
  425. teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +203 -0
  426. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +155 -0
  427. teradataml/data/docs/uaf/docs_17_20/Resample.py +237 -0
  428. teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
  429. teradataml/data/docs/uaf/docs_17_20/SInfo.py +123 -0
  430. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +173 -0
  431. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +174 -0
  432. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +171 -0
  433. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +164 -0
  434. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +180 -0
  435. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +208 -0
  436. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +151 -0
  437. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -0
  438. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +202 -0
  439. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +171 -0
  440. teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
  441. teradataml/data/docs/uaf/docs_17_20/__init__.py +0 -0
  442. teradataml/data/dtw_example.json +18 -0
  443. teradataml/data/dtw_t1.csv +11 -0
  444. teradataml/data/dtw_t2.csv +4 -0
  445. teradataml/data/dwt2d_dataTable.csv +65 -0
  446. teradataml/data/dwt2d_example.json +16 -0
  447. teradataml/data/dwt_dataTable.csv +8 -0
  448. teradataml/data/dwt_example.json +15 -0
  449. teradataml/data/dwt_filterTable.csv +3 -0
  450. teradataml/data/dwt_filter_dim.csv +5 -0
  451. teradataml/data/emission.csv +9 -0
  452. teradataml/data/emp_table_by_dept.csv +19 -0
  453. teradataml/data/employee_info.csv +4 -0
  454. teradataml/data/employee_table.csv +6 -0
  455. teradataml/data/excluding_event_table.csv +2 -0
  456. teradataml/data/finance_data.csv +6 -0
  457. teradataml/data/finance_data2.csv +61 -0
  458. teradataml/data/finance_data3.csv +93 -0
  459. teradataml/data/finance_data4.csv +13 -0
  460. teradataml/data/fish.csv +160 -0
  461. teradataml/data/fm_blood2ageandweight.csv +26 -0
  462. teradataml/data/fmeasure_example.json +12 -0
  463. teradataml/data/followers_leaders.csv +10 -0
  464. teradataml/data/fpgrowth_example.json +12 -0
  465. teradataml/data/frequentpaths_example.json +29 -0
  466. teradataml/data/friends.csv +9 -0
  467. teradataml/data/fs_input.csv +33 -0
  468. teradataml/data/fs_input1.csv +33 -0
  469. teradataml/data/genData.csv +513 -0
  470. teradataml/data/geodataframe_example.json +40 -0
  471. teradataml/data/glass_types.csv +215 -0
  472. teradataml/data/glm_admissions_model.csv +12 -0
  473. teradataml/data/glm_example.json +56 -0
  474. teradataml/data/glml1l2_example.json +28 -0
  475. teradataml/data/glml1l2predict_example.json +54 -0
  476. teradataml/data/glmpredict_example.json +54 -0
  477. teradataml/data/gq_t1.csv +21 -0
  478. teradataml/data/grocery_transaction.csv +19 -0
  479. teradataml/data/hconvolve_complex_right.csv +5 -0
  480. teradataml/data/hconvolve_complex_rightmulti.csv +5 -0
  481. teradataml/data/histogram_example.json +12 -0
  482. teradataml/data/hmmdecoder_example.json +79 -0
  483. teradataml/data/hmmevaluator_example.json +25 -0
  484. teradataml/data/hmmsupervised_example.json +10 -0
  485. teradataml/data/hmmunsupervised_example.json +8 -0
  486. teradataml/data/hnsw_alter_data.csv +5 -0
  487. teradataml/data/hnsw_data.csv +10 -0
  488. teradataml/data/house_values.csv +12 -0
  489. teradataml/data/house_values2.csv +13 -0
  490. teradataml/data/housing_cat.csv +7 -0
  491. teradataml/data/housing_data.csv +9 -0
  492. teradataml/data/housing_test.csv +47 -0
  493. teradataml/data/housing_test_binary.csv +47 -0
  494. teradataml/data/housing_train.csv +493 -0
  495. teradataml/data/housing_train_attribute.csv +5 -0
  496. teradataml/data/housing_train_binary.csv +437 -0
  497. teradataml/data/housing_train_parameter.csv +2 -0
  498. teradataml/data/housing_train_response.csv +493 -0
  499. teradataml/data/housing_train_segment.csv +201 -0
  500. teradataml/data/ibm_stock.csv +370 -0
  501. teradataml/data/ibm_stock1.csv +370 -0
  502. teradataml/data/identitymatch_example.json +22 -0
  503. teradataml/data/idf_table.csv +4 -0
  504. teradataml/data/idwt2d_dataTable.csv +5 -0
  505. teradataml/data/idwt_dataTable.csv +8 -0
  506. teradataml/data/idwt_filterTable.csv +3 -0
  507. teradataml/data/impressions.csv +101 -0
  508. teradataml/data/inflation.csv +21 -0
  509. teradataml/data/initial.csv +3 -0
  510. teradataml/data/insect2Cols.csv +61 -0
  511. teradataml/data/insect_sprays.csv +13 -0
  512. teradataml/data/insurance.csv +1339 -0
  513. teradataml/data/interpolator_example.json +13 -0
  514. teradataml/data/interval_data.csv +5 -0
  515. teradataml/data/iris_altinput.csv +481 -0
  516. teradataml/data/iris_attribute_output.csv +8 -0
  517. teradataml/data/iris_attribute_test.csv +121 -0
  518. teradataml/data/iris_attribute_train.csv +481 -0
  519. teradataml/data/iris_category_expect_predict.csv +31 -0
  520. teradataml/data/iris_data.csv +151 -0
  521. teradataml/data/iris_input.csv +151 -0
  522. teradataml/data/iris_response_train.csv +121 -0
  523. teradataml/data/iris_test.csv +31 -0
  524. teradataml/data/iris_train.csv +121 -0
  525. teradataml/data/join_table1.csv +4 -0
  526. teradataml/data/join_table2.csv +4 -0
  527. teradataml/data/jsons/anly_function_name.json +7 -0
  528. teradataml/data/jsons/byom/ONNXSeq2Seq.json +287 -0
  529. teradataml/data/jsons/byom/dataikupredict.json +148 -0
  530. teradataml/data/jsons/byom/datarobotpredict.json +147 -0
  531. teradataml/data/jsons/byom/h2opredict.json +195 -0
  532. teradataml/data/jsons/byom/onnxembeddings.json +267 -0
  533. teradataml/data/jsons/byom/onnxpredict.json +187 -0
  534. teradataml/data/jsons/byom/pmmlpredict.json +147 -0
  535. teradataml/data/jsons/paired_functions.json +450 -0
  536. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -0
  537. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -0
  538. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -0
  539. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -0
  540. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -0
  541. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -0
  542. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -0
  543. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -0
  544. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -0
  545. teradataml/data/jsons/sqle/16.20/Pack.json +98 -0
  546. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -0
  547. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -0
  548. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -0
  549. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -0
  550. teradataml/data/jsons/sqle/16.20/nPath.json +269 -0
  551. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -0
  552. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -0
  553. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -0
  554. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -0
  555. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -0
  556. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -0
  557. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -0
  558. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -0
  559. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -0
  560. teradataml/data/jsons/sqle/17.00/Pack.json +98 -0
  561. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -0
  562. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -0
  563. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -0
  564. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -0
  565. teradataml/data/jsons/sqle/17.00/nPath.json +269 -0
  566. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -0
  567. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -0
  568. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -0
  569. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -0
  570. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -0
  571. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -0
  572. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -0
  573. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -0
  574. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -0
  575. teradataml/data/jsons/sqle/17.05/Pack.json +98 -0
  576. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -0
  577. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -0
  578. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -0
  579. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -0
  580. teradataml/data/jsons/sqle/17.05/nPath.json +269 -0
  581. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -0
  582. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -0
  583. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -0
  584. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +172 -0
  585. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -0
  586. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -0
  587. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -0
  588. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -0
  589. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -0
  590. teradataml/data/jsons/sqle/17.10/Pack.json +133 -0
  591. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -0
  592. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -0
  593. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -0
  594. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -0
  595. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -0
  596. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +54 -0
  597. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +68 -0
  598. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +54 -0
  599. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +69 -0
  600. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -0
  601. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +52 -0
  602. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -0
  603. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -0
  604. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +53 -0
  605. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +53 -0
  606. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +133 -0
  607. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -0
  608. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +183 -0
  609. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +66 -0
  610. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +197 -0
  611. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -0
  612. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -0
  613. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -0
  614. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +112 -0
  615. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -0
  616. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +128 -0
  617. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +71 -0
  618. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +157 -0
  619. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +71 -0
  620. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +148 -0
  621. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -0
  622. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -0
  623. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +119 -0
  624. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +53 -0
  625. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +53 -0
  626. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -0
  627. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -0
  628. teradataml/data/jsons/sqle/17.10/nPath.json +269 -0
  629. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -0
  630. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -0
  631. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -0
  632. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -0
  633. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -0
  634. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -0
  635. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -0
  636. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -0
  637. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -0
  638. teradataml/data/jsons/sqle/17.20/Pack.json +133 -0
  639. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -0
  640. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -0
  641. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -0
  642. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +149 -0
  643. teradataml/data/jsons/sqle/17.20/TD_Apriori.json +181 -0
  644. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -0
  645. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -0
  646. teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
  647. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -0
  648. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +68 -0
  649. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +146 -0
  650. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -0
  651. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -0
  652. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -0
  653. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +260 -0
  654. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -0
  655. teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -0
  656. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -0
  657. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -0
  658. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -0
  659. teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -0
  660. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -0
  661. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -0
  662. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -0
  663. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -0
  664. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -0
  665. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -0
  666. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -0
  667. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +232 -0
  668. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +87 -0
  669. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -0
  670. teradataml/data/jsons/sqle/17.20/TD_NERExtractor.json +145 -0
  671. teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
  672. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
  673. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -0
  674. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -0
  675. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -0
  676. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -0
  677. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +316 -0
  678. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +124 -0
  679. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -0
  680. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -0
  681. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -0
  682. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -0
  683. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -0
  684. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -0
  685. teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
  686. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -0
  687. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -0
  688. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -0
  689. teradataml/data/jsons/sqle/17.20/TD_ROC.json +179 -0
  690. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +179 -0
  691. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +74 -0
  692. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -0
  693. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +138 -0
  694. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -0
  695. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +128 -0
  696. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +71 -0
  697. teradataml/data/jsons/sqle/17.20/TD_SMOTE.json +267 -0
  698. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -0
  699. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -0
  700. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +310 -0
  701. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +120 -0
  702. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +194 -0
  703. teradataml/data/jsons/sqle/17.20/TD_Shap.json +221 -0
  704. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +143 -0
  705. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -0
  706. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -0
  707. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -0
  708. teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
  709. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -0
  710. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -0
  711. teradataml/data/jsons/sqle/17.20/TD_TextMorph.json +134 -0
  712. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +297 -0
  713. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -0
  714. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -0
  715. teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
  716. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +183 -0
  717. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +53 -0
  718. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +53 -0
  719. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -0
  720. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -0
  721. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -0
  722. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -0
  723. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -0
  724. teradataml/data/jsons/sqle/17.20/nPath.json +269 -0
  725. teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json +370 -0
  726. teradataml/data/jsons/sqle/20.00/AI_AskLLM.json +460 -0
  727. teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json +385 -0
  728. teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json +369 -0
  729. teradataml/data/jsons/sqle/20.00/AI_MaskPII.json +369 -0
  730. teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json +369 -0
  731. teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json +369 -0
  732. teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json +400 -0
  733. teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json +401 -0
  734. teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json +384 -0
  735. teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json +384 -0
  736. teradataml/data/jsons/sqle/20.00/TD_API_AzureML.json +151 -0
  737. teradataml/data/jsons/sqle/20.00/TD_API_Sagemaker.json +182 -0
  738. teradataml/data/jsons/sqle/20.00/TD_API_VertexAI.json +183 -0
  739. teradataml/data/jsons/sqle/20.00/TD_HNSW.json +296 -0
  740. teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json +206 -0
  741. teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json +32 -0
  742. teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
  743. teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
  744. teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
  745. teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
  746. teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
  747. teradataml/data/jsons/tableoperator/17.00/read_nos.json +198 -0
  748. teradataml/data/jsons/tableoperator/17.05/read_nos.json +198 -0
  749. teradataml/data/jsons/tableoperator/17.05/write_nos.json +195 -0
  750. teradataml/data/jsons/tableoperator/17.10/read_nos.json +184 -0
  751. teradataml/data/jsons/tableoperator/17.10/write_nos.json +195 -0
  752. teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
  753. teradataml/data/jsons/tableoperator/17.20/read_nos.json +183 -0
  754. teradataml/data/jsons/tableoperator/17.20/write_nos.json +224 -0
  755. teradataml/data/jsons/uaf/17.20/TD_ACF.json +132 -0
  756. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +396 -0
  757. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +77 -0
  758. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +153 -0
  759. teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
  760. teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
  761. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +107 -0
  762. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +106 -0
  763. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +89 -0
  764. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +104 -0
  765. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +78 -0
  766. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +66 -0
  767. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +87 -0
  768. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +134 -0
  769. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +144 -0
  770. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -0
  771. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +108 -0
  772. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +78 -0
  773. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +92 -0
  774. teradataml/data/jsons/uaf/17.20/TD_DTW.json +114 -0
  775. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +101 -0
  776. teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
  777. teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
  778. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +39 -0
  779. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +101 -0
  780. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +85 -0
  781. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +71 -0
  782. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +139 -0
  783. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECASTER.json +313 -0
  784. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +58 -0
  785. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +81 -0
  786. teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
  787. teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
  788. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +64 -0
  789. teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
  790. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +182 -0
  791. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +103 -0
  792. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +181 -0
  793. teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
  794. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +68 -0
  795. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +67 -0
  796. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +179 -0
  797. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -0
  798. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +119 -0
  799. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -0
  800. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +98 -0
  801. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +194 -0
  802. teradataml/data/jsons/uaf/17.20/TD_SAX.json +210 -0
  803. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +143 -0
  804. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +90 -0
  805. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +80 -0
  806. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +68 -0
  807. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -0
  808. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +58 -0
  809. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +163 -0
  810. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +101 -0
  811. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +112 -0
  812. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -0
  813. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +78 -0
  814. teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +410 -0
  815. teradataml/data/kmeans_example.json +23 -0
  816. teradataml/data/kmeans_table.csv +10 -0
  817. teradataml/data/kmeans_us_arrests_data.csv +51 -0
  818. teradataml/data/knn_example.json +19 -0
  819. teradataml/data/knnrecommender_example.json +7 -0
  820. teradataml/data/knnrecommenderpredict_example.json +12 -0
  821. teradataml/data/lar_example.json +17 -0
  822. teradataml/data/larpredict_example.json +30 -0
  823. teradataml/data/lc_new_predictors.csv +5 -0
  824. teradataml/data/lc_new_reference.csv +9 -0
  825. teradataml/data/lda_example.json +9 -0
  826. teradataml/data/ldainference_example.json +15 -0
  827. teradataml/data/ldatopicsummary_example.json +9 -0
  828. teradataml/data/levendist_input.csv +13 -0
  829. teradataml/data/levenshteindistance_example.json +10 -0
  830. teradataml/data/linreg_example.json +10 -0
  831. teradataml/data/load_example_data.py +350 -0
  832. teradataml/data/loan_prediction.csv +295 -0
  833. teradataml/data/lungcancer.csv +138 -0
  834. teradataml/data/mappingdata.csv +12 -0
  835. teradataml/data/medical_readings.csv +101 -0
  836. teradataml/data/milk_timeseries.csv +157 -0
  837. teradataml/data/min_max_titanic.csv +4 -0
  838. teradataml/data/minhash_example.json +6 -0
  839. teradataml/data/ml_ratings.csv +7547 -0
  840. teradataml/data/ml_ratings_10.csv +2445 -0
  841. teradataml/data/mobile_data.csv +13 -0
  842. teradataml/data/model1_table.csv +5 -0
  843. teradataml/data/model2_table.csv +5 -0
  844. teradataml/data/models/License_file.txt +1 -0
  845. teradataml/data/models/License_file_empty.txt +0 -0
  846. teradataml/data/models/dataiku_iris_data_ann_thin +0 -0
  847. teradataml/data/models/dr_iris_rf +0 -0
  848. teradataml/data/models/iris_db_dt_model_sklearn.onnx +0 -0
  849. teradataml/data/models/iris_db_dt_model_sklearn_floattensor.onnx +0 -0
  850. teradataml/data/models/iris_db_glm_model.pmml +57 -0
  851. teradataml/data/models/iris_db_xgb_model.pmml +4471 -0
  852. teradataml/data/models/iris_kmeans_model +0 -0
  853. teradataml/data/models/iris_mojo_glm_h2o_model +0 -0
  854. teradataml/data/models/iris_mojo_xgb_h2o_model +0 -0
  855. teradataml/data/modularity_example.json +12 -0
  856. teradataml/data/movavg_example.json +8 -0
  857. teradataml/data/mtx1.csv +7 -0
  858. teradataml/data/mtx2.csv +13 -0
  859. teradataml/data/multi_model_classification.csv +401 -0
  860. teradataml/data/multi_model_regression.csv +401 -0
  861. teradataml/data/mvdfft8.csv +9 -0
  862. teradataml/data/naivebayes_example.json +10 -0
  863. teradataml/data/naivebayespredict_example.json +19 -0
  864. teradataml/data/naivebayestextclassifier2_example.json +7 -0
  865. teradataml/data/naivebayestextclassifier_example.json +8 -0
  866. teradataml/data/naivebayestextclassifierpredict_example.json +32 -0
  867. teradataml/data/name_Find_configure.csv +10 -0
  868. teradataml/data/namedentityfinder_example.json +14 -0
  869. teradataml/data/namedentityfinderevaluator_example.json +10 -0
  870. teradataml/data/namedentityfindertrainer_example.json +6 -0
  871. teradataml/data/nb_iris_input_test.csv +31 -0
  872. teradataml/data/nb_iris_input_train.csv +121 -0
  873. teradataml/data/nbp_iris_model.csv +13 -0
  874. teradataml/data/ner_dict.csv +8 -0
  875. teradataml/data/ner_extractor_text.csv +2 -0
  876. teradataml/data/ner_input_eng.csv +7 -0
  877. teradataml/data/ner_rule.csv +5 -0
  878. teradataml/data/ner_sports_test2.csv +29 -0
  879. teradataml/data/ner_sports_train.csv +501 -0
  880. teradataml/data/nerevaluator_example.json +6 -0
  881. teradataml/data/nerextractor_example.json +18 -0
  882. teradataml/data/nermem_sports_test.csv +18 -0
  883. teradataml/data/nermem_sports_train.csv +51 -0
  884. teradataml/data/nertrainer_example.json +7 -0
  885. teradataml/data/ngrams_example.json +7 -0
  886. teradataml/data/notebooks/__init__.py +0 -0
  887. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -0
  888. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -0
  889. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -0
  890. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -0
  891. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -0
  892. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -0
  893. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -0
  894. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -0
  895. teradataml/data/notebooks/sqlalchemy/__init__.py +0 -0
  896. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -0
  897. teradataml/data/npath_example.json +23 -0
  898. teradataml/data/ntree_example.json +14 -0
  899. teradataml/data/numeric_strings.csv +5 -0
  900. teradataml/data/numerics.csv +4 -0
  901. teradataml/data/ocean_buoy.csv +17 -0
  902. teradataml/data/ocean_buoy2.csv +17 -0
  903. teradataml/data/ocean_buoys.csv +28 -0
  904. teradataml/data/ocean_buoys2.csv +10 -0
  905. teradataml/data/ocean_buoys_nonpti.csv +28 -0
  906. teradataml/data/ocean_buoys_seq.csv +29 -0
  907. teradataml/data/onehot_encoder_train.csv +4 -0
  908. teradataml/data/openml_example.json +92 -0
  909. teradataml/data/optional_event_table.csv +4 -0
  910. teradataml/data/orders1.csv +11 -0
  911. teradataml/data/orders1_12.csv +13 -0
  912. teradataml/data/orders_ex.csv +4 -0
  913. teradataml/data/pack_example.json +9 -0
  914. teradataml/data/package_tracking.csv +19 -0
  915. teradataml/data/package_tracking_pti.csv +19 -0
  916. teradataml/data/pagerank_example.json +13 -0
  917. teradataml/data/paragraphs_input.csv +6 -0
  918. teradataml/data/pathanalyzer_example.json +8 -0
  919. teradataml/data/pathgenerator_example.json +8 -0
  920. teradataml/data/patient_profile.csv +101 -0
  921. teradataml/data/pattern_matching_data.csv +11 -0
  922. teradataml/data/payment_fraud_dataset.csv +10001 -0
  923. teradataml/data/peppers.png +0 -0
  924. teradataml/data/phrases.csv +7 -0
  925. teradataml/data/pivot_example.json +9 -0
  926. teradataml/data/pivot_input.csv +22 -0
  927. teradataml/data/playerRating.csv +31 -0
  928. teradataml/data/pos_input.csv +40 -0
  929. teradataml/data/postagger_example.json +7 -0
  930. teradataml/data/posttagger_output.csv +44 -0
  931. teradataml/data/production_data.csv +17 -0
  932. teradataml/data/production_data2.csv +7 -0
  933. teradataml/data/randomsample_example.json +32 -0
  934. teradataml/data/randomwalksample_example.json +9 -0
  935. teradataml/data/rank_table.csv +6 -0
  936. teradataml/data/real_values.csv +14 -0
  937. teradataml/data/ref_mobile_data.csv +4 -0
  938. teradataml/data/ref_mobile_data_dense.csv +2 -0
  939. teradataml/data/ref_url.csv +17 -0
  940. teradataml/data/restaurant_reviews.csv +7 -0
  941. teradataml/data/retail_churn_table.csv +27772 -0
  942. teradataml/data/river_data.csv +145 -0
  943. teradataml/data/roc_example.json +8 -0
  944. teradataml/data/roc_input.csv +101 -0
  945. teradataml/data/rule_inputs.csv +6 -0
  946. teradataml/data/rule_table.csv +2 -0
  947. teradataml/data/sales.csv +7 -0
  948. teradataml/data/sales_transaction.csv +501 -0
  949. teradataml/data/salesdata.csv +342 -0
  950. teradataml/data/sample_cities.csv +3 -0
  951. teradataml/data/sample_shapes.csv +11 -0
  952. teradataml/data/sample_streets.csv +3 -0
  953. teradataml/data/sampling_example.json +16 -0
  954. teradataml/data/sax_example.json +17 -0
  955. teradataml/data/scale_attributes.csv +3 -0
  956. teradataml/data/scale_example.json +74 -0
  957. teradataml/data/scale_housing.csv +11 -0
  958. teradataml/data/scale_housing_test.csv +6 -0
  959. teradataml/data/scale_input_part_sparse.csv +31 -0
  960. teradataml/data/scale_input_partitioned.csv +16 -0
  961. teradataml/data/scale_input_sparse.csv +11 -0
  962. teradataml/data/scale_parameters.csv +3 -0
  963. teradataml/data/scale_stat.csv +11 -0
  964. teradataml/data/scalebypartition_example.json +13 -0
  965. teradataml/data/scalemap_example.json +13 -0
  966. teradataml/data/scalesummary_example.json +12 -0
  967. teradataml/data/score_category.csv +101 -0
  968. teradataml/data/score_summary.csv +4 -0
  969. teradataml/data/script_example.json +10 -0
  970. teradataml/data/scripts/deploy_script.py +84 -0
  971. teradataml/data/scripts/lightgbm/dataset.template +175 -0
  972. teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +264 -0
  973. teradataml/data/scripts/lightgbm/lightgbm_function.template +234 -0
  974. teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +177 -0
  975. teradataml/data/scripts/mapper.R +20 -0
  976. teradataml/data/scripts/mapper.py +16 -0
  977. teradataml/data/scripts/mapper_replace.py +16 -0
  978. teradataml/data/scripts/sklearn/__init__.py +0 -0
  979. teradataml/data/scripts/sklearn/sklearn_fit.py +205 -0
  980. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +148 -0
  981. teradataml/data/scripts/sklearn/sklearn_function.template +144 -0
  982. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +166 -0
  983. teradataml/data/scripts/sklearn/sklearn_neighbors.py +161 -0
  984. teradataml/data/scripts/sklearn/sklearn_score.py +145 -0
  985. teradataml/data/scripts/sklearn/sklearn_transform.py +327 -0
  986. teradataml/data/sdk/modelops/modelops_spec.json +101737 -0
  987. teradataml/data/seeds.csv +10 -0
  988. teradataml/data/sentenceextractor_example.json +7 -0
  989. teradataml/data/sentiment_extract_input.csv +11 -0
  990. teradataml/data/sentiment_train.csv +16 -0
  991. teradataml/data/sentiment_word.csv +20 -0
  992. teradataml/data/sentiment_word_input.csv +20 -0
  993. teradataml/data/sentimentextractor_example.json +24 -0
  994. teradataml/data/sentimenttrainer_example.json +8 -0
  995. teradataml/data/sequence_table.csv +10 -0
  996. teradataml/data/seriessplitter_example.json +8 -0
  997. teradataml/data/sessionize_example.json +17 -0
  998. teradataml/data/sessionize_table.csv +116 -0
  999. teradataml/data/setop_test1.csv +24 -0
  1000. teradataml/data/setop_test2.csv +22 -0
  1001. teradataml/data/soc_nw_edges.csv +11 -0
  1002. teradataml/data/soc_nw_vertices.csv +8 -0
  1003. teradataml/data/souvenir_timeseries.csv +168 -0
  1004. teradataml/data/sparse_iris_attribute.csv +5 -0
  1005. teradataml/data/sparse_iris_test.csv +121 -0
  1006. teradataml/data/sparse_iris_train.csv +601 -0
  1007. teradataml/data/star1.csv +6 -0
  1008. teradataml/data/star_pivot.csv +8 -0
  1009. teradataml/data/state_transition.csv +5 -0
  1010. teradataml/data/stock_data.csv +53 -0
  1011. teradataml/data/stock_movement.csv +11 -0
  1012. teradataml/data/stock_vol.csv +76 -0
  1013. teradataml/data/stop_words.csv +8 -0
  1014. teradataml/data/store_sales.csv +37 -0
  1015. teradataml/data/stringsimilarity_example.json +8 -0
  1016. teradataml/data/strsimilarity_input.csv +13 -0
  1017. teradataml/data/students.csv +101 -0
  1018. teradataml/data/svm_iris_input_test.csv +121 -0
  1019. teradataml/data/svm_iris_input_train.csv +481 -0
  1020. teradataml/data/svm_iris_model.csv +7 -0
  1021. teradataml/data/svmdense_example.json +10 -0
  1022. teradataml/data/svmdensepredict_example.json +19 -0
  1023. teradataml/data/svmsparse_example.json +8 -0
  1024. teradataml/data/svmsparsepredict_example.json +14 -0
  1025. teradataml/data/svmsparsesummary_example.json +8 -0
  1026. teradataml/data/target_mobile_data.csv +13 -0
  1027. teradataml/data/target_mobile_data_dense.csv +5 -0
  1028. teradataml/data/target_udt_data.csv +8 -0
  1029. teradataml/data/tdnerextractor_example.json +14 -0
  1030. teradataml/data/templatedata.csv +1201 -0
  1031. teradataml/data/templates/open_source_ml.json +11 -0
  1032. teradataml/data/teradata_icon.ico +0 -0
  1033. teradataml/data/teradataml_example.json +1473 -0
  1034. teradataml/data/test_classification.csv +101 -0
  1035. teradataml/data/test_loan_prediction.csv +53 -0
  1036. teradataml/data/test_pacf_12.csv +37 -0
  1037. teradataml/data/test_prediction.csv +101 -0
  1038. teradataml/data/test_regression.csv +101 -0
  1039. teradataml/data/test_river2.csv +109 -0
  1040. teradataml/data/text_inputs.csv +6 -0
  1041. teradataml/data/textchunker_example.json +8 -0
  1042. teradataml/data/textclassifier_example.json +7 -0
  1043. teradataml/data/textclassifier_input.csv +7 -0
  1044. teradataml/data/textclassifiertrainer_example.json +7 -0
  1045. teradataml/data/textmorph_example.json +11 -0
  1046. teradataml/data/textparser_example.json +15 -0
  1047. teradataml/data/texttagger_example.json +12 -0
  1048. teradataml/data/texttokenizer_example.json +7 -0
  1049. teradataml/data/texttrainer_input.csv +11 -0
  1050. teradataml/data/tf_example.json +7 -0
  1051. teradataml/data/tfidf_example.json +14 -0
  1052. teradataml/data/tfidf_input1.csv +201 -0
  1053. teradataml/data/tfidf_train.csv +6 -0
  1054. teradataml/data/time_table1.csv +535 -0
  1055. teradataml/data/time_table2.csv +14 -0
  1056. teradataml/data/timeseriesdata.csv +1601 -0
  1057. teradataml/data/timeseriesdatasetsd4.csv +105 -0
  1058. teradataml/data/timestamp_data.csv +4 -0
  1059. teradataml/data/titanic.csv +892 -0
  1060. teradataml/data/titanic_dataset_unpivoted.csv +19 -0
  1061. teradataml/data/to_num_data.csv +4 -0
  1062. teradataml/data/tochar_data.csv +5 -0
  1063. teradataml/data/token_table.csv +696 -0
  1064. teradataml/data/train_multiclass.csv +101 -0
  1065. teradataml/data/train_regression.csv +101 -0
  1066. teradataml/data/train_regression_multiple_labels.csv +101 -0
  1067. teradataml/data/train_tracking.csv +28 -0
  1068. teradataml/data/trans_dense.csv +16 -0
  1069. teradataml/data/trans_sparse.csv +55 -0
  1070. teradataml/data/transformation_table.csv +6 -0
  1071. teradataml/data/transformation_table_new.csv +2 -0
  1072. teradataml/data/tv_spots.csv +16 -0
  1073. teradataml/data/twod_climate_data.csv +117 -0
  1074. teradataml/data/uaf_example.json +529 -0
  1075. teradataml/data/univariatestatistics_example.json +9 -0
  1076. teradataml/data/unpack_example.json +10 -0
  1077. teradataml/data/unpivot_example.json +25 -0
  1078. teradataml/data/unpivot_input.csv +8 -0
  1079. teradataml/data/url_data.csv +10 -0
  1080. teradataml/data/us_air_pass.csv +37 -0
  1081. teradataml/data/us_population.csv +624 -0
  1082. teradataml/data/us_states_shapes.csv +52 -0
  1083. teradataml/data/varmax_example.json +18 -0
  1084. teradataml/data/vectordistance_example.json +30 -0
  1085. teradataml/data/ville_climatedata.csv +121 -0
  1086. teradataml/data/ville_tempdata.csv +12 -0
  1087. teradataml/data/ville_tempdata1.csv +12 -0
  1088. teradataml/data/ville_temperature.csv +11 -0
  1089. teradataml/data/waveletTable.csv +1605 -0
  1090. teradataml/data/waveletTable2.csv +1605 -0
  1091. teradataml/data/weightedmovavg_example.json +9 -0
  1092. teradataml/data/wft_testing.csv +5 -0
  1093. teradataml/data/windowdfft.csv +16 -0
  1094. teradataml/data/wine_data.csv +1600 -0
  1095. teradataml/data/word_embed_input_table1.csv +6 -0
  1096. teradataml/data/word_embed_input_table2.csv +5 -0
  1097. teradataml/data/word_embed_model.csv +23 -0
  1098. teradataml/data/words_input.csv +13 -0
  1099. teradataml/data/xconvolve_complex_left.csv +6 -0
  1100. teradataml/data/xconvolve_complex_leftmulti.csv +6 -0
  1101. teradataml/data/xgboost_example.json +36 -0
  1102. teradataml/data/xgboostpredict_example.json +32 -0
  1103. teradataml/data/ztest_example.json +16 -0
  1104. teradataml/dataframe/__init__.py +0 -0
  1105. teradataml/dataframe/copy_to.py +2446 -0
  1106. teradataml/dataframe/data_transfer.py +2840 -0
  1107. teradataml/dataframe/dataframe.py +20908 -0
  1108. teradataml/dataframe/dataframe_utils.py +2114 -0
  1109. teradataml/dataframe/fastload.py +794 -0
  1110. teradataml/dataframe/functions.py +2110 -0
  1111. teradataml/dataframe/indexer.py +424 -0
  1112. teradataml/dataframe/row.py +160 -0
  1113. teradataml/dataframe/setop.py +1171 -0
  1114. teradataml/dataframe/sql.py +10904 -0
  1115. teradataml/dataframe/sql_function_parameters.py +440 -0
  1116. teradataml/dataframe/sql_functions.py +652 -0
  1117. teradataml/dataframe/sql_interfaces.py +220 -0
  1118. teradataml/dataframe/vantage_function_types.py +675 -0
  1119. teradataml/dataframe/window.py +694 -0
  1120. teradataml/dbutils/__init__.py +3 -0
  1121. teradataml/dbutils/dbutils.py +2871 -0
  1122. teradataml/dbutils/filemgr.py +318 -0
  1123. teradataml/gen_ai/__init__.py +2 -0
  1124. teradataml/gen_ai/convAI.py +473 -0
  1125. teradataml/geospatial/__init__.py +4 -0
  1126. teradataml/geospatial/geodataframe.py +1105 -0
  1127. teradataml/geospatial/geodataframecolumn.py +392 -0
  1128. teradataml/geospatial/geometry_types.py +926 -0
  1129. teradataml/hyperparameter_tuner/__init__.py +1 -0
  1130. teradataml/hyperparameter_tuner/optimizer.py +4115 -0
  1131. teradataml/hyperparameter_tuner/utils.py +303 -0
  1132. teradataml/lib/__init__.py +0 -0
  1133. teradataml/lib/aed_0_1.dll +0 -0
  1134. teradataml/lib/libaed_0_1.dylib +0 -0
  1135. teradataml/lib/libaed_0_1.so +0 -0
  1136. teradataml/lib/libaed_0_1_aarch64.so +0 -0
  1137. teradataml/lib/libaed_0_1_ppc64le.so +0 -0
  1138. teradataml/opensource/__init__.py +1 -0
  1139. teradataml/opensource/_base.py +1321 -0
  1140. teradataml/opensource/_class.py +464 -0
  1141. teradataml/opensource/_constants.py +61 -0
  1142. teradataml/opensource/_lightgbm.py +949 -0
  1143. teradataml/opensource/_sklearn.py +1008 -0
  1144. teradataml/opensource/_wrapper_utils.py +267 -0
  1145. teradataml/options/__init__.py +148 -0
  1146. teradataml/options/configure.py +489 -0
  1147. teradataml/options/display.py +187 -0
  1148. teradataml/plot/__init__.py +3 -0
  1149. teradataml/plot/axis.py +1427 -0
  1150. teradataml/plot/constants.py +15 -0
  1151. teradataml/plot/figure.py +431 -0
  1152. teradataml/plot/plot.py +810 -0
  1153. teradataml/plot/query_generator.py +83 -0
  1154. teradataml/plot/subplot.py +216 -0
  1155. teradataml/scriptmgmt/UserEnv.py +4273 -0
  1156. teradataml/scriptmgmt/__init__.py +3 -0
  1157. teradataml/scriptmgmt/lls_utils.py +2157 -0
  1158. teradataml/sdk/README.md +79 -0
  1159. teradataml/sdk/__init__.py +4 -0
  1160. teradataml/sdk/_auth_modes.py +422 -0
  1161. teradataml/sdk/_func_params.py +487 -0
  1162. teradataml/sdk/_json_parser.py +453 -0
  1163. teradataml/sdk/_openapi_spec_constants.py +249 -0
  1164. teradataml/sdk/_utils.py +236 -0
  1165. teradataml/sdk/api_client.py +900 -0
  1166. teradataml/sdk/constants.py +62 -0
  1167. teradataml/sdk/modelops/__init__.py +98 -0
  1168. teradataml/sdk/modelops/_client.py +409 -0
  1169. teradataml/sdk/modelops/_constants.py +304 -0
  1170. teradataml/sdk/modelops/models.py +2308 -0
  1171. teradataml/sdk/spinner.py +107 -0
  1172. teradataml/series/__init__.py +0 -0
  1173. teradataml/series/series.py +537 -0
  1174. teradataml/series/series_utils.py +71 -0
  1175. teradataml/store/__init__.py +12 -0
  1176. teradataml/store/feature_store/__init__.py +0 -0
  1177. teradataml/store/feature_store/constants.py +658 -0
  1178. teradataml/store/feature_store/feature_store.py +4814 -0
  1179. teradataml/store/feature_store/mind_map.py +639 -0
  1180. teradataml/store/feature_store/models.py +7330 -0
  1181. teradataml/store/feature_store/utils.py +390 -0
  1182. teradataml/table_operators/Apply.py +979 -0
  1183. teradataml/table_operators/Script.py +1739 -0
  1184. teradataml/table_operators/TableOperator.py +1343 -0
  1185. teradataml/table_operators/__init__.py +2 -0
  1186. teradataml/table_operators/apply_query_generator.py +262 -0
  1187. teradataml/table_operators/query_generator.py +493 -0
  1188. teradataml/table_operators/table_operator_query_generator.py +462 -0
  1189. teradataml/table_operators/table_operator_util.py +726 -0
  1190. teradataml/table_operators/templates/dataframe_apply.template +184 -0
  1191. teradataml/table_operators/templates/dataframe_map.template +176 -0
  1192. teradataml/table_operators/templates/dataframe_register.template +73 -0
  1193. teradataml/table_operators/templates/dataframe_udf.template +67 -0
  1194. teradataml/table_operators/templates/script_executor.template +170 -0
  1195. teradataml/telemetry_utils/__init__.py +0 -0
  1196. teradataml/telemetry_utils/queryband.py +53 -0
  1197. teradataml/utils/__init__.py +0 -0
  1198. teradataml/utils/docstring.py +527 -0
  1199. teradataml/utils/dtypes.py +943 -0
  1200. teradataml/utils/internal_buffer.py +122 -0
  1201. teradataml/utils/print_versions.py +206 -0
  1202. teradataml/utils/utils.py +451 -0
  1203. teradataml/utils/validators.py +3305 -0
  1204. teradataml-20.0.0.8.dist-info/METADATA +2804 -0
  1205. teradataml-20.0.0.8.dist-info/RECORD +1208 -0
  1206. teradataml-20.0.0.8.dist-info/WHEEL +5 -0
  1207. teradataml-20.0.0.8.dist-info/top_level.txt +1 -0
  1208. teradataml-20.0.0.8.dist-info/zip-safe +1 -0
@@ -0,0 +1,1600 @@
1
+ fixed_acidity,volatile_acidity,citric_acid,residual_sugar,chlorides,free_sulfur_dioxide,total_sulfur_dioxide,density,pH,sulphates,alcohol,quality
2
+ 7.4,0.7,0,1.9,0.076,11,34,0.9978,3.51,0.56,9.4,bad
3
+ 7.8,0.88,0,2.6,0.098,25,67,0.9968,3.2,0.68,9.8,bad
4
+ 7.8,0.76,0.04,2.3,0.092,15,54,0.997,3.26,0.65,9.8,bad
5
+ 11.2,0.28,0.56,1.9,0.075,17,60,0.998,3.16,0.58,9.8,good
6
+ 7.4,0.7,0,1.9,0.076,11,34,0.9978,3.51,0.56,9.4,bad
7
+ 7.4,0.66,0,1.8,0.075,13,40,0.9978,3.51,0.56,9.4,bad
8
+ 7.9,0.6,0.06,1.6,0.069,15,59,0.9964,3.3,0.46,9.4,bad
9
+ 7.3,0.65,0,1.2,0.065,15,21,0.9946,3.39,0.47,10,good
10
+ 7.8,0.58,0.02,2,0.073,9,18,0.9968,3.36,0.57,9.5,good
11
+ 7.5,0.5,0.36,6.1,0.071,17,102,0.9978,3.35,0.8,10.5,bad
12
+ 6.7,0.58,0.08,1.8,0.097,15,65,0.9959,3.28,0.54,9.2,bad
13
+ 7.5,0.5,0.36,6.1,0.071,17,102,0.9978,3.35,0.8,10.5,bad
14
+ 5.6,0.615,0,1.6,0.089,16,59,0.9943,3.58,0.52,9.9,bad
15
+ 7.8,0.61,0.29,1.6,0.114,9,29,0.9974,3.26,1.56,9.1,bad
16
+ 8.9,0.62,0.18,3.8,0.176,52,145,0.9986,3.16,0.88,9.2,bad
17
+ 8.9,0.62,0.19,3.9,0.17,51,148,0.9986,3.17,0.93,9.2,bad
18
+ 8.5,0.28,0.56,1.8,0.092,35,103,0.9969,3.3,0.75,10.5,good
19
+ 8.1,0.56,0.28,1.7,0.368,16,56,0.9968,3.11,1.28,9.3,bad
20
+ 7.4,0.59,0.08,4.4,0.086,6,29,0.9974,3.38,0.5,9,bad
21
+ 7.9,0.32,0.51,1.8,0.341,17,56,0.9969,3.04,1.08,9.2,good
22
+ 8.9,0.22,0.48,1.8,0.077,29,60,0.9968,3.39,0.53,9.4,good
23
+ 7.6,0.39,0.31,2.3,0.082,23,71,0.9982,3.52,0.65,9.7,bad
24
+ 7.9,0.43,0.21,1.6,0.106,10,37,0.9966,3.17,0.91,9.5,bad
25
+ 8.5,0.49,0.11,2.3,0.084,9,67,0.9968,3.17,0.53,9.4,bad
26
+ 6.9,0.4,0.14,2.4,0.085,21,40,0.9968,3.43,0.63,9.7,good
27
+ 6.3,0.39,0.16,1.4,0.08,11,23,0.9955,3.34,0.56,9.3,bad
28
+ 7.6,0.41,0.24,1.8,0.08,4,11,0.9962,3.28,0.59,9.5,bad
29
+ 7.9,0.43,0.21,1.6,0.106,10,37,0.9966,3.17,0.91,9.5,bad
30
+ 7.1,0.71,0,1.9,0.08,14,35,0.9972,3.47,0.55,9.4,bad
31
+ 7.8,0.645,0,2,0.082,8,16,0.9964,3.38,0.59,9.8,good
32
+ 6.7,0.675,0.07,2.4,0.089,17,82,0.9958,3.35,0.54,10.1,bad
33
+ 6.9,0.685,0,2.5,0.105,22,37,0.9966,3.46,0.57,10.6,good
34
+ 8.3,0.655,0.12,2.3,0.083,15,113,0.9966,3.17,0.66,9.8,bad
35
+ 6.9,0.605,0.12,10.7,0.073,40,83,0.9993,3.45,0.52,9.4,good
36
+ 5.2,0.32,0.25,1.8,0.103,13,50,0.9957,3.38,0.55,9.2,bad
37
+ 7.8,0.645,0,5.5,0.086,5,18,0.9986,3.4,0.55,9.6,good
38
+ 7.8,0.6,0.14,2.4,0.086,3,15,0.9975,3.42,0.6,10.8,good
39
+ 8.1,0.38,0.28,2.1,0.066,13,30,0.9968,3.23,0.73,9.7,good
40
+ 5.7,1.13,0.09,1.5,0.172,7,19,0.994,3.5,0.48,9.8,bad
41
+ 7.3,0.45,0.36,5.9,0.074,12,87,0.9978,3.33,0.83,10.5,bad
42
+ 7.3,0.45,0.36,5.9,0.074,12,87,0.9978,3.33,0.83,10.5,bad
43
+ 8.8,0.61,0.3,2.8,0.088,17,46,0.9976,3.26,0.51,9.3,bad
44
+ 7.5,0.49,0.2,2.6,0.332,8,14,0.9968,3.21,0.9,10.5,good
45
+ 8.1,0.66,0.22,2.2,0.069,9,23,0.9968,3.3,1.2,10.3,bad
46
+ 6.8,0.67,0.02,1.8,0.05,5,11,0.9962,3.48,0.52,9.5,bad
47
+ 4.6,0.52,0.15,2.1,0.054,8,65,0.9934,3.9,0.56,13.1,bad
48
+ 7.7,0.935,0.43,2.2,0.114,22,114,0.997,3.25,0.73,9.2,bad
49
+ 8.7,0.29,0.52,1.6,0.113,12,37,0.9969,3.25,0.58,9.5,bad
50
+ 6.4,0.4,0.23,1.6,0.066,5,12,0.9958,3.34,0.56,9.2,bad
51
+ 5.6,0.31,0.37,1.4,0.074,12,96,0.9954,3.32,0.58,9.2,bad
52
+ 8.8,0.66,0.26,1.7,0.074,4,23,0.9971,3.15,0.74,9.2,bad
53
+ 6.6,0.52,0.04,2.2,0.069,8,15,0.9956,3.4,0.63,9.4,good
54
+ 6.6,0.5,0.04,2.1,0.068,6,14,0.9955,3.39,0.64,9.4,good
55
+ 8.6,0.38,0.36,3,0.081,30,119,0.997,3.2,0.56,9.4,bad
56
+ 7.6,0.51,0.15,2.8,0.11,33,73,0.9955,3.17,0.63,10.2,good
57
+ 7.7,0.62,0.04,3.8,0.084,25,45,0.9978,3.34,0.53,9.5,bad
58
+ 10.2,0.42,0.57,3.4,0.07,4,10,0.9971,3.04,0.63,9.6,bad
59
+ 7.5,0.63,0.12,5.1,0.111,50,110,0.9983,3.26,0.77,9.4,bad
60
+ 7.8,0.59,0.18,2.3,0.076,17,54,0.9975,3.43,0.59,10,bad
61
+ 7.3,0.39,0.31,2.4,0.074,9,46,0.9962,3.41,0.54,9.4,good
62
+ 8.8,0.4,0.4,2.2,0.079,19,52,0.998,3.44,0.64,9.2,bad
63
+ 7.7,0.69,0.49,1.8,0.115,20,112,0.9968,3.21,0.71,9.3,bad
64
+ 7.5,0.52,0.16,1.9,0.085,12,35,0.9968,3.38,0.62,9.5,good
65
+ 7,0.735,0.05,2,0.081,13,54,0.9966,3.39,0.57,9.8,bad
66
+ 7.2,0.725,0.05,4.65,0.086,4,11,0.9962,3.41,0.39,10.9,bad
67
+ 7.2,0.725,0.05,4.65,0.086,4,11,0.9962,3.41,0.39,10.9,bad
68
+ 7.5,0.52,0.11,1.5,0.079,11,39,0.9968,3.42,0.58,9.6,bad
69
+ 6.6,0.705,0.07,1.6,0.076,6,15,0.9962,3.44,0.58,10.7,bad
70
+ 9.3,0.32,0.57,2,0.074,27,65,0.9969,3.28,0.79,10.7,bad
71
+ 8,0.705,0.05,1.9,0.074,8,19,0.9962,3.34,0.95,10.5,good
72
+ 7.7,0.63,0.08,1.9,0.076,15,27,0.9967,3.32,0.54,9.5,good
73
+ 7.7,0.67,0.23,2.1,0.088,17,96,0.9962,3.32,0.48,9.5,bad
74
+ 7.7,0.69,0.22,1.9,0.084,18,94,0.9961,3.31,0.48,9.5,bad
75
+ 8.3,0.675,0.26,2.1,0.084,11,43,0.9976,3.31,0.53,9.2,bad
76
+ 9.7,0.32,0.54,2.5,0.094,28,83,0.9984,3.28,0.82,9.6,bad
77
+ 8.8,0.41,0.64,2.2,0.093,9,42,0.9986,3.54,0.66,10.5,bad
78
+ 8.8,0.41,0.64,2.2,0.093,9,42,0.9986,3.54,0.66,10.5,bad
79
+ 6.8,0.785,0,2.4,0.104,14,30,0.9966,3.52,0.55,10.7,good
80
+ 6.7,0.75,0.12,2,0.086,12,80,0.9958,3.38,0.52,10.1,bad
81
+ 8.3,0.625,0.2,1.5,0.08,27,119,0.9972,3.16,1.12,9.1,bad
82
+ 6.2,0.45,0.2,1.6,0.069,3,15,0.9958,3.41,0.56,9.2,bad
83
+ 7.8,0.43,0.7,1.9,0.464,22,67,0.9974,3.13,1.28,9.4,bad
84
+ 7.4,0.5,0.47,2,0.086,21,73,0.997,3.36,0.57,9.1,bad
85
+ 7.3,0.67,0.26,1.8,0.401,16,51,0.9969,3.16,1.14,9.4,bad
86
+ 6.3,0.3,0.48,1.8,0.069,18,61,0.9959,3.44,0.78,10.3,good
87
+ 6.9,0.55,0.15,2.2,0.076,19,40,0.9961,3.41,0.59,10.1,bad
88
+ 8.6,0.49,0.28,1.9,0.11,20,136,0.9972,2.93,1.95,9.9,good
89
+ 7.7,0.49,0.26,1.9,0.062,9,31,0.9966,3.39,0.64,9.6,bad
90
+ 9.3,0.39,0.44,2.1,0.107,34,125,0.9978,3.14,1.22,9.5,bad
91
+ 7,0.62,0.08,1.8,0.076,8,24,0.9978,3.48,0.53,9,bad
92
+ 7.9,0.52,0.26,1.9,0.079,42,140,0.9964,3.23,0.54,9.5,bad
93
+ 8.6,0.49,0.28,1.9,0.11,20,136,0.9972,2.93,1.95,9.9,good
94
+ 8.6,0.49,0.29,2,0.11,19,133,0.9972,2.93,1.98,9.8,bad
95
+ 7.7,0.49,0.26,1.9,0.062,9,31,0.9966,3.39,0.64,9.6,bad
96
+ 5,1.02,0.04,1.4,0.045,41,85,0.9938,3.75,0.48,10.5,bad
97
+ 4.7,0.6,0.17,2.3,0.058,17,106,0.9932,3.85,0.6,12.9,good
98
+ 6.8,0.775,0,3,0.102,8,23,0.9965,3.45,0.56,10.7,bad
99
+ 7,0.5,0.25,2,0.07,3,22,0.9963,3.25,0.63,9.2,bad
100
+ 7.6,0.9,0.06,2.5,0.079,5,10,0.9967,3.39,0.56,9.8,bad
101
+ 8.1,0.545,0.18,1.9,0.08,13,35,0.9972,3.3,0.59,9,good
102
+ 8.3,0.61,0.3,2.1,0.084,11,50,0.9972,3.4,0.61,10.2,good
103
+ 7.8,0.5,0.3,1.9,0.075,8,22,0.9959,3.31,0.56,10.4,good
104
+ 8.1,0.545,0.18,1.9,0.08,13,35,0.9972,3.3,0.59,9,good
105
+ 8.1,0.575,0.22,2.1,0.077,12,65,0.9967,3.29,0.51,9.2,bad
106
+ 7.2,0.49,0.24,2.2,0.07,5,36,0.996,3.33,0.48,9.4,bad
107
+ 8.1,0.575,0.22,2.1,0.077,12,65,0.9967,3.29,0.51,9.2,bad
108
+ 7.8,0.41,0.68,1.7,0.467,18,69,0.9973,3.08,1.31,9.3,bad
109
+ 6.2,0.63,0.31,1.7,0.088,15,64,0.9969,3.46,0.79,9.3,bad
110
+ 8,0.33,0.53,2.5,0.091,18,80,0.9976,3.37,0.8,9.6,good
111
+ 8.1,0.785,0.52,2,0.122,37,153,0.9969,3.21,0.69,9.3,bad
112
+ 7.8,0.56,0.19,1.8,0.104,12,47,0.9964,3.19,0.93,9.5,bad
113
+ 8.4,0.62,0.09,2.2,0.084,11,108,0.9964,3.15,0.66,9.8,bad
114
+ 8.4,0.6,0.1,2.2,0.085,14,111,0.9964,3.15,0.66,9.8,bad
115
+ 10.1,0.31,0.44,2.3,0.08,22,46,0.9988,3.32,0.67,9.7,good
116
+ 7.8,0.56,0.19,1.8,0.104,12,47,0.9964,3.19,0.93,9.5,bad
117
+ 9.4,0.4,0.31,2.2,0.09,13,62,0.9966,3.07,0.63,10.5,good
118
+ 8.3,0.54,0.28,1.9,0.077,11,40,0.9978,3.39,0.61,10,good
119
+ 7.8,0.56,0.12,2,0.082,7,28,0.997,3.37,0.5,9.4,good
120
+ 8.8,0.55,0.04,2.2,0.119,14,56,0.9962,3.21,0.6,10.9,good
121
+ 7,0.69,0.08,1.8,0.097,22,89,0.9959,3.34,0.54,9.2,good
122
+ 7.3,1.07,0.09,1.7,0.178,10,89,0.9962,3.3,0.57,9,bad
123
+ 8.8,0.55,0.04,2.2,0.119,14,56,0.9962,3.21,0.6,10.9,good
124
+ 7.3,0.695,0,2.5,0.075,3,13,0.998,3.49,0.52,9.2,bad
125
+ 8,0.71,0,2.6,0.08,11,34,0.9976,3.44,0.53,9.5,bad
126
+ 7.8,0.5,0.17,1.6,0.082,21,102,0.996,3.39,0.48,9.5,bad
127
+ 9,0.62,0.04,1.9,0.146,27,90,0.9984,3.16,0.7,9.4,bad
128
+ 8.2,1.33,0,1.7,0.081,3,12,0.9964,3.53,0.49,10.9,bad
129
+ 8.1,1.33,0,1.8,0.082,3,12,0.9964,3.54,0.48,10.9,bad
130
+ 8,0.59,0.16,1.8,0.065,3,16,0.9962,3.42,0.92,10.5,good
131
+ 6.1,0.38,0.15,1.8,0.072,6,19,0.9955,3.42,0.57,9.4,bad
132
+ 8,0.745,0.56,2,0.118,30,134,0.9968,3.24,0.66,9.4,bad
133
+ 5.6,0.5,0.09,2.3,0.049,17,99,0.9937,3.63,0.63,13,bad
134
+ 5.6,0.5,0.09,2.3,0.049,17,99,0.9937,3.63,0.63,13,bad
135
+ 6.6,0.5,0.01,1.5,0.06,17,26,0.9952,3.4,0.58,9.8,good
136
+ 7.9,1.04,0.05,2.2,0.084,13,29,0.9959,3.22,0.55,9.9,good
137
+ 8.4,0.745,0.11,1.9,0.09,16,63,0.9965,3.19,0.82,9.6,bad
138
+ 8.3,0.715,0.15,1.8,0.089,10,52,0.9968,3.23,0.77,9.5,bad
139
+ 7.2,0.415,0.36,2,0.081,13,45,0.9972,3.48,0.64,9.2,bad
140
+ 7.8,0.56,0.19,2.1,0.081,15,105,0.9962,3.33,0.54,9.5,bad
141
+ 7.8,0.56,0.19,2,0.081,17,108,0.9962,3.32,0.54,9.5,bad
142
+ 8.4,0.745,0.11,1.9,0.09,16,63,0.9965,3.19,0.82,9.6,bad
143
+ 8.3,0.715,0.15,1.8,0.089,10,52,0.9968,3.23,0.77,9.5,bad
144
+ 5.2,0.34,0,1.8,0.05,27,63,0.9916,3.68,0.79,14,good
145
+ 6.3,0.39,0.08,1.7,0.066,3,20,0.9954,3.34,0.58,9.4,bad
146
+ 5.2,0.34,0,1.8,0.05,27,63,0.9916,3.68,0.79,14,good
147
+ 8.1,0.67,0.55,1.8,0.117,32,141,0.9968,3.17,0.62,9.4,bad
148
+ 5.8,0.68,0.02,1.8,0.087,21,94,0.9944,3.54,0.52,10,bad
149
+ 7.6,0.49,0.26,1.6,0.236,10,88,0.9968,3.11,0.8,9.3,bad
150
+ 6.9,0.49,0.1,2.3,0.074,12,30,0.9959,3.42,0.58,10.2,good
151
+ 8.2,0.4,0.44,2.8,0.089,11,43,0.9975,3.53,0.61,10.5,good
152
+ 7.3,0.33,0.47,2.1,0.077,5,11,0.9958,3.33,0.53,10.3,good
153
+ 9.2,0.52,1,3.4,0.61,32,69,0.9996,2.74,2,9.4,bad
154
+ 7.5,0.6,0.03,1.8,0.095,25,99,0.995,3.35,0.54,10.1,bad
155
+ 7.5,0.6,0.03,1.8,0.095,25,99,0.995,3.35,0.54,10.1,bad
156
+ 7.1,0.43,0.42,5.5,0.07,29,129,0.9973,3.42,0.72,10.5,bad
157
+ 7.1,0.43,0.42,5.5,0.071,28,128,0.9973,3.42,0.71,10.5,bad
158
+ 7.1,0.43,0.42,5.5,0.07,29,129,0.9973,3.42,0.72,10.5,bad
159
+ 7.1,0.43,0.42,5.5,0.071,28,128,0.9973,3.42,0.71,10.5,bad
160
+ 7.1,0.68,0,2.2,0.073,12,22,0.9969,3.48,0.5,9.3,bad
161
+ 6.8,0.6,0.18,1.9,0.079,18,86,0.9968,3.59,0.57,9.3,good
162
+ 7.6,0.95,0.03,2,0.09,7,20,0.9959,3.2,0.56,9.6,bad
163
+ 7.6,0.68,0.02,1.3,0.072,9,20,0.9965,3.17,1.08,9.2,bad
164
+ 7.8,0.53,0.04,1.7,0.076,17,31,0.9964,3.33,0.56,10,good
165
+ 7.4,0.6,0.26,7.3,0.07,36,121,0.9982,3.37,0.49,9.4,bad
166
+ 7.3,0.59,0.26,7.2,0.07,35,121,0.9981,3.37,0.49,9.4,bad
167
+ 7.8,0.63,0.48,1.7,0.1,14,96,0.9961,3.19,0.62,9.5,bad
168
+ 6.8,0.64,0.1,2.1,0.085,18,101,0.9956,3.34,0.52,10.2,bad
169
+ 7.3,0.55,0.03,1.6,0.072,17,42,0.9956,3.37,0.48,9,bad
170
+ 6.8,0.63,0.07,2.1,0.089,11,44,0.9953,3.47,0.55,10.4,good
171
+ 7.5,0.705,0.24,1.8,0.36,15,63,0.9964,3,1.59,9.5,bad
172
+ 7.9,0.885,0.03,1.8,0.058,4,8,0.9972,3.36,0.33,9.1,bad
173
+ 8,0.42,0.17,2,0.073,6,18,0.9972,3.29,0.61,9.2,good
174
+ 8,0.42,0.17,2,0.073,6,18,0.9972,3.29,0.61,9.2,good
175
+ 7.4,0.62,0.05,1.9,0.068,24,42,0.9961,3.42,0.57,11.5,good
176
+ 7.3,0.38,0.21,2,0.08,7,35,0.9961,3.33,0.47,9.5,bad
177
+ 6.9,0.5,0.04,1.5,0.085,19,49,0.9958,3.35,0.78,9.5,bad
178
+ 7.3,0.38,0.21,2,0.08,7,35,0.9961,3.33,0.47,9.5,bad
179
+ 7.5,0.52,0.42,2.3,0.087,8,38,0.9972,3.58,0.61,10.5,good
180
+ 7,0.805,0,2.5,0.068,7,20,0.9969,3.48,0.56,9.6,bad
181
+ 8.8,0.61,0.14,2.4,0.067,10,42,0.9969,3.19,0.59,9.5,bad
182
+ 8.8,0.61,0.14,2.4,0.067,10,42,0.9969,3.19,0.59,9.5,bad
183
+ 8.9,0.61,0.49,2,0.27,23,110,0.9972,3.12,1.02,9.3,bad
184
+ 7.2,0.73,0.02,2.5,0.076,16,42,0.9972,3.44,0.52,9.3,bad
185
+ 6.8,0.61,0.2,1.8,0.077,11,65,0.9971,3.54,0.58,9.3,bad
186
+ 6.7,0.62,0.21,1.9,0.079,8,62,0.997,3.52,0.58,9.3,good
187
+ 8.9,0.31,0.57,2,0.111,26,85,0.9971,3.26,0.53,9.7,bad
188
+ 7.4,0.39,0.48,2,0.082,14,67,0.9972,3.34,0.55,9.2,bad
189
+ 7.7,0.705,0.1,2.6,0.084,9,26,0.9976,3.39,0.49,9.7,bad
190
+ 7.9,0.5,0.33,2,0.084,15,143,0.9968,3.2,0.55,9.5,bad
191
+ 7.9,0.49,0.32,1.9,0.082,17,144,0.9968,3.2,0.55,9.5,bad
192
+ 8.2,0.5,0.35,2.9,0.077,21,127,0.9976,3.23,0.62,9.4,bad
193
+ 6.4,0.37,0.25,1.9,0.074,21,49,0.9974,3.57,0.62,9.8,good
194
+ 6.8,0.63,0.12,3.8,0.099,16,126,0.9969,3.28,0.61,9.5,bad
195
+ 7.6,0.55,0.21,2.2,0.071,7,28,0.9964,3.28,0.55,9.7,bad
196
+ 7.6,0.55,0.21,2.2,0.071,7,28,0.9964,3.28,0.55,9.7,bad
197
+ 7.8,0.59,0.33,2,0.074,24,120,0.9968,3.25,0.54,9.4,bad
198
+ 7.3,0.58,0.3,2.4,0.074,15,55,0.9968,3.46,0.59,10.2,bad
199
+ 11.5,0.3,0.6,2,0.067,12,27,0.9981,3.11,0.97,10.1,good
200
+ 5.4,0.835,0.08,1.2,0.046,13,93,0.9924,3.57,0.85,13,good
201
+ 6.9,1.09,0.06,2.1,0.061,12,31,0.9948,3.51,0.43,11.4,bad
202
+ 9.6,0.32,0.47,1.4,0.056,9,24,0.99695,3.22,0.82,10.3,good
203
+ 8.8,0.37,0.48,2.1,0.097,39,145,0.9975,3.04,1.03,9.3,bad
204
+ 6.8,0.5,0.11,1.5,0.075,16,49,0.99545,3.36,0.79,9.5,bad
205
+ 7,0.42,0.35,1.6,0.088,16,39,0.9961,3.34,0.55,9.2,bad
206
+ 7,0.43,0.36,1.6,0.089,14,37,0.99615,3.34,0.56,9.2,good
207
+ 12.8,0.3,0.74,2.6,0.095,9,28,0.9994,3.2,0.77,10.8,good
208
+ 12.8,0.3,0.74,2.6,0.095,9,28,0.9994,3.2,0.77,10.8,good
209
+ 7.8,0.57,0.31,1.8,0.069,26,120,0.99625,3.29,0.53,9.3,bad
210
+ 7.8,0.44,0.28,2.7,0.1,18,95,0.9966,3.22,0.67,9.4,bad
211
+ 11,0.3,0.58,2.1,0.054,7,19,0.998,3.31,0.88,10.5,good
212
+ 9.7,0.53,0.6,2,0.039,5,19,0.99585,3.3,0.86,12.4,good
213
+ 8,0.725,0.24,2.8,0.083,10,62,0.99685,3.35,0.56,10,good
214
+ 11.6,0.44,0.64,2.1,0.059,5,15,0.998,3.21,0.67,10.2,good
215
+ 8.2,0.57,0.26,2.2,0.06,28,65,0.9959,3.3,0.43,10.1,bad
216
+ 7.8,0.735,0.08,2.4,0.092,10,41,0.9974,3.24,0.71,9.8,good
217
+ 7,0.49,0.49,5.6,0.06,26,121,0.9974,3.34,0.76,10.5,bad
218
+ 8.7,0.625,0.16,2,0.101,13,49,0.9962,3.14,0.57,11,bad
219
+ 8.1,0.725,0.22,2.2,0.072,11,41,0.9967,3.36,0.55,9.1,bad
220
+ 7.5,0.49,0.19,1.9,0.076,10,44,0.9957,3.39,0.54,9.7,bad
221
+ 7.8,0.53,0.33,2.4,0.08,24,144,0.99655,3.3,0.6,9.5,bad
222
+ 7.8,0.34,0.37,2,0.082,24,58,0.9964,3.34,0.59,9.4,good
223
+ 7.4,0.53,0.26,2,0.101,16,72,0.9957,3.15,0.57,9.4,bad
224
+ 6.8,0.61,0.04,1.5,0.057,5,10,0.99525,3.42,0.6,9.5,bad
225
+ 8.6,0.645,0.25,2,0.083,8,28,0.99815,3.28,0.6,10,good
226
+ 8.4,0.635,0.36,2,0.089,15,55,0.99745,3.31,0.57,10.4,bad
227
+ 7.7,0.43,0.25,2.6,0.073,29,63,0.99615,3.37,0.58,10.5,good
228
+ 8.9,0.59,0.5,2,0.337,27,81,0.9964,3.04,1.61,9.5,good
229
+ 9,0.82,0.14,2.6,0.089,9,23,0.9984,3.39,0.63,9.8,bad
230
+ 7.7,0.43,0.25,2.6,0.073,29,63,0.99615,3.37,0.58,10.5,good
231
+ 6.9,0.52,0.25,2.6,0.081,10,37,0.99685,3.46,0.5,11,bad
232
+ 5.2,0.48,0.04,1.6,0.054,19,106,0.9927,3.54,0.62,12.2,good
233
+ 8,0.38,0.06,1.8,0.078,12,49,0.99625,3.37,0.52,9.9,good
234
+ 8.5,0.37,0.2,2.8,0.09,18,58,0.998,3.34,0.7,9.6,good
235
+ 6.9,0.52,0.25,2.6,0.081,10,37,0.99685,3.46,0.5,11,bad
236
+ 8.2,1,0.09,2.3,0.065,7,37,0.99685,3.32,0.55,9,good
237
+ 7.2,0.63,0,1.9,0.097,14,38,0.99675,3.37,0.58,9,good
238
+ 7.2,0.63,0,1.9,0.097,14,38,0.99675,3.37,0.58,9,good
239
+ 7.2,0.645,0,1.9,0.097,15,39,0.99675,3.37,0.58,9.2,good
240
+ 7.2,0.63,0,1.9,0.097,14,38,0.99675,3.37,0.58,9,good
241
+ 8.2,1,0.09,2.3,0.065,7,37,0.99685,3.32,0.55,9,good
242
+ 8.9,0.635,0.37,1.7,0.263,5,62,0.9971,3,1.09,9.3,bad
243
+ 12,0.38,0.56,2.1,0.093,6,24,0.99925,3.14,0.71,10.9,good
244
+ 7.7,0.58,0.1,1.8,0.102,28,109,0.99565,3.08,0.49,9.8,good
245
+ 15,0.21,0.44,2.2,0.075,10,24,1.00005,3.07,0.84,9.2,good
246
+ 15,0.21,0.44,2.2,0.075,10,24,1.00005,3.07,0.84,9.2,good
247
+ 7.3,0.66,0,2,0.084,6,23,0.9983,3.61,0.96,9.9,good
248
+ 7.1,0.68,0.07,1.9,0.075,16,51,0.99685,3.38,0.52,9.5,bad
249
+ 8.2,0.6,0.17,2.3,0.072,11,73,0.9963,3.2,0.45,9.3,bad
250
+ 7.7,0.53,0.06,1.7,0.074,9,39,0.99615,3.35,0.48,9.8,good
251
+ 7.3,0.66,0,2,0.084,6,23,0.9983,3.61,0.96,9.9,good
252
+ 10.8,0.32,0.44,1.6,0.063,16,37,0.9985,3.22,0.78,10,good
253
+ 7.1,0.6,0,1.8,0.074,16,34,0.9972,3.47,0.7,9.9,good
254
+ 11.1,0.35,0.48,3.1,0.09,5,21,0.9986,3.17,0.53,10.5,bad
255
+ 7.7,0.775,0.42,1.9,0.092,8,86,0.9959,3.23,0.59,9.5,bad
256
+ 7.1,0.6,0,1.8,0.074,16,34,0.9972,3.47,0.7,9.9,good
257
+ 8,0.57,0.23,3.2,0.073,17,119,0.99675,3.26,0.57,9.3,bad
258
+ 9.4,0.34,0.37,2.2,0.075,5,13,0.998,3.22,0.62,9.2,bad
259
+ 6.6,0.695,0,2.1,0.075,12,56,0.9968,3.49,0.67,9.2,bad
260
+ 7.7,0.41,0.76,1.8,0.611,8,45,0.9968,3.06,1.26,9.4,bad
261
+ 10,0.31,0.47,2.6,0.085,14,33,0.99965,3.36,0.8,10.5,good
262
+ 7.9,0.33,0.23,1.7,0.077,18,45,0.99625,3.29,0.65,9.3,bad
263
+ 7,0.975,0.04,2,0.087,12,67,0.99565,3.35,0.6,9.4,bad
264
+ 8,0.52,0.03,1.7,0.07,10,35,0.99575,3.34,0.57,10,bad
265
+ 7.9,0.37,0.23,1.8,0.077,23,49,0.9963,3.28,0.67,9.3,bad
266
+ 12.5,0.56,0.49,2.4,0.064,5,27,0.9999,3.08,0.87,10.9,bad
267
+ 11.8,0.26,0.52,1.8,0.071,6,10,0.9968,3.2,0.72,10.2,good
268
+ 8.1,0.87,0,3.3,0.096,26,61,1.00025,3.6,0.72,9.8,bad
269
+ 7.9,0.35,0.46,3.6,0.078,15,37,0.9973,3.35,0.86,12.8,good
270
+ 6.9,0.54,0.04,3,0.077,7,27,0.9987,3.69,0.91,9.4,good
271
+ 11.5,0.18,0.51,4,0.104,4,23,0.9996,3.28,0.97,10.1,good
272
+ 7.9,0.545,0.06,4,0.087,27,61,0.9965,3.36,0.67,10.7,good
273
+ 11.5,0.18,0.51,4,0.104,4,23,0.9996,3.28,0.97,10.1,good
274
+ 10.9,0.37,0.58,4,0.071,17,65,0.99935,3.22,0.78,10.1,bad
275
+ 8.4,0.715,0.2,2.4,0.076,10,38,0.99735,3.31,0.64,9.4,bad
276
+ 7.5,0.65,0.18,7,0.088,27,94,0.99915,3.38,0.77,9.4,bad
277
+ 7.9,0.545,0.06,4,0.087,27,61,0.9965,3.36,0.67,10.7,good
278
+ 6.9,0.54,0.04,3,0.077,7,27,0.9987,3.69,0.91,9.4,good
279
+ 11.5,0.18,0.51,4,0.104,4,23,0.9996,3.28,0.97,10.1,good
280
+ 10.3,0.32,0.45,6.4,0.073,5,13,0.9976,3.23,0.82,12.6,good
281
+ 8.9,0.4,0.32,5.6,0.087,10,47,0.9991,3.38,0.77,10.5,good
282
+ 11.4,0.26,0.44,3.6,0.071,6,19,0.9986,3.12,0.82,9.3,good
283
+ 7.7,0.27,0.68,3.5,0.358,5,10,0.9972,3.25,1.08,9.9,good
284
+ 7.6,0.52,0.12,3,0.067,12,53,0.9971,3.36,0.57,9.1,bad
285
+ 8.9,0.4,0.32,5.6,0.087,10,47,0.9991,3.38,0.77,10.5,good
286
+ 9.9,0.59,0.07,3.4,0.102,32,71,1.00015,3.31,0.71,9.8,bad
287
+ 9.9,0.59,0.07,3.4,0.102,32,71,1.00015,3.31,0.71,9.8,bad
288
+ 12,0.45,0.55,2,0.073,25,49,0.9997,3.1,0.76,10.3,good
289
+ 7.5,0.4,0.12,3,0.092,29,53,0.9967,3.37,0.7,10.3,good
290
+ 8.7,0.52,0.09,2.5,0.091,20,49,0.9976,3.34,0.86,10.6,good
291
+ 11.6,0.42,0.53,3.3,0.105,33,98,1.001,3.2,0.95,9.2,bad
292
+ 8.7,0.52,0.09,2.5,0.091,20,49,0.9976,3.34,0.86,10.6,good
293
+ 11,0.2,0.48,2,0.343,6,18,0.9979,3.3,0.71,10.5,bad
294
+ 10.4,0.55,0.23,2.7,0.091,18,48,0.9994,3.22,0.64,10.3,good
295
+ 6.9,0.36,0.25,2.4,0.098,5,16,0.9964,3.41,0.6,10.1,good
296
+ 13.3,0.34,0.52,3.2,0.094,17,53,1.0014,3.05,0.81,9.5,good
297
+ 10.8,0.5,0.46,2.5,0.073,5,27,1.0001,3.05,0.64,9.5,bad
298
+ 10.6,0.83,0.37,2.6,0.086,26,70,0.9981,3.16,0.52,9.9,bad
299
+ 7.1,0.63,0.06,2,0.083,8,29,0.99855,3.67,0.73,9.6,bad
300
+ 7.2,0.65,0.02,2.3,0.094,5,31,0.9993,3.67,0.8,9.7,bad
301
+ 6.9,0.67,0.06,2.1,0.08,8,33,0.99845,3.68,0.71,9.6,bad
302
+ 7.5,0.53,0.06,2.6,0.086,20,44,0.9965,3.38,0.59,10.7,good
303
+ 11.1,0.18,0.48,1.5,0.068,7,15,0.9973,3.22,0.64,10.1,good
304
+ 8.3,0.705,0.12,2.6,0.092,12,28,0.9994,3.51,0.72,10,bad
305
+ 7.4,0.67,0.12,1.6,0.186,5,21,0.996,3.39,0.54,9.5,bad
306
+ 8.4,0.65,0.6,2.1,0.112,12,90,0.9973,3.2,0.52,9.2,bad
307
+ 10.3,0.53,0.48,2.5,0.063,6,25,0.9998,3.12,0.59,9.3,good
308
+ 7.6,0.62,0.32,2.2,0.082,7,54,0.9966,3.36,0.52,9.4,bad
309
+ 10.3,0.41,0.42,2.4,0.213,6,14,0.9994,3.19,0.62,9.5,good
310
+ 10.3,0.43,0.44,2.4,0.214,5,12,0.9994,3.19,0.63,9.5,good
311
+ 7.4,0.29,0.38,1.7,0.062,9,30,0.9968,3.41,0.53,9.5,good
312
+ 10.3,0.53,0.48,2.5,0.063,6,25,0.9998,3.12,0.59,9.3,good
313
+ 7.9,0.53,0.24,2,0.072,15,105,0.996,3.27,0.54,9.4,good
314
+ 9,0.46,0.31,2.8,0.093,19,98,0.99815,3.32,0.63,9.5,good
315
+ 8.6,0.47,0.3,3,0.076,30,135,0.9976,3.3,0.53,9.4,bad
316
+ 7.4,0.36,0.29,2.6,0.087,26,72,0.99645,3.39,0.68,11,bad
317
+ 7.1,0.35,0.29,2.5,0.096,20,53,0.9962,3.42,0.65,11,good
318
+ 9.6,0.56,0.23,3.4,0.102,37,92,0.9996,3.3,0.65,10.1,bad
319
+ 9.6,0.77,0.12,2.9,0.082,30,74,0.99865,3.3,0.64,10.4,good
320
+ 9.8,0.66,0.39,3.2,0.083,21,59,0.9989,3.37,0.71,11.5,good
321
+ 9.6,0.77,0.12,2.9,0.082,30,74,0.99865,3.3,0.64,10.4,good
322
+ 9.8,0.66,0.39,3.2,0.083,21,59,0.9989,3.37,0.71,11.5,good
323
+ 9.3,0.61,0.26,3.4,0.09,25,87,0.99975,3.24,0.62,9.7,bad
324
+ 7.8,0.62,0.05,2.3,0.079,6,18,0.99735,3.29,0.63,9.3,bad
325
+ 10.3,0.59,0.42,2.8,0.09,35,73,0.999,3.28,0.7,9.5,good
326
+ 10,0.49,0.2,11,0.071,13,50,1.0015,3.16,0.69,9.2,good
327
+ 10,0.49,0.2,11,0.071,13,50,1.0015,3.16,0.69,9.2,good
328
+ 11.6,0.53,0.66,3.65,0.121,6,14,0.9978,3.05,0.74,11.5,good
329
+ 10.3,0.44,0.5,4.5,0.107,5,13,0.998,3.28,0.83,11.5,bad
330
+ 13.4,0.27,0.62,2.6,0.082,6,21,1.0002,3.16,0.67,9.7,good
331
+ 10.7,0.46,0.39,2,0.061,7,15,0.9981,3.18,0.62,9.5,bad
332
+ 10.2,0.36,0.64,2.9,0.122,10,41,0.998,3.23,0.66,12.5,good
333
+ 10.2,0.36,0.64,2.9,0.122,10,41,0.998,3.23,0.66,12.5,good
334
+ 8,0.58,0.28,3.2,0.066,21,114,0.9973,3.22,0.54,9.4,good
335
+ 8.4,0.56,0.08,2.1,0.105,16,44,0.9958,3.13,0.52,11,bad
336
+ 7.9,0.65,0.01,2.5,0.078,17,38,0.9963,3.34,0.74,11.7,good
337
+ 11.9,0.695,0.53,3.4,0.128,7,21,0.9992,3.17,0.84,12.2,good
338
+ 8.9,0.43,0.45,1.9,0.052,6,16,0.9948,3.35,0.7,12.5,good
339
+ 7.8,0.43,0.32,2.8,0.08,29,58,0.9974,3.31,0.64,10.3,bad
340
+ 12.4,0.49,0.58,3,0.103,28,99,1.0008,3.16,1,11.5,good
341
+ 12.5,0.28,0.54,2.3,0.082,12,29,0.9997,3.11,1.36,9.8,good
342
+ 12.2,0.34,0.5,2.4,0.066,10,21,1,3.12,1.18,9.2,good
343
+ 10.6,0.42,0.48,2.7,0.065,5,18,0.9972,3.21,0.87,11.3,good
344
+ 10.9,0.39,0.47,1.8,0.118,6,14,0.9982,3.3,0.75,9.8,good
345
+ 10.9,0.39,0.47,1.8,0.118,6,14,0.9982,3.3,0.75,9.8,good
346
+ 11.9,0.57,0.5,2.6,0.082,6,32,1.0006,3.12,0.78,10.7,good
347
+ 7,0.685,0,1.9,0.067,40,63,0.9979,3.6,0.81,9.9,bad
348
+ 6.6,0.815,0.02,2.7,0.072,17,34,0.9955,3.58,0.89,12.3,good
349
+ 13.8,0.49,0.67,3,0.093,6,15,0.9986,3.02,0.93,12,good
350
+ 9.6,0.56,0.31,2.8,0.089,15,46,0.9979,3.11,0.92,10,good
351
+ 9.1,0.785,0,2.6,0.093,11,28,0.9994,3.36,0.86,9.4,good
352
+ 10.7,0.67,0.22,2.7,0.107,17,34,1.0004,3.28,0.98,9.9,good
353
+ 9.1,0.795,0,2.6,0.096,11,26,0.9994,3.35,0.83,9.4,good
354
+ 7.7,0.665,0,2.4,0.09,8,19,0.9974,3.27,0.73,9.3,bad
355
+ 13.5,0.53,0.79,4.8,0.12,23,77,1.0018,3.18,0.77,13,bad
356
+ 6.1,0.21,0.4,1.4,0.066,40.5,165,0.9912,3.25,0.59,11.9,good
357
+ 6.7,0.75,0.01,2.4,0.078,17,32,0.9955,3.55,0.61,12.8,good
358
+ 11.5,0.41,0.52,3,0.08,29,55,1.0001,3.26,0.88,11,bad
359
+ 10.5,0.42,0.66,2.95,0.116,12,29,0.997,3.24,0.75,11.7,good
360
+ 11.9,0.43,0.66,3.1,0.109,10,23,1,3.15,0.85,10.4,good
361
+ 12.6,0.38,0.66,2.6,0.088,10,41,1.001,3.17,0.68,9.8,good
362
+ 8.2,0.7,0.23,2,0.099,14,81,0.9973,3.19,0.7,9.4,bad
363
+ 8.6,0.45,0.31,2.6,0.086,21,50,0.9982,3.37,0.91,9.9,good
364
+ 11.9,0.58,0.66,2.5,0.072,6,37,0.9992,3.05,0.56,10,bad
365
+ 12.5,0.46,0.63,2,0.071,6,15,0.9988,2.99,0.87,10.2,bad
366
+ 12.8,0.615,0.66,5.8,0.083,7,42,1.0022,3.07,0.73,10,good
367
+ 10,0.42,0.5,3.4,0.107,7,21,0.9979,3.26,0.93,11.8,good
368
+ 12.8,0.615,0.66,5.8,0.083,7,42,1.0022,3.07,0.73,10,good
369
+ 10.4,0.575,0.61,2.6,0.076,11,24,1,3.16,0.69,9,bad
370
+ 10.3,0.34,0.52,2.8,0.159,15,75,0.9998,3.18,0.64,9.4,bad
371
+ 9.4,0.27,0.53,2.4,0.074,6,18,0.9962,3.2,1.13,12,good
372
+ 6.9,0.765,0.02,2.3,0.063,35,63,0.9975,3.57,0.78,9.9,bad
373
+ 7.9,0.24,0.4,1.6,0.056,11,25,0.9967,3.32,0.87,8.7,good
374
+ 9.1,0.28,0.48,1.8,0.067,26,46,0.9967,3.32,1.04,10.6,good
375
+ 7.4,0.55,0.22,2.2,0.106,12,72,0.9959,3.05,0.63,9.2,bad
376
+ 14,0.41,0.63,3.8,0.089,6,47,1.0014,3.01,0.81,10.8,good
377
+ 11.5,0.54,0.71,4.4,0.124,6,15,0.9984,3.01,0.83,11.8,good
378
+ 11.5,0.45,0.5,3,0.078,19,47,1.0003,3.26,1.11,11,good
379
+ 9.4,0.27,0.53,2.4,0.074,6,18,0.9962,3.2,1.13,12,good
380
+ 11.4,0.625,0.66,6.2,0.088,6,24,0.9988,3.11,0.99,13.3,good
381
+ 8.3,0.42,0.38,2.5,0.094,24,60,0.9979,3.31,0.7,10.8,good
382
+ 8.3,0.26,0.42,2,0.08,11,27,0.9974,3.21,0.8,9.4,good
383
+ 13.7,0.415,0.68,2.9,0.085,17,43,1.0014,3.06,0.8,10,good
384
+ 8.3,0.26,0.42,2,0.08,11,27,0.9974,3.21,0.8,9.4,good
385
+ 8.3,0.26,0.42,2,0.08,11,27,0.9974,3.21,0.8,9.4,good
386
+ 7.7,0.51,0.28,2.1,0.087,23,54,0.998,3.42,0.74,9.2,bad
387
+ 7.4,0.63,0.07,2.4,0.09,11,37,0.9979,3.43,0.76,9.7,good
388
+ 7.8,0.54,0.26,2,0.088,23,48,0.9981,3.41,0.74,9.2,good
389
+ 8.3,0.66,0.15,1.9,0.079,17,42,0.9972,3.31,0.54,9.6,good
390
+ 7.8,0.46,0.26,1.9,0.088,23,53,0.9981,3.43,0.74,9.2,good
391
+ 9.6,0.38,0.31,2.5,0.096,16,49,0.9982,3.19,0.7,10,good
392
+ 5.6,0.85,0.05,1.4,0.045,12,88,0.9924,3.56,0.82,12.9,good
393
+ 13.7,0.415,0.68,2.9,0.085,17,43,1.0014,3.06,0.8,10,good
394
+ 9.5,0.37,0.52,2,0.082,6,26,0.998,3.18,0.51,9.5,bad
395
+ 8.4,0.665,0.61,2,0.112,13,95,0.997,3.16,0.54,9.1,bad
396
+ 12.7,0.6,0.65,2.3,0.063,6,25,0.9997,3.03,0.57,9.9,bad
397
+ 12,0.37,0.76,4.2,0.066,7,38,1.0004,3.22,0.6,13,good
398
+ 6.6,0.735,0.02,7.9,0.122,68,124,0.9994,3.47,0.53,9.9,bad
399
+ 11.5,0.59,0.59,2.6,0.087,13,49,0.9988,3.18,0.65,11,good
400
+ 11.5,0.59,0.59,2.6,0.087,13,49,0.9988,3.18,0.65,11,good
401
+ 8.7,0.765,0.22,2.3,0.064,9,42,0.9963,3.1,0.55,9.4,bad
402
+ 6.6,0.735,0.02,7.9,0.122,68,124,0.9994,3.47,0.53,9.9,bad
403
+ 7.7,0.26,0.3,1.7,0.059,20,38,0.9949,3.29,0.47,10.8,good
404
+ 12.2,0.48,0.54,2.6,0.085,19,64,1,3.1,0.61,10.5,good
405
+ 11.4,0.6,0.49,2.7,0.085,10,41,0.9994,3.15,0.63,10.5,good
406
+ 7.7,0.69,0.05,2.7,0.075,15,27,0.9974,3.26,0.61,9.1,bad
407
+ 8.7,0.31,0.46,1.4,0.059,11,25,0.9966,3.36,0.76,10.1,good
408
+ 9.8,0.44,0.47,2.5,0.063,9,28,0.9981,3.24,0.65,10.8,good
409
+ 12,0.39,0.66,3,0.093,12,30,0.9996,3.18,0.63,10.8,good
410
+ 10.4,0.34,0.58,3.7,0.174,6,16,0.997,3.19,0.7,11.3,good
411
+ 12.5,0.46,0.49,4.5,0.07,26,49,0.9981,3.05,0.57,9.6,bad
412
+ 9,0.43,0.34,2.5,0.08,26,86,0.9987,3.38,0.62,9.5,good
413
+ 9.1,0.45,0.35,2.4,0.08,23,78,0.9987,3.38,0.62,9.5,bad
414
+ 7.1,0.735,0.16,1.9,0.1,15,77,0.9966,3.27,0.64,9.3,bad
415
+ 9.9,0.4,0.53,6.7,0.097,6,19,0.9986,3.27,0.82,11.7,good
416
+ 8.8,0.52,0.34,2.7,0.087,24,122,0.9982,3.26,0.61,9.5,bad
417
+ 8.6,0.725,0.24,6.6,0.117,31,134,1.0014,3.32,1.07,9.3,bad
418
+ 10.6,0.48,0.64,2.2,0.111,6,20,0.997,3.26,0.66,11.7,good
419
+ 7,0.58,0.12,1.9,0.091,34,124,0.9956,3.44,0.48,10.5,bad
420
+ 11.9,0.38,0.51,2,0.121,7,20,0.9996,3.24,0.76,10.4,good
421
+ 6.8,0.77,0,1.8,0.066,34,52,0.9976,3.62,0.68,9.9,bad
422
+ 9.5,0.56,0.33,2.4,0.089,35,67,0.9972,3.28,0.73,11.8,good
423
+ 6.6,0.84,0.03,2.3,0.059,32,48,0.9952,3.52,0.56,12.3,good
424
+ 7.7,0.96,0.2,2,0.047,15,60,0.9955,3.36,0.44,10.9,bad
425
+ 10.5,0.24,0.47,2.1,0.066,6,24,0.9978,3.15,0.9,11,good
426
+ 7.7,0.96,0.2,2,0.047,15,60,0.9955,3.36,0.44,10.9,bad
427
+ 6.6,0.84,0.03,2.3,0.059,32,48,0.9952,3.52,0.56,12.3,good
428
+ 6.4,0.67,0.08,2.1,0.045,19,48,0.9949,3.49,0.49,11.4,good
429
+ 9.5,0.78,0.22,1.9,0.077,6,32,0.9988,3.26,0.56,10.6,good
430
+ 9.1,0.52,0.33,1.3,0.07,9,30,0.9978,3.24,0.6,9.3,bad
431
+ 12.8,0.84,0.63,2.4,0.088,13,35,0.9997,3.1,0.6,10.4,good
432
+ 10.5,0.24,0.47,2.1,0.066,6,24,0.9978,3.15,0.9,11,good
433
+ 7.8,0.55,0.35,2.2,0.074,21,66,0.9974,3.25,0.56,9.2,bad
434
+ 11.9,0.37,0.69,2.3,0.078,12,24,0.9958,3,0.65,12.8,good
435
+ 12.3,0.39,0.63,2.3,0.091,6,18,1.0004,3.16,0.49,9.5,bad
436
+ 10.4,0.41,0.55,3.2,0.076,22,54,0.9996,3.15,0.89,9.9,good
437
+ 12.3,0.39,0.63,2.3,0.091,6,18,1.0004,3.16,0.49,9.5,bad
438
+ 8,0.67,0.3,2,0.06,38,62,0.9958,3.26,0.56,10.2,good
439
+ 11.1,0.45,0.73,3.2,0.066,6,22,0.9986,3.17,0.66,11.2,good
440
+ 10.4,0.41,0.55,3.2,0.076,22,54,0.9996,3.15,0.89,9.9,good
441
+ 7,0.62,0.18,1.5,0.062,7,50,0.9951,3.08,0.6,9.3,bad
442
+ 12.6,0.31,0.72,2.2,0.072,6,29,0.9987,2.88,0.82,9.8,good
443
+ 11.9,0.4,0.65,2.15,0.068,7,27,0.9988,3.06,0.68,11.3,good
444
+ 15.6,0.685,0.76,3.7,0.1,6,43,1.0032,2.95,0.68,11.2,good
445
+ 10,0.44,0.49,2.7,0.077,11,19,0.9963,3.23,0.63,11.6,good
446
+ 5.3,0.57,0.01,1.7,0.054,5,27,0.9934,3.57,0.84,12.5,good
447
+ 9.5,0.735,0.1,2.1,0.079,6,31,0.9986,3.23,0.56,10.1,good
448
+ 12.5,0.38,0.6,2.6,0.081,31,72,0.9996,3.1,0.73,10.5,bad
449
+ 9.3,0.48,0.29,2.1,0.127,6,16,0.9968,3.22,0.72,11.2,bad
450
+ 8.6,0.53,0.22,2,0.1,7,27,0.9967,3.2,0.56,10.2,good
451
+ 11.9,0.39,0.69,2.8,0.095,17,35,0.9994,3.1,0.61,10.8,good
452
+ 11.9,0.39,0.69,2.8,0.095,17,35,0.9994,3.1,0.61,10.8,good
453
+ 8.4,0.37,0.53,1.8,0.413,9,26,0.9979,3.06,1.06,9.1,good
454
+ 6.8,0.56,0.03,1.7,0.084,18,35,0.9968,3.44,0.63,10,good
455
+ 10.4,0.33,0.63,2.8,0.084,5,22,0.9998,3.26,0.74,11.2,good
456
+ 7,0.23,0.4,1.6,0.063,21,67,0.9952,3.5,0.63,11.1,bad
457
+ 11.3,0.62,0.67,5.2,0.086,6,19,0.9988,3.22,0.69,13.4,good
458
+ 8.9,0.59,0.39,2.3,0.095,5,22,0.9986,3.37,0.58,10.3,bad
459
+ 9.2,0.63,0.21,2.7,0.097,29,65,0.9988,3.28,0.58,9.6,bad
460
+ 10.4,0.33,0.63,2.8,0.084,5,22,0.9998,3.26,0.74,11.2,good
461
+ 11.6,0.58,0.66,2.2,0.074,10,47,1.0008,3.25,0.57,9,bad
462
+ 9.2,0.43,0.52,2.3,0.083,14,23,0.9976,3.35,0.61,11.3,good
463
+ 8.3,0.615,0.22,2.6,0.087,6,19,0.9982,3.26,0.61,9.3,bad
464
+ 11,0.26,0.68,2.55,0.085,10,25,0.997,3.18,0.61,11.8,bad
465
+ 8.1,0.66,0.7,2.2,0.098,25,129,0.9972,3.08,0.53,9,bad
466
+ 11.5,0.315,0.54,2.1,0.084,5,15,0.9987,2.98,0.7,9.2,good
467
+ 10,0.29,0.4,2.9,0.098,10,26,1.0006,3.48,0.91,9.7,bad
468
+ 10.3,0.5,0.42,2,0.069,21,51,0.9982,3.16,0.72,11.5,good
469
+ 8.8,0.46,0.45,2.6,0.065,7,18,0.9947,3.32,0.79,14,good
470
+ 11.4,0.36,0.69,2.1,0.09,6,21,1,3.17,0.62,9.2,good
471
+ 8.7,0.82,0.02,1.2,0.07,36,48,0.9952,3.2,0.58,9.8,bad
472
+ 13,0.32,0.65,2.6,0.093,15,47,0.9996,3.05,0.61,10.6,bad
473
+ 9.6,0.54,0.42,2.4,0.081,25,52,0.997,3.2,0.71,11.4,good
474
+ 12.5,0.37,0.55,2.6,0.083,25,68,0.9995,3.15,0.82,10.4,good
475
+ 9.9,0.35,0.55,2.1,0.062,5,14,0.9971,3.26,0.79,10.6,bad
476
+ 10.5,0.28,0.51,1.7,0.08,10,24,0.9982,3.2,0.89,9.4,good
477
+ 9.6,0.68,0.24,2.2,0.087,5,28,0.9988,3.14,0.6,10.2,bad
478
+ 9.3,0.27,0.41,2,0.091,6,16,0.998,3.28,0.7,9.7,bad
479
+ 10.4,0.24,0.49,1.8,0.075,6,20,0.9977,3.18,1.06,11,good
480
+ 9.6,0.68,0.24,2.2,0.087,5,28,0.9988,3.14,0.6,10.2,bad
481
+ 9.4,0.685,0.11,2.7,0.077,6,31,0.9984,3.19,0.7,10.1,good
482
+ 10.6,0.28,0.39,15.5,0.069,6,23,1.0026,3.12,0.66,9.2,bad
483
+ 9.4,0.3,0.56,2.8,0.08,6,17,0.9964,3.15,0.92,11.7,good
484
+ 10.6,0.36,0.59,2.2,0.152,6,18,0.9986,3.04,1.05,9.4,bad
485
+ 10.6,0.36,0.6,2.2,0.152,7,18,0.9986,3.04,1.06,9.4,bad
486
+ 10.6,0.44,0.68,4.1,0.114,6,24,0.997,3.06,0.66,13.4,good
487
+ 10.2,0.67,0.39,1.9,0.054,6,17,0.9976,3.17,0.47,10,bad
488
+ 10.2,0.67,0.39,1.9,0.054,6,17,0.9976,3.17,0.47,10,bad
489
+ 10.2,0.645,0.36,1.8,0.053,5,14,0.9982,3.17,0.42,10,good
490
+ 11.6,0.32,0.55,2.8,0.081,35,67,1.0002,3.32,0.92,10.8,good
491
+ 9.3,0.39,0.4,2.6,0.073,10,26,0.9984,3.34,0.75,10.2,good
492
+ 9.3,0.775,0.27,2.8,0.078,24,56,0.9984,3.31,0.67,10.6,good
493
+ 9.2,0.41,0.5,2.5,0.055,12,25,0.9952,3.34,0.79,13.3,good
494
+ 8.9,0.4,0.51,2.6,0.052,13,27,0.995,3.32,0.9,13.4,good
495
+ 8.7,0.69,0.31,3,0.086,23,81,1.0002,3.48,0.74,11.6,good
496
+ 6.5,0.39,0.23,8.3,0.051,28,91,0.9952,3.44,0.55,12.1,good
497
+ 10.7,0.35,0.53,2.6,0.07,5,16,0.9972,3.15,0.65,11,good
498
+ 7.8,0.52,0.25,1.9,0.081,14,38,0.9984,3.43,0.65,9,good
499
+ 7.2,0.34,0.32,2.5,0.09,43,113,0.9966,3.32,0.79,11.1,bad
500
+ 10.7,0.35,0.53,2.6,0.07,5,16,0.9972,3.15,0.65,11,good
501
+ 8.7,0.69,0.31,3,0.086,23,81,1.0002,3.48,0.74,11.6,good
502
+ 7.8,0.52,0.25,1.9,0.081,14,38,0.9984,3.43,0.65,9,good
503
+ 10.4,0.44,0.73,6.55,0.074,38,76,0.999,3.17,0.85,12,good
504
+ 10.4,0.44,0.73,6.55,0.074,38,76,0.999,3.17,0.85,12,good
505
+ 10.5,0.26,0.47,1.9,0.078,6,24,0.9976,3.18,1.04,10.9,good
506
+ 10.5,0.24,0.42,1.8,0.077,6,22,0.9976,3.21,1.05,10.8,good
507
+ 10.2,0.49,0.63,2.9,0.072,10,26,0.9968,3.16,0.78,12.5,good
508
+ 10.4,0.24,0.46,1.8,0.075,6,21,0.9976,3.25,1.02,10.8,good
509
+ 11.2,0.67,0.55,2.3,0.084,6,13,1,3.17,0.71,9.5,good
510
+ 10,0.59,0.31,2.2,0.09,26,62,0.9994,3.18,0.63,10.2,good
511
+ 13.3,0.29,0.75,2.8,0.084,23,43,0.9986,3.04,0.68,11.4,good
512
+ 12.4,0.42,0.49,4.6,0.073,19,43,0.9978,3.02,0.61,9.5,bad
513
+ 10,0.59,0.31,2.2,0.09,26,62,0.9994,3.18,0.63,10.2,good
514
+ 10.7,0.4,0.48,2.1,0.125,15,49,0.998,3.03,0.81,9.7,good
515
+ 10.5,0.51,0.64,2.4,0.107,6,15,0.9973,3.09,0.66,11.8,good
516
+ 10.5,0.51,0.64,2.4,0.107,6,15,0.9973,3.09,0.66,11.8,good
517
+ 8.5,0.655,0.49,6.1,0.122,34,151,1.001,3.31,1.14,9.3,bad
518
+ 12.5,0.6,0.49,4.3,0.1,5,14,1.001,3.25,0.74,11.9,good
519
+ 10.4,0.61,0.49,2.1,0.2,5,16,0.9994,3.16,0.63,8.4,bad
520
+ 10.9,0.21,0.49,2.8,0.088,11,32,0.9972,3.22,0.68,11.7,good
521
+ 7.3,0.365,0.49,2.5,0.088,39,106,0.9966,3.36,0.78,11,bad
522
+ 9.8,0.25,0.49,2.7,0.088,15,33,0.9982,3.42,0.9,10,good
523
+ 7.6,0.41,0.49,2,0.088,16,43,0.998,3.48,0.64,9.1,bad
524
+ 8.2,0.39,0.49,2.3,0.099,47,133,0.9979,3.38,0.99,9.8,bad
525
+ 9.3,0.4,0.49,2.5,0.085,38,142,0.9978,3.22,0.55,9.4,bad
526
+ 9.2,0.43,0.49,2.4,0.086,23,116,0.9976,3.23,0.64,9.5,bad
527
+ 10.4,0.64,0.24,2.8,0.105,29,53,0.9998,3.24,0.67,9.9,bad
528
+ 7.3,0.365,0.49,2.5,0.088,39,106,0.9966,3.36,0.78,11,bad
529
+ 7,0.38,0.49,2.5,0.097,33,85,0.9962,3.39,0.77,11.4,good
530
+ 8.2,0.42,0.49,2.6,0.084,32,55,0.9988,3.34,0.75,8.7,good
531
+ 9.9,0.63,0.24,2.4,0.077,6,33,0.9974,3.09,0.57,9.4,bad
532
+ 9.1,0.22,0.24,2.1,0.078,1,28,0.999,3.41,0.87,10.3,good
533
+ 11.9,0.38,0.49,2.7,0.098,12,42,1.0004,3.16,0.61,10.3,bad
534
+ 11.9,0.38,0.49,2.7,0.098,12,42,1.0004,3.16,0.61,10.3,bad
535
+ 10.3,0.27,0.24,2.1,0.072,15,33,0.9956,3.22,0.66,12.8,good
536
+ 10,0.48,0.24,2.7,0.102,13,32,1,3.28,0.56,10,good
537
+ 9.1,0.22,0.24,2.1,0.078,1,28,0.999,3.41,0.87,10.3,good
538
+ 9.9,0.63,0.24,2.4,0.077,6,33,0.9974,3.09,0.57,9.4,bad
539
+ 8.1,0.825,0.24,2.1,0.084,5,13,0.9972,3.37,0.77,10.7,good
540
+ 12.9,0.35,0.49,5.8,0.066,5,35,1.0014,3.2,0.66,12,good
541
+ 11.2,0.5,0.74,5.15,0.1,5,17,0.9996,3.22,0.62,11.2,bad
542
+ 9.2,0.59,0.24,3.3,0.101,20,47,0.9988,3.26,0.67,9.6,bad
543
+ 9.5,0.46,0.49,6.3,0.064,5,17,0.9988,3.21,0.73,11,good
544
+ 9.3,0.715,0.24,2.1,0.07,5,20,0.9966,3.12,0.59,9.9,bad
545
+ 11.2,0.66,0.24,2.5,0.085,16,53,0.9993,3.06,0.72,11,good
546
+ 14.3,0.31,0.74,1.8,0.075,6,15,1.0008,2.86,0.79,8.4,good
547
+ 9.1,0.47,0.49,2.6,0.094,38,106,0.9982,3.08,0.59,9.1,bad
548
+ 7.5,0.55,0.24,2,0.078,10,28,0.9983,3.45,0.78,9.5,good
549
+ 10.6,0.31,0.49,2.5,0.067,6,21,0.9987,3.26,0.86,10.7,good
550
+ 12.4,0.35,0.49,2.6,0.079,27,69,0.9994,3.12,0.75,10.4,good
551
+ 9,0.53,0.49,1.9,0.171,6,25,0.9975,3.27,0.61,9.4,good
552
+ 6.8,0.51,0.01,2.1,0.074,9,25,0.9958,3.33,0.56,9.5,good
553
+ 9.4,0.43,0.24,2.8,0.092,14,45,0.998,3.19,0.73,10,good
554
+ 9.5,0.46,0.24,2.7,0.092,14,44,0.998,3.12,0.74,10,good
555
+ 5,1.04,0.24,1.6,0.05,32,96,0.9934,3.74,0.62,11.5,bad
556
+ 15.5,0.645,0.49,4.2,0.095,10,23,1.00315,2.92,0.74,11.1,bad
557
+ 15.5,0.645,0.49,4.2,0.095,10,23,1.00315,2.92,0.74,11.1,bad
558
+ 10.9,0.53,0.49,4.6,0.118,10,17,1.0002,3.07,0.56,11.7,good
559
+ 15.6,0.645,0.49,4.2,0.095,10,23,1.00315,2.92,0.74,11.1,bad
560
+ 10.9,0.53,0.49,4.6,0.118,10,17,1.0002,3.07,0.56,11.7,good
561
+ 13,0.47,0.49,4.3,0.085,6,47,1.0021,3.3,0.68,12.7,good
562
+ 12.7,0.6,0.49,2.8,0.075,5,19,0.9994,3.14,0.57,11.4,bad
563
+ 9,0.44,0.49,2.4,0.078,26,121,0.9978,3.23,0.58,9.2,bad
564
+ 9,0.54,0.49,2.9,0.094,41,110,0.9982,3.08,0.61,9.2,bad
565
+ 7.6,0.29,0.49,2.7,0.092,25,60,0.9971,3.31,0.61,10.1,good
566
+ 13,0.47,0.49,4.3,0.085,6,47,1.0021,3.3,0.68,12.7,good
567
+ 12.7,0.6,0.49,2.8,0.075,5,19,0.9994,3.14,0.57,11.4,bad
568
+ 8.7,0.7,0.24,2.5,0.226,5,15,0.9991,3.32,0.6,9,good
569
+ 8.7,0.7,0.24,2.5,0.226,5,15,0.9991,3.32,0.6,9,good
570
+ 9.8,0.5,0.49,2.6,0.25,5,20,0.999,3.31,0.79,10.7,good
571
+ 6.2,0.36,0.24,2.2,0.095,19,42,0.9946,3.57,0.57,11.7,good
572
+ 11.5,0.35,0.49,3.3,0.07,10,37,1.0003,3.32,0.91,11,good
573
+ 6.2,0.36,0.24,2.2,0.095,19,42,0.9946,3.57,0.57,11.7,good
574
+ 10.2,0.24,0.49,2.4,0.075,10,28,0.9978,3.14,0.61,10.4,bad
575
+ 10.5,0.59,0.49,2.1,0.07,14,47,0.9991,3.3,0.56,9.6,bad
576
+ 10.6,0.34,0.49,3.2,0.078,20,78,0.9992,3.19,0.7,10,good
577
+ 12.3,0.27,0.49,3.1,0.079,28,46,0.9993,3.2,0.8,10.2,good
578
+ 9.9,0.5,0.24,2.3,0.103,6,14,0.9978,3.34,0.52,10,bad
579
+ 8.8,0.44,0.49,2.8,0.083,18,111,0.9982,3.3,0.6,9.5,bad
580
+ 8.8,0.47,0.49,2.9,0.085,17,110,0.9982,3.29,0.6,9.8,bad
581
+ 10.6,0.31,0.49,2.2,0.063,18,40,0.9976,3.14,0.51,9.8,good
582
+ 12.3,0.5,0.49,2.2,0.089,5,14,1.0002,3.19,0.44,9.6,bad
583
+ 12.3,0.5,0.49,2.2,0.089,5,14,1.0002,3.19,0.44,9.6,bad
584
+ 11.7,0.49,0.49,2.2,0.083,5,15,1,3.19,0.43,9.2,bad
585
+ 12,0.28,0.49,1.9,0.074,10,21,0.9976,2.98,0.66,9.9,good
586
+ 11.8,0.33,0.49,3.4,0.093,54,80,1.0002,3.3,0.76,10.7,good
587
+ 7.6,0.51,0.24,2.4,0.091,8,38,0.998,3.47,0.66,9.6,good
588
+ 11.1,0.31,0.49,2.7,0.094,16,47,0.9986,3.12,1.02,10.6,good
589
+ 7.3,0.73,0.24,1.9,0.108,18,102,0.9967,3.26,0.59,9.3,bad
590
+ 5,0.42,0.24,2,0.06,19,50,0.9917,3.72,0.74,14,good
591
+ 10.2,0.29,0.49,2.6,0.059,5,13,0.9976,3.05,0.74,10.5,good
592
+ 9,0.45,0.49,2.6,0.084,21,75,0.9987,3.35,0.57,9.7,bad
593
+ 6.6,0.39,0.49,1.7,0.07,23,149,0.9922,3.12,0.5,11.5,good
594
+ 9,0.45,0.49,2.6,0.084,21,75,0.9987,3.35,0.57,9.7,bad
595
+ 9.9,0.49,0.58,3.5,0.094,9,43,1.0004,3.29,0.58,9,bad
596
+ 7.9,0.72,0.17,2.6,0.096,20,38,0.9978,3.4,0.53,9.5,bad
597
+ 8.9,0.595,0.41,7.9,0.086,30,109,0.9998,3.27,0.57,9.3,bad
598
+ 12.4,0.4,0.51,2,0.059,6,24,0.9994,3.04,0.6,9.3,good
599
+ 11.9,0.58,0.58,1.9,0.071,5,18,0.998,3.09,0.63,10,good
600
+ 8.5,0.585,0.18,2.1,0.078,5,30,0.9967,3.2,0.48,9.8,good
601
+ 12.7,0.59,0.45,2.3,0.082,11,22,1,3,0.7,9.3,good
602
+ 8.2,0.915,0.27,2.1,0.088,7,23,0.9962,3.26,0.47,10,bad
603
+ 13.2,0.46,0.52,2.2,0.071,12,35,1.0006,3.1,0.56,9,good
604
+ 7.7,0.835,0,2.6,0.081,6,14,0.9975,3.3,0.52,9.3,bad
605
+ 13.2,0.46,0.52,2.2,0.071,12,35,1.0006,3.1,0.56,9,good
606
+ 8.3,0.58,0.13,2.9,0.096,14,63,0.9984,3.17,0.62,9.1,good
607
+ 8.3,0.6,0.13,2.6,0.085,6,24,0.9984,3.31,0.59,9.2,good
608
+ 9.4,0.41,0.48,4.6,0.072,10,20,0.9973,3.34,0.79,12.2,good
609
+ 8.8,0.48,0.41,3.3,0.092,26,52,0.9982,3.31,0.53,10.5,good
610
+ 10.1,0.65,0.37,5.1,0.11,11,65,1.0026,3.32,0.64,10.4,good
611
+ 6.3,0.36,0.19,3.2,0.075,15,39,0.9956,3.56,0.52,12.7,good
612
+ 8.8,0.24,0.54,2.5,0.083,25,57,0.9983,3.39,0.54,9.2,bad
613
+ 13.2,0.38,0.55,2.7,0.081,5,16,1.0006,2.98,0.54,9.4,bad
614
+ 7.5,0.64,0,2.4,0.077,18,29,0.9965,3.32,0.6,10,good
615
+ 8.2,0.39,0.38,1.5,0.058,10,29,0.9962,3.26,0.74,9.8,bad
616
+ 9.2,0.755,0.18,2.2,0.148,10,103,0.9969,2.87,1.36,10.2,good
617
+ 9.6,0.6,0.5,2.3,0.079,28,71,0.9997,3.5,0.57,9.7,bad
618
+ 9.6,0.6,0.5,2.3,0.079,28,71,0.9997,3.5,0.57,9.7,bad
619
+ 11.5,0.31,0.51,2.2,0.079,14,28,0.9982,3.03,0.93,9.8,good
620
+ 11.4,0.46,0.5,2.7,0.122,4,17,1.0006,3.13,0.7,10.2,bad
621
+ 11.3,0.37,0.41,2.3,0.088,6,16,0.9988,3.09,0.8,9.3,bad
622
+ 8.3,0.54,0.24,3.4,0.076,16,112,0.9976,3.27,0.61,9.4,bad
623
+ 8.2,0.56,0.23,3.4,0.078,14,104,0.9976,3.28,0.62,9.4,bad
624
+ 10,0.58,0.22,1.9,0.08,9,32,0.9974,3.13,0.55,9.5,bad
625
+ 7.9,0.51,0.25,2.9,0.077,21,45,0.9974,3.49,0.96,12.1,good
626
+ 6.8,0.69,0,5.6,0.124,21,58,0.9997,3.46,0.72,10.2,bad
627
+ 6.8,0.69,0,5.6,0.124,21,58,0.9997,3.46,0.72,10.2,bad
628
+ 8.8,0.6,0.29,2.2,0.098,5,15,0.9988,3.36,0.49,9.1,bad
629
+ 8.8,0.6,0.29,2.2,0.098,5,15,0.9988,3.36,0.49,9.1,bad
630
+ 8.7,0.54,0.26,2.5,0.097,7,31,0.9976,3.27,0.6,9.3,good
631
+ 7.6,0.685,0.23,2.3,0.111,20,84,0.9964,3.21,0.61,9.3,bad
632
+ 8.7,0.54,0.26,2.5,0.097,7,31,0.9976,3.27,0.6,9.3,good
633
+ 10.4,0.28,0.54,2.7,0.105,5,19,0.9988,3.25,0.63,9.5,bad
634
+ 7.6,0.41,0.14,3,0.087,21,43,0.9964,3.32,0.57,10.5,good
635
+ 10.1,0.935,0.22,3.4,0.105,11,86,1.001,3.43,0.64,11.3,bad
636
+ 7.9,0.35,0.21,1.9,0.073,46,102,0.9964,3.27,0.58,9.5,bad
637
+ 8.7,0.84,0,1.4,0.065,24,33,0.9954,3.27,0.55,9.7,bad
638
+ 9.6,0.88,0.28,2.4,0.086,30,147,0.9979,3.24,0.53,9.4,bad
639
+ 9.5,0.885,0.27,2.3,0.084,31,145,0.9978,3.24,0.53,9.4,bad
640
+ 7.7,0.915,0.12,2.2,0.143,7,23,0.9964,3.35,0.65,10.2,good
641
+ 8.9,0.29,0.35,1.9,0.067,25,57,0.997,3.18,1.36,10.3,good
642
+ 9.9,0.54,0.45,2.3,0.071,16,40,0.9991,3.39,0.62,9.4,bad
643
+ 9.5,0.59,0.44,2.3,0.071,21,68,0.9992,3.46,0.63,9.5,bad
644
+ 9.9,0.54,0.45,2.3,0.071,16,40,0.9991,3.39,0.62,9.4,bad
645
+ 9.5,0.59,0.44,2.3,0.071,21,68,0.9992,3.46,0.63,9.5,bad
646
+ 9.9,0.54,0.45,2.3,0.071,16,40,0.9991,3.39,0.62,9.4,bad
647
+ 7.8,0.64,0.1,6,0.115,5,11,0.9984,3.37,0.69,10.1,good
648
+ 7.3,0.67,0.05,3.6,0.107,6,20,0.9972,3.4,0.63,10.1,bad
649
+ 8.3,0.845,0.01,2.2,0.07,5,14,0.9967,3.32,0.58,11,bad
650
+ 8.7,0.48,0.3,2.8,0.066,10,28,0.9964,3.33,0.67,11.2,good
651
+ 6.7,0.42,0.27,8.6,0.068,24,148,0.9948,3.16,0.57,11.3,good
652
+ 10.7,0.43,0.39,2.2,0.106,8,32,0.9986,2.89,0.5,9.6,bad
653
+ 9.8,0.88,0.25,2.5,0.104,35,155,1.001,3.41,0.67,11.2,bad
654
+ 15.9,0.36,0.65,7.5,0.096,22,71,0.9976,2.98,0.84,14.9,bad
655
+ 9.4,0.33,0.59,2.8,0.079,9,30,0.9976,3.12,0.54,12,good
656
+ 8.6,0.47,0.47,2.4,0.074,7,29,0.9979,3.08,0.46,9.5,bad
657
+ 9.7,0.55,0.17,2.9,0.087,20,53,1.0004,3.14,0.61,9.4,bad
658
+ 10.7,0.43,0.39,2.2,0.106,8,32,0.9986,2.89,0.5,9.6,bad
659
+ 12,0.5,0.59,1.4,0.073,23,42,0.998,2.92,0.68,10.5,good
660
+ 7.2,0.52,0.07,1.4,0.074,5,20,0.9973,3.32,0.81,9.6,good
661
+ 7.1,0.84,0.02,4.4,0.096,5,13,0.997,3.41,0.57,11,bad
662
+ 7.2,0.52,0.07,1.4,0.074,5,20,0.9973,3.32,0.81,9.6,good
663
+ 7.5,0.42,0.31,1.6,0.08,15,42,0.9978,3.31,0.64,9,bad
664
+ 7.2,0.57,0.06,1.6,0.076,9,27,0.9972,3.36,0.7,9.6,good
665
+ 10.1,0.28,0.46,1.8,0.05,5,13,0.9974,3.04,0.79,10.2,good
666
+ 12.1,0.4,0.52,2,0.092,15,54,1,3.03,0.66,10.2,bad
667
+ 9.4,0.59,0.14,2,0.084,25,48,0.9981,3.14,0.56,9.7,bad
668
+ 8.3,0.49,0.36,1.8,0.222,6,16,0.998,3.18,0.6,9.5,good
669
+ 11.3,0.34,0.45,2,0.082,6,15,0.9988,2.94,0.66,9.2,good
670
+ 10,0.73,0.43,2.3,0.059,15,31,0.9966,3.15,0.57,11,bad
671
+ 11.3,0.34,0.45,2,0.082,6,15,0.9988,2.94,0.66,9.2,good
672
+ 6.9,0.4,0.24,2.5,0.083,30,45,0.9959,3.26,0.58,10,bad
673
+ 8.2,0.73,0.21,1.7,0.074,5,13,0.9968,3.2,0.52,9.5,bad
674
+ 9.8,1.24,0.34,2,0.079,32,151,0.998,3.15,0.53,9.5,bad
675
+ 8.2,0.73,0.21,1.7,0.074,5,13,0.9968,3.2,0.52,9.5,bad
676
+ 10.8,0.4,0.41,2.2,0.084,7,17,0.9984,3.08,0.67,9.3,good
677
+ 9.3,0.41,0.39,2.2,0.064,12,31,0.9984,3.26,0.65,10.2,bad
678
+ 10.8,0.4,0.41,2.2,0.084,7,17,0.9984,3.08,0.67,9.3,good
679
+ 8.6,0.8,0.11,2.3,0.084,12,31,0.9979,3.4,0.48,9.9,bad
680
+ 8.3,0.78,0.1,2.6,0.081,45,87,0.9983,3.48,0.53,10,bad
681
+ 10.8,0.26,0.45,3.3,0.06,20,49,0.9972,3.13,0.54,9.6,bad
682
+ 13.3,0.43,0.58,1.9,0.07,15,40,1.0004,3.06,0.49,9,bad
683
+ 8,0.45,0.23,2.2,0.094,16,29,0.9962,3.21,0.49,10.2,good
684
+ 8.5,0.46,0.31,2.25,0.078,32,58,0.998,3.33,0.54,9.8,bad
685
+ 8.1,0.78,0.23,2.6,0.059,5,15,0.997,3.37,0.56,11.3,bad
686
+ 9.8,0.98,0.32,2.3,0.078,35,152,0.998,3.25,0.48,9.4,bad
687
+ 8.1,0.78,0.23,2.6,0.059,5,15,0.997,3.37,0.56,11.3,bad
688
+ 7.1,0.65,0.18,1.8,0.07,13,40,0.997,3.44,0.6,9.1,bad
689
+ 9.1,0.64,0.23,3.1,0.095,13,38,0.9998,3.28,0.59,9.7,bad
690
+ 7.7,0.66,0.04,1.6,0.039,4,9,0.9962,3.4,0.47,9.4,bad
691
+ 8.1,0.38,0.48,1.8,0.157,5,17,0.9976,3.3,1.05,9.4,bad
692
+ 7.4,1.185,0,4.25,0.097,5,14,0.9966,3.63,0.54,10.7,bad
693
+ 9.2,0.92,0.24,2.6,0.087,12,93,0.9998,3.48,0.54,9.8,bad
694
+ 8.6,0.49,0.51,2,0.422,16,62,0.9979,3.03,1.17,9,bad
695
+ 9,0.48,0.32,2.8,0.084,21,122,0.9984,3.32,0.62,9.4,bad
696
+ 9,0.47,0.31,2.7,0.084,24,125,0.9984,3.31,0.61,9.4,bad
697
+ 5.1,0.47,0.02,1.3,0.034,18,44,0.9921,3.9,0.62,12.8,good
698
+ 7,0.65,0.02,2.1,0.066,8,25,0.9972,3.47,0.67,9.5,good
699
+ 7,0.65,0.02,2.1,0.066,8,25,0.9972,3.47,0.67,9.5,good
700
+ 9.4,0.615,0.28,3.2,0.087,18,72,1.0001,3.31,0.53,9.7,bad
701
+ 11.8,0.38,0.55,2.1,0.071,5,19,0.9986,3.11,0.62,10.8,good
702
+ 10.6,1.02,0.43,2.9,0.076,26,88,0.9984,3.08,0.57,10.1,good
703
+ 7,0.65,0.02,2.1,0.066,8,25,0.9972,3.47,0.67,9.5,good
704
+ 7,0.64,0.02,2.1,0.067,9,23,0.997,3.47,0.67,9.4,good
705
+ 7.5,0.38,0.48,2.6,0.073,22,84,0.9972,3.32,0.7,9.6,bad
706
+ 9.1,0.765,0.04,1.6,0.078,4,14,0.998,3.29,0.54,9.7,bad
707
+ 8.4,1.035,0.15,6,0.073,11,54,0.999,3.37,0.49,9.9,bad
708
+ 7,0.78,0.08,2,0.093,10,19,0.9956,3.4,0.47,10,bad
709
+ 7.4,0.49,0.19,3,0.077,16,37,0.9966,3.37,0.51,10.5,bad
710
+ 7.8,0.545,0.12,2.5,0.068,11,35,0.996,3.34,0.61,11.6,good
711
+ 9.7,0.31,0.47,1.6,0.062,13,33,0.9983,3.27,0.66,10,good
712
+ 10.6,1.025,0.43,2.8,0.08,21,84,0.9985,3.06,0.57,10.1,bad
713
+ 8.9,0.565,0.34,3,0.093,16,112,0.9998,3.38,0.61,9.5,bad
714
+ 8.7,0.69,0,3.2,0.084,13,33,0.9992,3.36,0.45,9.4,bad
715
+ 8,0.43,0.36,2.3,0.075,10,48,0.9976,3.34,0.46,9.4,bad
716
+ 9.9,0.74,0.28,2.6,0.078,21,77,0.998,3.28,0.51,9.8,bad
717
+ 7.2,0.49,0.18,2.7,0.069,13,34,0.9967,3.29,0.48,9.2,good
718
+ 8,0.43,0.36,2.3,0.075,10,48,0.9976,3.34,0.46,9.4,bad
719
+ 7.6,0.46,0.11,2.6,0.079,12,49,0.9968,3.21,0.57,10,bad
720
+ 8.4,0.56,0.04,2,0.082,10,22,0.9976,3.22,0.44,9.6,bad
721
+ 7.1,0.66,0,3.9,0.086,17,45,0.9976,3.46,0.54,9.5,bad
722
+ 8.4,0.56,0.04,2,0.082,10,22,0.9976,3.22,0.44,9.6,bad
723
+ 8.9,0.48,0.24,2.85,0.094,35,106,0.9982,3.1,0.53,9.2,bad
724
+ 7.6,0.42,0.08,2.7,0.084,15,48,0.9968,3.21,0.59,10,bad
725
+ 7.1,0.31,0.3,2.2,0.053,36,127,0.9965,2.94,1.62,9.5,bad
726
+ 7.5,1.115,0.1,3.1,0.086,5,12,0.9958,3.54,0.6,11.2,bad
727
+ 9,0.66,0.17,3,0.077,5,13,0.9976,3.29,0.55,10.4,bad
728
+ 8.1,0.72,0.09,2.8,0.084,18,49,0.9994,3.43,0.72,11.1,good
729
+ 6.4,0.57,0.02,1.8,0.067,4,11,0.997,3.46,0.68,9.5,bad
730
+ 6.4,0.57,0.02,1.8,0.067,4,11,0.997,3.46,0.68,9.5,bad
731
+ 6.4,0.865,0.03,3.2,0.071,27,58,0.995,3.61,0.49,12.7,good
732
+ 9.5,0.55,0.66,2.3,0.387,12,37,0.9982,3.17,0.67,9.6,bad
733
+ 8.9,0.875,0.13,3.45,0.088,4,14,0.9994,3.44,0.52,11.5,bad
734
+ 7.3,0.835,0.03,2.1,0.092,10,19,0.9966,3.39,0.47,9.6,bad
735
+ 7,0.45,0.34,2.7,0.082,16,72,0.998,3.55,0.6,9.5,bad
736
+ 7.7,0.56,0.2,2,0.075,9,39,0.9987,3.48,0.62,9.3,bad
737
+ 7.7,0.965,0.1,2.1,0.112,11,22,0.9963,3.26,0.5,9.5,bad
738
+ 7.7,0.965,0.1,2.1,0.112,11,22,0.9963,3.26,0.5,9.5,bad
739
+ 8.2,0.59,0,2.5,0.093,19,58,1.0002,3.5,0.65,9.3,good
740
+ 9,0.46,0.23,2.8,0.092,28,104,0.9983,3.1,0.56,9.2,bad
741
+ 9,0.69,0,2.4,0.088,19,38,0.999,3.35,0.6,9.3,bad
742
+ 8.3,0.76,0.29,4.2,0.075,12,16,0.9965,3.45,0.68,11.5,good
743
+ 9.2,0.53,0.24,2.6,0.078,28,139,0.99788,3.21,0.57,9.5,bad
744
+ 6.5,0.615,0,1.9,0.065,9,18,0.9972,3.46,0.65,9.2,bad
745
+ 11.6,0.41,0.58,2.8,0.096,25,101,1.00024,3.13,0.53,10,bad
746
+ 11.1,0.39,0.54,2.7,0.095,21,101,1.0001,3.13,0.51,9.5,bad
747
+ 7.3,0.51,0.18,2.1,0.07,12,28,0.99768,3.52,0.73,9.5,good
748
+ 8.2,0.34,0.38,2.5,0.08,12,57,0.9978,3.3,0.47,9,good
749
+ 8.6,0.33,0.4,2.6,0.083,16,68,0.99782,3.3,0.48,9.4,bad
750
+ 7.2,0.5,0.18,2.1,0.071,12,31,0.99761,3.52,0.72,9.6,good
751
+ 7.3,0.51,0.18,2.1,0.07,12,28,0.99768,3.52,0.73,9.5,good
752
+ 8.3,0.65,0.1,2.9,0.089,17,40,0.99803,3.29,0.55,9.5,bad
753
+ 8.3,0.65,0.1,2.9,0.089,17,40,0.99803,3.29,0.55,9.5,bad
754
+ 7.6,0.54,0.13,2.5,0.097,24,66,0.99785,3.39,0.61,9.4,bad
755
+ 8.3,0.65,0.1,2.9,0.089,17,40,0.99803,3.29,0.55,9.5,bad
756
+ 7.8,0.48,0.68,1.7,0.415,14,32,0.99656,3.09,1.06,9.1,good
757
+ 7.8,0.91,0.07,1.9,0.058,22,47,0.99525,3.51,0.43,10.7,good
758
+ 6.3,0.98,0.01,2,0.057,15,33,0.99488,3.6,0.46,11.2,good
759
+ 8.1,0.87,0,2.2,0.084,10,31,0.99656,3.25,0.5,9.8,bad
760
+ 8.1,0.87,0,2.2,0.084,10,31,0.99656,3.25,0.5,9.8,bad
761
+ 8.8,0.42,0.21,2.5,0.092,33,88,0.99823,3.19,0.52,9.2,bad
762
+ 9,0.58,0.25,2.8,0.075,9,104,0.99779,3.23,0.57,9.7,bad
763
+ 9.3,0.655,0.26,2,0.096,5,35,0.99738,3.25,0.42,9.6,bad
764
+ 8.8,0.7,0,1.7,0.069,8,19,0.99701,3.31,0.53,10,good
765
+ 9.3,0.655,0.26,2,0.096,5,35,0.99738,3.25,0.42,9.6,bad
766
+ 9.1,0.68,0.11,2.8,0.093,11,44,0.99888,3.31,0.55,9.5,good
767
+ 9.2,0.67,0.1,3,0.091,12,48,0.99888,3.31,0.54,9.5,good
768
+ 8.8,0.59,0.18,2.9,0.089,12,74,0.99738,3.14,0.54,9.4,bad
769
+ 7.5,0.6,0.32,2.7,0.103,13,98,0.99938,3.45,0.62,9.5,bad
770
+ 7.1,0.59,0.02,2.3,0.082,24,94,0.99744,3.55,0.53,9.7,good
771
+ 7.9,0.72,0.01,1.9,0.076,7,32,0.99668,3.39,0.54,9.6,bad
772
+ 7.1,0.59,0.02,2.3,0.082,24,94,0.99744,3.55,0.53,9.7,good
773
+ 9.4,0.685,0.26,2.4,0.082,23,143,0.9978,3.28,0.55,9.4,bad
774
+ 9.5,0.57,0.27,2.3,0.082,23,144,0.99782,3.27,0.55,9.4,bad
775
+ 7.9,0.4,0.29,1.8,0.157,1,44,0.9973,3.3,0.92,9.5,good
776
+ 7.9,0.4,0.3,1.8,0.157,2,45,0.99727,3.31,0.91,9.5,good
777
+ 7.2,1,0,3,0.102,7,16,0.99586,3.43,0.46,10,bad
778
+ 6.9,0.765,0.18,2.4,0.243,5.5,48,0.99612,3.4,0.6,10.3,good
779
+ 6.9,0.635,0.17,2.4,0.241,6,18,0.9961,3.4,0.59,10.3,good
780
+ 8.3,0.43,0.3,3.4,0.079,7,34,0.99788,3.36,0.61,10.5,bad
781
+ 7.1,0.52,0.03,2.6,0.076,21,92,0.99745,3.5,0.6,9.8,bad
782
+ 7,0.57,0,2,0.19,12,45,0.99676,3.31,0.6,9.4,good
783
+ 6.5,0.46,0.14,2.4,0.114,9,37,0.99732,3.66,0.65,9.8,bad
784
+ 9,0.82,0.05,2.4,0.081,26,96,0.99814,3.36,0.53,10,bad
785
+ 6.5,0.46,0.14,2.4,0.114,9,37,0.99732,3.66,0.65,9.8,bad
786
+ 7.1,0.59,0.01,2.5,0.077,20,85,0.99746,3.55,0.59,9.8,bad
787
+ 9.9,0.35,0.41,2.3,0.083,11,61,0.9982,3.21,0.5,9.5,bad
788
+ 9.9,0.35,0.41,2.3,0.083,11,61,0.9982,3.21,0.5,9.5,bad
789
+ 10,0.56,0.24,2.2,0.079,19,58,0.9991,3.18,0.56,10.1,good
790
+ 10,0.56,0.24,2.2,0.079,19,58,0.9991,3.18,0.56,10.1,good
791
+ 8.6,0.63,0.17,2.9,0.099,21,119,0.998,3.09,0.52,9.3,bad
792
+ 7.4,0.37,0.43,2.6,0.082,18,82,0.99708,3.33,0.68,9.7,good
793
+ 8.8,0.64,0.17,2.9,0.084,25,130,0.99818,3.23,0.54,9.6,bad
794
+ 7.1,0.61,0.02,2.5,0.081,17,87,0.99745,3.48,0.6,9.7,good
795
+ 7.7,0.6,0,2.6,0.055,7,13,0.99639,3.38,0.56,10.8,bad
796
+ 10.1,0.27,0.54,2.3,0.065,7,26,0.99531,3.17,0.53,12.5,good
797
+ 10.8,0.89,0.3,2.6,0.132,7,60,0.99786,2.99,1.18,10.2,bad
798
+ 8.7,0.46,0.31,2.5,0.126,24,64,0.99746,3.1,0.74,9.6,bad
799
+ 9.3,0.37,0.44,1.6,0.038,21,42,0.99526,3.24,0.81,10.8,good
800
+ 9.4,0.5,0.34,3.6,0.082,5,14,0.9987,3.29,0.52,10.7,good
801
+ 9.4,0.5,0.34,3.6,0.082,5,14,0.9987,3.29,0.52,10.7,good
802
+ 7.2,0.61,0.08,4,0.082,26,108,0.99641,3.25,0.51,9.4,bad
803
+ 8.6,0.55,0.09,3.3,0.068,8,17,0.99735,3.23,0.44,10,bad
804
+ 5.1,0.585,0,1.7,0.044,14,86,0.99264,3.56,0.94,12.9,good
805
+ 7.7,0.56,0.08,2.5,0.114,14,46,0.9971,3.24,0.66,9.6,good
806
+ 8.4,0.52,0.22,2.7,0.084,4,18,0.99682,3.26,0.57,9.9,good
807
+ 8.2,0.28,0.4,2.4,0.052,4,10,0.99356,3.33,0.7,12.8,good
808
+ 8.4,0.25,0.39,2,0.041,4,10,0.99386,3.27,0.71,12.5,good
809
+ 8.2,0.28,0.4,2.4,0.052,4,10,0.99356,3.33,0.7,12.8,good
810
+ 7.4,0.53,0.12,1.9,0.165,4,12,0.99702,3.26,0.86,9.2,bad
811
+ 7.6,0.48,0.31,2.8,0.07,4,15,0.99693,3.22,0.55,10.3,good
812
+ 7.3,0.49,0.1,2.6,0.068,4,14,0.99562,3.3,0.47,10.5,bad
813
+ 12.9,0.5,0.55,2.8,0.072,7,24,1.00012,3.09,0.68,10.9,good
814
+ 10.8,0.45,0.33,2.5,0.099,20,38,0.99818,3.24,0.71,10.8,bad
815
+ 6.9,0.39,0.24,2.1,0.102,4,7,0.99462,3.44,0.58,11.4,bad
816
+ 12.6,0.41,0.54,2.8,0.103,19,41,0.99939,3.21,0.76,11.3,good
817
+ 10.8,0.45,0.33,2.5,0.099,20,38,0.99818,3.24,0.71,10.8,bad
818
+ 9.8,0.51,0.19,3.2,0.081,8,30,0.9984,3.23,0.58,10.5,good
819
+ 10.8,0.29,0.42,1.6,0.084,19,27,0.99545,3.28,0.73,11.9,good
820
+ 7.1,0.715,0,2.35,0.071,21,47,0.99632,3.29,0.45,9.4,bad
821
+ 9.1,0.66,0.15,3.2,0.097,9,59,0.99976,3.28,0.54,9.6,bad
822
+ 7,0.685,0,1.9,0.099,9,22,0.99606,3.34,0.6,9.7,bad
823
+ 4.9,0.42,0,2.1,0.048,16,42,0.99154,3.71,0.74,14,good
824
+ 6.7,0.54,0.13,2,0.076,15,36,0.9973,3.61,0.64,9.8,bad
825
+ 6.7,0.54,0.13,2,0.076,15,36,0.9973,3.61,0.64,9.8,bad
826
+ 7.1,0.48,0.28,2.8,0.068,6,16,0.99682,3.24,0.53,10.3,bad
827
+ 7.1,0.46,0.14,2.8,0.076,15,37,0.99624,3.36,0.49,10.7,bad
828
+ 7.5,0.27,0.34,2.3,0.05,4,8,0.9951,3.4,0.64,11,good
829
+ 7.1,0.46,0.14,2.8,0.076,15,37,0.99624,3.36,0.49,10.7,bad
830
+ 7.8,0.57,0.09,2.3,0.065,34,45,0.99417,3.46,0.74,12.7,good
831
+ 5.9,0.61,0.08,2.1,0.071,16,24,0.99376,3.56,0.77,11.1,good
832
+ 7.5,0.685,0.07,2.5,0.058,5,9,0.99632,3.38,0.55,10.9,bad
833
+ 5.9,0.61,0.08,2.1,0.071,16,24,0.99376,3.56,0.77,11.1,good
834
+ 10.4,0.44,0.42,1.5,0.145,34,48,0.99832,3.38,0.86,9.9,bad
835
+ 11.6,0.47,0.44,1.6,0.147,36,51,0.99836,3.38,0.86,9.9,bad
836
+ 8.8,0.685,0.26,1.6,0.088,16,23,0.99694,3.32,0.47,9.4,bad
837
+ 7.6,0.665,0.1,1.5,0.066,27,55,0.99655,3.39,0.51,9.3,bad
838
+ 6.7,0.28,0.28,2.4,0.012,36,100,0.99064,3.26,0.39,11.7,good
839
+ 6.7,0.28,0.28,2.4,0.012,36,100,0.99064,3.26,0.39,11.7,good
840
+ 10.1,0.31,0.35,1.6,0.075,9,28,0.99672,3.24,0.83,11.2,good
841
+ 6,0.5,0.04,2.2,0.092,13,26,0.99647,3.46,0.47,10,bad
842
+ 11.1,0.42,0.47,2.65,0.085,9,34,0.99736,3.24,0.77,12.1,good
843
+ 6.6,0.66,0,3,0.115,21,31,0.99629,3.45,0.63,10.3,bad
844
+ 10.6,0.5,0.45,2.6,0.119,34,68,0.99708,3.23,0.72,10.9,good
845
+ 7.1,0.685,0.35,2,0.088,9,92,0.9963,3.28,0.62,9.4,bad
846
+ 9.9,0.25,0.46,1.7,0.062,26,42,0.9959,3.18,0.83,10.6,good
847
+ 6.4,0.64,0.21,1.8,0.081,14,31,0.99689,3.59,0.66,9.8,bad
848
+ 6.4,0.64,0.21,1.8,0.081,14,31,0.99689,3.59,0.66,9.8,bad
849
+ 7.4,0.68,0.16,1.8,0.078,12,39,0.9977,3.5,0.7,9.9,good
850
+ 6.4,0.64,0.21,1.8,0.081,14,31,0.99689,3.59,0.66,9.8,bad
851
+ 6.4,0.63,0.21,1.6,0.08,12,32,0.99689,3.58,0.66,9.8,bad
852
+ 9.3,0.43,0.44,1.9,0.085,9,22,0.99708,3.28,0.55,9.5,bad
853
+ 9.3,0.43,0.44,1.9,0.085,9,22,0.99708,3.28,0.55,9.5,bad
854
+ 8,0.42,0.32,2.5,0.08,26,122,0.99801,3.22,1.07,9.7,bad
855
+ 9.3,0.36,0.39,1.5,0.08,41,55,0.99652,3.47,0.73,10.9,good
856
+ 9.3,0.36,0.39,1.5,0.08,41,55,0.99652,3.47,0.73,10.9,good
857
+ 7.6,0.735,0.02,2.5,0.071,10,14,0.99538,3.51,0.71,11.7,good
858
+ 9.3,0.36,0.39,1.5,0.08,41,55,0.99652,3.47,0.73,10.9,good
859
+ 8.2,0.26,0.34,2.5,0.073,16,47,0.99594,3.4,0.78,11.3,good
860
+ 11.7,0.28,0.47,1.7,0.054,17,32,0.99686,3.15,0.67,10.6,good
861
+ 6.8,0.56,0.22,1.8,0.074,15,24,0.99438,3.4,0.82,11.2,good
862
+ 7.2,0.62,0.06,2.7,0.077,15,85,0.99746,3.51,0.54,9.5,bad
863
+ 5.8,1.01,0.66,2,0.039,15,88,0.99357,3.66,0.6,11.5,good
864
+ 7.5,0.42,0.32,2.7,0.067,7,25,0.99628,3.24,0.44,10.4,bad
865
+ 7.2,0.62,0.06,2.5,0.078,17,84,0.99746,3.51,0.53,9.7,bad
866
+ 7.2,0.62,0.06,2.7,0.077,15,85,0.99746,3.51,0.54,9.5,bad
867
+ 7.2,0.635,0.07,2.6,0.077,16,86,0.99748,3.51,0.54,9.7,bad
868
+ 6.8,0.49,0.22,2.3,0.071,13,24,0.99438,3.41,0.83,11.3,good
869
+ 6.9,0.51,0.23,2,0.072,13,22,0.99438,3.4,0.84,11.2,good
870
+ 6.8,0.56,0.22,1.8,0.074,15,24,0.99438,3.4,0.82,11.2,good
871
+ 7.6,0.63,0.03,2,0.08,27,43,0.99578,3.44,0.64,10.9,good
872
+ 7.7,0.715,0.01,2.1,0.064,31,43,0.99371,3.41,0.57,11.8,good
873
+ 6.9,0.56,0.03,1.5,0.086,36,46,0.99522,3.53,0.57,10.6,bad
874
+ 7.3,0.35,0.24,2,0.067,28,48,0.99576,3.43,0.54,10,bad
875
+ 9.1,0.21,0.37,1.6,0.067,6,10,0.99552,3.23,0.58,11.1,good
876
+ 10.4,0.38,0.46,2.1,0.104,6,10,0.99664,3.12,0.65,11.8,good
877
+ 8.8,0.31,0.4,2.8,0.109,7,16,0.99614,3.31,0.79,11.8,good
878
+ 7.1,0.47,0,2.2,0.067,7,14,0.99517,3.4,0.58,10.9,bad
879
+ 7.7,0.715,0.01,2.1,0.064,31,43,0.99371,3.41,0.57,11.8,good
880
+ 8.8,0.61,0.19,4,0.094,30,69,0.99787,3.22,0.5,10,good
881
+ 7.2,0.6,0.04,2.5,0.076,18,88,0.99745,3.53,0.55,9.5,bad
882
+ 9.2,0.56,0.18,1.6,0.078,10,21,0.99576,3.15,0.49,9.9,bad
883
+ 7.6,0.715,0,2.1,0.068,30,35,0.99533,3.48,0.65,11.4,good
884
+ 8.4,0.31,0.29,3.1,0.194,14,26,0.99536,3.22,0.78,12,good
885
+ 7.2,0.6,0.04,2.5,0.076,18,88,0.99745,3.53,0.55,9.5,bad
886
+ 8.8,0.61,0.19,4,0.094,30,69,0.99787,3.22,0.5,10,good
887
+ 8.9,0.75,0.14,2.5,0.086,9,30,0.99824,3.34,0.64,10.5,bad
888
+ 9,0.8,0.12,2.4,0.083,8,28,0.99836,3.33,0.65,10.4,good
889
+ 10.7,0.52,0.38,2.6,0.066,29,56,0.99577,3.15,0.79,12.1,good
890
+ 6.8,0.57,0,2.5,0.072,32,64,0.99491,3.43,0.56,11.2,good
891
+ 10.7,0.9,0.34,6.6,0.112,23,99,1.00289,3.22,0.68,9.3,bad
892
+ 7.2,0.34,0.24,2,0.071,30,52,0.99576,3.44,0.58,10.1,bad
893
+ 7.2,0.66,0.03,2.3,0.078,16,86,0.99743,3.53,0.57,9.7,bad
894
+ 10.1,0.45,0.23,1.9,0.082,10,18,0.99774,3.22,0.65,9.3,good
895
+ 7.2,0.66,0.03,2.3,0.078,16,86,0.99743,3.53,0.57,9.7,bad
896
+ 7.2,0.63,0.03,2.2,0.08,17,88,0.99745,3.53,0.58,9.8,good
897
+ 7.1,0.59,0.01,2.3,0.08,27,43,0.9955,3.42,0.58,10.7,good
898
+ 8.3,0.31,0.39,2.4,0.078,17,43,0.99444,3.31,0.77,12.5,good
899
+ 7.1,0.59,0.01,2.3,0.08,27,43,0.9955,3.42,0.58,10.7,good
900
+ 8.3,0.31,0.39,2.4,0.078,17,43,0.99444,3.31,0.77,12.5,good
901
+ 8.3,1.02,0.02,3.4,0.084,6,11,0.99892,3.48,0.49,11,bad
902
+ 8.9,0.31,0.36,2.6,0.056,10,39,0.99562,3.4,0.69,11.8,bad
903
+ 7.4,0.635,0.1,2.4,0.08,16,33,0.99736,3.58,0.69,10.8,good
904
+ 7.4,0.635,0.1,2.4,0.08,16,33,0.99736,3.58,0.69,10.8,good
905
+ 6.8,0.59,0.06,6,0.06,11,18,0.9962,3.41,0.59,10.8,good
906
+ 6.8,0.59,0.06,6,0.06,11,18,0.9962,3.41,0.59,10.8,good
907
+ 9.2,0.58,0.2,3,0.081,15,115,0.998,3.23,0.59,9.5,bad
908
+ 7.2,0.54,0.27,2.6,0.084,12,78,0.9964,3.39,0.71,11,bad
909
+ 6.1,0.56,0,2.2,0.079,6,9,0.9948,3.59,0.54,11.5,good
910
+ 7.4,0.52,0.13,2.4,0.078,34,61,0.99528,3.43,0.59,10.8,good
911
+ 7.3,0.305,0.39,1.2,0.059,7,11,0.99331,3.29,0.52,11.5,good
912
+ 9.3,0.38,0.48,3.8,0.132,3,11,0.99577,3.23,0.57,13.2,good
913
+ 9.1,0.28,0.46,9,0.114,3,9,0.99901,3.18,0.6,10.9,good
914
+ 10,0.46,0.44,2.9,0.065,4,8,0.99674,3.33,0.62,12.2,good
915
+ 9.4,0.395,0.46,4.6,0.094,3,10,0.99639,3.27,0.64,12.2,good
916
+ 7.3,0.305,0.39,1.2,0.059,7,11,0.99331,3.29,0.52,11.5,good
917
+ 8.6,0.315,0.4,2.2,0.079,3,6,0.99512,3.27,0.67,11.9,good
918
+ 5.3,0.715,0.19,1.5,0.161,7,62,0.99395,3.62,0.61,11,bad
919
+ 6.8,0.41,0.31,8.8,0.084,26,45,0.99824,3.38,0.64,10.1,good
920
+ 8.4,0.36,0.32,2.2,0.081,32,79,0.9964,3.3,0.72,11,good
921
+ 8.4,0.62,0.12,1.8,0.072,38,46,0.99504,3.38,0.89,11.8,good
922
+ 9.6,0.41,0.37,2.3,0.091,10,23,0.99786,3.24,0.56,10.5,bad
923
+ 8.4,0.36,0.32,2.2,0.081,32,79,0.9964,3.3,0.72,11,good
924
+ 8.4,0.62,0.12,1.8,0.072,38,46,0.99504,3.38,0.89,11.8,good
925
+ 6.8,0.41,0.31,8.8,0.084,26,45,0.99824,3.38,0.64,10.1,good
926
+ 8.6,0.47,0.27,2.3,0.055,14,28,0.99516,3.18,0.8,11.2,bad
927
+ 8.6,0.22,0.36,1.9,0.064,53,77,0.99604,3.47,0.87,11,good
928
+ 9.4,0.24,0.33,2.3,0.061,52,73,0.99786,3.47,0.9,10.2,good
929
+ 8.4,0.67,0.19,2.2,0.093,11,75,0.99736,3.2,0.59,9.2,bad
930
+ 8.6,0.47,0.27,2.3,0.055,14,28,0.99516,3.18,0.8,11.2,bad
931
+ 8.7,0.33,0.38,3.3,0.063,10,19,0.99468,3.3,0.73,12,good
932
+ 6.6,0.61,0.01,1.9,0.08,8,25,0.99746,3.69,0.73,10.5,bad
933
+ 7.4,0.61,0.01,2,0.074,13,38,0.99748,3.48,0.65,9.8,bad
934
+ 7.6,0.4,0.29,1.9,0.078,29,66,0.9971,3.45,0.59,9.5,good
935
+ 7.4,0.61,0.01,2,0.074,13,38,0.99748,3.48,0.65,9.8,bad
936
+ 6.6,0.61,0.01,1.9,0.08,8,25,0.99746,3.69,0.73,10.5,bad
937
+ 8.8,0.3,0.38,2.3,0.06,19,72,0.99543,3.39,0.72,11.8,good
938
+ 8.8,0.3,0.38,2.3,0.06,19,72,0.99543,3.39,0.72,11.8,good
939
+ 12,0.63,0.5,1.4,0.071,6,26,0.99791,3.07,0.6,10.4,bad
940
+ 7.2,0.38,0.38,2.8,0.068,23,42,0.99356,3.34,0.72,12.9,good
941
+ 6.2,0.46,0.17,1.6,0.073,7,11,0.99425,3.61,0.54,11.4,bad
942
+ 9.6,0.33,0.52,2.2,0.074,13,25,0.99509,3.36,0.76,12.4,good
943
+ 9.9,0.27,0.49,5,0.082,9,17,0.99484,3.19,0.52,12.5,good
944
+ 10.1,0.43,0.4,2.6,0.092,13,52,0.99834,3.22,0.64,10,good
945
+ 9.8,0.5,0.34,2.3,0.094,10,45,0.99864,3.24,0.6,9.7,good
946
+ 8.3,0.3,0.49,3.8,0.09,11,24,0.99498,3.27,0.64,12.1,good
947
+ 10.2,0.44,0.42,2,0.071,7,20,0.99566,3.14,0.79,11.1,good
948
+ 10.2,0.44,0.58,4.1,0.092,11,24,0.99745,3.29,0.99,12,good
949
+ 8.3,0.28,0.48,2.1,0.093,6,12,0.99408,3.26,0.62,12.4,good
950
+ 8.9,0.12,0.45,1.8,0.075,10,21,0.99552,3.41,0.76,11.9,good
951
+ 8.9,0.12,0.45,1.8,0.075,10,21,0.99552,3.41,0.76,11.9,good
952
+ 8.9,0.12,0.45,1.8,0.075,10,21,0.99552,3.41,0.76,11.9,good
953
+ 8.3,0.28,0.48,2.1,0.093,6,12,0.99408,3.26,0.62,12.4,good
954
+ 8.2,0.31,0.4,2.2,0.058,6,10,0.99536,3.31,0.68,11.2,good
955
+ 10.2,0.34,0.48,2.1,0.052,5,9,0.99458,3.2,0.69,12.1,good
956
+ 7.6,0.43,0.4,2.7,0.082,6,11,0.99538,3.44,0.54,12.2,good
957
+ 8.5,0.21,0.52,1.9,0.09,9,23,0.99648,3.36,0.67,10.4,bad
958
+ 9,0.36,0.52,2.1,0.111,5,10,0.99568,3.31,0.62,11.3,good
959
+ 9.5,0.37,0.52,2,0.088,12,51,0.99613,3.29,0.58,11.1,good
960
+ 6.4,0.57,0.12,2.3,0.12,25,36,0.99519,3.47,0.71,11.3,good
961
+ 8,0.59,0.05,2,0.089,12,32,0.99735,3.36,0.61,10,bad
962
+ 8.5,0.47,0.27,1.9,0.058,18,38,0.99518,3.16,0.85,11.1,good
963
+ 7.1,0.56,0.14,1.6,0.078,7,18,0.99592,3.27,0.62,9.3,bad
964
+ 6.6,0.57,0.02,2.1,0.115,6,16,0.99654,3.38,0.69,9.5,bad
965
+ 8.8,0.27,0.39,2,0.1,20,27,0.99546,3.15,0.69,11.2,good
966
+ 8.5,0.47,0.27,1.9,0.058,18,38,0.99518,3.16,0.85,11.1,good
967
+ 8.3,0.34,0.4,2.4,0.065,24,48,0.99554,3.34,0.86,11,good
968
+ 9,0.38,0.41,2.4,0.103,6,10,0.99604,3.13,0.58,11.9,good
969
+ 8.5,0.66,0.2,2.1,0.097,23,113,0.99733,3.13,0.48,9.2,bad
970
+ 9,0.4,0.43,2.4,0.068,29,46,0.9943,3.2,0.6,12.2,good
971
+ 6.7,0.56,0.09,2.9,0.079,7,22,0.99669,3.46,0.61,10.2,bad
972
+ 10.4,0.26,0.48,1.9,0.066,6,10,0.99724,3.33,0.87,10.9,good
973
+ 10.4,0.26,0.48,1.9,0.066,6,10,0.99724,3.33,0.87,10.9,good
974
+ 10.1,0.38,0.5,2.4,0.104,6,13,0.99643,3.22,0.65,11.6,good
975
+ 8.5,0.34,0.44,1.7,0.079,6,12,0.99605,3.52,0.63,10.7,bad
976
+ 8.8,0.33,0.41,5.9,0.073,7,13,0.99658,3.3,0.62,12.1,good
977
+ 7.2,0.41,0.3,2.1,0.083,35,72,0.997,3.44,0.52,9.4,bad
978
+ 7.2,0.41,0.3,2.1,0.083,35,72,0.997,3.44,0.52,9.4,bad
979
+ 8.4,0.59,0.29,2.6,0.109,31,119,0.99801,3.15,0.5,9.1,bad
980
+ 7,0.4,0.32,3.6,0.061,9,29,0.99416,3.28,0.49,11.3,good
981
+ 12.2,0.45,0.49,1.4,0.075,3,6,0.9969,3.13,0.63,10.4,bad
982
+ 9.1,0.5,0.3,1.9,0.065,8,17,0.99774,3.32,0.71,10.5,good
983
+ 9.5,0.86,0.26,1.9,0.079,13,28,0.99712,3.25,0.62,10,bad
984
+ 7.3,0.52,0.32,2.1,0.07,51,70,0.99418,3.34,0.82,12.9,good
985
+ 9.1,0.5,0.3,1.9,0.065,8,17,0.99774,3.32,0.71,10.5,good
986
+ 12.2,0.45,0.49,1.4,0.075,3,6,0.9969,3.13,0.63,10.4,bad
987
+ 7.4,0.58,0,2,0.064,7,11,0.99562,3.45,0.58,11.3,good
988
+ 9.8,0.34,0.39,1.4,0.066,3,7,0.9947,3.19,0.55,11.4,good
989
+ 7.1,0.36,0.3,1.6,0.08,35,70,0.99693,3.44,0.5,9.4,bad
990
+ 7.7,0.39,0.12,1.7,0.097,19,27,0.99596,3.16,0.49,9.4,bad
991
+ 9.7,0.295,0.4,1.5,0.073,14,21,0.99556,3.14,0.51,10.9,good
992
+ 7.7,0.39,0.12,1.7,0.097,19,27,0.99596,3.16,0.49,9.4,bad
993
+ 7.1,0.34,0.28,2,0.082,31,68,0.99694,3.45,0.48,9.4,bad
994
+ 6.5,0.4,0.1,2,0.076,30,47,0.99554,3.36,0.48,9.4,good
995
+ 7.1,0.34,0.28,2,0.082,31,68,0.99694,3.45,0.48,9.4,bad
996
+ 10,0.35,0.45,2.5,0.092,20,88,0.99918,3.15,0.43,9.4,bad
997
+ 7.7,0.6,0.06,2,0.079,19,41,0.99697,3.39,0.62,10.1,good
998
+ 5.6,0.66,0,2.2,0.087,3,11,0.99378,3.71,0.63,12.8,good
999
+ 5.6,0.66,0,2.2,0.087,3,11,0.99378,3.71,0.63,12.8,good
1000
+ 8.9,0.84,0.34,1.4,0.05,4,10,0.99554,3.12,0.48,9.1,good
1001
+ 6.4,0.69,0,1.65,0.055,7,12,0.99162,3.47,0.53,12.9,good
1002
+ 7.5,0.43,0.3,2.2,0.062,6,12,0.99495,3.44,0.72,11.5,good
1003
+ 9.9,0.35,0.38,1.5,0.058,31,47,0.99676,3.26,0.82,10.6,good
1004
+ 9.1,0.29,0.33,2.05,0.063,13,27,0.99516,3.26,0.84,11.7,good
1005
+ 6.8,0.36,0.32,1.8,0.067,4,8,0.9928,3.36,0.55,12.8,good
1006
+ 8.2,0.43,0.29,1.6,0.081,27,45,0.99603,3.25,0.54,10.3,bad
1007
+ 6.8,0.36,0.32,1.8,0.067,4,8,0.9928,3.36,0.55,12.8,good
1008
+ 9.1,0.29,0.33,2.05,0.063,13,27,0.99516,3.26,0.84,11.7,good
1009
+ 9.1,0.3,0.34,2,0.064,12,25,0.99516,3.26,0.84,11.7,good
1010
+ 8.9,0.35,0.4,3.6,0.11,12,24,0.99549,3.23,0.7,12,good
1011
+ 9.6,0.5,0.36,2.8,0.116,26,55,0.99722,3.18,0.68,10.9,bad
1012
+ 8.9,0.28,0.45,1.7,0.067,7,12,0.99354,3.25,0.55,12.3,good
1013
+ 8.9,0.32,0.31,2,0.088,12,19,0.9957,3.17,0.55,10.4,good
1014
+ 7.7,1.005,0.15,2.1,0.102,11,32,0.99604,3.23,0.48,10,bad
1015
+ 7.5,0.71,0,1.6,0.092,22,31,0.99635,3.38,0.58,10,good
1016
+ 8,0.58,0.16,2,0.12,3,7,0.99454,3.22,0.58,11.2,good
1017
+ 10.5,0.39,0.46,2.2,0.075,14,27,0.99598,3.06,0.84,11.4,good
1018
+ 8.9,0.38,0.4,2.2,0.068,12,28,0.99486,3.27,0.75,12.6,good
1019
+ 8,0.18,0.37,0.9,0.049,36,109,0.99007,2.89,0.44,12.7,good
1020
+ 8,0.18,0.37,0.9,0.049,36,109,0.99007,2.89,0.44,12.7,good
1021
+ 7,0.5,0.14,1.8,0.078,10,23,0.99636,3.53,0.61,10.4,bad
1022
+ 11.3,0.36,0.66,2.4,0.123,3,8,0.99642,3.2,0.53,11.9,good
1023
+ 11.3,0.36,0.66,2.4,0.123,3,8,0.99642,3.2,0.53,11.9,good
1024
+ 7,0.51,0.09,2.1,0.062,4,9,0.99584,3.35,0.54,10.5,bad
1025
+ 8.2,0.32,0.42,2.3,0.098,3,9,0.99506,3.27,0.55,12.3,good
1026
+ 7.7,0.58,0.01,1.8,0.088,12,18,0.99568,3.32,0.56,10.5,good
1027
+ 8.6,0.83,0,2.8,0.095,17,43,0.99822,3.33,0.6,10.4,good
1028
+ 7.9,0.31,0.32,1.9,0.066,14,36,0.99364,3.41,0.56,12.6,good
1029
+ 6.4,0.795,0,2.2,0.065,28,52,0.99378,3.49,0.52,11.6,bad
1030
+ 7.2,0.34,0.21,2.5,0.075,41,68,0.99586,3.37,0.54,10.1,good
1031
+ 7.7,0.58,0.01,1.8,0.088,12,18,0.99568,3.32,0.56,10.5,good
1032
+ 7.1,0.59,0,2.1,0.091,9,14,0.99488,3.42,0.55,11.5,good
1033
+ 7.3,0.55,0.01,1.8,0.093,9,15,0.99514,3.35,0.58,11,good
1034
+ 8.1,0.82,0,4.1,0.095,5,14,0.99854,3.36,0.53,9.6,bad
1035
+ 7.5,0.57,0.08,2.6,0.089,14,27,0.99592,3.3,0.59,10.4,good
1036
+ 8.9,0.745,0.18,2.5,0.077,15,48,0.99739,3.2,0.47,9.7,good
1037
+ 10.1,0.37,0.34,2.4,0.085,5,17,0.99683,3.17,0.65,10.6,good
1038
+ 7.6,0.31,0.34,2.5,0.082,26,35,0.99356,3.22,0.59,12.5,good
1039
+ 7.3,0.91,0.1,1.8,0.074,20,56,0.99672,3.35,0.56,9.2,bad
1040
+ 8.7,0.41,0.41,6.2,0.078,25,42,0.9953,3.24,0.77,12.6,good
1041
+ 8.9,0.5,0.21,2.2,0.088,21,39,0.99692,3.33,0.83,11.1,good
1042
+ 7.4,0.965,0,2.2,0.088,16,32,0.99756,3.58,0.67,10.2,bad
1043
+ 6.9,0.49,0.19,1.7,0.079,13,26,0.99547,3.38,0.64,9.8,good
1044
+ 8.9,0.5,0.21,2.2,0.088,21,39,0.99692,3.33,0.83,11.1,good
1045
+ 9.5,0.39,0.41,8.9,0.069,18,39,0.99859,3.29,0.81,10.9,good
1046
+ 6.4,0.39,0.33,3.3,0.046,12,53,0.99294,3.36,0.62,12.2,good
1047
+ 6.9,0.44,0,1.4,0.07,32,38,0.99438,3.32,0.58,11.4,good
1048
+ 7.6,0.78,0,1.7,0.076,33,45,0.99612,3.31,0.62,10.7,good
1049
+ 7.1,0.43,0.17,1.8,0.082,27,51,0.99634,3.49,0.64,10.4,bad
1050
+ 9.3,0.49,0.36,1.7,0.081,3,14,0.99702,3.27,0.78,10.9,good
1051
+ 9.3,0.5,0.36,1.8,0.084,6,17,0.99704,3.27,0.77,10.8,good
1052
+ 7.1,0.43,0.17,1.8,0.082,27,51,0.99634,3.49,0.64,10.4,bad
1053
+ 8.5,0.46,0.59,1.4,0.414,16,45,0.99702,3.03,1.34,9.2,bad
1054
+ 5.6,0.605,0.05,2.4,0.073,19,25,0.99258,3.56,0.55,12.9,bad
1055
+ 8.3,0.33,0.42,2.3,0.07,9,20,0.99426,3.38,0.77,12.7,good
1056
+ 8.2,0.64,0.27,2,0.095,5,77,0.99747,3.13,0.62,9.1,good
1057
+ 8.2,0.64,0.27,2,0.095,5,77,0.99747,3.13,0.62,9.1,good
1058
+ 8.9,0.48,0.53,4,0.101,3,10,0.99586,3.21,0.59,12.1,good
1059
+ 7.6,0.42,0.25,3.9,0.104,28,90,0.99784,3.15,0.57,9.1,bad
1060
+ 9.9,0.53,0.57,2.4,0.093,30,52,0.9971,3.19,0.76,11.6,good
1061
+ 8.9,0.48,0.53,4,0.101,3,10,0.99586,3.21,0.59,12.1,good
1062
+ 11.6,0.23,0.57,1.8,0.074,3,8,0.9981,3.14,0.7,9.9,good
1063
+ 9.1,0.4,0.5,1.8,0.071,7,16,0.99462,3.21,0.69,12.5,good
1064
+ 8,0.38,0.44,1.9,0.098,6,15,0.9956,3.3,0.64,11.4,good
1065
+ 10.2,0.29,0.65,2.4,0.075,6,17,0.99565,3.22,0.63,11.8,good
1066
+ 8.2,0.74,0.09,2,0.067,5,10,0.99418,3.28,0.57,11.8,good
1067
+ 7.7,0.61,0.18,2.4,0.083,6,20,0.9963,3.29,0.6,10.2,good
1068
+ 6.6,0.52,0.08,2.4,0.07,13,26,0.99358,3.4,0.72,12.5,good
1069
+ 11.1,0.31,0.53,2.2,0.06,3,10,0.99572,3.02,0.83,10.9,good
1070
+ 11.1,0.31,0.53,2.2,0.06,3,10,0.99572,3.02,0.83,10.9,good
1071
+ 8,0.62,0.35,2.8,0.086,28,52,0.997,3.31,0.62,10.8,bad
1072
+ 9.3,0.33,0.45,1.5,0.057,19,37,0.99498,3.18,0.89,11.1,good
1073
+ 7.5,0.77,0.2,8.1,0.098,30,92,0.99892,3.2,0.58,9.2,bad
1074
+ 7.2,0.35,0.26,1.8,0.083,33,75,0.9968,3.4,0.58,9.5,good
1075
+ 8,0.62,0.33,2.7,0.088,16,37,0.9972,3.31,0.58,10.7,good
1076
+ 7.5,0.77,0.2,8.1,0.098,30,92,0.99892,3.2,0.58,9.2,bad
1077
+ 9.1,0.25,0.34,2,0.071,45,67,0.99769,3.44,0.86,10.2,good
1078
+ 9.9,0.32,0.56,2,0.073,3,8,0.99534,3.15,0.73,11.4,good
1079
+ 8.6,0.37,0.65,6.4,0.08,3,8,0.99817,3.27,0.58,11,bad
1080
+ 8.6,0.37,0.65,6.4,0.08,3,8,0.99817,3.27,0.58,11,bad
1081
+ 7.9,0.3,0.68,8.3,0.05,37.5,278,0.99316,3.01,0.51,12.3,good
1082
+ 10.3,0.27,0.56,1.4,0.047,3,8,0.99471,3.16,0.51,11.8,good
1083
+ 7.9,0.3,0.68,8.3,0.05,37.5,289,0.99316,3.01,0.51,12.3,good
1084
+ 7.2,0.38,0.3,1.8,0.073,31,70,0.99685,3.42,0.59,9.5,good
1085
+ 8.7,0.42,0.45,2.4,0.072,32,59,0.99617,3.33,0.77,12,good
1086
+ 7.2,0.38,0.3,1.8,0.073,31,70,0.99685,3.42,0.59,9.5,good
1087
+ 6.8,0.48,0.08,1.8,0.074,40,64,0.99529,3.12,0.49,9.6,bad
1088
+ 8.5,0.34,0.4,4.7,0.055,3,9,0.99738,3.38,0.66,11.6,good
1089
+ 7.9,0.19,0.42,1.6,0.057,18,30,0.994,3.29,0.69,11.2,good
1090
+ 11.6,0.41,0.54,1.5,0.095,22,41,0.99735,3.02,0.76,9.9,good
1091
+ 11.6,0.41,0.54,1.5,0.095,22,41,0.99735,3.02,0.76,9.9,good
1092
+ 10,0.26,0.54,1.9,0.083,42,74,0.99451,2.98,0.63,11.8,good
1093
+ 7.9,0.34,0.42,2,0.086,8,19,0.99546,3.35,0.6,11.4,good
1094
+ 7,0.54,0.09,2,0.081,10,16,0.99479,3.43,0.59,11.5,good
1095
+ 9.2,0.31,0.36,2.2,0.079,11,31,0.99615,3.33,0.86,12,good
1096
+ 6.6,0.725,0.09,5.5,0.117,9,17,0.99655,3.35,0.49,10.8,good
1097
+ 9.4,0.4,0.47,2.5,0.087,6,20,0.99772,3.15,0.5,10.5,bad
1098
+ 6.6,0.725,0.09,5.5,0.117,9,17,0.99655,3.35,0.49,10.8,good
1099
+ 8.6,0.52,0.38,1.5,0.096,5,18,0.99666,3.2,0.52,9.4,bad
1100
+ 8,0.31,0.45,2.1,0.216,5,16,0.99358,3.15,0.81,12.5,good
1101
+ 8.6,0.52,0.38,1.5,0.096,5,18,0.99666,3.2,0.52,9.4,bad
1102
+ 8.4,0.34,0.42,2.1,0.072,23,36,0.99392,3.11,0.78,12.4,good
1103
+ 7.4,0.49,0.27,2.1,0.071,14,25,0.99388,3.35,0.63,12,good
1104
+ 6.1,0.48,0.09,1.7,0.078,18,30,0.99402,3.45,0.54,11.2,good
1105
+ 7.4,0.49,0.27,2.1,0.071,14,25,0.99388,3.35,0.63,12,good
1106
+ 8,0.48,0.34,2.2,0.073,16,25,0.9936,3.28,0.66,12.4,good
1107
+ 6.3,0.57,0.28,2.1,0.048,13,49,0.99374,3.41,0.6,12.8,bad
1108
+ 8.2,0.23,0.42,1.9,0.069,9,17,0.99376,3.21,0.54,12.3,good
1109
+ 9.1,0.3,0.41,2,0.068,10,24,0.99523,3.27,0.85,11.7,good
1110
+ 8.1,0.78,0.1,3.3,0.09,4,13,0.99855,3.36,0.49,9.5,bad
1111
+ 10.8,0.47,0.43,2.1,0.171,27,66,0.9982,3.17,0.76,10.8,good
1112
+ 8.3,0.53,0,1.4,0.07,6,14,0.99593,3.25,0.64,10,good
1113
+ 5.4,0.42,0.27,2,0.092,23,55,0.99471,3.78,0.64,12.3,good
1114
+ 7.9,0.33,0.41,1.5,0.056,6,35,0.99396,3.29,0.71,11,good
1115
+ 8.9,0.24,0.39,1.6,0.074,3,10,0.99698,3.12,0.59,9.5,good
1116
+ 5,0.4,0.5,4.3,0.046,29,80,0.9902,3.49,0.66,13.6,good
1117
+ 7,0.69,0.07,2.5,0.091,15,21,0.99572,3.38,0.6,11.3,good
1118
+ 7,0.69,0.07,2.5,0.091,15,21,0.99572,3.38,0.6,11.3,good
1119
+ 7,0.69,0.07,2.5,0.091,15,21,0.99572,3.38,0.6,11.3,good
1120
+ 7.1,0.39,0.12,2.1,0.065,14,24,0.99252,3.3,0.53,13.3,good
1121
+ 5.6,0.66,0,2.5,0.066,7,15,0.99256,3.52,0.58,12.9,bad
1122
+ 7.9,0.54,0.34,2.5,0.076,8,17,0.99235,3.2,0.72,13.1,good
1123
+ 6.6,0.5,0,1.8,0.062,21,28,0.99352,3.44,0.55,12.3,good
1124
+ 6.3,0.47,0,1.4,0.055,27,33,0.9922,3.45,0.48,12.3,good
1125
+ 10.7,0.4,0.37,1.9,0.081,17,29,0.99674,3.12,0.65,11.2,good
1126
+ 6.5,0.58,0,2.2,0.096,3,13,0.99557,3.62,0.62,11.5,bad
1127
+ 8.8,0.24,0.35,1.7,0.055,13,27,0.99394,3.14,0.59,11.3,good
1128
+ 5.8,0.29,0.26,1.7,0.063,3,11,0.9915,3.39,0.54,13.5,good
1129
+ 6.3,0.76,0,2.9,0.072,26,52,0.99379,3.51,0.6,11.5,good
1130
+ 10,0.43,0.33,2.7,0.095,28,89,0.9984,3.22,0.68,10,bad
1131
+ 10.5,0.43,0.35,3.3,0.092,24,70,0.99798,3.21,0.69,10.5,good
1132
+ 9.1,0.6,0,1.9,0.058,5,10,0.9977,3.18,0.63,10.4,good
1133
+ 5.9,0.19,0.21,1.7,0.045,57,135,0.99341,3.32,0.44,9.5,bad
1134
+ 7.4,0.36,0.34,1.8,0.075,18,38,0.9933,3.38,0.88,13.6,good
1135
+ 7.2,0.48,0.07,5.5,0.089,10,18,0.99684,3.37,0.68,11.2,good
1136
+ 8.5,0.28,0.35,1.7,0.061,6,15,0.99524,3.3,0.74,11.8,good
1137
+ 8,0.25,0.43,1.7,0.067,22,50,0.9946,3.38,0.6,11.9,good
1138
+ 10.4,0.52,0.45,2,0.08,6,13,0.99774,3.22,0.76,11.4,good
1139
+ 10.4,0.52,0.45,2,0.08,6,13,0.99774,3.22,0.76,11.4,good
1140
+ 7.5,0.41,0.15,3.7,0.104,29,94,0.99786,3.14,0.58,9.1,bad
1141
+ 8.2,0.51,0.24,2,0.079,16,86,0.99764,3.34,0.64,9.5,good
1142
+ 7.3,0.4,0.3,1.7,0.08,33,79,0.9969,3.41,0.65,9.5,good
1143
+ 8.2,0.38,0.32,2.5,0.08,24,71,0.99624,3.27,0.85,11,good
1144
+ 6.9,0.45,0.11,2.4,0.043,6,12,0.99354,3.3,0.65,11.4,good
1145
+ 7,0.22,0.3,1.8,0.065,16,20,0.99672,3.61,0.82,10,good
1146
+ 7.3,0.32,0.23,2.3,0.066,35,70,0.99588,3.43,0.62,10.1,bad
1147
+ 8.2,0.2,0.43,2.5,0.076,31,51,0.99672,3.53,0.81,10.4,good
1148
+ 7.8,0.5,0.12,1.8,0.178,6,21,0.996,3.28,0.87,9.8,good
1149
+ 10,0.41,0.45,6.2,0.071,6,14,0.99702,3.21,0.49,11.8,good
1150
+ 7.8,0.39,0.42,2,0.086,9,21,0.99526,3.39,0.66,11.6,good
1151
+ 10,0.35,0.47,2,0.061,6,11,0.99585,3.23,0.52,12,good
1152
+ 8.2,0.33,0.32,2.8,0.067,4,12,0.99473,3.3,0.76,12.8,good
1153
+ 6.1,0.58,0.23,2.5,0.044,16,70,0.99352,3.46,0.65,12.5,good
1154
+ 8.3,0.6,0.25,2.2,0.118,9,38,0.99616,3.15,0.53,9.8,bad
1155
+ 9.6,0.42,0.35,2.1,0.083,17,38,0.99622,3.23,0.66,11.1,good
1156
+ 6.6,0.58,0,2.2,0.1,50,63,0.99544,3.59,0.68,11.4,good
1157
+ 8.3,0.6,0.25,2.2,0.118,9,38,0.99616,3.15,0.53,9.8,bad
1158
+ 8.5,0.18,0.51,1.75,0.071,45,88,0.99524,3.33,0.76,11.8,good
1159
+ 5.1,0.51,0.18,2.1,0.042,16,101,0.9924,3.46,0.87,12.9,good
1160
+ 6.7,0.41,0.43,2.8,0.076,22,54,0.99572,3.42,1.16,10.6,good
1161
+ 10.2,0.41,0.43,2.2,0.11,11,37,0.99728,3.16,0.67,10.8,bad
1162
+ 10.6,0.36,0.57,2.3,0.087,6,20,0.99676,3.14,0.72,11.1,good
1163
+ 8.8,0.45,0.43,1.4,0.076,12,21,0.99551,3.21,0.75,10.2,good
1164
+ 8.5,0.32,0.42,2.3,0.075,12,19,0.99434,3.14,0.71,11.8,good
1165
+ 9,0.785,0.24,1.7,0.078,10,21,0.99692,3.29,0.67,10,bad
1166
+ 9,0.785,0.24,1.7,0.078,10,21,0.99692,3.29,0.67,10,bad
1167
+ 8.5,0.44,0.5,1.9,0.369,15,38,0.99634,3.01,1.1,9.4,bad
1168
+ 9.9,0.54,0.26,2,0.111,7,60,0.99709,2.94,0.98,10.2,bad
1169
+ 8.2,0.33,0.39,2.5,0.074,29,48,0.99528,3.32,0.88,12.4,good
1170
+ 6.5,0.34,0.27,2.8,0.067,8,44,0.99384,3.21,0.56,12,good
1171
+ 7.6,0.5,0.29,2.3,0.086,5,14,0.99502,3.32,0.62,11.5,good
1172
+ 9.2,0.36,0.34,1.6,0.062,5,12,0.99667,3.2,0.67,10.5,good
1173
+ 7.1,0.59,0,2.2,0.078,26,44,0.99522,3.42,0.68,10.8,good
1174
+ 9.7,0.42,0.46,2.1,0.074,5,16,0.99649,3.27,0.74,12.3,good
1175
+ 7.6,0.36,0.31,1.7,0.079,26,65,0.99716,3.46,0.62,9.5,good
1176
+ 7.6,0.36,0.31,1.7,0.079,26,65,0.99716,3.46,0.62,9.5,good
1177
+ 6.5,0.61,0,2.2,0.095,48,59,0.99541,3.61,0.7,11.5,good
1178
+ 6.5,0.88,0.03,5.6,0.079,23,47,0.99572,3.58,0.5,11.2,bad
1179
+ 7.1,0.66,0,2.4,0.052,6,11,0.99318,3.35,0.66,12.7,good
1180
+ 5.6,0.915,0,2.1,0.041,17,78,0.99346,3.68,0.73,11.4,bad
1181
+ 8.2,0.35,0.33,2.4,0.076,11,47,0.99599,3.27,0.81,11,good
1182
+ 8.2,0.35,0.33,2.4,0.076,11,47,0.99599,3.27,0.81,11,good
1183
+ 9.8,0.39,0.43,1.65,0.068,5,11,0.99478,3.19,0.46,11.4,bad
1184
+ 10.2,0.4,0.4,2.5,0.068,41,54,0.99754,3.38,0.86,10.5,good
1185
+ 6.8,0.66,0.07,1.6,0.07,16,61,0.99572,3.29,0.6,9.3,bad
1186
+ 6.7,0.64,0.23,2.1,0.08,11,119,0.99538,3.36,0.7,10.9,bad
1187
+ 7,0.43,0.3,2,0.085,6,39,0.99346,3.33,0.46,11.9,good
1188
+ 6.6,0.8,0.03,7.8,0.079,6,12,0.9963,3.52,0.5,12.2,bad
1189
+ 7,0.43,0.3,2,0.085,6,39,0.99346,3.33,0.46,11.9,good
1190
+ 6.7,0.64,0.23,2.1,0.08,11,119,0.99538,3.36,0.7,10.9,bad
1191
+ 8.8,0.955,0.05,1.8,0.075,5,19,0.99616,3.3,0.44,9.6,bad
1192
+ 9.1,0.4,0.57,4.6,0.08,6,20,0.99652,3.28,0.57,12.5,good
1193
+ 6.5,0.885,0,2.3,0.166,6,12,0.99551,3.56,0.51,10.8,bad
1194
+ 7.2,0.25,0.37,2.5,0.063,11,41,0.99439,3.52,0.8,12.4,good
1195
+ 6.4,0.885,0,2.3,0.166,6,12,0.99551,3.56,0.51,10.8,bad
1196
+ 7,0.745,0.12,1.8,0.114,15,64,0.99588,3.22,0.59,9.5,good
1197
+ 6.2,0.43,0.22,1.8,0.078,21,56,0.99633,3.52,0.6,9.5,good
1198
+ 7.9,0.58,0.23,2.3,0.076,23,94,0.99686,3.21,0.58,9.5,good
1199
+ 7.7,0.57,0.21,1.5,0.069,4,9,0.99458,3.16,0.54,9.8,good
1200
+ 7.7,0.26,0.26,2,0.052,19,77,0.9951,3.15,0.79,10.9,good
1201
+ 7.9,0.58,0.23,2.3,0.076,23,94,0.99686,3.21,0.58,9.5,good
1202
+ 7.7,0.57,0.21,1.5,0.069,4,9,0.99458,3.16,0.54,9.8,good
1203
+ 7.9,0.34,0.36,1.9,0.065,5,10,0.99419,3.27,0.54,11.2,good
1204
+ 8.6,0.42,0.39,1.8,0.068,6,12,0.99516,3.35,0.69,11.7,good
1205
+ 9.9,0.74,0.19,5.8,0.111,33,76,0.99878,3.14,0.55,9.4,bad
1206
+ 7.2,0.36,0.46,2.1,0.074,24,44,0.99534,3.4,0.85,11,good
1207
+ 7.2,0.36,0.46,2.1,0.074,24,44,0.99534,3.4,0.85,11,good
1208
+ 7.2,0.36,0.46,2.1,0.074,24,44,0.99534,3.4,0.85,11,good
1209
+ 9.9,0.72,0.55,1.7,0.136,24,52,0.99752,3.35,0.94,10,bad
1210
+ 7.2,0.36,0.46,2.1,0.074,24,44,0.99534,3.4,0.85,11,good
1211
+ 6.2,0.39,0.43,2,0.071,14,24,0.99428,3.45,0.87,11.2,good
1212
+ 6.8,0.65,0.02,2.1,0.078,8,15,0.99498,3.35,0.62,10.4,good
1213
+ 6.6,0.44,0.15,2.1,0.076,22,53,0.9957,3.32,0.62,9.3,bad
1214
+ 6.8,0.65,0.02,2.1,0.078,8,15,0.99498,3.35,0.62,10.4,good
1215
+ 9.6,0.38,0.42,1.9,0.071,5,13,0.99659,3.15,0.75,10.5,good
1216
+ 10.2,0.33,0.46,1.9,0.081,6,9,0.99628,3.1,0.48,10.4,good
1217
+ 8.8,0.27,0.46,2.1,0.095,20,29,0.99488,3.26,0.56,11.3,good
1218
+ 7.9,0.57,0.31,2,0.079,10,79,0.99677,3.29,0.69,9.5,good
1219
+ 8.2,0.34,0.37,1.9,0.057,43,74,0.99408,3.23,0.81,12,good
1220
+ 8.2,0.4,0.31,1.9,0.082,8,24,0.996,3.24,0.69,10.6,good
1221
+ 9,0.39,0.4,1.3,0.044,25,50,0.99478,3.2,0.83,10.9,good
1222
+ 10.9,0.32,0.52,1.8,0.132,17,44,0.99734,3.28,0.77,11.5,good
1223
+ 10.9,0.32,0.52,1.8,0.132,17,44,0.99734,3.28,0.77,11.5,good
1224
+ 8.1,0.53,0.22,2.2,0.078,33,89,0.99678,3.26,0.46,9.6,good
1225
+ 10.5,0.36,0.47,2.2,0.074,9,23,0.99638,3.23,0.76,12,good
1226
+ 12.6,0.39,0.49,2.5,0.08,8,20,0.9992,3.07,0.82,10.3,good
1227
+ 9.2,0.46,0.23,2.6,0.091,18,77,0.99922,3.15,0.51,9.4,bad
1228
+ 7.5,0.58,0.03,4.1,0.08,27,46,0.99592,3.02,0.47,9.2,bad
1229
+ 9,0.58,0.25,2,0.104,8,21,0.99769,3.27,0.72,9.6,bad
1230
+ 5.1,0.42,0,1.8,0.044,18,88,0.99157,3.68,0.73,13.6,good
1231
+ 7.6,0.43,0.29,2.1,0.075,19,66,0.99718,3.4,0.64,9.5,bad
1232
+ 7.7,0.18,0.34,2.7,0.066,15,58,0.9947,3.37,0.78,11.8,good
1233
+ 7.8,0.815,0.01,2.6,0.074,48,90,0.99621,3.38,0.62,10.8,bad
1234
+ 7.6,0.43,0.29,2.1,0.075,19,66,0.99718,3.4,0.64,9.5,bad
1235
+ 10.2,0.23,0.37,2.2,0.057,14,36,0.99614,3.23,0.49,9.3,bad
1236
+ 7.1,0.75,0.01,2.2,0.059,11,18,0.99242,3.39,0.4,12.8,good
1237
+ 6,0.33,0.32,12.9,0.054,6,113,0.99572,3.3,0.56,11.5,bad
1238
+ 7.8,0.55,0,1.7,0.07,7,17,0.99659,3.26,0.64,9.4,good
1239
+ 7.1,0.75,0.01,2.2,0.059,11,18,0.99242,3.39,0.4,12.8,good
1240
+ 8.1,0.73,0,2.5,0.081,12,24,0.99798,3.38,0.46,9.6,bad
1241
+ 6.5,0.67,0,4.3,0.057,11,20,0.99488,3.45,0.56,11.8,bad
1242
+ 7.5,0.61,0.2,1.7,0.076,36,60,0.99494,3.1,0.4,9.3,bad
1243
+ 9.8,0.37,0.39,2.5,0.079,28,65,0.99729,3.16,0.59,9.8,bad
1244
+ 9,0.4,0.41,2,0.058,15,40,0.99414,3.22,0.6,12.2,good
1245
+ 8.3,0.56,0.22,2.4,0.082,10,86,0.9983,3.37,0.62,9.5,bad
1246
+ 5.9,0.29,0.25,13.4,0.067,72,160,0.99721,3.33,0.54,10.3,good
1247
+ 7.4,0.55,0.19,1.8,0.082,15,34,0.99655,3.49,0.68,10.5,bad
1248
+ 7.4,0.74,0.07,1.7,0.086,15,48,0.99502,3.12,0.48,10,bad
1249
+ 7.4,0.55,0.19,1.8,0.082,15,34,0.99655,3.49,0.68,10.5,bad
1250
+ 6.9,0.41,0.33,2.2,0.081,22,36,0.9949,3.41,0.75,11.1,good
1251
+ 7.1,0.6,0.01,2.3,0.079,24,37,0.99514,3.4,0.61,10.9,good
1252
+ 7.1,0.6,0.01,2.3,0.079,24,37,0.99514,3.4,0.61,10.9,good
1253
+ 7.5,0.58,0.14,2.2,0.077,27,60,0.9963,3.28,0.59,9.8,bad
1254
+ 7.1,0.72,0,1.8,0.123,6,14,0.99627,3.45,0.58,9.8,bad
1255
+ 7.9,0.66,0,1.4,0.096,6,13,0.99569,3.43,0.58,9.5,bad
1256
+ 7.8,0.7,0.06,1.9,0.079,20,35,0.99628,3.4,0.69,10.9,bad
1257
+ 6.1,0.64,0.02,2.4,0.069,26,46,0.99358,3.47,0.45,11,bad
1258
+ 7.5,0.59,0.22,1.8,0.082,43,60,0.99499,3.1,0.42,9.2,bad
1259
+ 7,0.58,0.28,4.8,0.085,12,69,0.99633,3.32,0.7,11,good
1260
+ 6.8,0.64,0,2.7,0.123,15,33,0.99538,3.44,0.63,11.3,good
1261
+ 6.8,0.64,0,2.7,0.123,15,33,0.99538,3.44,0.63,11.3,good
1262
+ 8.6,0.635,0.68,1.8,0.403,19,56,0.99632,3.02,1.15,9.3,bad
1263
+ 6.3,1.02,0,2,0.083,17,24,0.99437,3.59,0.55,11.2,bad
1264
+ 9.8,0.45,0.38,2.5,0.081,34,66,0.99726,3.15,0.58,9.8,bad
1265
+ 8.2,0.78,0,2.2,0.089,13,26,0.9978,3.37,0.46,9.6,bad
1266
+ 8.5,0.37,0.32,1.8,0.066,26,51,0.99456,3.38,0.72,11.8,good
1267
+ 7.2,0.57,0.05,2.3,0.081,16,36,0.99564,3.38,0.6,10.3,good
1268
+ 7.2,0.57,0.05,2.3,0.081,16,36,0.99564,3.38,0.6,10.3,good
1269
+ 10.4,0.43,0.5,2.3,0.068,13,19,0.996,3.1,0.87,11.4,good
1270
+ 6.9,0.41,0.31,2,0.079,21,51,0.99668,3.47,0.55,9.5,good
1271
+ 5.5,0.49,0.03,1.8,0.044,28,87,0.9908,3.5,0.82,14,good
1272
+ 5,0.38,0.01,1.6,0.048,26,60,0.99084,3.7,0.75,14,good
1273
+ 7.3,0.44,0.2,1.6,0.049,24,64,0.9935,3.38,0.57,11.7,good
1274
+ 5.9,0.46,0,1.9,0.077,25,44,0.99385,3.5,0.53,11.2,bad
1275
+ 7.5,0.58,0.2,2,0.073,34,44,0.99494,3.1,0.43,9.3,bad
1276
+ 7.8,0.58,0.13,2.1,0.102,17,36,0.9944,3.24,0.53,11.2,good
1277
+ 8,0.715,0.22,2.3,0.075,13,81,0.99688,3.24,0.54,9.5,good
1278
+ 8.5,0.4,0.4,6.3,0.05,3,10,0.99566,3.28,0.56,12,bad
1279
+ 7,0.69,0,1.9,0.114,3,10,0.99636,3.35,0.6,9.7,good
1280
+ 8,0.715,0.22,2.3,0.075,13,81,0.99688,3.24,0.54,9.5,good
1281
+ 9.8,0.3,0.39,1.7,0.062,3,9,0.9948,3.14,0.57,11.5,good
1282
+ 7.1,0.46,0.2,1.9,0.077,28,54,0.9956,3.37,0.64,10.4,good
1283
+ 7.1,0.46,0.2,1.9,0.077,28,54,0.9956,3.37,0.64,10.4,good
1284
+ 7.9,0.765,0,2,0.084,9,22,0.99619,3.33,0.68,10.9,good
1285
+ 8.7,0.63,0.28,2.7,0.096,17,69,0.99734,3.26,0.63,10.2,good
1286
+ 7,0.42,0.19,2.3,0.071,18,36,0.99476,3.39,0.56,10.9,bad
1287
+ 11.3,0.37,0.5,1.8,0.09,20,47,0.99734,3.15,0.57,10.5,bad
1288
+ 7.1,0.16,0.44,2.5,0.068,17,31,0.99328,3.35,0.54,12.4,good
1289
+ 8,0.6,0.08,2.6,0.056,3,7,0.99286,3.22,0.37,13,bad
1290
+ 7,0.6,0.3,4.5,0.068,20,110,0.99914,3.3,1.17,10.2,bad
1291
+ 7,0.6,0.3,4.5,0.068,20,110,0.99914,3.3,1.17,10.2,bad
1292
+ 7.6,0.74,0,1.9,0.1,6,12,0.99521,3.36,0.59,11,bad
1293
+ 8.2,0.635,0.1,2.1,0.073,25,60,0.99638,3.29,0.75,10.9,good
1294
+ 5.9,0.395,0.13,2.4,0.056,14,28,0.99362,3.62,0.67,12.4,good
1295
+ 7.5,0.755,0,1.9,0.084,6,12,0.99672,3.34,0.49,9.7,bad
1296
+ 8.2,0.635,0.1,2.1,0.073,25,60,0.99638,3.29,0.75,10.9,good
1297
+ 6.6,0.63,0,4.3,0.093,51,77.5,0.99558,3.2,0.45,9.5,bad
1298
+ 6.6,0.63,0,4.3,0.093,51,77.5,0.99558,3.2,0.45,9.5,bad
1299
+ 7.2,0.53,0.14,2.1,0.064,15,29,0.99323,3.35,0.61,12.1,good
1300
+ 5.7,0.6,0,1.4,0.063,11,18,0.99191,3.45,0.56,12.2,good
1301
+ 7.6,1.58,0,2.1,0.137,5,9,0.99476,3.5,0.4,10.9,bad
1302
+ 5.2,0.645,0,2.15,0.08,15,28,0.99444,3.78,0.61,12.5,good
1303
+ 6.7,0.86,0.07,2,0.1,20,57,0.99598,3.6,0.74,11.7,good
1304
+ 9.1,0.37,0.32,2.1,0.064,4,15,0.99576,3.3,0.8,11.2,good
1305
+ 8,0.28,0.44,1.8,0.081,28,68,0.99501,3.36,0.66,11.2,bad
1306
+ 7.6,0.79,0.21,2.3,0.087,21,68,0.9955,3.12,0.44,9.2,bad
1307
+ 7.5,0.61,0.26,1.9,0.073,24,88,0.99612,3.3,0.53,9.8,bad
1308
+ 9.7,0.69,0.32,2.5,0.088,22,91,0.9979,3.29,0.62,10.1,bad
1309
+ 6.8,0.68,0.09,3.9,0.068,15,29,0.99524,3.41,0.52,11.1,bad
1310
+ 9.7,0.69,0.32,2.5,0.088,22,91,0.9979,3.29,0.62,10.1,bad
1311
+ 7,0.62,0.1,1.4,0.071,27,63,0.996,3.28,0.61,9.2,bad
1312
+ 7.5,0.61,0.26,1.9,0.073,24,88,0.99612,3.3,0.53,9.8,bad
1313
+ 6.5,0.51,0.15,3,0.064,12,27,0.9929,3.33,0.59,12.8,good
1314
+ 8,1.18,0.21,1.9,0.083,14,41,0.99532,3.34,0.47,10.5,bad
1315
+ 7,0.36,0.21,2.3,0.086,20,65,0.99558,3.4,0.54,10.1,good
1316
+ 7,0.36,0.21,2.4,0.086,24,69,0.99556,3.4,0.53,10.1,good
1317
+ 7.5,0.63,0.27,2,0.083,17,91,0.99616,3.26,0.58,9.8,good
1318
+ 5.4,0.74,0,1.2,0.041,16,46,0.99258,4.01,0.59,12.5,good
1319
+ 9.9,0.44,0.46,2.2,0.091,10,41,0.99638,3.18,0.69,11.9,good
1320
+ 7.5,0.63,0.27,2,0.083,17,91,0.99616,3.26,0.58,9.8,good
1321
+ 9.1,0.76,0.68,1.7,0.414,18,64,0.99652,2.9,1.33,9.1,good
1322
+ 9.7,0.66,0.34,2.6,0.094,12,88,0.99796,3.26,0.66,10.1,bad
1323
+ 5,0.74,0,1.2,0.041,16,46,0.99258,4.01,0.59,12.5,good
1324
+ 9.1,0.34,0.42,1.8,0.058,9,18,0.99392,3.18,0.55,11.4,bad
1325
+ 9.1,0.36,0.39,1.8,0.06,21,55,0.99495,3.18,0.82,11,good
1326
+ 6.7,0.46,0.24,1.7,0.077,18,34,0.9948,3.39,0.6,10.6,good
1327
+ 6.7,0.46,0.24,1.7,0.077,18,34,0.9948,3.39,0.6,10.6,good
1328
+ 6.7,0.46,0.24,1.7,0.077,18,34,0.9948,3.39,0.6,10.6,good
1329
+ 6.7,0.46,0.24,1.7,0.077,18,34,0.9948,3.39,0.6,10.6,good
1330
+ 6.5,0.52,0.11,1.8,0.073,13,38,0.9955,3.34,0.52,9.3,bad
1331
+ 7.4,0.6,0.26,2.1,0.083,17,91,0.99616,3.29,0.56,9.8,good
1332
+ 7.4,0.6,0.26,2.1,0.083,17,91,0.99616,3.29,0.56,9.8,good
1333
+ 7.8,0.87,0.26,3.8,0.107,31,67,0.99668,3.26,0.46,9.2,bad
1334
+ 8.4,0.39,0.1,1.7,0.075,6,25,0.99581,3.09,0.43,9.7,good
1335
+ 9.1,0.775,0.22,2.2,0.079,12,48,0.9976,3.18,0.51,9.6,bad
1336
+ 7.2,0.835,0,2,0.166,4,11,0.99608,3.39,0.52,10,bad
1337
+ 6.6,0.58,0.02,2.4,0.069,19,40,0.99387,3.38,0.66,12.6,good
1338
+ 6,0.5,0,1.4,0.057,15,26,0.99448,3.36,0.45,9.5,bad
1339
+ 6,0.5,0,1.4,0.057,15,26,0.99448,3.36,0.45,9.5,bad
1340
+ 6,0.5,0,1.4,0.057,15,26,0.99448,3.36,0.45,9.5,bad
1341
+ 7.5,0.51,0.02,1.7,0.084,13,31,0.99538,3.36,0.54,10.5,good
1342
+ 7.5,0.51,0.02,1.7,0.084,13,31,0.99538,3.36,0.54,10.5,good
1343
+ 7.5,0.51,0.02,1.7,0.084,13,31,0.99538,3.36,0.54,10.5,good
1344
+ 7.6,0.54,0.02,1.7,0.085,17,31,0.99589,3.37,0.51,10.4,good
1345
+ 7.5,0.51,0.02,1.7,0.084,13,31,0.99538,3.36,0.54,10.5,good
1346
+ 11.5,0.42,0.48,2.6,0.077,8,20,0.99852,3.09,0.53,11,bad
1347
+ 8.2,0.44,0.24,2.3,0.063,10,28,0.99613,3.25,0.53,10.2,good
1348
+ 6.1,0.59,0.01,2.1,0.056,5,13,0.99472,3.52,0.56,11.4,bad
1349
+ 7.2,0.655,0.03,1.8,0.078,7,12,0.99587,3.34,0.39,9.5,bad
1350
+ 7.2,0.655,0.03,1.8,0.078,7,12,0.99587,3.34,0.39,9.5,bad
1351
+ 6.9,0.57,0,2.8,0.081,21,41,0.99518,3.41,0.52,10.8,bad
1352
+ 9,0.6,0.29,2,0.069,32,73,0.99654,3.34,0.57,10,bad
1353
+ 7.2,0.62,0.01,2.3,0.065,8,46,0.99332,3.32,0.51,11.8,good
1354
+ 7.6,0.645,0.03,1.9,0.086,14,57,0.9969,3.37,0.46,10.3,bad
1355
+ 7.6,0.645,0.03,1.9,0.086,14,57,0.9969,3.37,0.46,10.3,bad
1356
+ 7.2,0.58,0.03,2.3,0.077,7,28,0.99568,3.35,0.52,10,bad
1357
+ 6.1,0.32,0.25,1.8,0.086,5,32,0.99464,3.36,0.44,10.1,bad
1358
+ 6.1,0.34,0.25,1.8,0.084,4,28,0.99464,3.36,0.44,10.1,bad
1359
+ 7.3,0.43,0.24,2.5,0.078,27,67,0.99648,3.6,0.59,11.1,good
1360
+ 7.4,0.64,0.17,5.4,0.168,52,98,0.99736,3.28,0.5,9.5,bad
1361
+ 11.6,0.475,0.4,1.4,0.091,6,28,0.99704,3.07,0.65,10.03333333,good
1362
+ 9.2,0.54,0.31,2.3,0.112,11,38,0.99699,3.24,0.56,10.9,bad
1363
+ 8.3,0.85,0.14,2.5,0.093,13,54,0.99724,3.36,0.54,10.1,bad
1364
+ 11.6,0.475,0.4,1.4,0.091,6,28,0.99704,3.07,0.65,10.03333333,good
1365
+ 8,0.83,0.27,2,0.08,11,63,0.99652,3.29,0.48,9.8,bad
1366
+ 7.2,0.605,0.02,1.9,0.096,10,31,0.995,3.46,0.53,11.8,good
1367
+ 7.8,0.5,0.09,2.2,0.115,10,42,0.9971,3.18,0.62,9.5,bad
1368
+ 7.3,0.74,0.08,1.7,0.094,10,45,0.99576,3.24,0.5,9.8,bad
1369
+ 6.9,0.54,0.3,2.2,0.088,9,105,0.99725,3.25,1.18,10.5,good
1370
+ 8,0.77,0.32,2.1,0.079,16,74,0.99656,3.27,0.5,9.8,good
1371
+ 6.6,0.61,0,1.6,0.069,4,8,0.99396,3.33,0.37,10.4,bad
1372
+ 8.7,0.78,0.51,1.7,0.415,12,66,0.99623,3,1.17,9.2,bad
1373
+ 7.5,0.58,0.56,3.1,0.153,5,14,0.99476,3.21,1.03,11.6,good
1374
+ 8.7,0.78,0.51,1.7,0.415,12,66,0.99623,3,1.17,9.2,bad
1375
+ 7.7,0.75,0.27,3.8,0.11,34,89,0.99664,3.24,0.45,9.3,bad
1376
+ 6.8,0.815,0,1.2,0.267,16,29,0.99471,3.32,0.51,9.8,bad
1377
+ 7.2,0.56,0.26,2,0.083,13,100,0.99586,3.26,0.52,9.9,bad
1378
+ 8.2,0.885,0.2,1.4,0.086,7,31,0.9946,3.11,0.46,10,bad
1379
+ 5.2,0.49,0.26,2.3,0.09,23,74,0.9953,3.71,0.62,12.2,good
1380
+ 7.2,0.45,0.15,2,0.078,10,28,0.99609,3.29,0.51,9.9,good
1381
+ 7.5,0.57,0.02,2.6,0.077,11,35,0.99557,3.36,0.62,10.8,good
1382
+ 7.5,0.57,0.02,2.6,0.077,11,35,0.99557,3.36,0.62,10.8,good
1383
+ 6.8,0.83,0.09,1.8,0.074,4,25,0.99534,3.38,0.45,9.6,bad
1384
+ 8,0.6,0.22,2.1,0.08,25,105,0.99613,3.3,0.49,9.9,bad
1385
+ 8,0.6,0.22,2.1,0.08,25,105,0.99613,3.3,0.49,9.9,bad
1386
+ 7.1,0.755,0.15,1.8,0.107,20,84,0.99593,3.19,0.5,9.5,bad
1387
+ 8,0.81,0.25,3.4,0.076,34,85,0.99668,3.19,0.42,9.2,bad
1388
+ 7.4,0.64,0.07,1.8,0.1,8,23,0.9961,3.3,0.58,9.6,bad
1389
+ 7.4,0.64,0.07,1.8,0.1,8,23,0.9961,3.3,0.58,9.6,bad
1390
+ 6.6,0.64,0.31,6.1,0.083,7,49,0.99718,3.35,0.68,10.3,bad
1391
+ 6.7,0.48,0.02,2.2,0.08,36,111,0.99524,3.1,0.53,9.7,bad
1392
+ 6,0.49,0,2.3,0.068,15,33,0.99292,3.58,0.59,12.5,good
1393
+ 8,0.64,0.22,2.4,0.094,5,33,0.99612,3.37,0.58,11,bad
1394
+ 7.1,0.62,0.06,1.3,0.07,5,12,0.9942,3.17,0.48,9.8,bad
1395
+ 8,0.52,0.25,2,0.078,19,59,0.99612,3.3,0.48,10.2,bad
1396
+ 6.4,0.57,0.14,3.9,0.07,27,73,0.99669,3.32,0.48,9.2,bad
1397
+ 8.6,0.685,0.1,1.6,0.092,3,12,0.99745,3.31,0.65,9.55,good
1398
+ 8.7,0.675,0.1,1.6,0.09,4,11,0.99745,3.31,0.65,9.55,bad
1399
+ 7.3,0.59,0.26,2,0.08,17,104,0.99584,3.28,0.52,9.9,bad
1400
+ 7,0.6,0.12,2.2,0.083,13,28,0.9966,3.52,0.62,10.2,good
1401
+ 7.2,0.67,0,2.2,0.068,10,24,0.9956,3.42,0.72,11.1,good
1402
+ 7.9,0.69,0.21,2.1,0.08,33,141,0.9962,3.25,0.51,9.9,bad
1403
+ 7.9,0.69,0.21,2.1,0.08,33,141,0.9962,3.25,0.51,9.9,bad
1404
+ 7.6,0.3,0.42,2,0.052,6,24,0.9963,3.44,0.82,11.9,good
1405
+ 7.2,0.33,0.33,1.7,0.061,3,13,0.996,3.23,1.1,10,good
1406
+ 8,0.5,0.39,2.6,0.082,12,46,0.9985,3.43,0.62,10.7,good
1407
+ 7.7,0.28,0.3,2,0.062,18,34,0.9952,3.28,0.9,11.3,good
1408
+ 8.2,0.24,0.34,5.1,0.062,8,22,0.9974,3.22,0.94,10.9,good
1409
+ 6,0.51,0,2.1,0.064,40,54,0.995,3.54,0.93,10.7,good
1410
+ 8.1,0.29,0.36,2.2,0.048,35,53,0.995,3.27,1.01,12.4,good
1411
+ 6,0.51,0,2.1,0.064,40,54,0.995,3.54,0.93,10.7,good
1412
+ 6.6,0.96,0,1.8,0.082,5,16,0.9936,3.5,0.44,11.9,good
1413
+ 6.4,0.47,0.4,2.4,0.071,8,19,0.9963,3.56,0.73,10.6,good
1414
+ 8.2,0.24,0.34,5.1,0.062,8,22,0.9974,3.22,0.94,10.9,good
1415
+ 9.9,0.57,0.25,2,0.104,12,89,0.9963,3.04,0.9,10.1,bad
1416
+ 10,0.32,0.59,2.2,0.077,3,15,0.9994,3.2,0.78,9.6,bad
1417
+ 6.2,0.58,0,1.6,0.065,8,18,0.9966,3.56,0.84,9.4,bad
1418
+ 10,0.32,0.59,2.2,0.077,3,15,0.9994,3.2,0.78,9.6,bad
1419
+ 7.3,0.34,0.33,2.5,0.064,21,37,0.9952,3.35,0.77,12.1,good
1420
+ 7.8,0.53,0.01,1.6,0.077,3,19,0.995,3.16,0.46,9.8,bad
1421
+ 7.7,0.64,0.21,2.2,0.077,32,133,0.9956,3.27,0.45,9.9,bad
1422
+ 7.8,0.53,0.01,1.6,0.077,3,19,0.995,3.16,0.46,9.8,bad
1423
+ 7.5,0.4,0.18,1.6,0.079,24,58,0.9965,3.34,0.58,9.4,bad
1424
+ 7,0.54,0,2.1,0.079,39,55,0.9956,3.39,0.84,11.4,good
1425
+ 6.4,0.53,0.09,3.9,0.123,14,31,0.9968,3.5,0.67,11,bad
1426
+ 8.3,0.26,0.37,1.4,0.076,8,23,0.9974,3.26,0.7,9.6,good
1427
+ 8.3,0.26,0.37,1.4,0.076,8,23,0.9974,3.26,0.7,9.6,good
1428
+ 7.7,0.23,0.37,1.8,0.046,23,60,0.9971,3.41,0.71,12.1,good
1429
+ 7.6,0.41,0.33,2.5,0.078,6,23,0.9957,3.3,0.58,11.2,bad
1430
+ 7.8,0.64,0,1.9,0.072,27,55,0.9962,3.31,0.63,11,bad
1431
+ 7.9,0.18,0.4,2.2,0.049,38,67,0.996,3.33,0.93,11.3,bad
1432
+ 7.4,0.41,0.24,1.8,0.066,18,47,0.9956,3.37,0.62,10.4,bad
1433
+ 7.6,0.43,0.31,2.1,0.069,13,74,0.9958,3.26,0.54,9.9,good
1434
+ 5.9,0.44,0,1.6,0.042,3,11,0.9944,3.48,0.85,11.7,good
1435
+ 6.1,0.4,0.16,1.8,0.069,11,25,0.9955,3.42,0.74,10.1,good
1436
+ 10.2,0.54,0.37,15.4,0.214,55,95,1.00369,3.18,0.77,9,good
1437
+ 10.2,0.54,0.37,15.4,0.214,55,95,1.00369,3.18,0.77,9,good
1438
+ 10,0.38,0.38,1.6,0.169,27,90,0.99914,3.15,0.65,8.5,bad
1439
+ 6.8,0.915,0.29,4.8,0.07,15,39,0.99577,3.53,0.54,11.1,bad
1440
+ 7,0.59,0,1.7,0.052,3,8,0.996,3.41,0.47,10.3,bad
1441
+ 7.3,0.67,0.02,2.2,0.072,31,92,0.99566,3.32,0.68,11.06666667,good
1442
+ 7.2,0.37,0.32,2,0.062,15,28,0.9947,3.23,0.73,11.3,good
1443
+ 7.4,0.785,0.19,5.2,0.094,19,98,0.99713,3.16,0.52,9.566666667,good
1444
+ 6.9,0.63,0.02,1.9,0.078,18,30,0.99712,3.4,0.75,9.8,bad
1445
+ 6.9,0.58,0.2,1.75,0.058,8,22,0.99322,3.38,0.49,11.7,bad
1446
+ 7.3,0.67,0.02,2.2,0.072,31,92,0.99566,3.32,0.68,11.1,good
1447
+ 7.4,0.785,0.19,5.2,0.094,19,98,0.99713,3.16,0.52,9.6,good
1448
+ 6.9,0.63,0.02,1.9,0.078,18,30,0.99712,3.4,0.75,9.8,bad
1449
+ 6.8,0.67,0,1.9,0.08,22,39,0.99701,3.4,0.74,9.7,bad
1450
+ 6.9,0.58,0.01,1.9,0.08,40,54,0.99683,3.4,0.73,9.7,bad
1451
+ 7.2,0.38,0.31,2,0.056,15,29,0.99472,3.23,0.76,11.3,good
1452
+ 7.2,0.37,0.32,2,0.062,15,28,0.9947,3.23,0.73,11.3,good
1453
+ 7.8,0.32,0.44,2.7,0.104,8,17,0.99732,3.33,0.78,11,good
1454
+ 6.6,0.58,0.02,2,0.062,37,53,0.99374,3.35,0.76,11.6,good
1455
+ 7.6,0.49,0.33,1.9,0.074,27,85,0.99706,3.41,0.58,9,bad
1456
+ 11.7,0.45,0.63,2.2,0.073,7,23,0.99974,3.21,0.69,10.9,good
1457
+ 6.5,0.9,0,1.6,0.052,9,17,0.99467,3.5,0.63,10.9,good
1458
+ 6,0.54,0.06,1.8,0.05,38,89,0.99236,3.3,0.5,10.55,good
1459
+ 7.6,0.49,0.33,1.9,0.074,27,85,0.99706,3.41,0.58,9,bad
1460
+ 8.4,0.29,0.4,1.7,0.067,8,20,0.99603,3.39,0.6,10.5,bad
1461
+ 7.9,0.2,0.35,1.7,0.054,7,15,0.99458,3.32,0.8,11.9,good
1462
+ 6.4,0.42,0.09,2.3,0.054,34,64,0.99724,3.41,0.68,10.4,good
1463
+ 6.2,0.785,0,2.1,0.06,6,13,0.99664,3.59,0.61,10,bad
1464
+ 6.8,0.64,0.03,2.3,0.075,14,31,0.99545,3.36,0.58,10.4,good
1465
+ 6.9,0.63,0.01,2.4,0.076,14,39,0.99522,3.34,0.53,10.8,good
1466
+ 6.8,0.59,0.1,1.7,0.063,34,53,0.9958,3.41,0.67,9.7,bad
1467
+ 6.8,0.59,0.1,1.7,0.063,34,53,0.9958,3.41,0.67,9.7,bad
1468
+ 7.3,0.48,0.32,2.1,0.062,31,54,0.99728,3.3,0.65,10,good
1469
+ 6.7,1.04,0.08,2.3,0.067,19,32,0.99648,3.52,0.57,11,bad
1470
+ 7.3,0.48,0.32,2.1,0.062,31,54,0.99728,3.3,0.65,10,good
1471
+ 7.3,0.98,0.05,2.1,0.061,20,49,0.99705,3.31,0.55,9.7,bad
1472
+ 10,0.69,0.11,1.4,0.084,8,24,0.99578,2.88,0.47,9.7,bad
1473
+ 6.7,0.7,0.08,3.75,0.067,8,16,0.99334,3.43,0.52,12.6,bad
1474
+ 7.6,0.35,0.6,2.6,0.073,23,44,0.99656,3.38,0.79,11.1,good
1475
+ 6.1,0.6,0.08,1.8,0.071,14,45,0.99336,3.38,0.54,11,bad
1476
+ 9.9,0.5,0.5,13.8,0.205,48,82,1.00242,3.16,0.75,8.8,bad
1477
+ 5.3,0.47,0.11,2.2,0.048,16,89,0.99182,3.54,0.88,13.56666667,good
1478
+ 9.9,0.5,0.5,13.8,0.205,48,82,1.00242,3.16,0.75,8.8,bad
1479
+ 5.3,0.47,0.11,2.2,0.048,16,89,0.99182,3.54,0.88,13.6,good
1480
+ 7.1,0.875,0.05,5.7,0.082,3,14,0.99808,3.4,0.52,10.2,bad
1481
+ 8.2,0.28,0.6,3,0.104,10,22,0.99828,3.39,0.68,10.6,bad
1482
+ 5.6,0.62,0.03,1.5,0.08,6,13,0.99498,3.66,0.62,10.1,bad
1483
+ 8.2,0.28,0.6,3,0.104,10,22,0.99828,3.39,0.68,10.6,bad
1484
+ 7.2,0.58,0.54,2.1,0.114,3,9,0.99719,3.33,0.57,10.3,bad
1485
+ 8.1,0.33,0.44,1.5,0.042,6,12,0.99542,3.35,0.61,10.7,bad
1486
+ 6.8,0.91,0.06,2,0.06,4,11,0.99592,3.53,0.64,10.9,bad
1487
+ 7,0.655,0.16,2.1,0.074,8,25,0.99606,3.37,0.55,9.7,bad
1488
+ 6.8,0.68,0.21,2.1,0.07,9,23,0.99546,3.38,0.6,10.3,bad
1489
+ 6,0.64,0.05,1.9,0.066,9,17,0.99496,3.52,0.78,10.6,bad
1490
+ 5.6,0.54,0.04,1.7,0.049,5,13,0.9942,3.72,0.58,11.4,bad
1491
+ 6.2,0.57,0.1,2.1,0.048,4,11,0.99448,3.44,0.76,10.8,good
1492
+ 7.1,0.22,0.49,1.8,0.039,8,18,0.99344,3.39,0.56,12.4,good
1493
+ 5.6,0.54,0.04,1.7,0.049,5,13,0.9942,3.72,0.58,11.4,bad
1494
+ 6.2,0.65,0.06,1.6,0.05,6,18,0.99348,3.57,0.54,11.95,bad
1495
+ 7.7,0.54,0.26,1.9,0.089,23,147,0.99636,3.26,0.59,9.7,bad
1496
+ 6.4,0.31,0.09,1.4,0.066,15,28,0.99459,3.42,0.7,10,good
1497
+ 7,0.43,0.02,1.9,0.08,15,28,0.99492,3.35,0.81,10.6,good
1498
+ 7.7,0.54,0.26,1.9,0.089,23,147,0.99636,3.26,0.59,9.7,bad
1499
+ 6.9,0.74,0.03,2.3,0.054,7,16,0.99508,3.45,0.63,11.5,good
1500
+ 6.6,0.895,0.04,2.3,0.068,7,13,0.99582,3.53,0.58,10.8,good
1501
+ 6.9,0.74,0.03,2.3,0.054,7,16,0.99508,3.45,0.63,11.5,good
1502
+ 7.5,0.725,0.04,1.5,0.076,8,15,0.99508,3.26,0.53,9.6,bad
1503
+ 7.8,0.82,0.29,4.3,0.083,21,64,0.99642,3.16,0.53,9.4,bad
1504
+ 7.3,0.585,0.18,2.4,0.078,15,60,0.99638,3.31,0.54,9.8,bad
1505
+ 6.2,0.44,0.39,2.5,0.077,6,14,0.99555,3.51,0.69,11,good
1506
+ 7.5,0.38,0.57,2.3,0.106,5,12,0.99605,3.36,0.55,11.4,good
1507
+ 6.7,0.76,0.02,1.8,0.078,6,12,0.996,3.55,0.63,9.95,bad
1508
+ 6.8,0.81,0.05,2,0.07,6,14,0.99562,3.51,0.66,10.8,good
1509
+ 7.5,0.38,0.57,2.3,0.106,5,12,0.99605,3.36,0.55,11.4,good
1510
+ 7.1,0.27,0.6,2.1,0.074,17,25,0.99814,3.38,0.72,10.6,good
1511
+ 7.9,0.18,0.4,1.8,0.062,7,20,0.9941,3.28,0.7,11.1,bad
1512
+ 6.4,0.36,0.21,2.2,0.047,26,48,0.99661,3.47,0.77,9.7,good
1513
+ 7.1,0.69,0.04,2.1,0.068,19,27,0.99712,3.44,0.67,9.8,bad
1514
+ 6.4,0.79,0.04,2.2,0.061,11,17,0.99588,3.53,0.65,10.4,good
1515
+ 6.4,0.56,0.15,1.8,0.078,17,65,0.99294,3.33,0.6,10.5,good
1516
+ 6.9,0.84,0.21,4.1,0.074,16,65,0.99842,3.53,0.72,9.233333333,good
1517
+ 6.9,0.84,0.21,4.1,0.074,16,65,0.99842,3.53,0.72,9.25,good
1518
+ 6.1,0.32,0.25,2.3,0.071,23,58,0.99633,3.42,0.97,10.6,bad
1519
+ 6.5,0.53,0.06,2,0.063,29,44,0.99489,3.38,0.83,10.3,good
1520
+ 7.4,0.47,0.46,2.2,0.114,7,20,0.99647,3.32,0.63,10.5,bad
1521
+ 6.6,0.7,0.08,2.6,0.106,14,27,0.99665,3.44,0.58,10.2,bad
1522
+ 6.5,0.53,0.06,2,0.063,29,44,0.99489,3.38,0.83,10.3,good
1523
+ 6.9,0.48,0.2,1.9,0.082,9,23,0.99585,3.39,0.43,9.05,bad
1524
+ 6.1,0.32,0.25,2.3,0.071,23,58,0.99633,3.42,0.97,10.6,bad
1525
+ 6.8,0.48,0.25,2,0.076,29,61,0.9953,3.34,0.6,10.4,bad
1526
+ 6,0.42,0.19,2,0.075,22,47,0.99522,3.39,0.78,10,good
1527
+ 6.7,0.48,0.08,2.1,0.064,18,34,0.99552,3.33,0.64,9.7,bad
1528
+ 6.8,0.47,0.08,2.2,0.064,18,38,0.99553,3.3,0.65,9.6,good
1529
+ 7.1,0.53,0.07,1.7,0.071,15,24,0.9951,3.29,0.66,10.8,good
1530
+ 7.9,0.29,0.49,2.2,0.096,21,59,0.99714,3.31,0.67,10.1,good
1531
+ 7.1,0.69,0.08,2.1,0.063,42,52,0.99608,3.42,0.6,10.2,good
1532
+ 6.6,0.44,0.09,2.2,0.063,9,18,0.99444,3.42,0.69,11.3,good
1533
+ 6.1,0.705,0.1,2.8,0.081,13,28,0.99631,3.6,0.66,10.2,bad
1534
+ 7.2,0.53,0.13,2,0.058,18,22,0.99573,3.21,0.68,9.9,good
1535
+ 8,0.39,0.3,1.9,0.074,32,84,0.99717,3.39,0.61,9,bad
1536
+ 6.6,0.56,0.14,2.4,0.064,13,29,0.99397,3.42,0.62,11.7,good
1537
+ 7,0.55,0.13,2.2,0.075,15,35,0.9959,3.36,0.59,9.7,good
1538
+ 6.1,0.53,0.08,1.9,0.077,24,45,0.99528,3.6,0.68,10.3,good
1539
+ 5.4,0.58,0.08,1.9,0.059,20,31,0.99484,3.5,0.64,10.2,good
1540
+ 6.2,0.64,0.09,2.5,0.081,15,26,0.99538,3.57,0.63,12,bad
1541
+ 7.2,0.39,0.32,1.8,0.065,34,60,0.99714,3.46,0.78,9.9,bad
1542
+ 6.2,0.52,0.08,4.4,0.071,11,32,0.99646,3.56,0.63,11.6,good
1543
+ 7.4,0.25,0.29,2.2,0.054,19,49,0.99666,3.4,0.76,10.9,good
1544
+ 6.7,0.855,0.02,1.9,0.064,29,38,0.99472,3.3,0.56,10.75,good
1545
+ 11.1,0.44,0.42,2.2,0.064,14,19,0.99758,3.25,0.57,10.4,good
1546
+ 8.4,0.37,0.43,2.3,0.063,12,19,0.9955,3.17,0.81,11.2,good
1547
+ 6.5,0.63,0.33,1.8,0.059,16,28,0.99531,3.36,0.64,10.1,good
1548
+ 7,0.57,0.02,2,0.072,17,26,0.99575,3.36,0.61,10.2,bad
1549
+ 6.3,0.6,0.1,1.6,0.048,12,26,0.99306,3.55,0.51,12.1,bad
1550
+ 11.2,0.4,0.5,2,0.099,19,50,0.99783,3.1,0.58,10.4,bad
1551
+ 7.4,0.36,0.3,1.8,0.074,17,24,0.99419,3.24,0.7,11.4,good
1552
+ 7.1,0.68,0,2.3,0.087,17,26,0.99783,3.45,0.53,9.5,bad
1553
+ 7.1,0.67,0,2.3,0.083,18,27,0.99768,3.44,0.54,9.4,bad
1554
+ 6.3,0.68,0.01,3.7,0.103,32,54,0.99586,3.51,0.66,11.3,good
1555
+ 7.3,0.735,0,2.2,0.08,18,28,0.99765,3.41,0.6,9.4,bad
1556
+ 6.6,0.855,0.02,2.4,0.062,15,23,0.99627,3.54,0.6,11,good
1557
+ 7,0.56,0.17,1.7,0.065,15,24,0.99514,3.44,0.68,10.55,good
1558
+ 6.6,0.88,0.04,2.2,0.066,12,20,0.99636,3.53,0.56,9.9,bad
1559
+ 6.6,0.855,0.02,2.4,0.062,15,23,0.99627,3.54,0.6,11,good
1560
+ 6.9,0.63,0.33,6.7,0.235,66,115,0.99787,3.22,0.56,9.5,bad
1561
+ 7.8,0.6,0.26,2,0.08,31,131,0.99622,3.21,0.52,9.9,bad
1562
+ 7.8,0.6,0.26,2,0.08,31,131,0.99622,3.21,0.52,9.9,bad
1563
+ 7.8,0.6,0.26,2,0.08,31,131,0.99622,3.21,0.52,9.9,bad
1564
+ 7.2,0.695,0.13,2,0.076,12,20,0.99546,3.29,0.54,10.1,bad
1565
+ 7.2,0.695,0.13,2,0.076,12,20,0.99546,3.29,0.54,10.1,bad
1566
+ 7.2,0.695,0.13,2,0.076,12,20,0.99546,3.29,0.54,10.1,bad
1567
+ 6.7,0.67,0.02,1.9,0.061,26,42,0.99489,3.39,0.82,10.9,good
1568
+ 6.7,0.16,0.64,2.1,0.059,24,52,0.99494,3.34,0.71,11.2,good
1569
+ 7.2,0.695,0.13,2,0.076,12,20,0.99546,3.29,0.54,10.1,bad
1570
+ 7,0.56,0.13,1.6,0.077,25,42,0.99629,3.34,0.59,9.2,bad
1571
+ 6.2,0.51,0.14,1.9,0.056,15,34,0.99396,3.48,0.57,11.5,good
1572
+ 6.4,0.36,0.53,2.2,0.23,19,35,0.9934,3.37,0.93,12.4,good
1573
+ 6.4,0.38,0.14,2.2,0.038,15,25,0.99514,3.44,0.65,11.1,good
1574
+ 7.3,0.69,0.32,2.2,0.069,35,104,0.99632,3.33,0.51,9.5,bad
1575
+ 6,0.58,0.2,2.4,0.075,15,50,0.99467,3.58,0.67,12.5,good
1576
+ 5.6,0.31,0.78,13.9,0.074,23,92,0.99677,3.39,0.48,10.5,good
1577
+ 7.5,0.52,0.4,2.2,0.06,12,20,0.99474,3.26,0.64,11.8,good
1578
+ 8,0.3,0.63,1.6,0.081,16,29,0.99588,3.3,0.78,10.8,good
1579
+ 6.2,0.7,0.15,5.1,0.076,13,27,0.99622,3.54,0.6,11.9,good
1580
+ 6.8,0.67,0.15,1.8,0.118,13,20,0.9954,3.42,0.67,11.3,good
1581
+ 6.2,0.56,0.09,1.7,0.053,24,32,0.99402,3.54,0.6,11.3,bad
1582
+ 7.4,0.35,0.33,2.4,0.068,9,26,0.9947,3.36,0.6,11.9,good
1583
+ 6.2,0.56,0.09,1.7,0.053,24,32,0.99402,3.54,0.6,11.3,bad
1584
+ 6.1,0.715,0.1,2.6,0.053,13,27,0.99362,3.57,0.5,11.9,bad
1585
+ 6.2,0.46,0.29,2.1,0.074,32,98,0.99578,3.33,0.62,9.8,bad
1586
+ 6.7,0.32,0.44,2.4,0.061,24,34,0.99484,3.29,0.8,11.6,good
1587
+ 7.2,0.39,0.44,2.6,0.066,22,48,0.99494,3.3,0.84,11.5,good
1588
+ 7.5,0.31,0.41,2.4,0.065,34,60,0.99492,3.34,0.85,11.4,good
1589
+ 5.8,0.61,0.11,1.8,0.066,18,28,0.99483,3.55,0.66,10.9,good
1590
+ 7.2,0.66,0.33,2.5,0.068,34,102,0.99414,3.27,0.78,12.8,good
1591
+ 6.6,0.725,0.2,7.8,0.073,29,79,0.9977,3.29,0.54,9.2,bad
1592
+ 6.3,0.55,0.15,1.8,0.077,26,35,0.99314,3.32,0.82,11.6,good
1593
+ 5.4,0.74,0.09,1.7,0.089,16,26,0.99402,3.67,0.56,11.6,good
1594
+ 6.3,0.51,0.13,2.3,0.076,29,40,0.99574,3.42,0.75,11,good
1595
+ 6.8,0.62,0.08,1.9,0.068,28,38,0.99651,3.42,0.82,9.5,good
1596
+ 6.2,0.6,0.08,2,0.09,32,44,0.9949,3.45,0.58,10.5,bad
1597
+ 5.9,0.55,0.1,2.2,0.062,39,51,0.99512,3.52,0.76,11.2,good
1598
+ 6.3,0.51,0.13,2.3,0.076,29,40,0.99574,3.42,0.75,11,good
1599
+ 5.9,0.645,0.12,2,0.075,32,44,0.99547,3.57,0.71,10.2,bad
1600
+ 6,0.31,0.47,3.6,0.067,18,42,0.99549,3.39,0.66,11,good