teradataml 20.0.0.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1208) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +2762 -0
  4. teradataml/__init__.py +78 -0
  5. teradataml/_version.py +11 -0
  6. teradataml/analytics/Transformations.py +2996 -0
  7. teradataml/analytics/__init__.py +82 -0
  8. teradataml/analytics/analytic_function_executor.py +2416 -0
  9. teradataml/analytics/analytic_query_generator.py +1050 -0
  10. teradataml/analytics/byom/H2OPredict.py +514 -0
  11. teradataml/analytics/byom/PMMLPredict.py +437 -0
  12. teradataml/analytics/byom/__init__.py +16 -0
  13. teradataml/analytics/json_parser/__init__.py +133 -0
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1805 -0
  15. teradataml/analytics/json_parser/json_store.py +191 -0
  16. teradataml/analytics/json_parser/metadata.py +1666 -0
  17. teradataml/analytics/json_parser/utils.py +805 -0
  18. teradataml/analytics/meta_class.py +236 -0
  19. teradataml/analytics/sqle/DecisionTreePredict.py +456 -0
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +420 -0
  21. teradataml/analytics/sqle/__init__.py +128 -0
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -0
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -0
  24. teradataml/analytics/table_operator/__init__.py +11 -0
  25. teradataml/analytics/uaf/__init__.py +82 -0
  26. teradataml/analytics/utils.py +828 -0
  27. teradataml/analytics/valib.py +1617 -0
  28. teradataml/automl/__init__.py +5835 -0
  29. teradataml/automl/autodataprep/__init__.py +493 -0
  30. teradataml/automl/custom_json_utils.py +1625 -0
  31. teradataml/automl/data_preparation.py +1384 -0
  32. teradataml/automl/data_transformation.py +1254 -0
  33. teradataml/automl/feature_engineering.py +2273 -0
  34. teradataml/automl/feature_exploration.py +1873 -0
  35. teradataml/automl/model_evaluation.py +488 -0
  36. teradataml/automl/model_training.py +1407 -0
  37. teradataml/catalog/__init__.py +2 -0
  38. teradataml/catalog/byom.py +1759 -0
  39. teradataml/catalog/function_argument_mapper.py +859 -0
  40. teradataml/catalog/model_cataloging_utils.py +491 -0
  41. teradataml/clients/__init__.py +0 -0
  42. teradataml/clients/auth_client.py +137 -0
  43. teradataml/clients/keycloak_client.py +165 -0
  44. teradataml/clients/pkce_client.py +481 -0
  45. teradataml/common/__init__.py +1 -0
  46. teradataml/common/aed_utils.py +2078 -0
  47. teradataml/common/bulk_exposed_utils.py +113 -0
  48. teradataml/common/constants.py +1669 -0
  49. teradataml/common/deprecations.py +166 -0
  50. teradataml/common/exceptions.py +147 -0
  51. teradataml/common/formula.py +743 -0
  52. teradataml/common/garbagecollector.py +666 -0
  53. teradataml/common/logger.py +1261 -0
  54. teradataml/common/messagecodes.py +518 -0
  55. teradataml/common/messages.py +262 -0
  56. teradataml/common/pylogger.py +67 -0
  57. teradataml/common/sqlbundle.py +764 -0
  58. teradataml/common/td_coltype_code_to_tdtype.py +48 -0
  59. teradataml/common/utils.py +3166 -0
  60. teradataml/common/warnings.py +36 -0
  61. teradataml/common/wrapper_utils.py +625 -0
  62. teradataml/config/__init__.py +0 -0
  63. teradataml/config/dummy_file1.cfg +5 -0
  64. teradataml/config/dummy_file2.cfg +3 -0
  65. teradataml/config/sqlengine_alias_definitions_v1.0 +14 -0
  66. teradataml/config/sqlengine_alias_definitions_v1.1 +20 -0
  67. teradataml/config/sqlengine_alias_definitions_v1.3 +19 -0
  68. teradataml/context/__init__.py +0 -0
  69. teradataml/context/aed_context.py +223 -0
  70. teradataml/context/context.py +1462 -0
  71. teradataml/data/A_loan.csv +19 -0
  72. teradataml/data/BINARY_REALS_LEFT.csv +11 -0
  73. teradataml/data/BINARY_REALS_RIGHT.csv +11 -0
  74. teradataml/data/B_loan.csv +49 -0
  75. teradataml/data/BuoyData2.csv +17 -0
  76. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -0
  77. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -0
  78. teradataml/data/Convolve2RealsLeft.csv +5 -0
  79. teradataml/data/Convolve2RealsRight.csv +5 -0
  80. teradataml/data/Convolve2ValidLeft.csv +11 -0
  81. teradataml/data/Convolve2ValidRight.csv +11 -0
  82. teradataml/data/DFFTConv_Real_8_8.csv +65 -0
  83. teradataml/data/Employee.csv +5 -0
  84. teradataml/data/Employee_Address.csv +4 -0
  85. teradataml/data/Employee_roles.csv +5 -0
  86. teradataml/data/JulesBelvezeDummyData.csv +100 -0
  87. teradataml/data/Mall_customer_data.csv +201 -0
  88. teradataml/data/Orders1_12mf.csv +25 -0
  89. teradataml/data/Pi_loan.csv +7 -0
  90. teradataml/data/SMOOTHED_DATA.csv +7 -0
  91. teradataml/data/TestDFFT8.csv +9 -0
  92. teradataml/data/TestRiver.csv +109 -0
  93. teradataml/data/Traindata.csv +28 -0
  94. teradataml/data/__init__.py +0 -0
  95. teradataml/data/acf.csv +17 -0
  96. teradataml/data/adaboost_example.json +34 -0
  97. teradataml/data/adaboostpredict_example.json +24 -0
  98. teradataml/data/additional_table.csv +11 -0
  99. teradataml/data/admissions_test.csv +21 -0
  100. teradataml/data/admissions_train.csv +41 -0
  101. teradataml/data/admissions_train_nulls.csv +41 -0
  102. teradataml/data/advertising.csv +201 -0
  103. teradataml/data/ageandheight.csv +13 -0
  104. teradataml/data/ageandpressure.csv +31 -0
  105. teradataml/data/amazon_reviews_25.csv +26 -0
  106. teradataml/data/antiselect_example.json +36 -0
  107. teradataml/data/antiselect_input.csv +8 -0
  108. teradataml/data/antiselect_input_mixed_case.csv +8 -0
  109. teradataml/data/applicant_external.csv +7 -0
  110. teradataml/data/applicant_reference.csv +7 -0
  111. teradataml/data/apriori_example.json +22 -0
  112. teradataml/data/arima_example.json +9 -0
  113. teradataml/data/assortedtext_input.csv +8 -0
  114. teradataml/data/attribution_example.json +34 -0
  115. teradataml/data/attribution_sample_table.csv +27 -0
  116. teradataml/data/attribution_sample_table1.csv +6 -0
  117. teradataml/data/attribution_sample_table2.csv +11 -0
  118. teradataml/data/bank_churn.csv +10001 -0
  119. teradataml/data/bank_marketing.csv +11163 -0
  120. teradataml/data/bank_web_clicks1.csv +43 -0
  121. teradataml/data/bank_web_clicks2.csv +91 -0
  122. teradataml/data/bank_web_url.csv +85 -0
  123. teradataml/data/barrier.csv +2 -0
  124. teradataml/data/barrier_new.csv +3 -0
  125. teradataml/data/betweenness_example.json +14 -0
  126. teradataml/data/bike_sharing.csv +732 -0
  127. teradataml/data/bin_breaks.csv +8 -0
  128. teradataml/data/bin_fit_ip.csv +4 -0
  129. teradataml/data/binary_complex_left.csv +11 -0
  130. teradataml/data/binary_complex_right.csv +11 -0
  131. teradataml/data/binary_matrix_complex_left.csv +21 -0
  132. teradataml/data/binary_matrix_complex_right.csv +21 -0
  133. teradataml/data/binary_matrix_real_left.csv +21 -0
  134. teradataml/data/binary_matrix_real_right.csv +21 -0
  135. teradataml/data/blood2ageandweight.csv +26 -0
  136. teradataml/data/bmi.csv +501 -0
  137. teradataml/data/boston.csv +507 -0
  138. teradataml/data/boston2cols.csv +721 -0
  139. teradataml/data/breast_cancer.csv +570 -0
  140. teradataml/data/buoydata_mix.csv +11 -0
  141. teradataml/data/burst_data.csv +5 -0
  142. teradataml/data/burst_example.json +21 -0
  143. teradataml/data/byom_example.json +34 -0
  144. teradataml/data/bytes_table.csv +4 -0
  145. teradataml/data/cal_housing_ex_raw.csv +70 -0
  146. teradataml/data/callers.csv +7 -0
  147. teradataml/data/calls.csv +10 -0
  148. teradataml/data/cars_hist.csv +33 -0
  149. teradataml/data/cat_table.csv +25 -0
  150. teradataml/data/ccm_example.json +32 -0
  151. teradataml/data/ccm_input.csv +91 -0
  152. teradataml/data/ccm_input2.csv +13 -0
  153. teradataml/data/ccmexample.csv +101 -0
  154. teradataml/data/ccmprepare_example.json +9 -0
  155. teradataml/data/ccmprepare_input.csv +91 -0
  156. teradataml/data/cfilter_example.json +12 -0
  157. teradataml/data/changepointdetection_example.json +18 -0
  158. teradataml/data/changepointdetectionrt_example.json +8 -0
  159. teradataml/data/chi_sq.csv +3 -0
  160. teradataml/data/churn_data.csv +14 -0
  161. teradataml/data/churn_emission.csv +35 -0
  162. teradataml/data/churn_initial.csv +3 -0
  163. teradataml/data/churn_state_transition.csv +5 -0
  164. teradataml/data/citedges_2.csv +745 -0
  165. teradataml/data/citvertices_2.csv +1210 -0
  166. teradataml/data/clicks2.csv +16 -0
  167. teradataml/data/clickstream.csv +13 -0
  168. teradataml/data/clickstream1.csv +11 -0
  169. teradataml/data/closeness_example.json +16 -0
  170. teradataml/data/complaints.csv +21 -0
  171. teradataml/data/complaints_mini.csv +3 -0
  172. teradataml/data/complaints_test_tokenized.csv +353 -0
  173. teradataml/data/complaints_testtoken.csv +224 -0
  174. teradataml/data/complaints_tokens_model.csv +348 -0
  175. teradataml/data/complaints_tokens_test.csv +353 -0
  176. teradataml/data/complaints_traintoken.csv +472 -0
  177. teradataml/data/computers_category.csv +1001 -0
  178. teradataml/data/computers_test1.csv +1252 -0
  179. teradataml/data/computers_train1.csv +5009 -0
  180. teradataml/data/computers_train1_clustered.csv +5009 -0
  181. teradataml/data/confusionmatrix_example.json +9 -0
  182. teradataml/data/conversion_event_table.csv +3 -0
  183. teradataml/data/corr_input.csv +17 -0
  184. teradataml/data/correlation_example.json +11 -0
  185. teradataml/data/covid_confirm_sd.csv +83 -0
  186. teradataml/data/coxhazardratio_example.json +39 -0
  187. teradataml/data/coxph_example.json +15 -0
  188. teradataml/data/coxsurvival_example.json +28 -0
  189. teradataml/data/cpt.csv +41 -0
  190. teradataml/data/credit_ex_merged.csv +45 -0
  191. teradataml/data/creditcard_data.csv +1001 -0
  192. teradataml/data/customer_loyalty.csv +301 -0
  193. teradataml/data/customer_loyalty_newseq.csv +31 -0
  194. teradataml/data/customer_segmentation_test.csv +2628 -0
  195. teradataml/data/customer_segmentation_train.csv +8069 -0
  196. teradataml/data/dataframe_example.json +173 -0
  197. teradataml/data/decisionforest_example.json +37 -0
  198. teradataml/data/decisionforestpredict_example.json +38 -0
  199. teradataml/data/decisiontree_example.json +21 -0
  200. teradataml/data/decisiontreepredict_example.json +45 -0
  201. teradataml/data/dfft2_size4_real.csv +17 -0
  202. teradataml/data/dfft2_test_matrix16.csv +17 -0
  203. teradataml/data/dfft2conv_real_4_4.csv +65 -0
  204. teradataml/data/diabetes.csv +443 -0
  205. teradataml/data/diabetes_test.csv +89 -0
  206. teradataml/data/dict_table.csv +5 -0
  207. teradataml/data/docperterm_table.csv +4 -0
  208. teradataml/data/docs/__init__.py +1 -0
  209. teradataml/data/docs/byom/__init__.py +0 -0
  210. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -0
  211. teradataml/data/docs/byom/docs/DataikuPredict.py +217 -0
  212. teradataml/data/docs/byom/docs/H2OPredict.py +325 -0
  213. teradataml/data/docs/byom/docs/ONNXEmbeddings.py +242 -0
  214. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -0
  215. teradataml/data/docs/byom/docs/ONNXSeq2Seq.py +255 -0
  216. teradataml/data/docs/byom/docs/PMMLPredict.py +278 -0
  217. teradataml/data/docs/byom/docs/__init__.py +0 -0
  218. teradataml/data/docs/sqle/__init__.py +0 -0
  219. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +83 -0
  220. teradataml/data/docs/sqle/docs_17_10/Attribution.py +200 -0
  221. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +172 -0
  222. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -0
  223. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -0
  224. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -0
  225. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +86 -0
  226. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +96 -0
  227. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -0
  228. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +152 -0
  229. teradataml/data/docs/sqle/docs_17_10/FTest.py +161 -0
  230. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +83 -0
  231. teradataml/data/docs/sqle/docs_17_10/Fit.py +88 -0
  232. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -0
  233. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +85 -0
  234. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +82 -0
  235. teradataml/data/docs/sqle/docs_17_10/Histogram.py +165 -0
  236. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -0
  237. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +209 -0
  238. teradataml/data/docs/sqle/docs_17_10/NPath.py +266 -0
  239. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -0
  240. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -0
  241. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -0
  242. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +135 -0
  243. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -0
  244. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +166 -0
  245. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -0
  246. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -0
  247. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +112 -0
  248. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -0
  249. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +105 -0
  250. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +110 -0
  251. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +118 -0
  252. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -0
  253. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +153 -0
  254. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -0
  255. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -0
  256. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +114 -0
  257. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -0
  258. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -0
  259. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -0
  260. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +146 -0
  261. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -0
  262. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +142 -0
  263. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -0
  264. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -0
  265. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -0
  266. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -0
  267. teradataml/data/docs/sqle/docs_17_10/__init__.py +0 -0
  268. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -0
  269. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +83 -0
  270. teradataml/data/docs/sqle/docs_17_20/Apriori.py +138 -0
  271. teradataml/data/docs/sqle/docs_17_20/Attribution.py +201 -0
  272. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +172 -0
  273. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -0
  274. teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
  275. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -0
  276. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -0
  277. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -0
  278. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +86 -0
  279. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +246 -0
  280. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -0
  281. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +280 -0
  282. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -0
  283. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +136 -0
  284. teradataml/data/docs/sqle/docs_17_20/FTest.py +240 -0
  285. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +83 -0
  286. teradataml/data/docs/sqle/docs_17_20/Fit.py +88 -0
  287. teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -0
  288. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +415 -0
  289. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -0
  290. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -0
  291. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -0
  292. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +109 -0
  293. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +106 -0
  294. teradataml/data/docs/sqle/docs_17_20/Histogram.py +224 -0
  295. teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -0
  296. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -0
  297. teradataml/data/docs/sqle/docs_17_20/KNN.py +215 -0
  298. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -0
  299. teradataml/data/docs/sqle/docs_17_20/NERExtractor.py +121 -0
  300. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +209 -0
  301. teradataml/data/docs/sqle/docs_17_20/NPath.py +266 -0
  302. teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
  303. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -0
  304. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -0
  305. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +127 -0
  306. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +119 -0
  307. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -0
  308. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -0
  309. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -0
  310. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -0
  311. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +231 -0
  312. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -0
  313. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +220 -0
  314. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -0
  315. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +191 -0
  316. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -0
  317. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -0
  318. teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
  319. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +112 -0
  320. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -0
  321. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +105 -0
  322. teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -0
  323. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +155 -0
  324. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -0
  325. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -0
  326. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -0
  327. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +109 -0
  328. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +118 -0
  329. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -0
  330. teradataml/data/docs/sqle/docs_17_20/SMOTE.py +212 -0
  331. teradataml/data/docs/sqle/docs_17_20/SVM.py +414 -0
  332. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -0
  333. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +153 -0
  334. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -0
  335. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -0
  336. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -0
  337. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +114 -0
  338. teradataml/data/docs/sqle/docs_17_20/Shap.py +225 -0
  339. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +153 -0
  340. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -0
  341. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -0
  342. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -0
  343. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +146 -0
  344. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -0
  345. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -0
  346. teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
  347. teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
  348. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +267 -0
  349. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -0
  350. teradataml/data/docs/sqle/docs_17_20/TextMorph.py +119 -0
  351. teradataml/data/docs/sqle/docs_17_20/TextParser.py +224 -0
  352. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +160 -0
  353. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -0
  354. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +142 -0
  355. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -0
  356. teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
  357. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +169 -0
  358. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -0
  359. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -0
  360. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +237 -0
  361. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +362 -0
  362. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -0
  363. teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -0
  364. teradataml/data/docs/sqle/docs_17_20/__init__.py +0 -0
  365. teradataml/data/docs/tableoperator/__init__.py +0 -0
  366. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +430 -0
  367. teradataml/data/docs/tableoperator/docs_17_00/__init__.py +0 -0
  368. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +430 -0
  369. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +348 -0
  370. teradataml/data/docs/tableoperator/docs_17_05/__init__.py +0 -0
  371. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +429 -0
  372. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +348 -0
  373. teradataml/data/docs/tableoperator/docs_17_10/__init__.py +0 -0
  374. teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
  375. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +440 -0
  376. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +387 -0
  377. teradataml/data/docs/tableoperator/docs_17_20/__init__.py +0 -0
  378. teradataml/data/docs/uaf/__init__.py +0 -0
  379. teradataml/data/docs/uaf/docs_17_20/ACF.py +186 -0
  380. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +370 -0
  381. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +172 -0
  382. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +161 -0
  383. teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
  384. teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
  385. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +248 -0
  386. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -0
  387. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +178 -0
  388. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +175 -0
  389. teradataml/data/docs/uaf/docs_17_20/Convolve.py +230 -0
  390. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +218 -0
  391. teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
  392. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +185 -0
  393. teradataml/data/docs/uaf/docs_17_20/DFFT.py +204 -0
  394. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -0
  395. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +216 -0
  396. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +192 -0
  397. teradataml/data/docs/uaf/docs_17_20/DIFF.py +175 -0
  398. teradataml/data/docs/uaf/docs_17_20/DTW.py +180 -0
  399. teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
  400. teradataml/data/docs/uaf/docs_17_20/DWT2D.py +217 -0
  401. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +142 -0
  402. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +184 -0
  403. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +185 -0
  404. teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
  405. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -0
  406. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +206 -0
  407. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +143 -0
  408. teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +198 -0
  409. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +260 -0
  410. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +165 -0
  411. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +191 -0
  412. teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
  413. teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
  414. teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
  415. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +121 -0
  416. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +156 -0
  417. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +215 -0
  418. teradataml/data/docs/uaf/docs_17_20/MAMean.py +174 -0
  419. teradataml/data/docs/uaf/docs_17_20/MInfo.py +134 -0
  420. teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
  421. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +145 -0
  422. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +191 -0
  423. teradataml/data/docs/uaf/docs_17_20/PACF.py +157 -0
  424. teradataml/data/docs/uaf/docs_17_20/Portman.py +217 -0
  425. teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +203 -0
  426. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +155 -0
  427. teradataml/data/docs/uaf/docs_17_20/Resample.py +237 -0
  428. teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
  429. teradataml/data/docs/uaf/docs_17_20/SInfo.py +123 -0
  430. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +173 -0
  431. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +174 -0
  432. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +171 -0
  433. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +164 -0
  434. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +180 -0
  435. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +208 -0
  436. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +151 -0
  437. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -0
  438. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +202 -0
  439. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +171 -0
  440. teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
  441. teradataml/data/docs/uaf/docs_17_20/__init__.py +0 -0
  442. teradataml/data/dtw_example.json +18 -0
  443. teradataml/data/dtw_t1.csv +11 -0
  444. teradataml/data/dtw_t2.csv +4 -0
  445. teradataml/data/dwt2d_dataTable.csv +65 -0
  446. teradataml/data/dwt2d_example.json +16 -0
  447. teradataml/data/dwt_dataTable.csv +8 -0
  448. teradataml/data/dwt_example.json +15 -0
  449. teradataml/data/dwt_filterTable.csv +3 -0
  450. teradataml/data/dwt_filter_dim.csv +5 -0
  451. teradataml/data/emission.csv +9 -0
  452. teradataml/data/emp_table_by_dept.csv +19 -0
  453. teradataml/data/employee_info.csv +4 -0
  454. teradataml/data/employee_table.csv +6 -0
  455. teradataml/data/excluding_event_table.csv +2 -0
  456. teradataml/data/finance_data.csv +6 -0
  457. teradataml/data/finance_data2.csv +61 -0
  458. teradataml/data/finance_data3.csv +93 -0
  459. teradataml/data/finance_data4.csv +13 -0
  460. teradataml/data/fish.csv +160 -0
  461. teradataml/data/fm_blood2ageandweight.csv +26 -0
  462. teradataml/data/fmeasure_example.json +12 -0
  463. teradataml/data/followers_leaders.csv +10 -0
  464. teradataml/data/fpgrowth_example.json +12 -0
  465. teradataml/data/frequentpaths_example.json +29 -0
  466. teradataml/data/friends.csv +9 -0
  467. teradataml/data/fs_input.csv +33 -0
  468. teradataml/data/fs_input1.csv +33 -0
  469. teradataml/data/genData.csv +513 -0
  470. teradataml/data/geodataframe_example.json +40 -0
  471. teradataml/data/glass_types.csv +215 -0
  472. teradataml/data/glm_admissions_model.csv +12 -0
  473. teradataml/data/glm_example.json +56 -0
  474. teradataml/data/glml1l2_example.json +28 -0
  475. teradataml/data/glml1l2predict_example.json +54 -0
  476. teradataml/data/glmpredict_example.json +54 -0
  477. teradataml/data/gq_t1.csv +21 -0
  478. teradataml/data/grocery_transaction.csv +19 -0
  479. teradataml/data/hconvolve_complex_right.csv +5 -0
  480. teradataml/data/hconvolve_complex_rightmulti.csv +5 -0
  481. teradataml/data/histogram_example.json +12 -0
  482. teradataml/data/hmmdecoder_example.json +79 -0
  483. teradataml/data/hmmevaluator_example.json +25 -0
  484. teradataml/data/hmmsupervised_example.json +10 -0
  485. teradataml/data/hmmunsupervised_example.json +8 -0
  486. teradataml/data/hnsw_alter_data.csv +5 -0
  487. teradataml/data/hnsw_data.csv +10 -0
  488. teradataml/data/house_values.csv +12 -0
  489. teradataml/data/house_values2.csv +13 -0
  490. teradataml/data/housing_cat.csv +7 -0
  491. teradataml/data/housing_data.csv +9 -0
  492. teradataml/data/housing_test.csv +47 -0
  493. teradataml/data/housing_test_binary.csv +47 -0
  494. teradataml/data/housing_train.csv +493 -0
  495. teradataml/data/housing_train_attribute.csv +5 -0
  496. teradataml/data/housing_train_binary.csv +437 -0
  497. teradataml/data/housing_train_parameter.csv +2 -0
  498. teradataml/data/housing_train_response.csv +493 -0
  499. teradataml/data/housing_train_segment.csv +201 -0
  500. teradataml/data/ibm_stock.csv +370 -0
  501. teradataml/data/ibm_stock1.csv +370 -0
  502. teradataml/data/identitymatch_example.json +22 -0
  503. teradataml/data/idf_table.csv +4 -0
  504. teradataml/data/idwt2d_dataTable.csv +5 -0
  505. teradataml/data/idwt_dataTable.csv +8 -0
  506. teradataml/data/idwt_filterTable.csv +3 -0
  507. teradataml/data/impressions.csv +101 -0
  508. teradataml/data/inflation.csv +21 -0
  509. teradataml/data/initial.csv +3 -0
  510. teradataml/data/insect2Cols.csv +61 -0
  511. teradataml/data/insect_sprays.csv +13 -0
  512. teradataml/data/insurance.csv +1339 -0
  513. teradataml/data/interpolator_example.json +13 -0
  514. teradataml/data/interval_data.csv +5 -0
  515. teradataml/data/iris_altinput.csv +481 -0
  516. teradataml/data/iris_attribute_output.csv +8 -0
  517. teradataml/data/iris_attribute_test.csv +121 -0
  518. teradataml/data/iris_attribute_train.csv +481 -0
  519. teradataml/data/iris_category_expect_predict.csv +31 -0
  520. teradataml/data/iris_data.csv +151 -0
  521. teradataml/data/iris_input.csv +151 -0
  522. teradataml/data/iris_response_train.csv +121 -0
  523. teradataml/data/iris_test.csv +31 -0
  524. teradataml/data/iris_train.csv +121 -0
  525. teradataml/data/join_table1.csv +4 -0
  526. teradataml/data/join_table2.csv +4 -0
  527. teradataml/data/jsons/anly_function_name.json +7 -0
  528. teradataml/data/jsons/byom/ONNXSeq2Seq.json +287 -0
  529. teradataml/data/jsons/byom/dataikupredict.json +148 -0
  530. teradataml/data/jsons/byom/datarobotpredict.json +147 -0
  531. teradataml/data/jsons/byom/h2opredict.json +195 -0
  532. teradataml/data/jsons/byom/onnxembeddings.json +267 -0
  533. teradataml/data/jsons/byom/onnxpredict.json +187 -0
  534. teradataml/data/jsons/byom/pmmlpredict.json +147 -0
  535. teradataml/data/jsons/paired_functions.json +450 -0
  536. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -0
  537. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -0
  538. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -0
  539. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -0
  540. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -0
  541. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -0
  542. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -0
  543. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -0
  544. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -0
  545. teradataml/data/jsons/sqle/16.20/Pack.json +98 -0
  546. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -0
  547. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -0
  548. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -0
  549. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -0
  550. teradataml/data/jsons/sqle/16.20/nPath.json +269 -0
  551. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -0
  552. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -0
  553. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -0
  554. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -0
  555. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -0
  556. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -0
  557. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -0
  558. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -0
  559. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -0
  560. teradataml/data/jsons/sqle/17.00/Pack.json +98 -0
  561. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -0
  562. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -0
  563. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -0
  564. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -0
  565. teradataml/data/jsons/sqle/17.00/nPath.json +269 -0
  566. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -0
  567. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -0
  568. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -0
  569. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -0
  570. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -0
  571. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -0
  572. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -0
  573. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -0
  574. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -0
  575. teradataml/data/jsons/sqle/17.05/Pack.json +98 -0
  576. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -0
  577. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -0
  578. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -0
  579. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -0
  580. teradataml/data/jsons/sqle/17.05/nPath.json +269 -0
  581. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -0
  582. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -0
  583. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -0
  584. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +172 -0
  585. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -0
  586. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -0
  587. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -0
  588. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -0
  589. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -0
  590. teradataml/data/jsons/sqle/17.10/Pack.json +133 -0
  591. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -0
  592. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -0
  593. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -0
  594. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -0
  595. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -0
  596. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +54 -0
  597. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +68 -0
  598. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +54 -0
  599. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +69 -0
  600. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -0
  601. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +52 -0
  602. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -0
  603. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -0
  604. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +53 -0
  605. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +53 -0
  606. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +133 -0
  607. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -0
  608. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +183 -0
  609. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +66 -0
  610. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +197 -0
  611. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -0
  612. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -0
  613. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -0
  614. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +112 -0
  615. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -0
  616. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +128 -0
  617. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +71 -0
  618. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +157 -0
  619. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +71 -0
  620. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +148 -0
  621. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -0
  622. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -0
  623. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +119 -0
  624. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +53 -0
  625. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +53 -0
  626. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -0
  627. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -0
  628. teradataml/data/jsons/sqle/17.10/nPath.json +269 -0
  629. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -0
  630. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -0
  631. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -0
  632. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -0
  633. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -0
  634. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -0
  635. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -0
  636. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -0
  637. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -0
  638. teradataml/data/jsons/sqle/17.20/Pack.json +133 -0
  639. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -0
  640. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -0
  641. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -0
  642. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +149 -0
  643. teradataml/data/jsons/sqle/17.20/TD_Apriori.json +181 -0
  644. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -0
  645. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -0
  646. teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
  647. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -0
  648. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +68 -0
  649. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +146 -0
  650. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -0
  651. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -0
  652. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -0
  653. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +260 -0
  654. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -0
  655. teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -0
  656. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -0
  657. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -0
  658. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -0
  659. teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -0
  660. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -0
  661. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -0
  662. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -0
  663. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -0
  664. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -0
  665. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -0
  666. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -0
  667. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +232 -0
  668. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +87 -0
  669. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -0
  670. teradataml/data/jsons/sqle/17.20/TD_NERExtractor.json +145 -0
  671. teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
  672. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
  673. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -0
  674. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -0
  675. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -0
  676. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -0
  677. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +316 -0
  678. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +124 -0
  679. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -0
  680. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -0
  681. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -0
  682. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -0
  683. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -0
  684. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -0
  685. teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
  686. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -0
  687. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -0
  688. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -0
  689. teradataml/data/jsons/sqle/17.20/TD_ROC.json +179 -0
  690. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +179 -0
  691. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +74 -0
  692. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -0
  693. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +138 -0
  694. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -0
  695. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +128 -0
  696. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +71 -0
  697. teradataml/data/jsons/sqle/17.20/TD_SMOTE.json +267 -0
  698. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -0
  699. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -0
  700. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +310 -0
  701. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +120 -0
  702. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +194 -0
  703. teradataml/data/jsons/sqle/17.20/TD_Shap.json +221 -0
  704. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +143 -0
  705. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -0
  706. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -0
  707. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -0
  708. teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
  709. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -0
  710. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -0
  711. teradataml/data/jsons/sqle/17.20/TD_TextMorph.json +134 -0
  712. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +297 -0
  713. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -0
  714. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -0
  715. teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
  716. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +183 -0
  717. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +53 -0
  718. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +53 -0
  719. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -0
  720. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -0
  721. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -0
  722. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -0
  723. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -0
  724. teradataml/data/jsons/sqle/17.20/nPath.json +269 -0
  725. teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json +370 -0
  726. teradataml/data/jsons/sqle/20.00/AI_AskLLM.json +460 -0
  727. teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json +385 -0
  728. teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json +369 -0
  729. teradataml/data/jsons/sqle/20.00/AI_MaskPII.json +369 -0
  730. teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json +369 -0
  731. teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json +369 -0
  732. teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json +400 -0
  733. teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json +401 -0
  734. teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json +384 -0
  735. teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json +384 -0
  736. teradataml/data/jsons/sqle/20.00/TD_API_AzureML.json +151 -0
  737. teradataml/data/jsons/sqle/20.00/TD_API_Sagemaker.json +182 -0
  738. teradataml/data/jsons/sqle/20.00/TD_API_VertexAI.json +183 -0
  739. teradataml/data/jsons/sqle/20.00/TD_HNSW.json +296 -0
  740. teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json +206 -0
  741. teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json +32 -0
  742. teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
  743. teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
  744. teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
  745. teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
  746. teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
  747. teradataml/data/jsons/tableoperator/17.00/read_nos.json +198 -0
  748. teradataml/data/jsons/tableoperator/17.05/read_nos.json +198 -0
  749. teradataml/data/jsons/tableoperator/17.05/write_nos.json +195 -0
  750. teradataml/data/jsons/tableoperator/17.10/read_nos.json +184 -0
  751. teradataml/data/jsons/tableoperator/17.10/write_nos.json +195 -0
  752. teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
  753. teradataml/data/jsons/tableoperator/17.20/read_nos.json +183 -0
  754. teradataml/data/jsons/tableoperator/17.20/write_nos.json +224 -0
  755. teradataml/data/jsons/uaf/17.20/TD_ACF.json +132 -0
  756. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +396 -0
  757. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +77 -0
  758. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +153 -0
  759. teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
  760. teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
  761. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +107 -0
  762. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +106 -0
  763. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +89 -0
  764. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +104 -0
  765. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +78 -0
  766. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +66 -0
  767. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +87 -0
  768. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +134 -0
  769. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +144 -0
  770. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -0
  771. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +108 -0
  772. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +78 -0
  773. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +92 -0
  774. teradataml/data/jsons/uaf/17.20/TD_DTW.json +114 -0
  775. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +101 -0
  776. teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
  777. teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
  778. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +39 -0
  779. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +101 -0
  780. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +85 -0
  781. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +71 -0
  782. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +139 -0
  783. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECASTER.json +313 -0
  784. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +58 -0
  785. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +81 -0
  786. teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
  787. teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
  788. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +64 -0
  789. teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
  790. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +182 -0
  791. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +103 -0
  792. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +181 -0
  793. teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
  794. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +68 -0
  795. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +67 -0
  796. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +179 -0
  797. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -0
  798. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +119 -0
  799. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -0
  800. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +98 -0
  801. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +194 -0
  802. teradataml/data/jsons/uaf/17.20/TD_SAX.json +210 -0
  803. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +143 -0
  804. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +90 -0
  805. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +80 -0
  806. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +68 -0
  807. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -0
  808. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +58 -0
  809. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +163 -0
  810. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +101 -0
  811. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +112 -0
  812. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -0
  813. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +78 -0
  814. teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +410 -0
  815. teradataml/data/kmeans_example.json +23 -0
  816. teradataml/data/kmeans_table.csv +10 -0
  817. teradataml/data/kmeans_us_arrests_data.csv +51 -0
  818. teradataml/data/knn_example.json +19 -0
  819. teradataml/data/knnrecommender_example.json +7 -0
  820. teradataml/data/knnrecommenderpredict_example.json +12 -0
  821. teradataml/data/lar_example.json +17 -0
  822. teradataml/data/larpredict_example.json +30 -0
  823. teradataml/data/lc_new_predictors.csv +5 -0
  824. teradataml/data/lc_new_reference.csv +9 -0
  825. teradataml/data/lda_example.json +9 -0
  826. teradataml/data/ldainference_example.json +15 -0
  827. teradataml/data/ldatopicsummary_example.json +9 -0
  828. teradataml/data/levendist_input.csv +13 -0
  829. teradataml/data/levenshteindistance_example.json +10 -0
  830. teradataml/data/linreg_example.json +10 -0
  831. teradataml/data/load_example_data.py +350 -0
  832. teradataml/data/loan_prediction.csv +295 -0
  833. teradataml/data/lungcancer.csv +138 -0
  834. teradataml/data/mappingdata.csv +12 -0
  835. teradataml/data/medical_readings.csv +101 -0
  836. teradataml/data/milk_timeseries.csv +157 -0
  837. teradataml/data/min_max_titanic.csv +4 -0
  838. teradataml/data/minhash_example.json +6 -0
  839. teradataml/data/ml_ratings.csv +7547 -0
  840. teradataml/data/ml_ratings_10.csv +2445 -0
  841. teradataml/data/mobile_data.csv +13 -0
  842. teradataml/data/model1_table.csv +5 -0
  843. teradataml/data/model2_table.csv +5 -0
  844. teradataml/data/models/License_file.txt +1 -0
  845. teradataml/data/models/License_file_empty.txt +0 -0
  846. teradataml/data/models/dataiku_iris_data_ann_thin +0 -0
  847. teradataml/data/models/dr_iris_rf +0 -0
  848. teradataml/data/models/iris_db_dt_model_sklearn.onnx +0 -0
  849. teradataml/data/models/iris_db_dt_model_sklearn_floattensor.onnx +0 -0
  850. teradataml/data/models/iris_db_glm_model.pmml +57 -0
  851. teradataml/data/models/iris_db_xgb_model.pmml +4471 -0
  852. teradataml/data/models/iris_kmeans_model +0 -0
  853. teradataml/data/models/iris_mojo_glm_h2o_model +0 -0
  854. teradataml/data/models/iris_mojo_xgb_h2o_model +0 -0
  855. teradataml/data/modularity_example.json +12 -0
  856. teradataml/data/movavg_example.json +8 -0
  857. teradataml/data/mtx1.csv +7 -0
  858. teradataml/data/mtx2.csv +13 -0
  859. teradataml/data/multi_model_classification.csv +401 -0
  860. teradataml/data/multi_model_regression.csv +401 -0
  861. teradataml/data/mvdfft8.csv +9 -0
  862. teradataml/data/naivebayes_example.json +10 -0
  863. teradataml/data/naivebayespredict_example.json +19 -0
  864. teradataml/data/naivebayestextclassifier2_example.json +7 -0
  865. teradataml/data/naivebayestextclassifier_example.json +8 -0
  866. teradataml/data/naivebayestextclassifierpredict_example.json +32 -0
  867. teradataml/data/name_Find_configure.csv +10 -0
  868. teradataml/data/namedentityfinder_example.json +14 -0
  869. teradataml/data/namedentityfinderevaluator_example.json +10 -0
  870. teradataml/data/namedentityfindertrainer_example.json +6 -0
  871. teradataml/data/nb_iris_input_test.csv +31 -0
  872. teradataml/data/nb_iris_input_train.csv +121 -0
  873. teradataml/data/nbp_iris_model.csv +13 -0
  874. teradataml/data/ner_dict.csv +8 -0
  875. teradataml/data/ner_extractor_text.csv +2 -0
  876. teradataml/data/ner_input_eng.csv +7 -0
  877. teradataml/data/ner_rule.csv +5 -0
  878. teradataml/data/ner_sports_test2.csv +29 -0
  879. teradataml/data/ner_sports_train.csv +501 -0
  880. teradataml/data/nerevaluator_example.json +6 -0
  881. teradataml/data/nerextractor_example.json +18 -0
  882. teradataml/data/nermem_sports_test.csv +18 -0
  883. teradataml/data/nermem_sports_train.csv +51 -0
  884. teradataml/data/nertrainer_example.json +7 -0
  885. teradataml/data/ngrams_example.json +7 -0
  886. teradataml/data/notebooks/__init__.py +0 -0
  887. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -0
  888. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -0
  889. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -0
  890. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -0
  891. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -0
  892. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -0
  893. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -0
  894. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -0
  895. teradataml/data/notebooks/sqlalchemy/__init__.py +0 -0
  896. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -0
  897. teradataml/data/npath_example.json +23 -0
  898. teradataml/data/ntree_example.json +14 -0
  899. teradataml/data/numeric_strings.csv +5 -0
  900. teradataml/data/numerics.csv +4 -0
  901. teradataml/data/ocean_buoy.csv +17 -0
  902. teradataml/data/ocean_buoy2.csv +17 -0
  903. teradataml/data/ocean_buoys.csv +28 -0
  904. teradataml/data/ocean_buoys2.csv +10 -0
  905. teradataml/data/ocean_buoys_nonpti.csv +28 -0
  906. teradataml/data/ocean_buoys_seq.csv +29 -0
  907. teradataml/data/onehot_encoder_train.csv +4 -0
  908. teradataml/data/openml_example.json +92 -0
  909. teradataml/data/optional_event_table.csv +4 -0
  910. teradataml/data/orders1.csv +11 -0
  911. teradataml/data/orders1_12.csv +13 -0
  912. teradataml/data/orders_ex.csv +4 -0
  913. teradataml/data/pack_example.json +9 -0
  914. teradataml/data/package_tracking.csv +19 -0
  915. teradataml/data/package_tracking_pti.csv +19 -0
  916. teradataml/data/pagerank_example.json +13 -0
  917. teradataml/data/paragraphs_input.csv +6 -0
  918. teradataml/data/pathanalyzer_example.json +8 -0
  919. teradataml/data/pathgenerator_example.json +8 -0
  920. teradataml/data/patient_profile.csv +101 -0
  921. teradataml/data/pattern_matching_data.csv +11 -0
  922. teradataml/data/payment_fraud_dataset.csv +10001 -0
  923. teradataml/data/peppers.png +0 -0
  924. teradataml/data/phrases.csv +7 -0
  925. teradataml/data/pivot_example.json +9 -0
  926. teradataml/data/pivot_input.csv +22 -0
  927. teradataml/data/playerRating.csv +31 -0
  928. teradataml/data/pos_input.csv +40 -0
  929. teradataml/data/postagger_example.json +7 -0
  930. teradataml/data/posttagger_output.csv +44 -0
  931. teradataml/data/production_data.csv +17 -0
  932. teradataml/data/production_data2.csv +7 -0
  933. teradataml/data/randomsample_example.json +32 -0
  934. teradataml/data/randomwalksample_example.json +9 -0
  935. teradataml/data/rank_table.csv +6 -0
  936. teradataml/data/real_values.csv +14 -0
  937. teradataml/data/ref_mobile_data.csv +4 -0
  938. teradataml/data/ref_mobile_data_dense.csv +2 -0
  939. teradataml/data/ref_url.csv +17 -0
  940. teradataml/data/restaurant_reviews.csv +7 -0
  941. teradataml/data/retail_churn_table.csv +27772 -0
  942. teradataml/data/river_data.csv +145 -0
  943. teradataml/data/roc_example.json +8 -0
  944. teradataml/data/roc_input.csv +101 -0
  945. teradataml/data/rule_inputs.csv +6 -0
  946. teradataml/data/rule_table.csv +2 -0
  947. teradataml/data/sales.csv +7 -0
  948. teradataml/data/sales_transaction.csv +501 -0
  949. teradataml/data/salesdata.csv +342 -0
  950. teradataml/data/sample_cities.csv +3 -0
  951. teradataml/data/sample_shapes.csv +11 -0
  952. teradataml/data/sample_streets.csv +3 -0
  953. teradataml/data/sampling_example.json +16 -0
  954. teradataml/data/sax_example.json +17 -0
  955. teradataml/data/scale_attributes.csv +3 -0
  956. teradataml/data/scale_example.json +74 -0
  957. teradataml/data/scale_housing.csv +11 -0
  958. teradataml/data/scale_housing_test.csv +6 -0
  959. teradataml/data/scale_input_part_sparse.csv +31 -0
  960. teradataml/data/scale_input_partitioned.csv +16 -0
  961. teradataml/data/scale_input_sparse.csv +11 -0
  962. teradataml/data/scale_parameters.csv +3 -0
  963. teradataml/data/scale_stat.csv +11 -0
  964. teradataml/data/scalebypartition_example.json +13 -0
  965. teradataml/data/scalemap_example.json +13 -0
  966. teradataml/data/scalesummary_example.json +12 -0
  967. teradataml/data/score_category.csv +101 -0
  968. teradataml/data/score_summary.csv +4 -0
  969. teradataml/data/script_example.json +10 -0
  970. teradataml/data/scripts/deploy_script.py +84 -0
  971. teradataml/data/scripts/lightgbm/dataset.template +175 -0
  972. teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +264 -0
  973. teradataml/data/scripts/lightgbm/lightgbm_function.template +234 -0
  974. teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +177 -0
  975. teradataml/data/scripts/mapper.R +20 -0
  976. teradataml/data/scripts/mapper.py +16 -0
  977. teradataml/data/scripts/mapper_replace.py +16 -0
  978. teradataml/data/scripts/sklearn/__init__.py +0 -0
  979. teradataml/data/scripts/sklearn/sklearn_fit.py +205 -0
  980. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +148 -0
  981. teradataml/data/scripts/sklearn/sklearn_function.template +144 -0
  982. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +166 -0
  983. teradataml/data/scripts/sklearn/sklearn_neighbors.py +161 -0
  984. teradataml/data/scripts/sklearn/sklearn_score.py +145 -0
  985. teradataml/data/scripts/sklearn/sklearn_transform.py +327 -0
  986. teradataml/data/sdk/modelops/modelops_spec.json +101737 -0
  987. teradataml/data/seeds.csv +10 -0
  988. teradataml/data/sentenceextractor_example.json +7 -0
  989. teradataml/data/sentiment_extract_input.csv +11 -0
  990. teradataml/data/sentiment_train.csv +16 -0
  991. teradataml/data/sentiment_word.csv +20 -0
  992. teradataml/data/sentiment_word_input.csv +20 -0
  993. teradataml/data/sentimentextractor_example.json +24 -0
  994. teradataml/data/sentimenttrainer_example.json +8 -0
  995. teradataml/data/sequence_table.csv +10 -0
  996. teradataml/data/seriessplitter_example.json +8 -0
  997. teradataml/data/sessionize_example.json +17 -0
  998. teradataml/data/sessionize_table.csv +116 -0
  999. teradataml/data/setop_test1.csv +24 -0
  1000. teradataml/data/setop_test2.csv +22 -0
  1001. teradataml/data/soc_nw_edges.csv +11 -0
  1002. teradataml/data/soc_nw_vertices.csv +8 -0
  1003. teradataml/data/souvenir_timeseries.csv +168 -0
  1004. teradataml/data/sparse_iris_attribute.csv +5 -0
  1005. teradataml/data/sparse_iris_test.csv +121 -0
  1006. teradataml/data/sparse_iris_train.csv +601 -0
  1007. teradataml/data/star1.csv +6 -0
  1008. teradataml/data/star_pivot.csv +8 -0
  1009. teradataml/data/state_transition.csv +5 -0
  1010. teradataml/data/stock_data.csv +53 -0
  1011. teradataml/data/stock_movement.csv +11 -0
  1012. teradataml/data/stock_vol.csv +76 -0
  1013. teradataml/data/stop_words.csv +8 -0
  1014. teradataml/data/store_sales.csv +37 -0
  1015. teradataml/data/stringsimilarity_example.json +8 -0
  1016. teradataml/data/strsimilarity_input.csv +13 -0
  1017. teradataml/data/students.csv +101 -0
  1018. teradataml/data/svm_iris_input_test.csv +121 -0
  1019. teradataml/data/svm_iris_input_train.csv +481 -0
  1020. teradataml/data/svm_iris_model.csv +7 -0
  1021. teradataml/data/svmdense_example.json +10 -0
  1022. teradataml/data/svmdensepredict_example.json +19 -0
  1023. teradataml/data/svmsparse_example.json +8 -0
  1024. teradataml/data/svmsparsepredict_example.json +14 -0
  1025. teradataml/data/svmsparsesummary_example.json +8 -0
  1026. teradataml/data/target_mobile_data.csv +13 -0
  1027. teradataml/data/target_mobile_data_dense.csv +5 -0
  1028. teradataml/data/target_udt_data.csv +8 -0
  1029. teradataml/data/tdnerextractor_example.json +14 -0
  1030. teradataml/data/templatedata.csv +1201 -0
  1031. teradataml/data/templates/open_source_ml.json +11 -0
  1032. teradataml/data/teradata_icon.ico +0 -0
  1033. teradataml/data/teradataml_example.json +1473 -0
  1034. teradataml/data/test_classification.csv +101 -0
  1035. teradataml/data/test_loan_prediction.csv +53 -0
  1036. teradataml/data/test_pacf_12.csv +37 -0
  1037. teradataml/data/test_prediction.csv +101 -0
  1038. teradataml/data/test_regression.csv +101 -0
  1039. teradataml/data/test_river2.csv +109 -0
  1040. teradataml/data/text_inputs.csv +6 -0
  1041. teradataml/data/textchunker_example.json +8 -0
  1042. teradataml/data/textclassifier_example.json +7 -0
  1043. teradataml/data/textclassifier_input.csv +7 -0
  1044. teradataml/data/textclassifiertrainer_example.json +7 -0
  1045. teradataml/data/textmorph_example.json +11 -0
  1046. teradataml/data/textparser_example.json +15 -0
  1047. teradataml/data/texttagger_example.json +12 -0
  1048. teradataml/data/texttokenizer_example.json +7 -0
  1049. teradataml/data/texttrainer_input.csv +11 -0
  1050. teradataml/data/tf_example.json +7 -0
  1051. teradataml/data/tfidf_example.json +14 -0
  1052. teradataml/data/tfidf_input1.csv +201 -0
  1053. teradataml/data/tfidf_train.csv +6 -0
  1054. teradataml/data/time_table1.csv +535 -0
  1055. teradataml/data/time_table2.csv +14 -0
  1056. teradataml/data/timeseriesdata.csv +1601 -0
  1057. teradataml/data/timeseriesdatasetsd4.csv +105 -0
  1058. teradataml/data/timestamp_data.csv +4 -0
  1059. teradataml/data/titanic.csv +892 -0
  1060. teradataml/data/titanic_dataset_unpivoted.csv +19 -0
  1061. teradataml/data/to_num_data.csv +4 -0
  1062. teradataml/data/tochar_data.csv +5 -0
  1063. teradataml/data/token_table.csv +696 -0
  1064. teradataml/data/train_multiclass.csv +101 -0
  1065. teradataml/data/train_regression.csv +101 -0
  1066. teradataml/data/train_regression_multiple_labels.csv +101 -0
  1067. teradataml/data/train_tracking.csv +28 -0
  1068. teradataml/data/trans_dense.csv +16 -0
  1069. teradataml/data/trans_sparse.csv +55 -0
  1070. teradataml/data/transformation_table.csv +6 -0
  1071. teradataml/data/transformation_table_new.csv +2 -0
  1072. teradataml/data/tv_spots.csv +16 -0
  1073. teradataml/data/twod_climate_data.csv +117 -0
  1074. teradataml/data/uaf_example.json +529 -0
  1075. teradataml/data/univariatestatistics_example.json +9 -0
  1076. teradataml/data/unpack_example.json +10 -0
  1077. teradataml/data/unpivot_example.json +25 -0
  1078. teradataml/data/unpivot_input.csv +8 -0
  1079. teradataml/data/url_data.csv +10 -0
  1080. teradataml/data/us_air_pass.csv +37 -0
  1081. teradataml/data/us_population.csv +624 -0
  1082. teradataml/data/us_states_shapes.csv +52 -0
  1083. teradataml/data/varmax_example.json +18 -0
  1084. teradataml/data/vectordistance_example.json +30 -0
  1085. teradataml/data/ville_climatedata.csv +121 -0
  1086. teradataml/data/ville_tempdata.csv +12 -0
  1087. teradataml/data/ville_tempdata1.csv +12 -0
  1088. teradataml/data/ville_temperature.csv +11 -0
  1089. teradataml/data/waveletTable.csv +1605 -0
  1090. teradataml/data/waveletTable2.csv +1605 -0
  1091. teradataml/data/weightedmovavg_example.json +9 -0
  1092. teradataml/data/wft_testing.csv +5 -0
  1093. teradataml/data/windowdfft.csv +16 -0
  1094. teradataml/data/wine_data.csv +1600 -0
  1095. teradataml/data/word_embed_input_table1.csv +6 -0
  1096. teradataml/data/word_embed_input_table2.csv +5 -0
  1097. teradataml/data/word_embed_model.csv +23 -0
  1098. teradataml/data/words_input.csv +13 -0
  1099. teradataml/data/xconvolve_complex_left.csv +6 -0
  1100. teradataml/data/xconvolve_complex_leftmulti.csv +6 -0
  1101. teradataml/data/xgboost_example.json +36 -0
  1102. teradataml/data/xgboostpredict_example.json +32 -0
  1103. teradataml/data/ztest_example.json +16 -0
  1104. teradataml/dataframe/__init__.py +0 -0
  1105. teradataml/dataframe/copy_to.py +2446 -0
  1106. teradataml/dataframe/data_transfer.py +2840 -0
  1107. teradataml/dataframe/dataframe.py +20908 -0
  1108. teradataml/dataframe/dataframe_utils.py +2114 -0
  1109. teradataml/dataframe/fastload.py +794 -0
  1110. teradataml/dataframe/functions.py +2110 -0
  1111. teradataml/dataframe/indexer.py +424 -0
  1112. teradataml/dataframe/row.py +160 -0
  1113. teradataml/dataframe/setop.py +1171 -0
  1114. teradataml/dataframe/sql.py +10904 -0
  1115. teradataml/dataframe/sql_function_parameters.py +440 -0
  1116. teradataml/dataframe/sql_functions.py +652 -0
  1117. teradataml/dataframe/sql_interfaces.py +220 -0
  1118. teradataml/dataframe/vantage_function_types.py +675 -0
  1119. teradataml/dataframe/window.py +694 -0
  1120. teradataml/dbutils/__init__.py +3 -0
  1121. teradataml/dbutils/dbutils.py +2871 -0
  1122. teradataml/dbutils/filemgr.py +318 -0
  1123. teradataml/gen_ai/__init__.py +2 -0
  1124. teradataml/gen_ai/convAI.py +473 -0
  1125. teradataml/geospatial/__init__.py +4 -0
  1126. teradataml/geospatial/geodataframe.py +1105 -0
  1127. teradataml/geospatial/geodataframecolumn.py +392 -0
  1128. teradataml/geospatial/geometry_types.py +926 -0
  1129. teradataml/hyperparameter_tuner/__init__.py +1 -0
  1130. teradataml/hyperparameter_tuner/optimizer.py +4115 -0
  1131. teradataml/hyperparameter_tuner/utils.py +303 -0
  1132. teradataml/lib/__init__.py +0 -0
  1133. teradataml/lib/aed_0_1.dll +0 -0
  1134. teradataml/lib/libaed_0_1.dylib +0 -0
  1135. teradataml/lib/libaed_0_1.so +0 -0
  1136. teradataml/lib/libaed_0_1_aarch64.so +0 -0
  1137. teradataml/lib/libaed_0_1_ppc64le.so +0 -0
  1138. teradataml/opensource/__init__.py +1 -0
  1139. teradataml/opensource/_base.py +1321 -0
  1140. teradataml/opensource/_class.py +464 -0
  1141. teradataml/opensource/_constants.py +61 -0
  1142. teradataml/opensource/_lightgbm.py +949 -0
  1143. teradataml/opensource/_sklearn.py +1008 -0
  1144. teradataml/opensource/_wrapper_utils.py +267 -0
  1145. teradataml/options/__init__.py +148 -0
  1146. teradataml/options/configure.py +489 -0
  1147. teradataml/options/display.py +187 -0
  1148. teradataml/plot/__init__.py +3 -0
  1149. teradataml/plot/axis.py +1427 -0
  1150. teradataml/plot/constants.py +15 -0
  1151. teradataml/plot/figure.py +431 -0
  1152. teradataml/plot/plot.py +810 -0
  1153. teradataml/plot/query_generator.py +83 -0
  1154. teradataml/plot/subplot.py +216 -0
  1155. teradataml/scriptmgmt/UserEnv.py +4273 -0
  1156. teradataml/scriptmgmt/__init__.py +3 -0
  1157. teradataml/scriptmgmt/lls_utils.py +2157 -0
  1158. teradataml/sdk/README.md +79 -0
  1159. teradataml/sdk/__init__.py +4 -0
  1160. teradataml/sdk/_auth_modes.py +422 -0
  1161. teradataml/sdk/_func_params.py +487 -0
  1162. teradataml/sdk/_json_parser.py +453 -0
  1163. teradataml/sdk/_openapi_spec_constants.py +249 -0
  1164. teradataml/sdk/_utils.py +236 -0
  1165. teradataml/sdk/api_client.py +900 -0
  1166. teradataml/sdk/constants.py +62 -0
  1167. teradataml/sdk/modelops/__init__.py +98 -0
  1168. teradataml/sdk/modelops/_client.py +409 -0
  1169. teradataml/sdk/modelops/_constants.py +304 -0
  1170. teradataml/sdk/modelops/models.py +2308 -0
  1171. teradataml/sdk/spinner.py +107 -0
  1172. teradataml/series/__init__.py +0 -0
  1173. teradataml/series/series.py +537 -0
  1174. teradataml/series/series_utils.py +71 -0
  1175. teradataml/store/__init__.py +12 -0
  1176. teradataml/store/feature_store/__init__.py +0 -0
  1177. teradataml/store/feature_store/constants.py +658 -0
  1178. teradataml/store/feature_store/feature_store.py +4814 -0
  1179. teradataml/store/feature_store/mind_map.py +639 -0
  1180. teradataml/store/feature_store/models.py +7330 -0
  1181. teradataml/store/feature_store/utils.py +390 -0
  1182. teradataml/table_operators/Apply.py +979 -0
  1183. teradataml/table_operators/Script.py +1739 -0
  1184. teradataml/table_operators/TableOperator.py +1343 -0
  1185. teradataml/table_operators/__init__.py +2 -0
  1186. teradataml/table_operators/apply_query_generator.py +262 -0
  1187. teradataml/table_operators/query_generator.py +493 -0
  1188. teradataml/table_operators/table_operator_query_generator.py +462 -0
  1189. teradataml/table_operators/table_operator_util.py +726 -0
  1190. teradataml/table_operators/templates/dataframe_apply.template +184 -0
  1191. teradataml/table_operators/templates/dataframe_map.template +176 -0
  1192. teradataml/table_operators/templates/dataframe_register.template +73 -0
  1193. teradataml/table_operators/templates/dataframe_udf.template +67 -0
  1194. teradataml/table_operators/templates/script_executor.template +170 -0
  1195. teradataml/telemetry_utils/__init__.py +0 -0
  1196. teradataml/telemetry_utils/queryband.py +53 -0
  1197. teradataml/utils/__init__.py +0 -0
  1198. teradataml/utils/docstring.py +527 -0
  1199. teradataml/utils/dtypes.py +943 -0
  1200. teradataml/utils/internal_buffer.py +122 -0
  1201. teradataml/utils/print_versions.py +206 -0
  1202. teradataml/utils/utils.py +451 -0
  1203. teradataml/utils/validators.py +3305 -0
  1204. teradataml-20.0.0.8.dist-info/METADATA +2804 -0
  1205. teradataml-20.0.0.8.dist-info/RECORD +1208 -0
  1206. teradataml-20.0.0.8.dist-info/WHEEL +5 -0
  1207. teradataml-20.0.0.8.dist-info/top_level.txt +1 -0
  1208. teradataml-20.0.0.8.dist-info/zip-safe +1 -0
@@ -0,0 +1,1669 @@
1
+ # -*- coding: utf-8 -*-
2
+ """
3
+ Unpublished work.
4
+ Copyright (c) 2018 by Teradata Corporation. All rights reserved.
5
+ TERADATA CORPORATION CONFIDENTIAL AND TRADE SECRET
6
+
7
+ Primary Owner: ellen.nolan@teradata.com
8
+ Secondary Owner: PankajVinod.Purandare@teradata.com
9
+
10
+ teradataml.common.constants
11
+ ----------
12
+ A class for holding all constants
13
+ """
14
+ import re
15
+ import sqlalchemy
16
+ from enum import Enum
17
+ from teradatasqlalchemy.types import (INTEGER, SMALLINT, BIGINT, BYTEINT, DECIMAL, FLOAT, NUMBER, VARCHAR)
18
+ from teradatasqlalchemy.types import (DATE, TIME, TIMESTAMP)
19
+ from teradatasqlalchemy.types import (BYTE, VARBYTE, BLOB)
20
+ from teradatasqlalchemy import (CHAR, CLOB)
21
+ from teradatasqlalchemy import (PERIOD_DATE, PERIOD_TIME, PERIOD_TIMESTAMP)
22
+ from teradatasqlalchemy import (INTERVAL_YEAR, INTERVAL_YEAR_TO_MONTH, INTERVAL_MONTH,
23
+ INTERVAL_DAY, INTERVAL_DAY_TO_HOUR, INTERVAL_DAY_TO_MINUTE,
24
+ INTERVAL_DAY_TO_SECOND, INTERVAL_HOUR,
25
+ INTERVAL_HOUR_TO_MINUTE, INTERVAL_HOUR_TO_SECOND,
26
+ INTERVAL_MINUTE, INTERVAL_MINUTE_TO_SECOND,
27
+ INTERVAL_SECOND)
28
+ from teradatasqlalchemy import (GEOMETRY, MBR, MBB)
29
+ import logging
30
+
31
+
32
+ class SQLConstants(Enum):
33
+ SQL_BASE_QUERY = 1
34
+ SQL_SAMPLE_QUERY = 2
35
+ SQL_SAMPLE_WITH_WHERE_QUERY = 3
36
+ SQL_CREATE_VOLATILE_TABLE_FROM_QUERY_WITH_DATA = 4
37
+ SQL_CREATE_VOLATILE_TABLE_FROM_QUERY_WITHOUT_DATA = 5
38
+ SQL_CREATE_VOLATILE_TABLE_USING_COLUMNS = 6
39
+ SQL_CREATE_TABLE_FROM_QUERY_WITH_DATA = 7
40
+ SQL_HELP_COLUMNS = 8
41
+ SQL_DROP_TABLE = 9
42
+ SQL_DROP_VIEW = 10
43
+ SQL_NROWS_FROM_QUERY = 11
44
+ SQL_TOP_NROWS_FROM_TABLEORVIEW = 12
45
+ SQL_INSERT_INTO_TABLE_VALUES = 13
46
+ SQL_SELECT_COLUMNNAMES_FROM = 14
47
+ SQL_SELECT_DATABASE = 15
48
+ SQL_HELP_VOLATILE_TABLE = 16
49
+ SQL_SELECT_TABLE_NAME = 17
50
+ SQL_CREATE_VIEW = 18
51
+ SQL_SELECT_USER = 19
52
+ SQL_HELP_VIEW = 20
53
+ SQL_HELP_TABLE = 21
54
+ SQL_HELP_INDEX = 22
55
+ SQL_INSERT_ALL_FROM_TABLE = 23
56
+ SQL_SELECT_DATABASENAME = 24
57
+ SQL_AND_TABLE_KIND = 25
58
+ SQL_AND_TABLE_NAME = 26
59
+ SQL_AND_TABLE_NAME_LIKE = 27
60
+ SQL_CREATE_TABLE_USING_COLUMNS = 28
61
+ SQL_DELETE_ALL_ROWS = 29
62
+ SQL_DELETE_SPECIFIC_ROW = 30
63
+ SQL_EXEC_STORED_PROCEDURE = 31
64
+ SQL_SELECT_COLUMNNAMES_WITH_WHERE = 32
65
+ SQL_HELP_DATABASE = 33
66
+ SQL_HELP_DATALAKE = 34
67
+ CONSTRAINT = ["check_constraint", "primary_key_constraint",
68
+ "foreign_key_constraint", "unique_key_constraint"]
69
+ SQL_TD_OTF_METADATA = 35
70
+ SQL_TD_OTF_SNAPSHOT = 36
71
+ SQL_LIST_TRIGGERS = 37
72
+ SQL_SHOW_TABLE = 38
73
+ SQL_SHOW_VIEW = 39
74
+ SQL_INSERT_INTO_TABLE_VALUES_WITH_COLUMN_NAMES = 40
75
+
76
+
77
+ class TeradataConstants(Enum):
78
+ TERADATA_VIEW = 1
79
+ TERADATA_TABLE = 2
80
+ TERADATA_SCRIPT = 3
81
+ TERADATA_LOCAL_SCRIPT = 4
82
+ CONTAINER = 5
83
+ TERADATA_TEXT_FILE = 6
84
+ TERADATA_APPLY = 7
85
+ TERADATA_VOLATILE_TABLE = 8
86
+ TABLE_COLUMN_LIMIT = 2048
87
+ TERADATA_JOINS = ["inner", "left", "right", "full", "cross"]
88
+ TERADATA_JOIN_OPERATORS = ['>=', '<=', '<>', '!=', '>', '<', '=']
89
+ # Order of operators
90
+ # shouldn't be changed. This is the order in which join condition is tested - first, operators
91
+ # with two characters and then the operators with single character.
92
+ SUPPORTED_ENGINES = {"ENGINE_SQL": {"name": "sqle", "file": "sqlengine_alias_definitions"}}
93
+ SUPPORTED_VANTAGE_VERSIONS = {"vantage1.0": "v1.0", "vantage1.1": "v1.1",
94
+ "vantage1.3": "v1.3", "vantage2.0": "v1.1"}
95
+ RANGE_SEPARATORS = [":"]
96
+
97
+
98
+ class AEDConstants(Enum):
99
+ AED_NODE_NOT_EXECUTED = 0
100
+ AED_NODE_EXECUTED = 1
101
+ AED_DB_OBJECT_NAME_BUFFER_SIZE = 128
102
+ AED_NODE_TYPE_BUFFER_SIZE = 32
103
+ AED_ASSIGN_DROP_EXISITING_COLUMNS = "Y"
104
+ AED_ASSIGN_DO_NOT_DROP_EXISITING_COLUMNS = "N"
105
+ AED_QUERY_NODE_TYPE_ML_QUERY_SINGLE_OUTPUT = "ml_query_single_output"
106
+ AED_QUERY_NODE_TYPE_ML_QUERY_MULTI_OUTPUT = "ml_query_multi_output"
107
+ AED_QUERY_NODE_TYPE_REFERENCE = "reference"
108
+
109
+
110
+ class SourceType(Enum):
111
+ TABLE = "TABLE"
112
+ QUERY = "QUERY"
113
+
114
+
115
+ class PythonTypes(Enum):
116
+ PY_NULL_TYPE = "nulltype"
117
+ PY_INT_TYPE = "int"
118
+ PY_FLOAT_TYPE = "float"
119
+ PY_STRING_TYPE = "str"
120
+ PY_DECIMAL_TYPE = "decimal.Decimal"
121
+ PY_DATETIME_TYPE = "datetime.datetime"
122
+ PY_TIME_TYPE = "datetime.time"
123
+ PY_DATE_TYPE = "datetime.date"
124
+ PY_BYTES_TYPE = "bytes"
125
+
126
+
127
+ class TeradataTypes(Enum):
128
+ TD_INTEGER_TYPES = [INTEGER, BYTEINT, SMALLINT, BIGINT, sqlalchemy.sql.sqltypes.Integer]
129
+ TD_INTEGER_CODES = ["I", "I1", "I2", "I8"]
130
+ TD_FLOAT_TYPES = [FLOAT, sqlalchemy.sql.sqltypes.Numeric]
131
+ TD_FLOAT_CODES = ["F"]
132
+ TD_DECIMAL_TYPES = [DECIMAL, NUMBER]
133
+ TD_DECIMAL_CODES = ["D", "N"]
134
+ TD_BYTE_TYPES = [BYTE, VARBYTE, BLOB]
135
+ TD_BYTE_CODES = ["BF", "BV", "BO"]
136
+ TD_DATETIME_TYPES = [TIMESTAMP, sqlalchemy.sql.sqltypes.DateTime]
137
+ TD_DATETIME_CODES = ["TS", "SZ"]
138
+ TD_TIME_TYPES = [TIME, sqlalchemy.sql.sqltypes.Time]
139
+ TD_TIME_CODES = ["AT", "TZ"]
140
+ TD_DATE_TYPES = [DATE, sqlalchemy.sql.sqltypes.Date]
141
+ TD_DATE_CODES = ["DA"]
142
+ TD_NULL_TYPE = "NULLTYPE"
143
+ TD_ALL_TYPES = (BYTEINT, SMALLINT, INTEGER, BIGINT, DECIMAL, FLOAT, NUMBER,
144
+ TIMESTAMP, DATE, TIME, CHAR, VARCHAR, CLOB, BYTE, VARBYTE,
145
+ BLOB, PERIOD_DATE, PERIOD_TIME, PERIOD_TIMESTAMP,
146
+ INTERVAL_YEAR, INTERVAL_YEAR_TO_MONTH, INTERVAL_MONTH,
147
+ INTERVAL_DAY, INTERVAL_DAY_TO_HOUR, INTERVAL_DAY_TO_MINUTE,
148
+ INTERVAL_DAY_TO_SECOND, INTERVAL_HOUR,
149
+ INTERVAL_HOUR_TO_MINUTE, INTERVAL_HOUR_TO_SECOND,
150
+ INTERVAL_MINUTE, INTERVAL_MINUTE_TO_SECOND, INTERVAL_SECOND)
151
+ TD_RANGE_N_CLAUSE_TYPES = (INTERVAL_YEAR, INTERVAL_DAY, INTERVAL_MONTH,
152
+ INTERVAL_MINUTE, INTERVAL_SECOND, INTERVAL_HOUR)
153
+
154
+
155
+
156
+ class TeradataTableKindConstants(Enum):
157
+ VOLATILE = "volatile"
158
+ TABLE = "table"
159
+ VIEW = "view"
160
+ TEMP = "temp"
161
+ ALL = "all"
162
+ ML_PATTERN = "ml_%"
163
+ VOLATILE_TABLE_NAME = 'Table Name'
164
+ REGULAR_TABLE_NAME = 'TableName'
165
+
166
+ class DataFrameTypes(Enum):
167
+ VIEW = "VIEW"
168
+ VALID_TIME_VIEW = "VALID_TIME_VIEW"
169
+ TRANSACTION_TIME_VIEW = "TRANSACTION_TIME_VIEW"
170
+ BI_TEMPORAL_VIEW = "BI_TEMPORAL_VIEW"
171
+ REGULAR_TABLE = "TABLE"
172
+ OTF_TABLE = "OTF"
173
+ BI_TEMPORAL = "BI_TEMPORAL"
174
+ TRANSACTION_TIME= "TRANSACTION_TIME"
175
+ VALID_TIME = "VALID_TIME"
176
+ ART_TABLE = "ART"
177
+ VOLATILE_TABLE = "VOLATILE_TABLE"
178
+ VALID_TIME_VOLATILE_TABLE = "VALID_TIME_VOLATILE_TABLE"
179
+ TRANSACTION_TIME_VOLATILE_TABLE = "TRANSACTION_TIME_VOLATILE_TABLE"
180
+ BI_TEMPORAL_VOLATILE_TABLE = "BI_TEMPORAL_VOLATILE_TABLE"
181
+
182
+ class SQLPattern(Enum):
183
+ SQLMR = re.compile(r"SELECT \* FROM .*\((\s*.*)*\) as .*", re.IGNORECASE)
184
+ DRIVER_FUNC_SQLMR = re.compile(r".*OUT\s+TABLE.*", re.IGNORECASE)
185
+ SQLMR_REFERENCE_NODE = re.compile("reference:.*:.*", re.IGNORECASE)
186
+
187
+
188
+ class FunctionArgumentMapperConstants(Enum):
189
+ # Mapper related
190
+ SQL_TO_TDML = "sql_to_tdml"
191
+ TDML_TO_SQL = "tdml_to_sql"
192
+ ALTERNATE_TO = "alternate_to"
193
+ TDML_NAME = "tdml_name"
194
+ TDML_TYPE = "tdml_type"
195
+ USED_IN_SEQUENCE_INPUT_BY = "used_in_sequence_by"
196
+ USED_IN_FORMULA = "used_in_formula"
197
+ INPUTS = "inputs"
198
+ OUTPUTS = "outputs"
199
+ ARGUMENTS = "arguments"
200
+ DEPENDENT_ATTR = "dependent"
201
+ INDEPENDENT_ATTR = "independent"
202
+ TDML_FORMULA_NAME = "formula"
203
+ DEFAULT_OUTPUT = "__default_output__"
204
+ DEFAULT_OUTPUT_TDML_NAME_SINGLE = "result"
205
+ DEFAULT_OUTPUT_TDML_NAME_MULTIPLE = "output"
206
+
207
+ # JSON related
208
+ ALLOWS_LISTS = "allowsLists"
209
+ DATATYPE = "datatype"
210
+ BOOL_TYPE = "BOOLEAN"
211
+ INT_TYPE = ["INTEGER", "LONG"]
212
+ FLOAT_TYPE = ["DOUBLE", "DOUBLE PRECISION", "FLOAT"]
213
+ INPUT_TABLES = "input_tables"
214
+ OUTPUT_TABLES = "output_tables"
215
+ ARGUMENT_CLAUSES = "argument_clauses"
216
+ R_NAME = "rName"
217
+ NAME = "name"
218
+ FUNCTION_TDML_NAME = "function_tdml_name"
219
+ R_FOMULA_USAGE = "rFormulaUsage"
220
+ R_ORDER_NUM = "rOrderNum"
221
+ TDML_SEQUENCE_COLUMN_NAME = "sequence_column"
222
+
223
+
224
+ class ModelCatalogingConstants(Enum):
225
+ MODEL_CATALOG_DB = "TD_ModelCataloging"
226
+ MODEL_ENGINE_ADVSQL = "Advanced SQL Engine"
227
+
228
+ # ModelCataloging Direct Views
229
+ MODELS = "ModelsV"
230
+
231
+ # ModelCataloging Derived Views
232
+ MODELSX = "ModelsVX"
233
+
234
+ # Columns names used for Filter
235
+ CREATED_BY = "CreatedBy"
236
+
237
+ # Expected Prediction Types
238
+ PREDICTION_TYPE_CLASSIFICATION = 'CLASSIFICATION'
239
+ PREDICTION_TYPE_REGRESSION = 'REGRESSION'
240
+ PREDICTION_TYPE_CLUSTERING = 'CLUSTERING'
241
+ PREDICTION_TYPE_OTHER = 'OTHER'
242
+
243
+ # License parameters
244
+ LICENSE_SOURCE = ['string', 'file', 'column']
245
+
246
+
247
+ class CopyToConstants(Enum):
248
+ DBAPI_BATCHSIZE = 16383
249
+
250
+
251
+ class PTITableConstants(Enum):
252
+ PATTERN_TIMEZERO_DATE = r"^DATE\s+'(.*)'$"
253
+ TD_SEQNO = 'TD_SEQNO'
254
+ TD_TIMECODE = 'TD_TIMECODE'
255
+ TD_TIMEBUCKET = 'TD_TIMEBUCKET'
256
+ TSCOLTYPE_TIMEBUCKET = 'TB'
257
+ TSCOLTYPE_TIMECODE = 'TC'
258
+ VALID_TIMEBUCKET_DURATIONS_FORMAL = ['CAL_YEARS', 'CAL_MONTHS', 'CAL_DAYS', 'WEEKS', 'DAYS', 'HOURS', 'MINUTES',
259
+ 'SECONDS', 'MILLISECONDS', 'MICROSECONDS']
260
+ VALID_TIMEBUCKET_DURATIONS_SHORTHAND = ['cy', 'cyear', 'cyears',
261
+ 'cm', 'cmonth', 'cmonths',
262
+ 'cd', 'cday', 'cdays',
263
+ 'w', 'week', 'weeks',
264
+ 'd', 'day', 'days',
265
+ 'h', 'hr', 'hrs', 'hour', 'hours',
266
+ 'm', 'mins', 'minute', 'minutes',
267
+ 's', 'sec', 'secs', 'second', 'seconds',
268
+ 'ms', 'msec', 'msecs', 'millisecond', 'milliseconds',
269
+ 'us', 'usec', 'usecs', 'microsecond', 'microseconds']
270
+ PATTERN_TIMEBUCKET_DURATION_SHORT = "^([0-9]+){}$"
271
+ PATTERN_TIMEBUCKET_DURATION_FORMAL = r"^{}\(([0-9]+)\)$"
272
+ VALID_TIMECODE_DATATYPES = [TIMESTAMP, DATE]
273
+ VALID_SEQUENCE_COL_DATATYPES = [INTEGER]
274
+ TIMEBUCKET_DURATION_FORMAT_MAPPER = {'cy': 'CAL_YEARS({})',
275
+ 'cyear': 'CAL_YEARS({})',
276
+ 'cyears': 'CAL_YEARS({})',
277
+ 'cm': 'CAL_MONTHS({})',
278
+ 'cmonth': 'CAL_MONTHS({})',
279
+ 'cmonths': 'CAL_MONTHS({})',
280
+ 'cd': 'CAL_DAYS({})',
281
+ 'cday': 'CAL_DAYS({})',
282
+ 'cdays': 'CAL_DAYS({})',
283
+ 'w': 'WEEKS({})',
284
+ 'week': 'WEEKS({})',
285
+ 'weeks': 'WEEKS({})',
286
+ 'd': 'DAYS({})',
287
+ 'day': 'DAYS({})',
288
+ 'days': 'DAYS({})',
289
+ 'h': 'HOURS({})',
290
+ 'hr': 'HOURS({})',
291
+ 'hrs': 'HOURS({})',
292
+ 'hour': 'HOURS({})',
293
+ 'hours': 'HOURS({})',
294
+ 'm': 'MINUTES({})',
295
+ 'mins': 'MINUTES({})',
296
+ 'minute': 'MINUTES({})',
297
+ 'minutes': 'MINUTES({})',
298
+ 's': 'SECONDS({})',
299
+ 'sec': 'SECONDS({})',
300
+ 'secs': 'SECONDS({})',
301
+ 'second': 'SECONDS({})',
302
+ 'seconds': 'SECONDS({})',
303
+ 'ms': 'MILLISECONDS({})',
304
+ 'msec': 'MILLISECONDS({})',
305
+ 'msecs': 'MILLISECONDS({})',
306
+ 'millisecond': 'MILLISECONDS({})',
307
+ 'milliseconds': 'MILLISECONDS({})',
308
+ 'us': 'MICROSECONDS({})',
309
+ 'usec': 'MICROSECONDS({})',
310
+ 'usecs': 'MICROSECONDS({})',
311
+ 'microsecond': 'MICROSECONDS({})',
312
+ 'microseconds': 'MICROSECONDS({})'}
313
+
314
+
315
+ class GeospatialConstants(Enum):
316
+ """ Holds all Geospatial functionality specific constants. """
317
+
318
+ # This dictionary maps teradataml name of the Geospatial function to
319
+ # SQL function name.
320
+ # This dictionary contains entries for the functions which are
321
+ # exposed as "Property" of teradataml GeoDataFrame or
322
+ # teradataml GeoDataFrameColumn.
323
+ PROPERTY_TO_NO_ARG_SQL_FUNCTION_NAME = {
324
+ ## *** ST_Geometry Methods *** ##
325
+ "boundary": lambda x: "ST_Boundary",
326
+ "centroid": lambda x: "ST_Centroid",
327
+ "convex_hull": lambda x: "ST_ConvexHull",
328
+ "coord_dim": lambda x: "ST_CoordDim",
329
+ "dimension": lambda x: "ST_Dimension",
330
+ "geom_type": lambda x: "ST_GeometryType",
331
+ "is_3D": lambda x: "ST_Is3D",
332
+ "is_empty": lambda x: "ST_IsEmpty",
333
+ "is_simple": lambda x: "ST_IsSimple",
334
+ "is_valid": lambda x: "ST_IsValid",
335
+ "max_x": lambda x: "ST_MaxX" if isinstance(x, GEOMETRY) else "XMax",
336
+ "max_y": lambda x: "ST_MaxY" if isinstance(x, GEOMETRY) else "YMax",
337
+ "max_z": lambda x: "ST_MaxZ" if isinstance(x, GEOMETRY) else "ZMax",
338
+ "min_x": lambda x: "ST_MinX" if isinstance(x, GEOMETRY) else "XMin",
339
+ "min_y": lambda x: "ST_MinY" if isinstance(x, GEOMETRY) else "YMin",
340
+ "min_z": lambda x: "ST_MinZ" if isinstance(x, GEOMETRY) else "ZMin",
341
+ "srid": lambda x: "ST_SRID",
342
+
343
+ ## *** Geometry Type ST_Point Methods *** ##
344
+ "x": lambda x: "ST_X",
345
+ "y": lambda x: "ST_Y",
346
+ "z": lambda x: "ST_Z",
347
+
348
+ ## *** Geometry Type ST_LineString Methods *** ##
349
+ "is_closed_3D": lambda x: "ST_3DIsClosed",
350
+ "is_closed": lambda x: "ST_IsClosed",
351
+ "is_ring": lambda x: "ST_IsRing",
352
+
353
+ ## *** Geometry Type ST_Polygon Methods *** ##
354
+ "area": lambda x: "ST_Area",
355
+ "exterior": lambda x: "ST_ExteriorRing",
356
+ "perimeter": lambda x: "ST_Perimeter"
357
+ }
358
+
359
+ # This dictionary maps teradataml name of the Geospatial function to
360
+ # SQL function name.
361
+ # This dictionary contains entries for the functions which are
362
+ # exposed as "Methods" of teradataml GeoDataFrame or
363
+ # teradataml GeoDataFrameColumn, but does not accept any argument.
364
+ METHOD_TO_NO_ARG_SQL_FUNCTION_NAME = {
365
+ ## *** ST_Geometry Methods *** ##
366
+ "mbb": lambda x: "MBB",
367
+ "to_binary": lambda x: "ST_AsBinary",
368
+ "to_text": lambda x: "ST_AsText",
369
+ "envelope": lambda x: "ST_Envelope",
370
+ "mbr": lambda x: "ST_MBR",
371
+
372
+ ## *** Geometry Type ST_LineString Methods *** ##
373
+ "length_3D": lambda x: "ST_3DLength",
374
+ "end_point": lambda x: "ST_EndPoint",
375
+ "length": lambda x: "ST_Length",
376
+ "num_points": lambda x: "ST_NumPoints",
377
+ "start_point": lambda x: "ST_StartPoint",
378
+
379
+ ## *** Geometry Type ST_Polygon Methods *** ##
380
+ "num_interior_ring": lambda x: "ST_NumInteriorRing",
381
+ "point_on_surface": lambda x: "ST_PointOnSurface",
382
+
383
+ ## *** Geometry Type ST_GeomCollection Methods *** ##
384
+ "num_geometry": lambda x: "ST_NumGeometries",
385
+
386
+ ## *** Geometry Type ST_Geomsequence Methods *** ##
387
+ "get_final_timestamp": lambda x: "GetFinalT",
388
+ "get_init_timestamp": lambda x: "GetInitT",
389
+ "get_user_field_count": lambda x: "GetUserFldCount"
390
+ }
391
+
392
+ # This dictionary maps teradataml name of the Geospatial function to
393
+ # SQL function name.
394
+ # This dictionary contains entries for the functions which are
395
+ # exposed as "Methods" of teradataml GeoDataFrame or
396
+ # teradataml GeoDataFrameColumn that accepts argument(s).
397
+ METHOD_TO_ARG_ACCEPTING_SQL_FUNCTION_NAME = {
398
+ ## *** Minimum Bounding Type Methods *** ##
399
+ "intersects": lambda x: "ST_Intersects" if isinstance(x, GEOMETRY) else "Intersects",
400
+
401
+ ## *** ST_Geometry Methods *** ##
402
+ "buffer": lambda x: "ST_Buffer",
403
+ "contains": lambda x: "ST_Contains",
404
+ "crosses": lambda x: "ST_Crosses",
405
+ "difference": lambda x: "ST_Difference", # M
406
+ "disjoint": lambda x: "ST_Disjoint",
407
+ "distance": lambda x: "ST_Distance", # M
408
+ "distance_3D": lambda x: "ST_3DDistance", # M
409
+ "geom_equals": lambda x: "ST_Equals",
410
+ "intersection": lambda x: "ST_Intersection",
411
+ # "intersect": lambda x: "ST_Intersect", # M
412
+ "make_2D": lambda x: "Make_2D",
413
+ "overlaps": lambda x: "ST_Overlaps",
414
+ "relates": lambda x: "ST_Relate",
415
+ "simplify": lambda x: "SimplifyPreserveTopology",
416
+ "sym_difference": lambda x: "ST_SymDifference", # M
417
+ "touches": lambda x: "ST_Touches",
418
+ "transform": lambda x: "ST_Transform",
419
+ "union": lambda x: "ST_Union",
420
+ "within": lambda x: "ST_Within",
421
+ "wkb_geom_to_sql": lambda x: "ST_WKBToSQL", # M
422
+ "wkt_geom_to_sql": lambda x: "ST_WKTToSQL", # M
423
+ "set_srid": lambda x: "ST_SRID",
424
+
425
+ ## *** Geometry Type ST_Point Methods *** ##
426
+ "set_x": lambda x: "ST_X",
427
+ "set_y": lambda x: "ST_Y",
428
+ "set_z": lambda x: "ST_Z",
429
+ "spherical_buffer": lambda x: "ST_SphericalBufferMBR", # M
430
+ "spherical_distance": lambda x: "ST_SphericalDistance", # M
431
+ "spheroidal_buffer": lambda x: "ST_SpheroidalBufferMBR", # M
432
+ "spheroidal_distance": lambda x: "ST_SpheroidalDistance", # M
433
+
434
+ ## *** Geometry Type ST_LineString Methods *** ##
435
+ "line_interpolate_point": lambda x: "ST_Line_Interpolate_Point",
436
+ "point": lambda x: "ST_PointN",
437
+
438
+ ## *** Geometry Type ST_Polygon Methods *** ##
439
+ "set_exterior": lambda x: "ST_ExteriorRing",
440
+ "interiors": lambda x: "ST_InteriorRingN",
441
+
442
+ ## *** Geometry Type ST_GeomCollection Methods *** ##
443
+ "geom_component": lambda x: "ST_GeometryN",
444
+
445
+ ## *** Geometry Type ST_Geomsequence Methods *** ##
446
+ "clip": lambda x: "Clip",
447
+ "get_user_field": lambda x: "GetUserFld",
448
+ "point_heading": lambda x: "HeadingN",
449
+ "get_link": lambda x: "LinkID",
450
+ "set_link": lambda x: "LinkID",
451
+ "speed": lambda x: "SpeedN",
452
+
453
+ ## *** Filtering Functions and Methods *** ##
454
+ "intersects_mbb": lambda x: "Intersects_MBB",
455
+ "mbb_filter": lambda x: "MBB_Filter",
456
+ "mbr_filter": lambda x: "MBR_Filter",
457
+ "within_mbb": lambda x: "Within_MBB"
458
+ }
459
+
460
+
461
+ class OutputStyle(Enum):
462
+ OUTPUT_TABLE = 'TABLE'
463
+ OUTPUT_VIEW = 'VIEW'
464
+
465
+
466
+ class TableOperatorConstants(Enum):
467
+ # Template of the intermediate script that will be generated.
468
+ MAP_TEMPLATE = "dataframe_map.template"
469
+ # Template of the intermediate script that will be generated.
470
+ APPLY_TEMPLATE = "dataframe_apply.template"
471
+ # Template of the intermediate script that will be generated for UDF.
472
+ UDF_TEMPLATE = "dataframe_udf.template"
473
+ # Template of the intermediate script that will be generated for register.
474
+ REGISTER_TEMPLATE = "dataframe_register.template"
475
+ # In-DB execution mode.
476
+ INDB_EXEC = "IN-DB"
477
+ # Local execution mode.
478
+ LOCAL_EXEC = "LOCAL"
479
+ # Remote user environment mode.
480
+ REMOTE_EXEC = "REMOTE"
481
+
482
+ EXEC_MODE = [LOCAL_EXEC, INDB_EXEC, REMOTE_EXEC]
483
+ # map_row operation.
484
+ MAP_ROW_OP = "map_row"
485
+ # map_partition operation.
486
+ MAP_PARTITION_OP = "map_partition"
487
+ # apply operation.
488
+ APPLY_OP = "apply"
489
+ # udf operation.
490
+ UDF_OP = "udf"
491
+ # register operation.
492
+ REGISTER_OP = "register"
493
+ # Template of the script_executor that will be used to generate the temporary script_executor file.
494
+ SCRIPT_TEMPLATE = "script_executor.template"
495
+ # Log Type.
496
+ SCRIPT_LOG = "SCRIPT"
497
+ APPLY_LOG = "APPLY"
498
+ LOG_TYPE = [SCRIPT_LOG, APPLY_LOG]
499
+ # Query for viewing last n lines of script log.
500
+ SCRIPT_LOG_QUERY = "SELECT * FROM SCRIPT (SCRIPT_COMMAND " \
501
+ "('tail -n {} /var/opt/teradata/tdtemp/uiflib/scriptlog') " \
502
+ "RETURNS ('scriptlog VARCHAR({})') )"
503
+
504
+ BYOM_LOG = "BYOM"
505
+ # Query for viewing last n lines of script log.
506
+ BYOM_LOG_QUERY = "SELECT * FROM SCRIPT (SCRIPT_COMMAND " \
507
+ "('tail -n {} /var/opt/teradata/byom/byom.log') " \
508
+ "RETURNS ('byomlog VARCHAR({})'))"
509
+
510
+ APPLY_LOG_QUERY = "SELECT LogDateTime, LogMessage, Level FROM syslib.LoggingOp({} {} {}) as dt"
511
+
512
+ # Check if Python interpretor and add-ons are installed or not.
513
+ # Location of In-DB packages is indicated by configure.indb_install_location.
514
+ # Check for both python and pip versions.
515
+ CHECK_PYTHON_INSTALLED = """SELECT distinct * FROM SCRIPT(
516
+ ON (select 1) PARTITION BY ANY
517
+ SCRIPT_COMMAND('echo $({0}/bin/pip3 --version) -- $({0}/bin/python3 --version)')
518
+ returns('pip VARCHAR(256)'))
519
+ """
520
+ # Check which version of rpms are installed.
521
+ INDB_PYTHON_PATH = """SEL DISTINCT os_ver
522
+ FROM SCRIPT(
523
+ SCRIPT_COMMAND('grep CPE_NAME /etc/os-release')
524
+ RETURNS('os_ver VARCHAR(100)')
525
+ );"""
526
+
527
+ # Script Query to get Python packages and corresponding versions.
528
+ # Location of In-DB packages is indicated by configure.indb_install_location.
529
+ partial_version_query = "SELECT distinct * FROM SCRIPT( ON (select 1) " \
530
+ "PARTITION BY ANY SCRIPT_COMMAND('{0}/bin/pip3 freeze | "
531
+
532
+ PACKAGE_VERSION_QUERY = partial_version_query + "{1}awk -F ''=='' " \
533
+ "''{{print $1, $2}}''') " \
534
+ "delimiter(' ') " \
535
+ "returns('package VARCHAR({2}), " \
536
+ "version VARCHAR({2})'))"
537
+
538
+ SCRIPT_LIST_FILES_QUERY = "SELECT DISTINCT * FROM SCRIPT (SCRIPT_COMMAND " \
539
+ "('ls ./{}') RETURNS ('Files VARCHAR({})'))"
540
+
541
+
542
+ # OpenBlas by default is multi-threaded, needs to be set to single-threaded.
543
+ OPENBLAS_NUM_THREADS = "OPENBLAS_NUM_THREADS=1"
544
+
545
+ # Query to create a DataFrame with a range of numbers.
546
+ RANGE_QUERY = "WITH RECURSIVE NumberSeries (id) AS (SELECT id AS id from {0} "\
547
+ "UNION ALL SELECT id {3} {1} FROM NumberSeries WHERE id {3} {1} {4} {2}) "\
548
+ "SELECT id FROM NumberSeries;"
549
+
550
+ class ValibConstants(Enum):
551
+ # A dictionary that maps teradataml name of the exposed VALIB function name
552
+ # to Vantage VALIB SQL function name.
553
+ TERADATAML_VALIB_SQL_FUNCTION_NAME_MAP = {
554
+ "AdaptiveHistogram": "AdaptiveHistogram",
555
+ "Explore": "DataExplorer",
556
+ "Frequency": "Frequency",
557
+ "Histogram": "Histogram",
558
+ "Overlap": "Overlap",
559
+ "Statistics": "Statistics",
560
+ "TextAnalyzer": "TextFieldAnalyzer",
561
+ "Values": "Values",
562
+ "Association": "Association",
563
+ "KMeans": "Kmeans",
564
+ "KMeansPredict": "KmeansScore",
565
+ "DecisionTree": "DecisionTree",
566
+ "DecisionTreePredict": "DecisionTreeScore",
567
+ "DecisionTreeEvaluator": "DecisionTreeScore",
568
+ "Matrix": "Matrix",
569
+ "LinReg": "Linear",
570
+ "LinRegPredict": "LinearScore",
571
+ "LinRegEvaluator": "LinearScore",
572
+ "LogReg": "Logistic",
573
+ "LogRegPredict": "LogisticScore",
574
+ "LogRegEvaluator": "LogisticScore",
575
+ "PCA": "Factor",
576
+ "PCAPredict": "FactorScore",
577
+ "PCAEvaluator": "FactorScore",
578
+ "ParametricTest": "ParametricTest",
579
+ "BinomialTest": "BinomialTest",
580
+ "KSTest": "KSTest",
581
+ "ChiSquareTest": "ChiSquareTest",
582
+ "RankTest": "RankTest",
583
+ "BinCode": "vartran",
584
+ "Derive": "vartran",
585
+ "DesignCode": "vartran",
586
+ "Fillna": "vartran",
587
+ "Recode": "vartran",
588
+ "Rescale": "vartran",
589
+ "Sigmoid": "vartran",
590
+ "ZScore": "vartran",
591
+ "Transform": "vartran",
592
+ "XmlToHtmlReport": "report"
593
+ }
594
+
595
+ # A dictionary that maps Vantage VALIB SQL function name to a dictionary
596
+ # mapping a teradataml name of input argument to another dictionary containing
597
+ # Vantage SQL equivalent arguments, specified with "database_arg" and
598
+ # "table_arg" keys.
599
+ # In teradataml, input argument is a DataFrame, which contains both database and table name
600
+ # information. We shall just map that to Vantage SQL input table arguments.
601
+ # ---------------------------------------------------------------------------------
602
+ # NOTE:
603
+ # Add an entry in this map,
604
+ # 1. If and only if VALIB function accepts multiple input arguments.
605
+ # 2. Default argument for input is "data". Don't add an entry for it.
606
+ # 3. Add entry for only other input arguments.
607
+ # ---------------------------------------------------------------------------------
608
+ VALIB_FUNCTION_MULTIINPUT_ARGUMENT_MAP = {
609
+ "ASSOCIATION": {
610
+ "description_data": {
611
+ "database_arg": "descriptiondatabase",
612
+ "table_arg": "descriptiontable"
613
+ },
614
+ "hierarchy_data": {
615
+ "database_arg": "hierarchydatabase",
616
+ "table_arg": "hierarchytable"
617
+ },
618
+ "left_lookup_data": {
619
+ "database_arg": "leftlookupdatabase",
620
+ "table_arg": "leftlookuptable"
621
+ },
622
+ "right_lookup_data": {
623
+ "database_arg": "rightlookupdatabase",
624
+ "table_arg": "rightlookuptable"
625
+ },
626
+ "reduced_data": {
627
+ "database_arg": "reducedinputdatabase",
628
+ "table_arg": "reducedinputtable"
629
+ }
630
+ },
631
+
632
+ "KMEANSSCORE": {
633
+ "model": {
634
+ "database_arg": "modeldatabase",
635
+ "table_arg": "modeltablename"
636
+ }
637
+ },
638
+
639
+ "DECISIONTREESCORE": {
640
+ "model": {
641
+ "database_arg": "modeldatabase",
642
+ "table_arg": "modeltablename"
643
+ }
644
+ },
645
+
646
+ "LINEARSCORE": {
647
+ "model": {
648
+ "database_arg": "modeldatabase",
649
+ "table_arg": "modeltablename"
650
+ }
651
+ },
652
+
653
+ "LOGISTIC": {
654
+ "matrix_data": {
655
+ "database_arg": "matrixdatabase",
656
+ "table_arg": "matrixtablename"
657
+ }
658
+ },
659
+
660
+ "LOGISTICSCORE": {
661
+ "model": {
662
+ "database_arg": "modeldatabase",
663
+ "table_arg": "modeltablename"
664
+ }
665
+ },
666
+
667
+ "FACTORSCORE": {
668
+ "model": {
669
+ "database_arg": "modeldatabase",
670
+ "table_arg": "modeltablename"
671
+ }
672
+ }
673
+ }
674
+
675
+ # A dictionary that maps Vantage VALIB SQL function name to a dictionary of SQL output
676
+ # arguments of the function.
677
+ # This values dictionary will map:
678
+ # 1. "db" key to SQL output argument that accepts database name where output
679
+ # table will be created.
680
+ # 2. "tbls" key to a list of SQL output argument that accepts table name.
681
+ # 3. "mandatory_output_extensions" key to the dictionary of extensions to teradataml
682
+ # output argument names. The tables in this extension mapper are generated
683
+ # irrespective of whether the function is scoring/evaluator/any other function.
684
+ # 4. "evaluator_output_extensions" key to the dictionary of extensions to teradataml
685
+ # output argument names. The tables in this extension mapper are generated
686
+ # only when the function is evaluator function. When these tables are generated,
687
+ # tables that do not have extensions will not be generated (feature of evaluator
688
+ # functions.
689
+ # In teradataml, output arguments are not accepted from user, but are created and used
690
+ # internally.
691
+ # ---------------------------------------------------------------------------------
692
+ # NOTES:
693
+ # 1. Add an entry in this map, if VALIB function
694
+ # a. Generates multiple output tables OR
695
+ # b. Output argument names are not same as default output argument names:
696
+ # 'outputdatabase' and 'outputtablename'.
697
+ # 2. No need to add an entry for default argument for output.
698
+ # ---------------------------------------------------------------------------------
699
+ VALIB_FUNCTION_OUTPUT_ARGUMENT_MAP = {
700
+ "DATAEXPLORER": {
701
+ "db": "outputdatabase",
702
+ "tbls": ["frequencyoutputtablename",
703
+ "histogramoutputtablename",
704
+ "statisticsoutputtablename",
705
+ "valuesoutputtablename"]
706
+ },
707
+
708
+ "LINEAR": {
709
+ "db": "outputdatabase",
710
+ "tbls": "outputtablename",
711
+ "mandatory_output_extensions": {"_rpt": "statistical_measures",
712
+ "_txt": "xml_reports"}
713
+ },
714
+
715
+ "LINEARSCORE": {
716
+ "db": "outputdatabase",
717
+ "tbls": "outputtablename",
718
+ "evaluator_output_extensions": {"_txt": "result"}
719
+ },
720
+
721
+ "LOGISTIC": {
722
+ "db": "outputdatabase",
723
+ "tbls": "outputtablename",
724
+ "mandatory_output_extensions": {"_rpt": "statistical_measures",
725
+ "_txt": "xml_reports"}
726
+ },
727
+
728
+ "LOGISTICSCORE": {
729
+ "db": "outputdatabase",
730
+ "tbls": "outputtablename",
731
+ "evaluator_output_extensions": {"_txt": "result"}
732
+ },
733
+
734
+ "DECISIONTREESCORE": {
735
+ "db": "outputdatabase",
736
+ "tbls": "outputtablename",
737
+ "mandatory_output_extensions": {"_1": "profile_result_1",
738
+ "_2": "profile_result_2"},
739
+ "evaluator_output_extensions": {"_rpt": "result"}
740
+ },
741
+
742
+ "FACTORSCORE": {
743
+ "db": "outputdatabase",
744
+ "tbls": "outputtablename",
745
+ "evaluator_output_extensions": {"_rpt": "result"}
746
+ },
747
+
748
+ "TEXTFIELDANALYZER": {
749
+ "db": "outputdatabase",
750
+ "tbls": "outputtablename",
751
+ "mandatory_output_extensions": {"_rpt": "data_type_matrix"}
752
+ }
753
+ }
754
+
755
+ # A dictionary that maps Vantage VALIB SQL function name to a dictionary mapping
756
+ # SQL Output table argument name to teradataml exposed output argument name.
757
+ # ---------------------------------------------------------------------------------
758
+ # NOTES:
759
+ # 1. Add an entry in this map, if VALIB function generates multiple output tables.
760
+ # 2. No need to add an entry for default argument for output.
761
+ # 3. Default exposed output argument name is "result".
762
+ # ---------------------------------------------------------------------------------
763
+ TERADATAML_VALIB_MULTIOUTPUT_ATTR_MAP = {
764
+ "DATAEXPLORER": {
765
+ "frequencyoutputtablename": "frequency_output",
766
+ "histogramoutputtablename": "histogram_output",
767
+ "statisticsoutputtablename": "statistics_output",
768
+ "valuesoutputtablename": "values_output"
769
+ },
770
+
771
+ "LINEAR": {
772
+ "outputtablename": "model",
773
+ "_rpt": "statistical_measures",
774
+ "_txt": "xml_reports"
775
+ },
776
+
777
+ "LOGISTIC": {
778
+ "outputtablename": "model",
779
+ "_rpt": "statistical_measures",
780
+ "_txt": "xml_reports"
781
+ },
782
+
783
+ "DECISIONTREESCORE": {
784
+ "outputtablename": "result",
785
+ "_1": "profile_result_1",
786
+ "_2": "profile_result_2"
787
+ },
788
+
789
+ "TEXTFIELDANALYZER": {
790
+ "outputtablename": "result",
791
+ "_rpt": "data_type_matrix"
792
+ }
793
+ }
794
+
795
+ # A dictionary that maps Vantage VALIB Teradataml function name to a dictionary mapping
796
+ # SQL Output table argument name to teradataml exposed output argument name.
797
+ # ---------------------------------------------------------------------------------
798
+ # NOTES:
799
+ # 1. Add an entry in this map, if VALIB evaluator function generates tables with
800
+ # extension(s) or multiple output tables.
801
+ # 2. This mapper is specific to Evaluator functions. "__multioutput_attr_map" of VALIB
802
+ # object is replaced with this mapper if the function is evaluator function.
803
+ # ---------------------------------------------------------------------------------
804
+ TERDATAML_EVALUATOR_OUTPUT_ATTR_MAP = {
805
+ "DecisionTreeEvaluator": {
806
+ "_rpt": "result",
807
+ "_1": "profile_result_1",
808
+ "_2": "profile_result_2"
809
+ },
810
+
811
+ "LinRegEvaluator": {
812
+ "_txt": "result"
813
+ },
814
+
815
+ "LogRegEvaluator": {
816
+ "_txt": "result"
817
+ },
818
+
819
+ "PCAEvaluator": {
820
+ "_rpt": "result"
821
+ }
822
+ }
823
+
824
+ # A dictionary that maps Vantage VALIB SQL function name to:
825
+ # 1. A dictionary mapping teradataml exposed name of the argument to SQL function
826
+ # argument name. OR
827
+ # 2. Just a list of SQL function argument names supported by the function.
828
+ # ---------------------------------------------------------------------------------
829
+ # NOTES:
830
+ # 1. Add an entry in this map, if argument names in teradataml are different from
831
+ # SQL function argument names.
832
+ # 2. No need to add an entry if all argument names are same as that of the SQL Function
833
+ # argument.
834
+ # 3. The argument "scoring_method" is added internally based on the teradataml function
835
+ # name.
836
+ # ---------------------------------------------------------------------------------
837
+ TERADATAML_VALIB_FUNCTION_ARGUMENT_MAP = {
838
+ # 'overwrite' argument is not needed, as we will generate table names internally.
839
+ "ADAPTIVEHISTOGRAM": {
840
+ "columns": "columns",
841
+ "bins": "bins",
842
+ "exclude_columns": "columnstoexclude",
843
+ "spike_threshold": "spikethreshold",
844
+ "subdivision_method": "subdivisionmethod",
845
+ "subdivision_threshold": "subdivisionthreshold",
846
+ "filter": "where",
847
+ "gen_sql_only": "gensqlonly",
848
+ "charset": "charset"
849
+ },
850
+
851
+ "DATAEXPLORER": {
852
+ "columns": "columns",
853
+ "bins": "bins",
854
+ "bin_style": "binstyle",
855
+ "max_comb_values": "maxnumcombvalues",
856
+ "max_unique_char_values": "maxuniquecharvalues",
857
+ "max_unique_num_values": "maxuniquenumvalues",
858
+ "min_comb_rows": "minrowsforcomb",
859
+ "restrict_freq": "restrictedfreqproc",
860
+ "restrict_threshold": "restrictedthreshold",
861
+ "statistical_method": "statisticalmethod",
862
+ "stats_options": "statsoptions",
863
+ "distinct": "uniques",
864
+ "filter": "where",
865
+ "gen_sql": "gensql",
866
+ "charset": "charset"
867
+ },
868
+
869
+ "FREQUENCY": {
870
+ "columns": "columns",
871
+ "exclude_columns": "columnstoexclude",
872
+ "cumulative_option": "cumulativeoption",
873
+ "agg_filter": "having",
874
+ "min_percentage": "minimumpercentage",
875
+ "pairwise_columns": "pairwisecolumns",
876
+ "stats_columns": "statisticscolumns",
877
+ "style": "style",
878
+ "top_n": "topvalues",
879
+ "filter": "where",
880
+ "gen_sql_only": "gensqlonly",
881
+ "charset": "charset"
882
+ },
883
+
884
+ "HISTOGRAM": {
885
+ "columns": "columns",
886
+ "bins": "bins",
887
+ "bins_with_boundaries": "binwithminmax",
888
+ "boundaries": "boundaries",
889
+ "quantiles": "quantiles",
890
+ "widths": "widths",
891
+ "exclude_columns": "columnstoexclude",
892
+ "overlay_columns": "overlaycolumns",
893
+ "stats_columns": "statisticscolumns",
894
+ "hist_style": "style",
895
+ "filter": "where",
896
+ "gen_sql_only": "gensqlonly",
897
+ "charset": "charset"
898
+ },
899
+
900
+ "STATISTICS": {
901
+ "columns": "columns",
902
+ "exclude_columns": "columnstoexclude",
903
+ "extended_options": "extendedoptions",
904
+ "group_columns": "groupby",
905
+ "statistical_method": "statisticalmethod",
906
+ "stats_options": "statsoptions",
907
+ "filter": "where",
908
+ "gen_sql_only": "gensqlonly",
909
+ "charset": "charset"
910
+ },
911
+
912
+ "TEXTFIELDANALYZER": {
913
+ "columns": "columns",
914
+ "exclude_columns": "columnstoexclude",
915
+ "analyze_numerics": "extendednumericanalysis",
916
+ "analyze_unicode": "extendedunicodeanalysis",
917
+ "gen_sql_only": "gensqlonly",
918
+ "charset": "charset"
919
+ },
920
+
921
+ "VALUES": {
922
+ "columns": "columns",
923
+ "exclude_columns": "columnstoexclude",
924
+ "group_columns": "groupby",
925
+ "distinct": "uniques",
926
+ "filter": "where",
927
+ "gen_sql_only": "gensqlonly",
928
+ "charset": "charset"
929
+ },
930
+
931
+ "ASSOCIATION": {
932
+ "group_column": "groupcolumn",
933
+ "item_column": "itemcolumn",
934
+ "combinations": "combinations",
935
+ "description_identifier": "descriptionidentifier",
936
+ "description_column": "descriptioncolumn",
937
+ "group_count": "groupcount",
938
+ "low_level_column": "hierarchyitemcolumn",
939
+ "high_level_column": "hierarchycolumn",
940
+ "left_lookup_column": "leftlookupcolumn",
941
+ "right_lookup_column": "rightlookupcolumn",
942
+ "min_confidence": "minimumconfidence",
943
+ "min_lift": "minimumlift",
944
+ "min_support": "minimumsupport",
945
+ "min_zscore": "minimumzscore",
946
+ "order_prob": "orderingprobability",
947
+ "process_type": "processtype",
948
+ "relaxed_order": "relaxedordering",
949
+ "sequence_column": "sequencecolumn",
950
+ "filter": "where",
951
+ "no_support_results": "dropsupporttables",
952
+ "support_result_prefix": "resulttableprefix",
953
+ "gen_sql_only": "gensqlonly",
954
+ "charset": "charset"
955
+ },
956
+
957
+ "KMEANS": {
958
+ "columns": "columns",
959
+ "centers": "kvalue",
960
+ "exclude_columns": "columnstoexclude",
961
+ "continuation": "continuation",
962
+ "max_iter": "iterations",
963
+ "operator_database": "operatordatabase",
964
+ "threshold": "threshold",
965
+ "charset": "charset"
966
+ },
967
+
968
+ "KMEANSSCORE": {
969
+ "index_columns": "index",
970
+ "cluster_column": "clustername",
971
+ "fallback": "fallback",
972
+ "operator_database": "operatordatabase",
973
+ "accumulate": "retain",
974
+ "charset": "charset"
975
+ },
976
+
977
+ "DECISIONTREE": {
978
+ "columns": "columns",
979
+ "response_column": "dependent",
980
+ "algorithm": "algorithm",
981
+ "binning": "binning",
982
+ "exclude_columns": "columnstoexclude",
983
+ "max_depth": "max_depth",
984
+ "num_splits": "min_records",
985
+ "operator_database": "operatordatabase",
986
+ "pruning": "pruning",
987
+ "charset": "charset"
988
+ },
989
+
990
+ "DECISIONTREESCORE": {
991
+ "include_confidence": "includeconfidence",
992
+ "index_columns": "index",
993
+ "response_column": "predicted",
994
+ "profile": "profiletables",
995
+ "accumulate": "retain",
996
+ "targeted_value": "targetedvalue",
997
+ "gen_sql_only": "gensqlonly",
998
+ "charset": "charset"
999
+ },
1000
+
1001
+ "MATRIX": {
1002
+ "columns": "columns",
1003
+ "exclude_columns": "columnstoexclude",
1004
+ "group_columns": "groupby",
1005
+ "matrix_output": "matrixoutput",
1006
+ "type": "matrixtype",
1007
+ "handle_nulls": "nullhandling",
1008
+ "filter": "where",
1009
+ "charset": "charset"
1010
+ },
1011
+
1012
+ "LINEAR": {
1013
+ "columns": "columns",
1014
+ "response_column": "dependent",
1015
+ "backward": "backward",
1016
+ "backward_only": "backwardonly",
1017
+ "exclude_columns": "columnstoexclude",
1018
+ "cond_ind_threshold": "conditionindexthreshold",
1019
+ "constant": "constant",
1020
+ "entrance_criterion": "enter",
1021
+ "forward": "forward",
1022
+ "forward_only": "forwardonly",
1023
+ "group_columns": "groupby",
1024
+ "matrix_input": "matrixinput",
1025
+ "near_dep_report": "neardependencyreport",
1026
+ "remove_criterion": "remove",
1027
+ "stats_output": "statstable",
1028
+ "stepwise": "stepwise",
1029
+ "use_fstat": "usefstat",
1030
+ "use_pvalue": "usepvalue",
1031
+ "variance_prop_threshold": "varianceproportionthreshold",
1032
+ "charset": "charset"
1033
+ },
1034
+
1035
+ "LINEARSCORE": {
1036
+ "index_columns": "index",
1037
+ "response_column": "predicted",
1038
+ "residual_column": "residual",
1039
+ "accumulate": "retain",
1040
+ "gen_sql_only": "gensqlonly",
1041
+ "charset": "charset"
1042
+ },
1043
+
1044
+ "LOGISTIC": {
1045
+ "columns": "columns",
1046
+ "response_column": "dependent",
1047
+ "backward": "backward",
1048
+ "backward_only": "backwardonly",
1049
+ "exclude_columns": "columnstoexclude",
1050
+ "cond_ind_threshold": "conditionindexthreshold",
1051
+ "constant": "constant",
1052
+ "convergence": "convergence",
1053
+ "entrance_criterion": "enter",
1054
+ "forward": "forward",
1055
+ "forward_only": "forwardonly",
1056
+ "group_columns": "groupby",
1057
+ "lift_output": "lifttable",
1058
+ "max_iter": "maxiterations",
1059
+ "mem_size": "memorysize",
1060
+ "near_dep_report": "neardependencyreport",
1061
+ "remove_criterion": "remove",
1062
+ "response_value": "response",
1063
+ "sample": "sample",
1064
+ "stats_output": "statstable",
1065
+ "stepwise": "stepwise",
1066
+ "success_output": "successtable",
1067
+ "start_threshold": "thresholdbegin",
1068
+ "end_threshold": "thresholdend",
1069
+ "increment_threshold": "thresholdincrement",
1070
+ "threshold_output": "thresholdtable",
1071
+ "variance_prop_threshold": "varianceproportionthreshold",
1072
+ "charset": "charset"
1073
+ },
1074
+
1075
+ "LOGISTICSCORE": {
1076
+ "estimate_column": "estimate",
1077
+ "index_columns": "index",
1078
+ "prob_column": "probability",
1079
+ "accumulate": "retain",
1080
+ "prob_threshold": "threshold",
1081
+ "start_threshold": "thresholdbegin",
1082
+ "end_threshold": "thresholdend",
1083
+ "increment_threshold": "thresholdincrement",
1084
+ "gen_sql_only": "gensqlonly",
1085
+ "charset": "charset"
1086
+
1087
+ # The following 3 arguments three should not be present for LogRegPredict function
1088
+ # where as when the function is LogRegEvaluator, at least one of these should be
1089
+ # present. By default (i.e., when these are not provided in LogRegEvaluator SQL), the
1090
+ # function takes 'True' for these arguments. So, by commenting these we are providing
1091
+ # all three tables in XML that is generated by the LogRegEvaluator function.
1092
+ # "threshold_output": "thresholdtable",
1093
+ # "lift_output": "lifttable",
1094
+ # "success_output": "successtable"
1095
+ },
1096
+
1097
+ "FACTOR": {
1098
+ "columns": "columns",
1099
+ "exclude_columns": "columnstoexclude",
1100
+ "cond_ind_threshold": "conditionindexthreshold",
1101
+ "min_eigen": "eigenmin",
1102
+ "load_report": "factorloadingsreport",
1103
+ "vars_load_report": "factorvariablesloadingsreport",
1104
+ "vars_report": "factorvariablesreport",
1105
+ "gamma": "gamma",
1106
+ "group_columns": "groupby",
1107
+ "matrix_input": "matrixinput",
1108
+ "matrix_type": "matrixtype",
1109
+ "near_dep_report": "neardependencyreport",
1110
+ "rotation_type": "rotationtype",
1111
+ "load_threshold": "thresholdloading",
1112
+ "percent_threshold": "thresholdpercent",
1113
+ "variance_prop_threshold": "varianceproportionthreshold",
1114
+ "charset": "charset"
1115
+ },
1116
+
1117
+ "FACTORSCORE": {
1118
+ "index_columns": "index",
1119
+ "accumulate": "retain",
1120
+ "gen_sql_only": "gensqlonly",
1121
+ "charset": "charset"
1122
+ },
1123
+
1124
+ "PARAMETRICTEST": {
1125
+ "columns": "columns",
1126
+ "dependent_column": "columnofinterest",
1127
+ "equal_variance": "equalvariance",
1128
+ "fallback": "fallback",
1129
+ "first_column": "firstcolumn",
1130
+ "first_column_values": "firstcolumnvalues",
1131
+ "group_columns": "groupby",
1132
+ "allow_duplicates": "multiset",
1133
+ "paired": "paired",
1134
+ "second_column": "secondcolumn",
1135
+ "second_column_values": "secondcolumnvalues",
1136
+ "stats_database": "statsdatabase",
1137
+ "style": "teststyle",
1138
+ "probability_threshold": "thresholdprobability",
1139
+ "with_indicator": "withindicator",
1140
+ "gen_sql_only": "gensqlonly",
1141
+ "charset": "charset"
1142
+ },
1143
+
1144
+ "BINOMIALTEST": {
1145
+ "first_column": "firstcolumn",
1146
+ "binomial_prob": "binomialprobability",
1147
+ "exact_matches": "exactmatches",
1148
+ "fallback": "fallback",
1149
+ "group_columns": "groupby",
1150
+ "allow_duplicates": "multiset",
1151
+ "second_column": "secondcolumn",
1152
+ "single_tail": "singletail",
1153
+ "stats_database": "statsdatabase",
1154
+ "style": "teststyle",
1155
+ "probability_threshold": "thresholdprobability",
1156
+ "gen_sql_only": "gensqlonly",
1157
+ "charset": "charset"
1158
+ },
1159
+
1160
+ "KSTEST": {
1161
+ "columns": "columns",
1162
+ "dependent_column": "columnofinterest",
1163
+ "fallback": "fallback",
1164
+ "group_columns": "groupby",
1165
+ "allow_duplicates": "multiset",
1166
+ "stats_database": "statsdatabase",
1167
+ "style": "teststyle",
1168
+ "probability_threshold": "thresholdprobability",
1169
+ "gen_sql_only": "gensqlonly",
1170
+ "charset": "charset"
1171
+ },
1172
+
1173
+ "CHISQUARETEST": {
1174
+ "columns": "columns",
1175
+ "dependent_column": "columnofinterest",
1176
+ "fallback": "fallback",
1177
+ "first_columns": "firstcolumns",
1178
+ "group_columns": "groupby",
1179
+ "allow_duplicates": "multiset",
1180
+ "second_columns": "secondcolumns",
1181
+ "stats_database": "statsdatabase",
1182
+ "style": "teststyle",
1183
+ "probability_threshold": "thresholdprobability",
1184
+ "gen_sql_only": "gensqlonly",
1185
+ "charset": "charset"
1186
+ },
1187
+
1188
+ "RANKTEST": {
1189
+ "block_column": "blockcolumn",
1190
+ "columns": "columns",
1191
+ "dependent_column": "columnofinterest",
1192
+ "fallback": "fallback",
1193
+ "first_column": "firstcolumn",
1194
+ "group_columns": "groupby",
1195
+ "include_zero": "includezero",
1196
+ "independent": "independent",
1197
+ "allow_duplicates": "multiset",
1198
+ "second_column": "secondcolumn",
1199
+ "single_tail": "singletail",
1200
+ "stats_database": "statsdatabase",
1201
+ "style": "teststyle",
1202
+ "probability_threshold": "thresholdprobability",
1203
+ "treatment_column": "treatmentcolumn",
1204
+ "gen_sql_only": "gensqlonly",
1205
+ "charset": "charset"
1206
+ },
1207
+
1208
+ "VARTRAN": {
1209
+ "fallback": "fallback",
1210
+ "index_columns": "index",
1211
+ "unique_index": "indexunique",
1212
+ "key_columns": "keycolumns",
1213
+ "allow_duplicates": "multiset",
1214
+ "nopi": "noindex",
1215
+ "filter": "whereclause",
1216
+ "gen_sql_only": "gensqlonly",
1217
+ "charset": "charset"
1218
+ },
1219
+
1220
+ "REPORT": {
1221
+ "analysis_type": "analysistype",
1222
+ "filter": "where",
1223
+ "gen_sql_only": "gensqlonly",
1224
+ "charset": "charset"
1225
+ }
1226
+ }
1227
+
1228
+ # Arguments to ignore - These are the arguments, that are not processed currently.
1229
+ # TODO: Support can be added to these in later stages.
1230
+ IGNORE_ARGUMENTS = ["overwrite", "ouputstyle", "samplescoresize"]
1231
+
1232
+ # Output DataFrame default argument name.
1233
+ DEFAULT_OUTPUT_VAR = "result"
1234
+
1235
+ # Output DataFrame result list name.
1236
+ OUTPUT_DATAFRAME_RESULTS = "_valib_results"
1237
+
1238
+ # Scoring method SQL argument name and values.
1239
+ SCORING_METHOD_ARG_NAME = "scoringmethod"
1240
+ SCORING_METHOD_ARG_VALUE = {
1241
+ "default": "score",
1242
+ # TODO: Replace "scoreandevaluate" with "evaluate" because for FactorScore, using
1243
+ # scoringmethod as evaluate is producing result to the console and table is not
1244
+ # generated.
1245
+ "non-default": "scoreandevaluate"
1246
+ }
1247
+
1248
+ # Map between function category and corresponding list of function names.
1249
+ CATEGORY_VAL_FUNCS_MAP = {
1250
+ "Descriptive Statistics": ["AdaptiveHistogram", "Explore", "Frequency", "Histogram", "Overlap",
1251
+ "Statistics", "TextAnalyzer", "Values"],
1252
+ "Variable Transformation": ["BinCode", "Derive", "DesignCode", "Fillna", "Recode", "Rescale", "Retain",
1253
+ "Sigmoid", "Transform", "ZScore"],
1254
+ "Statistical Test": ["BinomialTest", "ChiSquareTest", "KSTest", "ParametricTest", "RankTest"],
1255
+ "Model Training": ["Association", "KMeans", "DecisionTree", "Matrix", "LinReg", "LogReg", "PCA"],
1256
+ "Model Scoring/Prediction": ["DecisionTreePredict", "DecisionTreeEvaluator", "KMeansPredict", "LinRegPredict",
1257
+ "LinRegEvaluator", "LogRegPredict", "LogRegEvaluator", "PCAPredict",
1258
+ "PCAEvaluator"],
1259
+ "Helper": ["XmlToHtmlReport"]}
1260
+
1261
+
1262
+ class SQLFunctionConstants(Enum):
1263
+ # Dictionary maps teradataml name of the Aggregate function to
1264
+ # SQL function name.
1265
+ AGGREGATE_FUNCTION_MAPPER = {"avg": "AVG",
1266
+ "corr": "CORR",
1267
+ "covar_pop": "COVAR_POP",
1268
+ "covar_samp": "COVAR_SAMP",
1269
+ "cume_dist": "CUME_DIST",
1270
+ "dense_rank": "DENSE_RANK",
1271
+ "first_value": "FIRST_VALUE",
1272
+ "last_value": "LAST_VALUE",
1273
+ "lag": "LAG",
1274
+ "lead": "LEAD",
1275
+ "percent_rank": "PERCENT_RANK",
1276
+ "percentile_disc": "PERCENTILE_DISC",
1277
+ "rank": "RANK",
1278
+ "regr_avgx": "REGR_AVGX",
1279
+ "regr_avgy": "REGR_AVGY",
1280
+ "regr_count": "REGR_COUNT",
1281
+ "regr_intercept": "REGR_INTERCEPT",
1282
+ "regr_r2": "REGR_R2",
1283
+ "regr_slope": "REGR_SLOPE",
1284
+ "regr_sxx": "REGR_SXX",
1285
+ "regr_sxy": "REGR_SXY",
1286
+ "regr_syy": "REGR_SYY",
1287
+ "row_number": "ROW_NUMBER",
1288
+ "csum": "CSUM",
1289
+ "msum": "MSUM",
1290
+ "mavg": "MAVG",
1291
+ "mdiff": "MDIFF",
1292
+ "mlinreg": "MLINREG",
1293
+ "quantile": "QUANTILE",
1294
+ "percentile": "PERCENTILE"
1295
+ }
1296
+
1297
+ SQL_FUNCTION_MAPPER = {
1298
+ # Hyperbolic functions
1299
+ "acosh": "ACOSH",
1300
+ "asinh": "ASINH",
1301
+ "atanh": "ATANH",
1302
+ "cosh": "COSH",
1303
+ "sinh": "SINH",
1304
+ "tanh": "TANH",
1305
+ # Trigonometric functions
1306
+ "acos": "ACOS",
1307
+ "asin": "ASIN",
1308
+ "atan": "ATAN",
1309
+ "atan2": "ATAN2",
1310
+ "cos": "COS",
1311
+ "sin": "SIN",
1312
+ "tan": "TAN",
1313
+ # Maths function
1314
+ "abs": "ABS",
1315
+ "ceil": "CEILING",
1316
+ "ceiling": "CEILING",
1317
+ "degrees": "DEGREES",
1318
+ "exp": "EXP",
1319
+ "floor": "FLOOR",
1320
+ "ln": "LN",
1321
+ "log10": "LOG",
1322
+ "pmod": "MOD",
1323
+ "mod": "MOD",
1324
+ "nullifzero": "NULLIFZERO",
1325
+ "pow": "POWER",
1326
+ "power": "POWER",
1327
+ "radians": "RADIANS",
1328
+ "round": "ROUND",
1329
+ "sign": "SIGN",
1330
+ "signum": "SIGN",
1331
+ "sqrt": "SQRT",
1332
+ "width_bucket": "WIDTH_BUCKET",
1333
+ "zeroifnull": "ZEROIFNULL",
1334
+
1335
+ # String Functions
1336
+ "ascii": "ASCII",
1337
+ "char2hexint": "CHAR2HEXINT",
1338
+ "chr": "CHR",
1339
+ "char": "CHR",
1340
+ "character_length": "LENGTH",
1341
+ "char_length": "LENGTH",
1342
+ "edit_distance": "EDITDISTANCE",
1343
+ "index": "INDEX",
1344
+ "initcap": "INITCAP",
1345
+ "instr": "INSTR",
1346
+ "lcase": "LOWER",
1347
+ "left": "LEFT",
1348
+ "length": "LENGTH",
1349
+ "levenshtein": "EDITDISTANCE",
1350
+ "locate": "LOCATE",
1351
+ "lower": "LOWER",
1352
+ "lpad": "LPAD",
1353
+ "ltrim": "LTRIM",
1354
+ "ngram": "NGRAM",
1355
+ "nvp": "NVP",
1356
+ "oreplace": "OREPLACE",
1357
+ "otranslate": "OTRANSLATE",
1358
+ "reverse": "REVERSE",
1359
+ "right": "RIGHT",
1360
+ "rpad": "RPAD",
1361
+ "rtrim": "RTRIM",
1362
+ "soundex": "SOUNDEX",
1363
+ "string_cs": "STRING_CS",
1364
+ "translate": "OTRANSLATE",
1365
+ "upper": "UPPER",
1366
+
1367
+ # Byte Functions
1368
+ "bit_and": "BITAND",
1369
+ "bit_get": "GETBIT",
1370
+ "bit_or": "BITOR",
1371
+ "bit_xor": "BITXOR",
1372
+ "bitand": "BITAND",
1373
+ "bitnot": "BITNOT",
1374
+ "bitor": "BITOR",
1375
+ "bitwise_not": "BITNOT",
1376
+ "bitwiseNOT": "BITNOT",
1377
+ "bitxor": "BITXOR",
1378
+ "countset": "COUNTSET",
1379
+ "getbit": "GETBIT",
1380
+ "rotateleft": "ROTATELEFT",
1381
+ "rotateright": "ROTATERIGHT",
1382
+ "setbit": "SETBIT",
1383
+ "shiftleft": "SHIFTLEFT",
1384
+ "shiftright": "SHIFTRIGHT",
1385
+ "subbitstr": "SUBBITSTR",
1386
+
1387
+ # Regular Expression Functions
1388
+ "regexp_instr": "REGEXP_INSTR",
1389
+ "regexp_replace": "REGEXP_REPLACE",
1390
+ "regexp_similar": "REGEXP_SIMILAR",
1391
+ "regexp_substr": "REGEXP_SUBSTR",
1392
+
1393
+ # DateTime Functions
1394
+ 'week_begin': 'td_week_begin',
1395
+ 'week_start': 'td_week_begin',
1396
+ 'week_end': 'td_week_end',
1397
+ 'quarter_begin': 'td_quarter_begin',
1398
+ 'quarter_start': 'td_quarter_begin',
1399
+ 'quarter_end': 'td_quarter_end',
1400
+ 'month_begin': 'td_month_begin',
1401
+ 'month_start': 'td_month_begin',
1402
+ 'month_end': 'td_month_end',
1403
+ 'year_begin': 'td_year_begin',
1404
+ 'year_start': 'td_year_begin',
1405
+ 'year_end': 'td_year_end',
1406
+ 'last_sunday': 'td_sunday',
1407
+ 'last_monday': 'td_monday',
1408
+ 'last_tuesday': 'td_tuesday',
1409
+ 'last_wednesday': 'td_wednesday',
1410
+ 'last_thursday': 'td_thursday',
1411
+ 'last_friday': 'td_friday',
1412
+ 'last_saturday': 'td_saturday',
1413
+ 'day_of_week': 'DayNumber_Of_Week',
1414
+ 'day_of_month': 'DayNumber_Of_Month',
1415
+ 'day_of_year': 'DayNumber_Of_Year',
1416
+ 'day_of_calendar': 'DayNumber_Of_Calendar',
1417
+ 'week_of_month': 'WeekNumber_Of_Month',
1418
+ 'week_of_quarter': 'WeekNumber_Of_Quarter',
1419
+ 'week_of_year': 'WeekNumber_Of_Year',
1420
+ 'week_of_calendar': 'WeekNumber_Of_Calendar',
1421
+ 'month_of_year': 'MonthNumber_Of_Year',
1422
+ 'month_of_calendar': 'MonthNumber_Of_Calendar',
1423
+ 'month_of_quarter': 'MonthNumber_Of_Quarter',
1424
+ 'quarter_of_year': 'QuarterNumber_Of_Year',
1425
+ 'quarter_of_calendar': 'QuarterNumber_Of_Calendar',
1426
+ 'year_of_calendar': 'YearNumber_Of_Calendar',
1427
+ 'day_occurrence_of_month': 'DayOccurrence_Of_Month',
1428
+ 'year': 'year',
1429
+ 'month': 'month',
1430
+ 'hour': 'hour',
1431
+ 'minute': 'minute',
1432
+ 'second': 'second',
1433
+ 'week': 'week',
1434
+ 'next_day': 'next_day',
1435
+ 'months_between': 'months_between',
1436
+ 'add_months': 'add_months',
1437
+ 'oadd_months': 'oadd_months'
1438
+ }
1439
+
1440
+
1441
+ class TDMLFrameworkKeywords(Enum):
1442
+ # Variable which stores the default keyword arguments passed
1443
+ # to Aggregate function.
1444
+ AGGREGATE_FUNCTION_DEFAULT_ARGUMENTS = ["window_properties",
1445
+ "percentile",
1446
+ "as_time_series_aggregate",
1447
+ "describe_op",
1448
+ "drop_columns"
1449
+ ]
1450
+
1451
+
1452
+ class TeradataReservedKeywords(Enum):
1453
+ # A List which stores Teradata Reserved Keywords.
1454
+ TERADATA_RESERVED_WORDS = ["INPUT",
1455
+ "THRESHOLD",
1456
+ "CHECK",
1457
+ "SUMMARY",
1458
+ "HASH",
1459
+ "METHOD",
1460
+ "TYPE",
1461
+ "CATALOG"
1462
+ ]
1463
+
1464
+
1465
+ class TeradataAnalyticFunctionTypes(Enum):
1466
+ SQLE = "FASTPATH"
1467
+ UAF = "UAF"
1468
+ TABLEOPERATOR = "TABLE_OPERATOR"
1469
+ BYOM = "BYOM"
1470
+ STORED_PROCEDURE = "STORED_PROCEDURE"
1471
+
1472
+
1473
+ class TeradataAnalyticFunctionInfo(Enum):
1474
+ FASTPATH = {"func_type": "sqle", "lowest_version": "16.20", "display_function_type_name": "SQLE"}
1475
+ UAF = {"func_type": "uaf", "lowest_version": "17.20", "display_function_type_name": "UAF",
1476
+ "metadata_class": "_AnlyFuncMetadataUAF"}
1477
+ TABLE_OPERATOR = {"func_type": "tableoperator", "lowest_version": "17.00 ",
1478
+ "display_function_type_name": "TABLE OPERATOR"}
1479
+ BYOM = {"func_type": "byom", "lowest_version": None, "display_function_type_name": "BYOM"}
1480
+ STORED_PROCEDURE = {"func_type": "storedprocedure", "lowest_version": "17.20", "display_function_type_name": "UAF",
1481
+ "metadata_class": "_AnlyFuncMetadataUAF"}
1482
+
1483
+
1484
+ class TeradataUAFSpecificArgs(Enum):
1485
+ INPUT_MODE = "input_mode"
1486
+ OUTPUT_FMT_CONTENT = "output_fmt_content"
1487
+ OUTPUT_FMT_INDEX = "output_fmt_index"
1488
+ OUTPUT_FMT_INDEX_STYLE = "output_fmt_index_style"
1489
+
1490
+
1491
+ class Query(Enum):
1492
+ VANTAGE_VERSION = "SELECT InfoData FROM DBC.DBCInfoV where InfoKey = 'VERSION'"
1493
+
1494
+
1495
+ class DriverEscapeFunctions(Enum):
1496
+ # Holds variables for the teradatasql driver escape functions to be used
1497
+ NATIVE_SQL = "{fn teradata_nativesql}"
1498
+ AUTOCOMMIT_ON = "{fn teradata_autocommit_on}"
1499
+ AUTOCOMMIT_OFF = "{fn teradata_autocommit_off}"
1500
+ LOGON_SEQ_NUM = "{fn teradata_logon_sequence_number}"
1501
+ GET_ERRORS = "{fn teradata_get_errors}"
1502
+ GET_WARNINGS = "{fn teradata_get_warnings}"
1503
+ REQUIRE_FASTLOAD = "{fn teradata_require_fastload}"
1504
+ READ_CSV = "{{fn teradata_read_csv({0})}}"
1505
+ TRY_FASTEXPORT = "{fn teradata_try_fastexport}"
1506
+ REQUIRE_FASTEXPORT = "{fn teradata_require_fastexport}"
1507
+ OPEN_SESSIONS = "{{fn teradata_sessions({0})}}"
1508
+ WRITE_TO_CSV = "{{fn teradata_write_csv({0})}}"
1509
+ FIELD_QUOTE = "{{fn teradata_field_quote({0})}}"
1510
+ FIELD_SEP = "{{fn teradata_field_sep({0})}}"
1511
+ ERR_TBL_1 = "{{fn teradata_error_table_1_suffix({0})}}"
1512
+ ERR_TBL_2 = "{{fn teradata_error_table_2_suffix({0})}}"
1513
+ ERR_STAGING_DB = "{{fn teradata_error_table_database({0})}}"
1514
+ ERR_TBL_MNG_FLAG = "{{fn teradata_manage_error_tables_{0}}}"
1515
+
1516
+
1517
+ class HTTPRequest(Enum):
1518
+ # Holds variable names for HTTP calls.
1519
+ GET = "get"
1520
+ POST = "post"
1521
+ PUT = "put"
1522
+ DELETE = "delete"
1523
+ PATCH = "patch"
1524
+
1525
+
1526
+ class AsyncStatusColumns(Enum):
1527
+ # Holds variable names for Async status DF columns.
1528
+ RUN_ID = "Run Id"
1529
+ RUN_DESCRIPTION = "Run Description"
1530
+ STATUS = "Status"
1531
+ TIMESTAMP = "Timestamp"
1532
+ ADDITIONAL_DETAILS = "Additional Details"
1533
+
1534
+
1535
+ class AsyncOpStatus(Enum):
1536
+ # Holds valid status for asynchronous operations in UES.
1537
+ FILE_INSTALLED = "File Installed"
1538
+ ERRED = "Errored"
1539
+ FINISHED = "Finished"
1540
+ MODEL_INSTALLED = "ModelInstalled"
1541
+
1542
+
1543
+ class AsyncOpStatusOAFColumns(Enum):
1544
+ # Holds column names of dataframe representing status of given claim-id.
1545
+ CLAIM_ID = "Claim Id"
1546
+ FILE_LIB_MODEL_NAME = "File/Libs/Model"
1547
+ METHOD_NAME = "Method Name"
1548
+ STAGE = "Stage"
1549
+ TIMESTAMP = "Timestamp"
1550
+ ADDITIONAL_DETAILS = "Additional Details"
1551
+
1552
+
1553
+ class CloudProvider(Enum):
1554
+ # Holds variable names for Cloud Providers.
1555
+ AWS = "AWS"
1556
+ AZURE = "Azure"
1557
+ # 'x-ms-version' has 2 allowed constant values '2019-12-12'
1558
+ # and '2018-03-28', using the latest one.
1559
+ X_MS_VERSION = "2019-12-12"
1560
+ X_MS_BLOB_TYPE = "BlockBlob"
1561
+
1562
+
1563
+ class SessionParamsSQL(Enum):
1564
+ # Holds the SQL Statements for Session params.
1565
+ TIMEZONE = "SET TIME ZONE {}"
1566
+ ACCOUNT = "SET SESSION ACCOUNT = '{}' FOR {}"
1567
+ CALENDAR = "SET SESSION CALENDAR = {}"
1568
+ CHARACTER_SET_UNICODE = "SET SESSION CHARACTER SET UNICODE PASS THROUGH {}"
1569
+ COLLATION = "SET SESSION COLLATION {}"
1570
+ CONSTRAINT = "SET SESSION CONSTRAINT = {}"
1571
+ DATABASE = "SET SESSION DATABASE {}"
1572
+ DATEFORM = "SET SESSION DATEFORM = {}"
1573
+ DEBUG_FUNCTION = "SET SESSION DEBUG FUNCTION {} {}"
1574
+ DOT_NOTATION = "SET SESSION DOT NOTATION {} ON ERROR"
1575
+ ISOLATED_LOADING = "SET SESSION FOR {} ISOLATED LOADING"
1576
+ FUNCTION_TRACE = "SET SESSION FUNCTION TRACE USING {} FOR TABLE {}"
1577
+ JSON_IGNORE_ERRORS = "SET SESSION JSON IGNORE ERRORS {}"
1578
+ SEARCHUIFDBPATH = "SET SESSION SEARCHUIFDBPATH = {}"
1579
+ TRANSACTION_ISOLATION_LEVEL = "SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL {}"
1580
+ QUERY_BAND = "SET QUERY_BAND = {} FOR {}"
1581
+ UDFSEARCHPATH = "SET SESSION UDFSEARCHPATH = {} FOR FUNCTION = {}"
1582
+
1583
+
1584
+ class SessionParamsPythonNames(Enum):
1585
+ # Holds the SQL Statements for Session params.
1586
+ TIMEZONE = "Session Time Zone"
1587
+ ACCOUNT = "Account Name"
1588
+ CALENDAR = "Calendar"
1589
+ COLLATION = "Collation"
1590
+ DATABASE = "Current DataBase"
1591
+ DATEFORM = 'Current DateForm'
1592
+
1593
+
1594
+ class AutoMLConstants(Enum):
1595
+ # List stores feature selection methods
1596
+ FEATURE_SELECTION_MTDS = ["lasso", "rfe", "pca"]
1597
+ FEATURE_SELECTION_MTDS_CLUSTERING = ["pca", "non_pca"]
1598
+ # Model lists
1599
+ SUPERVISED_MODELS = ["glm", "svm", "knn", "decision_forest", "xgboost"]
1600
+ CLUSTERING_MODELS = ["kmeans", "gaussianmixture"]
1601
+ ALL_MODELS = SUPERVISED_MODELS + CLUSTERING_MODELS
1602
+
1603
+ # Metric lists
1604
+ CLASSIFICATION_METRICS = ["MICRO-F1", "MACRO-F1", "MICRO-RECALL", "MACRO-RECALL",
1605
+ "MICRO-PRECISION", "MACRO-PRECISION", "WEIGHTED-PRECISION",
1606
+ "WEIGHTED-RECALL", "WEIGHTED-F1", "ACCURACY"]
1607
+
1608
+ REGRESSION_METRICS = ["R2", "MAE", "MSE", "MSLE", "MAPE", "MPE",
1609
+ "RMSE", "RMSLE", "ME", "EV", "MPD", "MGD"]
1610
+
1611
+ CLUSTERING_METRICS = ["SILHOUETTE", "CALINSKI", "DAVIES"]
1612
+
1613
+ # Combined for default case
1614
+ ALL_METRICS = REGRESSION_METRICS + CLASSIFICATION_METRICS + CLUSTERING_METRICS
1615
+
1616
+ # Column lists to create empty leaderboard dataframe
1617
+ CLUSTERING_COLUMNS = [
1618
+ "MODEL_ID", "FEATURE_SELECTION", "SILHOUETTE", "CALINSKI",
1619
+ "DAVIES", "DATA_TABLE", "model-obj", "PARAMETERS"
1620
+ ]
1621
+ CLASSIFICATION_COLUMNS = [
1622
+ "MODEL_ID", "FEATURE_SELECTION", "MICRO-F1", "MACRO-F1", "MICRO-RECALL",
1623
+ "MACRO-RECALL", "MICRO-PRECISION", "MACRO-PRECISION", "WEIGHTED-PRECISION",
1624
+ "WEIGHTED-RECALL", "WEIGHTED-F1", "ACCURACY", "DATA_TABLE", "RESULT_TABLE",
1625
+ "model-obj", "PARAMETERS"
1626
+ ]
1627
+ REGRESSION_COLUMNS = [
1628
+ "MODEL_ID", "FEATURE_SELECTION", "MAE", "MSE", "MSLE", "MAPE",
1629
+ "MPE", "RMSE", "RMSLE", "R2", "ADJUSTED_R2", "EV", "ME", "MPD",
1630
+ "MGD", "DATA_TABLE", "RESULT_TABLE", "model-obj", "PARAMETERS"
1631
+ ]
1632
+
1633
+
1634
+ class AuthMechs(Enum):
1635
+ """
1636
+ Enum to hold permitted values for authentication mechanism.
1637
+ """
1638
+ OAUTH = "OAuth"
1639
+ JWT = "JWT"
1640
+ PAT = "PAT"
1641
+ BASIC = "BASIC"
1642
+ KEYCLOAK = "KEYCLOAK"
1643
+
1644
+ class TDServices(Enum):
1645
+ """
1646
+ Enum to hold permitted values for types for services availed on Teradata vantage.
1647
+ """
1648
+ VECTORSTORE = "vectorstore"
1649
+ MOPS = "MODELOPS" # For future reference
1650
+
1651
+ class AccessQueries(Enum):
1652
+ """
1653
+ Enum to hold permitted access queries.
1654
+ """
1655
+ read = ["{grant_revoke_} SELECT ON {database_} {to_from_} {user_}"]
1656
+ write= ["{grant_revoke_} CREATE TABLE ON {database_} {to_from_} {user_}",
1657
+ "{grant_revoke_} CREATE VIEW ON {database_} {to_from_} {user_}",
1658
+ "{grant_revoke_} DELETE, UPDATE, INSERT ON {database_} {to_from_} {user_}"]
1659
+
1660
+ class LoggingLevel(Enum):
1661
+ """
1662
+ Enum to hold mapping of log level names to their corresponding numeric values.
1663
+ """
1664
+ level_map = {
1665
+ 'DEBUG': logging.DEBUG,
1666
+ 'INFO': logging.INFO,
1667
+ 'WARNING': logging.WARNING,
1668
+ 'ERROR': logging.ERROR
1669
+ }