teradataml 20.0.0.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +2762 -0
- teradataml/__init__.py +78 -0
- teradataml/_version.py +11 -0
- teradataml/analytics/Transformations.py +2996 -0
- teradataml/analytics/__init__.py +82 -0
- teradataml/analytics/analytic_function_executor.py +2416 -0
- teradataml/analytics/analytic_query_generator.py +1050 -0
- teradataml/analytics/byom/H2OPredict.py +514 -0
- teradataml/analytics/byom/PMMLPredict.py +437 -0
- teradataml/analytics/byom/__init__.py +16 -0
- teradataml/analytics/json_parser/__init__.py +133 -0
- teradataml/analytics/json_parser/analytic_functions_argument.py +1805 -0
- teradataml/analytics/json_parser/json_store.py +191 -0
- teradataml/analytics/json_parser/metadata.py +1666 -0
- teradataml/analytics/json_parser/utils.py +805 -0
- teradataml/analytics/meta_class.py +236 -0
- teradataml/analytics/sqle/DecisionTreePredict.py +456 -0
- teradataml/analytics/sqle/NaiveBayesPredict.py +420 -0
- teradataml/analytics/sqle/__init__.py +128 -0
- teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -0
- teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -0
- teradataml/analytics/table_operator/__init__.py +11 -0
- teradataml/analytics/uaf/__init__.py +82 -0
- teradataml/analytics/utils.py +828 -0
- teradataml/analytics/valib.py +1617 -0
- teradataml/automl/__init__.py +5835 -0
- teradataml/automl/autodataprep/__init__.py +493 -0
- teradataml/automl/custom_json_utils.py +1625 -0
- teradataml/automl/data_preparation.py +1384 -0
- teradataml/automl/data_transformation.py +1254 -0
- teradataml/automl/feature_engineering.py +2273 -0
- teradataml/automl/feature_exploration.py +1873 -0
- teradataml/automl/model_evaluation.py +488 -0
- teradataml/automl/model_training.py +1407 -0
- teradataml/catalog/__init__.py +2 -0
- teradataml/catalog/byom.py +1759 -0
- teradataml/catalog/function_argument_mapper.py +859 -0
- teradataml/catalog/model_cataloging_utils.py +491 -0
- teradataml/clients/__init__.py +0 -0
- teradataml/clients/auth_client.py +137 -0
- teradataml/clients/keycloak_client.py +165 -0
- teradataml/clients/pkce_client.py +481 -0
- teradataml/common/__init__.py +1 -0
- teradataml/common/aed_utils.py +2078 -0
- teradataml/common/bulk_exposed_utils.py +113 -0
- teradataml/common/constants.py +1669 -0
- teradataml/common/deprecations.py +166 -0
- teradataml/common/exceptions.py +147 -0
- teradataml/common/formula.py +743 -0
- teradataml/common/garbagecollector.py +666 -0
- teradataml/common/logger.py +1261 -0
- teradataml/common/messagecodes.py +518 -0
- teradataml/common/messages.py +262 -0
- teradataml/common/pylogger.py +67 -0
- teradataml/common/sqlbundle.py +764 -0
- teradataml/common/td_coltype_code_to_tdtype.py +48 -0
- teradataml/common/utils.py +3166 -0
- teradataml/common/warnings.py +36 -0
- teradataml/common/wrapper_utils.py +625 -0
- teradataml/config/__init__.py +0 -0
- teradataml/config/dummy_file1.cfg +5 -0
- teradataml/config/dummy_file2.cfg +3 -0
- teradataml/config/sqlengine_alias_definitions_v1.0 +14 -0
- teradataml/config/sqlengine_alias_definitions_v1.1 +20 -0
- teradataml/config/sqlengine_alias_definitions_v1.3 +19 -0
- teradataml/context/__init__.py +0 -0
- teradataml/context/aed_context.py +223 -0
- teradataml/context/context.py +1462 -0
- teradataml/data/A_loan.csv +19 -0
- teradataml/data/BINARY_REALS_LEFT.csv +11 -0
- teradataml/data/BINARY_REALS_RIGHT.csv +11 -0
- teradataml/data/B_loan.csv +49 -0
- teradataml/data/BuoyData2.csv +17 -0
- teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -0
- teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -0
- teradataml/data/Convolve2RealsLeft.csv +5 -0
- teradataml/data/Convolve2RealsRight.csv +5 -0
- teradataml/data/Convolve2ValidLeft.csv +11 -0
- teradataml/data/Convolve2ValidRight.csv +11 -0
- teradataml/data/DFFTConv_Real_8_8.csv +65 -0
- teradataml/data/Employee.csv +5 -0
- teradataml/data/Employee_Address.csv +4 -0
- teradataml/data/Employee_roles.csv +5 -0
- teradataml/data/JulesBelvezeDummyData.csv +100 -0
- teradataml/data/Mall_customer_data.csv +201 -0
- teradataml/data/Orders1_12mf.csv +25 -0
- teradataml/data/Pi_loan.csv +7 -0
- teradataml/data/SMOOTHED_DATA.csv +7 -0
- teradataml/data/TestDFFT8.csv +9 -0
- teradataml/data/TestRiver.csv +109 -0
- teradataml/data/Traindata.csv +28 -0
- teradataml/data/__init__.py +0 -0
- teradataml/data/acf.csv +17 -0
- teradataml/data/adaboost_example.json +34 -0
- teradataml/data/adaboostpredict_example.json +24 -0
- teradataml/data/additional_table.csv +11 -0
- teradataml/data/admissions_test.csv +21 -0
- teradataml/data/admissions_train.csv +41 -0
- teradataml/data/admissions_train_nulls.csv +41 -0
- teradataml/data/advertising.csv +201 -0
- teradataml/data/ageandheight.csv +13 -0
- teradataml/data/ageandpressure.csv +31 -0
- teradataml/data/amazon_reviews_25.csv +26 -0
- teradataml/data/antiselect_example.json +36 -0
- teradataml/data/antiselect_input.csv +8 -0
- teradataml/data/antiselect_input_mixed_case.csv +8 -0
- teradataml/data/applicant_external.csv +7 -0
- teradataml/data/applicant_reference.csv +7 -0
- teradataml/data/apriori_example.json +22 -0
- teradataml/data/arima_example.json +9 -0
- teradataml/data/assortedtext_input.csv +8 -0
- teradataml/data/attribution_example.json +34 -0
- teradataml/data/attribution_sample_table.csv +27 -0
- teradataml/data/attribution_sample_table1.csv +6 -0
- teradataml/data/attribution_sample_table2.csv +11 -0
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bank_marketing.csv +11163 -0
- teradataml/data/bank_web_clicks1.csv +43 -0
- teradataml/data/bank_web_clicks2.csv +91 -0
- teradataml/data/bank_web_url.csv +85 -0
- teradataml/data/barrier.csv +2 -0
- teradataml/data/barrier_new.csv +3 -0
- teradataml/data/betweenness_example.json +14 -0
- teradataml/data/bike_sharing.csv +732 -0
- teradataml/data/bin_breaks.csv +8 -0
- teradataml/data/bin_fit_ip.csv +4 -0
- teradataml/data/binary_complex_left.csv +11 -0
- teradataml/data/binary_complex_right.csv +11 -0
- teradataml/data/binary_matrix_complex_left.csv +21 -0
- teradataml/data/binary_matrix_complex_right.csv +21 -0
- teradataml/data/binary_matrix_real_left.csv +21 -0
- teradataml/data/binary_matrix_real_right.csv +21 -0
- teradataml/data/blood2ageandweight.csv +26 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/boston.csv +507 -0
- teradataml/data/boston2cols.csv +721 -0
- teradataml/data/breast_cancer.csv +570 -0
- teradataml/data/buoydata_mix.csv +11 -0
- teradataml/data/burst_data.csv +5 -0
- teradataml/data/burst_example.json +21 -0
- teradataml/data/byom_example.json +34 -0
- teradataml/data/bytes_table.csv +4 -0
- teradataml/data/cal_housing_ex_raw.csv +70 -0
- teradataml/data/callers.csv +7 -0
- teradataml/data/calls.csv +10 -0
- teradataml/data/cars_hist.csv +33 -0
- teradataml/data/cat_table.csv +25 -0
- teradataml/data/ccm_example.json +32 -0
- teradataml/data/ccm_input.csv +91 -0
- teradataml/data/ccm_input2.csv +13 -0
- teradataml/data/ccmexample.csv +101 -0
- teradataml/data/ccmprepare_example.json +9 -0
- teradataml/data/ccmprepare_input.csv +91 -0
- teradataml/data/cfilter_example.json +12 -0
- teradataml/data/changepointdetection_example.json +18 -0
- teradataml/data/changepointdetectionrt_example.json +8 -0
- teradataml/data/chi_sq.csv +3 -0
- teradataml/data/churn_data.csv +14 -0
- teradataml/data/churn_emission.csv +35 -0
- teradataml/data/churn_initial.csv +3 -0
- teradataml/data/churn_state_transition.csv +5 -0
- teradataml/data/citedges_2.csv +745 -0
- teradataml/data/citvertices_2.csv +1210 -0
- teradataml/data/clicks2.csv +16 -0
- teradataml/data/clickstream.csv +13 -0
- teradataml/data/clickstream1.csv +11 -0
- teradataml/data/closeness_example.json +16 -0
- teradataml/data/complaints.csv +21 -0
- teradataml/data/complaints_mini.csv +3 -0
- teradataml/data/complaints_test_tokenized.csv +353 -0
- teradataml/data/complaints_testtoken.csv +224 -0
- teradataml/data/complaints_tokens_model.csv +348 -0
- teradataml/data/complaints_tokens_test.csv +353 -0
- teradataml/data/complaints_traintoken.csv +472 -0
- teradataml/data/computers_category.csv +1001 -0
- teradataml/data/computers_test1.csv +1252 -0
- teradataml/data/computers_train1.csv +5009 -0
- teradataml/data/computers_train1_clustered.csv +5009 -0
- teradataml/data/confusionmatrix_example.json +9 -0
- teradataml/data/conversion_event_table.csv +3 -0
- teradataml/data/corr_input.csv +17 -0
- teradataml/data/correlation_example.json +11 -0
- teradataml/data/covid_confirm_sd.csv +83 -0
- teradataml/data/coxhazardratio_example.json +39 -0
- teradataml/data/coxph_example.json +15 -0
- teradataml/data/coxsurvival_example.json +28 -0
- teradataml/data/cpt.csv +41 -0
- teradataml/data/credit_ex_merged.csv +45 -0
- teradataml/data/creditcard_data.csv +1001 -0
- teradataml/data/customer_loyalty.csv +301 -0
- teradataml/data/customer_loyalty_newseq.csv +31 -0
- teradataml/data/customer_segmentation_test.csv +2628 -0
- teradataml/data/customer_segmentation_train.csv +8069 -0
- teradataml/data/dataframe_example.json +173 -0
- teradataml/data/decisionforest_example.json +37 -0
- teradataml/data/decisionforestpredict_example.json +38 -0
- teradataml/data/decisiontree_example.json +21 -0
- teradataml/data/decisiontreepredict_example.json +45 -0
- teradataml/data/dfft2_size4_real.csv +17 -0
- teradataml/data/dfft2_test_matrix16.csv +17 -0
- teradataml/data/dfft2conv_real_4_4.csv +65 -0
- teradataml/data/diabetes.csv +443 -0
- teradataml/data/diabetes_test.csv +89 -0
- teradataml/data/dict_table.csv +5 -0
- teradataml/data/docperterm_table.csv +4 -0
- teradataml/data/docs/__init__.py +1 -0
- teradataml/data/docs/byom/__init__.py +0 -0
- teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -0
- teradataml/data/docs/byom/docs/DataikuPredict.py +217 -0
- teradataml/data/docs/byom/docs/H2OPredict.py +325 -0
- teradataml/data/docs/byom/docs/ONNXEmbeddings.py +242 -0
- teradataml/data/docs/byom/docs/ONNXPredict.py +283 -0
- teradataml/data/docs/byom/docs/ONNXSeq2Seq.py +255 -0
- teradataml/data/docs/byom/docs/PMMLPredict.py +278 -0
- teradataml/data/docs/byom/docs/__init__.py +0 -0
- teradataml/data/docs/sqle/__init__.py +0 -0
- teradataml/data/docs/sqle/docs_17_10/Antiselect.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/Attribution.py +200 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +172 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -0
- teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -0
- teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +96 -0
- teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -0
- teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +152 -0
- teradataml/data/docs/sqle/docs_17_10/FTest.py +161 -0
- teradataml/data/docs/sqle/docs_17_10/FillRowId.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/Fit.py +88 -0
- teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +85 -0
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +82 -0
- teradataml/data/docs/sqle/docs_17_10/Histogram.py +165 -0
- teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -0
- teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +209 -0
- teradataml/data/docs/sqle/docs_17_10/NPath.py +266 -0
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -0
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -0
- teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +135 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +166 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -0
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +112 -0
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -0
- teradataml/data/docs/sqle/docs_17_10/QQNorm.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +110 -0
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +118 -0
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -0
- teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +153 -0
- teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -0
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -0
- teradataml/data/docs/sqle/docs_17_10/Sessionize.py +114 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -0
- teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -0
- teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +146 -0
- teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +142 -0
- teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -0
- teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -0
- teradataml/data/docs/sqle/docs_17_10/__init__.py +0 -0
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -0
- teradataml/data/docs/sqle/docs_17_20/Antiselect.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/Apriori.py +138 -0
- teradataml/data/docs/sqle/docs_17_20/Attribution.py +201 -0
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +172 -0
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -0
- teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
- teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -0
- teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +246 -0
- teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +280 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +136 -0
- teradataml/data/docs/sqle/docs_17_20/FTest.py +240 -0
- teradataml/data/docs/sqle/docs_17_20/FillRowId.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/Fit.py +88 -0
- teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +415 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -0
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -0
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +106 -0
- teradataml/data/docs/sqle/docs_17_20/Histogram.py +224 -0
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -0
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/KNN.py +215 -0
- teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -0
- teradataml/data/docs/sqle/docs_17_20/NERExtractor.py +121 -0
- teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +209 -0
- teradataml/data/docs/sqle/docs_17_20/NPath.py +266 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +127 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +119 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -0
- teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -0
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +231 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -0
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +220 -0
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +191 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -0
- teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -0
- teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/QQNorm.py +105 -0
- teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +155 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -0
- teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -0
- teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +118 -0
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -0
- teradataml/data/docs/sqle/docs_17_20/SMOTE.py +212 -0
- teradataml/data/docs/sqle/docs_17_20/SVM.py +414 -0
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -0
- teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +153 -0
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -0
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -0
- teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -0
- teradataml/data/docs/sqle/docs_17_20/Sessionize.py +114 -0
- teradataml/data/docs/sqle/docs_17_20/Shap.py +225 -0
- teradataml/data/docs/sqle/docs_17_20/Silhouette.py +153 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -0
- teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +146 -0
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -0
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -0
- teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
- teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +267 -0
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -0
- teradataml/data/docs/sqle/docs_17_20/TextMorph.py +119 -0
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +224 -0
- teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +160 -0
- teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -0
- teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -0
- teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
- teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +169 -0
- teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +237 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +362 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -0
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -0
- teradataml/data/docs/sqle/docs_17_20/__init__.py +0 -0
- teradataml/data/docs/tableoperator/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +430 -0
- teradataml/data/docs/tableoperator/docs_17_00/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +430 -0
- teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +348 -0
- teradataml/data/docs/tableoperator/docs_17_05/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +429 -0
- teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +348 -0
- teradataml/data/docs/tableoperator/docs_17_10/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
- teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +440 -0
- teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +387 -0
- teradataml/data/docs/tableoperator/docs_17_20/__init__.py +0 -0
- teradataml/data/docs/uaf/__init__.py +0 -0
- teradataml/data/docs/uaf/docs_17_20/ACF.py +186 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +370 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +172 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +161 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
- teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
- teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +248 -0
- teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +178 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +175 -0
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +230 -0
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +218 -0
- teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +185 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT.py +204 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +216 -0
- teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +192 -0
- teradataml/data/docs/uaf/docs_17_20/DIFF.py +175 -0
- teradataml/data/docs/uaf/docs_17_20/DTW.py +180 -0
- teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
- teradataml/data/docs/uaf/docs_17_20/DWT2D.py +217 -0
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +142 -0
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +184 -0
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +185 -0
- teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
- teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +206 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +143 -0
- teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +198 -0
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +260 -0
- teradataml/data/docs/uaf/docs_17_20/IDFFT.py +165 -0
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +191 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
- teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/InputValidator.py +121 -0
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +156 -0
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +215 -0
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +174 -0
- teradataml/data/docs/uaf/docs_17_20/MInfo.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +145 -0
- teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +191 -0
- teradataml/data/docs/uaf/docs_17_20/PACF.py +157 -0
- teradataml/data/docs/uaf/docs_17_20/Portman.py +217 -0
- teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +203 -0
- teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +155 -0
- teradataml/data/docs/uaf/docs_17_20/Resample.py +237 -0
- teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
- teradataml/data/docs/uaf/docs_17_20/SInfo.py +123 -0
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +173 -0
- teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +174 -0
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +164 -0
- teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +180 -0
- teradataml/data/docs/uaf/docs_17_20/Smoothma.py +208 -0
- teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +151 -0
- teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +202 -0
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
- teradataml/data/docs/uaf/docs_17_20/__init__.py +0 -0
- teradataml/data/dtw_example.json +18 -0
- teradataml/data/dtw_t1.csv +11 -0
- teradataml/data/dtw_t2.csv +4 -0
- teradataml/data/dwt2d_dataTable.csv +65 -0
- teradataml/data/dwt2d_example.json +16 -0
- teradataml/data/dwt_dataTable.csv +8 -0
- teradataml/data/dwt_example.json +15 -0
- teradataml/data/dwt_filterTable.csv +3 -0
- teradataml/data/dwt_filter_dim.csv +5 -0
- teradataml/data/emission.csv +9 -0
- teradataml/data/emp_table_by_dept.csv +19 -0
- teradataml/data/employee_info.csv +4 -0
- teradataml/data/employee_table.csv +6 -0
- teradataml/data/excluding_event_table.csv +2 -0
- teradataml/data/finance_data.csv +6 -0
- teradataml/data/finance_data2.csv +61 -0
- teradataml/data/finance_data3.csv +93 -0
- teradataml/data/finance_data4.csv +13 -0
- teradataml/data/fish.csv +160 -0
- teradataml/data/fm_blood2ageandweight.csv +26 -0
- teradataml/data/fmeasure_example.json +12 -0
- teradataml/data/followers_leaders.csv +10 -0
- teradataml/data/fpgrowth_example.json +12 -0
- teradataml/data/frequentpaths_example.json +29 -0
- teradataml/data/friends.csv +9 -0
- teradataml/data/fs_input.csv +33 -0
- teradataml/data/fs_input1.csv +33 -0
- teradataml/data/genData.csv +513 -0
- teradataml/data/geodataframe_example.json +40 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/glm_admissions_model.csv +12 -0
- teradataml/data/glm_example.json +56 -0
- teradataml/data/glml1l2_example.json +28 -0
- teradataml/data/glml1l2predict_example.json +54 -0
- teradataml/data/glmpredict_example.json +54 -0
- teradataml/data/gq_t1.csv +21 -0
- teradataml/data/grocery_transaction.csv +19 -0
- teradataml/data/hconvolve_complex_right.csv +5 -0
- teradataml/data/hconvolve_complex_rightmulti.csv +5 -0
- teradataml/data/histogram_example.json +12 -0
- teradataml/data/hmmdecoder_example.json +79 -0
- teradataml/data/hmmevaluator_example.json +25 -0
- teradataml/data/hmmsupervised_example.json +10 -0
- teradataml/data/hmmunsupervised_example.json +8 -0
- teradataml/data/hnsw_alter_data.csv +5 -0
- teradataml/data/hnsw_data.csv +10 -0
- teradataml/data/house_values.csv +12 -0
- teradataml/data/house_values2.csv +13 -0
- teradataml/data/housing_cat.csv +7 -0
- teradataml/data/housing_data.csv +9 -0
- teradataml/data/housing_test.csv +47 -0
- teradataml/data/housing_test_binary.csv +47 -0
- teradataml/data/housing_train.csv +493 -0
- teradataml/data/housing_train_attribute.csv +5 -0
- teradataml/data/housing_train_binary.csv +437 -0
- teradataml/data/housing_train_parameter.csv +2 -0
- teradataml/data/housing_train_response.csv +493 -0
- teradataml/data/housing_train_segment.csv +201 -0
- teradataml/data/ibm_stock.csv +370 -0
- teradataml/data/ibm_stock1.csv +370 -0
- teradataml/data/identitymatch_example.json +22 -0
- teradataml/data/idf_table.csv +4 -0
- teradataml/data/idwt2d_dataTable.csv +5 -0
- teradataml/data/idwt_dataTable.csv +8 -0
- teradataml/data/idwt_filterTable.csv +3 -0
- teradataml/data/impressions.csv +101 -0
- teradataml/data/inflation.csv +21 -0
- teradataml/data/initial.csv +3 -0
- teradataml/data/insect2Cols.csv +61 -0
- teradataml/data/insect_sprays.csv +13 -0
- teradataml/data/insurance.csv +1339 -0
- teradataml/data/interpolator_example.json +13 -0
- teradataml/data/interval_data.csv +5 -0
- teradataml/data/iris_altinput.csv +481 -0
- teradataml/data/iris_attribute_output.csv +8 -0
- teradataml/data/iris_attribute_test.csv +121 -0
- teradataml/data/iris_attribute_train.csv +481 -0
- teradataml/data/iris_category_expect_predict.csv +31 -0
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/iris_input.csv +151 -0
- teradataml/data/iris_response_train.csv +121 -0
- teradataml/data/iris_test.csv +31 -0
- teradataml/data/iris_train.csv +121 -0
- teradataml/data/join_table1.csv +4 -0
- teradataml/data/join_table2.csv +4 -0
- teradataml/data/jsons/anly_function_name.json +7 -0
- teradataml/data/jsons/byom/ONNXSeq2Seq.json +287 -0
- teradataml/data/jsons/byom/dataikupredict.json +148 -0
- teradataml/data/jsons/byom/datarobotpredict.json +147 -0
- teradataml/data/jsons/byom/h2opredict.json +195 -0
- teradataml/data/jsons/byom/onnxembeddings.json +267 -0
- teradataml/data/jsons/byom/onnxpredict.json +187 -0
- teradataml/data/jsons/byom/pmmlpredict.json +147 -0
- teradataml/data/jsons/paired_functions.json +450 -0
- teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/16.20/Attribution.json +249 -0
- teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/16.20/Pack.json +98 -0
- teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/16.20/Unpack.json +166 -0
- teradataml/data/jsons/sqle/16.20/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.00/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/17.00/Pack.json +98 -0
- teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.00/Unpack.json +166 -0
- teradataml/data/jsons/sqle/17.00/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.05/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/17.05/Pack.json +98 -0
- teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.05/Unpack.json +166 -0
- teradataml/data/jsons/sqle/17.05/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.10/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -0
- teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +172 -0
- teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -0
- teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -0
- teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -0
- teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -0
- teradataml/data/jsons/sqle/17.10/Pack.json +133 -0
- teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -0
- teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -0
- teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -0
- teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +54 -0
- teradataml/data/jsons/sqle/17.10/TD_Chisq.json +68 -0
- teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +54 -0
- teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +69 -0
- teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -0
- teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +52 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -0
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_Histogram.json +133 -0
- teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +183 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +66 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +197 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -0
- teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +112 -0
- teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +128 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +157 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +71 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +148 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -0
- teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -0
- teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +119 -0
- teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -0
- teradataml/data/jsons/sqle/17.10/Unpack.json +188 -0
- teradataml/data/jsons/sqle/17.10/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.20/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -0
- teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -0
- teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -0
- teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -0
- teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -0
- teradataml/data/jsons/sqle/17.20/Pack.json +133 -0
- teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -0
- teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +149 -0
- teradataml/data/jsons/sqle/17.20/TD_Apriori.json +181 -0
- teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -0
- teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
- teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_Chisq.json +68 -0
- teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +146 -0
- teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -0
- teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -0
- teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +260 -0
- teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -0
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -0
- teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -0
- teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -0
- teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -0
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -0
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -0
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -0
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -0
- teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -0
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +232 -0
- teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +87 -0
- teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -0
- teradataml/data/jsons/sqle/17.20/TD_NERExtractor.json +145 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -0
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +316 -0
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +124 -0
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -0
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -0
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -0
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -0
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -0
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -0
- teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -0
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -0
- teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -0
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +179 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +179 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +74 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -0
- teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +138 -0
- teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -0
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +128 -0
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_SMOTE.json +267 -0
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -0
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -0
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +310 -0
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +120 -0
- teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +194 -0
- teradataml/data/jsons/sqle/17.20/TD_Shap.json +221 -0
- teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +143 -0
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -0
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -0
- teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -0
- teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -0
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -0
- teradataml/data/jsons/sqle/17.20/TD_TextMorph.json +134 -0
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json +297 -0
- teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -0
- teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -0
- teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
- teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +183 -0
- teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -0
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -0
- teradataml/data/jsons/sqle/17.20/Unpack.json +188 -0
- teradataml/data/jsons/sqle/17.20/nPath.json +269 -0
- teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json +370 -0
- teradataml/data/jsons/sqle/20.00/AI_AskLLM.json +460 -0
- teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json +385 -0
- teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_MaskPII.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json +400 -0
- teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json +401 -0
- teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json +384 -0
- teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json +384 -0
- teradataml/data/jsons/sqle/20.00/TD_API_AzureML.json +151 -0
- teradataml/data/jsons/sqle/20.00/TD_API_Sagemaker.json +182 -0
- teradataml/data/jsons/sqle/20.00/TD_API_VertexAI.json +183 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSW.json +296 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json +206 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json +32 -0
- teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
- teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
- teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
- teradataml/data/jsons/tableoperator/17.00/read_nos.json +198 -0
- teradataml/data/jsons/tableoperator/17.05/read_nos.json +198 -0
- teradataml/data/jsons/tableoperator/17.05/write_nos.json +195 -0
- teradataml/data/jsons/tableoperator/17.10/read_nos.json +184 -0
- teradataml/data/jsons/tableoperator/17.10/write_nos.json +195 -0
- teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
- teradataml/data/jsons/tableoperator/17.20/read_nos.json +183 -0
- teradataml/data/jsons/tableoperator/17.20/write_nos.json +224 -0
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +132 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +396 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +77 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +153 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
- teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +107 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +106 -0
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +89 -0
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +104 -0
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +66 -0
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +87 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +134 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +144 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +108 -0
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_DIFF.json +92 -0
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +114 -0
- teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
- teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +39 -0
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +85 -0
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +71 -0
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +139 -0
- teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECASTER.json +313 -0
- teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +58 -0
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +81 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
- teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +64 -0
- teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +182 -0
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +103 -0
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +181 -0
- teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
- teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +68 -0
- teradataml/data/jsons/uaf/17.20/TD_MINFO.json +67 -0
- teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +179 -0
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -0
- teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +119 -0
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -0
- teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +98 -0
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +194 -0
- teradataml/data/jsons/uaf/17.20/TD_SAX.json +210 -0
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +143 -0
- teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +90 -0
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +80 -0
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +68 -0
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -0
- teradataml/data/jsons/uaf/17.20/TD_SINFO.json +58 -0
- teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +163 -0
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +112 -0
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -0
- teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +410 -0
- teradataml/data/kmeans_example.json +23 -0
- teradataml/data/kmeans_table.csv +10 -0
- teradataml/data/kmeans_us_arrests_data.csv +51 -0
- teradataml/data/knn_example.json +19 -0
- teradataml/data/knnrecommender_example.json +7 -0
- teradataml/data/knnrecommenderpredict_example.json +12 -0
- teradataml/data/lar_example.json +17 -0
- teradataml/data/larpredict_example.json +30 -0
- teradataml/data/lc_new_predictors.csv +5 -0
- teradataml/data/lc_new_reference.csv +9 -0
- teradataml/data/lda_example.json +9 -0
- teradataml/data/ldainference_example.json +15 -0
- teradataml/data/ldatopicsummary_example.json +9 -0
- teradataml/data/levendist_input.csv +13 -0
- teradataml/data/levenshteindistance_example.json +10 -0
- teradataml/data/linreg_example.json +10 -0
- teradataml/data/load_example_data.py +350 -0
- teradataml/data/loan_prediction.csv +295 -0
- teradataml/data/lungcancer.csv +138 -0
- teradataml/data/mappingdata.csv +12 -0
- teradataml/data/medical_readings.csv +101 -0
- teradataml/data/milk_timeseries.csv +157 -0
- teradataml/data/min_max_titanic.csv +4 -0
- teradataml/data/minhash_example.json +6 -0
- teradataml/data/ml_ratings.csv +7547 -0
- teradataml/data/ml_ratings_10.csv +2445 -0
- teradataml/data/mobile_data.csv +13 -0
- teradataml/data/model1_table.csv +5 -0
- teradataml/data/model2_table.csv +5 -0
- teradataml/data/models/License_file.txt +1 -0
- teradataml/data/models/License_file_empty.txt +0 -0
- teradataml/data/models/dataiku_iris_data_ann_thin +0 -0
- teradataml/data/models/dr_iris_rf +0 -0
- teradataml/data/models/iris_db_dt_model_sklearn.onnx +0 -0
- teradataml/data/models/iris_db_dt_model_sklearn_floattensor.onnx +0 -0
- teradataml/data/models/iris_db_glm_model.pmml +57 -0
- teradataml/data/models/iris_db_xgb_model.pmml +4471 -0
- teradataml/data/models/iris_kmeans_model +0 -0
- teradataml/data/models/iris_mojo_glm_h2o_model +0 -0
- teradataml/data/models/iris_mojo_xgb_h2o_model +0 -0
- teradataml/data/modularity_example.json +12 -0
- teradataml/data/movavg_example.json +8 -0
- teradataml/data/mtx1.csv +7 -0
- teradataml/data/mtx2.csv +13 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/mvdfft8.csv +9 -0
- teradataml/data/naivebayes_example.json +10 -0
- teradataml/data/naivebayespredict_example.json +19 -0
- teradataml/data/naivebayestextclassifier2_example.json +7 -0
- teradataml/data/naivebayestextclassifier_example.json +8 -0
- teradataml/data/naivebayestextclassifierpredict_example.json +32 -0
- teradataml/data/name_Find_configure.csv +10 -0
- teradataml/data/namedentityfinder_example.json +14 -0
- teradataml/data/namedentityfinderevaluator_example.json +10 -0
- teradataml/data/namedentityfindertrainer_example.json +6 -0
- teradataml/data/nb_iris_input_test.csv +31 -0
- teradataml/data/nb_iris_input_train.csv +121 -0
- teradataml/data/nbp_iris_model.csv +13 -0
- teradataml/data/ner_dict.csv +8 -0
- teradataml/data/ner_extractor_text.csv +2 -0
- teradataml/data/ner_input_eng.csv +7 -0
- teradataml/data/ner_rule.csv +5 -0
- teradataml/data/ner_sports_test2.csv +29 -0
- teradataml/data/ner_sports_train.csv +501 -0
- teradataml/data/nerevaluator_example.json +6 -0
- teradataml/data/nerextractor_example.json +18 -0
- teradataml/data/nermem_sports_test.csv +18 -0
- teradataml/data/nermem_sports_train.csv +51 -0
- teradataml/data/nertrainer_example.json +7 -0
- teradataml/data/ngrams_example.json +7 -0
- teradataml/data/notebooks/__init__.py +0 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -0
- teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -0
- teradataml/data/notebooks/sqlalchemy/__init__.py +0 -0
- teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -0
- teradataml/data/npath_example.json +23 -0
- teradataml/data/ntree_example.json +14 -0
- teradataml/data/numeric_strings.csv +5 -0
- teradataml/data/numerics.csv +4 -0
- teradataml/data/ocean_buoy.csv +17 -0
- teradataml/data/ocean_buoy2.csv +17 -0
- teradataml/data/ocean_buoys.csv +28 -0
- teradataml/data/ocean_buoys2.csv +10 -0
- teradataml/data/ocean_buoys_nonpti.csv +28 -0
- teradataml/data/ocean_buoys_seq.csv +29 -0
- teradataml/data/onehot_encoder_train.csv +4 -0
- teradataml/data/openml_example.json +92 -0
- teradataml/data/optional_event_table.csv +4 -0
- teradataml/data/orders1.csv +11 -0
- teradataml/data/orders1_12.csv +13 -0
- teradataml/data/orders_ex.csv +4 -0
- teradataml/data/pack_example.json +9 -0
- teradataml/data/package_tracking.csv +19 -0
- teradataml/data/package_tracking_pti.csv +19 -0
- teradataml/data/pagerank_example.json +13 -0
- teradataml/data/paragraphs_input.csv +6 -0
- teradataml/data/pathanalyzer_example.json +8 -0
- teradataml/data/pathgenerator_example.json +8 -0
- teradataml/data/patient_profile.csv +101 -0
- teradataml/data/pattern_matching_data.csv +11 -0
- teradataml/data/payment_fraud_dataset.csv +10001 -0
- teradataml/data/peppers.png +0 -0
- teradataml/data/phrases.csv +7 -0
- teradataml/data/pivot_example.json +9 -0
- teradataml/data/pivot_input.csv +22 -0
- teradataml/data/playerRating.csv +31 -0
- teradataml/data/pos_input.csv +40 -0
- teradataml/data/postagger_example.json +7 -0
- teradataml/data/posttagger_output.csv +44 -0
- teradataml/data/production_data.csv +17 -0
- teradataml/data/production_data2.csv +7 -0
- teradataml/data/randomsample_example.json +32 -0
- teradataml/data/randomwalksample_example.json +9 -0
- teradataml/data/rank_table.csv +6 -0
- teradataml/data/real_values.csv +14 -0
- teradataml/data/ref_mobile_data.csv +4 -0
- teradataml/data/ref_mobile_data_dense.csv +2 -0
- teradataml/data/ref_url.csv +17 -0
- teradataml/data/restaurant_reviews.csv +7 -0
- teradataml/data/retail_churn_table.csv +27772 -0
- teradataml/data/river_data.csv +145 -0
- teradataml/data/roc_example.json +8 -0
- teradataml/data/roc_input.csv +101 -0
- teradataml/data/rule_inputs.csv +6 -0
- teradataml/data/rule_table.csv +2 -0
- teradataml/data/sales.csv +7 -0
- teradataml/data/sales_transaction.csv +501 -0
- teradataml/data/salesdata.csv +342 -0
- teradataml/data/sample_cities.csv +3 -0
- teradataml/data/sample_shapes.csv +11 -0
- teradataml/data/sample_streets.csv +3 -0
- teradataml/data/sampling_example.json +16 -0
- teradataml/data/sax_example.json +17 -0
- teradataml/data/scale_attributes.csv +3 -0
- teradataml/data/scale_example.json +74 -0
- teradataml/data/scale_housing.csv +11 -0
- teradataml/data/scale_housing_test.csv +6 -0
- teradataml/data/scale_input_part_sparse.csv +31 -0
- teradataml/data/scale_input_partitioned.csv +16 -0
- teradataml/data/scale_input_sparse.csv +11 -0
- teradataml/data/scale_parameters.csv +3 -0
- teradataml/data/scale_stat.csv +11 -0
- teradataml/data/scalebypartition_example.json +13 -0
- teradataml/data/scalemap_example.json +13 -0
- teradataml/data/scalesummary_example.json +12 -0
- teradataml/data/score_category.csv +101 -0
- teradataml/data/score_summary.csv +4 -0
- teradataml/data/script_example.json +10 -0
- teradataml/data/scripts/deploy_script.py +84 -0
- teradataml/data/scripts/lightgbm/dataset.template +175 -0
- teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +264 -0
- teradataml/data/scripts/lightgbm/lightgbm_function.template +234 -0
- teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +177 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/mapper.py +16 -0
- teradataml/data/scripts/mapper_replace.py +16 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +205 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +148 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +144 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +166 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +161 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +145 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +327 -0
- teradataml/data/sdk/modelops/modelops_spec.json +101737 -0
- teradataml/data/seeds.csv +10 -0
- teradataml/data/sentenceextractor_example.json +7 -0
- teradataml/data/sentiment_extract_input.csv +11 -0
- teradataml/data/sentiment_train.csv +16 -0
- teradataml/data/sentiment_word.csv +20 -0
- teradataml/data/sentiment_word_input.csv +20 -0
- teradataml/data/sentimentextractor_example.json +24 -0
- teradataml/data/sentimenttrainer_example.json +8 -0
- teradataml/data/sequence_table.csv +10 -0
- teradataml/data/seriessplitter_example.json +8 -0
- teradataml/data/sessionize_example.json +17 -0
- teradataml/data/sessionize_table.csv +116 -0
- teradataml/data/setop_test1.csv +24 -0
- teradataml/data/setop_test2.csv +22 -0
- teradataml/data/soc_nw_edges.csv +11 -0
- teradataml/data/soc_nw_vertices.csv +8 -0
- teradataml/data/souvenir_timeseries.csv +168 -0
- teradataml/data/sparse_iris_attribute.csv +5 -0
- teradataml/data/sparse_iris_test.csv +121 -0
- teradataml/data/sparse_iris_train.csv +601 -0
- teradataml/data/star1.csv +6 -0
- teradataml/data/star_pivot.csv +8 -0
- teradataml/data/state_transition.csv +5 -0
- teradataml/data/stock_data.csv +53 -0
- teradataml/data/stock_movement.csv +11 -0
- teradataml/data/stock_vol.csv +76 -0
- teradataml/data/stop_words.csv +8 -0
- teradataml/data/store_sales.csv +37 -0
- teradataml/data/stringsimilarity_example.json +8 -0
- teradataml/data/strsimilarity_input.csv +13 -0
- teradataml/data/students.csv +101 -0
- teradataml/data/svm_iris_input_test.csv +121 -0
- teradataml/data/svm_iris_input_train.csv +481 -0
- teradataml/data/svm_iris_model.csv +7 -0
- teradataml/data/svmdense_example.json +10 -0
- teradataml/data/svmdensepredict_example.json +19 -0
- teradataml/data/svmsparse_example.json +8 -0
- teradataml/data/svmsparsepredict_example.json +14 -0
- teradataml/data/svmsparsesummary_example.json +8 -0
- teradataml/data/target_mobile_data.csv +13 -0
- teradataml/data/target_mobile_data_dense.csv +5 -0
- teradataml/data/target_udt_data.csv +8 -0
- teradataml/data/tdnerextractor_example.json +14 -0
- teradataml/data/templatedata.csv +1201 -0
- teradataml/data/templates/open_source_ml.json +11 -0
- teradataml/data/teradata_icon.ico +0 -0
- teradataml/data/teradataml_example.json +1473 -0
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_loan_prediction.csv +53 -0
- teradataml/data/test_pacf_12.csv +37 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/test_river2.csv +109 -0
- teradataml/data/text_inputs.csv +6 -0
- teradataml/data/textchunker_example.json +8 -0
- teradataml/data/textclassifier_example.json +7 -0
- teradataml/data/textclassifier_input.csv +7 -0
- teradataml/data/textclassifiertrainer_example.json +7 -0
- teradataml/data/textmorph_example.json +11 -0
- teradataml/data/textparser_example.json +15 -0
- teradataml/data/texttagger_example.json +12 -0
- teradataml/data/texttokenizer_example.json +7 -0
- teradataml/data/texttrainer_input.csv +11 -0
- teradataml/data/tf_example.json +7 -0
- teradataml/data/tfidf_example.json +14 -0
- teradataml/data/tfidf_input1.csv +201 -0
- teradataml/data/tfidf_train.csv +6 -0
- teradataml/data/time_table1.csv +535 -0
- teradataml/data/time_table2.csv +14 -0
- teradataml/data/timeseriesdata.csv +1601 -0
- teradataml/data/timeseriesdatasetsd4.csv +105 -0
- teradataml/data/timestamp_data.csv +4 -0
- teradataml/data/titanic.csv +892 -0
- teradataml/data/titanic_dataset_unpivoted.csv +19 -0
- teradataml/data/to_num_data.csv +4 -0
- teradataml/data/tochar_data.csv +5 -0
- teradataml/data/token_table.csv +696 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/train_tracking.csv +28 -0
- teradataml/data/trans_dense.csv +16 -0
- teradataml/data/trans_sparse.csv +55 -0
- teradataml/data/transformation_table.csv +6 -0
- teradataml/data/transformation_table_new.csv +2 -0
- teradataml/data/tv_spots.csv +16 -0
- teradataml/data/twod_climate_data.csv +117 -0
- teradataml/data/uaf_example.json +529 -0
- teradataml/data/univariatestatistics_example.json +9 -0
- teradataml/data/unpack_example.json +10 -0
- teradataml/data/unpivot_example.json +25 -0
- teradataml/data/unpivot_input.csv +8 -0
- teradataml/data/url_data.csv +10 -0
- teradataml/data/us_air_pass.csv +37 -0
- teradataml/data/us_population.csv +624 -0
- teradataml/data/us_states_shapes.csv +52 -0
- teradataml/data/varmax_example.json +18 -0
- teradataml/data/vectordistance_example.json +30 -0
- teradataml/data/ville_climatedata.csv +121 -0
- teradataml/data/ville_tempdata.csv +12 -0
- teradataml/data/ville_tempdata1.csv +12 -0
- teradataml/data/ville_temperature.csv +11 -0
- teradataml/data/waveletTable.csv +1605 -0
- teradataml/data/waveletTable2.csv +1605 -0
- teradataml/data/weightedmovavg_example.json +9 -0
- teradataml/data/wft_testing.csv +5 -0
- teradataml/data/windowdfft.csv +16 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/data/word_embed_input_table1.csv +6 -0
- teradataml/data/word_embed_input_table2.csv +5 -0
- teradataml/data/word_embed_model.csv +23 -0
- teradataml/data/words_input.csv +13 -0
- teradataml/data/xconvolve_complex_left.csv +6 -0
- teradataml/data/xconvolve_complex_leftmulti.csv +6 -0
- teradataml/data/xgboost_example.json +36 -0
- teradataml/data/xgboostpredict_example.json +32 -0
- teradataml/data/ztest_example.json +16 -0
- teradataml/dataframe/__init__.py +0 -0
- teradataml/dataframe/copy_to.py +2446 -0
- teradataml/dataframe/data_transfer.py +2840 -0
- teradataml/dataframe/dataframe.py +20908 -0
- teradataml/dataframe/dataframe_utils.py +2114 -0
- teradataml/dataframe/fastload.py +794 -0
- teradataml/dataframe/functions.py +2110 -0
- teradataml/dataframe/indexer.py +424 -0
- teradataml/dataframe/row.py +160 -0
- teradataml/dataframe/setop.py +1171 -0
- teradataml/dataframe/sql.py +10904 -0
- teradataml/dataframe/sql_function_parameters.py +440 -0
- teradataml/dataframe/sql_functions.py +652 -0
- teradataml/dataframe/sql_interfaces.py +220 -0
- teradataml/dataframe/vantage_function_types.py +675 -0
- teradataml/dataframe/window.py +694 -0
- teradataml/dbutils/__init__.py +3 -0
- teradataml/dbutils/dbutils.py +2871 -0
- teradataml/dbutils/filemgr.py +318 -0
- teradataml/gen_ai/__init__.py +2 -0
- teradataml/gen_ai/convAI.py +473 -0
- teradataml/geospatial/__init__.py +4 -0
- teradataml/geospatial/geodataframe.py +1105 -0
- teradataml/geospatial/geodataframecolumn.py +392 -0
- teradataml/geospatial/geometry_types.py +926 -0
- teradataml/hyperparameter_tuner/__init__.py +1 -0
- teradataml/hyperparameter_tuner/optimizer.py +4115 -0
- teradataml/hyperparameter_tuner/utils.py +303 -0
- teradataml/lib/__init__.py +0 -0
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/lib/libaed_0_1_aarch64.so +0 -0
- teradataml/lib/libaed_0_1_ppc64le.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/_base.py +1321 -0
- teradataml/opensource/_class.py +464 -0
- teradataml/opensource/_constants.py +61 -0
- teradataml/opensource/_lightgbm.py +949 -0
- teradataml/opensource/_sklearn.py +1008 -0
- teradataml/opensource/_wrapper_utils.py +267 -0
- teradataml/options/__init__.py +148 -0
- teradataml/options/configure.py +489 -0
- teradataml/options/display.py +187 -0
- teradataml/plot/__init__.py +3 -0
- teradataml/plot/axis.py +1427 -0
- teradataml/plot/constants.py +15 -0
- teradataml/plot/figure.py +431 -0
- teradataml/plot/plot.py +810 -0
- teradataml/plot/query_generator.py +83 -0
- teradataml/plot/subplot.py +216 -0
- teradataml/scriptmgmt/UserEnv.py +4273 -0
- teradataml/scriptmgmt/__init__.py +3 -0
- teradataml/scriptmgmt/lls_utils.py +2157 -0
- teradataml/sdk/README.md +79 -0
- teradataml/sdk/__init__.py +4 -0
- teradataml/sdk/_auth_modes.py +422 -0
- teradataml/sdk/_func_params.py +487 -0
- teradataml/sdk/_json_parser.py +453 -0
- teradataml/sdk/_openapi_spec_constants.py +249 -0
- teradataml/sdk/_utils.py +236 -0
- teradataml/sdk/api_client.py +900 -0
- teradataml/sdk/constants.py +62 -0
- teradataml/sdk/modelops/__init__.py +98 -0
- teradataml/sdk/modelops/_client.py +409 -0
- teradataml/sdk/modelops/_constants.py +304 -0
- teradataml/sdk/modelops/models.py +2308 -0
- teradataml/sdk/spinner.py +107 -0
- teradataml/series/__init__.py +0 -0
- teradataml/series/series.py +537 -0
- teradataml/series/series_utils.py +71 -0
- teradataml/store/__init__.py +12 -0
- teradataml/store/feature_store/__init__.py +0 -0
- teradataml/store/feature_store/constants.py +658 -0
- teradataml/store/feature_store/feature_store.py +4814 -0
- teradataml/store/feature_store/mind_map.py +639 -0
- teradataml/store/feature_store/models.py +7330 -0
- teradataml/store/feature_store/utils.py +390 -0
- teradataml/table_operators/Apply.py +979 -0
- teradataml/table_operators/Script.py +1739 -0
- teradataml/table_operators/TableOperator.py +1343 -0
- teradataml/table_operators/__init__.py +2 -0
- teradataml/table_operators/apply_query_generator.py +262 -0
- teradataml/table_operators/query_generator.py +493 -0
- teradataml/table_operators/table_operator_query_generator.py +462 -0
- teradataml/table_operators/table_operator_util.py +726 -0
- teradataml/table_operators/templates/dataframe_apply.template +184 -0
- teradataml/table_operators/templates/dataframe_map.template +176 -0
- teradataml/table_operators/templates/dataframe_register.template +73 -0
- teradataml/table_operators/templates/dataframe_udf.template +67 -0
- teradataml/table_operators/templates/script_executor.template +170 -0
- teradataml/telemetry_utils/__init__.py +0 -0
- teradataml/telemetry_utils/queryband.py +53 -0
- teradataml/utils/__init__.py +0 -0
- teradataml/utils/docstring.py +527 -0
- teradataml/utils/dtypes.py +943 -0
- teradataml/utils/internal_buffer.py +122 -0
- teradataml/utils/print_versions.py +206 -0
- teradataml/utils/utils.py +451 -0
- teradataml/utils/validators.py +3305 -0
- teradataml-20.0.0.8.dist-info/METADATA +2804 -0
- teradataml-20.0.0.8.dist-info/RECORD +1208 -0
- teradataml-20.0.0.8.dist-info/WHEEL +5 -0
- teradataml-20.0.0.8.dist-info/top_level.txt +1 -0
- teradataml-20.0.0.8.dist-info/zip-safe +1 -0
|
@@ -0,0 +1,1600 @@
|
|
|
1
|
+
fixed_acidity,volatile_acidity,citric_acid,residual_sugar,chlorides,free_sulfur_dioxide,total_sulfur_dioxide,density,pH,sulphates,alcohol,quality
|
|
2
|
+
7.4,0.7,0,1.9,0.076,11,34,0.9978,3.51,0.56,9.4,bad
|
|
3
|
+
7.8,0.88,0,2.6,0.098,25,67,0.9968,3.2,0.68,9.8,bad
|
|
4
|
+
7.8,0.76,0.04,2.3,0.092,15,54,0.997,3.26,0.65,9.8,bad
|
|
5
|
+
11.2,0.28,0.56,1.9,0.075,17,60,0.998,3.16,0.58,9.8,good
|
|
6
|
+
7.4,0.7,0,1.9,0.076,11,34,0.9978,3.51,0.56,9.4,bad
|
|
7
|
+
7.4,0.66,0,1.8,0.075,13,40,0.9978,3.51,0.56,9.4,bad
|
|
8
|
+
7.9,0.6,0.06,1.6,0.069,15,59,0.9964,3.3,0.46,9.4,bad
|
|
9
|
+
7.3,0.65,0,1.2,0.065,15,21,0.9946,3.39,0.47,10,good
|
|
10
|
+
7.8,0.58,0.02,2,0.073,9,18,0.9968,3.36,0.57,9.5,good
|
|
11
|
+
7.5,0.5,0.36,6.1,0.071,17,102,0.9978,3.35,0.8,10.5,bad
|
|
12
|
+
6.7,0.58,0.08,1.8,0.097,15,65,0.9959,3.28,0.54,9.2,bad
|
|
13
|
+
7.5,0.5,0.36,6.1,0.071,17,102,0.9978,3.35,0.8,10.5,bad
|
|
14
|
+
5.6,0.615,0,1.6,0.089,16,59,0.9943,3.58,0.52,9.9,bad
|
|
15
|
+
7.8,0.61,0.29,1.6,0.114,9,29,0.9974,3.26,1.56,9.1,bad
|
|
16
|
+
8.9,0.62,0.18,3.8,0.176,52,145,0.9986,3.16,0.88,9.2,bad
|
|
17
|
+
8.9,0.62,0.19,3.9,0.17,51,148,0.9986,3.17,0.93,9.2,bad
|
|
18
|
+
8.5,0.28,0.56,1.8,0.092,35,103,0.9969,3.3,0.75,10.5,good
|
|
19
|
+
8.1,0.56,0.28,1.7,0.368,16,56,0.9968,3.11,1.28,9.3,bad
|
|
20
|
+
7.4,0.59,0.08,4.4,0.086,6,29,0.9974,3.38,0.5,9,bad
|
|
21
|
+
7.9,0.32,0.51,1.8,0.341,17,56,0.9969,3.04,1.08,9.2,good
|
|
22
|
+
8.9,0.22,0.48,1.8,0.077,29,60,0.9968,3.39,0.53,9.4,good
|
|
23
|
+
7.6,0.39,0.31,2.3,0.082,23,71,0.9982,3.52,0.65,9.7,bad
|
|
24
|
+
7.9,0.43,0.21,1.6,0.106,10,37,0.9966,3.17,0.91,9.5,bad
|
|
25
|
+
8.5,0.49,0.11,2.3,0.084,9,67,0.9968,3.17,0.53,9.4,bad
|
|
26
|
+
6.9,0.4,0.14,2.4,0.085,21,40,0.9968,3.43,0.63,9.7,good
|
|
27
|
+
6.3,0.39,0.16,1.4,0.08,11,23,0.9955,3.34,0.56,9.3,bad
|
|
28
|
+
7.6,0.41,0.24,1.8,0.08,4,11,0.9962,3.28,0.59,9.5,bad
|
|
29
|
+
7.9,0.43,0.21,1.6,0.106,10,37,0.9966,3.17,0.91,9.5,bad
|
|
30
|
+
7.1,0.71,0,1.9,0.08,14,35,0.9972,3.47,0.55,9.4,bad
|
|
31
|
+
7.8,0.645,0,2,0.082,8,16,0.9964,3.38,0.59,9.8,good
|
|
32
|
+
6.7,0.675,0.07,2.4,0.089,17,82,0.9958,3.35,0.54,10.1,bad
|
|
33
|
+
6.9,0.685,0,2.5,0.105,22,37,0.9966,3.46,0.57,10.6,good
|
|
34
|
+
8.3,0.655,0.12,2.3,0.083,15,113,0.9966,3.17,0.66,9.8,bad
|
|
35
|
+
6.9,0.605,0.12,10.7,0.073,40,83,0.9993,3.45,0.52,9.4,good
|
|
36
|
+
5.2,0.32,0.25,1.8,0.103,13,50,0.9957,3.38,0.55,9.2,bad
|
|
37
|
+
7.8,0.645,0,5.5,0.086,5,18,0.9986,3.4,0.55,9.6,good
|
|
38
|
+
7.8,0.6,0.14,2.4,0.086,3,15,0.9975,3.42,0.6,10.8,good
|
|
39
|
+
8.1,0.38,0.28,2.1,0.066,13,30,0.9968,3.23,0.73,9.7,good
|
|
40
|
+
5.7,1.13,0.09,1.5,0.172,7,19,0.994,3.5,0.48,9.8,bad
|
|
41
|
+
7.3,0.45,0.36,5.9,0.074,12,87,0.9978,3.33,0.83,10.5,bad
|
|
42
|
+
7.3,0.45,0.36,5.9,0.074,12,87,0.9978,3.33,0.83,10.5,bad
|
|
43
|
+
8.8,0.61,0.3,2.8,0.088,17,46,0.9976,3.26,0.51,9.3,bad
|
|
44
|
+
7.5,0.49,0.2,2.6,0.332,8,14,0.9968,3.21,0.9,10.5,good
|
|
45
|
+
8.1,0.66,0.22,2.2,0.069,9,23,0.9968,3.3,1.2,10.3,bad
|
|
46
|
+
6.8,0.67,0.02,1.8,0.05,5,11,0.9962,3.48,0.52,9.5,bad
|
|
47
|
+
4.6,0.52,0.15,2.1,0.054,8,65,0.9934,3.9,0.56,13.1,bad
|
|
48
|
+
7.7,0.935,0.43,2.2,0.114,22,114,0.997,3.25,0.73,9.2,bad
|
|
49
|
+
8.7,0.29,0.52,1.6,0.113,12,37,0.9969,3.25,0.58,9.5,bad
|
|
50
|
+
6.4,0.4,0.23,1.6,0.066,5,12,0.9958,3.34,0.56,9.2,bad
|
|
51
|
+
5.6,0.31,0.37,1.4,0.074,12,96,0.9954,3.32,0.58,9.2,bad
|
|
52
|
+
8.8,0.66,0.26,1.7,0.074,4,23,0.9971,3.15,0.74,9.2,bad
|
|
53
|
+
6.6,0.52,0.04,2.2,0.069,8,15,0.9956,3.4,0.63,9.4,good
|
|
54
|
+
6.6,0.5,0.04,2.1,0.068,6,14,0.9955,3.39,0.64,9.4,good
|
|
55
|
+
8.6,0.38,0.36,3,0.081,30,119,0.997,3.2,0.56,9.4,bad
|
|
56
|
+
7.6,0.51,0.15,2.8,0.11,33,73,0.9955,3.17,0.63,10.2,good
|
|
57
|
+
7.7,0.62,0.04,3.8,0.084,25,45,0.9978,3.34,0.53,9.5,bad
|
|
58
|
+
10.2,0.42,0.57,3.4,0.07,4,10,0.9971,3.04,0.63,9.6,bad
|
|
59
|
+
7.5,0.63,0.12,5.1,0.111,50,110,0.9983,3.26,0.77,9.4,bad
|
|
60
|
+
7.8,0.59,0.18,2.3,0.076,17,54,0.9975,3.43,0.59,10,bad
|
|
61
|
+
7.3,0.39,0.31,2.4,0.074,9,46,0.9962,3.41,0.54,9.4,good
|
|
62
|
+
8.8,0.4,0.4,2.2,0.079,19,52,0.998,3.44,0.64,9.2,bad
|
|
63
|
+
7.7,0.69,0.49,1.8,0.115,20,112,0.9968,3.21,0.71,9.3,bad
|
|
64
|
+
7.5,0.52,0.16,1.9,0.085,12,35,0.9968,3.38,0.62,9.5,good
|
|
65
|
+
7,0.735,0.05,2,0.081,13,54,0.9966,3.39,0.57,9.8,bad
|
|
66
|
+
7.2,0.725,0.05,4.65,0.086,4,11,0.9962,3.41,0.39,10.9,bad
|
|
67
|
+
7.2,0.725,0.05,4.65,0.086,4,11,0.9962,3.41,0.39,10.9,bad
|
|
68
|
+
7.5,0.52,0.11,1.5,0.079,11,39,0.9968,3.42,0.58,9.6,bad
|
|
69
|
+
6.6,0.705,0.07,1.6,0.076,6,15,0.9962,3.44,0.58,10.7,bad
|
|
70
|
+
9.3,0.32,0.57,2,0.074,27,65,0.9969,3.28,0.79,10.7,bad
|
|
71
|
+
8,0.705,0.05,1.9,0.074,8,19,0.9962,3.34,0.95,10.5,good
|
|
72
|
+
7.7,0.63,0.08,1.9,0.076,15,27,0.9967,3.32,0.54,9.5,good
|
|
73
|
+
7.7,0.67,0.23,2.1,0.088,17,96,0.9962,3.32,0.48,9.5,bad
|
|
74
|
+
7.7,0.69,0.22,1.9,0.084,18,94,0.9961,3.31,0.48,9.5,bad
|
|
75
|
+
8.3,0.675,0.26,2.1,0.084,11,43,0.9976,3.31,0.53,9.2,bad
|
|
76
|
+
9.7,0.32,0.54,2.5,0.094,28,83,0.9984,3.28,0.82,9.6,bad
|
|
77
|
+
8.8,0.41,0.64,2.2,0.093,9,42,0.9986,3.54,0.66,10.5,bad
|
|
78
|
+
8.8,0.41,0.64,2.2,0.093,9,42,0.9986,3.54,0.66,10.5,bad
|
|
79
|
+
6.8,0.785,0,2.4,0.104,14,30,0.9966,3.52,0.55,10.7,good
|
|
80
|
+
6.7,0.75,0.12,2,0.086,12,80,0.9958,3.38,0.52,10.1,bad
|
|
81
|
+
8.3,0.625,0.2,1.5,0.08,27,119,0.9972,3.16,1.12,9.1,bad
|
|
82
|
+
6.2,0.45,0.2,1.6,0.069,3,15,0.9958,3.41,0.56,9.2,bad
|
|
83
|
+
7.8,0.43,0.7,1.9,0.464,22,67,0.9974,3.13,1.28,9.4,bad
|
|
84
|
+
7.4,0.5,0.47,2,0.086,21,73,0.997,3.36,0.57,9.1,bad
|
|
85
|
+
7.3,0.67,0.26,1.8,0.401,16,51,0.9969,3.16,1.14,9.4,bad
|
|
86
|
+
6.3,0.3,0.48,1.8,0.069,18,61,0.9959,3.44,0.78,10.3,good
|
|
87
|
+
6.9,0.55,0.15,2.2,0.076,19,40,0.9961,3.41,0.59,10.1,bad
|
|
88
|
+
8.6,0.49,0.28,1.9,0.11,20,136,0.9972,2.93,1.95,9.9,good
|
|
89
|
+
7.7,0.49,0.26,1.9,0.062,9,31,0.9966,3.39,0.64,9.6,bad
|
|
90
|
+
9.3,0.39,0.44,2.1,0.107,34,125,0.9978,3.14,1.22,9.5,bad
|
|
91
|
+
7,0.62,0.08,1.8,0.076,8,24,0.9978,3.48,0.53,9,bad
|
|
92
|
+
7.9,0.52,0.26,1.9,0.079,42,140,0.9964,3.23,0.54,9.5,bad
|
|
93
|
+
8.6,0.49,0.28,1.9,0.11,20,136,0.9972,2.93,1.95,9.9,good
|
|
94
|
+
8.6,0.49,0.29,2,0.11,19,133,0.9972,2.93,1.98,9.8,bad
|
|
95
|
+
7.7,0.49,0.26,1.9,0.062,9,31,0.9966,3.39,0.64,9.6,bad
|
|
96
|
+
5,1.02,0.04,1.4,0.045,41,85,0.9938,3.75,0.48,10.5,bad
|
|
97
|
+
4.7,0.6,0.17,2.3,0.058,17,106,0.9932,3.85,0.6,12.9,good
|
|
98
|
+
6.8,0.775,0,3,0.102,8,23,0.9965,3.45,0.56,10.7,bad
|
|
99
|
+
7,0.5,0.25,2,0.07,3,22,0.9963,3.25,0.63,9.2,bad
|
|
100
|
+
7.6,0.9,0.06,2.5,0.079,5,10,0.9967,3.39,0.56,9.8,bad
|
|
101
|
+
8.1,0.545,0.18,1.9,0.08,13,35,0.9972,3.3,0.59,9,good
|
|
102
|
+
8.3,0.61,0.3,2.1,0.084,11,50,0.9972,3.4,0.61,10.2,good
|
|
103
|
+
7.8,0.5,0.3,1.9,0.075,8,22,0.9959,3.31,0.56,10.4,good
|
|
104
|
+
8.1,0.545,0.18,1.9,0.08,13,35,0.9972,3.3,0.59,9,good
|
|
105
|
+
8.1,0.575,0.22,2.1,0.077,12,65,0.9967,3.29,0.51,9.2,bad
|
|
106
|
+
7.2,0.49,0.24,2.2,0.07,5,36,0.996,3.33,0.48,9.4,bad
|
|
107
|
+
8.1,0.575,0.22,2.1,0.077,12,65,0.9967,3.29,0.51,9.2,bad
|
|
108
|
+
7.8,0.41,0.68,1.7,0.467,18,69,0.9973,3.08,1.31,9.3,bad
|
|
109
|
+
6.2,0.63,0.31,1.7,0.088,15,64,0.9969,3.46,0.79,9.3,bad
|
|
110
|
+
8,0.33,0.53,2.5,0.091,18,80,0.9976,3.37,0.8,9.6,good
|
|
111
|
+
8.1,0.785,0.52,2,0.122,37,153,0.9969,3.21,0.69,9.3,bad
|
|
112
|
+
7.8,0.56,0.19,1.8,0.104,12,47,0.9964,3.19,0.93,9.5,bad
|
|
113
|
+
8.4,0.62,0.09,2.2,0.084,11,108,0.9964,3.15,0.66,9.8,bad
|
|
114
|
+
8.4,0.6,0.1,2.2,0.085,14,111,0.9964,3.15,0.66,9.8,bad
|
|
115
|
+
10.1,0.31,0.44,2.3,0.08,22,46,0.9988,3.32,0.67,9.7,good
|
|
116
|
+
7.8,0.56,0.19,1.8,0.104,12,47,0.9964,3.19,0.93,9.5,bad
|
|
117
|
+
9.4,0.4,0.31,2.2,0.09,13,62,0.9966,3.07,0.63,10.5,good
|
|
118
|
+
8.3,0.54,0.28,1.9,0.077,11,40,0.9978,3.39,0.61,10,good
|
|
119
|
+
7.8,0.56,0.12,2,0.082,7,28,0.997,3.37,0.5,9.4,good
|
|
120
|
+
8.8,0.55,0.04,2.2,0.119,14,56,0.9962,3.21,0.6,10.9,good
|
|
121
|
+
7,0.69,0.08,1.8,0.097,22,89,0.9959,3.34,0.54,9.2,good
|
|
122
|
+
7.3,1.07,0.09,1.7,0.178,10,89,0.9962,3.3,0.57,9,bad
|
|
123
|
+
8.8,0.55,0.04,2.2,0.119,14,56,0.9962,3.21,0.6,10.9,good
|
|
124
|
+
7.3,0.695,0,2.5,0.075,3,13,0.998,3.49,0.52,9.2,bad
|
|
125
|
+
8,0.71,0,2.6,0.08,11,34,0.9976,3.44,0.53,9.5,bad
|
|
126
|
+
7.8,0.5,0.17,1.6,0.082,21,102,0.996,3.39,0.48,9.5,bad
|
|
127
|
+
9,0.62,0.04,1.9,0.146,27,90,0.9984,3.16,0.7,9.4,bad
|
|
128
|
+
8.2,1.33,0,1.7,0.081,3,12,0.9964,3.53,0.49,10.9,bad
|
|
129
|
+
8.1,1.33,0,1.8,0.082,3,12,0.9964,3.54,0.48,10.9,bad
|
|
130
|
+
8,0.59,0.16,1.8,0.065,3,16,0.9962,3.42,0.92,10.5,good
|
|
131
|
+
6.1,0.38,0.15,1.8,0.072,6,19,0.9955,3.42,0.57,9.4,bad
|
|
132
|
+
8,0.745,0.56,2,0.118,30,134,0.9968,3.24,0.66,9.4,bad
|
|
133
|
+
5.6,0.5,0.09,2.3,0.049,17,99,0.9937,3.63,0.63,13,bad
|
|
134
|
+
5.6,0.5,0.09,2.3,0.049,17,99,0.9937,3.63,0.63,13,bad
|
|
135
|
+
6.6,0.5,0.01,1.5,0.06,17,26,0.9952,3.4,0.58,9.8,good
|
|
136
|
+
7.9,1.04,0.05,2.2,0.084,13,29,0.9959,3.22,0.55,9.9,good
|
|
137
|
+
8.4,0.745,0.11,1.9,0.09,16,63,0.9965,3.19,0.82,9.6,bad
|
|
138
|
+
8.3,0.715,0.15,1.8,0.089,10,52,0.9968,3.23,0.77,9.5,bad
|
|
139
|
+
7.2,0.415,0.36,2,0.081,13,45,0.9972,3.48,0.64,9.2,bad
|
|
140
|
+
7.8,0.56,0.19,2.1,0.081,15,105,0.9962,3.33,0.54,9.5,bad
|
|
141
|
+
7.8,0.56,0.19,2,0.081,17,108,0.9962,3.32,0.54,9.5,bad
|
|
142
|
+
8.4,0.745,0.11,1.9,0.09,16,63,0.9965,3.19,0.82,9.6,bad
|
|
143
|
+
8.3,0.715,0.15,1.8,0.089,10,52,0.9968,3.23,0.77,9.5,bad
|
|
144
|
+
5.2,0.34,0,1.8,0.05,27,63,0.9916,3.68,0.79,14,good
|
|
145
|
+
6.3,0.39,0.08,1.7,0.066,3,20,0.9954,3.34,0.58,9.4,bad
|
|
146
|
+
5.2,0.34,0,1.8,0.05,27,63,0.9916,3.68,0.79,14,good
|
|
147
|
+
8.1,0.67,0.55,1.8,0.117,32,141,0.9968,3.17,0.62,9.4,bad
|
|
148
|
+
5.8,0.68,0.02,1.8,0.087,21,94,0.9944,3.54,0.52,10,bad
|
|
149
|
+
7.6,0.49,0.26,1.6,0.236,10,88,0.9968,3.11,0.8,9.3,bad
|
|
150
|
+
6.9,0.49,0.1,2.3,0.074,12,30,0.9959,3.42,0.58,10.2,good
|
|
151
|
+
8.2,0.4,0.44,2.8,0.089,11,43,0.9975,3.53,0.61,10.5,good
|
|
152
|
+
7.3,0.33,0.47,2.1,0.077,5,11,0.9958,3.33,0.53,10.3,good
|
|
153
|
+
9.2,0.52,1,3.4,0.61,32,69,0.9996,2.74,2,9.4,bad
|
|
154
|
+
7.5,0.6,0.03,1.8,0.095,25,99,0.995,3.35,0.54,10.1,bad
|
|
155
|
+
7.5,0.6,0.03,1.8,0.095,25,99,0.995,3.35,0.54,10.1,bad
|
|
156
|
+
7.1,0.43,0.42,5.5,0.07,29,129,0.9973,3.42,0.72,10.5,bad
|
|
157
|
+
7.1,0.43,0.42,5.5,0.071,28,128,0.9973,3.42,0.71,10.5,bad
|
|
158
|
+
7.1,0.43,0.42,5.5,0.07,29,129,0.9973,3.42,0.72,10.5,bad
|
|
159
|
+
7.1,0.43,0.42,5.5,0.071,28,128,0.9973,3.42,0.71,10.5,bad
|
|
160
|
+
7.1,0.68,0,2.2,0.073,12,22,0.9969,3.48,0.5,9.3,bad
|
|
161
|
+
6.8,0.6,0.18,1.9,0.079,18,86,0.9968,3.59,0.57,9.3,good
|
|
162
|
+
7.6,0.95,0.03,2,0.09,7,20,0.9959,3.2,0.56,9.6,bad
|
|
163
|
+
7.6,0.68,0.02,1.3,0.072,9,20,0.9965,3.17,1.08,9.2,bad
|
|
164
|
+
7.8,0.53,0.04,1.7,0.076,17,31,0.9964,3.33,0.56,10,good
|
|
165
|
+
7.4,0.6,0.26,7.3,0.07,36,121,0.9982,3.37,0.49,9.4,bad
|
|
166
|
+
7.3,0.59,0.26,7.2,0.07,35,121,0.9981,3.37,0.49,9.4,bad
|
|
167
|
+
7.8,0.63,0.48,1.7,0.1,14,96,0.9961,3.19,0.62,9.5,bad
|
|
168
|
+
6.8,0.64,0.1,2.1,0.085,18,101,0.9956,3.34,0.52,10.2,bad
|
|
169
|
+
7.3,0.55,0.03,1.6,0.072,17,42,0.9956,3.37,0.48,9,bad
|
|
170
|
+
6.8,0.63,0.07,2.1,0.089,11,44,0.9953,3.47,0.55,10.4,good
|
|
171
|
+
7.5,0.705,0.24,1.8,0.36,15,63,0.9964,3,1.59,9.5,bad
|
|
172
|
+
7.9,0.885,0.03,1.8,0.058,4,8,0.9972,3.36,0.33,9.1,bad
|
|
173
|
+
8,0.42,0.17,2,0.073,6,18,0.9972,3.29,0.61,9.2,good
|
|
174
|
+
8,0.42,0.17,2,0.073,6,18,0.9972,3.29,0.61,9.2,good
|
|
175
|
+
7.4,0.62,0.05,1.9,0.068,24,42,0.9961,3.42,0.57,11.5,good
|
|
176
|
+
7.3,0.38,0.21,2,0.08,7,35,0.9961,3.33,0.47,9.5,bad
|
|
177
|
+
6.9,0.5,0.04,1.5,0.085,19,49,0.9958,3.35,0.78,9.5,bad
|
|
178
|
+
7.3,0.38,0.21,2,0.08,7,35,0.9961,3.33,0.47,9.5,bad
|
|
179
|
+
7.5,0.52,0.42,2.3,0.087,8,38,0.9972,3.58,0.61,10.5,good
|
|
180
|
+
7,0.805,0,2.5,0.068,7,20,0.9969,3.48,0.56,9.6,bad
|
|
181
|
+
8.8,0.61,0.14,2.4,0.067,10,42,0.9969,3.19,0.59,9.5,bad
|
|
182
|
+
8.8,0.61,0.14,2.4,0.067,10,42,0.9969,3.19,0.59,9.5,bad
|
|
183
|
+
8.9,0.61,0.49,2,0.27,23,110,0.9972,3.12,1.02,9.3,bad
|
|
184
|
+
7.2,0.73,0.02,2.5,0.076,16,42,0.9972,3.44,0.52,9.3,bad
|
|
185
|
+
6.8,0.61,0.2,1.8,0.077,11,65,0.9971,3.54,0.58,9.3,bad
|
|
186
|
+
6.7,0.62,0.21,1.9,0.079,8,62,0.997,3.52,0.58,9.3,good
|
|
187
|
+
8.9,0.31,0.57,2,0.111,26,85,0.9971,3.26,0.53,9.7,bad
|
|
188
|
+
7.4,0.39,0.48,2,0.082,14,67,0.9972,3.34,0.55,9.2,bad
|
|
189
|
+
7.7,0.705,0.1,2.6,0.084,9,26,0.9976,3.39,0.49,9.7,bad
|
|
190
|
+
7.9,0.5,0.33,2,0.084,15,143,0.9968,3.2,0.55,9.5,bad
|
|
191
|
+
7.9,0.49,0.32,1.9,0.082,17,144,0.9968,3.2,0.55,9.5,bad
|
|
192
|
+
8.2,0.5,0.35,2.9,0.077,21,127,0.9976,3.23,0.62,9.4,bad
|
|
193
|
+
6.4,0.37,0.25,1.9,0.074,21,49,0.9974,3.57,0.62,9.8,good
|
|
194
|
+
6.8,0.63,0.12,3.8,0.099,16,126,0.9969,3.28,0.61,9.5,bad
|
|
195
|
+
7.6,0.55,0.21,2.2,0.071,7,28,0.9964,3.28,0.55,9.7,bad
|
|
196
|
+
7.6,0.55,0.21,2.2,0.071,7,28,0.9964,3.28,0.55,9.7,bad
|
|
197
|
+
7.8,0.59,0.33,2,0.074,24,120,0.9968,3.25,0.54,9.4,bad
|
|
198
|
+
7.3,0.58,0.3,2.4,0.074,15,55,0.9968,3.46,0.59,10.2,bad
|
|
199
|
+
11.5,0.3,0.6,2,0.067,12,27,0.9981,3.11,0.97,10.1,good
|
|
200
|
+
5.4,0.835,0.08,1.2,0.046,13,93,0.9924,3.57,0.85,13,good
|
|
201
|
+
6.9,1.09,0.06,2.1,0.061,12,31,0.9948,3.51,0.43,11.4,bad
|
|
202
|
+
9.6,0.32,0.47,1.4,0.056,9,24,0.99695,3.22,0.82,10.3,good
|
|
203
|
+
8.8,0.37,0.48,2.1,0.097,39,145,0.9975,3.04,1.03,9.3,bad
|
|
204
|
+
6.8,0.5,0.11,1.5,0.075,16,49,0.99545,3.36,0.79,9.5,bad
|
|
205
|
+
7,0.42,0.35,1.6,0.088,16,39,0.9961,3.34,0.55,9.2,bad
|
|
206
|
+
7,0.43,0.36,1.6,0.089,14,37,0.99615,3.34,0.56,9.2,good
|
|
207
|
+
12.8,0.3,0.74,2.6,0.095,9,28,0.9994,3.2,0.77,10.8,good
|
|
208
|
+
12.8,0.3,0.74,2.6,0.095,9,28,0.9994,3.2,0.77,10.8,good
|
|
209
|
+
7.8,0.57,0.31,1.8,0.069,26,120,0.99625,3.29,0.53,9.3,bad
|
|
210
|
+
7.8,0.44,0.28,2.7,0.1,18,95,0.9966,3.22,0.67,9.4,bad
|
|
211
|
+
11,0.3,0.58,2.1,0.054,7,19,0.998,3.31,0.88,10.5,good
|
|
212
|
+
9.7,0.53,0.6,2,0.039,5,19,0.99585,3.3,0.86,12.4,good
|
|
213
|
+
8,0.725,0.24,2.8,0.083,10,62,0.99685,3.35,0.56,10,good
|
|
214
|
+
11.6,0.44,0.64,2.1,0.059,5,15,0.998,3.21,0.67,10.2,good
|
|
215
|
+
8.2,0.57,0.26,2.2,0.06,28,65,0.9959,3.3,0.43,10.1,bad
|
|
216
|
+
7.8,0.735,0.08,2.4,0.092,10,41,0.9974,3.24,0.71,9.8,good
|
|
217
|
+
7,0.49,0.49,5.6,0.06,26,121,0.9974,3.34,0.76,10.5,bad
|
|
218
|
+
8.7,0.625,0.16,2,0.101,13,49,0.9962,3.14,0.57,11,bad
|
|
219
|
+
8.1,0.725,0.22,2.2,0.072,11,41,0.9967,3.36,0.55,9.1,bad
|
|
220
|
+
7.5,0.49,0.19,1.9,0.076,10,44,0.9957,3.39,0.54,9.7,bad
|
|
221
|
+
7.8,0.53,0.33,2.4,0.08,24,144,0.99655,3.3,0.6,9.5,bad
|
|
222
|
+
7.8,0.34,0.37,2,0.082,24,58,0.9964,3.34,0.59,9.4,good
|
|
223
|
+
7.4,0.53,0.26,2,0.101,16,72,0.9957,3.15,0.57,9.4,bad
|
|
224
|
+
6.8,0.61,0.04,1.5,0.057,5,10,0.99525,3.42,0.6,9.5,bad
|
|
225
|
+
8.6,0.645,0.25,2,0.083,8,28,0.99815,3.28,0.6,10,good
|
|
226
|
+
8.4,0.635,0.36,2,0.089,15,55,0.99745,3.31,0.57,10.4,bad
|
|
227
|
+
7.7,0.43,0.25,2.6,0.073,29,63,0.99615,3.37,0.58,10.5,good
|
|
228
|
+
8.9,0.59,0.5,2,0.337,27,81,0.9964,3.04,1.61,9.5,good
|
|
229
|
+
9,0.82,0.14,2.6,0.089,9,23,0.9984,3.39,0.63,9.8,bad
|
|
230
|
+
7.7,0.43,0.25,2.6,0.073,29,63,0.99615,3.37,0.58,10.5,good
|
|
231
|
+
6.9,0.52,0.25,2.6,0.081,10,37,0.99685,3.46,0.5,11,bad
|
|
232
|
+
5.2,0.48,0.04,1.6,0.054,19,106,0.9927,3.54,0.62,12.2,good
|
|
233
|
+
8,0.38,0.06,1.8,0.078,12,49,0.99625,3.37,0.52,9.9,good
|
|
234
|
+
8.5,0.37,0.2,2.8,0.09,18,58,0.998,3.34,0.7,9.6,good
|
|
235
|
+
6.9,0.52,0.25,2.6,0.081,10,37,0.99685,3.46,0.5,11,bad
|
|
236
|
+
8.2,1,0.09,2.3,0.065,7,37,0.99685,3.32,0.55,9,good
|
|
237
|
+
7.2,0.63,0,1.9,0.097,14,38,0.99675,3.37,0.58,9,good
|
|
238
|
+
7.2,0.63,0,1.9,0.097,14,38,0.99675,3.37,0.58,9,good
|
|
239
|
+
7.2,0.645,0,1.9,0.097,15,39,0.99675,3.37,0.58,9.2,good
|
|
240
|
+
7.2,0.63,0,1.9,0.097,14,38,0.99675,3.37,0.58,9,good
|
|
241
|
+
8.2,1,0.09,2.3,0.065,7,37,0.99685,3.32,0.55,9,good
|
|
242
|
+
8.9,0.635,0.37,1.7,0.263,5,62,0.9971,3,1.09,9.3,bad
|
|
243
|
+
12,0.38,0.56,2.1,0.093,6,24,0.99925,3.14,0.71,10.9,good
|
|
244
|
+
7.7,0.58,0.1,1.8,0.102,28,109,0.99565,3.08,0.49,9.8,good
|
|
245
|
+
15,0.21,0.44,2.2,0.075,10,24,1.00005,3.07,0.84,9.2,good
|
|
246
|
+
15,0.21,0.44,2.2,0.075,10,24,1.00005,3.07,0.84,9.2,good
|
|
247
|
+
7.3,0.66,0,2,0.084,6,23,0.9983,3.61,0.96,9.9,good
|
|
248
|
+
7.1,0.68,0.07,1.9,0.075,16,51,0.99685,3.38,0.52,9.5,bad
|
|
249
|
+
8.2,0.6,0.17,2.3,0.072,11,73,0.9963,3.2,0.45,9.3,bad
|
|
250
|
+
7.7,0.53,0.06,1.7,0.074,9,39,0.99615,3.35,0.48,9.8,good
|
|
251
|
+
7.3,0.66,0,2,0.084,6,23,0.9983,3.61,0.96,9.9,good
|
|
252
|
+
10.8,0.32,0.44,1.6,0.063,16,37,0.9985,3.22,0.78,10,good
|
|
253
|
+
7.1,0.6,0,1.8,0.074,16,34,0.9972,3.47,0.7,9.9,good
|
|
254
|
+
11.1,0.35,0.48,3.1,0.09,5,21,0.9986,3.17,0.53,10.5,bad
|
|
255
|
+
7.7,0.775,0.42,1.9,0.092,8,86,0.9959,3.23,0.59,9.5,bad
|
|
256
|
+
7.1,0.6,0,1.8,0.074,16,34,0.9972,3.47,0.7,9.9,good
|
|
257
|
+
8,0.57,0.23,3.2,0.073,17,119,0.99675,3.26,0.57,9.3,bad
|
|
258
|
+
9.4,0.34,0.37,2.2,0.075,5,13,0.998,3.22,0.62,9.2,bad
|
|
259
|
+
6.6,0.695,0,2.1,0.075,12,56,0.9968,3.49,0.67,9.2,bad
|
|
260
|
+
7.7,0.41,0.76,1.8,0.611,8,45,0.9968,3.06,1.26,9.4,bad
|
|
261
|
+
10,0.31,0.47,2.6,0.085,14,33,0.99965,3.36,0.8,10.5,good
|
|
262
|
+
7.9,0.33,0.23,1.7,0.077,18,45,0.99625,3.29,0.65,9.3,bad
|
|
263
|
+
7,0.975,0.04,2,0.087,12,67,0.99565,3.35,0.6,9.4,bad
|
|
264
|
+
8,0.52,0.03,1.7,0.07,10,35,0.99575,3.34,0.57,10,bad
|
|
265
|
+
7.9,0.37,0.23,1.8,0.077,23,49,0.9963,3.28,0.67,9.3,bad
|
|
266
|
+
12.5,0.56,0.49,2.4,0.064,5,27,0.9999,3.08,0.87,10.9,bad
|
|
267
|
+
11.8,0.26,0.52,1.8,0.071,6,10,0.9968,3.2,0.72,10.2,good
|
|
268
|
+
8.1,0.87,0,3.3,0.096,26,61,1.00025,3.6,0.72,9.8,bad
|
|
269
|
+
7.9,0.35,0.46,3.6,0.078,15,37,0.9973,3.35,0.86,12.8,good
|
|
270
|
+
6.9,0.54,0.04,3,0.077,7,27,0.9987,3.69,0.91,9.4,good
|
|
271
|
+
11.5,0.18,0.51,4,0.104,4,23,0.9996,3.28,0.97,10.1,good
|
|
272
|
+
7.9,0.545,0.06,4,0.087,27,61,0.9965,3.36,0.67,10.7,good
|
|
273
|
+
11.5,0.18,0.51,4,0.104,4,23,0.9996,3.28,0.97,10.1,good
|
|
274
|
+
10.9,0.37,0.58,4,0.071,17,65,0.99935,3.22,0.78,10.1,bad
|
|
275
|
+
8.4,0.715,0.2,2.4,0.076,10,38,0.99735,3.31,0.64,9.4,bad
|
|
276
|
+
7.5,0.65,0.18,7,0.088,27,94,0.99915,3.38,0.77,9.4,bad
|
|
277
|
+
7.9,0.545,0.06,4,0.087,27,61,0.9965,3.36,0.67,10.7,good
|
|
278
|
+
6.9,0.54,0.04,3,0.077,7,27,0.9987,3.69,0.91,9.4,good
|
|
279
|
+
11.5,0.18,0.51,4,0.104,4,23,0.9996,3.28,0.97,10.1,good
|
|
280
|
+
10.3,0.32,0.45,6.4,0.073,5,13,0.9976,3.23,0.82,12.6,good
|
|
281
|
+
8.9,0.4,0.32,5.6,0.087,10,47,0.9991,3.38,0.77,10.5,good
|
|
282
|
+
11.4,0.26,0.44,3.6,0.071,6,19,0.9986,3.12,0.82,9.3,good
|
|
283
|
+
7.7,0.27,0.68,3.5,0.358,5,10,0.9972,3.25,1.08,9.9,good
|
|
284
|
+
7.6,0.52,0.12,3,0.067,12,53,0.9971,3.36,0.57,9.1,bad
|
|
285
|
+
8.9,0.4,0.32,5.6,0.087,10,47,0.9991,3.38,0.77,10.5,good
|
|
286
|
+
9.9,0.59,0.07,3.4,0.102,32,71,1.00015,3.31,0.71,9.8,bad
|
|
287
|
+
9.9,0.59,0.07,3.4,0.102,32,71,1.00015,3.31,0.71,9.8,bad
|
|
288
|
+
12,0.45,0.55,2,0.073,25,49,0.9997,3.1,0.76,10.3,good
|
|
289
|
+
7.5,0.4,0.12,3,0.092,29,53,0.9967,3.37,0.7,10.3,good
|
|
290
|
+
8.7,0.52,0.09,2.5,0.091,20,49,0.9976,3.34,0.86,10.6,good
|
|
291
|
+
11.6,0.42,0.53,3.3,0.105,33,98,1.001,3.2,0.95,9.2,bad
|
|
292
|
+
8.7,0.52,0.09,2.5,0.091,20,49,0.9976,3.34,0.86,10.6,good
|
|
293
|
+
11,0.2,0.48,2,0.343,6,18,0.9979,3.3,0.71,10.5,bad
|
|
294
|
+
10.4,0.55,0.23,2.7,0.091,18,48,0.9994,3.22,0.64,10.3,good
|
|
295
|
+
6.9,0.36,0.25,2.4,0.098,5,16,0.9964,3.41,0.6,10.1,good
|
|
296
|
+
13.3,0.34,0.52,3.2,0.094,17,53,1.0014,3.05,0.81,9.5,good
|
|
297
|
+
10.8,0.5,0.46,2.5,0.073,5,27,1.0001,3.05,0.64,9.5,bad
|
|
298
|
+
10.6,0.83,0.37,2.6,0.086,26,70,0.9981,3.16,0.52,9.9,bad
|
|
299
|
+
7.1,0.63,0.06,2,0.083,8,29,0.99855,3.67,0.73,9.6,bad
|
|
300
|
+
7.2,0.65,0.02,2.3,0.094,5,31,0.9993,3.67,0.8,9.7,bad
|
|
301
|
+
6.9,0.67,0.06,2.1,0.08,8,33,0.99845,3.68,0.71,9.6,bad
|
|
302
|
+
7.5,0.53,0.06,2.6,0.086,20,44,0.9965,3.38,0.59,10.7,good
|
|
303
|
+
11.1,0.18,0.48,1.5,0.068,7,15,0.9973,3.22,0.64,10.1,good
|
|
304
|
+
8.3,0.705,0.12,2.6,0.092,12,28,0.9994,3.51,0.72,10,bad
|
|
305
|
+
7.4,0.67,0.12,1.6,0.186,5,21,0.996,3.39,0.54,9.5,bad
|
|
306
|
+
8.4,0.65,0.6,2.1,0.112,12,90,0.9973,3.2,0.52,9.2,bad
|
|
307
|
+
10.3,0.53,0.48,2.5,0.063,6,25,0.9998,3.12,0.59,9.3,good
|
|
308
|
+
7.6,0.62,0.32,2.2,0.082,7,54,0.9966,3.36,0.52,9.4,bad
|
|
309
|
+
10.3,0.41,0.42,2.4,0.213,6,14,0.9994,3.19,0.62,9.5,good
|
|
310
|
+
10.3,0.43,0.44,2.4,0.214,5,12,0.9994,3.19,0.63,9.5,good
|
|
311
|
+
7.4,0.29,0.38,1.7,0.062,9,30,0.9968,3.41,0.53,9.5,good
|
|
312
|
+
10.3,0.53,0.48,2.5,0.063,6,25,0.9998,3.12,0.59,9.3,good
|
|
313
|
+
7.9,0.53,0.24,2,0.072,15,105,0.996,3.27,0.54,9.4,good
|
|
314
|
+
9,0.46,0.31,2.8,0.093,19,98,0.99815,3.32,0.63,9.5,good
|
|
315
|
+
8.6,0.47,0.3,3,0.076,30,135,0.9976,3.3,0.53,9.4,bad
|
|
316
|
+
7.4,0.36,0.29,2.6,0.087,26,72,0.99645,3.39,0.68,11,bad
|
|
317
|
+
7.1,0.35,0.29,2.5,0.096,20,53,0.9962,3.42,0.65,11,good
|
|
318
|
+
9.6,0.56,0.23,3.4,0.102,37,92,0.9996,3.3,0.65,10.1,bad
|
|
319
|
+
9.6,0.77,0.12,2.9,0.082,30,74,0.99865,3.3,0.64,10.4,good
|
|
320
|
+
9.8,0.66,0.39,3.2,0.083,21,59,0.9989,3.37,0.71,11.5,good
|
|
321
|
+
9.6,0.77,0.12,2.9,0.082,30,74,0.99865,3.3,0.64,10.4,good
|
|
322
|
+
9.8,0.66,0.39,3.2,0.083,21,59,0.9989,3.37,0.71,11.5,good
|
|
323
|
+
9.3,0.61,0.26,3.4,0.09,25,87,0.99975,3.24,0.62,9.7,bad
|
|
324
|
+
7.8,0.62,0.05,2.3,0.079,6,18,0.99735,3.29,0.63,9.3,bad
|
|
325
|
+
10.3,0.59,0.42,2.8,0.09,35,73,0.999,3.28,0.7,9.5,good
|
|
326
|
+
10,0.49,0.2,11,0.071,13,50,1.0015,3.16,0.69,9.2,good
|
|
327
|
+
10,0.49,0.2,11,0.071,13,50,1.0015,3.16,0.69,9.2,good
|
|
328
|
+
11.6,0.53,0.66,3.65,0.121,6,14,0.9978,3.05,0.74,11.5,good
|
|
329
|
+
10.3,0.44,0.5,4.5,0.107,5,13,0.998,3.28,0.83,11.5,bad
|
|
330
|
+
13.4,0.27,0.62,2.6,0.082,6,21,1.0002,3.16,0.67,9.7,good
|
|
331
|
+
10.7,0.46,0.39,2,0.061,7,15,0.9981,3.18,0.62,9.5,bad
|
|
332
|
+
10.2,0.36,0.64,2.9,0.122,10,41,0.998,3.23,0.66,12.5,good
|
|
333
|
+
10.2,0.36,0.64,2.9,0.122,10,41,0.998,3.23,0.66,12.5,good
|
|
334
|
+
8,0.58,0.28,3.2,0.066,21,114,0.9973,3.22,0.54,9.4,good
|
|
335
|
+
8.4,0.56,0.08,2.1,0.105,16,44,0.9958,3.13,0.52,11,bad
|
|
336
|
+
7.9,0.65,0.01,2.5,0.078,17,38,0.9963,3.34,0.74,11.7,good
|
|
337
|
+
11.9,0.695,0.53,3.4,0.128,7,21,0.9992,3.17,0.84,12.2,good
|
|
338
|
+
8.9,0.43,0.45,1.9,0.052,6,16,0.9948,3.35,0.7,12.5,good
|
|
339
|
+
7.8,0.43,0.32,2.8,0.08,29,58,0.9974,3.31,0.64,10.3,bad
|
|
340
|
+
12.4,0.49,0.58,3,0.103,28,99,1.0008,3.16,1,11.5,good
|
|
341
|
+
12.5,0.28,0.54,2.3,0.082,12,29,0.9997,3.11,1.36,9.8,good
|
|
342
|
+
12.2,0.34,0.5,2.4,0.066,10,21,1,3.12,1.18,9.2,good
|
|
343
|
+
10.6,0.42,0.48,2.7,0.065,5,18,0.9972,3.21,0.87,11.3,good
|
|
344
|
+
10.9,0.39,0.47,1.8,0.118,6,14,0.9982,3.3,0.75,9.8,good
|
|
345
|
+
10.9,0.39,0.47,1.8,0.118,6,14,0.9982,3.3,0.75,9.8,good
|
|
346
|
+
11.9,0.57,0.5,2.6,0.082,6,32,1.0006,3.12,0.78,10.7,good
|
|
347
|
+
7,0.685,0,1.9,0.067,40,63,0.9979,3.6,0.81,9.9,bad
|
|
348
|
+
6.6,0.815,0.02,2.7,0.072,17,34,0.9955,3.58,0.89,12.3,good
|
|
349
|
+
13.8,0.49,0.67,3,0.093,6,15,0.9986,3.02,0.93,12,good
|
|
350
|
+
9.6,0.56,0.31,2.8,0.089,15,46,0.9979,3.11,0.92,10,good
|
|
351
|
+
9.1,0.785,0,2.6,0.093,11,28,0.9994,3.36,0.86,9.4,good
|
|
352
|
+
10.7,0.67,0.22,2.7,0.107,17,34,1.0004,3.28,0.98,9.9,good
|
|
353
|
+
9.1,0.795,0,2.6,0.096,11,26,0.9994,3.35,0.83,9.4,good
|
|
354
|
+
7.7,0.665,0,2.4,0.09,8,19,0.9974,3.27,0.73,9.3,bad
|
|
355
|
+
13.5,0.53,0.79,4.8,0.12,23,77,1.0018,3.18,0.77,13,bad
|
|
356
|
+
6.1,0.21,0.4,1.4,0.066,40.5,165,0.9912,3.25,0.59,11.9,good
|
|
357
|
+
6.7,0.75,0.01,2.4,0.078,17,32,0.9955,3.55,0.61,12.8,good
|
|
358
|
+
11.5,0.41,0.52,3,0.08,29,55,1.0001,3.26,0.88,11,bad
|
|
359
|
+
10.5,0.42,0.66,2.95,0.116,12,29,0.997,3.24,0.75,11.7,good
|
|
360
|
+
11.9,0.43,0.66,3.1,0.109,10,23,1,3.15,0.85,10.4,good
|
|
361
|
+
12.6,0.38,0.66,2.6,0.088,10,41,1.001,3.17,0.68,9.8,good
|
|
362
|
+
8.2,0.7,0.23,2,0.099,14,81,0.9973,3.19,0.7,9.4,bad
|
|
363
|
+
8.6,0.45,0.31,2.6,0.086,21,50,0.9982,3.37,0.91,9.9,good
|
|
364
|
+
11.9,0.58,0.66,2.5,0.072,6,37,0.9992,3.05,0.56,10,bad
|
|
365
|
+
12.5,0.46,0.63,2,0.071,6,15,0.9988,2.99,0.87,10.2,bad
|
|
366
|
+
12.8,0.615,0.66,5.8,0.083,7,42,1.0022,3.07,0.73,10,good
|
|
367
|
+
10,0.42,0.5,3.4,0.107,7,21,0.9979,3.26,0.93,11.8,good
|
|
368
|
+
12.8,0.615,0.66,5.8,0.083,7,42,1.0022,3.07,0.73,10,good
|
|
369
|
+
10.4,0.575,0.61,2.6,0.076,11,24,1,3.16,0.69,9,bad
|
|
370
|
+
10.3,0.34,0.52,2.8,0.159,15,75,0.9998,3.18,0.64,9.4,bad
|
|
371
|
+
9.4,0.27,0.53,2.4,0.074,6,18,0.9962,3.2,1.13,12,good
|
|
372
|
+
6.9,0.765,0.02,2.3,0.063,35,63,0.9975,3.57,0.78,9.9,bad
|
|
373
|
+
7.9,0.24,0.4,1.6,0.056,11,25,0.9967,3.32,0.87,8.7,good
|
|
374
|
+
9.1,0.28,0.48,1.8,0.067,26,46,0.9967,3.32,1.04,10.6,good
|
|
375
|
+
7.4,0.55,0.22,2.2,0.106,12,72,0.9959,3.05,0.63,9.2,bad
|
|
376
|
+
14,0.41,0.63,3.8,0.089,6,47,1.0014,3.01,0.81,10.8,good
|
|
377
|
+
11.5,0.54,0.71,4.4,0.124,6,15,0.9984,3.01,0.83,11.8,good
|
|
378
|
+
11.5,0.45,0.5,3,0.078,19,47,1.0003,3.26,1.11,11,good
|
|
379
|
+
9.4,0.27,0.53,2.4,0.074,6,18,0.9962,3.2,1.13,12,good
|
|
380
|
+
11.4,0.625,0.66,6.2,0.088,6,24,0.9988,3.11,0.99,13.3,good
|
|
381
|
+
8.3,0.42,0.38,2.5,0.094,24,60,0.9979,3.31,0.7,10.8,good
|
|
382
|
+
8.3,0.26,0.42,2,0.08,11,27,0.9974,3.21,0.8,9.4,good
|
|
383
|
+
13.7,0.415,0.68,2.9,0.085,17,43,1.0014,3.06,0.8,10,good
|
|
384
|
+
8.3,0.26,0.42,2,0.08,11,27,0.9974,3.21,0.8,9.4,good
|
|
385
|
+
8.3,0.26,0.42,2,0.08,11,27,0.9974,3.21,0.8,9.4,good
|
|
386
|
+
7.7,0.51,0.28,2.1,0.087,23,54,0.998,3.42,0.74,9.2,bad
|
|
387
|
+
7.4,0.63,0.07,2.4,0.09,11,37,0.9979,3.43,0.76,9.7,good
|
|
388
|
+
7.8,0.54,0.26,2,0.088,23,48,0.9981,3.41,0.74,9.2,good
|
|
389
|
+
8.3,0.66,0.15,1.9,0.079,17,42,0.9972,3.31,0.54,9.6,good
|
|
390
|
+
7.8,0.46,0.26,1.9,0.088,23,53,0.9981,3.43,0.74,9.2,good
|
|
391
|
+
9.6,0.38,0.31,2.5,0.096,16,49,0.9982,3.19,0.7,10,good
|
|
392
|
+
5.6,0.85,0.05,1.4,0.045,12,88,0.9924,3.56,0.82,12.9,good
|
|
393
|
+
13.7,0.415,0.68,2.9,0.085,17,43,1.0014,3.06,0.8,10,good
|
|
394
|
+
9.5,0.37,0.52,2,0.082,6,26,0.998,3.18,0.51,9.5,bad
|
|
395
|
+
8.4,0.665,0.61,2,0.112,13,95,0.997,3.16,0.54,9.1,bad
|
|
396
|
+
12.7,0.6,0.65,2.3,0.063,6,25,0.9997,3.03,0.57,9.9,bad
|
|
397
|
+
12,0.37,0.76,4.2,0.066,7,38,1.0004,3.22,0.6,13,good
|
|
398
|
+
6.6,0.735,0.02,7.9,0.122,68,124,0.9994,3.47,0.53,9.9,bad
|
|
399
|
+
11.5,0.59,0.59,2.6,0.087,13,49,0.9988,3.18,0.65,11,good
|
|
400
|
+
11.5,0.59,0.59,2.6,0.087,13,49,0.9988,3.18,0.65,11,good
|
|
401
|
+
8.7,0.765,0.22,2.3,0.064,9,42,0.9963,3.1,0.55,9.4,bad
|
|
402
|
+
6.6,0.735,0.02,7.9,0.122,68,124,0.9994,3.47,0.53,9.9,bad
|
|
403
|
+
7.7,0.26,0.3,1.7,0.059,20,38,0.9949,3.29,0.47,10.8,good
|
|
404
|
+
12.2,0.48,0.54,2.6,0.085,19,64,1,3.1,0.61,10.5,good
|
|
405
|
+
11.4,0.6,0.49,2.7,0.085,10,41,0.9994,3.15,0.63,10.5,good
|
|
406
|
+
7.7,0.69,0.05,2.7,0.075,15,27,0.9974,3.26,0.61,9.1,bad
|
|
407
|
+
8.7,0.31,0.46,1.4,0.059,11,25,0.9966,3.36,0.76,10.1,good
|
|
408
|
+
9.8,0.44,0.47,2.5,0.063,9,28,0.9981,3.24,0.65,10.8,good
|
|
409
|
+
12,0.39,0.66,3,0.093,12,30,0.9996,3.18,0.63,10.8,good
|
|
410
|
+
10.4,0.34,0.58,3.7,0.174,6,16,0.997,3.19,0.7,11.3,good
|
|
411
|
+
12.5,0.46,0.49,4.5,0.07,26,49,0.9981,3.05,0.57,9.6,bad
|
|
412
|
+
9,0.43,0.34,2.5,0.08,26,86,0.9987,3.38,0.62,9.5,good
|
|
413
|
+
9.1,0.45,0.35,2.4,0.08,23,78,0.9987,3.38,0.62,9.5,bad
|
|
414
|
+
7.1,0.735,0.16,1.9,0.1,15,77,0.9966,3.27,0.64,9.3,bad
|
|
415
|
+
9.9,0.4,0.53,6.7,0.097,6,19,0.9986,3.27,0.82,11.7,good
|
|
416
|
+
8.8,0.52,0.34,2.7,0.087,24,122,0.9982,3.26,0.61,9.5,bad
|
|
417
|
+
8.6,0.725,0.24,6.6,0.117,31,134,1.0014,3.32,1.07,9.3,bad
|
|
418
|
+
10.6,0.48,0.64,2.2,0.111,6,20,0.997,3.26,0.66,11.7,good
|
|
419
|
+
7,0.58,0.12,1.9,0.091,34,124,0.9956,3.44,0.48,10.5,bad
|
|
420
|
+
11.9,0.38,0.51,2,0.121,7,20,0.9996,3.24,0.76,10.4,good
|
|
421
|
+
6.8,0.77,0,1.8,0.066,34,52,0.9976,3.62,0.68,9.9,bad
|
|
422
|
+
9.5,0.56,0.33,2.4,0.089,35,67,0.9972,3.28,0.73,11.8,good
|
|
423
|
+
6.6,0.84,0.03,2.3,0.059,32,48,0.9952,3.52,0.56,12.3,good
|
|
424
|
+
7.7,0.96,0.2,2,0.047,15,60,0.9955,3.36,0.44,10.9,bad
|
|
425
|
+
10.5,0.24,0.47,2.1,0.066,6,24,0.9978,3.15,0.9,11,good
|
|
426
|
+
7.7,0.96,0.2,2,0.047,15,60,0.9955,3.36,0.44,10.9,bad
|
|
427
|
+
6.6,0.84,0.03,2.3,0.059,32,48,0.9952,3.52,0.56,12.3,good
|
|
428
|
+
6.4,0.67,0.08,2.1,0.045,19,48,0.9949,3.49,0.49,11.4,good
|
|
429
|
+
9.5,0.78,0.22,1.9,0.077,6,32,0.9988,3.26,0.56,10.6,good
|
|
430
|
+
9.1,0.52,0.33,1.3,0.07,9,30,0.9978,3.24,0.6,9.3,bad
|
|
431
|
+
12.8,0.84,0.63,2.4,0.088,13,35,0.9997,3.1,0.6,10.4,good
|
|
432
|
+
10.5,0.24,0.47,2.1,0.066,6,24,0.9978,3.15,0.9,11,good
|
|
433
|
+
7.8,0.55,0.35,2.2,0.074,21,66,0.9974,3.25,0.56,9.2,bad
|
|
434
|
+
11.9,0.37,0.69,2.3,0.078,12,24,0.9958,3,0.65,12.8,good
|
|
435
|
+
12.3,0.39,0.63,2.3,0.091,6,18,1.0004,3.16,0.49,9.5,bad
|
|
436
|
+
10.4,0.41,0.55,3.2,0.076,22,54,0.9996,3.15,0.89,9.9,good
|
|
437
|
+
12.3,0.39,0.63,2.3,0.091,6,18,1.0004,3.16,0.49,9.5,bad
|
|
438
|
+
8,0.67,0.3,2,0.06,38,62,0.9958,3.26,0.56,10.2,good
|
|
439
|
+
11.1,0.45,0.73,3.2,0.066,6,22,0.9986,3.17,0.66,11.2,good
|
|
440
|
+
10.4,0.41,0.55,3.2,0.076,22,54,0.9996,3.15,0.89,9.9,good
|
|
441
|
+
7,0.62,0.18,1.5,0.062,7,50,0.9951,3.08,0.6,9.3,bad
|
|
442
|
+
12.6,0.31,0.72,2.2,0.072,6,29,0.9987,2.88,0.82,9.8,good
|
|
443
|
+
11.9,0.4,0.65,2.15,0.068,7,27,0.9988,3.06,0.68,11.3,good
|
|
444
|
+
15.6,0.685,0.76,3.7,0.1,6,43,1.0032,2.95,0.68,11.2,good
|
|
445
|
+
10,0.44,0.49,2.7,0.077,11,19,0.9963,3.23,0.63,11.6,good
|
|
446
|
+
5.3,0.57,0.01,1.7,0.054,5,27,0.9934,3.57,0.84,12.5,good
|
|
447
|
+
9.5,0.735,0.1,2.1,0.079,6,31,0.9986,3.23,0.56,10.1,good
|
|
448
|
+
12.5,0.38,0.6,2.6,0.081,31,72,0.9996,3.1,0.73,10.5,bad
|
|
449
|
+
9.3,0.48,0.29,2.1,0.127,6,16,0.9968,3.22,0.72,11.2,bad
|
|
450
|
+
8.6,0.53,0.22,2,0.1,7,27,0.9967,3.2,0.56,10.2,good
|
|
451
|
+
11.9,0.39,0.69,2.8,0.095,17,35,0.9994,3.1,0.61,10.8,good
|
|
452
|
+
11.9,0.39,0.69,2.8,0.095,17,35,0.9994,3.1,0.61,10.8,good
|
|
453
|
+
8.4,0.37,0.53,1.8,0.413,9,26,0.9979,3.06,1.06,9.1,good
|
|
454
|
+
6.8,0.56,0.03,1.7,0.084,18,35,0.9968,3.44,0.63,10,good
|
|
455
|
+
10.4,0.33,0.63,2.8,0.084,5,22,0.9998,3.26,0.74,11.2,good
|
|
456
|
+
7,0.23,0.4,1.6,0.063,21,67,0.9952,3.5,0.63,11.1,bad
|
|
457
|
+
11.3,0.62,0.67,5.2,0.086,6,19,0.9988,3.22,0.69,13.4,good
|
|
458
|
+
8.9,0.59,0.39,2.3,0.095,5,22,0.9986,3.37,0.58,10.3,bad
|
|
459
|
+
9.2,0.63,0.21,2.7,0.097,29,65,0.9988,3.28,0.58,9.6,bad
|
|
460
|
+
10.4,0.33,0.63,2.8,0.084,5,22,0.9998,3.26,0.74,11.2,good
|
|
461
|
+
11.6,0.58,0.66,2.2,0.074,10,47,1.0008,3.25,0.57,9,bad
|
|
462
|
+
9.2,0.43,0.52,2.3,0.083,14,23,0.9976,3.35,0.61,11.3,good
|
|
463
|
+
8.3,0.615,0.22,2.6,0.087,6,19,0.9982,3.26,0.61,9.3,bad
|
|
464
|
+
11,0.26,0.68,2.55,0.085,10,25,0.997,3.18,0.61,11.8,bad
|
|
465
|
+
8.1,0.66,0.7,2.2,0.098,25,129,0.9972,3.08,0.53,9,bad
|
|
466
|
+
11.5,0.315,0.54,2.1,0.084,5,15,0.9987,2.98,0.7,9.2,good
|
|
467
|
+
10,0.29,0.4,2.9,0.098,10,26,1.0006,3.48,0.91,9.7,bad
|
|
468
|
+
10.3,0.5,0.42,2,0.069,21,51,0.9982,3.16,0.72,11.5,good
|
|
469
|
+
8.8,0.46,0.45,2.6,0.065,7,18,0.9947,3.32,0.79,14,good
|
|
470
|
+
11.4,0.36,0.69,2.1,0.09,6,21,1,3.17,0.62,9.2,good
|
|
471
|
+
8.7,0.82,0.02,1.2,0.07,36,48,0.9952,3.2,0.58,9.8,bad
|
|
472
|
+
13,0.32,0.65,2.6,0.093,15,47,0.9996,3.05,0.61,10.6,bad
|
|
473
|
+
9.6,0.54,0.42,2.4,0.081,25,52,0.997,3.2,0.71,11.4,good
|
|
474
|
+
12.5,0.37,0.55,2.6,0.083,25,68,0.9995,3.15,0.82,10.4,good
|
|
475
|
+
9.9,0.35,0.55,2.1,0.062,5,14,0.9971,3.26,0.79,10.6,bad
|
|
476
|
+
10.5,0.28,0.51,1.7,0.08,10,24,0.9982,3.2,0.89,9.4,good
|
|
477
|
+
9.6,0.68,0.24,2.2,0.087,5,28,0.9988,3.14,0.6,10.2,bad
|
|
478
|
+
9.3,0.27,0.41,2,0.091,6,16,0.998,3.28,0.7,9.7,bad
|
|
479
|
+
10.4,0.24,0.49,1.8,0.075,6,20,0.9977,3.18,1.06,11,good
|
|
480
|
+
9.6,0.68,0.24,2.2,0.087,5,28,0.9988,3.14,0.6,10.2,bad
|
|
481
|
+
9.4,0.685,0.11,2.7,0.077,6,31,0.9984,3.19,0.7,10.1,good
|
|
482
|
+
10.6,0.28,0.39,15.5,0.069,6,23,1.0026,3.12,0.66,9.2,bad
|
|
483
|
+
9.4,0.3,0.56,2.8,0.08,6,17,0.9964,3.15,0.92,11.7,good
|
|
484
|
+
10.6,0.36,0.59,2.2,0.152,6,18,0.9986,3.04,1.05,9.4,bad
|
|
485
|
+
10.6,0.36,0.6,2.2,0.152,7,18,0.9986,3.04,1.06,9.4,bad
|
|
486
|
+
10.6,0.44,0.68,4.1,0.114,6,24,0.997,3.06,0.66,13.4,good
|
|
487
|
+
10.2,0.67,0.39,1.9,0.054,6,17,0.9976,3.17,0.47,10,bad
|
|
488
|
+
10.2,0.67,0.39,1.9,0.054,6,17,0.9976,3.17,0.47,10,bad
|
|
489
|
+
10.2,0.645,0.36,1.8,0.053,5,14,0.9982,3.17,0.42,10,good
|
|
490
|
+
11.6,0.32,0.55,2.8,0.081,35,67,1.0002,3.32,0.92,10.8,good
|
|
491
|
+
9.3,0.39,0.4,2.6,0.073,10,26,0.9984,3.34,0.75,10.2,good
|
|
492
|
+
9.3,0.775,0.27,2.8,0.078,24,56,0.9984,3.31,0.67,10.6,good
|
|
493
|
+
9.2,0.41,0.5,2.5,0.055,12,25,0.9952,3.34,0.79,13.3,good
|
|
494
|
+
8.9,0.4,0.51,2.6,0.052,13,27,0.995,3.32,0.9,13.4,good
|
|
495
|
+
8.7,0.69,0.31,3,0.086,23,81,1.0002,3.48,0.74,11.6,good
|
|
496
|
+
6.5,0.39,0.23,8.3,0.051,28,91,0.9952,3.44,0.55,12.1,good
|
|
497
|
+
10.7,0.35,0.53,2.6,0.07,5,16,0.9972,3.15,0.65,11,good
|
|
498
|
+
7.8,0.52,0.25,1.9,0.081,14,38,0.9984,3.43,0.65,9,good
|
|
499
|
+
7.2,0.34,0.32,2.5,0.09,43,113,0.9966,3.32,0.79,11.1,bad
|
|
500
|
+
10.7,0.35,0.53,2.6,0.07,5,16,0.9972,3.15,0.65,11,good
|
|
501
|
+
8.7,0.69,0.31,3,0.086,23,81,1.0002,3.48,0.74,11.6,good
|
|
502
|
+
7.8,0.52,0.25,1.9,0.081,14,38,0.9984,3.43,0.65,9,good
|
|
503
|
+
10.4,0.44,0.73,6.55,0.074,38,76,0.999,3.17,0.85,12,good
|
|
504
|
+
10.4,0.44,0.73,6.55,0.074,38,76,0.999,3.17,0.85,12,good
|
|
505
|
+
10.5,0.26,0.47,1.9,0.078,6,24,0.9976,3.18,1.04,10.9,good
|
|
506
|
+
10.5,0.24,0.42,1.8,0.077,6,22,0.9976,3.21,1.05,10.8,good
|
|
507
|
+
10.2,0.49,0.63,2.9,0.072,10,26,0.9968,3.16,0.78,12.5,good
|
|
508
|
+
10.4,0.24,0.46,1.8,0.075,6,21,0.9976,3.25,1.02,10.8,good
|
|
509
|
+
11.2,0.67,0.55,2.3,0.084,6,13,1,3.17,0.71,9.5,good
|
|
510
|
+
10,0.59,0.31,2.2,0.09,26,62,0.9994,3.18,0.63,10.2,good
|
|
511
|
+
13.3,0.29,0.75,2.8,0.084,23,43,0.9986,3.04,0.68,11.4,good
|
|
512
|
+
12.4,0.42,0.49,4.6,0.073,19,43,0.9978,3.02,0.61,9.5,bad
|
|
513
|
+
10,0.59,0.31,2.2,0.09,26,62,0.9994,3.18,0.63,10.2,good
|
|
514
|
+
10.7,0.4,0.48,2.1,0.125,15,49,0.998,3.03,0.81,9.7,good
|
|
515
|
+
10.5,0.51,0.64,2.4,0.107,6,15,0.9973,3.09,0.66,11.8,good
|
|
516
|
+
10.5,0.51,0.64,2.4,0.107,6,15,0.9973,3.09,0.66,11.8,good
|
|
517
|
+
8.5,0.655,0.49,6.1,0.122,34,151,1.001,3.31,1.14,9.3,bad
|
|
518
|
+
12.5,0.6,0.49,4.3,0.1,5,14,1.001,3.25,0.74,11.9,good
|
|
519
|
+
10.4,0.61,0.49,2.1,0.2,5,16,0.9994,3.16,0.63,8.4,bad
|
|
520
|
+
10.9,0.21,0.49,2.8,0.088,11,32,0.9972,3.22,0.68,11.7,good
|
|
521
|
+
7.3,0.365,0.49,2.5,0.088,39,106,0.9966,3.36,0.78,11,bad
|
|
522
|
+
9.8,0.25,0.49,2.7,0.088,15,33,0.9982,3.42,0.9,10,good
|
|
523
|
+
7.6,0.41,0.49,2,0.088,16,43,0.998,3.48,0.64,9.1,bad
|
|
524
|
+
8.2,0.39,0.49,2.3,0.099,47,133,0.9979,3.38,0.99,9.8,bad
|
|
525
|
+
9.3,0.4,0.49,2.5,0.085,38,142,0.9978,3.22,0.55,9.4,bad
|
|
526
|
+
9.2,0.43,0.49,2.4,0.086,23,116,0.9976,3.23,0.64,9.5,bad
|
|
527
|
+
10.4,0.64,0.24,2.8,0.105,29,53,0.9998,3.24,0.67,9.9,bad
|
|
528
|
+
7.3,0.365,0.49,2.5,0.088,39,106,0.9966,3.36,0.78,11,bad
|
|
529
|
+
7,0.38,0.49,2.5,0.097,33,85,0.9962,3.39,0.77,11.4,good
|
|
530
|
+
8.2,0.42,0.49,2.6,0.084,32,55,0.9988,3.34,0.75,8.7,good
|
|
531
|
+
9.9,0.63,0.24,2.4,0.077,6,33,0.9974,3.09,0.57,9.4,bad
|
|
532
|
+
9.1,0.22,0.24,2.1,0.078,1,28,0.999,3.41,0.87,10.3,good
|
|
533
|
+
11.9,0.38,0.49,2.7,0.098,12,42,1.0004,3.16,0.61,10.3,bad
|
|
534
|
+
11.9,0.38,0.49,2.7,0.098,12,42,1.0004,3.16,0.61,10.3,bad
|
|
535
|
+
10.3,0.27,0.24,2.1,0.072,15,33,0.9956,3.22,0.66,12.8,good
|
|
536
|
+
10,0.48,0.24,2.7,0.102,13,32,1,3.28,0.56,10,good
|
|
537
|
+
9.1,0.22,0.24,2.1,0.078,1,28,0.999,3.41,0.87,10.3,good
|
|
538
|
+
9.9,0.63,0.24,2.4,0.077,6,33,0.9974,3.09,0.57,9.4,bad
|
|
539
|
+
8.1,0.825,0.24,2.1,0.084,5,13,0.9972,3.37,0.77,10.7,good
|
|
540
|
+
12.9,0.35,0.49,5.8,0.066,5,35,1.0014,3.2,0.66,12,good
|
|
541
|
+
11.2,0.5,0.74,5.15,0.1,5,17,0.9996,3.22,0.62,11.2,bad
|
|
542
|
+
9.2,0.59,0.24,3.3,0.101,20,47,0.9988,3.26,0.67,9.6,bad
|
|
543
|
+
9.5,0.46,0.49,6.3,0.064,5,17,0.9988,3.21,0.73,11,good
|
|
544
|
+
9.3,0.715,0.24,2.1,0.07,5,20,0.9966,3.12,0.59,9.9,bad
|
|
545
|
+
11.2,0.66,0.24,2.5,0.085,16,53,0.9993,3.06,0.72,11,good
|
|
546
|
+
14.3,0.31,0.74,1.8,0.075,6,15,1.0008,2.86,0.79,8.4,good
|
|
547
|
+
9.1,0.47,0.49,2.6,0.094,38,106,0.9982,3.08,0.59,9.1,bad
|
|
548
|
+
7.5,0.55,0.24,2,0.078,10,28,0.9983,3.45,0.78,9.5,good
|
|
549
|
+
10.6,0.31,0.49,2.5,0.067,6,21,0.9987,3.26,0.86,10.7,good
|
|
550
|
+
12.4,0.35,0.49,2.6,0.079,27,69,0.9994,3.12,0.75,10.4,good
|
|
551
|
+
9,0.53,0.49,1.9,0.171,6,25,0.9975,3.27,0.61,9.4,good
|
|
552
|
+
6.8,0.51,0.01,2.1,0.074,9,25,0.9958,3.33,0.56,9.5,good
|
|
553
|
+
9.4,0.43,0.24,2.8,0.092,14,45,0.998,3.19,0.73,10,good
|
|
554
|
+
9.5,0.46,0.24,2.7,0.092,14,44,0.998,3.12,0.74,10,good
|
|
555
|
+
5,1.04,0.24,1.6,0.05,32,96,0.9934,3.74,0.62,11.5,bad
|
|
556
|
+
15.5,0.645,0.49,4.2,0.095,10,23,1.00315,2.92,0.74,11.1,bad
|
|
557
|
+
15.5,0.645,0.49,4.2,0.095,10,23,1.00315,2.92,0.74,11.1,bad
|
|
558
|
+
10.9,0.53,0.49,4.6,0.118,10,17,1.0002,3.07,0.56,11.7,good
|
|
559
|
+
15.6,0.645,0.49,4.2,0.095,10,23,1.00315,2.92,0.74,11.1,bad
|
|
560
|
+
10.9,0.53,0.49,4.6,0.118,10,17,1.0002,3.07,0.56,11.7,good
|
|
561
|
+
13,0.47,0.49,4.3,0.085,6,47,1.0021,3.3,0.68,12.7,good
|
|
562
|
+
12.7,0.6,0.49,2.8,0.075,5,19,0.9994,3.14,0.57,11.4,bad
|
|
563
|
+
9,0.44,0.49,2.4,0.078,26,121,0.9978,3.23,0.58,9.2,bad
|
|
564
|
+
9,0.54,0.49,2.9,0.094,41,110,0.9982,3.08,0.61,9.2,bad
|
|
565
|
+
7.6,0.29,0.49,2.7,0.092,25,60,0.9971,3.31,0.61,10.1,good
|
|
566
|
+
13,0.47,0.49,4.3,0.085,6,47,1.0021,3.3,0.68,12.7,good
|
|
567
|
+
12.7,0.6,0.49,2.8,0.075,5,19,0.9994,3.14,0.57,11.4,bad
|
|
568
|
+
8.7,0.7,0.24,2.5,0.226,5,15,0.9991,3.32,0.6,9,good
|
|
569
|
+
8.7,0.7,0.24,2.5,0.226,5,15,0.9991,3.32,0.6,9,good
|
|
570
|
+
9.8,0.5,0.49,2.6,0.25,5,20,0.999,3.31,0.79,10.7,good
|
|
571
|
+
6.2,0.36,0.24,2.2,0.095,19,42,0.9946,3.57,0.57,11.7,good
|
|
572
|
+
11.5,0.35,0.49,3.3,0.07,10,37,1.0003,3.32,0.91,11,good
|
|
573
|
+
6.2,0.36,0.24,2.2,0.095,19,42,0.9946,3.57,0.57,11.7,good
|
|
574
|
+
10.2,0.24,0.49,2.4,0.075,10,28,0.9978,3.14,0.61,10.4,bad
|
|
575
|
+
10.5,0.59,0.49,2.1,0.07,14,47,0.9991,3.3,0.56,9.6,bad
|
|
576
|
+
10.6,0.34,0.49,3.2,0.078,20,78,0.9992,3.19,0.7,10,good
|
|
577
|
+
12.3,0.27,0.49,3.1,0.079,28,46,0.9993,3.2,0.8,10.2,good
|
|
578
|
+
9.9,0.5,0.24,2.3,0.103,6,14,0.9978,3.34,0.52,10,bad
|
|
579
|
+
8.8,0.44,0.49,2.8,0.083,18,111,0.9982,3.3,0.6,9.5,bad
|
|
580
|
+
8.8,0.47,0.49,2.9,0.085,17,110,0.9982,3.29,0.6,9.8,bad
|
|
581
|
+
10.6,0.31,0.49,2.2,0.063,18,40,0.9976,3.14,0.51,9.8,good
|
|
582
|
+
12.3,0.5,0.49,2.2,0.089,5,14,1.0002,3.19,0.44,9.6,bad
|
|
583
|
+
12.3,0.5,0.49,2.2,0.089,5,14,1.0002,3.19,0.44,9.6,bad
|
|
584
|
+
11.7,0.49,0.49,2.2,0.083,5,15,1,3.19,0.43,9.2,bad
|
|
585
|
+
12,0.28,0.49,1.9,0.074,10,21,0.9976,2.98,0.66,9.9,good
|
|
586
|
+
11.8,0.33,0.49,3.4,0.093,54,80,1.0002,3.3,0.76,10.7,good
|
|
587
|
+
7.6,0.51,0.24,2.4,0.091,8,38,0.998,3.47,0.66,9.6,good
|
|
588
|
+
11.1,0.31,0.49,2.7,0.094,16,47,0.9986,3.12,1.02,10.6,good
|
|
589
|
+
7.3,0.73,0.24,1.9,0.108,18,102,0.9967,3.26,0.59,9.3,bad
|
|
590
|
+
5,0.42,0.24,2,0.06,19,50,0.9917,3.72,0.74,14,good
|
|
591
|
+
10.2,0.29,0.49,2.6,0.059,5,13,0.9976,3.05,0.74,10.5,good
|
|
592
|
+
9,0.45,0.49,2.6,0.084,21,75,0.9987,3.35,0.57,9.7,bad
|
|
593
|
+
6.6,0.39,0.49,1.7,0.07,23,149,0.9922,3.12,0.5,11.5,good
|
|
594
|
+
9,0.45,0.49,2.6,0.084,21,75,0.9987,3.35,0.57,9.7,bad
|
|
595
|
+
9.9,0.49,0.58,3.5,0.094,9,43,1.0004,3.29,0.58,9,bad
|
|
596
|
+
7.9,0.72,0.17,2.6,0.096,20,38,0.9978,3.4,0.53,9.5,bad
|
|
597
|
+
8.9,0.595,0.41,7.9,0.086,30,109,0.9998,3.27,0.57,9.3,bad
|
|
598
|
+
12.4,0.4,0.51,2,0.059,6,24,0.9994,3.04,0.6,9.3,good
|
|
599
|
+
11.9,0.58,0.58,1.9,0.071,5,18,0.998,3.09,0.63,10,good
|
|
600
|
+
8.5,0.585,0.18,2.1,0.078,5,30,0.9967,3.2,0.48,9.8,good
|
|
601
|
+
12.7,0.59,0.45,2.3,0.082,11,22,1,3,0.7,9.3,good
|
|
602
|
+
8.2,0.915,0.27,2.1,0.088,7,23,0.9962,3.26,0.47,10,bad
|
|
603
|
+
13.2,0.46,0.52,2.2,0.071,12,35,1.0006,3.1,0.56,9,good
|
|
604
|
+
7.7,0.835,0,2.6,0.081,6,14,0.9975,3.3,0.52,9.3,bad
|
|
605
|
+
13.2,0.46,0.52,2.2,0.071,12,35,1.0006,3.1,0.56,9,good
|
|
606
|
+
8.3,0.58,0.13,2.9,0.096,14,63,0.9984,3.17,0.62,9.1,good
|
|
607
|
+
8.3,0.6,0.13,2.6,0.085,6,24,0.9984,3.31,0.59,9.2,good
|
|
608
|
+
9.4,0.41,0.48,4.6,0.072,10,20,0.9973,3.34,0.79,12.2,good
|
|
609
|
+
8.8,0.48,0.41,3.3,0.092,26,52,0.9982,3.31,0.53,10.5,good
|
|
610
|
+
10.1,0.65,0.37,5.1,0.11,11,65,1.0026,3.32,0.64,10.4,good
|
|
611
|
+
6.3,0.36,0.19,3.2,0.075,15,39,0.9956,3.56,0.52,12.7,good
|
|
612
|
+
8.8,0.24,0.54,2.5,0.083,25,57,0.9983,3.39,0.54,9.2,bad
|
|
613
|
+
13.2,0.38,0.55,2.7,0.081,5,16,1.0006,2.98,0.54,9.4,bad
|
|
614
|
+
7.5,0.64,0,2.4,0.077,18,29,0.9965,3.32,0.6,10,good
|
|
615
|
+
8.2,0.39,0.38,1.5,0.058,10,29,0.9962,3.26,0.74,9.8,bad
|
|
616
|
+
9.2,0.755,0.18,2.2,0.148,10,103,0.9969,2.87,1.36,10.2,good
|
|
617
|
+
9.6,0.6,0.5,2.3,0.079,28,71,0.9997,3.5,0.57,9.7,bad
|
|
618
|
+
9.6,0.6,0.5,2.3,0.079,28,71,0.9997,3.5,0.57,9.7,bad
|
|
619
|
+
11.5,0.31,0.51,2.2,0.079,14,28,0.9982,3.03,0.93,9.8,good
|
|
620
|
+
11.4,0.46,0.5,2.7,0.122,4,17,1.0006,3.13,0.7,10.2,bad
|
|
621
|
+
11.3,0.37,0.41,2.3,0.088,6,16,0.9988,3.09,0.8,9.3,bad
|
|
622
|
+
8.3,0.54,0.24,3.4,0.076,16,112,0.9976,3.27,0.61,9.4,bad
|
|
623
|
+
8.2,0.56,0.23,3.4,0.078,14,104,0.9976,3.28,0.62,9.4,bad
|
|
624
|
+
10,0.58,0.22,1.9,0.08,9,32,0.9974,3.13,0.55,9.5,bad
|
|
625
|
+
7.9,0.51,0.25,2.9,0.077,21,45,0.9974,3.49,0.96,12.1,good
|
|
626
|
+
6.8,0.69,0,5.6,0.124,21,58,0.9997,3.46,0.72,10.2,bad
|
|
627
|
+
6.8,0.69,0,5.6,0.124,21,58,0.9997,3.46,0.72,10.2,bad
|
|
628
|
+
8.8,0.6,0.29,2.2,0.098,5,15,0.9988,3.36,0.49,9.1,bad
|
|
629
|
+
8.8,0.6,0.29,2.2,0.098,5,15,0.9988,3.36,0.49,9.1,bad
|
|
630
|
+
8.7,0.54,0.26,2.5,0.097,7,31,0.9976,3.27,0.6,9.3,good
|
|
631
|
+
7.6,0.685,0.23,2.3,0.111,20,84,0.9964,3.21,0.61,9.3,bad
|
|
632
|
+
8.7,0.54,0.26,2.5,0.097,7,31,0.9976,3.27,0.6,9.3,good
|
|
633
|
+
10.4,0.28,0.54,2.7,0.105,5,19,0.9988,3.25,0.63,9.5,bad
|
|
634
|
+
7.6,0.41,0.14,3,0.087,21,43,0.9964,3.32,0.57,10.5,good
|
|
635
|
+
10.1,0.935,0.22,3.4,0.105,11,86,1.001,3.43,0.64,11.3,bad
|
|
636
|
+
7.9,0.35,0.21,1.9,0.073,46,102,0.9964,3.27,0.58,9.5,bad
|
|
637
|
+
8.7,0.84,0,1.4,0.065,24,33,0.9954,3.27,0.55,9.7,bad
|
|
638
|
+
9.6,0.88,0.28,2.4,0.086,30,147,0.9979,3.24,0.53,9.4,bad
|
|
639
|
+
9.5,0.885,0.27,2.3,0.084,31,145,0.9978,3.24,0.53,9.4,bad
|
|
640
|
+
7.7,0.915,0.12,2.2,0.143,7,23,0.9964,3.35,0.65,10.2,good
|
|
641
|
+
8.9,0.29,0.35,1.9,0.067,25,57,0.997,3.18,1.36,10.3,good
|
|
642
|
+
9.9,0.54,0.45,2.3,0.071,16,40,0.9991,3.39,0.62,9.4,bad
|
|
643
|
+
9.5,0.59,0.44,2.3,0.071,21,68,0.9992,3.46,0.63,9.5,bad
|
|
644
|
+
9.9,0.54,0.45,2.3,0.071,16,40,0.9991,3.39,0.62,9.4,bad
|
|
645
|
+
9.5,0.59,0.44,2.3,0.071,21,68,0.9992,3.46,0.63,9.5,bad
|
|
646
|
+
9.9,0.54,0.45,2.3,0.071,16,40,0.9991,3.39,0.62,9.4,bad
|
|
647
|
+
7.8,0.64,0.1,6,0.115,5,11,0.9984,3.37,0.69,10.1,good
|
|
648
|
+
7.3,0.67,0.05,3.6,0.107,6,20,0.9972,3.4,0.63,10.1,bad
|
|
649
|
+
8.3,0.845,0.01,2.2,0.07,5,14,0.9967,3.32,0.58,11,bad
|
|
650
|
+
8.7,0.48,0.3,2.8,0.066,10,28,0.9964,3.33,0.67,11.2,good
|
|
651
|
+
6.7,0.42,0.27,8.6,0.068,24,148,0.9948,3.16,0.57,11.3,good
|
|
652
|
+
10.7,0.43,0.39,2.2,0.106,8,32,0.9986,2.89,0.5,9.6,bad
|
|
653
|
+
9.8,0.88,0.25,2.5,0.104,35,155,1.001,3.41,0.67,11.2,bad
|
|
654
|
+
15.9,0.36,0.65,7.5,0.096,22,71,0.9976,2.98,0.84,14.9,bad
|
|
655
|
+
9.4,0.33,0.59,2.8,0.079,9,30,0.9976,3.12,0.54,12,good
|
|
656
|
+
8.6,0.47,0.47,2.4,0.074,7,29,0.9979,3.08,0.46,9.5,bad
|
|
657
|
+
9.7,0.55,0.17,2.9,0.087,20,53,1.0004,3.14,0.61,9.4,bad
|
|
658
|
+
10.7,0.43,0.39,2.2,0.106,8,32,0.9986,2.89,0.5,9.6,bad
|
|
659
|
+
12,0.5,0.59,1.4,0.073,23,42,0.998,2.92,0.68,10.5,good
|
|
660
|
+
7.2,0.52,0.07,1.4,0.074,5,20,0.9973,3.32,0.81,9.6,good
|
|
661
|
+
7.1,0.84,0.02,4.4,0.096,5,13,0.997,3.41,0.57,11,bad
|
|
662
|
+
7.2,0.52,0.07,1.4,0.074,5,20,0.9973,3.32,0.81,9.6,good
|
|
663
|
+
7.5,0.42,0.31,1.6,0.08,15,42,0.9978,3.31,0.64,9,bad
|
|
664
|
+
7.2,0.57,0.06,1.6,0.076,9,27,0.9972,3.36,0.7,9.6,good
|
|
665
|
+
10.1,0.28,0.46,1.8,0.05,5,13,0.9974,3.04,0.79,10.2,good
|
|
666
|
+
12.1,0.4,0.52,2,0.092,15,54,1,3.03,0.66,10.2,bad
|
|
667
|
+
9.4,0.59,0.14,2,0.084,25,48,0.9981,3.14,0.56,9.7,bad
|
|
668
|
+
8.3,0.49,0.36,1.8,0.222,6,16,0.998,3.18,0.6,9.5,good
|
|
669
|
+
11.3,0.34,0.45,2,0.082,6,15,0.9988,2.94,0.66,9.2,good
|
|
670
|
+
10,0.73,0.43,2.3,0.059,15,31,0.9966,3.15,0.57,11,bad
|
|
671
|
+
11.3,0.34,0.45,2,0.082,6,15,0.9988,2.94,0.66,9.2,good
|
|
672
|
+
6.9,0.4,0.24,2.5,0.083,30,45,0.9959,3.26,0.58,10,bad
|
|
673
|
+
8.2,0.73,0.21,1.7,0.074,5,13,0.9968,3.2,0.52,9.5,bad
|
|
674
|
+
9.8,1.24,0.34,2,0.079,32,151,0.998,3.15,0.53,9.5,bad
|
|
675
|
+
8.2,0.73,0.21,1.7,0.074,5,13,0.9968,3.2,0.52,9.5,bad
|
|
676
|
+
10.8,0.4,0.41,2.2,0.084,7,17,0.9984,3.08,0.67,9.3,good
|
|
677
|
+
9.3,0.41,0.39,2.2,0.064,12,31,0.9984,3.26,0.65,10.2,bad
|
|
678
|
+
10.8,0.4,0.41,2.2,0.084,7,17,0.9984,3.08,0.67,9.3,good
|
|
679
|
+
8.6,0.8,0.11,2.3,0.084,12,31,0.9979,3.4,0.48,9.9,bad
|
|
680
|
+
8.3,0.78,0.1,2.6,0.081,45,87,0.9983,3.48,0.53,10,bad
|
|
681
|
+
10.8,0.26,0.45,3.3,0.06,20,49,0.9972,3.13,0.54,9.6,bad
|
|
682
|
+
13.3,0.43,0.58,1.9,0.07,15,40,1.0004,3.06,0.49,9,bad
|
|
683
|
+
8,0.45,0.23,2.2,0.094,16,29,0.9962,3.21,0.49,10.2,good
|
|
684
|
+
8.5,0.46,0.31,2.25,0.078,32,58,0.998,3.33,0.54,9.8,bad
|
|
685
|
+
8.1,0.78,0.23,2.6,0.059,5,15,0.997,3.37,0.56,11.3,bad
|
|
686
|
+
9.8,0.98,0.32,2.3,0.078,35,152,0.998,3.25,0.48,9.4,bad
|
|
687
|
+
8.1,0.78,0.23,2.6,0.059,5,15,0.997,3.37,0.56,11.3,bad
|
|
688
|
+
7.1,0.65,0.18,1.8,0.07,13,40,0.997,3.44,0.6,9.1,bad
|
|
689
|
+
9.1,0.64,0.23,3.1,0.095,13,38,0.9998,3.28,0.59,9.7,bad
|
|
690
|
+
7.7,0.66,0.04,1.6,0.039,4,9,0.9962,3.4,0.47,9.4,bad
|
|
691
|
+
8.1,0.38,0.48,1.8,0.157,5,17,0.9976,3.3,1.05,9.4,bad
|
|
692
|
+
7.4,1.185,0,4.25,0.097,5,14,0.9966,3.63,0.54,10.7,bad
|
|
693
|
+
9.2,0.92,0.24,2.6,0.087,12,93,0.9998,3.48,0.54,9.8,bad
|
|
694
|
+
8.6,0.49,0.51,2,0.422,16,62,0.9979,3.03,1.17,9,bad
|
|
695
|
+
9,0.48,0.32,2.8,0.084,21,122,0.9984,3.32,0.62,9.4,bad
|
|
696
|
+
9,0.47,0.31,2.7,0.084,24,125,0.9984,3.31,0.61,9.4,bad
|
|
697
|
+
5.1,0.47,0.02,1.3,0.034,18,44,0.9921,3.9,0.62,12.8,good
|
|
698
|
+
7,0.65,0.02,2.1,0.066,8,25,0.9972,3.47,0.67,9.5,good
|
|
699
|
+
7,0.65,0.02,2.1,0.066,8,25,0.9972,3.47,0.67,9.5,good
|
|
700
|
+
9.4,0.615,0.28,3.2,0.087,18,72,1.0001,3.31,0.53,9.7,bad
|
|
701
|
+
11.8,0.38,0.55,2.1,0.071,5,19,0.9986,3.11,0.62,10.8,good
|
|
702
|
+
10.6,1.02,0.43,2.9,0.076,26,88,0.9984,3.08,0.57,10.1,good
|
|
703
|
+
7,0.65,0.02,2.1,0.066,8,25,0.9972,3.47,0.67,9.5,good
|
|
704
|
+
7,0.64,0.02,2.1,0.067,9,23,0.997,3.47,0.67,9.4,good
|
|
705
|
+
7.5,0.38,0.48,2.6,0.073,22,84,0.9972,3.32,0.7,9.6,bad
|
|
706
|
+
9.1,0.765,0.04,1.6,0.078,4,14,0.998,3.29,0.54,9.7,bad
|
|
707
|
+
8.4,1.035,0.15,6,0.073,11,54,0.999,3.37,0.49,9.9,bad
|
|
708
|
+
7,0.78,0.08,2,0.093,10,19,0.9956,3.4,0.47,10,bad
|
|
709
|
+
7.4,0.49,0.19,3,0.077,16,37,0.9966,3.37,0.51,10.5,bad
|
|
710
|
+
7.8,0.545,0.12,2.5,0.068,11,35,0.996,3.34,0.61,11.6,good
|
|
711
|
+
9.7,0.31,0.47,1.6,0.062,13,33,0.9983,3.27,0.66,10,good
|
|
712
|
+
10.6,1.025,0.43,2.8,0.08,21,84,0.9985,3.06,0.57,10.1,bad
|
|
713
|
+
8.9,0.565,0.34,3,0.093,16,112,0.9998,3.38,0.61,9.5,bad
|
|
714
|
+
8.7,0.69,0,3.2,0.084,13,33,0.9992,3.36,0.45,9.4,bad
|
|
715
|
+
8,0.43,0.36,2.3,0.075,10,48,0.9976,3.34,0.46,9.4,bad
|
|
716
|
+
9.9,0.74,0.28,2.6,0.078,21,77,0.998,3.28,0.51,9.8,bad
|
|
717
|
+
7.2,0.49,0.18,2.7,0.069,13,34,0.9967,3.29,0.48,9.2,good
|
|
718
|
+
8,0.43,0.36,2.3,0.075,10,48,0.9976,3.34,0.46,9.4,bad
|
|
719
|
+
7.6,0.46,0.11,2.6,0.079,12,49,0.9968,3.21,0.57,10,bad
|
|
720
|
+
8.4,0.56,0.04,2,0.082,10,22,0.9976,3.22,0.44,9.6,bad
|
|
721
|
+
7.1,0.66,0,3.9,0.086,17,45,0.9976,3.46,0.54,9.5,bad
|
|
722
|
+
8.4,0.56,0.04,2,0.082,10,22,0.9976,3.22,0.44,9.6,bad
|
|
723
|
+
8.9,0.48,0.24,2.85,0.094,35,106,0.9982,3.1,0.53,9.2,bad
|
|
724
|
+
7.6,0.42,0.08,2.7,0.084,15,48,0.9968,3.21,0.59,10,bad
|
|
725
|
+
7.1,0.31,0.3,2.2,0.053,36,127,0.9965,2.94,1.62,9.5,bad
|
|
726
|
+
7.5,1.115,0.1,3.1,0.086,5,12,0.9958,3.54,0.6,11.2,bad
|
|
727
|
+
9,0.66,0.17,3,0.077,5,13,0.9976,3.29,0.55,10.4,bad
|
|
728
|
+
8.1,0.72,0.09,2.8,0.084,18,49,0.9994,3.43,0.72,11.1,good
|
|
729
|
+
6.4,0.57,0.02,1.8,0.067,4,11,0.997,3.46,0.68,9.5,bad
|
|
730
|
+
6.4,0.57,0.02,1.8,0.067,4,11,0.997,3.46,0.68,9.5,bad
|
|
731
|
+
6.4,0.865,0.03,3.2,0.071,27,58,0.995,3.61,0.49,12.7,good
|
|
732
|
+
9.5,0.55,0.66,2.3,0.387,12,37,0.9982,3.17,0.67,9.6,bad
|
|
733
|
+
8.9,0.875,0.13,3.45,0.088,4,14,0.9994,3.44,0.52,11.5,bad
|
|
734
|
+
7.3,0.835,0.03,2.1,0.092,10,19,0.9966,3.39,0.47,9.6,bad
|
|
735
|
+
7,0.45,0.34,2.7,0.082,16,72,0.998,3.55,0.6,9.5,bad
|
|
736
|
+
7.7,0.56,0.2,2,0.075,9,39,0.9987,3.48,0.62,9.3,bad
|
|
737
|
+
7.7,0.965,0.1,2.1,0.112,11,22,0.9963,3.26,0.5,9.5,bad
|
|
738
|
+
7.7,0.965,0.1,2.1,0.112,11,22,0.9963,3.26,0.5,9.5,bad
|
|
739
|
+
8.2,0.59,0,2.5,0.093,19,58,1.0002,3.5,0.65,9.3,good
|
|
740
|
+
9,0.46,0.23,2.8,0.092,28,104,0.9983,3.1,0.56,9.2,bad
|
|
741
|
+
9,0.69,0,2.4,0.088,19,38,0.999,3.35,0.6,9.3,bad
|
|
742
|
+
8.3,0.76,0.29,4.2,0.075,12,16,0.9965,3.45,0.68,11.5,good
|
|
743
|
+
9.2,0.53,0.24,2.6,0.078,28,139,0.99788,3.21,0.57,9.5,bad
|
|
744
|
+
6.5,0.615,0,1.9,0.065,9,18,0.9972,3.46,0.65,9.2,bad
|
|
745
|
+
11.6,0.41,0.58,2.8,0.096,25,101,1.00024,3.13,0.53,10,bad
|
|
746
|
+
11.1,0.39,0.54,2.7,0.095,21,101,1.0001,3.13,0.51,9.5,bad
|
|
747
|
+
7.3,0.51,0.18,2.1,0.07,12,28,0.99768,3.52,0.73,9.5,good
|
|
748
|
+
8.2,0.34,0.38,2.5,0.08,12,57,0.9978,3.3,0.47,9,good
|
|
749
|
+
8.6,0.33,0.4,2.6,0.083,16,68,0.99782,3.3,0.48,9.4,bad
|
|
750
|
+
7.2,0.5,0.18,2.1,0.071,12,31,0.99761,3.52,0.72,9.6,good
|
|
751
|
+
7.3,0.51,0.18,2.1,0.07,12,28,0.99768,3.52,0.73,9.5,good
|
|
752
|
+
8.3,0.65,0.1,2.9,0.089,17,40,0.99803,3.29,0.55,9.5,bad
|
|
753
|
+
8.3,0.65,0.1,2.9,0.089,17,40,0.99803,3.29,0.55,9.5,bad
|
|
754
|
+
7.6,0.54,0.13,2.5,0.097,24,66,0.99785,3.39,0.61,9.4,bad
|
|
755
|
+
8.3,0.65,0.1,2.9,0.089,17,40,0.99803,3.29,0.55,9.5,bad
|
|
756
|
+
7.8,0.48,0.68,1.7,0.415,14,32,0.99656,3.09,1.06,9.1,good
|
|
757
|
+
7.8,0.91,0.07,1.9,0.058,22,47,0.99525,3.51,0.43,10.7,good
|
|
758
|
+
6.3,0.98,0.01,2,0.057,15,33,0.99488,3.6,0.46,11.2,good
|
|
759
|
+
8.1,0.87,0,2.2,0.084,10,31,0.99656,3.25,0.5,9.8,bad
|
|
760
|
+
8.1,0.87,0,2.2,0.084,10,31,0.99656,3.25,0.5,9.8,bad
|
|
761
|
+
8.8,0.42,0.21,2.5,0.092,33,88,0.99823,3.19,0.52,9.2,bad
|
|
762
|
+
9,0.58,0.25,2.8,0.075,9,104,0.99779,3.23,0.57,9.7,bad
|
|
763
|
+
9.3,0.655,0.26,2,0.096,5,35,0.99738,3.25,0.42,9.6,bad
|
|
764
|
+
8.8,0.7,0,1.7,0.069,8,19,0.99701,3.31,0.53,10,good
|
|
765
|
+
9.3,0.655,0.26,2,0.096,5,35,0.99738,3.25,0.42,9.6,bad
|
|
766
|
+
9.1,0.68,0.11,2.8,0.093,11,44,0.99888,3.31,0.55,9.5,good
|
|
767
|
+
9.2,0.67,0.1,3,0.091,12,48,0.99888,3.31,0.54,9.5,good
|
|
768
|
+
8.8,0.59,0.18,2.9,0.089,12,74,0.99738,3.14,0.54,9.4,bad
|
|
769
|
+
7.5,0.6,0.32,2.7,0.103,13,98,0.99938,3.45,0.62,9.5,bad
|
|
770
|
+
7.1,0.59,0.02,2.3,0.082,24,94,0.99744,3.55,0.53,9.7,good
|
|
771
|
+
7.9,0.72,0.01,1.9,0.076,7,32,0.99668,3.39,0.54,9.6,bad
|
|
772
|
+
7.1,0.59,0.02,2.3,0.082,24,94,0.99744,3.55,0.53,9.7,good
|
|
773
|
+
9.4,0.685,0.26,2.4,0.082,23,143,0.9978,3.28,0.55,9.4,bad
|
|
774
|
+
9.5,0.57,0.27,2.3,0.082,23,144,0.99782,3.27,0.55,9.4,bad
|
|
775
|
+
7.9,0.4,0.29,1.8,0.157,1,44,0.9973,3.3,0.92,9.5,good
|
|
776
|
+
7.9,0.4,0.3,1.8,0.157,2,45,0.99727,3.31,0.91,9.5,good
|
|
777
|
+
7.2,1,0,3,0.102,7,16,0.99586,3.43,0.46,10,bad
|
|
778
|
+
6.9,0.765,0.18,2.4,0.243,5.5,48,0.99612,3.4,0.6,10.3,good
|
|
779
|
+
6.9,0.635,0.17,2.4,0.241,6,18,0.9961,3.4,0.59,10.3,good
|
|
780
|
+
8.3,0.43,0.3,3.4,0.079,7,34,0.99788,3.36,0.61,10.5,bad
|
|
781
|
+
7.1,0.52,0.03,2.6,0.076,21,92,0.99745,3.5,0.6,9.8,bad
|
|
782
|
+
7,0.57,0,2,0.19,12,45,0.99676,3.31,0.6,9.4,good
|
|
783
|
+
6.5,0.46,0.14,2.4,0.114,9,37,0.99732,3.66,0.65,9.8,bad
|
|
784
|
+
9,0.82,0.05,2.4,0.081,26,96,0.99814,3.36,0.53,10,bad
|
|
785
|
+
6.5,0.46,0.14,2.4,0.114,9,37,0.99732,3.66,0.65,9.8,bad
|
|
786
|
+
7.1,0.59,0.01,2.5,0.077,20,85,0.99746,3.55,0.59,9.8,bad
|
|
787
|
+
9.9,0.35,0.41,2.3,0.083,11,61,0.9982,3.21,0.5,9.5,bad
|
|
788
|
+
9.9,0.35,0.41,2.3,0.083,11,61,0.9982,3.21,0.5,9.5,bad
|
|
789
|
+
10,0.56,0.24,2.2,0.079,19,58,0.9991,3.18,0.56,10.1,good
|
|
790
|
+
10,0.56,0.24,2.2,0.079,19,58,0.9991,3.18,0.56,10.1,good
|
|
791
|
+
8.6,0.63,0.17,2.9,0.099,21,119,0.998,3.09,0.52,9.3,bad
|
|
792
|
+
7.4,0.37,0.43,2.6,0.082,18,82,0.99708,3.33,0.68,9.7,good
|
|
793
|
+
8.8,0.64,0.17,2.9,0.084,25,130,0.99818,3.23,0.54,9.6,bad
|
|
794
|
+
7.1,0.61,0.02,2.5,0.081,17,87,0.99745,3.48,0.6,9.7,good
|
|
795
|
+
7.7,0.6,0,2.6,0.055,7,13,0.99639,3.38,0.56,10.8,bad
|
|
796
|
+
10.1,0.27,0.54,2.3,0.065,7,26,0.99531,3.17,0.53,12.5,good
|
|
797
|
+
10.8,0.89,0.3,2.6,0.132,7,60,0.99786,2.99,1.18,10.2,bad
|
|
798
|
+
8.7,0.46,0.31,2.5,0.126,24,64,0.99746,3.1,0.74,9.6,bad
|
|
799
|
+
9.3,0.37,0.44,1.6,0.038,21,42,0.99526,3.24,0.81,10.8,good
|
|
800
|
+
9.4,0.5,0.34,3.6,0.082,5,14,0.9987,3.29,0.52,10.7,good
|
|
801
|
+
9.4,0.5,0.34,3.6,0.082,5,14,0.9987,3.29,0.52,10.7,good
|
|
802
|
+
7.2,0.61,0.08,4,0.082,26,108,0.99641,3.25,0.51,9.4,bad
|
|
803
|
+
8.6,0.55,0.09,3.3,0.068,8,17,0.99735,3.23,0.44,10,bad
|
|
804
|
+
5.1,0.585,0,1.7,0.044,14,86,0.99264,3.56,0.94,12.9,good
|
|
805
|
+
7.7,0.56,0.08,2.5,0.114,14,46,0.9971,3.24,0.66,9.6,good
|
|
806
|
+
8.4,0.52,0.22,2.7,0.084,4,18,0.99682,3.26,0.57,9.9,good
|
|
807
|
+
8.2,0.28,0.4,2.4,0.052,4,10,0.99356,3.33,0.7,12.8,good
|
|
808
|
+
8.4,0.25,0.39,2,0.041,4,10,0.99386,3.27,0.71,12.5,good
|
|
809
|
+
8.2,0.28,0.4,2.4,0.052,4,10,0.99356,3.33,0.7,12.8,good
|
|
810
|
+
7.4,0.53,0.12,1.9,0.165,4,12,0.99702,3.26,0.86,9.2,bad
|
|
811
|
+
7.6,0.48,0.31,2.8,0.07,4,15,0.99693,3.22,0.55,10.3,good
|
|
812
|
+
7.3,0.49,0.1,2.6,0.068,4,14,0.99562,3.3,0.47,10.5,bad
|
|
813
|
+
12.9,0.5,0.55,2.8,0.072,7,24,1.00012,3.09,0.68,10.9,good
|
|
814
|
+
10.8,0.45,0.33,2.5,0.099,20,38,0.99818,3.24,0.71,10.8,bad
|
|
815
|
+
6.9,0.39,0.24,2.1,0.102,4,7,0.99462,3.44,0.58,11.4,bad
|
|
816
|
+
12.6,0.41,0.54,2.8,0.103,19,41,0.99939,3.21,0.76,11.3,good
|
|
817
|
+
10.8,0.45,0.33,2.5,0.099,20,38,0.99818,3.24,0.71,10.8,bad
|
|
818
|
+
9.8,0.51,0.19,3.2,0.081,8,30,0.9984,3.23,0.58,10.5,good
|
|
819
|
+
10.8,0.29,0.42,1.6,0.084,19,27,0.99545,3.28,0.73,11.9,good
|
|
820
|
+
7.1,0.715,0,2.35,0.071,21,47,0.99632,3.29,0.45,9.4,bad
|
|
821
|
+
9.1,0.66,0.15,3.2,0.097,9,59,0.99976,3.28,0.54,9.6,bad
|
|
822
|
+
7,0.685,0,1.9,0.099,9,22,0.99606,3.34,0.6,9.7,bad
|
|
823
|
+
4.9,0.42,0,2.1,0.048,16,42,0.99154,3.71,0.74,14,good
|
|
824
|
+
6.7,0.54,0.13,2,0.076,15,36,0.9973,3.61,0.64,9.8,bad
|
|
825
|
+
6.7,0.54,0.13,2,0.076,15,36,0.9973,3.61,0.64,9.8,bad
|
|
826
|
+
7.1,0.48,0.28,2.8,0.068,6,16,0.99682,3.24,0.53,10.3,bad
|
|
827
|
+
7.1,0.46,0.14,2.8,0.076,15,37,0.99624,3.36,0.49,10.7,bad
|
|
828
|
+
7.5,0.27,0.34,2.3,0.05,4,8,0.9951,3.4,0.64,11,good
|
|
829
|
+
7.1,0.46,0.14,2.8,0.076,15,37,0.99624,3.36,0.49,10.7,bad
|
|
830
|
+
7.8,0.57,0.09,2.3,0.065,34,45,0.99417,3.46,0.74,12.7,good
|
|
831
|
+
5.9,0.61,0.08,2.1,0.071,16,24,0.99376,3.56,0.77,11.1,good
|
|
832
|
+
7.5,0.685,0.07,2.5,0.058,5,9,0.99632,3.38,0.55,10.9,bad
|
|
833
|
+
5.9,0.61,0.08,2.1,0.071,16,24,0.99376,3.56,0.77,11.1,good
|
|
834
|
+
10.4,0.44,0.42,1.5,0.145,34,48,0.99832,3.38,0.86,9.9,bad
|
|
835
|
+
11.6,0.47,0.44,1.6,0.147,36,51,0.99836,3.38,0.86,9.9,bad
|
|
836
|
+
8.8,0.685,0.26,1.6,0.088,16,23,0.99694,3.32,0.47,9.4,bad
|
|
837
|
+
7.6,0.665,0.1,1.5,0.066,27,55,0.99655,3.39,0.51,9.3,bad
|
|
838
|
+
6.7,0.28,0.28,2.4,0.012,36,100,0.99064,3.26,0.39,11.7,good
|
|
839
|
+
6.7,0.28,0.28,2.4,0.012,36,100,0.99064,3.26,0.39,11.7,good
|
|
840
|
+
10.1,0.31,0.35,1.6,0.075,9,28,0.99672,3.24,0.83,11.2,good
|
|
841
|
+
6,0.5,0.04,2.2,0.092,13,26,0.99647,3.46,0.47,10,bad
|
|
842
|
+
11.1,0.42,0.47,2.65,0.085,9,34,0.99736,3.24,0.77,12.1,good
|
|
843
|
+
6.6,0.66,0,3,0.115,21,31,0.99629,3.45,0.63,10.3,bad
|
|
844
|
+
10.6,0.5,0.45,2.6,0.119,34,68,0.99708,3.23,0.72,10.9,good
|
|
845
|
+
7.1,0.685,0.35,2,0.088,9,92,0.9963,3.28,0.62,9.4,bad
|
|
846
|
+
9.9,0.25,0.46,1.7,0.062,26,42,0.9959,3.18,0.83,10.6,good
|
|
847
|
+
6.4,0.64,0.21,1.8,0.081,14,31,0.99689,3.59,0.66,9.8,bad
|
|
848
|
+
6.4,0.64,0.21,1.8,0.081,14,31,0.99689,3.59,0.66,9.8,bad
|
|
849
|
+
7.4,0.68,0.16,1.8,0.078,12,39,0.9977,3.5,0.7,9.9,good
|
|
850
|
+
6.4,0.64,0.21,1.8,0.081,14,31,0.99689,3.59,0.66,9.8,bad
|
|
851
|
+
6.4,0.63,0.21,1.6,0.08,12,32,0.99689,3.58,0.66,9.8,bad
|
|
852
|
+
9.3,0.43,0.44,1.9,0.085,9,22,0.99708,3.28,0.55,9.5,bad
|
|
853
|
+
9.3,0.43,0.44,1.9,0.085,9,22,0.99708,3.28,0.55,9.5,bad
|
|
854
|
+
8,0.42,0.32,2.5,0.08,26,122,0.99801,3.22,1.07,9.7,bad
|
|
855
|
+
9.3,0.36,0.39,1.5,0.08,41,55,0.99652,3.47,0.73,10.9,good
|
|
856
|
+
9.3,0.36,0.39,1.5,0.08,41,55,0.99652,3.47,0.73,10.9,good
|
|
857
|
+
7.6,0.735,0.02,2.5,0.071,10,14,0.99538,3.51,0.71,11.7,good
|
|
858
|
+
9.3,0.36,0.39,1.5,0.08,41,55,0.99652,3.47,0.73,10.9,good
|
|
859
|
+
8.2,0.26,0.34,2.5,0.073,16,47,0.99594,3.4,0.78,11.3,good
|
|
860
|
+
11.7,0.28,0.47,1.7,0.054,17,32,0.99686,3.15,0.67,10.6,good
|
|
861
|
+
6.8,0.56,0.22,1.8,0.074,15,24,0.99438,3.4,0.82,11.2,good
|
|
862
|
+
7.2,0.62,0.06,2.7,0.077,15,85,0.99746,3.51,0.54,9.5,bad
|
|
863
|
+
5.8,1.01,0.66,2,0.039,15,88,0.99357,3.66,0.6,11.5,good
|
|
864
|
+
7.5,0.42,0.32,2.7,0.067,7,25,0.99628,3.24,0.44,10.4,bad
|
|
865
|
+
7.2,0.62,0.06,2.5,0.078,17,84,0.99746,3.51,0.53,9.7,bad
|
|
866
|
+
7.2,0.62,0.06,2.7,0.077,15,85,0.99746,3.51,0.54,9.5,bad
|
|
867
|
+
7.2,0.635,0.07,2.6,0.077,16,86,0.99748,3.51,0.54,9.7,bad
|
|
868
|
+
6.8,0.49,0.22,2.3,0.071,13,24,0.99438,3.41,0.83,11.3,good
|
|
869
|
+
6.9,0.51,0.23,2,0.072,13,22,0.99438,3.4,0.84,11.2,good
|
|
870
|
+
6.8,0.56,0.22,1.8,0.074,15,24,0.99438,3.4,0.82,11.2,good
|
|
871
|
+
7.6,0.63,0.03,2,0.08,27,43,0.99578,3.44,0.64,10.9,good
|
|
872
|
+
7.7,0.715,0.01,2.1,0.064,31,43,0.99371,3.41,0.57,11.8,good
|
|
873
|
+
6.9,0.56,0.03,1.5,0.086,36,46,0.99522,3.53,0.57,10.6,bad
|
|
874
|
+
7.3,0.35,0.24,2,0.067,28,48,0.99576,3.43,0.54,10,bad
|
|
875
|
+
9.1,0.21,0.37,1.6,0.067,6,10,0.99552,3.23,0.58,11.1,good
|
|
876
|
+
10.4,0.38,0.46,2.1,0.104,6,10,0.99664,3.12,0.65,11.8,good
|
|
877
|
+
8.8,0.31,0.4,2.8,0.109,7,16,0.99614,3.31,0.79,11.8,good
|
|
878
|
+
7.1,0.47,0,2.2,0.067,7,14,0.99517,3.4,0.58,10.9,bad
|
|
879
|
+
7.7,0.715,0.01,2.1,0.064,31,43,0.99371,3.41,0.57,11.8,good
|
|
880
|
+
8.8,0.61,0.19,4,0.094,30,69,0.99787,3.22,0.5,10,good
|
|
881
|
+
7.2,0.6,0.04,2.5,0.076,18,88,0.99745,3.53,0.55,9.5,bad
|
|
882
|
+
9.2,0.56,0.18,1.6,0.078,10,21,0.99576,3.15,0.49,9.9,bad
|
|
883
|
+
7.6,0.715,0,2.1,0.068,30,35,0.99533,3.48,0.65,11.4,good
|
|
884
|
+
8.4,0.31,0.29,3.1,0.194,14,26,0.99536,3.22,0.78,12,good
|
|
885
|
+
7.2,0.6,0.04,2.5,0.076,18,88,0.99745,3.53,0.55,9.5,bad
|
|
886
|
+
8.8,0.61,0.19,4,0.094,30,69,0.99787,3.22,0.5,10,good
|
|
887
|
+
8.9,0.75,0.14,2.5,0.086,9,30,0.99824,3.34,0.64,10.5,bad
|
|
888
|
+
9,0.8,0.12,2.4,0.083,8,28,0.99836,3.33,0.65,10.4,good
|
|
889
|
+
10.7,0.52,0.38,2.6,0.066,29,56,0.99577,3.15,0.79,12.1,good
|
|
890
|
+
6.8,0.57,0,2.5,0.072,32,64,0.99491,3.43,0.56,11.2,good
|
|
891
|
+
10.7,0.9,0.34,6.6,0.112,23,99,1.00289,3.22,0.68,9.3,bad
|
|
892
|
+
7.2,0.34,0.24,2,0.071,30,52,0.99576,3.44,0.58,10.1,bad
|
|
893
|
+
7.2,0.66,0.03,2.3,0.078,16,86,0.99743,3.53,0.57,9.7,bad
|
|
894
|
+
10.1,0.45,0.23,1.9,0.082,10,18,0.99774,3.22,0.65,9.3,good
|
|
895
|
+
7.2,0.66,0.03,2.3,0.078,16,86,0.99743,3.53,0.57,9.7,bad
|
|
896
|
+
7.2,0.63,0.03,2.2,0.08,17,88,0.99745,3.53,0.58,9.8,good
|
|
897
|
+
7.1,0.59,0.01,2.3,0.08,27,43,0.9955,3.42,0.58,10.7,good
|
|
898
|
+
8.3,0.31,0.39,2.4,0.078,17,43,0.99444,3.31,0.77,12.5,good
|
|
899
|
+
7.1,0.59,0.01,2.3,0.08,27,43,0.9955,3.42,0.58,10.7,good
|
|
900
|
+
8.3,0.31,0.39,2.4,0.078,17,43,0.99444,3.31,0.77,12.5,good
|
|
901
|
+
8.3,1.02,0.02,3.4,0.084,6,11,0.99892,3.48,0.49,11,bad
|
|
902
|
+
8.9,0.31,0.36,2.6,0.056,10,39,0.99562,3.4,0.69,11.8,bad
|
|
903
|
+
7.4,0.635,0.1,2.4,0.08,16,33,0.99736,3.58,0.69,10.8,good
|
|
904
|
+
7.4,0.635,0.1,2.4,0.08,16,33,0.99736,3.58,0.69,10.8,good
|
|
905
|
+
6.8,0.59,0.06,6,0.06,11,18,0.9962,3.41,0.59,10.8,good
|
|
906
|
+
6.8,0.59,0.06,6,0.06,11,18,0.9962,3.41,0.59,10.8,good
|
|
907
|
+
9.2,0.58,0.2,3,0.081,15,115,0.998,3.23,0.59,9.5,bad
|
|
908
|
+
7.2,0.54,0.27,2.6,0.084,12,78,0.9964,3.39,0.71,11,bad
|
|
909
|
+
6.1,0.56,0,2.2,0.079,6,9,0.9948,3.59,0.54,11.5,good
|
|
910
|
+
7.4,0.52,0.13,2.4,0.078,34,61,0.99528,3.43,0.59,10.8,good
|
|
911
|
+
7.3,0.305,0.39,1.2,0.059,7,11,0.99331,3.29,0.52,11.5,good
|
|
912
|
+
9.3,0.38,0.48,3.8,0.132,3,11,0.99577,3.23,0.57,13.2,good
|
|
913
|
+
9.1,0.28,0.46,9,0.114,3,9,0.99901,3.18,0.6,10.9,good
|
|
914
|
+
10,0.46,0.44,2.9,0.065,4,8,0.99674,3.33,0.62,12.2,good
|
|
915
|
+
9.4,0.395,0.46,4.6,0.094,3,10,0.99639,3.27,0.64,12.2,good
|
|
916
|
+
7.3,0.305,0.39,1.2,0.059,7,11,0.99331,3.29,0.52,11.5,good
|
|
917
|
+
8.6,0.315,0.4,2.2,0.079,3,6,0.99512,3.27,0.67,11.9,good
|
|
918
|
+
5.3,0.715,0.19,1.5,0.161,7,62,0.99395,3.62,0.61,11,bad
|
|
919
|
+
6.8,0.41,0.31,8.8,0.084,26,45,0.99824,3.38,0.64,10.1,good
|
|
920
|
+
8.4,0.36,0.32,2.2,0.081,32,79,0.9964,3.3,0.72,11,good
|
|
921
|
+
8.4,0.62,0.12,1.8,0.072,38,46,0.99504,3.38,0.89,11.8,good
|
|
922
|
+
9.6,0.41,0.37,2.3,0.091,10,23,0.99786,3.24,0.56,10.5,bad
|
|
923
|
+
8.4,0.36,0.32,2.2,0.081,32,79,0.9964,3.3,0.72,11,good
|
|
924
|
+
8.4,0.62,0.12,1.8,0.072,38,46,0.99504,3.38,0.89,11.8,good
|
|
925
|
+
6.8,0.41,0.31,8.8,0.084,26,45,0.99824,3.38,0.64,10.1,good
|
|
926
|
+
8.6,0.47,0.27,2.3,0.055,14,28,0.99516,3.18,0.8,11.2,bad
|
|
927
|
+
8.6,0.22,0.36,1.9,0.064,53,77,0.99604,3.47,0.87,11,good
|
|
928
|
+
9.4,0.24,0.33,2.3,0.061,52,73,0.99786,3.47,0.9,10.2,good
|
|
929
|
+
8.4,0.67,0.19,2.2,0.093,11,75,0.99736,3.2,0.59,9.2,bad
|
|
930
|
+
8.6,0.47,0.27,2.3,0.055,14,28,0.99516,3.18,0.8,11.2,bad
|
|
931
|
+
8.7,0.33,0.38,3.3,0.063,10,19,0.99468,3.3,0.73,12,good
|
|
932
|
+
6.6,0.61,0.01,1.9,0.08,8,25,0.99746,3.69,0.73,10.5,bad
|
|
933
|
+
7.4,0.61,0.01,2,0.074,13,38,0.99748,3.48,0.65,9.8,bad
|
|
934
|
+
7.6,0.4,0.29,1.9,0.078,29,66,0.9971,3.45,0.59,9.5,good
|
|
935
|
+
7.4,0.61,0.01,2,0.074,13,38,0.99748,3.48,0.65,9.8,bad
|
|
936
|
+
6.6,0.61,0.01,1.9,0.08,8,25,0.99746,3.69,0.73,10.5,bad
|
|
937
|
+
8.8,0.3,0.38,2.3,0.06,19,72,0.99543,3.39,0.72,11.8,good
|
|
938
|
+
8.8,0.3,0.38,2.3,0.06,19,72,0.99543,3.39,0.72,11.8,good
|
|
939
|
+
12,0.63,0.5,1.4,0.071,6,26,0.99791,3.07,0.6,10.4,bad
|
|
940
|
+
7.2,0.38,0.38,2.8,0.068,23,42,0.99356,3.34,0.72,12.9,good
|
|
941
|
+
6.2,0.46,0.17,1.6,0.073,7,11,0.99425,3.61,0.54,11.4,bad
|
|
942
|
+
9.6,0.33,0.52,2.2,0.074,13,25,0.99509,3.36,0.76,12.4,good
|
|
943
|
+
9.9,0.27,0.49,5,0.082,9,17,0.99484,3.19,0.52,12.5,good
|
|
944
|
+
10.1,0.43,0.4,2.6,0.092,13,52,0.99834,3.22,0.64,10,good
|
|
945
|
+
9.8,0.5,0.34,2.3,0.094,10,45,0.99864,3.24,0.6,9.7,good
|
|
946
|
+
8.3,0.3,0.49,3.8,0.09,11,24,0.99498,3.27,0.64,12.1,good
|
|
947
|
+
10.2,0.44,0.42,2,0.071,7,20,0.99566,3.14,0.79,11.1,good
|
|
948
|
+
10.2,0.44,0.58,4.1,0.092,11,24,0.99745,3.29,0.99,12,good
|
|
949
|
+
8.3,0.28,0.48,2.1,0.093,6,12,0.99408,3.26,0.62,12.4,good
|
|
950
|
+
8.9,0.12,0.45,1.8,0.075,10,21,0.99552,3.41,0.76,11.9,good
|
|
951
|
+
8.9,0.12,0.45,1.8,0.075,10,21,0.99552,3.41,0.76,11.9,good
|
|
952
|
+
8.9,0.12,0.45,1.8,0.075,10,21,0.99552,3.41,0.76,11.9,good
|
|
953
|
+
8.3,0.28,0.48,2.1,0.093,6,12,0.99408,3.26,0.62,12.4,good
|
|
954
|
+
8.2,0.31,0.4,2.2,0.058,6,10,0.99536,3.31,0.68,11.2,good
|
|
955
|
+
10.2,0.34,0.48,2.1,0.052,5,9,0.99458,3.2,0.69,12.1,good
|
|
956
|
+
7.6,0.43,0.4,2.7,0.082,6,11,0.99538,3.44,0.54,12.2,good
|
|
957
|
+
8.5,0.21,0.52,1.9,0.09,9,23,0.99648,3.36,0.67,10.4,bad
|
|
958
|
+
9,0.36,0.52,2.1,0.111,5,10,0.99568,3.31,0.62,11.3,good
|
|
959
|
+
9.5,0.37,0.52,2,0.088,12,51,0.99613,3.29,0.58,11.1,good
|
|
960
|
+
6.4,0.57,0.12,2.3,0.12,25,36,0.99519,3.47,0.71,11.3,good
|
|
961
|
+
8,0.59,0.05,2,0.089,12,32,0.99735,3.36,0.61,10,bad
|
|
962
|
+
8.5,0.47,0.27,1.9,0.058,18,38,0.99518,3.16,0.85,11.1,good
|
|
963
|
+
7.1,0.56,0.14,1.6,0.078,7,18,0.99592,3.27,0.62,9.3,bad
|
|
964
|
+
6.6,0.57,0.02,2.1,0.115,6,16,0.99654,3.38,0.69,9.5,bad
|
|
965
|
+
8.8,0.27,0.39,2,0.1,20,27,0.99546,3.15,0.69,11.2,good
|
|
966
|
+
8.5,0.47,0.27,1.9,0.058,18,38,0.99518,3.16,0.85,11.1,good
|
|
967
|
+
8.3,0.34,0.4,2.4,0.065,24,48,0.99554,3.34,0.86,11,good
|
|
968
|
+
9,0.38,0.41,2.4,0.103,6,10,0.99604,3.13,0.58,11.9,good
|
|
969
|
+
8.5,0.66,0.2,2.1,0.097,23,113,0.99733,3.13,0.48,9.2,bad
|
|
970
|
+
9,0.4,0.43,2.4,0.068,29,46,0.9943,3.2,0.6,12.2,good
|
|
971
|
+
6.7,0.56,0.09,2.9,0.079,7,22,0.99669,3.46,0.61,10.2,bad
|
|
972
|
+
10.4,0.26,0.48,1.9,0.066,6,10,0.99724,3.33,0.87,10.9,good
|
|
973
|
+
10.4,0.26,0.48,1.9,0.066,6,10,0.99724,3.33,0.87,10.9,good
|
|
974
|
+
10.1,0.38,0.5,2.4,0.104,6,13,0.99643,3.22,0.65,11.6,good
|
|
975
|
+
8.5,0.34,0.44,1.7,0.079,6,12,0.99605,3.52,0.63,10.7,bad
|
|
976
|
+
8.8,0.33,0.41,5.9,0.073,7,13,0.99658,3.3,0.62,12.1,good
|
|
977
|
+
7.2,0.41,0.3,2.1,0.083,35,72,0.997,3.44,0.52,9.4,bad
|
|
978
|
+
7.2,0.41,0.3,2.1,0.083,35,72,0.997,3.44,0.52,9.4,bad
|
|
979
|
+
8.4,0.59,0.29,2.6,0.109,31,119,0.99801,3.15,0.5,9.1,bad
|
|
980
|
+
7,0.4,0.32,3.6,0.061,9,29,0.99416,3.28,0.49,11.3,good
|
|
981
|
+
12.2,0.45,0.49,1.4,0.075,3,6,0.9969,3.13,0.63,10.4,bad
|
|
982
|
+
9.1,0.5,0.3,1.9,0.065,8,17,0.99774,3.32,0.71,10.5,good
|
|
983
|
+
9.5,0.86,0.26,1.9,0.079,13,28,0.99712,3.25,0.62,10,bad
|
|
984
|
+
7.3,0.52,0.32,2.1,0.07,51,70,0.99418,3.34,0.82,12.9,good
|
|
985
|
+
9.1,0.5,0.3,1.9,0.065,8,17,0.99774,3.32,0.71,10.5,good
|
|
986
|
+
12.2,0.45,0.49,1.4,0.075,3,6,0.9969,3.13,0.63,10.4,bad
|
|
987
|
+
7.4,0.58,0,2,0.064,7,11,0.99562,3.45,0.58,11.3,good
|
|
988
|
+
9.8,0.34,0.39,1.4,0.066,3,7,0.9947,3.19,0.55,11.4,good
|
|
989
|
+
7.1,0.36,0.3,1.6,0.08,35,70,0.99693,3.44,0.5,9.4,bad
|
|
990
|
+
7.7,0.39,0.12,1.7,0.097,19,27,0.99596,3.16,0.49,9.4,bad
|
|
991
|
+
9.7,0.295,0.4,1.5,0.073,14,21,0.99556,3.14,0.51,10.9,good
|
|
992
|
+
7.7,0.39,0.12,1.7,0.097,19,27,0.99596,3.16,0.49,9.4,bad
|
|
993
|
+
7.1,0.34,0.28,2,0.082,31,68,0.99694,3.45,0.48,9.4,bad
|
|
994
|
+
6.5,0.4,0.1,2,0.076,30,47,0.99554,3.36,0.48,9.4,good
|
|
995
|
+
7.1,0.34,0.28,2,0.082,31,68,0.99694,3.45,0.48,9.4,bad
|
|
996
|
+
10,0.35,0.45,2.5,0.092,20,88,0.99918,3.15,0.43,9.4,bad
|
|
997
|
+
7.7,0.6,0.06,2,0.079,19,41,0.99697,3.39,0.62,10.1,good
|
|
998
|
+
5.6,0.66,0,2.2,0.087,3,11,0.99378,3.71,0.63,12.8,good
|
|
999
|
+
5.6,0.66,0,2.2,0.087,3,11,0.99378,3.71,0.63,12.8,good
|
|
1000
|
+
8.9,0.84,0.34,1.4,0.05,4,10,0.99554,3.12,0.48,9.1,good
|
|
1001
|
+
6.4,0.69,0,1.65,0.055,7,12,0.99162,3.47,0.53,12.9,good
|
|
1002
|
+
7.5,0.43,0.3,2.2,0.062,6,12,0.99495,3.44,0.72,11.5,good
|
|
1003
|
+
9.9,0.35,0.38,1.5,0.058,31,47,0.99676,3.26,0.82,10.6,good
|
|
1004
|
+
9.1,0.29,0.33,2.05,0.063,13,27,0.99516,3.26,0.84,11.7,good
|
|
1005
|
+
6.8,0.36,0.32,1.8,0.067,4,8,0.9928,3.36,0.55,12.8,good
|
|
1006
|
+
8.2,0.43,0.29,1.6,0.081,27,45,0.99603,3.25,0.54,10.3,bad
|
|
1007
|
+
6.8,0.36,0.32,1.8,0.067,4,8,0.9928,3.36,0.55,12.8,good
|
|
1008
|
+
9.1,0.29,0.33,2.05,0.063,13,27,0.99516,3.26,0.84,11.7,good
|
|
1009
|
+
9.1,0.3,0.34,2,0.064,12,25,0.99516,3.26,0.84,11.7,good
|
|
1010
|
+
8.9,0.35,0.4,3.6,0.11,12,24,0.99549,3.23,0.7,12,good
|
|
1011
|
+
9.6,0.5,0.36,2.8,0.116,26,55,0.99722,3.18,0.68,10.9,bad
|
|
1012
|
+
8.9,0.28,0.45,1.7,0.067,7,12,0.99354,3.25,0.55,12.3,good
|
|
1013
|
+
8.9,0.32,0.31,2,0.088,12,19,0.9957,3.17,0.55,10.4,good
|
|
1014
|
+
7.7,1.005,0.15,2.1,0.102,11,32,0.99604,3.23,0.48,10,bad
|
|
1015
|
+
7.5,0.71,0,1.6,0.092,22,31,0.99635,3.38,0.58,10,good
|
|
1016
|
+
8,0.58,0.16,2,0.12,3,7,0.99454,3.22,0.58,11.2,good
|
|
1017
|
+
10.5,0.39,0.46,2.2,0.075,14,27,0.99598,3.06,0.84,11.4,good
|
|
1018
|
+
8.9,0.38,0.4,2.2,0.068,12,28,0.99486,3.27,0.75,12.6,good
|
|
1019
|
+
8,0.18,0.37,0.9,0.049,36,109,0.99007,2.89,0.44,12.7,good
|
|
1020
|
+
8,0.18,0.37,0.9,0.049,36,109,0.99007,2.89,0.44,12.7,good
|
|
1021
|
+
7,0.5,0.14,1.8,0.078,10,23,0.99636,3.53,0.61,10.4,bad
|
|
1022
|
+
11.3,0.36,0.66,2.4,0.123,3,8,0.99642,3.2,0.53,11.9,good
|
|
1023
|
+
11.3,0.36,0.66,2.4,0.123,3,8,0.99642,3.2,0.53,11.9,good
|
|
1024
|
+
7,0.51,0.09,2.1,0.062,4,9,0.99584,3.35,0.54,10.5,bad
|
|
1025
|
+
8.2,0.32,0.42,2.3,0.098,3,9,0.99506,3.27,0.55,12.3,good
|
|
1026
|
+
7.7,0.58,0.01,1.8,0.088,12,18,0.99568,3.32,0.56,10.5,good
|
|
1027
|
+
8.6,0.83,0,2.8,0.095,17,43,0.99822,3.33,0.6,10.4,good
|
|
1028
|
+
7.9,0.31,0.32,1.9,0.066,14,36,0.99364,3.41,0.56,12.6,good
|
|
1029
|
+
6.4,0.795,0,2.2,0.065,28,52,0.99378,3.49,0.52,11.6,bad
|
|
1030
|
+
7.2,0.34,0.21,2.5,0.075,41,68,0.99586,3.37,0.54,10.1,good
|
|
1031
|
+
7.7,0.58,0.01,1.8,0.088,12,18,0.99568,3.32,0.56,10.5,good
|
|
1032
|
+
7.1,0.59,0,2.1,0.091,9,14,0.99488,3.42,0.55,11.5,good
|
|
1033
|
+
7.3,0.55,0.01,1.8,0.093,9,15,0.99514,3.35,0.58,11,good
|
|
1034
|
+
8.1,0.82,0,4.1,0.095,5,14,0.99854,3.36,0.53,9.6,bad
|
|
1035
|
+
7.5,0.57,0.08,2.6,0.089,14,27,0.99592,3.3,0.59,10.4,good
|
|
1036
|
+
8.9,0.745,0.18,2.5,0.077,15,48,0.99739,3.2,0.47,9.7,good
|
|
1037
|
+
10.1,0.37,0.34,2.4,0.085,5,17,0.99683,3.17,0.65,10.6,good
|
|
1038
|
+
7.6,0.31,0.34,2.5,0.082,26,35,0.99356,3.22,0.59,12.5,good
|
|
1039
|
+
7.3,0.91,0.1,1.8,0.074,20,56,0.99672,3.35,0.56,9.2,bad
|
|
1040
|
+
8.7,0.41,0.41,6.2,0.078,25,42,0.9953,3.24,0.77,12.6,good
|
|
1041
|
+
8.9,0.5,0.21,2.2,0.088,21,39,0.99692,3.33,0.83,11.1,good
|
|
1042
|
+
7.4,0.965,0,2.2,0.088,16,32,0.99756,3.58,0.67,10.2,bad
|
|
1043
|
+
6.9,0.49,0.19,1.7,0.079,13,26,0.99547,3.38,0.64,9.8,good
|
|
1044
|
+
8.9,0.5,0.21,2.2,0.088,21,39,0.99692,3.33,0.83,11.1,good
|
|
1045
|
+
9.5,0.39,0.41,8.9,0.069,18,39,0.99859,3.29,0.81,10.9,good
|
|
1046
|
+
6.4,0.39,0.33,3.3,0.046,12,53,0.99294,3.36,0.62,12.2,good
|
|
1047
|
+
6.9,0.44,0,1.4,0.07,32,38,0.99438,3.32,0.58,11.4,good
|
|
1048
|
+
7.6,0.78,0,1.7,0.076,33,45,0.99612,3.31,0.62,10.7,good
|
|
1049
|
+
7.1,0.43,0.17,1.8,0.082,27,51,0.99634,3.49,0.64,10.4,bad
|
|
1050
|
+
9.3,0.49,0.36,1.7,0.081,3,14,0.99702,3.27,0.78,10.9,good
|
|
1051
|
+
9.3,0.5,0.36,1.8,0.084,6,17,0.99704,3.27,0.77,10.8,good
|
|
1052
|
+
7.1,0.43,0.17,1.8,0.082,27,51,0.99634,3.49,0.64,10.4,bad
|
|
1053
|
+
8.5,0.46,0.59,1.4,0.414,16,45,0.99702,3.03,1.34,9.2,bad
|
|
1054
|
+
5.6,0.605,0.05,2.4,0.073,19,25,0.99258,3.56,0.55,12.9,bad
|
|
1055
|
+
8.3,0.33,0.42,2.3,0.07,9,20,0.99426,3.38,0.77,12.7,good
|
|
1056
|
+
8.2,0.64,0.27,2,0.095,5,77,0.99747,3.13,0.62,9.1,good
|
|
1057
|
+
8.2,0.64,0.27,2,0.095,5,77,0.99747,3.13,0.62,9.1,good
|
|
1058
|
+
8.9,0.48,0.53,4,0.101,3,10,0.99586,3.21,0.59,12.1,good
|
|
1059
|
+
7.6,0.42,0.25,3.9,0.104,28,90,0.99784,3.15,0.57,9.1,bad
|
|
1060
|
+
9.9,0.53,0.57,2.4,0.093,30,52,0.9971,3.19,0.76,11.6,good
|
|
1061
|
+
8.9,0.48,0.53,4,0.101,3,10,0.99586,3.21,0.59,12.1,good
|
|
1062
|
+
11.6,0.23,0.57,1.8,0.074,3,8,0.9981,3.14,0.7,9.9,good
|
|
1063
|
+
9.1,0.4,0.5,1.8,0.071,7,16,0.99462,3.21,0.69,12.5,good
|
|
1064
|
+
8,0.38,0.44,1.9,0.098,6,15,0.9956,3.3,0.64,11.4,good
|
|
1065
|
+
10.2,0.29,0.65,2.4,0.075,6,17,0.99565,3.22,0.63,11.8,good
|
|
1066
|
+
8.2,0.74,0.09,2,0.067,5,10,0.99418,3.28,0.57,11.8,good
|
|
1067
|
+
7.7,0.61,0.18,2.4,0.083,6,20,0.9963,3.29,0.6,10.2,good
|
|
1068
|
+
6.6,0.52,0.08,2.4,0.07,13,26,0.99358,3.4,0.72,12.5,good
|
|
1069
|
+
11.1,0.31,0.53,2.2,0.06,3,10,0.99572,3.02,0.83,10.9,good
|
|
1070
|
+
11.1,0.31,0.53,2.2,0.06,3,10,0.99572,3.02,0.83,10.9,good
|
|
1071
|
+
8,0.62,0.35,2.8,0.086,28,52,0.997,3.31,0.62,10.8,bad
|
|
1072
|
+
9.3,0.33,0.45,1.5,0.057,19,37,0.99498,3.18,0.89,11.1,good
|
|
1073
|
+
7.5,0.77,0.2,8.1,0.098,30,92,0.99892,3.2,0.58,9.2,bad
|
|
1074
|
+
7.2,0.35,0.26,1.8,0.083,33,75,0.9968,3.4,0.58,9.5,good
|
|
1075
|
+
8,0.62,0.33,2.7,0.088,16,37,0.9972,3.31,0.58,10.7,good
|
|
1076
|
+
7.5,0.77,0.2,8.1,0.098,30,92,0.99892,3.2,0.58,9.2,bad
|
|
1077
|
+
9.1,0.25,0.34,2,0.071,45,67,0.99769,3.44,0.86,10.2,good
|
|
1078
|
+
9.9,0.32,0.56,2,0.073,3,8,0.99534,3.15,0.73,11.4,good
|
|
1079
|
+
8.6,0.37,0.65,6.4,0.08,3,8,0.99817,3.27,0.58,11,bad
|
|
1080
|
+
8.6,0.37,0.65,6.4,0.08,3,8,0.99817,3.27,0.58,11,bad
|
|
1081
|
+
7.9,0.3,0.68,8.3,0.05,37.5,278,0.99316,3.01,0.51,12.3,good
|
|
1082
|
+
10.3,0.27,0.56,1.4,0.047,3,8,0.99471,3.16,0.51,11.8,good
|
|
1083
|
+
7.9,0.3,0.68,8.3,0.05,37.5,289,0.99316,3.01,0.51,12.3,good
|
|
1084
|
+
7.2,0.38,0.3,1.8,0.073,31,70,0.99685,3.42,0.59,9.5,good
|
|
1085
|
+
8.7,0.42,0.45,2.4,0.072,32,59,0.99617,3.33,0.77,12,good
|
|
1086
|
+
7.2,0.38,0.3,1.8,0.073,31,70,0.99685,3.42,0.59,9.5,good
|
|
1087
|
+
6.8,0.48,0.08,1.8,0.074,40,64,0.99529,3.12,0.49,9.6,bad
|
|
1088
|
+
8.5,0.34,0.4,4.7,0.055,3,9,0.99738,3.38,0.66,11.6,good
|
|
1089
|
+
7.9,0.19,0.42,1.6,0.057,18,30,0.994,3.29,0.69,11.2,good
|
|
1090
|
+
11.6,0.41,0.54,1.5,0.095,22,41,0.99735,3.02,0.76,9.9,good
|
|
1091
|
+
11.6,0.41,0.54,1.5,0.095,22,41,0.99735,3.02,0.76,9.9,good
|
|
1092
|
+
10,0.26,0.54,1.9,0.083,42,74,0.99451,2.98,0.63,11.8,good
|
|
1093
|
+
7.9,0.34,0.42,2,0.086,8,19,0.99546,3.35,0.6,11.4,good
|
|
1094
|
+
7,0.54,0.09,2,0.081,10,16,0.99479,3.43,0.59,11.5,good
|
|
1095
|
+
9.2,0.31,0.36,2.2,0.079,11,31,0.99615,3.33,0.86,12,good
|
|
1096
|
+
6.6,0.725,0.09,5.5,0.117,9,17,0.99655,3.35,0.49,10.8,good
|
|
1097
|
+
9.4,0.4,0.47,2.5,0.087,6,20,0.99772,3.15,0.5,10.5,bad
|
|
1098
|
+
6.6,0.725,0.09,5.5,0.117,9,17,0.99655,3.35,0.49,10.8,good
|
|
1099
|
+
8.6,0.52,0.38,1.5,0.096,5,18,0.99666,3.2,0.52,9.4,bad
|
|
1100
|
+
8,0.31,0.45,2.1,0.216,5,16,0.99358,3.15,0.81,12.5,good
|
|
1101
|
+
8.6,0.52,0.38,1.5,0.096,5,18,0.99666,3.2,0.52,9.4,bad
|
|
1102
|
+
8.4,0.34,0.42,2.1,0.072,23,36,0.99392,3.11,0.78,12.4,good
|
|
1103
|
+
7.4,0.49,0.27,2.1,0.071,14,25,0.99388,3.35,0.63,12,good
|
|
1104
|
+
6.1,0.48,0.09,1.7,0.078,18,30,0.99402,3.45,0.54,11.2,good
|
|
1105
|
+
7.4,0.49,0.27,2.1,0.071,14,25,0.99388,3.35,0.63,12,good
|
|
1106
|
+
8,0.48,0.34,2.2,0.073,16,25,0.9936,3.28,0.66,12.4,good
|
|
1107
|
+
6.3,0.57,0.28,2.1,0.048,13,49,0.99374,3.41,0.6,12.8,bad
|
|
1108
|
+
8.2,0.23,0.42,1.9,0.069,9,17,0.99376,3.21,0.54,12.3,good
|
|
1109
|
+
9.1,0.3,0.41,2,0.068,10,24,0.99523,3.27,0.85,11.7,good
|
|
1110
|
+
8.1,0.78,0.1,3.3,0.09,4,13,0.99855,3.36,0.49,9.5,bad
|
|
1111
|
+
10.8,0.47,0.43,2.1,0.171,27,66,0.9982,3.17,0.76,10.8,good
|
|
1112
|
+
8.3,0.53,0,1.4,0.07,6,14,0.99593,3.25,0.64,10,good
|
|
1113
|
+
5.4,0.42,0.27,2,0.092,23,55,0.99471,3.78,0.64,12.3,good
|
|
1114
|
+
7.9,0.33,0.41,1.5,0.056,6,35,0.99396,3.29,0.71,11,good
|
|
1115
|
+
8.9,0.24,0.39,1.6,0.074,3,10,0.99698,3.12,0.59,9.5,good
|
|
1116
|
+
5,0.4,0.5,4.3,0.046,29,80,0.9902,3.49,0.66,13.6,good
|
|
1117
|
+
7,0.69,0.07,2.5,0.091,15,21,0.99572,3.38,0.6,11.3,good
|
|
1118
|
+
7,0.69,0.07,2.5,0.091,15,21,0.99572,3.38,0.6,11.3,good
|
|
1119
|
+
7,0.69,0.07,2.5,0.091,15,21,0.99572,3.38,0.6,11.3,good
|
|
1120
|
+
7.1,0.39,0.12,2.1,0.065,14,24,0.99252,3.3,0.53,13.3,good
|
|
1121
|
+
5.6,0.66,0,2.5,0.066,7,15,0.99256,3.52,0.58,12.9,bad
|
|
1122
|
+
7.9,0.54,0.34,2.5,0.076,8,17,0.99235,3.2,0.72,13.1,good
|
|
1123
|
+
6.6,0.5,0,1.8,0.062,21,28,0.99352,3.44,0.55,12.3,good
|
|
1124
|
+
6.3,0.47,0,1.4,0.055,27,33,0.9922,3.45,0.48,12.3,good
|
|
1125
|
+
10.7,0.4,0.37,1.9,0.081,17,29,0.99674,3.12,0.65,11.2,good
|
|
1126
|
+
6.5,0.58,0,2.2,0.096,3,13,0.99557,3.62,0.62,11.5,bad
|
|
1127
|
+
8.8,0.24,0.35,1.7,0.055,13,27,0.99394,3.14,0.59,11.3,good
|
|
1128
|
+
5.8,0.29,0.26,1.7,0.063,3,11,0.9915,3.39,0.54,13.5,good
|
|
1129
|
+
6.3,0.76,0,2.9,0.072,26,52,0.99379,3.51,0.6,11.5,good
|
|
1130
|
+
10,0.43,0.33,2.7,0.095,28,89,0.9984,3.22,0.68,10,bad
|
|
1131
|
+
10.5,0.43,0.35,3.3,0.092,24,70,0.99798,3.21,0.69,10.5,good
|
|
1132
|
+
9.1,0.6,0,1.9,0.058,5,10,0.9977,3.18,0.63,10.4,good
|
|
1133
|
+
5.9,0.19,0.21,1.7,0.045,57,135,0.99341,3.32,0.44,9.5,bad
|
|
1134
|
+
7.4,0.36,0.34,1.8,0.075,18,38,0.9933,3.38,0.88,13.6,good
|
|
1135
|
+
7.2,0.48,0.07,5.5,0.089,10,18,0.99684,3.37,0.68,11.2,good
|
|
1136
|
+
8.5,0.28,0.35,1.7,0.061,6,15,0.99524,3.3,0.74,11.8,good
|
|
1137
|
+
8,0.25,0.43,1.7,0.067,22,50,0.9946,3.38,0.6,11.9,good
|
|
1138
|
+
10.4,0.52,0.45,2,0.08,6,13,0.99774,3.22,0.76,11.4,good
|
|
1139
|
+
10.4,0.52,0.45,2,0.08,6,13,0.99774,3.22,0.76,11.4,good
|
|
1140
|
+
7.5,0.41,0.15,3.7,0.104,29,94,0.99786,3.14,0.58,9.1,bad
|
|
1141
|
+
8.2,0.51,0.24,2,0.079,16,86,0.99764,3.34,0.64,9.5,good
|
|
1142
|
+
7.3,0.4,0.3,1.7,0.08,33,79,0.9969,3.41,0.65,9.5,good
|
|
1143
|
+
8.2,0.38,0.32,2.5,0.08,24,71,0.99624,3.27,0.85,11,good
|
|
1144
|
+
6.9,0.45,0.11,2.4,0.043,6,12,0.99354,3.3,0.65,11.4,good
|
|
1145
|
+
7,0.22,0.3,1.8,0.065,16,20,0.99672,3.61,0.82,10,good
|
|
1146
|
+
7.3,0.32,0.23,2.3,0.066,35,70,0.99588,3.43,0.62,10.1,bad
|
|
1147
|
+
8.2,0.2,0.43,2.5,0.076,31,51,0.99672,3.53,0.81,10.4,good
|
|
1148
|
+
7.8,0.5,0.12,1.8,0.178,6,21,0.996,3.28,0.87,9.8,good
|
|
1149
|
+
10,0.41,0.45,6.2,0.071,6,14,0.99702,3.21,0.49,11.8,good
|
|
1150
|
+
7.8,0.39,0.42,2,0.086,9,21,0.99526,3.39,0.66,11.6,good
|
|
1151
|
+
10,0.35,0.47,2,0.061,6,11,0.99585,3.23,0.52,12,good
|
|
1152
|
+
8.2,0.33,0.32,2.8,0.067,4,12,0.99473,3.3,0.76,12.8,good
|
|
1153
|
+
6.1,0.58,0.23,2.5,0.044,16,70,0.99352,3.46,0.65,12.5,good
|
|
1154
|
+
8.3,0.6,0.25,2.2,0.118,9,38,0.99616,3.15,0.53,9.8,bad
|
|
1155
|
+
9.6,0.42,0.35,2.1,0.083,17,38,0.99622,3.23,0.66,11.1,good
|
|
1156
|
+
6.6,0.58,0,2.2,0.1,50,63,0.99544,3.59,0.68,11.4,good
|
|
1157
|
+
8.3,0.6,0.25,2.2,0.118,9,38,0.99616,3.15,0.53,9.8,bad
|
|
1158
|
+
8.5,0.18,0.51,1.75,0.071,45,88,0.99524,3.33,0.76,11.8,good
|
|
1159
|
+
5.1,0.51,0.18,2.1,0.042,16,101,0.9924,3.46,0.87,12.9,good
|
|
1160
|
+
6.7,0.41,0.43,2.8,0.076,22,54,0.99572,3.42,1.16,10.6,good
|
|
1161
|
+
10.2,0.41,0.43,2.2,0.11,11,37,0.99728,3.16,0.67,10.8,bad
|
|
1162
|
+
10.6,0.36,0.57,2.3,0.087,6,20,0.99676,3.14,0.72,11.1,good
|
|
1163
|
+
8.8,0.45,0.43,1.4,0.076,12,21,0.99551,3.21,0.75,10.2,good
|
|
1164
|
+
8.5,0.32,0.42,2.3,0.075,12,19,0.99434,3.14,0.71,11.8,good
|
|
1165
|
+
9,0.785,0.24,1.7,0.078,10,21,0.99692,3.29,0.67,10,bad
|
|
1166
|
+
9,0.785,0.24,1.7,0.078,10,21,0.99692,3.29,0.67,10,bad
|
|
1167
|
+
8.5,0.44,0.5,1.9,0.369,15,38,0.99634,3.01,1.1,9.4,bad
|
|
1168
|
+
9.9,0.54,0.26,2,0.111,7,60,0.99709,2.94,0.98,10.2,bad
|
|
1169
|
+
8.2,0.33,0.39,2.5,0.074,29,48,0.99528,3.32,0.88,12.4,good
|
|
1170
|
+
6.5,0.34,0.27,2.8,0.067,8,44,0.99384,3.21,0.56,12,good
|
|
1171
|
+
7.6,0.5,0.29,2.3,0.086,5,14,0.99502,3.32,0.62,11.5,good
|
|
1172
|
+
9.2,0.36,0.34,1.6,0.062,5,12,0.99667,3.2,0.67,10.5,good
|
|
1173
|
+
7.1,0.59,0,2.2,0.078,26,44,0.99522,3.42,0.68,10.8,good
|
|
1174
|
+
9.7,0.42,0.46,2.1,0.074,5,16,0.99649,3.27,0.74,12.3,good
|
|
1175
|
+
7.6,0.36,0.31,1.7,0.079,26,65,0.99716,3.46,0.62,9.5,good
|
|
1176
|
+
7.6,0.36,0.31,1.7,0.079,26,65,0.99716,3.46,0.62,9.5,good
|
|
1177
|
+
6.5,0.61,0,2.2,0.095,48,59,0.99541,3.61,0.7,11.5,good
|
|
1178
|
+
6.5,0.88,0.03,5.6,0.079,23,47,0.99572,3.58,0.5,11.2,bad
|
|
1179
|
+
7.1,0.66,0,2.4,0.052,6,11,0.99318,3.35,0.66,12.7,good
|
|
1180
|
+
5.6,0.915,0,2.1,0.041,17,78,0.99346,3.68,0.73,11.4,bad
|
|
1181
|
+
8.2,0.35,0.33,2.4,0.076,11,47,0.99599,3.27,0.81,11,good
|
|
1182
|
+
8.2,0.35,0.33,2.4,0.076,11,47,0.99599,3.27,0.81,11,good
|
|
1183
|
+
9.8,0.39,0.43,1.65,0.068,5,11,0.99478,3.19,0.46,11.4,bad
|
|
1184
|
+
10.2,0.4,0.4,2.5,0.068,41,54,0.99754,3.38,0.86,10.5,good
|
|
1185
|
+
6.8,0.66,0.07,1.6,0.07,16,61,0.99572,3.29,0.6,9.3,bad
|
|
1186
|
+
6.7,0.64,0.23,2.1,0.08,11,119,0.99538,3.36,0.7,10.9,bad
|
|
1187
|
+
7,0.43,0.3,2,0.085,6,39,0.99346,3.33,0.46,11.9,good
|
|
1188
|
+
6.6,0.8,0.03,7.8,0.079,6,12,0.9963,3.52,0.5,12.2,bad
|
|
1189
|
+
7,0.43,0.3,2,0.085,6,39,0.99346,3.33,0.46,11.9,good
|
|
1190
|
+
6.7,0.64,0.23,2.1,0.08,11,119,0.99538,3.36,0.7,10.9,bad
|
|
1191
|
+
8.8,0.955,0.05,1.8,0.075,5,19,0.99616,3.3,0.44,9.6,bad
|
|
1192
|
+
9.1,0.4,0.57,4.6,0.08,6,20,0.99652,3.28,0.57,12.5,good
|
|
1193
|
+
6.5,0.885,0,2.3,0.166,6,12,0.99551,3.56,0.51,10.8,bad
|
|
1194
|
+
7.2,0.25,0.37,2.5,0.063,11,41,0.99439,3.52,0.8,12.4,good
|
|
1195
|
+
6.4,0.885,0,2.3,0.166,6,12,0.99551,3.56,0.51,10.8,bad
|
|
1196
|
+
7,0.745,0.12,1.8,0.114,15,64,0.99588,3.22,0.59,9.5,good
|
|
1197
|
+
6.2,0.43,0.22,1.8,0.078,21,56,0.99633,3.52,0.6,9.5,good
|
|
1198
|
+
7.9,0.58,0.23,2.3,0.076,23,94,0.99686,3.21,0.58,9.5,good
|
|
1199
|
+
7.7,0.57,0.21,1.5,0.069,4,9,0.99458,3.16,0.54,9.8,good
|
|
1200
|
+
7.7,0.26,0.26,2,0.052,19,77,0.9951,3.15,0.79,10.9,good
|
|
1201
|
+
7.9,0.58,0.23,2.3,0.076,23,94,0.99686,3.21,0.58,9.5,good
|
|
1202
|
+
7.7,0.57,0.21,1.5,0.069,4,9,0.99458,3.16,0.54,9.8,good
|
|
1203
|
+
7.9,0.34,0.36,1.9,0.065,5,10,0.99419,3.27,0.54,11.2,good
|
|
1204
|
+
8.6,0.42,0.39,1.8,0.068,6,12,0.99516,3.35,0.69,11.7,good
|
|
1205
|
+
9.9,0.74,0.19,5.8,0.111,33,76,0.99878,3.14,0.55,9.4,bad
|
|
1206
|
+
7.2,0.36,0.46,2.1,0.074,24,44,0.99534,3.4,0.85,11,good
|
|
1207
|
+
7.2,0.36,0.46,2.1,0.074,24,44,0.99534,3.4,0.85,11,good
|
|
1208
|
+
7.2,0.36,0.46,2.1,0.074,24,44,0.99534,3.4,0.85,11,good
|
|
1209
|
+
9.9,0.72,0.55,1.7,0.136,24,52,0.99752,3.35,0.94,10,bad
|
|
1210
|
+
7.2,0.36,0.46,2.1,0.074,24,44,0.99534,3.4,0.85,11,good
|
|
1211
|
+
6.2,0.39,0.43,2,0.071,14,24,0.99428,3.45,0.87,11.2,good
|
|
1212
|
+
6.8,0.65,0.02,2.1,0.078,8,15,0.99498,3.35,0.62,10.4,good
|
|
1213
|
+
6.6,0.44,0.15,2.1,0.076,22,53,0.9957,3.32,0.62,9.3,bad
|
|
1214
|
+
6.8,0.65,0.02,2.1,0.078,8,15,0.99498,3.35,0.62,10.4,good
|
|
1215
|
+
9.6,0.38,0.42,1.9,0.071,5,13,0.99659,3.15,0.75,10.5,good
|
|
1216
|
+
10.2,0.33,0.46,1.9,0.081,6,9,0.99628,3.1,0.48,10.4,good
|
|
1217
|
+
8.8,0.27,0.46,2.1,0.095,20,29,0.99488,3.26,0.56,11.3,good
|
|
1218
|
+
7.9,0.57,0.31,2,0.079,10,79,0.99677,3.29,0.69,9.5,good
|
|
1219
|
+
8.2,0.34,0.37,1.9,0.057,43,74,0.99408,3.23,0.81,12,good
|
|
1220
|
+
8.2,0.4,0.31,1.9,0.082,8,24,0.996,3.24,0.69,10.6,good
|
|
1221
|
+
9,0.39,0.4,1.3,0.044,25,50,0.99478,3.2,0.83,10.9,good
|
|
1222
|
+
10.9,0.32,0.52,1.8,0.132,17,44,0.99734,3.28,0.77,11.5,good
|
|
1223
|
+
10.9,0.32,0.52,1.8,0.132,17,44,0.99734,3.28,0.77,11.5,good
|
|
1224
|
+
8.1,0.53,0.22,2.2,0.078,33,89,0.99678,3.26,0.46,9.6,good
|
|
1225
|
+
10.5,0.36,0.47,2.2,0.074,9,23,0.99638,3.23,0.76,12,good
|
|
1226
|
+
12.6,0.39,0.49,2.5,0.08,8,20,0.9992,3.07,0.82,10.3,good
|
|
1227
|
+
9.2,0.46,0.23,2.6,0.091,18,77,0.99922,3.15,0.51,9.4,bad
|
|
1228
|
+
7.5,0.58,0.03,4.1,0.08,27,46,0.99592,3.02,0.47,9.2,bad
|
|
1229
|
+
9,0.58,0.25,2,0.104,8,21,0.99769,3.27,0.72,9.6,bad
|
|
1230
|
+
5.1,0.42,0,1.8,0.044,18,88,0.99157,3.68,0.73,13.6,good
|
|
1231
|
+
7.6,0.43,0.29,2.1,0.075,19,66,0.99718,3.4,0.64,9.5,bad
|
|
1232
|
+
7.7,0.18,0.34,2.7,0.066,15,58,0.9947,3.37,0.78,11.8,good
|
|
1233
|
+
7.8,0.815,0.01,2.6,0.074,48,90,0.99621,3.38,0.62,10.8,bad
|
|
1234
|
+
7.6,0.43,0.29,2.1,0.075,19,66,0.99718,3.4,0.64,9.5,bad
|
|
1235
|
+
10.2,0.23,0.37,2.2,0.057,14,36,0.99614,3.23,0.49,9.3,bad
|
|
1236
|
+
7.1,0.75,0.01,2.2,0.059,11,18,0.99242,3.39,0.4,12.8,good
|
|
1237
|
+
6,0.33,0.32,12.9,0.054,6,113,0.99572,3.3,0.56,11.5,bad
|
|
1238
|
+
7.8,0.55,0,1.7,0.07,7,17,0.99659,3.26,0.64,9.4,good
|
|
1239
|
+
7.1,0.75,0.01,2.2,0.059,11,18,0.99242,3.39,0.4,12.8,good
|
|
1240
|
+
8.1,0.73,0,2.5,0.081,12,24,0.99798,3.38,0.46,9.6,bad
|
|
1241
|
+
6.5,0.67,0,4.3,0.057,11,20,0.99488,3.45,0.56,11.8,bad
|
|
1242
|
+
7.5,0.61,0.2,1.7,0.076,36,60,0.99494,3.1,0.4,9.3,bad
|
|
1243
|
+
9.8,0.37,0.39,2.5,0.079,28,65,0.99729,3.16,0.59,9.8,bad
|
|
1244
|
+
9,0.4,0.41,2,0.058,15,40,0.99414,3.22,0.6,12.2,good
|
|
1245
|
+
8.3,0.56,0.22,2.4,0.082,10,86,0.9983,3.37,0.62,9.5,bad
|
|
1246
|
+
5.9,0.29,0.25,13.4,0.067,72,160,0.99721,3.33,0.54,10.3,good
|
|
1247
|
+
7.4,0.55,0.19,1.8,0.082,15,34,0.99655,3.49,0.68,10.5,bad
|
|
1248
|
+
7.4,0.74,0.07,1.7,0.086,15,48,0.99502,3.12,0.48,10,bad
|
|
1249
|
+
7.4,0.55,0.19,1.8,0.082,15,34,0.99655,3.49,0.68,10.5,bad
|
|
1250
|
+
6.9,0.41,0.33,2.2,0.081,22,36,0.9949,3.41,0.75,11.1,good
|
|
1251
|
+
7.1,0.6,0.01,2.3,0.079,24,37,0.99514,3.4,0.61,10.9,good
|
|
1252
|
+
7.1,0.6,0.01,2.3,0.079,24,37,0.99514,3.4,0.61,10.9,good
|
|
1253
|
+
7.5,0.58,0.14,2.2,0.077,27,60,0.9963,3.28,0.59,9.8,bad
|
|
1254
|
+
7.1,0.72,0,1.8,0.123,6,14,0.99627,3.45,0.58,9.8,bad
|
|
1255
|
+
7.9,0.66,0,1.4,0.096,6,13,0.99569,3.43,0.58,9.5,bad
|
|
1256
|
+
7.8,0.7,0.06,1.9,0.079,20,35,0.99628,3.4,0.69,10.9,bad
|
|
1257
|
+
6.1,0.64,0.02,2.4,0.069,26,46,0.99358,3.47,0.45,11,bad
|
|
1258
|
+
7.5,0.59,0.22,1.8,0.082,43,60,0.99499,3.1,0.42,9.2,bad
|
|
1259
|
+
7,0.58,0.28,4.8,0.085,12,69,0.99633,3.32,0.7,11,good
|
|
1260
|
+
6.8,0.64,0,2.7,0.123,15,33,0.99538,3.44,0.63,11.3,good
|
|
1261
|
+
6.8,0.64,0,2.7,0.123,15,33,0.99538,3.44,0.63,11.3,good
|
|
1262
|
+
8.6,0.635,0.68,1.8,0.403,19,56,0.99632,3.02,1.15,9.3,bad
|
|
1263
|
+
6.3,1.02,0,2,0.083,17,24,0.99437,3.59,0.55,11.2,bad
|
|
1264
|
+
9.8,0.45,0.38,2.5,0.081,34,66,0.99726,3.15,0.58,9.8,bad
|
|
1265
|
+
8.2,0.78,0,2.2,0.089,13,26,0.9978,3.37,0.46,9.6,bad
|
|
1266
|
+
8.5,0.37,0.32,1.8,0.066,26,51,0.99456,3.38,0.72,11.8,good
|
|
1267
|
+
7.2,0.57,0.05,2.3,0.081,16,36,0.99564,3.38,0.6,10.3,good
|
|
1268
|
+
7.2,0.57,0.05,2.3,0.081,16,36,0.99564,3.38,0.6,10.3,good
|
|
1269
|
+
10.4,0.43,0.5,2.3,0.068,13,19,0.996,3.1,0.87,11.4,good
|
|
1270
|
+
6.9,0.41,0.31,2,0.079,21,51,0.99668,3.47,0.55,9.5,good
|
|
1271
|
+
5.5,0.49,0.03,1.8,0.044,28,87,0.9908,3.5,0.82,14,good
|
|
1272
|
+
5,0.38,0.01,1.6,0.048,26,60,0.99084,3.7,0.75,14,good
|
|
1273
|
+
7.3,0.44,0.2,1.6,0.049,24,64,0.9935,3.38,0.57,11.7,good
|
|
1274
|
+
5.9,0.46,0,1.9,0.077,25,44,0.99385,3.5,0.53,11.2,bad
|
|
1275
|
+
7.5,0.58,0.2,2,0.073,34,44,0.99494,3.1,0.43,9.3,bad
|
|
1276
|
+
7.8,0.58,0.13,2.1,0.102,17,36,0.9944,3.24,0.53,11.2,good
|
|
1277
|
+
8,0.715,0.22,2.3,0.075,13,81,0.99688,3.24,0.54,9.5,good
|
|
1278
|
+
8.5,0.4,0.4,6.3,0.05,3,10,0.99566,3.28,0.56,12,bad
|
|
1279
|
+
7,0.69,0,1.9,0.114,3,10,0.99636,3.35,0.6,9.7,good
|
|
1280
|
+
8,0.715,0.22,2.3,0.075,13,81,0.99688,3.24,0.54,9.5,good
|
|
1281
|
+
9.8,0.3,0.39,1.7,0.062,3,9,0.9948,3.14,0.57,11.5,good
|
|
1282
|
+
7.1,0.46,0.2,1.9,0.077,28,54,0.9956,3.37,0.64,10.4,good
|
|
1283
|
+
7.1,0.46,0.2,1.9,0.077,28,54,0.9956,3.37,0.64,10.4,good
|
|
1284
|
+
7.9,0.765,0,2,0.084,9,22,0.99619,3.33,0.68,10.9,good
|
|
1285
|
+
8.7,0.63,0.28,2.7,0.096,17,69,0.99734,3.26,0.63,10.2,good
|
|
1286
|
+
7,0.42,0.19,2.3,0.071,18,36,0.99476,3.39,0.56,10.9,bad
|
|
1287
|
+
11.3,0.37,0.5,1.8,0.09,20,47,0.99734,3.15,0.57,10.5,bad
|
|
1288
|
+
7.1,0.16,0.44,2.5,0.068,17,31,0.99328,3.35,0.54,12.4,good
|
|
1289
|
+
8,0.6,0.08,2.6,0.056,3,7,0.99286,3.22,0.37,13,bad
|
|
1290
|
+
7,0.6,0.3,4.5,0.068,20,110,0.99914,3.3,1.17,10.2,bad
|
|
1291
|
+
7,0.6,0.3,4.5,0.068,20,110,0.99914,3.3,1.17,10.2,bad
|
|
1292
|
+
7.6,0.74,0,1.9,0.1,6,12,0.99521,3.36,0.59,11,bad
|
|
1293
|
+
8.2,0.635,0.1,2.1,0.073,25,60,0.99638,3.29,0.75,10.9,good
|
|
1294
|
+
5.9,0.395,0.13,2.4,0.056,14,28,0.99362,3.62,0.67,12.4,good
|
|
1295
|
+
7.5,0.755,0,1.9,0.084,6,12,0.99672,3.34,0.49,9.7,bad
|
|
1296
|
+
8.2,0.635,0.1,2.1,0.073,25,60,0.99638,3.29,0.75,10.9,good
|
|
1297
|
+
6.6,0.63,0,4.3,0.093,51,77.5,0.99558,3.2,0.45,9.5,bad
|
|
1298
|
+
6.6,0.63,0,4.3,0.093,51,77.5,0.99558,3.2,0.45,9.5,bad
|
|
1299
|
+
7.2,0.53,0.14,2.1,0.064,15,29,0.99323,3.35,0.61,12.1,good
|
|
1300
|
+
5.7,0.6,0,1.4,0.063,11,18,0.99191,3.45,0.56,12.2,good
|
|
1301
|
+
7.6,1.58,0,2.1,0.137,5,9,0.99476,3.5,0.4,10.9,bad
|
|
1302
|
+
5.2,0.645,0,2.15,0.08,15,28,0.99444,3.78,0.61,12.5,good
|
|
1303
|
+
6.7,0.86,0.07,2,0.1,20,57,0.99598,3.6,0.74,11.7,good
|
|
1304
|
+
9.1,0.37,0.32,2.1,0.064,4,15,0.99576,3.3,0.8,11.2,good
|
|
1305
|
+
8,0.28,0.44,1.8,0.081,28,68,0.99501,3.36,0.66,11.2,bad
|
|
1306
|
+
7.6,0.79,0.21,2.3,0.087,21,68,0.9955,3.12,0.44,9.2,bad
|
|
1307
|
+
7.5,0.61,0.26,1.9,0.073,24,88,0.99612,3.3,0.53,9.8,bad
|
|
1308
|
+
9.7,0.69,0.32,2.5,0.088,22,91,0.9979,3.29,0.62,10.1,bad
|
|
1309
|
+
6.8,0.68,0.09,3.9,0.068,15,29,0.99524,3.41,0.52,11.1,bad
|
|
1310
|
+
9.7,0.69,0.32,2.5,0.088,22,91,0.9979,3.29,0.62,10.1,bad
|
|
1311
|
+
7,0.62,0.1,1.4,0.071,27,63,0.996,3.28,0.61,9.2,bad
|
|
1312
|
+
7.5,0.61,0.26,1.9,0.073,24,88,0.99612,3.3,0.53,9.8,bad
|
|
1313
|
+
6.5,0.51,0.15,3,0.064,12,27,0.9929,3.33,0.59,12.8,good
|
|
1314
|
+
8,1.18,0.21,1.9,0.083,14,41,0.99532,3.34,0.47,10.5,bad
|
|
1315
|
+
7,0.36,0.21,2.3,0.086,20,65,0.99558,3.4,0.54,10.1,good
|
|
1316
|
+
7,0.36,0.21,2.4,0.086,24,69,0.99556,3.4,0.53,10.1,good
|
|
1317
|
+
7.5,0.63,0.27,2,0.083,17,91,0.99616,3.26,0.58,9.8,good
|
|
1318
|
+
5.4,0.74,0,1.2,0.041,16,46,0.99258,4.01,0.59,12.5,good
|
|
1319
|
+
9.9,0.44,0.46,2.2,0.091,10,41,0.99638,3.18,0.69,11.9,good
|
|
1320
|
+
7.5,0.63,0.27,2,0.083,17,91,0.99616,3.26,0.58,9.8,good
|
|
1321
|
+
9.1,0.76,0.68,1.7,0.414,18,64,0.99652,2.9,1.33,9.1,good
|
|
1322
|
+
9.7,0.66,0.34,2.6,0.094,12,88,0.99796,3.26,0.66,10.1,bad
|
|
1323
|
+
5,0.74,0,1.2,0.041,16,46,0.99258,4.01,0.59,12.5,good
|
|
1324
|
+
9.1,0.34,0.42,1.8,0.058,9,18,0.99392,3.18,0.55,11.4,bad
|
|
1325
|
+
9.1,0.36,0.39,1.8,0.06,21,55,0.99495,3.18,0.82,11,good
|
|
1326
|
+
6.7,0.46,0.24,1.7,0.077,18,34,0.9948,3.39,0.6,10.6,good
|
|
1327
|
+
6.7,0.46,0.24,1.7,0.077,18,34,0.9948,3.39,0.6,10.6,good
|
|
1328
|
+
6.7,0.46,0.24,1.7,0.077,18,34,0.9948,3.39,0.6,10.6,good
|
|
1329
|
+
6.7,0.46,0.24,1.7,0.077,18,34,0.9948,3.39,0.6,10.6,good
|
|
1330
|
+
6.5,0.52,0.11,1.8,0.073,13,38,0.9955,3.34,0.52,9.3,bad
|
|
1331
|
+
7.4,0.6,0.26,2.1,0.083,17,91,0.99616,3.29,0.56,9.8,good
|
|
1332
|
+
7.4,0.6,0.26,2.1,0.083,17,91,0.99616,3.29,0.56,9.8,good
|
|
1333
|
+
7.8,0.87,0.26,3.8,0.107,31,67,0.99668,3.26,0.46,9.2,bad
|
|
1334
|
+
8.4,0.39,0.1,1.7,0.075,6,25,0.99581,3.09,0.43,9.7,good
|
|
1335
|
+
9.1,0.775,0.22,2.2,0.079,12,48,0.9976,3.18,0.51,9.6,bad
|
|
1336
|
+
7.2,0.835,0,2,0.166,4,11,0.99608,3.39,0.52,10,bad
|
|
1337
|
+
6.6,0.58,0.02,2.4,0.069,19,40,0.99387,3.38,0.66,12.6,good
|
|
1338
|
+
6,0.5,0,1.4,0.057,15,26,0.99448,3.36,0.45,9.5,bad
|
|
1339
|
+
6,0.5,0,1.4,0.057,15,26,0.99448,3.36,0.45,9.5,bad
|
|
1340
|
+
6,0.5,0,1.4,0.057,15,26,0.99448,3.36,0.45,9.5,bad
|
|
1341
|
+
7.5,0.51,0.02,1.7,0.084,13,31,0.99538,3.36,0.54,10.5,good
|
|
1342
|
+
7.5,0.51,0.02,1.7,0.084,13,31,0.99538,3.36,0.54,10.5,good
|
|
1343
|
+
7.5,0.51,0.02,1.7,0.084,13,31,0.99538,3.36,0.54,10.5,good
|
|
1344
|
+
7.6,0.54,0.02,1.7,0.085,17,31,0.99589,3.37,0.51,10.4,good
|
|
1345
|
+
7.5,0.51,0.02,1.7,0.084,13,31,0.99538,3.36,0.54,10.5,good
|
|
1346
|
+
11.5,0.42,0.48,2.6,0.077,8,20,0.99852,3.09,0.53,11,bad
|
|
1347
|
+
8.2,0.44,0.24,2.3,0.063,10,28,0.99613,3.25,0.53,10.2,good
|
|
1348
|
+
6.1,0.59,0.01,2.1,0.056,5,13,0.99472,3.52,0.56,11.4,bad
|
|
1349
|
+
7.2,0.655,0.03,1.8,0.078,7,12,0.99587,3.34,0.39,9.5,bad
|
|
1350
|
+
7.2,0.655,0.03,1.8,0.078,7,12,0.99587,3.34,0.39,9.5,bad
|
|
1351
|
+
6.9,0.57,0,2.8,0.081,21,41,0.99518,3.41,0.52,10.8,bad
|
|
1352
|
+
9,0.6,0.29,2,0.069,32,73,0.99654,3.34,0.57,10,bad
|
|
1353
|
+
7.2,0.62,0.01,2.3,0.065,8,46,0.99332,3.32,0.51,11.8,good
|
|
1354
|
+
7.6,0.645,0.03,1.9,0.086,14,57,0.9969,3.37,0.46,10.3,bad
|
|
1355
|
+
7.6,0.645,0.03,1.9,0.086,14,57,0.9969,3.37,0.46,10.3,bad
|
|
1356
|
+
7.2,0.58,0.03,2.3,0.077,7,28,0.99568,3.35,0.52,10,bad
|
|
1357
|
+
6.1,0.32,0.25,1.8,0.086,5,32,0.99464,3.36,0.44,10.1,bad
|
|
1358
|
+
6.1,0.34,0.25,1.8,0.084,4,28,0.99464,3.36,0.44,10.1,bad
|
|
1359
|
+
7.3,0.43,0.24,2.5,0.078,27,67,0.99648,3.6,0.59,11.1,good
|
|
1360
|
+
7.4,0.64,0.17,5.4,0.168,52,98,0.99736,3.28,0.5,9.5,bad
|
|
1361
|
+
11.6,0.475,0.4,1.4,0.091,6,28,0.99704,3.07,0.65,10.03333333,good
|
|
1362
|
+
9.2,0.54,0.31,2.3,0.112,11,38,0.99699,3.24,0.56,10.9,bad
|
|
1363
|
+
8.3,0.85,0.14,2.5,0.093,13,54,0.99724,3.36,0.54,10.1,bad
|
|
1364
|
+
11.6,0.475,0.4,1.4,0.091,6,28,0.99704,3.07,0.65,10.03333333,good
|
|
1365
|
+
8,0.83,0.27,2,0.08,11,63,0.99652,3.29,0.48,9.8,bad
|
|
1366
|
+
7.2,0.605,0.02,1.9,0.096,10,31,0.995,3.46,0.53,11.8,good
|
|
1367
|
+
7.8,0.5,0.09,2.2,0.115,10,42,0.9971,3.18,0.62,9.5,bad
|
|
1368
|
+
7.3,0.74,0.08,1.7,0.094,10,45,0.99576,3.24,0.5,9.8,bad
|
|
1369
|
+
6.9,0.54,0.3,2.2,0.088,9,105,0.99725,3.25,1.18,10.5,good
|
|
1370
|
+
8,0.77,0.32,2.1,0.079,16,74,0.99656,3.27,0.5,9.8,good
|
|
1371
|
+
6.6,0.61,0,1.6,0.069,4,8,0.99396,3.33,0.37,10.4,bad
|
|
1372
|
+
8.7,0.78,0.51,1.7,0.415,12,66,0.99623,3,1.17,9.2,bad
|
|
1373
|
+
7.5,0.58,0.56,3.1,0.153,5,14,0.99476,3.21,1.03,11.6,good
|
|
1374
|
+
8.7,0.78,0.51,1.7,0.415,12,66,0.99623,3,1.17,9.2,bad
|
|
1375
|
+
7.7,0.75,0.27,3.8,0.11,34,89,0.99664,3.24,0.45,9.3,bad
|
|
1376
|
+
6.8,0.815,0,1.2,0.267,16,29,0.99471,3.32,0.51,9.8,bad
|
|
1377
|
+
7.2,0.56,0.26,2,0.083,13,100,0.99586,3.26,0.52,9.9,bad
|
|
1378
|
+
8.2,0.885,0.2,1.4,0.086,7,31,0.9946,3.11,0.46,10,bad
|
|
1379
|
+
5.2,0.49,0.26,2.3,0.09,23,74,0.9953,3.71,0.62,12.2,good
|
|
1380
|
+
7.2,0.45,0.15,2,0.078,10,28,0.99609,3.29,0.51,9.9,good
|
|
1381
|
+
7.5,0.57,0.02,2.6,0.077,11,35,0.99557,3.36,0.62,10.8,good
|
|
1382
|
+
7.5,0.57,0.02,2.6,0.077,11,35,0.99557,3.36,0.62,10.8,good
|
|
1383
|
+
6.8,0.83,0.09,1.8,0.074,4,25,0.99534,3.38,0.45,9.6,bad
|
|
1384
|
+
8,0.6,0.22,2.1,0.08,25,105,0.99613,3.3,0.49,9.9,bad
|
|
1385
|
+
8,0.6,0.22,2.1,0.08,25,105,0.99613,3.3,0.49,9.9,bad
|
|
1386
|
+
7.1,0.755,0.15,1.8,0.107,20,84,0.99593,3.19,0.5,9.5,bad
|
|
1387
|
+
8,0.81,0.25,3.4,0.076,34,85,0.99668,3.19,0.42,9.2,bad
|
|
1388
|
+
7.4,0.64,0.07,1.8,0.1,8,23,0.9961,3.3,0.58,9.6,bad
|
|
1389
|
+
7.4,0.64,0.07,1.8,0.1,8,23,0.9961,3.3,0.58,9.6,bad
|
|
1390
|
+
6.6,0.64,0.31,6.1,0.083,7,49,0.99718,3.35,0.68,10.3,bad
|
|
1391
|
+
6.7,0.48,0.02,2.2,0.08,36,111,0.99524,3.1,0.53,9.7,bad
|
|
1392
|
+
6,0.49,0,2.3,0.068,15,33,0.99292,3.58,0.59,12.5,good
|
|
1393
|
+
8,0.64,0.22,2.4,0.094,5,33,0.99612,3.37,0.58,11,bad
|
|
1394
|
+
7.1,0.62,0.06,1.3,0.07,5,12,0.9942,3.17,0.48,9.8,bad
|
|
1395
|
+
8,0.52,0.25,2,0.078,19,59,0.99612,3.3,0.48,10.2,bad
|
|
1396
|
+
6.4,0.57,0.14,3.9,0.07,27,73,0.99669,3.32,0.48,9.2,bad
|
|
1397
|
+
8.6,0.685,0.1,1.6,0.092,3,12,0.99745,3.31,0.65,9.55,good
|
|
1398
|
+
8.7,0.675,0.1,1.6,0.09,4,11,0.99745,3.31,0.65,9.55,bad
|
|
1399
|
+
7.3,0.59,0.26,2,0.08,17,104,0.99584,3.28,0.52,9.9,bad
|
|
1400
|
+
7,0.6,0.12,2.2,0.083,13,28,0.9966,3.52,0.62,10.2,good
|
|
1401
|
+
7.2,0.67,0,2.2,0.068,10,24,0.9956,3.42,0.72,11.1,good
|
|
1402
|
+
7.9,0.69,0.21,2.1,0.08,33,141,0.9962,3.25,0.51,9.9,bad
|
|
1403
|
+
7.9,0.69,0.21,2.1,0.08,33,141,0.9962,3.25,0.51,9.9,bad
|
|
1404
|
+
7.6,0.3,0.42,2,0.052,6,24,0.9963,3.44,0.82,11.9,good
|
|
1405
|
+
7.2,0.33,0.33,1.7,0.061,3,13,0.996,3.23,1.1,10,good
|
|
1406
|
+
8,0.5,0.39,2.6,0.082,12,46,0.9985,3.43,0.62,10.7,good
|
|
1407
|
+
7.7,0.28,0.3,2,0.062,18,34,0.9952,3.28,0.9,11.3,good
|
|
1408
|
+
8.2,0.24,0.34,5.1,0.062,8,22,0.9974,3.22,0.94,10.9,good
|
|
1409
|
+
6,0.51,0,2.1,0.064,40,54,0.995,3.54,0.93,10.7,good
|
|
1410
|
+
8.1,0.29,0.36,2.2,0.048,35,53,0.995,3.27,1.01,12.4,good
|
|
1411
|
+
6,0.51,0,2.1,0.064,40,54,0.995,3.54,0.93,10.7,good
|
|
1412
|
+
6.6,0.96,0,1.8,0.082,5,16,0.9936,3.5,0.44,11.9,good
|
|
1413
|
+
6.4,0.47,0.4,2.4,0.071,8,19,0.9963,3.56,0.73,10.6,good
|
|
1414
|
+
8.2,0.24,0.34,5.1,0.062,8,22,0.9974,3.22,0.94,10.9,good
|
|
1415
|
+
9.9,0.57,0.25,2,0.104,12,89,0.9963,3.04,0.9,10.1,bad
|
|
1416
|
+
10,0.32,0.59,2.2,0.077,3,15,0.9994,3.2,0.78,9.6,bad
|
|
1417
|
+
6.2,0.58,0,1.6,0.065,8,18,0.9966,3.56,0.84,9.4,bad
|
|
1418
|
+
10,0.32,0.59,2.2,0.077,3,15,0.9994,3.2,0.78,9.6,bad
|
|
1419
|
+
7.3,0.34,0.33,2.5,0.064,21,37,0.9952,3.35,0.77,12.1,good
|
|
1420
|
+
7.8,0.53,0.01,1.6,0.077,3,19,0.995,3.16,0.46,9.8,bad
|
|
1421
|
+
7.7,0.64,0.21,2.2,0.077,32,133,0.9956,3.27,0.45,9.9,bad
|
|
1422
|
+
7.8,0.53,0.01,1.6,0.077,3,19,0.995,3.16,0.46,9.8,bad
|
|
1423
|
+
7.5,0.4,0.18,1.6,0.079,24,58,0.9965,3.34,0.58,9.4,bad
|
|
1424
|
+
7,0.54,0,2.1,0.079,39,55,0.9956,3.39,0.84,11.4,good
|
|
1425
|
+
6.4,0.53,0.09,3.9,0.123,14,31,0.9968,3.5,0.67,11,bad
|
|
1426
|
+
8.3,0.26,0.37,1.4,0.076,8,23,0.9974,3.26,0.7,9.6,good
|
|
1427
|
+
8.3,0.26,0.37,1.4,0.076,8,23,0.9974,3.26,0.7,9.6,good
|
|
1428
|
+
7.7,0.23,0.37,1.8,0.046,23,60,0.9971,3.41,0.71,12.1,good
|
|
1429
|
+
7.6,0.41,0.33,2.5,0.078,6,23,0.9957,3.3,0.58,11.2,bad
|
|
1430
|
+
7.8,0.64,0,1.9,0.072,27,55,0.9962,3.31,0.63,11,bad
|
|
1431
|
+
7.9,0.18,0.4,2.2,0.049,38,67,0.996,3.33,0.93,11.3,bad
|
|
1432
|
+
7.4,0.41,0.24,1.8,0.066,18,47,0.9956,3.37,0.62,10.4,bad
|
|
1433
|
+
7.6,0.43,0.31,2.1,0.069,13,74,0.9958,3.26,0.54,9.9,good
|
|
1434
|
+
5.9,0.44,0,1.6,0.042,3,11,0.9944,3.48,0.85,11.7,good
|
|
1435
|
+
6.1,0.4,0.16,1.8,0.069,11,25,0.9955,3.42,0.74,10.1,good
|
|
1436
|
+
10.2,0.54,0.37,15.4,0.214,55,95,1.00369,3.18,0.77,9,good
|
|
1437
|
+
10.2,0.54,0.37,15.4,0.214,55,95,1.00369,3.18,0.77,9,good
|
|
1438
|
+
10,0.38,0.38,1.6,0.169,27,90,0.99914,3.15,0.65,8.5,bad
|
|
1439
|
+
6.8,0.915,0.29,4.8,0.07,15,39,0.99577,3.53,0.54,11.1,bad
|
|
1440
|
+
7,0.59,0,1.7,0.052,3,8,0.996,3.41,0.47,10.3,bad
|
|
1441
|
+
7.3,0.67,0.02,2.2,0.072,31,92,0.99566,3.32,0.68,11.06666667,good
|
|
1442
|
+
7.2,0.37,0.32,2,0.062,15,28,0.9947,3.23,0.73,11.3,good
|
|
1443
|
+
7.4,0.785,0.19,5.2,0.094,19,98,0.99713,3.16,0.52,9.566666667,good
|
|
1444
|
+
6.9,0.63,0.02,1.9,0.078,18,30,0.99712,3.4,0.75,9.8,bad
|
|
1445
|
+
6.9,0.58,0.2,1.75,0.058,8,22,0.99322,3.38,0.49,11.7,bad
|
|
1446
|
+
7.3,0.67,0.02,2.2,0.072,31,92,0.99566,3.32,0.68,11.1,good
|
|
1447
|
+
7.4,0.785,0.19,5.2,0.094,19,98,0.99713,3.16,0.52,9.6,good
|
|
1448
|
+
6.9,0.63,0.02,1.9,0.078,18,30,0.99712,3.4,0.75,9.8,bad
|
|
1449
|
+
6.8,0.67,0,1.9,0.08,22,39,0.99701,3.4,0.74,9.7,bad
|
|
1450
|
+
6.9,0.58,0.01,1.9,0.08,40,54,0.99683,3.4,0.73,9.7,bad
|
|
1451
|
+
7.2,0.38,0.31,2,0.056,15,29,0.99472,3.23,0.76,11.3,good
|
|
1452
|
+
7.2,0.37,0.32,2,0.062,15,28,0.9947,3.23,0.73,11.3,good
|
|
1453
|
+
7.8,0.32,0.44,2.7,0.104,8,17,0.99732,3.33,0.78,11,good
|
|
1454
|
+
6.6,0.58,0.02,2,0.062,37,53,0.99374,3.35,0.76,11.6,good
|
|
1455
|
+
7.6,0.49,0.33,1.9,0.074,27,85,0.99706,3.41,0.58,9,bad
|
|
1456
|
+
11.7,0.45,0.63,2.2,0.073,7,23,0.99974,3.21,0.69,10.9,good
|
|
1457
|
+
6.5,0.9,0,1.6,0.052,9,17,0.99467,3.5,0.63,10.9,good
|
|
1458
|
+
6,0.54,0.06,1.8,0.05,38,89,0.99236,3.3,0.5,10.55,good
|
|
1459
|
+
7.6,0.49,0.33,1.9,0.074,27,85,0.99706,3.41,0.58,9,bad
|
|
1460
|
+
8.4,0.29,0.4,1.7,0.067,8,20,0.99603,3.39,0.6,10.5,bad
|
|
1461
|
+
7.9,0.2,0.35,1.7,0.054,7,15,0.99458,3.32,0.8,11.9,good
|
|
1462
|
+
6.4,0.42,0.09,2.3,0.054,34,64,0.99724,3.41,0.68,10.4,good
|
|
1463
|
+
6.2,0.785,0,2.1,0.06,6,13,0.99664,3.59,0.61,10,bad
|
|
1464
|
+
6.8,0.64,0.03,2.3,0.075,14,31,0.99545,3.36,0.58,10.4,good
|
|
1465
|
+
6.9,0.63,0.01,2.4,0.076,14,39,0.99522,3.34,0.53,10.8,good
|
|
1466
|
+
6.8,0.59,0.1,1.7,0.063,34,53,0.9958,3.41,0.67,9.7,bad
|
|
1467
|
+
6.8,0.59,0.1,1.7,0.063,34,53,0.9958,3.41,0.67,9.7,bad
|
|
1468
|
+
7.3,0.48,0.32,2.1,0.062,31,54,0.99728,3.3,0.65,10,good
|
|
1469
|
+
6.7,1.04,0.08,2.3,0.067,19,32,0.99648,3.52,0.57,11,bad
|
|
1470
|
+
7.3,0.48,0.32,2.1,0.062,31,54,0.99728,3.3,0.65,10,good
|
|
1471
|
+
7.3,0.98,0.05,2.1,0.061,20,49,0.99705,3.31,0.55,9.7,bad
|
|
1472
|
+
10,0.69,0.11,1.4,0.084,8,24,0.99578,2.88,0.47,9.7,bad
|
|
1473
|
+
6.7,0.7,0.08,3.75,0.067,8,16,0.99334,3.43,0.52,12.6,bad
|
|
1474
|
+
7.6,0.35,0.6,2.6,0.073,23,44,0.99656,3.38,0.79,11.1,good
|
|
1475
|
+
6.1,0.6,0.08,1.8,0.071,14,45,0.99336,3.38,0.54,11,bad
|
|
1476
|
+
9.9,0.5,0.5,13.8,0.205,48,82,1.00242,3.16,0.75,8.8,bad
|
|
1477
|
+
5.3,0.47,0.11,2.2,0.048,16,89,0.99182,3.54,0.88,13.56666667,good
|
|
1478
|
+
9.9,0.5,0.5,13.8,0.205,48,82,1.00242,3.16,0.75,8.8,bad
|
|
1479
|
+
5.3,0.47,0.11,2.2,0.048,16,89,0.99182,3.54,0.88,13.6,good
|
|
1480
|
+
7.1,0.875,0.05,5.7,0.082,3,14,0.99808,3.4,0.52,10.2,bad
|
|
1481
|
+
8.2,0.28,0.6,3,0.104,10,22,0.99828,3.39,0.68,10.6,bad
|
|
1482
|
+
5.6,0.62,0.03,1.5,0.08,6,13,0.99498,3.66,0.62,10.1,bad
|
|
1483
|
+
8.2,0.28,0.6,3,0.104,10,22,0.99828,3.39,0.68,10.6,bad
|
|
1484
|
+
7.2,0.58,0.54,2.1,0.114,3,9,0.99719,3.33,0.57,10.3,bad
|
|
1485
|
+
8.1,0.33,0.44,1.5,0.042,6,12,0.99542,3.35,0.61,10.7,bad
|
|
1486
|
+
6.8,0.91,0.06,2,0.06,4,11,0.99592,3.53,0.64,10.9,bad
|
|
1487
|
+
7,0.655,0.16,2.1,0.074,8,25,0.99606,3.37,0.55,9.7,bad
|
|
1488
|
+
6.8,0.68,0.21,2.1,0.07,9,23,0.99546,3.38,0.6,10.3,bad
|
|
1489
|
+
6,0.64,0.05,1.9,0.066,9,17,0.99496,3.52,0.78,10.6,bad
|
|
1490
|
+
5.6,0.54,0.04,1.7,0.049,5,13,0.9942,3.72,0.58,11.4,bad
|
|
1491
|
+
6.2,0.57,0.1,2.1,0.048,4,11,0.99448,3.44,0.76,10.8,good
|
|
1492
|
+
7.1,0.22,0.49,1.8,0.039,8,18,0.99344,3.39,0.56,12.4,good
|
|
1493
|
+
5.6,0.54,0.04,1.7,0.049,5,13,0.9942,3.72,0.58,11.4,bad
|
|
1494
|
+
6.2,0.65,0.06,1.6,0.05,6,18,0.99348,3.57,0.54,11.95,bad
|
|
1495
|
+
7.7,0.54,0.26,1.9,0.089,23,147,0.99636,3.26,0.59,9.7,bad
|
|
1496
|
+
6.4,0.31,0.09,1.4,0.066,15,28,0.99459,3.42,0.7,10,good
|
|
1497
|
+
7,0.43,0.02,1.9,0.08,15,28,0.99492,3.35,0.81,10.6,good
|
|
1498
|
+
7.7,0.54,0.26,1.9,0.089,23,147,0.99636,3.26,0.59,9.7,bad
|
|
1499
|
+
6.9,0.74,0.03,2.3,0.054,7,16,0.99508,3.45,0.63,11.5,good
|
|
1500
|
+
6.6,0.895,0.04,2.3,0.068,7,13,0.99582,3.53,0.58,10.8,good
|
|
1501
|
+
6.9,0.74,0.03,2.3,0.054,7,16,0.99508,3.45,0.63,11.5,good
|
|
1502
|
+
7.5,0.725,0.04,1.5,0.076,8,15,0.99508,3.26,0.53,9.6,bad
|
|
1503
|
+
7.8,0.82,0.29,4.3,0.083,21,64,0.99642,3.16,0.53,9.4,bad
|
|
1504
|
+
7.3,0.585,0.18,2.4,0.078,15,60,0.99638,3.31,0.54,9.8,bad
|
|
1505
|
+
6.2,0.44,0.39,2.5,0.077,6,14,0.99555,3.51,0.69,11,good
|
|
1506
|
+
7.5,0.38,0.57,2.3,0.106,5,12,0.99605,3.36,0.55,11.4,good
|
|
1507
|
+
6.7,0.76,0.02,1.8,0.078,6,12,0.996,3.55,0.63,9.95,bad
|
|
1508
|
+
6.8,0.81,0.05,2,0.07,6,14,0.99562,3.51,0.66,10.8,good
|
|
1509
|
+
7.5,0.38,0.57,2.3,0.106,5,12,0.99605,3.36,0.55,11.4,good
|
|
1510
|
+
7.1,0.27,0.6,2.1,0.074,17,25,0.99814,3.38,0.72,10.6,good
|
|
1511
|
+
7.9,0.18,0.4,1.8,0.062,7,20,0.9941,3.28,0.7,11.1,bad
|
|
1512
|
+
6.4,0.36,0.21,2.2,0.047,26,48,0.99661,3.47,0.77,9.7,good
|
|
1513
|
+
7.1,0.69,0.04,2.1,0.068,19,27,0.99712,3.44,0.67,9.8,bad
|
|
1514
|
+
6.4,0.79,0.04,2.2,0.061,11,17,0.99588,3.53,0.65,10.4,good
|
|
1515
|
+
6.4,0.56,0.15,1.8,0.078,17,65,0.99294,3.33,0.6,10.5,good
|
|
1516
|
+
6.9,0.84,0.21,4.1,0.074,16,65,0.99842,3.53,0.72,9.233333333,good
|
|
1517
|
+
6.9,0.84,0.21,4.1,0.074,16,65,0.99842,3.53,0.72,9.25,good
|
|
1518
|
+
6.1,0.32,0.25,2.3,0.071,23,58,0.99633,3.42,0.97,10.6,bad
|
|
1519
|
+
6.5,0.53,0.06,2,0.063,29,44,0.99489,3.38,0.83,10.3,good
|
|
1520
|
+
7.4,0.47,0.46,2.2,0.114,7,20,0.99647,3.32,0.63,10.5,bad
|
|
1521
|
+
6.6,0.7,0.08,2.6,0.106,14,27,0.99665,3.44,0.58,10.2,bad
|
|
1522
|
+
6.5,0.53,0.06,2,0.063,29,44,0.99489,3.38,0.83,10.3,good
|
|
1523
|
+
6.9,0.48,0.2,1.9,0.082,9,23,0.99585,3.39,0.43,9.05,bad
|
|
1524
|
+
6.1,0.32,0.25,2.3,0.071,23,58,0.99633,3.42,0.97,10.6,bad
|
|
1525
|
+
6.8,0.48,0.25,2,0.076,29,61,0.9953,3.34,0.6,10.4,bad
|
|
1526
|
+
6,0.42,0.19,2,0.075,22,47,0.99522,3.39,0.78,10,good
|
|
1527
|
+
6.7,0.48,0.08,2.1,0.064,18,34,0.99552,3.33,0.64,9.7,bad
|
|
1528
|
+
6.8,0.47,0.08,2.2,0.064,18,38,0.99553,3.3,0.65,9.6,good
|
|
1529
|
+
7.1,0.53,0.07,1.7,0.071,15,24,0.9951,3.29,0.66,10.8,good
|
|
1530
|
+
7.9,0.29,0.49,2.2,0.096,21,59,0.99714,3.31,0.67,10.1,good
|
|
1531
|
+
7.1,0.69,0.08,2.1,0.063,42,52,0.99608,3.42,0.6,10.2,good
|
|
1532
|
+
6.6,0.44,0.09,2.2,0.063,9,18,0.99444,3.42,0.69,11.3,good
|
|
1533
|
+
6.1,0.705,0.1,2.8,0.081,13,28,0.99631,3.6,0.66,10.2,bad
|
|
1534
|
+
7.2,0.53,0.13,2,0.058,18,22,0.99573,3.21,0.68,9.9,good
|
|
1535
|
+
8,0.39,0.3,1.9,0.074,32,84,0.99717,3.39,0.61,9,bad
|
|
1536
|
+
6.6,0.56,0.14,2.4,0.064,13,29,0.99397,3.42,0.62,11.7,good
|
|
1537
|
+
7,0.55,0.13,2.2,0.075,15,35,0.9959,3.36,0.59,9.7,good
|
|
1538
|
+
6.1,0.53,0.08,1.9,0.077,24,45,0.99528,3.6,0.68,10.3,good
|
|
1539
|
+
5.4,0.58,0.08,1.9,0.059,20,31,0.99484,3.5,0.64,10.2,good
|
|
1540
|
+
6.2,0.64,0.09,2.5,0.081,15,26,0.99538,3.57,0.63,12,bad
|
|
1541
|
+
7.2,0.39,0.32,1.8,0.065,34,60,0.99714,3.46,0.78,9.9,bad
|
|
1542
|
+
6.2,0.52,0.08,4.4,0.071,11,32,0.99646,3.56,0.63,11.6,good
|
|
1543
|
+
7.4,0.25,0.29,2.2,0.054,19,49,0.99666,3.4,0.76,10.9,good
|
|
1544
|
+
6.7,0.855,0.02,1.9,0.064,29,38,0.99472,3.3,0.56,10.75,good
|
|
1545
|
+
11.1,0.44,0.42,2.2,0.064,14,19,0.99758,3.25,0.57,10.4,good
|
|
1546
|
+
8.4,0.37,0.43,2.3,0.063,12,19,0.9955,3.17,0.81,11.2,good
|
|
1547
|
+
6.5,0.63,0.33,1.8,0.059,16,28,0.99531,3.36,0.64,10.1,good
|
|
1548
|
+
7,0.57,0.02,2,0.072,17,26,0.99575,3.36,0.61,10.2,bad
|
|
1549
|
+
6.3,0.6,0.1,1.6,0.048,12,26,0.99306,3.55,0.51,12.1,bad
|
|
1550
|
+
11.2,0.4,0.5,2,0.099,19,50,0.99783,3.1,0.58,10.4,bad
|
|
1551
|
+
7.4,0.36,0.3,1.8,0.074,17,24,0.99419,3.24,0.7,11.4,good
|
|
1552
|
+
7.1,0.68,0,2.3,0.087,17,26,0.99783,3.45,0.53,9.5,bad
|
|
1553
|
+
7.1,0.67,0,2.3,0.083,18,27,0.99768,3.44,0.54,9.4,bad
|
|
1554
|
+
6.3,0.68,0.01,3.7,0.103,32,54,0.99586,3.51,0.66,11.3,good
|
|
1555
|
+
7.3,0.735,0,2.2,0.08,18,28,0.99765,3.41,0.6,9.4,bad
|
|
1556
|
+
6.6,0.855,0.02,2.4,0.062,15,23,0.99627,3.54,0.6,11,good
|
|
1557
|
+
7,0.56,0.17,1.7,0.065,15,24,0.99514,3.44,0.68,10.55,good
|
|
1558
|
+
6.6,0.88,0.04,2.2,0.066,12,20,0.99636,3.53,0.56,9.9,bad
|
|
1559
|
+
6.6,0.855,0.02,2.4,0.062,15,23,0.99627,3.54,0.6,11,good
|
|
1560
|
+
6.9,0.63,0.33,6.7,0.235,66,115,0.99787,3.22,0.56,9.5,bad
|
|
1561
|
+
7.8,0.6,0.26,2,0.08,31,131,0.99622,3.21,0.52,9.9,bad
|
|
1562
|
+
7.8,0.6,0.26,2,0.08,31,131,0.99622,3.21,0.52,9.9,bad
|
|
1563
|
+
7.8,0.6,0.26,2,0.08,31,131,0.99622,3.21,0.52,9.9,bad
|
|
1564
|
+
7.2,0.695,0.13,2,0.076,12,20,0.99546,3.29,0.54,10.1,bad
|
|
1565
|
+
7.2,0.695,0.13,2,0.076,12,20,0.99546,3.29,0.54,10.1,bad
|
|
1566
|
+
7.2,0.695,0.13,2,0.076,12,20,0.99546,3.29,0.54,10.1,bad
|
|
1567
|
+
6.7,0.67,0.02,1.9,0.061,26,42,0.99489,3.39,0.82,10.9,good
|
|
1568
|
+
6.7,0.16,0.64,2.1,0.059,24,52,0.99494,3.34,0.71,11.2,good
|
|
1569
|
+
7.2,0.695,0.13,2,0.076,12,20,0.99546,3.29,0.54,10.1,bad
|
|
1570
|
+
7,0.56,0.13,1.6,0.077,25,42,0.99629,3.34,0.59,9.2,bad
|
|
1571
|
+
6.2,0.51,0.14,1.9,0.056,15,34,0.99396,3.48,0.57,11.5,good
|
|
1572
|
+
6.4,0.36,0.53,2.2,0.23,19,35,0.9934,3.37,0.93,12.4,good
|
|
1573
|
+
6.4,0.38,0.14,2.2,0.038,15,25,0.99514,3.44,0.65,11.1,good
|
|
1574
|
+
7.3,0.69,0.32,2.2,0.069,35,104,0.99632,3.33,0.51,9.5,bad
|
|
1575
|
+
6,0.58,0.2,2.4,0.075,15,50,0.99467,3.58,0.67,12.5,good
|
|
1576
|
+
5.6,0.31,0.78,13.9,0.074,23,92,0.99677,3.39,0.48,10.5,good
|
|
1577
|
+
7.5,0.52,0.4,2.2,0.06,12,20,0.99474,3.26,0.64,11.8,good
|
|
1578
|
+
8,0.3,0.63,1.6,0.081,16,29,0.99588,3.3,0.78,10.8,good
|
|
1579
|
+
6.2,0.7,0.15,5.1,0.076,13,27,0.99622,3.54,0.6,11.9,good
|
|
1580
|
+
6.8,0.67,0.15,1.8,0.118,13,20,0.9954,3.42,0.67,11.3,good
|
|
1581
|
+
6.2,0.56,0.09,1.7,0.053,24,32,0.99402,3.54,0.6,11.3,bad
|
|
1582
|
+
7.4,0.35,0.33,2.4,0.068,9,26,0.9947,3.36,0.6,11.9,good
|
|
1583
|
+
6.2,0.56,0.09,1.7,0.053,24,32,0.99402,3.54,0.6,11.3,bad
|
|
1584
|
+
6.1,0.715,0.1,2.6,0.053,13,27,0.99362,3.57,0.5,11.9,bad
|
|
1585
|
+
6.2,0.46,0.29,2.1,0.074,32,98,0.99578,3.33,0.62,9.8,bad
|
|
1586
|
+
6.7,0.32,0.44,2.4,0.061,24,34,0.99484,3.29,0.8,11.6,good
|
|
1587
|
+
7.2,0.39,0.44,2.6,0.066,22,48,0.99494,3.3,0.84,11.5,good
|
|
1588
|
+
7.5,0.31,0.41,2.4,0.065,34,60,0.99492,3.34,0.85,11.4,good
|
|
1589
|
+
5.8,0.61,0.11,1.8,0.066,18,28,0.99483,3.55,0.66,10.9,good
|
|
1590
|
+
7.2,0.66,0.33,2.5,0.068,34,102,0.99414,3.27,0.78,12.8,good
|
|
1591
|
+
6.6,0.725,0.2,7.8,0.073,29,79,0.9977,3.29,0.54,9.2,bad
|
|
1592
|
+
6.3,0.55,0.15,1.8,0.077,26,35,0.99314,3.32,0.82,11.6,good
|
|
1593
|
+
5.4,0.74,0.09,1.7,0.089,16,26,0.99402,3.67,0.56,11.6,good
|
|
1594
|
+
6.3,0.51,0.13,2.3,0.076,29,40,0.99574,3.42,0.75,11,good
|
|
1595
|
+
6.8,0.62,0.08,1.9,0.068,28,38,0.99651,3.42,0.82,9.5,good
|
|
1596
|
+
6.2,0.6,0.08,2,0.09,32,44,0.9949,3.45,0.58,10.5,bad
|
|
1597
|
+
5.9,0.55,0.1,2.2,0.062,39,51,0.99512,3.52,0.76,11.2,good
|
|
1598
|
+
6.3,0.51,0.13,2.3,0.076,29,40,0.99574,3.42,0.75,11,good
|
|
1599
|
+
5.9,0.645,0.12,2,0.075,32,44,0.99547,3.57,0.71,10.2,bad
|
|
1600
|
+
6,0.31,0.47,3.6,0.067,18,42,0.99549,3.39,0.66,11,good
|