teradataml 20.0.0.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +2762 -0
- teradataml/__init__.py +78 -0
- teradataml/_version.py +11 -0
- teradataml/analytics/Transformations.py +2996 -0
- teradataml/analytics/__init__.py +82 -0
- teradataml/analytics/analytic_function_executor.py +2416 -0
- teradataml/analytics/analytic_query_generator.py +1050 -0
- teradataml/analytics/byom/H2OPredict.py +514 -0
- teradataml/analytics/byom/PMMLPredict.py +437 -0
- teradataml/analytics/byom/__init__.py +16 -0
- teradataml/analytics/json_parser/__init__.py +133 -0
- teradataml/analytics/json_parser/analytic_functions_argument.py +1805 -0
- teradataml/analytics/json_parser/json_store.py +191 -0
- teradataml/analytics/json_parser/metadata.py +1666 -0
- teradataml/analytics/json_parser/utils.py +805 -0
- teradataml/analytics/meta_class.py +236 -0
- teradataml/analytics/sqle/DecisionTreePredict.py +456 -0
- teradataml/analytics/sqle/NaiveBayesPredict.py +420 -0
- teradataml/analytics/sqle/__init__.py +128 -0
- teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -0
- teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -0
- teradataml/analytics/table_operator/__init__.py +11 -0
- teradataml/analytics/uaf/__init__.py +82 -0
- teradataml/analytics/utils.py +828 -0
- teradataml/analytics/valib.py +1617 -0
- teradataml/automl/__init__.py +5835 -0
- teradataml/automl/autodataprep/__init__.py +493 -0
- teradataml/automl/custom_json_utils.py +1625 -0
- teradataml/automl/data_preparation.py +1384 -0
- teradataml/automl/data_transformation.py +1254 -0
- teradataml/automl/feature_engineering.py +2273 -0
- teradataml/automl/feature_exploration.py +1873 -0
- teradataml/automl/model_evaluation.py +488 -0
- teradataml/automl/model_training.py +1407 -0
- teradataml/catalog/__init__.py +2 -0
- teradataml/catalog/byom.py +1759 -0
- teradataml/catalog/function_argument_mapper.py +859 -0
- teradataml/catalog/model_cataloging_utils.py +491 -0
- teradataml/clients/__init__.py +0 -0
- teradataml/clients/auth_client.py +137 -0
- teradataml/clients/keycloak_client.py +165 -0
- teradataml/clients/pkce_client.py +481 -0
- teradataml/common/__init__.py +1 -0
- teradataml/common/aed_utils.py +2078 -0
- teradataml/common/bulk_exposed_utils.py +113 -0
- teradataml/common/constants.py +1669 -0
- teradataml/common/deprecations.py +166 -0
- teradataml/common/exceptions.py +147 -0
- teradataml/common/formula.py +743 -0
- teradataml/common/garbagecollector.py +666 -0
- teradataml/common/logger.py +1261 -0
- teradataml/common/messagecodes.py +518 -0
- teradataml/common/messages.py +262 -0
- teradataml/common/pylogger.py +67 -0
- teradataml/common/sqlbundle.py +764 -0
- teradataml/common/td_coltype_code_to_tdtype.py +48 -0
- teradataml/common/utils.py +3166 -0
- teradataml/common/warnings.py +36 -0
- teradataml/common/wrapper_utils.py +625 -0
- teradataml/config/__init__.py +0 -0
- teradataml/config/dummy_file1.cfg +5 -0
- teradataml/config/dummy_file2.cfg +3 -0
- teradataml/config/sqlengine_alias_definitions_v1.0 +14 -0
- teradataml/config/sqlengine_alias_definitions_v1.1 +20 -0
- teradataml/config/sqlengine_alias_definitions_v1.3 +19 -0
- teradataml/context/__init__.py +0 -0
- teradataml/context/aed_context.py +223 -0
- teradataml/context/context.py +1462 -0
- teradataml/data/A_loan.csv +19 -0
- teradataml/data/BINARY_REALS_LEFT.csv +11 -0
- teradataml/data/BINARY_REALS_RIGHT.csv +11 -0
- teradataml/data/B_loan.csv +49 -0
- teradataml/data/BuoyData2.csv +17 -0
- teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -0
- teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -0
- teradataml/data/Convolve2RealsLeft.csv +5 -0
- teradataml/data/Convolve2RealsRight.csv +5 -0
- teradataml/data/Convolve2ValidLeft.csv +11 -0
- teradataml/data/Convolve2ValidRight.csv +11 -0
- teradataml/data/DFFTConv_Real_8_8.csv +65 -0
- teradataml/data/Employee.csv +5 -0
- teradataml/data/Employee_Address.csv +4 -0
- teradataml/data/Employee_roles.csv +5 -0
- teradataml/data/JulesBelvezeDummyData.csv +100 -0
- teradataml/data/Mall_customer_data.csv +201 -0
- teradataml/data/Orders1_12mf.csv +25 -0
- teradataml/data/Pi_loan.csv +7 -0
- teradataml/data/SMOOTHED_DATA.csv +7 -0
- teradataml/data/TestDFFT8.csv +9 -0
- teradataml/data/TestRiver.csv +109 -0
- teradataml/data/Traindata.csv +28 -0
- teradataml/data/__init__.py +0 -0
- teradataml/data/acf.csv +17 -0
- teradataml/data/adaboost_example.json +34 -0
- teradataml/data/adaboostpredict_example.json +24 -0
- teradataml/data/additional_table.csv +11 -0
- teradataml/data/admissions_test.csv +21 -0
- teradataml/data/admissions_train.csv +41 -0
- teradataml/data/admissions_train_nulls.csv +41 -0
- teradataml/data/advertising.csv +201 -0
- teradataml/data/ageandheight.csv +13 -0
- teradataml/data/ageandpressure.csv +31 -0
- teradataml/data/amazon_reviews_25.csv +26 -0
- teradataml/data/antiselect_example.json +36 -0
- teradataml/data/antiselect_input.csv +8 -0
- teradataml/data/antiselect_input_mixed_case.csv +8 -0
- teradataml/data/applicant_external.csv +7 -0
- teradataml/data/applicant_reference.csv +7 -0
- teradataml/data/apriori_example.json +22 -0
- teradataml/data/arima_example.json +9 -0
- teradataml/data/assortedtext_input.csv +8 -0
- teradataml/data/attribution_example.json +34 -0
- teradataml/data/attribution_sample_table.csv +27 -0
- teradataml/data/attribution_sample_table1.csv +6 -0
- teradataml/data/attribution_sample_table2.csv +11 -0
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bank_marketing.csv +11163 -0
- teradataml/data/bank_web_clicks1.csv +43 -0
- teradataml/data/bank_web_clicks2.csv +91 -0
- teradataml/data/bank_web_url.csv +85 -0
- teradataml/data/barrier.csv +2 -0
- teradataml/data/barrier_new.csv +3 -0
- teradataml/data/betweenness_example.json +14 -0
- teradataml/data/bike_sharing.csv +732 -0
- teradataml/data/bin_breaks.csv +8 -0
- teradataml/data/bin_fit_ip.csv +4 -0
- teradataml/data/binary_complex_left.csv +11 -0
- teradataml/data/binary_complex_right.csv +11 -0
- teradataml/data/binary_matrix_complex_left.csv +21 -0
- teradataml/data/binary_matrix_complex_right.csv +21 -0
- teradataml/data/binary_matrix_real_left.csv +21 -0
- teradataml/data/binary_matrix_real_right.csv +21 -0
- teradataml/data/blood2ageandweight.csv +26 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/boston.csv +507 -0
- teradataml/data/boston2cols.csv +721 -0
- teradataml/data/breast_cancer.csv +570 -0
- teradataml/data/buoydata_mix.csv +11 -0
- teradataml/data/burst_data.csv +5 -0
- teradataml/data/burst_example.json +21 -0
- teradataml/data/byom_example.json +34 -0
- teradataml/data/bytes_table.csv +4 -0
- teradataml/data/cal_housing_ex_raw.csv +70 -0
- teradataml/data/callers.csv +7 -0
- teradataml/data/calls.csv +10 -0
- teradataml/data/cars_hist.csv +33 -0
- teradataml/data/cat_table.csv +25 -0
- teradataml/data/ccm_example.json +32 -0
- teradataml/data/ccm_input.csv +91 -0
- teradataml/data/ccm_input2.csv +13 -0
- teradataml/data/ccmexample.csv +101 -0
- teradataml/data/ccmprepare_example.json +9 -0
- teradataml/data/ccmprepare_input.csv +91 -0
- teradataml/data/cfilter_example.json +12 -0
- teradataml/data/changepointdetection_example.json +18 -0
- teradataml/data/changepointdetectionrt_example.json +8 -0
- teradataml/data/chi_sq.csv +3 -0
- teradataml/data/churn_data.csv +14 -0
- teradataml/data/churn_emission.csv +35 -0
- teradataml/data/churn_initial.csv +3 -0
- teradataml/data/churn_state_transition.csv +5 -0
- teradataml/data/citedges_2.csv +745 -0
- teradataml/data/citvertices_2.csv +1210 -0
- teradataml/data/clicks2.csv +16 -0
- teradataml/data/clickstream.csv +13 -0
- teradataml/data/clickstream1.csv +11 -0
- teradataml/data/closeness_example.json +16 -0
- teradataml/data/complaints.csv +21 -0
- teradataml/data/complaints_mini.csv +3 -0
- teradataml/data/complaints_test_tokenized.csv +353 -0
- teradataml/data/complaints_testtoken.csv +224 -0
- teradataml/data/complaints_tokens_model.csv +348 -0
- teradataml/data/complaints_tokens_test.csv +353 -0
- teradataml/data/complaints_traintoken.csv +472 -0
- teradataml/data/computers_category.csv +1001 -0
- teradataml/data/computers_test1.csv +1252 -0
- teradataml/data/computers_train1.csv +5009 -0
- teradataml/data/computers_train1_clustered.csv +5009 -0
- teradataml/data/confusionmatrix_example.json +9 -0
- teradataml/data/conversion_event_table.csv +3 -0
- teradataml/data/corr_input.csv +17 -0
- teradataml/data/correlation_example.json +11 -0
- teradataml/data/covid_confirm_sd.csv +83 -0
- teradataml/data/coxhazardratio_example.json +39 -0
- teradataml/data/coxph_example.json +15 -0
- teradataml/data/coxsurvival_example.json +28 -0
- teradataml/data/cpt.csv +41 -0
- teradataml/data/credit_ex_merged.csv +45 -0
- teradataml/data/creditcard_data.csv +1001 -0
- teradataml/data/customer_loyalty.csv +301 -0
- teradataml/data/customer_loyalty_newseq.csv +31 -0
- teradataml/data/customer_segmentation_test.csv +2628 -0
- teradataml/data/customer_segmentation_train.csv +8069 -0
- teradataml/data/dataframe_example.json +173 -0
- teradataml/data/decisionforest_example.json +37 -0
- teradataml/data/decisionforestpredict_example.json +38 -0
- teradataml/data/decisiontree_example.json +21 -0
- teradataml/data/decisiontreepredict_example.json +45 -0
- teradataml/data/dfft2_size4_real.csv +17 -0
- teradataml/data/dfft2_test_matrix16.csv +17 -0
- teradataml/data/dfft2conv_real_4_4.csv +65 -0
- teradataml/data/diabetes.csv +443 -0
- teradataml/data/diabetes_test.csv +89 -0
- teradataml/data/dict_table.csv +5 -0
- teradataml/data/docperterm_table.csv +4 -0
- teradataml/data/docs/__init__.py +1 -0
- teradataml/data/docs/byom/__init__.py +0 -0
- teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -0
- teradataml/data/docs/byom/docs/DataikuPredict.py +217 -0
- teradataml/data/docs/byom/docs/H2OPredict.py +325 -0
- teradataml/data/docs/byom/docs/ONNXEmbeddings.py +242 -0
- teradataml/data/docs/byom/docs/ONNXPredict.py +283 -0
- teradataml/data/docs/byom/docs/ONNXSeq2Seq.py +255 -0
- teradataml/data/docs/byom/docs/PMMLPredict.py +278 -0
- teradataml/data/docs/byom/docs/__init__.py +0 -0
- teradataml/data/docs/sqle/__init__.py +0 -0
- teradataml/data/docs/sqle/docs_17_10/Antiselect.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/Attribution.py +200 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +172 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -0
- teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -0
- teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +96 -0
- teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -0
- teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +152 -0
- teradataml/data/docs/sqle/docs_17_10/FTest.py +161 -0
- teradataml/data/docs/sqle/docs_17_10/FillRowId.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/Fit.py +88 -0
- teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +85 -0
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +82 -0
- teradataml/data/docs/sqle/docs_17_10/Histogram.py +165 -0
- teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -0
- teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +209 -0
- teradataml/data/docs/sqle/docs_17_10/NPath.py +266 -0
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -0
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -0
- teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +135 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +166 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -0
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +112 -0
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -0
- teradataml/data/docs/sqle/docs_17_10/QQNorm.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +110 -0
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +118 -0
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -0
- teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +153 -0
- teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -0
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -0
- teradataml/data/docs/sqle/docs_17_10/Sessionize.py +114 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -0
- teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -0
- teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +146 -0
- teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +142 -0
- teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -0
- teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -0
- teradataml/data/docs/sqle/docs_17_10/__init__.py +0 -0
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -0
- teradataml/data/docs/sqle/docs_17_20/Antiselect.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/Apriori.py +138 -0
- teradataml/data/docs/sqle/docs_17_20/Attribution.py +201 -0
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +172 -0
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -0
- teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
- teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -0
- teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +246 -0
- teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +280 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +136 -0
- teradataml/data/docs/sqle/docs_17_20/FTest.py +240 -0
- teradataml/data/docs/sqle/docs_17_20/FillRowId.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/Fit.py +88 -0
- teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +415 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -0
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -0
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +106 -0
- teradataml/data/docs/sqle/docs_17_20/Histogram.py +224 -0
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -0
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/KNN.py +215 -0
- teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -0
- teradataml/data/docs/sqle/docs_17_20/NERExtractor.py +121 -0
- teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +209 -0
- teradataml/data/docs/sqle/docs_17_20/NPath.py +266 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +127 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +119 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -0
- teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -0
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +231 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -0
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +220 -0
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +191 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -0
- teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -0
- teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/QQNorm.py +105 -0
- teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +155 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -0
- teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -0
- teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +118 -0
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -0
- teradataml/data/docs/sqle/docs_17_20/SMOTE.py +212 -0
- teradataml/data/docs/sqle/docs_17_20/SVM.py +414 -0
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -0
- teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +153 -0
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -0
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -0
- teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -0
- teradataml/data/docs/sqle/docs_17_20/Sessionize.py +114 -0
- teradataml/data/docs/sqle/docs_17_20/Shap.py +225 -0
- teradataml/data/docs/sqle/docs_17_20/Silhouette.py +153 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -0
- teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +146 -0
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -0
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -0
- teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
- teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +267 -0
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -0
- teradataml/data/docs/sqle/docs_17_20/TextMorph.py +119 -0
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +224 -0
- teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +160 -0
- teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -0
- teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -0
- teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
- teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +169 -0
- teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +237 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +362 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -0
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -0
- teradataml/data/docs/sqle/docs_17_20/__init__.py +0 -0
- teradataml/data/docs/tableoperator/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +430 -0
- teradataml/data/docs/tableoperator/docs_17_00/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +430 -0
- teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +348 -0
- teradataml/data/docs/tableoperator/docs_17_05/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +429 -0
- teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +348 -0
- teradataml/data/docs/tableoperator/docs_17_10/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
- teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +440 -0
- teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +387 -0
- teradataml/data/docs/tableoperator/docs_17_20/__init__.py +0 -0
- teradataml/data/docs/uaf/__init__.py +0 -0
- teradataml/data/docs/uaf/docs_17_20/ACF.py +186 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +370 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +172 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +161 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
- teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
- teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +248 -0
- teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +178 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +175 -0
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +230 -0
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +218 -0
- teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +185 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT.py +204 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +216 -0
- teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +192 -0
- teradataml/data/docs/uaf/docs_17_20/DIFF.py +175 -0
- teradataml/data/docs/uaf/docs_17_20/DTW.py +180 -0
- teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
- teradataml/data/docs/uaf/docs_17_20/DWT2D.py +217 -0
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +142 -0
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +184 -0
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +185 -0
- teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
- teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +206 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +143 -0
- teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +198 -0
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +260 -0
- teradataml/data/docs/uaf/docs_17_20/IDFFT.py +165 -0
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +191 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
- teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/InputValidator.py +121 -0
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +156 -0
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +215 -0
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +174 -0
- teradataml/data/docs/uaf/docs_17_20/MInfo.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +145 -0
- teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +191 -0
- teradataml/data/docs/uaf/docs_17_20/PACF.py +157 -0
- teradataml/data/docs/uaf/docs_17_20/Portman.py +217 -0
- teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +203 -0
- teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +155 -0
- teradataml/data/docs/uaf/docs_17_20/Resample.py +237 -0
- teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
- teradataml/data/docs/uaf/docs_17_20/SInfo.py +123 -0
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +173 -0
- teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +174 -0
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +164 -0
- teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +180 -0
- teradataml/data/docs/uaf/docs_17_20/Smoothma.py +208 -0
- teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +151 -0
- teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +202 -0
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
- teradataml/data/docs/uaf/docs_17_20/__init__.py +0 -0
- teradataml/data/dtw_example.json +18 -0
- teradataml/data/dtw_t1.csv +11 -0
- teradataml/data/dtw_t2.csv +4 -0
- teradataml/data/dwt2d_dataTable.csv +65 -0
- teradataml/data/dwt2d_example.json +16 -0
- teradataml/data/dwt_dataTable.csv +8 -0
- teradataml/data/dwt_example.json +15 -0
- teradataml/data/dwt_filterTable.csv +3 -0
- teradataml/data/dwt_filter_dim.csv +5 -0
- teradataml/data/emission.csv +9 -0
- teradataml/data/emp_table_by_dept.csv +19 -0
- teradataml/data/employee_info.csv +4 -0
- teradataml/data/employee_table.csv +6 -0
- teradataml/data/excluding_event_table.csv +2 -0
- teradataml/data/finance_data.csv +6 -0
- teradataml/data/finance_data2.csv +61 -0
- teradataml/data/finance_data3.csv +93 -0
- teradataml/data/finance_data4.csv +13 -0
- teradataml/data/fish.csv +160 -0
- teradataml/data/fm_blood2ageandweight.csv +26 -0
- teradataml/data/fmeasure_example.json +12 -0
- teradataml/data/followers_leaders.csv +10 -0
- teradataml/data/fpgrowth_example.json +12 -0
- teradataml/data/frequentpaths_example.json +29 -0
- teradataml/data/friends.csv +9 -0
- teradataml/data/fs_input.csv +33 -0
- teradataml/data/fs_input1.csv +33 -0
- teradataml/data/genData.csv +513 -0
- teradataml/data/geodataframe_example.json +40 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/glm_admissions_model.csv +12 -0
- teradataml/data/glm_example.json +56 -0
- teradataml/data/glml1l2_example.json +28 -0
- teradataml/data/glml1l2predict_example.json +54 -0
- teradataml/data/glmpredict_example.json +54 -0
- teradataml/data/gq_t1.csv +21 -0
- teradataml/data/grocery_transaction.csv +19 -0
- teradataml/data/hconvolve_complex_right.csv +5 -0
- teradataml/data/hconvolve_complex_rightmulti.csv +5 -0
- teradataml/data/histogram_example.json +12 -0
- teradataml/data/hmmdecoder_example.json +79 -0
- teradataml/data/hmmevaluator_example.json +25 -0
- teradataml/data/hmmsupervised_example.json +10 -0
- teradataml/data/hmmunsupervised_example.json +8 -0
- teradataml/data/hnsw_alter_data.csv +5 -0
- teradataml/data/hnsw_data.csv +10 -0
- teradataml/data/house_values.csv +12 -0
- teradataml/data/house_values2.csv +13 -0
- teradataml/data/housing_cat.csv +7 -0
- teradataml/data/housing_data.csv +9 -0
- teradataml/data/housing_test.csv +47 -0
- teradataml/data/housing_test_binary.csv +47 -0
- teradataml/data/housing_train.csv +493 -0
- teradataml/data/housing_train_attribute.csv +5 -0
- teradataml/data/housing_train_binary.csv +437 -0
- teradataml/data/housing_train_parameter.csv +2 -0
- teradataml/data/housing_train_response.csv +493 -0
- teradataml/data/housing_train_segment.csv +201 -0
- teradataml/data/ibm_stock.csv +370 -0
- teradataml/data/ibm_stock1.csv +370 -0
- teradataml/data/identitymatch_example.json +22 -0
- teradataml/data/idf_table.csv +4 -0
- teradataml/data/idwt2d_dataTable.csv +5 -0
- teradataml/data/idwt_dataTable.csv +8 -0
- teradataml/data/idwt_filterTable.csv +3 -0
- teradataml/data/impressions.csv +101 -0
- teradataml/data/inflation.csv +21 -0
- teradataml/data/initial.csv +3 -0
- teradataml/data/insect2Cols.csv +61 -0
- teradataml/data/insect_sprays.csv +13 -0
- teradataml/data/insurance.csv +1339 -0
- teradataml/data/interpolator_example.json +13 -0
- teradataml/data/interval_data.csv +5 -0
- teradataml/data/iris_altinput.csv +481 -0
- teradataml/data/iris_attribute_output.csv +8 -0
- teradataml/data/iris_attribute_test.csv +121 -0
- teradataml/data/iris_attribute_train.csv +481 -0
- teradataml/data/iris_category_expect_predict.csv +31 -0
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/iris_input.csv +151 -0
- teradataml/data/iris_response_train.csv +121 -0
- teradataml/data/iris_test.csv +31 -0
- teradataml/data/iris_train.csv +121 -0
- teradataml/data/join_table1.csv +4 -0
- teradataml/data/join_table2.csv +4 -0
- teradataml/data/jsons/anly_function_name.json +7 -0
- teradataml/data/jsons/byom/ONNXSeq2Seq.json +287 -0
- teradataml/data/jsons/byom/dataikupredict.json +148 -0
- teradataml/data/jsons/byom/datarobotpredict.json +147 -0
- teradataml/data/jsons/byom/h2opredict.json +195 -0
- teradataml/data/jsons/byom/onnxembeddings.json +267 -0
- teradataml/data/jsons/byom/onnxpredict.json +187 -0
- teradataml/data/jsons/byom/pmmlpredict.json +147 -0
- teradataml/data/jsons/paired_functions.json +450 -0
- teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/16.20/Attribution.json +249 -0
- teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/16.20/Pack.json +98 -0
- teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/16.20/Unpack.json +166 -0
- teradataml/data/jsons/sqle/16.20/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.00/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/17.00/Pack.json +98 -0
- teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.00/Unpack.json +166 -0
- teradataml/data/jsons/sqle/17.00/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.05/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/17.05/Pack.json +98 -0
- teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.05/Unpack.json +166 -0
- teradataml/data/jsons/sqle/17.05/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.10/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -0
- teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +172 -0
- teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -0
- teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -0
- teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -0
- teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -0
- teradataml/data/jsons/sqle/17.10/Pack.json +133 -0
- teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -0
- teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -0
- teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -0
- teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +54 -0
- teradataml/data/jsons/sqle/17.10/TD_Chisq.json +68 -0
- teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +54 -0
- teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +69 -0
- teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -0
- teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +52 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -0
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_Histogram.json +133 -0
- teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +183 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +66 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +197 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -0
- teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +112 -0
- teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +128 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +157 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +71 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +148 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -0
- teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -0
- teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +119 -0
- teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -0
- teradataml/data/jsons/sqle/17.10/Unpack.json +188 -0
- teradataml/data/jsons/sqle/17.10/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.20/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -0
- teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -0
- teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -0
- teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -0
- teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -0
- teradataml/data/jsons/sqle/17.20/Pack.json +133 -0
- teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -0
- teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +149 -0
- teradataml/data/jsons/sqle/17.20/TD_Apriori.json +181 -0
- teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -0
- teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
- teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_Chisq.json +68 -0
- teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +146 -0
- teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -0
- teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -0
- teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +260 -0
- teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -0
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -0
- teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -0
- teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -0
- teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -0
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -0
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -0
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -0
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -0
- teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -0
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +232 -0
- teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +87 -0
- teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -0
- teradataml/data/jsons/sqle/17.20/TD_NERExtractor.json +145 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -0
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +316 -0
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +124 -0
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -0
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -0
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -0
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -0
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -0
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -0
- teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -0
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -0
- teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -0
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +179 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +179 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +74 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -0
- teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +138 -0
- teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -0
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +128 -0
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_SMOTE.json +267 -0
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -0
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -0
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +310 -0
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +120 -0
- teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +194 -0
- teradataml/data/jsons/sqle/17.20/TD_Shap.json +221 -0
- teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +143 -0
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -0
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -0
- teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -0
- teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -0
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -0
- teradataml/data/jsons/sqle/17.20/TD_TextMorph.json +134 -0
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json +297 -0
- teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -0
- teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -0
- teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
- teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +183 -0
- teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -0
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -0
- teradataml/data/jsons/sqle/17.20/Unpack.json +188 -0
- teradataml/data/jsons/sqle/17.20/nPath.json +269 -0
- teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json +370 -0
- teradataml/data/jsons/sqle/20.00/AI_AskLLM.json +460 -0
- teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json +385 -0
- teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_MaskPII.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json +400 -0
- teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json +401 -0
- teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json +384 -0
- teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json +384 -0
- teradataml/data/jsons/sqle/20.00/TD_API_AzureML.json +151 -0
- teradataml/data/jsons/sqle/20.00/TD_API_Sagemaker.json +182 -0
- teradataml/data/jsons/sqle/20.00/TD_API_VertexAI.json +183 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSW.json +296 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json +206 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json +32 -0
- teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
- teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
- teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
- teradataml/data/jsons/tableoperator/17.00/read_nos.json +198 -0
- teradataml/data/jsons/tableoperator/17.05/read_nos.json +198 -0
- teradataml/data/jsons/tableoperator/17.05/write_nos.json +195 -0
- teradataml/data/jsons/tableoperator/17.10/read_nos.json +184 -0
- teradataml/data/jsons/tableoperator/17.10/write_nos.json +195 -0
- teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
- teradataml/data/jsons/tableoperator/17.20/read_nos.json +183 -0
- teradataml/data/jsons/tableoperator/17.20/write_nos.json +224 -0
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +132 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +396 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +77 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +153 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
- teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +107 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +106 -0
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +89 -0
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +104 -0
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +66 -0
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +87 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +134 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +144 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +108 -0
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_DIFF.json +92 -0
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +114 -0
- teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
- teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +39 -0
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +85 -0
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +71 -0
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +139 -0
- teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECASTER.json +313 -0
- teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +58 -0
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +81 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
- teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +64 -0
- teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +182 -0
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +103 -0
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +181 -0
- teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
- teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +68 -0
- teradataml/data/jsons/uaf/17.20/TD_MINFO.json +67 -0
- teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +179 -0
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -0
- teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +119 -0
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -0
- teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +98 -0
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +194 -0
- teradataml/data/jsons/uaf/17.20/TD_SAX.json +210 -0
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +143 -0
- teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +90 -0
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +80 -0
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +68 -0
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -0
- teradataml/data/jsons/uaf/17.20/TD_SINFO.json +58 -0
- teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +163 -0
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +112 -0
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -0
- teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +410 -0
- teradataml/data/kmeans_example.json +23 -0
- teradataml/data/kmeans_table.csv +10 -0
- teradataml/data/kmeans_us_arrests_data.csv +51 -0
- teradataml/data/knn_example.json +19 -0
- teradataml/data/knnrecommender_example.json +7 -0
- teradataml/data/knnrecommenderpredict_example.json +12 -0
- teradataml/data/lar_example.json +17 -0
- teradataml/data/larpredict_example.json +30 -0
- teradataml/data/lc_new_predictors.csv +5 -0
- teradataml/data/lc_new_reference.csv +9 -0
- teradataml/data/lda_example.json +9 -0
- teradataml/data/ldainference_example.json +15 -0
- teradataml/data/ldatopicsummary_example.json +9 -0
- teradataml/data/levendist_input.csv +13 -0
- teradataml/data/levenshteindistance_example.json +10 -0
- teradataml/data/linreg_example.json +10 -0
- teradataml/data/load_example_data.py +350 -0
- teradataml/data/loan_prediction.csv +295 -0
- teradataml/data/lungcancer.csv +138 -0
- teradataml/data/mappingdata.csv +12 -0
- teradataml/data/medical_readings.csv +101 -0
- teradataml/data/milk_timeseries.csv +157 -0
- teradataml/data/min_max_titanic.csv +4 -0
- teradataml/data/minhash_example.json +6 -0
- teradataml/data/ml_ratings.csv +7547 -0
- teradataml/data/ml_ratings_10.csv +2445 -0
- teradataml/data/mobile_data.csv +13 -0
- teradataml/data/model1_table.csv +5 -0
- teradataml/data/model2_table.csv +5 -0
- teradataml/data/models/License_file.txt +1 -0
- teradataml/data/models/License_file_empty.txt +0 -0
- teradataml/data/models/dataiku_iris_data_ann_thin +0 -0
- teradataml/data/models/dr_iris_rf +0 -0
- teradataml/data/models/iris_db_dt_model_sklearn.onnx +0 -0
- teradataml/data/models/iris_db_dt_model_sklearn_floattensor.onnx +0 -0
- teradataml/data/models/iris_db_glm_model.pmml +57 -0
- teradataml/data/models/iris_db_xgb_model.pmml +4471 -0
- teradataml/data/models/iris_kmeans_model +0 -0
- teradataml/data/models/iris_mojo_glm_h2o_model +0 -0
- teradataml/data/models/iris_mojo_xgb_h2o_model +0 -0
- teradataml/data/modularity_example.json +12 -0
- teradataml/data/movavg_example.json +8 -0
- teradataml/data/mtx1.csv +7 -0
- teradataml/data/mtx2.csv +13 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/mvdfft8.csv +9 -0
- teradataml/data/naivebayes_example.json +10 -0
- teradataml/data/naivebayespredict_example.json +19 -0
- teradataml/data/naivebayestextclassifier2_example.json +7 -0
- teradataml/data/naivebayestextclassifier_example.json +8 -0
- teradataml/data/naivebayestextclassifierpredict_example.json +32 -0
- teradataml/data/name_Find_configure.csv +10 -0
- teradataml/data/namedentityfinder_example.json +14 -0
- teradataml/data/namedentityfinderevaluator_example.json +10 -0
- teradataml/data/namedentityfindertrainer_example.json +6 -0
- teradataml/data/nb_iris_input_test.csv +31 -0
- teradataml/data/nb_iris_input_train.csv +121 -0
- teradataml/data/nbp_iris_model.csv +13 -0
- teradataml/data/ner_dict.csv +8 -0
- teradataml/data/ner_extractor_text.csv +2 -0
- teradataml/data/ner_input_eng.csv +7 -0
- teradataml/data/ner_rule.csv +5 -0
- teradataml/data/ner_sports_test2.csv +29 -0
- teradataml/data/ner_sports_train.csv +501 -0
- teradataml/data/nerevaluator_example.json +6 -0
- teradataml/data/nerextractor_example.json +18 -0
- teradataml/data/nermem_sports_test.csv +18 -0
- teradataml/data/nermem_sports_train.csv +51 -0
- teradataml/data/nertrainer_example.json +7 -0
- teradataml/data/ngrams_example.json +7 -0
- teradataml/data/notebooks/__init__.py +0 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -0
- teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -0
- teradataml/data/notebooks/sqlalchemy/__init__.py +0 -0
- teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -0
- teradataml/data/npath_example.json +23 -0
- teradataml/data/ntree_example.json +14 -0
- teradataml/data/numeric_strings.csv +5 -0
- teradataml/data/numerics.csv +4 -0
- teradataml/data/ocean_buoy.csv +17 -0
- teradataml/data/ocean_buoy2.csv +17 -0
- teradataml/data/ocean_buoys.csv +28 -0
- teradataml/data/ocean_buoys2.csv +10 -0
- teradataml/data/ocean_buoys_nonpti.csv +28 -0
- teradataml/data/ocean_buoys_seq.csv +29 -0
- teradataml/data/onehot_encoder_train.csv +4 -0
- teradataml/data/openml_example.json +92 -0
- teradataml/data/optional_event_table.csv +4 -0
- teradataml/data/orders1.csv +11 -0
- teradataml/data/orders1_12.csv +13 -0
- teradataml/data/orders_ex.csv +4 -0
- teradataml/data/pack_example.json +9 -0
- teradataml/data/package_tracking.csv +19 -0
- teradataml/data/package_tracking_pti.csv +19 -0
- teradataml/data/pagerank_example.json +13 -0
- teradataml/data/paragraphs_input.csv +6 -0
- teradataml/data/pathanalyzer_example.json +8 -0
- teradataml/data/pathgenerator_example.json +8 -0
- teradataml/data/patient_profile.csv +101 -0
- teradataml/data/pattern_matching_data.csv +11 -0
- teradataml/data/payment_fraud_dataset.csv +10001 -0
- teradataml/data/peppers.png +0 -0
- teradataml/data/phrases.csv +7 -0
- teradataml/data/pivot_example.json +9 -0
- teradataml/data/pivot_input.csv +22 -0
- teradataml/data/playerRating.csv +31 -0
- teradataml/data/pos_input.csv +40 -0
- teradataml/data/postagger_example.json +7 -0
- teradataml/data/posttagger_output.csv +44 -0
- teradataml/data/production_data.csv +17 -0
- teradataml/data/production_data2.csv +7 -0
- teradataml/data/randomsample_example.json +32 -0
- teradataml/data/randomwalksample_example.json +9 -0
- teradataml/data/rank_table.csv +6 -0
- teradataml/data/real_values.csv +14 -0
- teradataml/data/ref_mobile_data.csv +4 -0
- teradataml/data/ref_mobile_data_dense.csv +2 -0
- teradataml/data/ref_url.csv +17 -0
- teradataml/data/restaurant_reviews.csv +7 -0
- teradataml/data/retail_churn_table.csv +27772 -0
- teradataml/data/river_data.csv +145 -0
- teradataml/data/roc_example.json +8 -0
- teradataml/data/roc_input.csv +101 -0
- teradataml/data/rule_inputs.csv +6 -0
- teradataml/data/rule_table.csv +2 -0
- teradataml/data/sales.csv +7 -0
- teradataml/data/sales_transaction.csv +501 -0
- teradataml/data/salesdata.csv +342 -0
- teradataml/data/sample_cities.csv +3 -0
- teradataml/data/sample_shapes.csv +11 -0
- teradataml/data/sample_streets.csv +3 -0
- teradataml/data/sampling_example.json +16 -0
- teradataml/data/sax_example.json +17 -0
- teradataml/data/scale_attributes.csv +3 -0
- teradataml/data/scale_example.json +74 -0
- teradataml/data/scale_housing.csv +11 -0
- teradataml/data/scale_housing_test.csv +6 -0
- teradataml/data/scale_input_part_sparse.csv +31 -0
- teradataml/data/scale_input_partitioned.csv +16 -0
- teradataml/data/scale_input_sparse.csv +11 -0
- teradataml/data/scale_parameters.csv +3 -0
- teradataml/data/scale_stat.csv +11 -0
- teradataml/data/scalebypartition_example.json +13 -0
- teradataml/data/scalemap_example.json +13 -0
- teradataml/data/scalesummary_example.json +12 -0
- teradataml/data/score_category.csv +101 -0
- teradataml/data/score_summary.csv +4 -0
- teradataml/data/script_example.json +10 -0
- teradataml/data/scripts/deploy_script.py +84 -0
- teradataml/data/scripts/lightgbm/dataset.template +175 -0
- teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +264 -0
- teradataml/data/scripts/lightgbm/lightgbm_function.template +234 -0
- teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +177 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/mapper.py +16 -0
- teradataml/data/scripts/mapper_replace.py +16 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +205 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +148 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +144 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +166 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +161 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +145 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +327 -0
- teradataml/data/sdk/modelops/modelops_spec.json +101737 -0
- teradataml/data/seeds.csv +10 -0
- teradataml/data/sentenceextractor_example.json +7 -0
- teradataml/data/sentiment_extract_input.csv +11 -0
- teradataml/data/sentiment_train.csv +16 -0
- teradataml/data/sentiment_word.csv +20 -0
- teradataml/data/sentiment_word_input.csv +20 -0
- teradataml/data/sentimentextractor_example.json +24 -0
- teradataml/data/sentimenttrainer_example.json +8 -0
- teradataml/data/sequence_table.csv +10 -0
- teradataml/data/seriessplitter_example.json +8 -0
- teradataml/data/sessionize_example.json +17 -0
- teradataml/data/sessionize_table.csv +116 -0
- teradataml/data/setop_test1.csv +24 -0
- teradataml/data/setop_test2.csv +22 -0
- teradataml/data/soc_nw_edges.csv +11 -0
- teradataml/data/soc_nw_vertices.csv +8 -0
- teradataml/data/souvenir_timeseries.csv +168 -0
- teradataml/data/sparse_iris_attribute.csv +5 -0
- teradataml/data/sparse_iris_test.csv +121 -0
- teradataml/data/sparse_iris_train.csv +601 -0
- teradataml/data/star1.csv +6 -0
- teradataml/data/star_pivot.csv +8 -0
- teradataml/data/state_transition.csv +5 -0
- teradataml/data/stock_data.csv +53 -0
- teradataml/data/stock_movement.csv +11 -0
- teradataml/data/stock_vol.csv +76 -0
- teradataml/data/stop_words.csv +8 -0
- teradataml/data/store_sales.csv +37 -0
- teradataml/data/stringsimilarity_example.json +8 -0
- teradataml/data/strsimilarity_input.csv +13 -0
- teradataml/data/students.csv +101 -0
- teradataml/data/svm_iris_input_test.csv +121 -0
- teradataml/data/svm_iris_input_train.csv +481 -0
- teradataml/data/svm_iris_model.csv +7 -0
- teradataml/data/svmdense_example.json +10 -0
- teradataml/data/svmdensepredict_example.json +19 -0
- teradataml/data/svmsparse_example.json +8 -0
- teradataml/data/svmsparsepredict_example.json +14 -0
- teradataml/data/svmsparsesummary_example.json +8 -0
- teradataml/data/target_mobile_data.csv +13 -0
- teradataml/data/target_mobile_data_dense.csv +5 -0
- teradataml/data/target_udt_data.csv +8 -0
- teradataml/data/tdnerextractor_example.json +14 -0
- teradataml/data/templatedata.csv +1201 -0
- teradataml/data/templates/open_source_ml.json +11 -0
- teradataml/data/teradata_icon.ico +0 -0
- teradataml/data/teradataml_example.json +1473 -0
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_loan_prediction.csv +53 -0
- teradataml/data/test_pacf_12.csv +37 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/test_river2.csv +109 -0
- teradataml/data/text_inputs.csv +6 -0
- teradataml/data/textchunker_example.json +8 -0
- teradataml/data/textclassifier_example.json +7 -0
- teradataml/data/textclassifier_input.csv +7 -0
- teradataml/data/textclassifiertrainer_example.json +7 -0
- teradataml/data/textmorph_example.json +11 -0
- teradataml/data/textparser_example.json +15 -0
- teradataml/data/texttagger_example.json +12 -0
- teradataml/data/texttokenizer_example.json +7 -0
- teradataml/data/texttrainer_input.csv +11 -0
- teradataml/data/tf_example.json +7 -0
- teradataml/data/tfidf_example.json +14 -0
- teradataml/data/tfidf_input1.csv +201 -0
- teradataml/data/tfidf_train.csv +6 -0
- teradataml/data/time_table1.csv +535 -0
- teradataml/data/time_table2.csv +14 -0
- teradataml/data/timeseriesdata.csv +1601 -0
- teradataml/data/timeseriesdatasetsd4.csv +105 -0
- teradataml/data/timestamp_data.csv +4 -0
- teradataml/data/titanic.csv +892 -0
- teradataml/data/titanic_dataset_unpivoted.csv +19 -0
- teradataml/data/to_num_data.csv +4 -0
- teradataml/data/tochar_data.csv +5 -0
- teradataml/data/token_table.csv +696 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/train_tracking.csv +28 -0
- teradataml/data/trans_dense.csv +16 -0
- teradataml/data/trans_sparse.csv +55 -0
- teradataml/data/transformation_table.csv +6 -0
- teradataml/data/transformation_table_new.csv +2 -0
- teradataml/data/tv_spots.csv +16 -0
- teradataml/data/twod_climate_data.csv +117 -0
- teradataml/data/uaf_example.json +529 -0
- teradataml/data/univariatestatistics_example.json +9 -0
- teradataml/data/unpack_example.json +10 -0
- teradataml/data/unpivot_example.json +25 -0
- teradataml/data/unpivot_input.csv +8 -0
- teradataml/data/url_data.csv +10 -0
- teradataml/data/us_air_pass.csv +37 -0
- teradataml/data/us_population.csv +624 -0
- teradataml/data/us_states_shapes.csv +52 -0
- teradataml/data/varmax_example.json +18 -0
- teradataml/data/vectordistance_example.json +30 -0
- teradataml/data/ville_climatedata.csv +121 -0
- teradataml/data/ville_tempdata.csv +12 -0
- teradataml/data/ville_tempdata1.csv +12 -0
- teradataml/data/ville_temperature.csv +11 -0
- teradataml/data/waveletTable.csv +1605 -0
- teradataml/data/waveletTable2.csv +1605 -0
- teradataml/data/weightedmovavg_example.json +9 -0
- teradataml/data/wft_testing.csv +5 -0
- teradataml/data/windowdfft.csv +16 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/data/word_embed_input_table1.csv +6 -0
- teradataml/data/word_embed_input_table2.csv +5 -0
- teradataml/data/word_embed_model.csv +23 -0
- teradataml/data/words_input.csv +13 -0
- teradataml/data/xconvolve_complex_left.csv +6 -0
- teradataml/data/xconvolve_complex_leftmulti.csv +6 -0
- teradataml/data/xgboost_example.json +36 -0
- teradataml/data/xgboostpredict_example.json +32 -0
- teradataml/data/ztest_example.json +16 -0
- teradataml/dataframe/__init__.py +0 -0
- teradataml/dataframe/copy_to.py +2446 -0
- teradataml/dataframe/data_transfer.py +2840 -0
- teradataml/dataframe/dataframe.py +20908 -0
- teradataml/dataframe/dataframe_utils.py +2114 -0
- teradataml/dataframe/fastload.py +794 -0
- teradataml/dataframe/functions.py +2110 -0
- teradataml/dataframe/indexer.py +424 -0
- teradataml/dataframe/row.py +160 -0
- teradataml/dataframe/setop.py +1171 -0
- teradataml/dataframe/sql.py +10904 -0
- teradataml/dataframe/sql_function_parameters.py +440 -0
- teradataml/dataframe/sql_functions.py +652 -0
- teradataml/dataframe/sql_interfaces.py +220 -0
- teradataml/dataframe/vantage_function_types.py +675 -0
- teradataml/dataframe/window.py +694 -0
- teradataml/dbutils/__init__.py +3 -0
- teradataml/dbutils/dbutils.py +2871 -0
- teradataml/dbutils/filemgr.py +318 -0
- teradataml/gen_ai/__init__.py +2 -0
- teradataml/gen_ai/convAI.py +473 -0
- teradataml/geospatial/__init__.py +4 -0
- teradataml/geospatial/geodataframe.py +1105 -0
- teradataml/geospatial/geodataframecolumn.py +392 -0
- teradataml/geospatial/geometry_types.py +926 -0
- teradataml/hyperparameter_tuner/__init__.py +1 -0
- teradataml/hyperparameter_tuner/optimizer.py +4115 -0
- teradataml/hyperparameter_tuner/utils.py +303 -0
- teradataml/lib/__init__.py +0 -0
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/lib/libaed_0_1_aarch64.so +0 -0
- teradataml/lib/libaed_0_1_ppc64le.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/_base.py +1321 -0
- teradataml/opensource/_class.py +464 -0
- teradataml/opensource/_constants.py +61 -0
- teradataml/opensource/_lightgbm.py +949 -0
- teradataml/opensource/_sklearn.py +1008 -0
- teradataml/opensource/_wrapper_utils.py +267 -0
- teradataml/options/__init__.py +148 -0
- teradataml/options/configure.py +489 -0
- teradataml/options/display.py +187 -0
- teradataml/plot/__init__.py +3 -0
- teradataml/plot/axis.py +1427 -0
- teradataml/plot/constants.py +15 -0
- teradataml/plot/figure.py +431 -0
- teradataml/plot/plot.py +810 -0
- teradataml/plot/query_generator.py +83 -0
- teradataml/plot/subplot.py +216 -0
- teradataml/scriptmgmt/UserEnv.py +4273 -0
- teradataml/scriptmgmt/__init__.py +3 -0
- teradataml/scriptmgmt/lls_utils.py +2157 -0
- teradataml/sdk/README.md +79 -0
- teradataml/sdk/__init__.py +4 -0
- teradataml/sdk/_auth_modes.py +422 -0
- teradataml/sdk/_func_params.py +487 -0
- teradataml/sdk/_json_parser.py +453 -0
- teradataml/sdk/_openapi_spec_constants.py +249 -0
- teradataml/sdk/_utils.py +236 -0
- teradataml/sdk/api_client.py +900 -0
- teradataml/sdk/constants.py +62 -0
- teradataml/sdk/modelops/__init__.py +98 -0
- teradataml/sdk/modelops/_client.py +409 -0
- teradataml/sdk/modelops/_constants.py +304 -0
- teradataml/sdk/modelops/models.py +2308 -0
- teradataml/sdk/spinner.py +107 -0
- teradataml/series/__init__.py +0 -0
- teradataml/series/series.py +537 -0
- teradataml/series/series_utils.py +71 -0
- teradataml/store/__init__.py +12 -0
- teradataml/store/feature_store/__init__.py +0 -0
- teradataml/store/feature_store/constants.py +658 -0
- teradataml/store/feature_store/feature_store.py +4814 -0
- teradataml/store/feature_store/mind_map.py +639 -0
- teradataml/store/feature_store/models.py +7330 -0
- teradataml/store/feature_store/utils.py +390 -0
- teradataml/table_operators/Apply.py +979 -0
- teradataml/table_operators/Script.py +1739 -0
- teradataml/table_operators/TableOperator.py +1343 -0
- teradataml/table_operators/__init__.py +2 -0
- teradataml/table_operators/apply_query_generator.py +262 -0
- teradataml/table_operators/query_generator.py +493 -0
- teradataml/table_operators/table_operator_query_generator.py +462 -0
- teradataml/table_operators/table_operator_util.py +726 -0
- teradataml/table_operators/templates/dataframe_apply.template +184 -0
- teradataml/table_operators/templates/dataframe_map.template +176 -0
- teradataml/table_operators/templates/dataframe_register.template +73 -0
- teradataml/table_operators/templates/dataframe_udf.template +67 -0
- teradataml/table_operators/templates/script_executor.template +170 -0
- teradataml/telemetry_utils/__init__.py +0 -0
- teradataml/telemetry_utils/queryband.py +53 -0
- teradataml/utils/__init__.py +0 -0
- teradataml/utils/docstring.py +527 -0
- teradataml/utils/dtypes.py +943 -0
- teradataml/utils/internal_buffer.py +122 -0
- teradataml/utils/print_versions.py +206 -0
- teradataml/utils/utils.py +451 -0
- teradataml/utils/validators.py +3305 -0
- teradataml-20.0.0.8.dist-info/METADATA +2804 -0
- teradataml-20.0.0.8.dist-info/RECORD +1208 -0
- teradataml-20.0.0.8.dist-info/WHEEL +5 -0
- teradataml-20.0.0.8.dist-info/top_level.txt +1 -0
- teradataml-20.0.0.8.dist-info/zip-safe +1 -0
|
@@ -0,0 +1,1669 @@
|
|
|
1
|
+
# -*- coding: utf-8 -*-
|
|
2
|
+
"""
|
|
3
|
+
Unpublished work.
|
|
4
|
+
Copyright (c) 2018 by Teradata Corporation. All rights reserved.
|
|
5
|
+
TERADATA CORPORATION CONFIDENTIAL AND TRADE SECRET
|
|
6
|
+
|
|
7
|
+
Primary Owner: ellen.nolan@teradata.com
|
|
8
|
+
Secondary Owner: PankajVinod.Purandare@teradata.com
|
|
9
|
+
|
|
10
|
+
teradataml.common.constants
|
|
11
|
+
----------
|
|
12
|
+
A class for holding all constants
|
|
13
|
+
"""
|
|
14
|
+
import re
|
|
15
|
+
import sqlalchemy
|
|
16
|
+
from enum import Enum
|
|
17
|
+
from teradatasqlalchemy.types import (INTEGER, SMALLINT, BIGINT, BYTEINT, DECIMAL, FLOAT, NUMBER, VARCHAR)
|
|
18
|
+
from teradatasqlalchemy.types import (DATE, TIME, TIMESTAMP)
|
|
19
|
+
from teradatasqlalchemy.types import (BYTE, VARBYTE, BLOB)
|
|
20
|
+
from teradatasqlalchemy import (CHAR, CLOB)
|
|
21
|
+
from teradatasqlalchemy import (PERIOD_DATE, PERIOD_TIME, PERIOD_TIMESTAMP)
|
|
22
|
+
from teradatasqlalchemy import (INTERVAL_YEAR, INTERVAL_YEAR_TO_MONTH, INTERVAL_MONTH,
|
|
23
|
+
INTERVAL_DAY, INTERVAL_DAY_TO_HOUR, INTERVAL_DAY_TO_MINUTE,
|
|
24
|
+
INTERVAL_DAY_TO_SECOND, INTERVAL_HOUR,
|
|
25
|
+
INTERVAL_HOUR_TO_MINUTE, INTERVAL_HOUR_TO_SECOND,
|
|
26
|
+
INTERVAL_MINUTE, INTERVAL_MINUTE_TO_SECOND,
|
|
27
|
+
INTERVAL_SECOND)
|
|
28
|
+
from teradatasqlalchemy import (GEOMETRY, MBR, MBB)
|
|
29
|
+
import logging
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
class SQLConstants(Enum):
|
|
33
|
+
SQL_BASE_QUERY = 1
|
|
34
|
+
SQL_SAMPLE_QUERY = 2
|
|
35
|
+
SQL_SAMPLE_WITH_WHERE_QUERY = 3
|
|
36
|
+
SQL_CREATE_VOLATILE_TABLE_FROM_QUERY_WITH_DATA = 4
|
|
37
|
+
SQL_CREATE_VOLATILE_TABLE_FROM_QUERY_WITHOUT_DATA = 5
|
|
38
|
+
SQL_CREATE_VOLATILE_TABLE_USING_COLUMNS = 6
|
|
39
|
+
SQL_CREATE_TABLE_FROM_QUERY_WITH_DATA = 7
|
|
40
|
+
SQL_HELP_COLUMNS = 8
|
|
41
|
+
SQL_DROP_TABLE = 9
|
|
42
|
+
SQL_DROP_VIEW = 10
|
|
43
|
+
SQL_NROWS_FROM_QUERY = 11
|
|
44
|
+
SQL_TOP_NROWS_FROM_TABLEORVIEW = 12
|
|
45
|
+
SQL_INSERT_INTO_TABLE_VALUES = 13
|
|
46
|
+
SQL_SELECT_COLUMNNAMES_FROM = 14
|
|
47
|
+
SQL_SELECT_DATABASE = 15
|
|
48
|
+
SQL_HELP_VOLATILE_TABLE = 16
|
|
49
|
+
SQL_SELECT_TABLE_NAME = 17
|
|
50
|
+
SQL_CREATE_VIEW = 18
|
|
51
|
+
SQL_SELECT_USER = 19
|
|
52
|
+
SQL_HELP_VIEW = 20
|
|
53
|
+
SQL_HELP_TABLE = 21
|
|
54
|
+
SQL_HELP_INDEX = 22
|
|
55
|
+
SQL_INSERT_ALL_FROM_TABLE = 23
|
|
56
|
+
SQL_SELECT_DATABASENAME = 24
|
|
57
|
+
SQL_AND_TABLE_KIND = 25
|
|
58
|
+
SQL_AND_TABLE_NAME = 26
|
|
59
|
+
SQL_AND_TABLE_NAME_LIKE = 27
|
|
60
|
+
SQL_CREATE_TABLE_USING_COLUMNS = 28
|
|
61
|
+
SQL_DELETE_ALL_ROWS = 29
|
|
62
|
+
SQL_DELETE_SPECIFIC_ROW = 30
|
|
63
|
+
SQL_EXEC_STORED_PROCEDURE = 31
|
|
64
|
+
SQL_SELECT_COLUMNNAMES_WITH_WHERE = 32
|
|
65
|
+
SQL_HELP_DATABASE = 33
|
|
66
|
+
SQL_HELP_DATALAKE = 34
|
|
67
|
+
CONSTRAINT = ["check_constraint", "primary_key_constraint",
|
|
68
|
+
"foreign_key_constraint", "unique_key_constraint"]
|
|
69
|
+
SQL_TD_OTF_METADATA = 35
|
|
70
|
+
SQL_TD_OTF_SNAPSHOT = 36
|
|
71
|
+
SQL_LIST_TRIGGERS = 37
|
|
72
|
+
SQL_SHOW_TABLE = 38
|
|
73
|
+
SQL_SHOW_VIEW = 39
|
|
74
|
+
SQL_INSERT_INTO_TABLE_VALUES_WITH_COLUMN_NAMES = 40
|
|
75
|
+
|
|
76
|
+
|
|
77
|
+
class TeradataConstants(Enum):
|
|
78
|
+
TERADATA_VIEW = 1
|
|
79
|
+
TERADATA_TABLE = 2
|
|
80
|
+
TERADATA_SCRIPT = 3
|
|
81
|
+
TERADATA_LOCAL_SCRIPT = 4
|
|
82
|
+
CONTAINER = 5
|
|
83
|
+
TERADATA_TEXT_FILE = 6
|
|
84
|
+
TERADATA_APPLY = 7
|
|
85
|
+
TERADATA_VOLATILE_TABLE = 8
|
|
86
|
+
TABLE_COLUMN_LIMIT = 2048
|
|
87
|
+
TERADATA_JOINS = ["inner", "left", "right", "full", "cross"]
|
|
88
|
+
TERADATA_JOIN_OPERATORS = ['>=', '<=', '<>', '!=', '>', '<', '=']
|
|
89
|
+
# Order of operators
|
|
90
|
+
# shouldn't be changed. This is the order in which join condition is tested - first, operators
|
|
91
|
+
# with two characters and then the operators with single character.
|
|
92
|
+
SUPPORTED_ENGINES = {"ENGINE_SQL": {"name": "sqle", "file": "sqlengine_alias_definitions"}}
|
|
93
|
+
SUPPORTED_VANTAGE_VERSIONS = {"vantage1.0": "v1.0", "vantage1.1": "v1.1",
|
|
94
|
+
"vantage1.3": "v1.3", "vantage2.0": "v1.1"}
|
|
95
|
+
RANGE_SEPARATORS = [":"]
|
|
96
|
+
|
|
97
|
+
|
|
98
|
+
class AEDConstants(Enum):
|
|
99
|
+
AED_NODE_NOT_EXECUTED = 0
|
|
100
|
+
AED_NODE_EXECUTED = 1
|
|
101
|
+
AED_DB_OBJECT_NAME_BUFFER_SIZE = 128
|
|
102
|
+
AED_NODE_TYPE_BUFFER_SIZE = 32
|
|
103
|
+
AED_ASSIGN_DROP_EXISITING_COLUMNS = "Y"
|
|
104
|
+
AED_ASSIGN_DO_NOT_DROP_EXISITING_COLUMNS = "N"
|
|
105
|
+
AED_QUERY_NODE_TYPE_ML_QUERY_SINGLE_OUTPUT = "ml_query_single_output"
|
|
106
|
+
AED_QUERY_NODE_TYPE_ML_QUERY_MULTI_OUTPUT = "ml_query_multi_output"
|
|
107
|
+
AED_QUERY_NODE_TYPE_REFERENCE = "reference"
|
|
108
|
+
|
|
109
|
+
|
|
110
|
+
class SourceType(Enum):
|
|
111
|
+
TABLE = "TABLE"
|
|
112
|
+
QUERY = "QUERY"
|
|
113
|
+
|
|
114
|
+
|
|
115
|
+
class PythonTypes(Enum):
|
|
116
|
+
PY_NULL_TYPE = "nulltype"
|
|
117
|
+
PY_INT_TYPE = "int"
|
|
118
|
+
PY_FLOAT_TYPE = "float"
|
|
119
|
+
PY_STRING_TYPE = "str"
|
|
120
|
+
PY_DECIMAL_TYPE = "decimal.Decimal"
|
|
121
|
+
PY_DATETIME_TYPE = "datetime.datetime"
|
|
122
|
+
PY_TIME_TYPE = "datetime.time"
|
|
123
|
+
PY_DATE_TYPE = "datetime.date"
|
|
124
|
+
PY_BYTES_TYPE = "bytes"
|
|
125
|
+
|
|
126
|
+
|
|
127
|
+
class TeradataTypes(Enum):
|
|
128
|
+
TD_INTEGER_TYPES = [INTEGER, BYTEINT, SMALLINT, BIGINT, sqlalchemy.sql.sqltypes.Integer]
|
|
129
|
+
TD_INTEGER_CODES = ["I", "I1", "I2", "I8"]
|
|
130
|
+
TD_FLOAT_TYPES = [FLOAT, sqlalchemy.sql.sqltypes.Numeric]
|
|
131
|
+
TD_FLOAT_CODES = ["F"]
|
|
132
|
+
TD_DECIMAL_TYPES = [DECIMAL, NUMBER]
|
|
133
|
+
TD_DECIMAL_CODES = ["D", "N"]
|
|
134
|
+
TD_BYTE_TYPES = [BYTE, VARBYTE, BLOB]
|
|
135
|
+
TD_BYTE_CODES = ["BF", "BV", "BO"]
|
|
136
|
+
TD_DATETIME_TYPES = [TIMESTAMP, sqlalchemy.sql.sqltypes.DateTime]
|
|
137
|
+
TD_DATETIME_CODES = ["TS", "SZ"]
|
|
138
|
+
TD_TIME_TYPES = [TIME, sqlalchemy.sql.sqltypes.Time]
|
|
139
|
+
TD_TIME_CODES = ["AT", "TZ"]
|
|
140
|
+
TD_DATE_TYPES = [DATE, sqlalchemy.sql.sqltypes.Date]
|
|
141
|
+
TD_DATE_CODES = ["DA"]
|
|
142
|
+
TD_NULL_TYPE = "NULLTYPE"
|
|
143
|
+
TD_ALL_TYPES = (BYTEINT, SMALLINT, INTEGER, BIGINT, DECIMAL, FLOAT, NUMBER,
|
|
144
|
+
TIMESTAMP, DATE, TIME, CHAR, VARCHAR, CLOB, BYTE, VARBYTE,
|
|
145
|
+
BLOB, PERIOD_DATE, PERIOD_TIME, PERIOD_TIMESTAMP,
|
|
146
|
+
INTERVAL_YEAR, INTERVAL_YEAR_TO_MONTH, INTERVAL_MONTH,
|
|
147
|
+
INTERVAL_DAY, INTERVAL_DAY_TO_HOUR, INTERVAL_DAY_TO_MINUTE,
|
|
148
|
+
INTERVAL_DAY_TO_SECOND, INTERVAL_HOUR,
|
|
149
|
+
INTERVAL_HOUR_TO_MINUTE, INTERVAL_HOUR_TO_SECOND,
|
|
150
|
+
INTERVAL_MINUTE, INTERVAL_MINUTE_TO_SECOND, INTERVAL_SECOND)
|
|
151
|
+
TD_RANGE_N_CLAUSE_TYPES = (INTERVAL_YEAR, INTERVAL_DAY, INTERVAL_MONTH,
|
|
152
|
+
INTERVAL_MINUTE, INTERVAL_SECOND, INTERVAL_HOUR)
|
|
153
|
+
|
|
154
|
+
|
|
155
|
+
|
|
156
|
+
class TeradataTableKindConstants(Enum):
|
|
157
|
+
VOLATILE = "volatile"
|
|
158
|
+
TABLE = "table"
|
|
159
|
+
VIEW = "view"
|
|
160
|
+
TEMP = "temp"
|
|
161
|
+
ALL = "all"
|
|
162
|
+
ML_PATTERN = "ml_%"
|
|
163
|
+
VOLATILE_TABLE_NAME = 'Table Name'
|
|
164
|
+
REGULAR_TABLE_NAME = 'TableName'
|
|
165
|
+
|
|
166
|
+
class DataFrameTypes(Enum):
|
|
167
|
+
VIEW = "VIEW"
|
|
168
|
+
VALID_TIME_VIEW = "VALID_TIME_VIEW"
|
|
169
|
+
TRANSACTION_TIME_VIEW = "TRANSACTION_TIME_VIEW"
|
|
170
|
+
BI_TEMPORAL_VIEW = "BI_TEMPORAL_VIEW"
|
|
171
|
+
REGULAR_TABLE = "TABLE"
|
|
172
|
+
OTF_TABLE = "OTF"
|
|
173
|
+
BI_TEMPORAL = "BI_TEMPORAL"
|
|
174
|
+
TRANSACTION_TIME= "TRANSACTION_TIME"
|
|
175
|
+
VALID_TIME = "VALID_TIME"
|
|
176
|
+
ART_TABLE = "ART"
|
|
177
|
+
VOLATILE_TABLE = "VOLATILE_TABLE"
|
|
178
|
+
VALID_TIME_VOLATILE_TABLE = "VALID_TIME_VOLATILE_TABLE"
|
|
179
|
+
TRANSACTION_TIME_VOLATILE_TABLE = "TRANSACTION_TIME_VOLATILE_TABLE"
|
|
180
|
+
BI_TEMPORAL_VOLATILE_TABLE = "BI_TEMPORAL_VOLATILE_TABLE"
|
|
181
|
+
|
|
182
|
+
class SQLPattern(Enum):
|
|
183
|
+
SQLMR = re.compile(r"SELECT \* FROM .*\((\s*.*)*\) as .*", re.IGNORECASE)
|
|
184
|
+
DRIVER_FUNC_SQLMR = re.compile(r".*OUT\s+TABLE.*", re.IGNORECASE)
|
|
185
|
+
SQLMR_REFERENCE_NODE = re.compile("reference:.*:.*", re.IGNORECASE)
|
|
186
|
+
|
|
187
|
+
|
|
188
|
+
class FunctionArgumentMapperConstants(Enum):
|
|
189
|
+
# Mapper related
|
|
190
|
+
SQL_TO_TDML = "sql_to_tdml"
|
|
191
|
+
TDML_TO_SQL = "tdml_to_sql"
|
|
192
|
+
ALTERNATE_TO = "alternate_to"
|
|
193
|
+
TDML_NAME = "tdml_name"
|
|
194
|
+
TDML_TYPE = "tdml_type"
|
|
195
|
+
USED_IN_SEQUENCE_INPUT_BY = "used_in_sequence_by"
|
|
196
|
+
USED_IN_FORMULA = "used_in_formula"
|
|
197
|
+
INPUTS = "inputs"
|
|
198
|
+
OUTPUTS = "outputs"
|
|
199
|
+
ARGUMENTS = "arguments"
|
|
200
|
+
DEPENDENT_ATTR = "dependent"
|
|
201
|
+
INDEPENDENT_ATTR = "independent"
|
|
202
|
+
TDML_FORMULA_NAME = "formula"
|
|
203
|
+
DEFAULT_OUTPUT = "__default_output__"
|
|
204
|
+
DEFAULT_OUTPUT_TDML_NAME_SINGLE = "result"
|
|
205
|
+
DEFAULT_OUTPUT_TDML_NAME_MULTIPLE = "output"
|
|
206
|
+
|
|
207
|
+
# JSON related
|
|
208
|
+
ALLOWS_LISTS = "allowsLists"
|
|
209
|
+
DATATYPE = "datatype"
|
|
210
|
+
BOOL_TYPE = "BOOLEAN"
|
|
211
|
+
INT_TYPE = ["INTEGER", "LONG"]
|
|
212
|
+
FLOAT_TYPE = ["DOUBLE", "DOUBLE PRECISION", "FLOAT"]
|
|
213
|
+
INPUT_TABLES = "input_tables"
|
|
214
|
+
OUTPUT_TABLES = "output_tables"
|
|
215
|
+
ARGUMENT_CLAUSES = "argument_clauses"
|
|
216
|
+
R_NAME = "rName"
|
|
217
|
+
NAME = "name"
|
|
218
|
+
FUNCTION_TDML_NAME = "function_tdml_name"
|
|
219
|
+
R_FOMULA_USAGE = "rFormulaUsage"
|
|
220
|
+
R_ORDER_NUM = "rOrderNum"
|
|
221
|
+
TDML_SEQUENCE_COLUMN_NAME = "sequence_column"
|
|
222
|
+
|
|
223
|
+
|
|
224
|
+
class ModelCatalogingConstants(Enum):
|
|
225
|
+
MODEL_CATALOG_DB = "TD_ModelCataloging"
|
|
226
|
+
MODEL_ENGINE_ADVSQL = "Advanced SQL Engine"
|
|
227
|
+
|
|
228
|
+
# ModelCataloging Direct Views
|
|
229
|
+
MODELS = "ModelsV"
|
|
230
|
+
|
|
231
|
+
# ModelCataloging Derived Views
|
|
232
|
+
MODELSX = "ModelsVX"
|
|
233
|
+
|
|
234
|
+
# Columns names used for Filter
|
|
235
|
+
CREATED_BY = "CreatedBy"
|
|
236
|
+
|
|
237
|
+
# Expected Prediction Types
|
|
238
|
+
PREDICTION_TYPE_CLASSIFICATION = 'CLASSIFICATION'
|
|
239
|
+
PREDICTION_TYPE_REGRESSION = 'REGRESSION'
|
|
240
|
+
PREDICTION_TYPE_CLUSTERING = 'CLUSTERING'
|
|
241
|
+
PREDICTION_TYPE_OTHER = 'OTHER'
|
|
242
|
+
|
|
243
|
+
# License parameters
|
|
244
|
+
LICENSE_SOURCE = ['string', 'file', 'column']
|
|
245
|
+
|
|
246
|
+
|
|
247
|
+
class CopyToConstants(Enum):
|
|
248
|
+
DBAPI_BATCHSIZE = 16383
|
|
249
|
+
|
|
250
|
+
|
|
251
|
+
class PTITableConstants(Enum):
|
|
252
|
+
PATTERN_TIMEZERO_DATE = r"^DATE\s+'(.*)'$"
|
|
253
|
+
TD_SEQNO = 'TD_SEQNO'
|
|
254
|
+
TD_TIMECODE = 'TD_TIMECODE'
|
|
255
|
+
TD_TIMEBUCKET = 'TD_TIMEBUCKET'
|
|
256
|
+
TSCOLTYPE_TIMEBUCKET = 'TB'
|
|
257
|
+
TSCOLTYPE_TIMECODE = 'TC'
|
|
258
|
+
VALID_TIMEBUCKET_DURATIONS_FORMAL = ['CAL_YEARS', 'CAL_MONTHS', 'CAL_DAYS', 'WEEKS', 'DAYS', 'HOURS', 'MINUTES',
|
|
259
|
+
'SECONDS', 'MILLISECONDS', 'MICROSECONDS']
|
|
260
|
+
VALID_TIMEBUCKET_DURATIONS_SHORTHAND = ['cy', 'cyear', 'cyears',
|
|
261
|
+
'cm', 'cmonth', 'cmonths',
|
|
262
|
+
'cd', 'cday', 'cdays',
|
|
263
|
+
'w', 'week', 'weeks',
|
|
264
|
+
'd', 'day', 'days',
|
|
265
|
+
'h', 'hr', 'hrs', 'hour', 'hours',
|
|
266
|
+
'm', 'mins', 'minute', 'minutes',
|
|
267
|
+
's', 'sec', 'secs', 'second', 'seconds',
|
|
268
|
+
'ms', 'msec', 'msecs', 'millisecond', 'milliseconds',
|
|
269
|
+
'us', 'usec', 'usecs', 'microsecond', 'microseconds']
|
|
270
|
+
PATTERN_TIMEBUCKET_DURATION_SHORT = "^([0-9]+){}$"
|
|
271
|
+
PATTERN_TIMEBUCKET_DURATION_FORMAL = r"^{}\(([0-9]+)\)$"
|
|
272
|
+
VALID_TIMECODE_DATATYPES = [TIMESTAMP, DATE]
|
|
273
|
+
VALID_SEQUENCE_COL_DATATYPES = [INTEGER]
|
|
274
|
+
TIMEBUCKET_DURATION_FORMAT_MAPPER = {'cy': 'CAL_YEARS({})',
|
|
275
|
+
'cyear': 'CAL_YEARS({})',
|
|
276
|
+
'cyears': 'CAL_YEARS({})',
|
|
277
|
+
'cm': 'CAL_MONTHS({})',
|
|
278
|
+
'cmonth': 'CAL_MONTHS({})',
|
|
279
|
+
'cmonths': 'CAL_MONTHS({})',
|
|
280
|
+
'cd': 'CAL_DAYS({})',
|
|
281
|
+
'cday': 'CAL_DAYS({})',
|
|
282
|
+
'cdays': 'CAL_DAYS({})',
|
|
283
|
+
'w': 'WEEKS({})',
|
|
284
|
+
'week': 'WEEKS({})',
|
|
285
|
+
'weeks': 'WEEKS({})',
|
|
286
|
+
'd': 'DAYS({})',
|
|
287
|
+
'day': 'DAYS({})',
|
|
288
|
+
'days': 'DAYS({})',
|
|
289
|
+
'h': 'HOURS({})',
|
|
290
|
+
'hr': 'HOURS({})',
|
|
291
|
+
'hrs': 'HOURS({})',
|
|
292
|
+
'hour': 'HOURS({})',
|
|
293
|
+
'hours': 'HOURS({})',
|
|
294
|
+
'm': 'MINUTES({})',
|
|
295
|
+
'mins': 'MINUTES({})',
|
|
296
|
+
'minute': 'MINUTES({})',
|
|
297
|
+
'minutes': 'MINUTES({})',
|
|
298
|
+
's': 'SECONDS({})',
|
|
299
|
+
'sec': 'SECONDS({})',
|
|
300
|
+
'secs': 'SECONDS({})',
|
|
301
|
+
'second': 'SECONDS({})',
|
|
302
|
+
'seconds': 'SECONDS({})',
|
|
303
|
+
'ms': 'MILLISECONDS({})',
|
|
304
|
+
'msec': 'MILLISECONDS({})',
|
|
305
|
+
'msecs': 'MILLISECONDS({})',
|
|
306
|
+
'millisecond': 'MILLISECONDS({})',
|
|
307
|
+
'milliseconds': 'MILLISECONDS({})',
|
|
308
|
+
'us': 'MICROSECONDS({})',
|
|
309
|
+
'usec': 'MICROSECONDS({})',
|
|
310
|
+
'usecs': 'MICROSECONDS({})',
|
|
311
|
+
'microsecond': 'MICROSECONDS({})',
|
|
312
|
+
'microseconds': 'MICROSECONDS({})'}
|
|
313
|
+
|
|
314
|
+
|
|
315
|
+
class GeospatialConstants(Enum):
|
|
316
|
+
""" Holds all Geospatial functionality specific constants. """
|
|
317
|
+
|
|
318
|
+
# This dictionary maps teradataml name of the Geospatial function to
|
|
319
|
+
# SQL function name.
|
|
320
|
+
# This dictionary contains entries for the functions which are
|
|
321
|
+
# exposed as "Property" of teradataml GeoDataFrame or
|
|
322
|
+
# teradataml GeoDataFrameColumn.
|
|
323
|
+
PROPERTY_TO_NO_ARG_SQL_FUNCTION_NAME = {
|
|
324
|
+
## *** ST_Geometry Methods *** ##
|
|
325
|
+
"boundary": lambda x: "ST_Boundary",
|
|
326
|
+
"centroid": lambda x: "ST_Centroid",
|
|
327
|
+
"convex_hull": lambda x: "ST_ConvexHull",
|
|
328
|
+
"coord_dim": lambda x: "ST_CoordDim",
|
|
329
|
+
"dimension": lambda x: "ST_Dimension",
|
|
330
|
+
"geom_type": lambda x: "ST_GeometryType",
|
|
331
|
+
"is_3D": lambda x: "ST_Is3D",
|
|
332
|
+
"is_empty": lambda x: "ST_IsEmpty",
|
|
333
|
+
"is_simple": lambda x: "ST_IsSimple",
|
|
334
|
+
"is_valid": lambda x: "ST_IsValid",
|
|
335
|
+
"max_x": lambda x: "ST_MaxX" if isinstance(x, GEOMETRY) else "XMax",
|
|
336
|
+
"max_y": lambda x: "ST_MaxY" if isinstance(x, GEOMETRY) else "YMax",
|
|
337
|
+
"max_z": lambda x: "ST_MaxZ" if isinstance(x, GEOMETRY) else "ZMax",
|
|
338
|
+
"min_x": lambda x: "ST_MinX" if isinstance(x, GEOMETRY) else "XMin",
|
|
339
|
+
"min_y": lambda x: "ST_MinY" if isinstance(x, GEOMETRY) else "YMin",
|
|
340
|
+
"min_z": lambda x: "ST_MinZ" if isinstance(x, GEOMETRY) else "ZMin",
|
|
341
|
+
"srid": lambda x: "ST_SRID",
|
|
342
|
+
|
|
343
|
+
## *** Geometry Type ST_Point Methods *** ##
|
|
344
|
+
"x": lambda x: "ST_X",
|
|
345
|
+
"y": lambda x: "ST_Y",
|
|
346
|
+
"z": lambda x: "ST_Z",
|
|
347
|
+
|
|
348
|
+
## *** Geometry Type ST_LineString Methods *** ##
|
|
349
|
+
"is_closed_3D": lambda x: "ST_3DIsClosed",
|
|
350
|
+
"is_closed": lambda x: "ST_IsClosed",
|
|
351
|
+
"is_ring": lambda x: "ST_IsRing",
|
|
352
|
+
|
|
353
|
+
## *** Geometry Type ST_Polygon Methods *** ##
|
|
354
|
+
"area": lambda x: "ST_Area",
|
|
355
|
+
"exterior": lambda x: "ST_ExteriorRing",
|
|
356
|
+
"perimeter": lambda x: "ST_Perimeter"
|
|
357
|
+
}
|
|
358
|
+
|
|
359
|
+
# This dictionary maps teradataml name of the Geospatial function to
|
|
360
|
+
# SQL function name.
|
|
361
|
+
# This dictionary contains entries for the functions which are
|
|
362
|
+
# exposed as "Methods" of teradataml GeoDataFrame or
|
|
363
|
+
# teradataml GeoDataFrameColumn, but does not accept any argument.
|
|
364
|
+
METHOD_TO_NO_ARG_SQL_FUNCTION_NAME = {
|
|
365
|
+
## *** ST_Geometry Methods *** ##
|
|
366
|
+
"mbb": lambda x: "MBB",
|
|
367
|
+
"to_binary": lambda x: "ST_AsBinary",
|
|
368
|
+
"to_text": lambda x: "ST_AsText",
|
|
369
|
+
"envelope": lambda x: "ST_Envelope",
|
|
370
|
+
"mbr": lambda x: "ST_MBR",
|
|
371
|
+
|
|
372
|
+
## *** Geometry Type ST_LineString Methods *** ##
|
|
373
|
+
"length_3D": lambda x: "ST_3DLength",
|
|
374
|
+
"end_point": lambda x: "ST_EndPoint",
|
|
375
|
+
"length": lambda x: "ST_Length",
|
|
376
|
+
"num_points": lambda x: "ST_NumPoints",
|
|
377
|
+
"start_point": lambda x: "ST_StartPoint",
|
|
378
|
+
|
|
379
|
+
## *** Geometry Type ST_Polygon Methods *** ##
|
|
380
|
+
"num_interior_ring": lambda x: "ST_NumInteriorRing",
|
|
381
|
+
"point_on_surface": lambda x: "ST_PointOnSurface",
|
|
382
|
+
|
|
383
|
+
## *** Geometry Type ST_GeomCollection Methods *** ##
|
|
384
|
+
"num_geometry": lambda x: "ST_NumGeometries",
|
|
385
|
+
|
|
386
|
+
## *** Geometry Type ST_Geomsequence Methods *** ##
|
|
387
|
+
"get_final_timestamp": lambda x: "GetFinalT",
|
|
388
|
+
"get_init_timestamp": lambda x: "GetInitT",
|
|
389
|
+
"get_user_field_count": lambda x: "GetUserFldCount"
|
|
390
|
+
}
|
|
391
|
+
|
|
392
|
+
# This dictionary maps teradataml name of the Geospatial function to
|
|
393
|
+
# SQL function name.
|
|
394
|
+
# This dictionary contains entries for the functions which are
|
|
395
|
+
# exposed as "Methods" of teradataml GeoDataFrame or
|
|
396
|
+
# teradataml GeoDataFrameColumn that accepts argument(s).
|
|
397
|
+
METHOD_TO_ARG_ACCEPTING_SQL_FUNCTION_NAME = {
|
|
398
|
+
## *** Minimum Bounding Type Methods *** ##
|
|
399
|
+
"intersects": lambda x: "ST_Intersects" if isinstance(x, GEOMETRY) else "Intersects",
|
|
400
|
+
|
|
401
|
+
## *** ST_Geometry Methods *** ##
|
|
402
|
+
"buffer": lambda x: "ST_Buffer",
|
|
403
|
+
"contains": lambda x: "ST_Contains",
|
|
404
|
+
"crosses": lambda x: "ST_Crosses",
|
|
405
|
+
"difference": lambda x: "ST_Difference", # M
|
|
406
|
+
"disjoint": lambda x: "ST_Disjoint",
|
|
407
|
+
"distance": lambda x: "ST_Distance", # M
|
|
408
|
+
"distance_3D": lambda x: "ST_3DDistance", # M
|
|
409
|
+
"geom_equals": lambda x: "ST_Equals",
|
|
410
|
+
"intersection": lambda x: "ST_Intersection",
|
|
411
|
+
# "intersect": lambda x: "ST_Intersect", # M
|
|
412
|
+
"make_2D": lambda x: "Make_2D",
|
|
413
|
+
"overlaps": lambda x: "ST_Overlaps",
|
|
414
|
+
"relates": lambda x: "ST_Relate",
|
|
415
|
+
"simplify": lambda x: "SimplifyPreserveTopology",
|
|
416
|
+
"sym_difference": lambda x: "ST_SymDifference", # M
|
|
417
|
+
"touches": lambda x: "ST_Touches",
|
|
418
|
+
"transform": lambda x: "ST_Transform",
|
|
419
|
+
"union": lambda x: "ST_Union",
|
|
420
|
+
"within": lambda x: "ST_Within",
|
|
421
|
+
"wkb_geom_to_sql": lambda x: "ST_WKBToSQL", # M
|
|
422
|
+
"wkt_geom_to_sql": lambda x: "ST_WKTToSQL", # M
|
|
423
|
+
"set_srid": lambda x: "ST_SRID",
|
|
424
|
+
|
|
425
|
+
## *** Geometry Type ST_Point Methods *** ##
|
|
426
|
+
"set_x": lambda x: "ST_X",
|
|
427
|
+
"set_y": lambda x: "ST_Y",
|
|
428
|
+
"set_z": lambda x: "ST_Z",
|
|
429
|
+
"spherical_buffer": lambda x: "ST_SphericalBufferMBR", # M
|
|
430
|
+
"spherical_distance": lambda x: "ST_SphericalDistance", # M
|
|
431
|
+
"spheroidal_buffer": lambda x: "ST_SpheroidalBufferMBR", # M
|
|
432
|
+
"spheroidal_distance": lambda x: "ST_SpheroidalDistance", # M
|
|
433
|
+
|
|
434
|
+
## *** Geometry Type ST_LineString Methods *** ##
|
|
435
|
+
"line_interpolate_point": lambda x: "ST_Line_Interpolate_Point",
|
|
436
|
+
"point": lambda x: "ST_PointN",
|
|
437
|
+
|
|
438
|
+
## *** Geometry Type ST_Polygon Methods *** ##
|
|
439
|
+
"set_exterior": lambda x: "ST_ExteriorRing",
|
|
440
|
+
"interiors": lambda x: "ST_InteriorRingN",
|
|
441
|
+
|
|
442
|
+
## *** Geometry Type ST_GeomCollection Methods *** ##
|
|
443
|
+
"geom_component": lambda x: "ST_GeometryN",
|
|
444
|
+
|
|
445
|
+
## *** Geometry Type ST_Geomsequence Methods *** ##
|
|
446
|
+
"clip": lambda x: "Clip",
|
|
447
|
+
"get_user_field": lambda x: "GetUserFld",
|
|
448
|
+
"point_heading": lambda x: "HeadingN",
|
|
449
|
+
"get_link": lambda x: "LinkID",
|
|
450
|
+
"set_link": lambda x: "LinkID",
|
|
451
|
+
"speed": lambda x: "SpeedN",
|
|
452
|
+
|
|
453
|
+
## *** Filtering Functions and Methods *** ##
|
|
454
|
+
"intersects_mbb": lambda x: "Intersects_MBB",
|
|
455
|
+
"mbb_filter": lambda x: "MBB_Filter",
|
|
456
|
+
"mbr_filter": lambda x: "MBR_Filter",
|
|
457
|
+
"within_mbb": lambda x: "Within_MBB"
|
|
458
|
+
}
|
|
459
|
+
|
|
460
|
+
|
|
461
|
+
class OutputStyle(Enum):
|
|
462
|
+
OUTPUT_TABLE = 'TABLE'
|
|
463
|
+
OUTPUT_VIEW = 'VIEW'
|
|
464
|
+
|
|
465
|
+
|
|
466
|
+
class TableOperatorConstants(Enum):
|
|
467
|
+
# Template of the intermediate script that will be generated.
|
|
468
|
+
MAP_TEMPLATE = "dataframe_map.template"
|
|
469
|
+
# Template of the intermediate script that will be generated.
|
|
470
|
+
APPLY_TEMPLATE = "dataframe_apply.template"
|
|
471
|
+
# Template of the intermediate script that will be generated for UDF.
|
|
472
|
+
UDF_TEMPLATE = "dataframe_udf.template"
|
|
473
|
+
# Template of the intermediate script that will be generated for register.
|
|
474
|
+
REGISTER_TEMPLATE = "dataframe_register.template"
|
|
475
|
+
# In-DB execution mode.
|
|
476
|
+
INDB_EXEC = "IN-DB"
|
|
477
|
+
# Local execution mode.
|
|
478
|
+
LOCAL_EXEC = "LOCAL"
|
|
479
|
+
# Remote user environment mode.
|
|
480
|
+
REMOTE_EXEC = "REMOTE"
|
|
481
|
+
|
|
482
|
+
EXEC_MODE = [LOCAL_EXEC, INDB_EXEC, REMOTE_EXEC]
|
|
483
|
+
# map_row operation.
|
|
484
|
+
MAP_ROW_OP = "map_row"
|
|
485
|
+
# map_partition operation.
|
|
486
|
+
MAP_PARTITION_OP = "map_partition"
|
|
487
|
+
# apply operation.
|
|
488
|
+
APPLY_OP = "apply"
|
|
489
|
+
# udf operation.
|
|
490
|
+
UDF_OP = "udf"
|
|
491
|
+
# register operation.
|
|
492
|
+
REGISTER_OP = "register"
|
|
493
|
+
# Template of the script_executor that will be used to generate the temporary script_executor file.
|
|
494
|
+
SCRIPT_TEMPLATE = "script_executor.template"
|
|
495
|
+
# Log Type.
|
|
496
|
+
SCRIPT_LOG = "SCRIPT"
|
|
497
|
+
APPLY_LOG = "APPLY"
|
|
498
|
+
LOG_TYPE = [SCRIPT_LOG, APPLY_LOG]
|
|
499
|
+
# Query for viewing last n lines of script log.
|
|
500
|
+
SCRIPT_LOG_QUERY = "SELECT * FROM SCRIPT (SCRIPT_COMMAND " \
|
|
501
|
+
"('tail -n {} /var/opt/teradata/tdtemp/uiflib/scriptlog') " \
|
|
502
|
+
"RETURNS ('scriptlog VARCHAR({})') )"
|
|
503
|
+
|
|
504
|
+
BYOM_LOG = "BYOM"
|
|
505
|
+
# Query for viewing last n lines of script log.
|
|
506
|
+
BYOM_LOG_QUERY = "SELECT * FROM SCRIPT (SCRIPT_COMMAND " \
|
|
507
|
+
"('tail -n {} /var/opt/teradata/byom/byom.log') " \
|
|
508
|
+
"RETURNS ('byomlog VARCHAR({})'))"
|
|
509
|
+
|
|
510
|
+
APPLY_LOG_QUERY = "SELECT LogDateTime, LogMessage, Level FROM syslib.LoggingOp({} {} {}) as dt"
|
|
511
|
+
|
|
512
|
+
# Check if Python interpretor and add-ons are installed or not.
|
|
513
|
+
# Location of In-DB packages is indicated by configure.indb_install_location.
|
|
514
|
+
# Check for both python and pip versions.
|
|
515
|
+
CHECK_PYTHON_INSTALLED = """SELECT distinct * FROM SCRIPT(
|
|
516
|
+
ON (select 1) PARTITION BY ANY
|
|
517
|
+
SCRIPT_COMMAND('echo $({0}/bin/pip3 --version) -- $({0}/bin/python3 --version)')
|
|
518
|
+
returns('pip VARCHAR(256)'))
|
|
519
|
+
"""
|
|
520
|
+
# Check which version of rpms are installed.
|
|
521
|
+
INDB_PYTHON_PATH = """SEL DISTINCT os_ver
|
|
522
|
+
FROM SCRIPT(
|
|
523
|
+
SCRIPT_COMMAND('grep CPE_NAME /etc/os-release')
|
|
524
|
+
RETURNS('os_ver VARCHAR(100)')
|
|
525
|
+
);"""
|
|
526
|
+
|
|
527
|
+
# Script Query to get Python packages and corresponding versions.
|
|
528
|
+
# Location of In-DB packages is indicated by configure.indb_install_location.
|
|
529
|
+
partial_version_query = "SELECT distinct * FROM SCRIPT( ON (select 1) " \
|
|
530
|
+
"PARTITION BY ANY SCRIPT_COMMAND('{0}/bin/pip3 freeze | "
|
|
531
|
+
|
|
532
|
+
PACKAGE_VERSION_QUERY = partial_version_query + "{1}awk -F ''=='' " \
|
|
533
|
+
"''{{print $1, $2}}''') " \
|
|
534
|
+
"delimiter(' ') " \
|
|
535
|
+
"returns('package VARCHAR({2}), " \
|
|
536
|
+
"version VARCHAR({2})'))"
|
|
537
|
+
|
|
538
|
+
SCRIPT_LIST_FILES_QUERY = "SELECT DISTINCT * FROM SCRIPT (SCRIPT_COMMAND " \
|
|
539
|
+
"('ls ./{}') RETURNS ('Files VARCHAR({})'))"
|
|
540
|
+
|
|
541
|
+
|
|
542
|
+
# OpenBlas by default is multi-threaded, needs to be set to single-threaded.
|
|
543
|
+
OPENBLAS_NUM_THREADS = "OPENBLAS_NUM_THREADS=1"
|
|
544
|
+
|
|
545
|
+
# Query to create a DataFrame with a range of numbers.
|
|
546
|
+
RANGE_QUERY = "WITH RECURSIVE NumberSeries (id) AS (SELECT id AS id from {0} "\
|
|
547
|
+
"UNION ALL SELECT id {3} {1} FROM NumberSeries WHERE id {3} {1} {4} {2}) "\
|
|
548
|
+
"SELECT id FROM NumberSeries;"
|
|
549
|
+
|
|
550
|
+
class ValibConstants(Enum):
|
|
551
|
+
# A dictionary that maps teradataml name of the exposed VALIB function name
|
|
552
|
+
# to Vantage VALIB SQL function name.
|
|
553
|
+
TERADATAML_VALIB_SQL_FUNCTION_NAME_MAP = {
|
|
554
|
+
"AdaptiveHistogram": "AdaptiveHistogram",
|
|
555
|
+
"Explore": "DataExplorer",
|
|
556
|
+
"Frequency": "Frequency",
|
|
557
|
+
"Histogram": "Histogram",
|
|
558
|
+
"Overlap": "Overlap",
|
|
559
|
+
"Statistics": "Statistics",
|
|
560
|
+
"TextAnalyzer": "TextFieldAnalyzer",
|
|
561
|
+
"Values": "Values",
|
|
562
|
+
"Association": "Association",
|
|
563
|
+
"KMeans": "Kmeans",
|
|
564
|
+
"KMeansPredict": "KmeansScore",
|
|
565
|
+
"DecisionTree": "DecisionTree",
|
|
566
|
+
"DecisionTreePredict": "DecisionTreeScore",
|
|
567
|
+
"DecisionTreeEvaluator": "DecisionTreeScore",
|
|
568
|
+
"Matrix": "Matrix",
|
|
569
|
+
"LinReg": "Linear",
|
|
570
|
+
"LinRegPredict": "LinearScore",
|
|
571
|
+
"LinRegEvaluator": "LinearScore",
|
|
572
|
+
"LogReg": "Logistic",
|
|
573
|
+
"LogRegPredict": "LogisticScore",
|
|
574
|
+
"LogRegEvaluator": "LogisticScore",
|
|
575
|
+
"PCA": "Factor",
|
|
576
|
+
"PCAPredict": "FactorScore",
|
|
577
|
+
"PCAEvaluator": "FactorScore",
|
|
578
|
+
"ParametricTest": "ParametricTest",
|
|
579
|
+
"BinomialTest": "BinomialTest",
|
|
580
|
+
"KSTest": "KSTest",
|
|
581
|
+
"ChiSquareTest": "ChiSquareTest",
|
|
582
|
+
"RankTest": "RankTest",
|
|
583
|
+
"BinCode": "vartran",
|
|
584
|
+
"Derive": "vartran",
|
|
585
|
+
"DesignCode": "vartran",
|
|
586
|
+
"Fillna": "vartran",
|
|
587
|
+
"Recode": "vartran",
|
|
588
|
+
"Rescale": "vartran",
|
|
589
|
+
"Sigmoid": "vartran",
|
|
590
|
+
"ZScore": "vartran",
|
|
591
|
+
"Transform": "vartran",
|
|
592
|
+
"XmlToHtmlReport": "report"
|
|
593
|
+
}
|
|
594
|
+
|
|
595
|
+
# A dictionary that maps Vantage VALIB SQL function name to a dictionary
|
|
596
|
+
# mapping a teradataml name of input argument to another dictionary containing
|
|
597
|
+
# Vantage SQL equivalent arguments, specified with "database_arg" and
|
|
598
|
+
# "table_arg" keys.
|
|
599
|
+
# In teradataml, input argument is a DataFrame, which contains both database and table name
|
|
600
|
+
# information. We shall just map that to Vantage SQL input table arguments.
|
|
601
|
+
# ---------------------------------------------------------------------------------
|
|
602
|
+
# NOTE:
|
|
603
|
+
# Add an entry in this map,
|
|
604
|
+
# 1. If and only if VALIB function accepts multiple input arguments.
|
|
605
|
+
# 2. Default argument for input is "data". Don't add an entry for it.
|
|
606
|
+
# 3. Add entry for only other input arguments.
|
|
607
|
+
# ---------------------------------------------------------------------------------
|
|
608
|
+
VALIB_FUNCTION_MULTIINPUT_ARGUMENT_MAP = {
|
|
609
|
+
"ASSOCIATION": {
|
|
610
|
+
"description_data": {
|
|
611
|
+
"database_arg": "descriptiondatabase",
|
|
612
|
+
"table_arg": "descriptiontable"
|
|
613
|
+
},
|
|
614
|
+
"hierarchy_data": {
|
|
615
|
+
"database_arg": "hierarchydatabase",
|
|
616
|
+
"table_arg": "hierarchytable"
|
|
617
|
+
},
|
|
618
|
+
"left_lookup_data": {
|
|
619
|
+
"database_arg": "leftlookupdatabase",
|
|
620
|
+
"table_arg": "leftlookuptable"
|
|
621
|
+
},
|
|
622
|
+
"right_lookup_data": {
|
|
623
|
+
"database_arg": "rightlookupdatabase",
|
|
624
|
+
"table_arg": "rightlookuptable"
|
|
625
|
+
},
|
|
626
|
+
"reduced_data": {
|
|
627
|
+
"database_arg": "reducedinputdatabase",
|
|
628
|
+
"table_arg": "reducedinputtable"
|
|
629
|
+
}
|
|
630
|
+
},
|
|
631
|
+
|
|
632
|
+
"KMEANSSCORE": {
|
|
633
|
+
"model": {
|
|
634
|
+
"database_arg": "modeldatabase",
|
|
635
|
+
"table_arg": "modeltablename"
|
|
636
|
+
}
|
|
637
|
+
},
|
|
638
|
+
|
|
639
|
+
"DECISIONTREESCORE": {
|
|
640
|
+
"model": {
|
|
641
|
+
"database_arg": "modeldatabase",
|
|
642
|
+
"table_arg": "modeltablename"
|
|
643
|
+
}
|
|
644
|
+
},
|
|
645
|
+
|
|
646
|
+
"LINEARSCORE": {
|
|
647
|
+
"model": {
|
|
648
|
+
"database_arg": "modeldatabase",
|
|
649
|
+
"table_arg": "modeltablename"
|
|
650
|
+
}
|
|
651
|
+
},
|
|
652
|
+
|
|
653
|
+
"LOGISTIC": {
|
|
654
|
+
"matrix_data": {
|
|
655
|
+
"database_arg": "matrixdatabase",
|
|
656
|
+
"table_arg": "matrixtablename"
|
|
657
|
+
}
|
|
658
|
+
},
|
|
659
|
+
|
|
660
|
+
"LOGISTICSCORE": {
|
|
661
|
+
"model": {
|
|
662
|
+
"database_arg": "modeldatabase",
|
|
663
|
+
"table_arg": "modeltablename"
|
|
664
|
+
}
|
|
665
|
+
},
|
|
666
|
+
|
|
667
|
+
"FACTORSCORE": {
|
|
668
|
+
"model": {
|
|
669
|
+
"database_arg": "modeldatabase",
|
|
670
|
+
"table_arg": "modeltablename"
|
|
671
|
+
}
|
|
672
|
+
}
|
|
673
|
+
}
|
|
674
|
+
|
|
675
|
+
# A dictionary that maps Vantage VALIB SQL function name to a dictionary of SQL output
|
|
676
|
+
# arguments of the function.
|
|
677
|
+
# This values dictionary will map:
|
|
678
|
+
# 1. "db" key to SQL output argument that accepts database name where output
|
|
679
|
+
# table will be created.
|
|
680
|
+
# 2. "tbls" key to a list of SQL output argument that accepts table name.
|
|
681
|
+
# 3. "mandatory_output_extensions" key to the dictionary of extensions to teradataml
|
|
682
|
+
# output argument names. The tables in this extension mapper are generated
|
|
683
|
+
# irrespective of whether the function is scoring/evaluator/any other function.
|
|
684
|
+
# 4. "evaluator_output_extensions" key to the dictionary of extensions to teradataml
|
|
685
|
+
# output argument names. The tables in this extension mapper are generated
|
|
686
|
+
# only when the function is evaluator function. When these tables are generated,
|
|
687
|
+
# tables that do not have extensions will not be generated (feature of evaluator
|
|
688
|
+
# functions.
|
|
689
|
+
# In teradataml, output arguments are not accepted from user, but are created and used
|
|
690
|
+
# internally.
|
|
691
|
+
# ---------------------------------------------------------------------------------
|
|
692
|
+
# NOTES:
|
|
693
|
+
# 1. Add an entry in this map, if VALIB function
|
|
694
|
+
# a. Generates multiple output tables OR
|
|
695
|
+
# b. Output argument names are not same as default output argument names:
|
|
696
|
+
# 'outputdatabase' and 'outputtablename'.
|
|
697
|
+
# 2. No need to add an entry for default argument for output.
|
|
698
|
+
# ---------------------------------------------------------------------------------
|
|
699
|
+
VALIB_FUNCTION_OUTPUT_ARGUMENT_MAP = {
|
|
700
|
+
"DATAEXPLORER": {
|
|
701
|
+
"db": "outputdatabase",
|
|
702
|
+
"tbls": ["frequencyoutputtablename",
|
|
703
|
+
"histogramoutputtablename",
|
|
704
|
+
"statisticsoutputtablename",
|
|
705
|
+
"valuesoutputtablename"]
|
|
706
|
+
},
|
|
707
|
+
|
|
708
|
+
"LINEAR": {
|
|
709
|
+
"db": "outputdatabase",
|
|
710
|
+
"tbls": "outputtablename",
|
|
711
|
+
"mandatory_output_extensions": {"_rpt": "statistical_measures",
|
|
712
|
+
"_txt": "xml_reports"}
|
|
713
|
+
},
|
|
714
|
+
|
|
715
|
+
"LINEARSCORE": {
|
|
716
|
+
"db": "outputdatabase",
|
|
717
|
+
"tbls": "outputtablename",
|
|
718
|
+
"evaluator_output_extensions": {"_txt": "result"}
|
|
719
|
+
},
|
|
720
|
+
|
|
721
|
+
"LOGISTIC": {
|
|
722
|
+
"db": "outputdatabase",
|
|
723
|
+
"tbls": "outputtablename",
|
|
724
|
+
"mandatory_output_extensions": {"_rpt": "statistical_measures",
|
|
725
|
+
"_txt": "xml_reports"}
|
|
726
|
+
},
|
|
727
|
+
|
|
728
|
+
"LOGISTICSCORE": {
|
|
729
|
+
"db": "outputdatabase",
|
|
730
|
+
"tbls": "outputtablename",
|
|
731
|
+
"evaluator_output_extensions": {"_txt": "result"}
|
|
732
|
+
},
|
|
733
|
+
|
|
734
|
+
"DECISIONTREESCORE": {
|
|
735
|
+
"db": "outputdatabase",
|
|
736
|
+
"tbls": "outputtablename",
|
|
737
|
+
"mandatory_output_extensions": {"_1": "profile_result_1",
|
|
738
|
+
"_2": "profile_result_2"},
|
|
739
|
+
"evaluator_output_extensions": {"_rpt": "result"}
|
|
740
|
+
},
|
|
741
|
+
|
|
742
|
+
"FACTORSCORE": {
|
|
743
|
+
"db": "outputdatabase",
|
|
744
|
+
"tbls": "outputtablename",
|
|
745
|
+
"evaluator_output_extensions": {"_rpt": "result"}
|
|
746
|
+
},
|
|
747
|
+
|
|
748
|
+
"TEXTFIELDANALYZER": {
|
|
749
|
+
"db": "outputdatabase",
|
|
750
|
+
"tbls": "outputtablename",
|
|
751
|
+
"mandatory_output_extensions": {"_rpt": "data_type_matrix"}
|
|
752
|
+
}
|
|
753
|
+
}
|
|
754
|
+
|
|
755
|
+
# A dictionary that maps Vantage VALIB SQL function name to a dictionary mapping
|
|
756
|
+
# SQL Output table argument name to teradataml exposed output argument name.
|
|
757
|
+
# ---------------------------------------------------------------------------------
|
|
758
|
+
# NOTES:
|
|
759
|
+
# 1. Add an entry in this map, if VALIB function generates multiple output tables.
|
|
760
|
+
# 2. No need to add an entry for default argument for output.
|
|
761
|
+
# 3. Default exposed output argument name is "result".
|
|
762
|
+
# ---------------------------------------------------------------------------------
|
|
763
|
+
TERADATAML_VALIB_MULTIOUTPUT_ATTR_MAP = {
|
|
764
|
+
"DATAEXPLORER": {
|
|
765
|
+
"frequencyoutputtablename": "frequency_output",
|
|
766
|
+
"histogramoutputtablename": "histogram_output",
|
|
767
|
+
"statisticsoutputtablename": "statistics_output",
|
|
768
|
+
"valuesoutputtablename": "values_output"
|
|
769
|
+
},
|
|
770
|
+
|
|
771
|
+
"LINEAR": {
|
|
772
|
+
"outputtablename": "model",
|
|
773
|
+
"_rpt": "statistical_measures",
|
|
774
|
+
"_txt": "xml_reports"
|
|
775
|
+
},
|
|
776
|
+
|
|
777
|
+
"LOGISTIC": {
|
|
778
|
+
"outputtablename": "model",
|
|
779
|
+
"_rpt": "statistical_measures",
|
|
780
|
+
"_txt": "xml_reports"
|
|
781
|
+
},
|
|
782
|
+
|
|
783
|
+
"DECISIONTREESCORE": {
|
|
784
|
+
"outputtablename": "result",
|
|
785
|
+
"_1": "profile_result_1",
|
|
786
|
+
"_2": "profile_result_2"
|
|
787
|
+
},
|
|
788
|
+
|
|
789
|
+
"TEXTFIELDANALYZER": {
|
|
790
|
+
"outputtablename": "result",
|
|
791
|
+
"_rpt": "data_type_matrix"
|
|
792
|
+
}
|
|
793
|
+
}
|
|
794
|
+
|
|
795
|
+
# A dictionary that maps Vantage VALIB Teradataml function name to a dictionary mapping
|
|
796
|
+
# SQL Output table argument name to teradataml exposed output argument name.
|
|
797
|
+
# ---------------------------------------------------------------------------------
|
|
798
|
+
# NOTES:
|
|
799
|
+
# 1. Add an entry in this map, if VALIB evaluator function generates tables with
|
|
800
|
+
# extension(s) or multiple output tables.
|
|
801
|
+
# 2. This mapper is specific to Evaluator functions. "__multioutput_attr_map" of VALIB
|
|
802
|
+
# object is replaced with this mapper if the function is evaluator function.
|
|
803
|
+
# ---------------------------------------------------------------------------------
|
|
804
|
+
TERDATAML_EVALUATOR_OUTPUT_ATTR_MAP = {
|
|
805
|
+
"DecisionTreeEvaluator": {
|
|
806
|
+
"_rpt": "result",
|
|
807
|
+
"_1": "profile_result_1",
|
|
808
|
+
"_2": "profile_result_2"
|
|
809
|
+
},
|
|
810
|
+
|
|
811
|
+
"LinRegEvaluator": {
|
|
812
|
+
"_txt": "result"
|
|
813
|
+
},
|
|
814
|
+
|
|
815
|
+
"LogRegEvaluator": {
|
|
816
|
+
"_txt": "result"
|
|
817
|
+
},
|
|
818
|
+
|
|
819
|
+
"PCAEvaluator": {
|
|
820
|
+
"_rpt": "result"
|
|
821
|
+
}
|
|
822
|
+
}
|
|
823
|
+
|
|
824
|
+
# A dictionary that maps Vantage VALIB SQL function name to:
|
|
825
|
+
# 1. A dictionary mapping teradataml exposed name of the argument to SQL function
|
|
826
|
+
# argument name. OR
|
|
827
|
+
# 2. Just a list of SQL function argument names supported by the function.
|
|
828
|
+
# ---------------------------------------------------------------------------------
|
|
829
|
+
# NOTES:
|
|
830
|
+
# 1. Add an entry in this map, if argument names in teradataml are different from
|
|
831
|
+
# SQL function argument names.
|
|
832
|
+
# 2. No need to add an entry if all argument names are same as that of the SQL Function
|
|
833
|
+
# argument.
|
|
834
|
+
# 3. The argument "scoring_method" is added internally based on the teradataml function
|
|
835
|
+
# name.
|
|
836
|
+
# ---------------------------------------------------------------------------------
|
|
837
|
+
TERADATAML_VALIB_FUNCTION_ARGUMENT_MAP = {
|
|
838
|
+
# 'overwrite' argument is not needed, as we will generate table names internally.
|
|
839
|
+
"ADAPTIVEHISTOGRAM": {
|
|
840
|
+
"columns": "columns",
|
|
841
|
+
"bins": "bins",
|
|
842
|
+
"exclude_columns": "columnstoexclude",
|
|
843
|
+
"spike_threshold": "spikethreshold",
|
|
844
|
+
"subdivision_method": "subdivisionmethod",
|
|
845
|
+
"subdivision_threshold": "subdivisionthreshold",
|
|
846
|
+
"filter": "where",
|
|
847
|
+
"gen_sql_only": "gensqlonly",
|
|
848
|
+
"charset": "charset"
|
|
849
|
+
},
|
|
850
|
+
|
|
851
|
+
"DATAEXPLORER": {
|
|
852
|
+
"columns": "columns",
|
|
853
|
+
"bins": "bins",
|
|
854
|
+
"bin_style": "binstyle",
|
|
855
|
+
"max_comb_values": "maxnumcombvalues",
|
|
856
|
+
"max_unique_char_values": "maxuniquecharvalues",
|
|
857
|
+
"max_unique_num_values": "maxuniquenumvalues",
|
|
858
|
+
"min_comb_rows": "minrowsforcomb",
|
|
859
|
+
"restrict_freq": "restrictedfreqproc",
|
|
860
|
+
"restrict_threshold": "restrictedthreshold",
|
|
861
|
+
"statistical_method": "statisticalmethod",
|
|
862
|
+
"stats_options": "statsoptions",
|
|
863
|
+
"distinct": "uniques",
|
|
864
|
+
"filter": "where",
|
|
865
|
+
"gen_sql": "gensql",
|
|
866
|
+
"charset": "charset"
|
|
867
|
+
},
|
|
868
|
+
|
|
869
|
+
"FREQUENCY": {
|
|
870
|
+
"columns": "columns",
|
|
871
|
+
"exclude_columns": "columnstoexclude",
|
|
872
|
+
"cumulative_option": "cumulativeoption",
|
|
873
|
+
"agg_filter": "having",
|
|
874
|
+
"min_percentage": "minimumpercentage",
|
|
875
|
+
"pairwise_columns": "pairwisecolumns",
|
|
876
|
+
"stats_columns": "statisticscolumns",
|
|
877
|
+
"style": "style",
|
|
878
|
+
"top_n": "topvalues",
|
|
879
|
+
"filter": "where",
|
|
880
|
+
"gen_sql_only": "gensqlonly",
|
|
881
|
+
"charset": "charset"
|
|
882
|
+
},
|
|
883
|
+
|
|
884
|
+
"HISTOGRAM": {
|
|
885
|
+
"columns": "columns",
|
|
886
|
+
"bins": "bins",
|
|
887
|
+
"bins_with_boundaries": "binwithminmax",
|
|
888
|
+
"boundaries": "boundaries",
|
|
889
|
+
"quantiles": "quantiles",
|
|
890
|
+
"widths": "widths",
|
|
891
|
+
"exclude_columns": "columnstoexclude",
|
|
892
|
+
"overlay_columns": "overlaycolumns",
|
|
893
|
+
"stats_columns": "statisticscolumns",
|
|
894
|
+
"hist_style": "style",
|
|
895
|
+
"filter": "where",
|
|
896
|
+
"gen_sql_only": "gensqlonly",
|
|
897
|
+
"charset": "charset"
|
|
898
|
+
},
|
|
899
|
+
|
|
900
|
+
"STATISTICS": {
|
|
901
|
+
"columns": "columns",
|
|
902
|
+
"exclude_columns": "columnstoexclude",
|
|
903
|
+
"extended_options": "extendedoptions",
|
|
904
|
+
"group_columns": "groupby",
|
|
905
|
+
"statistical_method": "statisticalmethod",
|
|
906
|
+
"stats_options": "statsoptions",
|
|
907
|
+
"filter": "where",
|
|
908
|
+
"gen_sql_only": "gensqlonly",
|
|
909
|
+
"charset": "charset"
|
|
910
|
+
},
|
|
911
|
+
|
|
912
|
+
"TEXTFIELDANALYZER": {
|
|
913
|
+
"columns": "columns",
|
|
914
|
+
"exclude_columns": "columnstoexclude",
|
|
915
|
+
"analyze_numerics": "extendednumericanalysis",
|
|
916
|
+
"analyze_unicode": "extendedunicodeanalysis",
|
|
917
|
+
"gen_sql_only": "gensqlonly",
|
|
918
|
+
"charset": "charset"
|
|
919
|
+
},
|
|
920
|
+
|
|
921
|
+
"VALUES": {
|
|
922
|
+
"columns": "columns",
|
|
923
|
+
"exclude_columns": "columnstoexclude",
|
|
924
|
+
"group_columns": "groupby",
|
|
925
|
+
"distinct": "uniques",
|
|
926
|
+
"filter": "where",
|
|
927
|
+
"gen_sql_only": "gensqlonly",
|
|
928
|
+
"charset": "charset"
|
|
929
|
+
},
|
|
930
|
+
|
|
931
|
+
"ASSOCIATION": {
|
|
932
|
+
"group_column": "groupcolumn",
|
|
933
|
+
"item_column": "itemcolumn",
|
|
934
|
+
"combinations": "combinations",
|
|
935
|
+
"description_identifier": "descriptionidentifier",
|
|
936
|
+
"description_column": "descriptioncolumn",
|
|
937
|
+
"group_count": "groupcount",
|
|
938
|
+
"low_level_column": "hierarchyitemcolumn",
|
|
939
|
+
"high_level_column": "hierarchycolumn",
|
|
940
|
+
"left_lookup_column": "leftlookupcolumn",
|
|
941
|
+
"right_lookup_column": "rightlookupcolumn",
|
|
942
|
+
"min_confidence": "minimumconfidence",
|
|
943
|
+
"min_lift": "minimumlift",
|
|
944
|
+
"min_support": "minimumsupport",
|
|
945
|
+
"min_zscore": "minimumzscore",
|
|
946
|
+
"order_prob": "orderingprobability",
|
|
947
|
+
"process_type": "processtype",
|
|
948
|
+
"relaxed_order": "relaxedordering",
|
|
949
|
+
"sequence_column": "sequencecolumn",
|
|
950
|
+
"filter": "where",
|
|
951
|
+
"no_support_results": "dropsupporttables",
|
|
952
|
+
"support_result_prefix": "resulttableprefix",
|
|
953
|
+
"gen_sql_only": "gensqlonly",
|
|
954
|
+
"charset": "charset"
|
|
955
|
+
},
|
|
956
|
+
|
|
957
|
+
"KMEANS": {
|
|
958
|
+
"columns": "columns",
|
|
959
|
+
"centers": "kvalue",
|
|
960
|
+
"exclude_columns": "columnstoexclude",
|
|
961
|
+
"continuation": "continuation",
|
|
962
|
+
"max_iter": "iterations",
|
|
963
|
+
"operator_database": "operatordatabase",
|
|
964
|
+
"threshold": "threshold",
|
|
965
|
+
"charset": "charset"
|
|
966
|
+
},
|
|
967
|
+
|
|
968
|
+
"KMEANSSCORE": {
|
|
969
|
+
"index_columns": "index",
|
|
970
|
+
"cluster_column": "clustername",
|
|
971
|
+
"fallback": "fallback",
|
|
972
|
+
"operator_database": "operatordatabase",
|
|
973
|
+
"accumulate": "retain",
|
|
974
|
+
"charset": "charset"
|
|
975
|
+
},
|
|
976
|
+
|
|
977
|
+
"DECISIONTREE": {
|
|
978
|
+
"columns": "columns",
|
|
979
|
+
"response_column": "dependent",
|
|
980
|
+
"algorithm": "algorithm",
|
|
981
|
+
"binning": "binning",
|
|
982
|
+
"exclude_columns": "columnstoexclude",
|
|
983
|
+
"max_depth": "max_depth",
|
|
984
|
+
"num_splits": "min_records",
|
|
985
|
+
"operator_database": "operatordatabase",
|
|
986
|
+
"pruning": "pruning",
|
|
987
|
+
"charset": "charset"
|
|
988
|
+
},
|
|
989
|
+
|
|
990
|
+
"DECISIONTREESCORE": {
|
|
991
|
+
"include_confidence": "includeconfidence",
|
|
992
|
+
"index_columns": "index",
|
|
993
|
+
"response_column": "predicted",
|
|
994
|
+
"profile": "profiletables",
|
|
995
|
+
"accumulate": "retain",
|
|
996
|
+
"targeted_value": "targetedvalue",
|
|
997
|
+
"gen_sql_only": "gensqlonly",
|
|
998
|
+
"charset": "charset"
|
|
999
|
+
},
|
|
1000
|
+
|
|
1001
|
+
"MATRIX": {
|
|
1002
|
+
"columns": "columns",
|
|
1003
|
+
"exclude_columns": "columnstoexclude",
|
|
1004
|
+
"group_columns": "groupby",
|
|
1005
|
+
"matrix_output": "matrixoutput",
|
|
1006
|
+
"type": "matrixtype",
|
|
1007
|
+
"handle_nulls": "nullhandling",
|
|
1008
|
+
"filter": "where",
|
|
1009
|
+
"charset": "charset"
|
|
1010
|
+
},
|
|
1011
|
+
|
|
1012
|
+
"LINEAR": {
|
|
1013
|
+
"columns": "columns",
|
|
1014
|
+
"response_column": "dependent",
|
|
1015
|
+
"backward": "backward",
|
|
1016
|
+
"backward_only": "backwardonly",
|
|
1017
|
+
"exclude_columns": "columnstoexclude",
|
|
1018
|
+
"cond_ind_threshold": "conditionindexthreshold",
|
|
1019
|
+
"constant": "constant",
|
|
1020
|
+
"entrance_criterion": "enter",
|
|
1021
|
+
"forward": "forward",
|
|
1022
|
+
"forward_only": "forwardonly",
|
|
1023
|
+
"group_columns": "groupby",
|
|
1024
|
+
"matrix_input": "matrixinput",
|
|
1025
|
+
"near_dep_report": "neardependencyreport",
|
|
1026
|
+
"remove_criterion": "remove",
|
|
1027
|
+
"stats_output": "statstable",
|
|
1028
|
+
"stepwise": "stepwise",
|
|
1029
|
+
"use_fstat": "usefstat",
|
|
1030
|
+
"use_pvalue": "usepvalue",
|
|
1031
|
+
"variance_prop_threshold": "varianceproportionthreshold",
|
|
1032
|
+
"charset": "charset"
|
|
1033
|
+
},
|
|
1034
|
+
|
|
1035
|
+
"LINEARSCORE": {
|
|
1036
|
+
"index_columns": "index",
|
|
1037
|
+
"response_column": "predicted",
|
|
1038
|
+
"residual_column": "residual",
|
|
1039
|
+
"accumulate": "retain",
|
|
1040
|
+
"gen_sql_only": "gensqlonly",
|
|
1041
|
+
"charset": "charset"
|
|
1042
|
+
},
|
|
1043
|
+
|
|
1044
|
+
"LOGISTIC": {
|
|
1045
|
+
"columns": "columns",
|
|
1046
|
+
"response_column": "dependent",
|
|
1047
|
+
"backward": "backward",
|
|
1048
|
+
"backward_only": "backwardonly",
|
|
1049
|
+
"exclude_columns": "columnstoexclude",
|
|
1050
|
+
"cond_ind_threshold": "conditionindexthreshold",
|
|
1051
|
+
"constant": "constant",
|
|
1052
|
+
"convergence": "convergence",
|
|
1053
|
+
"entrance_criterion": "enter",
|
|
1054
|
+
"forward": "forward",
|
|
1055
|
+
"forward_only": "forwardonly",
|
|
1056
|
+
"group_columns": "groupby",
|
|
1057
|
+
"lift_output": "lifttable",
|
|
1058
|
+
"max_iter": "maxiterations",
|
|
1059
|
+
"mem_size": "memorysize",
|
|
1060
|
+
"near_dep_report": "neardependencyreport",
|
|
1061
|
+
"remove_criterion": "remove",
|
|
1062
|
+
"response_value": "response",
|
|
1063
|
+
"sample": "sample",
|
|
1064
|
+
"stats_output": "statstable",
|
|
1065
|
+
"stepwise": "stepwise",
|
|
1066
|
+
"success_output": "successtable",
|
|
1067
|
+
"start_threshold": "thresholdbegin",
|
|
1068
|
+
"end_threshold": "thresholdend",
|
|
1069
|
+
"increment_threshold": "thresholdincrement",
|
|
1070
|
+
"threshold_output": "thresholdtable",
|
|
1071
|
+
"variance_prop_threshold": "varianceproportionthreshold",
|
|
1072
|
+
"charset": "charset"
|
|
1073
|
+
},
|
|
1074
|
+
|
|
1075
|
+
"LOGISTICSCORE": {
|
|
1076
|
+
"estimate_column": "estimate",
|
|
1077
|
+
"index_columns": "index",
|
|
1078
|
+
"prob_column": "probability",
|
|
1079
|
+
"accumulate": "retain",
|
|
1080
|
+
"prob_threshold": "threshold",
|
|
1081
|
+
"start_threshold": "thresholdbegin",
|
|
1082
|
+
"end_threshold": "thresholdend",
|
|
1083
|
+
"increment_threshold": "thresholdincrement",
|
|
1084
|
+
"gen_sql_only": "gensqlonly",
|
|
1085
|
+
"charset": "charset"
|
|
1086
|
+
|
|
1087
|
+
# The following 3 arguments three should not be present for LogRegPredict function
|
|
1088
|
+
# where as when the function is LogRegEvaluator, at least one of these should be
|
|
1089
|
+
# present. By default (i.e., when these are not provided in LogRegEvaluator SQL), the
|
|
1090
|
+
# function takes 'True' for these arguments. So, by commenting these we are providing
|
|
1091
|
+
# all three tables in XML that is generated by the LogRegEvaluator function.
|
|
1092
|
+
# "threshold_output": "thresholdtable",
|
|
1093
|
+
# "lift_output": "lifttable",
|
|
1094
|
+
# "success_output": "successtable"
|
|
1095
|
+
},
|
|
1096
|
+
|
|
1097
|
+
"FACTOR": {
|
|
1098
|
+
"columns": "columns",
|
|
1099
|
+
"exclude_columns": "columnstoexclude",
|
|
1100
|
+
"cond_ind_threshold": "conditionindexthreshold",
|
|
1101
|
+
"min_eigen": "eigenmin",
|
|
1102
|
+
"load_report": "factorloadingsreport",
|
|
1103
|
+
"vars_load_report": "factorvariablesloadingsreport",
|
|
1104
|
+
"vars_report": "factorvariablesreport",
|
|
1105
|
+
"gamma": "gamma",
|
|
1106
|
+
"group_columns": "groupby",
|
|
1107
|
+
"matrix_input": "matrixinput",
|
|
1108
|
+
"matrix_type": "matrixtype",
|
|
1109
|
+
"near_dep_report": "neardependencyreport",
|
|
1110
|
+
"rotation_type": "rotationtype",
|
|
1111
|
+
"load_threshold": "thresholdloading",
|
|
1112
|
+
"percent_threshold": "thresholdpercent",
|
|
1113
|
+
"variance_prop_threshold": "varianceproportionthreshold",
|
|
1114
|
+
"charset": "charset"
|
|
1115
|
+
},
|
|
1116
|
+
|
|
1117
|
+
"FACTORSCORE": {
|
|
1118
|
+
"index_columns": "index",
|
|
1119
|
+
"accumulate": "retain",
|
|
1120
|
+
"gen_sql_only": "gensqlonly",
|
|
1121
|
+
"charset": "charset"
|
|
1122
|
+
},
|
|
1123
|
+
|
|
1124
|
+
"PARAMETRICTEST": {
|
|
1125
|
+
"columns": "columns",
|
|
1126
|
+
"dependent_column": "columnofinterest",
|
|
1127
|
+
"equal_variance": "equalvariance",
|
|
1128
|
+
"fallback": "fallback",
|
|
1129
|
+
"first_column": "firstcolumn",
|
|
1130
|
+
"first_column_values": "firstcolumnvalues",
|
|
1131
|
+
"group_columns": "groupby",
|
|
1132
|
+
"allow_duplicates": "multiset",
|
|
1133
|
+
"paired": "paired",
|
|
1134
|
+
"second_column": "secondcolumn",
|
|
1135
|
+
"second_column_values": "secondcolumnvalues",
|
|
1136
|
+
"stats_database": "statsdatabase",
|
|
1137
|
+
"style": "teststyle",
|
|
1138
|
+
"probability_threshold": "thresholdprobability",
|
|
1139
|
+
"with_indicator": "withindicator",
|
|
1140
|
+
"gen_sql_only": "gensqlonly",
|
|
1141
|
+
"charset": "charset"
|
|
1142
|
+
},
|
|
1143
|
+
|
|
1144
|
+
"BINOMIALTEST": {
|
|
1145
|
+
"first_column": "firstcolumn",
|
|
1146
|
+
"binomial_prob": "binomialprobability",
|
|
1147
|
+
"exact_matches": "exactmatches",
|
|
1148
|
+
"fallback": "fallback",
|
|
1149
|
+
"group_columns": "groupby",
|
|
1150
|
+
"allow_duplicates": "multiset",
|
|
1151
|
+
"second_column": "secondcolumn",
|
|
1152
|
+
"single_tail": "singletail",
|
|
1153
|
+
"stats_database": "statsdatabase",
|
|
1154
|
+
"style": "teststyle",
|
|
1155
|
+
"probability_threshold": "thresholdprobability",
|
|
1156
|
+
"gen_sql_only": "gensqlonly",
|
|
1157
|
+
"charset": "charset"
|
|
1158
|
+
},
|
|
1159
|
+
|
|
1160
|
+
"KSTEST": {
|
|
1161
|
+
"columns": "columns",
|
|
1162
|
+
"dependent_column": "columnofinterest",
|
|
1163
|
+
"fallback": "fallback",
|
|
1164
|
+
"group_columns": "groupby",
|
|
1165
|
+
"allow_duplicates": "multiset",
|
|
1166
|
+
"stats_database": "statsdatabase",
|
|
1167
|
+
"style": "teststyle",
|
|
1168
|
+
"probability_threshold": "thresholdprobability",
|
|
1169
|
+
"gen_sql_only": "gensqlonly",
|
|
1170
|
+
"charset": "charset"
|
|
1171
|
+
},
|
|
1172
|
+
|
|
1173
|
+
"CHISQUARETEST": {
|
|
1174
|
+
"columns": "columns",
|
|
1175
|
+
"dependent_column": "columnofinterest",
|
|
1176
|
+
"fallback": "fallback",
|
|
1177
|
+
"first_columns": "firstcolumns",
|
|
1178
|
+
"group_columns": "groupby",
|
|
1179
|
+
"allow_duplicates": "multiset",
|
|
1180
|
+
"second_columns": "secondcolumns",
|
|
1181
|
+
"stats_database": "statsdatabase",
|
|
1182
|
+
"style": "teststyle",
|
|
1183
|
+
"probability_threshold": "thresholdprobability",
|
|
1184
|
+
"gen_sql_only": "gensqlonly",
|
|
1185
|
+
"charset": "charset"
|
|
1186
|
+
},
|
|
1187
|
+
|
|
1188
|
+
"RANKTEST": {
|
|
1189
|
+
"block_column": "blockcolumn",
|
|
1190
|
+
"columns": "columns",
|
|
1191
|
+
"dependent_column": "columnofinterest",
|
|
1192
|
+
"fallback": "fallback",
|
|
1193
|
+
"first_column": "firstcolumn",
|
|
1194
|
+
"group_columns": "groupby",
|
|
1195
|
+
"include_zero": "includezero",
|
|
1196
|
+
"independent": "independent",
|
|
1197
|
+
"allow_duplicates": "multiset",
|
|
1198
|
+
"second_column": "secondcolumn",
|
|
1199
|
+
"single_tail": "singletail",
|
|
1200
|
+
"stats_database": "statsdatabase",
|
|
1201
|
+
"style": "teststyle",
|
|
1202
|
+
"probability_threshold": "thresholdprobability",
|
|
1203
|
+
"treatment_column": "treatmentcolumn",
|
|
1204
|
+
"gen_sql_only": "gensqlonly",
|
|
1205
|
+
"charset": "charset"
|
|
1206
|
+
},
|
|
1207
|
+
|
|
1208
|
+
"VARTRAN": {
|
|
1209
|
+
"fallback": "fallback",
|
|
1210
|
+
"index_columns": "index",
|
|
1211
|
+
"unique_index": "indexunique",
|
|
1212
|
+
"key_columns": "keycolumns",
|
|
1213
|
+
"allow_duplicates": "multiset",
|
|
1214
|
+
"nopi": "noindex",
|
|
1215
|
+
"filter": "whereclause",
|
|
1216
|
+
"gen_sql_only": "gensqlonly",
|
|
1217
|
+
"charset": "charset"
|
|
1218
|
+
},
|
|
1219
|
+
|
|
1220
|
+
"REPORT": {
|
|
1221
|
+
"analysis_type": "analysistype",
|
|
1222
|
+
"filter": "where",
|
|
1223
|
+
"gen_sql_only": "gensqlonly",
|
|
1224
|
+
"charset": "charset"
|
|
1225
|
+
}
|
|
1226
|
+
}
|
|
1227
|
+
|
|
1228
|
+
# Arguments to ignore - These are the arguments, that are not processed currently.
|
|
1229
|
+
# TODO: Support can be added to these in later stages.
|
|
1230
|
+
IGNORE_ARGUMENTS = ["overwrite", "ouputstyle", "samplescoresize"]
|
|
1231
|
+
|
|
1232
|
+
# Output DataFrame default argument name.
|
|
1233
|
+
DEFAULT_OUTPUT_VAR = "result"
|
|
1234
|
+
|
|
1235
|
+
# Output DataFrame result list name.
|
|
1236
|
+
OUTPUT_DATAFRAME_RESULTS = "_valib_results"
|
|
1237
|
+
|
|
1238
|
+
# Scoring method SQL argument name and values.
|
|
1239
|
+
SCORING_METHOD_ARG_NAME = "scoringmethod"
|
|
1240
|
+
SCORING_METHOD_ARG_VALUE = {
|
|
1241
|
+
"default": "score",
|
|
1242
|
+
# TODO: Replace "scoreandevaluate" with "evaluate" because for FactorScore, using
|
|
1243
|
+
# scoringmethod as evaluate is producing result to the console and table is not
|
|
1244
|
+
# generated.
|
|
1245
|
+
"non-default": "scoreandevaluate"
|
|
1246
|
+
}
|
|
1247
|
+
|
|
1248
|
+
# Map between function category and corresponding list of function names.
|
|
1249
|
+
CATEGORY_VAL_FUNCS_MAP = {
|
|
1250
|
+
"Descriptive Statistics": ["AdaptiveHistogram", "Explore", "Frequency", "Histogram", "Overlap",
|
|
1251
|
+
"Statistics", "TextAnalyzer", "Values"],
|
|
1252
|
+
"Variable Transformation": ["BinCode", "Derive", "DesignCode", "Fillna", "Recode", "Rescale", "Retain",
|
|
1253
|
+
"Sigmoid", "Transform", "ZScore"],
|
|
1254
|
+
"Statistical Test": ["BinomialTest", "ChiSquareTest", "KSTest", "ParametricTest", "RankTest"],
|
|
1255
|
+
"Model Training": ["Association", "KMeans", "DecisionTree", "Matrix", "LinReg", "LogReg", "PCA"],
|
|
1256
|
+
"Model Scoring/Prediction": ["DecisionTreePredict", "DecisionTreeEvaluator", "KMeansPredict", "LinRegPredict",
|
|
1257
|
+
"LinRegEvaluator", "LogRegPredict", "LogRegEvaluator", "PCAPredict",
|
|
1258
|
+
"PCAEvaluator"],
|
|
1259
|
+
"Helper": ["XmlToHtmlReport"]}
|
|
1260
|
+
|
|
1261
|
+
|
|
1262
|
+
class SQLFunctionConstants(Enum):
|
|
1263
|
+
# Dictionary maps teradataml name of the Aggregate function to
|
|
1264
|
+
# SQL function name.
|
|
1265
|
+
AGGREGATE_FUNCTION_MAPPER = {"avg": "AVG",
|
|
1266
|
+
"corr": "CORR",
|
|
1267
|
+
"covar_pop": "COVAR_POP",
|
|
1268
|
+
"covar_samp": "COVAR_SAMP",
|
|
1269
|
+
"cume_dist": "CUME_DIST",
|
|
1270
|
+
"dense_rank": "DENSE_RANK",
|
|
1271
|
+
"first_value": "FIRST_VALUE",
|
|
1272
|
+
"last_value": "LAST_VALUE",
|
|
1273
|
+
"lag": "LAG",
|
|
1274
|
+
"lead": "LEAD",
|
|
1275
|
+
"percent_rank": "PERCENT_RANK",
|
|
1276
|
+
"percentile_disc": "PERCENTILE_DISC",
|
|
1277
|
+
"rank": "RANK",
|
|
1278
|
+
"regr_avgx": "REGR_AVGX",
|
|
1279
|
+
"regr_avgy": "REGR_AVGY",
|
|
1280
|
+
"regr_count": "REGR_COUNT",
|
|
1281
|
+
"regr_intercept": "REGR_INTERCEPT",
|
|
1282
|
+
"regr_r2": "REGR_R2",
|
|
1283
|
+
"regr_slope": "REGR_SLOPE",
|
|
1284
|
+
"regr_sxx": "REGR_SXX",
|
|
1285
|
+
"regr_sxy": "REGR_SXY",
|
|
1286
|
+
"regr_syy": "REGR_SYY",
|
|
1287
|
+
"row_number": "ROW_NUMBER",
|
|
1288
|
+
"csum": "CSUM",
|
|
1289
|
+
"msum": "MSUM",
|
|
1290
|
+
"mavg": "MAVG",
|
|
1291
|
+
"mdiff": "MDIFF",
|
|
1292
|
+
"mlinreg": "MLINREG",
|
|
1293
|
+
"quantile": "QUANTILE",
|
|
1294
|
+
"percentile": "PERCENTILE"
|
|
1295
|
+
}
|
|
1296
|
+
|
|
1297
|
+
SQL_FUNCTION_MAPPER = {
|
|
1298
|
+
# Hyperbolic functions
|
|
1299
|
+
"acosh": "ACOSH",
|
|
1300
|
+
"asinh": "ASINH",
|
|
1301
|
+
"atanh": "ATANH",
|
|
1302
|
+
"cosh": "COSH",
|
|
1303
|
+
"sinh": "SINH",
|
|
1304
|
+
"tanh": "TANH",
|
|
1305
|
+
# Trigonometric functions
|
|
1306
|
+
"acos": "ACOS",
|
|
1307
|
+
"asin": "ASIN",
|
|
1308
|
+
"atan": "ATAN",
|
|
1309
|
+
"atan2": "ATAN2",
|
|
1310
|
+
"cos": "COS",
|
|
1311
|
+
"sin": "SIN",
|
|
1312
|
+
"tan": "TAN",
|
|
1313
|
+
# Maths function
|
|
1314
|
+
"abs": "ABS",
|
|
1315
|
+
"ceil": "CEILING",
|
|
1316
|
+
"ceiling": "CEILING",
|
|
1317
|
+
"degrees": "DEGREES",
|
|
1318
|
+
"exp": "EXP",
|
|
1319
|
+
"floor": "FLOOR",
|
|
1320
|
+
"ln": "LN",
|
|
1321
|
+
"log10": "LOG",
|
|
1322
|
+
"pmod": "MOD",
|
|
1323
|
+
"mod": "MOD",
|
|
1324
|
+
"nullifzero": "NULLIFZERO",
|
|
1325
|
+
"pow": "POWER",
|
|
1326
|
+
"power": "POWER",
|
|
1327
|
+
"radians": "RADIANS",
|
|
1328
|
+
"round": "ROUND",
|
|
1329
|
+
"sign": "SIGN",
|
|
1330
|
+
"signum": "SIGN",
|
|
1331
|
+
"sqrt": "SQRT",
|
|
1332
|
+
"width_bucket": "WIDTH_BUCKET",
|
|
1333
|
+
"zeroifnull": "ZEROIFNULL",
|
|
1334
|
+
|
|
1335
|
+
# String Functions
|
|
1336
|
+
"ascii": "ASCII",
|
|
1337
|
+
"char2hexint": "CHAR2HEXINT",
|
|
1338
|
+
"chr": "CHR",
|
|
1339
|
+
"char": "CHR",
|
|
1340
|
+
"character_length": "LENGTH",
|
|
1341
|
+
"char_length": "LENGTH",
|
|
1342
|
+
"edit_distance": "EDITDISTANCE",
|
|
1343
|
+
"index": "INDEX",
|
|
1344
|
+
"initcap": "INITCAP",
|
|
1345
|
+
"instr": "INSTR",
|
|
1346
|
+
"lcase": "LOWER",
|
|
1347
|
+
"left": "LEFT",
|
|
1348
|
+
"length": "LENGTH",
|
|
1349
|
+
"levenshtein": "EDITDISTANCE",
|
|
1350
|
+
"locate": "LOCATE",
|
|
1351
|
+
"lower": "LOWER",
|
|
1352
|
+
"lpad": "LPAD",
|
|
1353
|
+
"ltrim": "LTRIM",
|
|
1354
|
+
"ngram": "NGRAM",
|
|
1355
|
+
"nvp": "NVP",
|
|
1356
|
+
"oreplace": "OREPLACE",
|
|
1357
|
+
"otranslate": "OTRANSLATE",
|
|
1358
|
+
"reverse": "REVERSE",
|
|
1359
|
+
"right": "RIGHT",
|
|
1360
|
+
"rpad": "RPAD",
|
|
1361
|
+
"rtrim": "RTRIM",
|
|
1362
|
+
"soundex": "SOUNDEX",
|
|
1363
|
+
"string_cs": "STRING_CS",
|
|
1364
|
+
"translate": "OTRANSLATE",
|
|
1365
|
+
"upper": "UPPER",
|
|
1366
|
+
|
|
1367
|
+
# Byte Functions
|
|
1368
|
+
"bit_and": "BITAND",
|
|
1369
|
+
"bit_get": "GETBIT",
|
|
1370
|
+
"bit_or": "BITOR",
|
|
1371
|
+
"bit_xor": "BITXOR",
|
|
1372
|
+
"bitand": "BITAND",
|
|
1373
|
+
"bitnot": "BITNOT",
|
|
1374
|
+
"bitor": "BITOR",
|
|
1375
|
+
"bitwise_not": "BITNOT",
|
|
1376
|
+
"bitwiseNOT": "BITNOT",
|
|
1377
|
+
"bitxor": "BITXOR",
|
|
1378
|
+
"countset": "COUNTSET",
|
|
1379
|
+
"getbit": "GETBIT",
|
|
1380
|
+
"rotateleft": "ROTATELEFT",
|
|
1381
|
+
"rotateright": "ROTATERIGHT",
|
|
1382
|
+
"setbit": "SETBIT",
|
|
1383
|
+
"shiftleft": "SHIFTLEFT",
|
|
1384
|
+
"shiftright": "SHIFTRIGHT",
|
|
1385
|
+
"subbitstr": "SUBBITSTR",
|
|
1386
|
+
|
|
1387
|
+
# Regular Expression Functions
|
|
1388
|
+
"regexp_instr": "REGEXP_INSTR",
|
|
1389
|
+
"regexp_replace": "REGEXP_REPLACE",
|
|
1390
|
+
"regexp_similar": "REGEXP_SIMILAR",
|
|
1391
|
+
"regexp_substr": "REGEXP_SUBSTR",
|
|
1392
|
+
|
|
1393
|
+
# DateTime Functions
|
|
1394
|
+
'week_begin': 'td_week_begin',
|
|
1395
|
+
'week_start': 'td_week_begin',
|
|
1396
|
+
'week_end': 'td_week_end',
|
|
1397
|
+
'quarter_begin': 'td_quarter_begin',
|
|
1398
|
+
'quarter_start': 'td_quarter_begin',
|
|
1399
|
+
'quarter_end': 'td_quarter_end',
|
|
1400
|
+
'month_begin': 'td_month_begin',
|
|
1401
|
+
'month_start': 'td_month_begin',
|
|
1402
|
+
'month_end': 'td_month_end',
|
|
1403
|
+
'year_begin': 'td_year_begin',
|
|
1404
|
+
'year_start': 'td_year_begin',
|
|
1405
|
+
'year_end': 'td_year_end',
|
|
1406
|
+
'last_sunday': 'td_sunday',
|
|
1407
|
+
'last_monday': 'td_monday',
|
|
1408
|
+
'last_tuesday': 'td_tuesday',
|
|
1409
|
+
'last_wednesday': 'td_wednesday',
|
|
1410
|
+
'last_thursday': 'td_thursday',
|
|
1411
|
+
'last_friday': 'td_friday',
|
|
1412
|
+
'last_saturday': 'td_saturday',
|
|
1413
|
+
'day_of_week': 'DayNumber_Of_Week',
|
|
1414
|
+
'day_of_month': 'DayNumber_Of_Month',
|
|
1415
|
+
'day_of_year': 'DayNumber_Of_Year',
|
|
1416
|
+
'day_of_calendar': 'DayNumber_Of_Calendar',
|
|
1417
|
+
'week_of_month': 'WeekNumber_Of_Month',
|
|
1418
|
+
'week_of_quarter': 'WeekNumber_Of_Quarter',
|
|
1419
|
+
'week_of_year': 'WeekNumber_Of_Year',
|
|
1420
|
+
'week_of_calendar': 'WeekNumber_Of_Calendar',
|
|
1421
|
+
'month_of_year': 'MonthNumber_Of_Year',
|
|
1422
|
+
'month_of_calendar': 'MonthNumber_Of_Calendar',
|
|
1423
|
+
'month_of_quarter': 'MonthNumber_Of_Quarter',
|
|
1424
|
+
'quarter_of_year': 'QuarterNumber_Of_Year',
|
|
1425
|
+
'quarter_of_calendar': 'QuarterNumber_Of_Calendar',
|
|
1426
|
+
'year_of_calendar': 'YearNumber_Of_Calendar',
|
|
1427
|
+
'day_occurrence_of_month': 'DayOccurrence_Of_Month',
|
|
1428
|
+
'year': 'year',
|
|
1429
|
+
'month': 'month',
|
|
1430
|
+
'hour': 'hour',
|
|
1431
|
+
'minute': 'minute',
|
|
1432
|
+
'second': 'second',
|
|
1433
|
+
'week': 'week',
|
|
1434
|
+
'next_day': 'next_day',
|
|
1435
|
+
'months_between': 'months_between',
|
|
1436
|
+
'add_months': 'add_months',
|
|
1437
|
+
'oadd_months': 'oadd_months'
|
|
1438
|
+
}
|
|
1439
|
+
|
|
1440
|
+
|
|
1441
|
+
class TDMLFrameworkKeywords(Enum):
|
|
1442
|
+
# Variable which stores the default keyword arguments passed
|
|
1443
|
+
# to Aggregate function.
|
|
1444
|
+
AGGREGATE_FUNCTION_DEFAULT_ARGUMENTS = ["window_properties",
|
|
1445
|
+
"percentile",
|
|
1446
|
+
"as_time_series_aggregate",
|
|
1447
|
+
"describe_op",
|
|
1448
|
+
"drop_columns"
|
|
1449
|
+
]
|
|
1450
|
+
|
|
1451
|
+
|
|
1452
|
+
class TeradataReservedKeywords(Enum):
|
|
1453
|
+
# A List which stores Teradata Reserved Keywords.
|
|
1454
|
+
TERADATA_RESERVED_WORDS = ["INPUT",
|
|
1455
|
+
"THRESHOLD",
|
|
1456
|
+
"CHECK",
|
|
1457
|
+
"SUMMARY",
|
|
1458
|
+
"HASH",
|
|
1459
|
+
"METHOD",
|
|
1460
|
+
"TYPE",
|
|
1461
|
+
"CATALOG"
|
|
1462
|
+
]
|
|
1463
|
+
|
|
1464
|
+
|
|
1465
|
+
class TeradataAnalyticFunctionTypes(Enum):
|
|
1466
|
+
SQLE = "FASTPATH"
|
|
1467
|
+
UAF = "UAF"
|
|
1468
|
+
TABLEOPERATOR = "TABLE_OPERATOR"
|
|
1469
|
+
BYOM = "BYOM"
|
|
1470
|
+
STORED_PROCEDURE = "STORED_PROCEDURE"
|
|
1471
|
+
|
|
1472
|
+
|
|
1473
|
+
class TeradataAnalyticFunctionInfo(Enum):
|
|
1474
|
+
FASTPATH = {"func_type": "sqle", "lowest_version": "16.20", "display_function_type_name": "SQLE"}
|
|
1475
|
+
UAF = {"func_type": "uaf", "lowest_version": "17.20", "display_function_type_name": "UAF",
|
|
1476
|
+
"metadata_class": "_AnlyFuncMetadataUAF"}
|
|
1477
|
+
TABLE_OPERATOR = {"func_type": "tableoperator", "lowest_version": "17.00 ",
|
|
1478
|
+
"display_function_type_name": "TABLE OPERATOR"}
|
|
1479
|
+
BYOM = {"func_type": "byom", "lowest_version": None, "display_function_type_name": "BYOM"}
|
|
1480
|
+
STORED_PROCEDURE = {"func_type": "storedprocedure", "lowest_version": "17.20", "display_function_type_name": "UAF",
|
|
1481
|
+
"metadata_class": "_AnlyFuncMetadataUAF"}
|
|
1482
|
+
|
|
1483
|
+
|
|
1484
|
+
class TeradataUAFSpecificArgs(Enum):
|
|
1485
|
+
INPUT_MODE = "input_mode"
|
|
1486
|
+
OUTPUT_FMT_CONTENT = "output_fmt_content"
|
|
1487
|
+
OUTPUT_FMT_INDEX = "output_fmt_index"
|
|
1488
|
+
OUTPUT_FMT_INDEX_STYLE = "output_fmt_index_style"
|
|
1489
|
+
|
|
1490
|
+
|
|
1491
|
+
class Query(Enum):
|
|
1492
|
+
VANTAGE_VERSION = "SELECT InfoData FROM DBC.DBCInfoV where InfoKey = 'VERSION'"
|
|
1493
|
+
|
|
1494
|
+
|
|
1495
|
+
class DriverEscapeFunctions(Enum):
|
|
1496
|
+
# Holds variables for the teradatasql driver escape functions to be used
|
|
1497
|
+
NATIVE_SQL = "{fn teradata_nativesql}"
|
|
1498
|
+
AUTOCOMMIT_ON = "{fn teradata_autocommit_on}"
|
|
1499
|
+
AUTOCOMMIT_OFF = "{fn teradata_autocommit_off}"
|
|
1500
|
+
LOGON_SEQ_NUM = "{fn teradata_logon_sequence_number}"
|
|
1501
|
+
GET_ERRORS = "{fn teradata_get_errors}"
|
|
1502
|
+
GET_WARNINGS = "{fn teradata_get_warnings}"
|
|
1503
|
+
REQUIRE_FASTLOAD = "{fn teradata_require_fastload}"
|
|
1504
|
+
READ_CSV = "{{fn teradata_read_csv({0})}}"
|
|
1505
|
+
TRY_FASTEXPORT = "{fn teradata_try_fastexport}"
|
|
1506
|
+
REQUIRE_FASTEXPORT = "{fn teradata_require_fastexport}"
|
|
1507
|
+
OPEN_SESSIONS = "{{fn teradata_sessions({0})}}"
|
|
1508
|
+
WRITE_TO_CSV = "{{fn teradata_write_csv({0})}}"
|
|
1509
|
+
FIELD_QUOTE = "{{fn teradata_field_quote({0})}}"
|
|
1510
|
+
FIELD_SEP = "{{fn teradata_field_sep({0})}}"
|
|
1511
|
+
ERR_TBL_1 = "{{fn teradata_error_table_1_suffix({0})}}"
|
|
1512
|
+
ERR_TBL_2 = "{{fn teradata_error_table_2_suffix({0})}}"
|
|
1513
|
+
ERR_STAGING_DB = "{{fn teradata_error_table_database({0})}}"
|
|
1514
|
+
ERR_TBL_MNG_FLAG = "{{fn teradata_manage_error_tables_{0}}}"
|
|
1515
|
+
|
|
1516
|
+
|
|
1517
|
+
class HTTPRequest(Enum):
|
|
1518
|
+
# Holds variable names for HTTP calls.
|
|
1519
|
+
GET = "get"
|
|
1520
|
+
POST = "post"
|
|
1521
|
+
PUT = "put"
|
|
1522
|
+
DELETE = "delete"
|
|
1523
|
+
PATCH = "patch"
|
|
1524
|
+
|
|
1525
|
+
|
|
1526
|
+
class AsyncStatusColumns(Enum):
|
|
1527
|
+
# Holds variable names for Async status DF columns.
|
|
1528
|
+
RUN_ID = "Run Id"
|
|
1529
|
+
RUN_DESCRIPTION = "Run Description"
|
|
1530
|
+
STATUS = "Status"
|
|
1531
|
+
TIMESTAMP = "Timestamp"
|
|
1532
|
+
ADDITIONAL_DETAILS = "Additional Details"
|
|
1533
|
+
|
|
1534
|
+
|
|
1535
|
+
class AsyncOpStatus(Enum):
|
|
1536
|
+
# Holds valid status for asynchronous operations in UES.
|
|
1537
|
+
FILE_INSTALLED = "File Installed"
|
|
1538
|
+
ERRED = "Errored"
|
|
1539
|
+
FINISHED = "Finished"
|
|
1540
|
+
MODEL_INSTALLED = "ModelInstalled"
|
|
1541
|
+
|
|
1542
|
+
|
|
1543
|
+
class AsyncOpStatusOAFColumns(Enum):
|
|
1544
|
+
# Holds column names of dataframe representing status of given claim-id.
|
|
1545
|
+
CLAIM_ID = "Claim Id"
|
|
1546
|
+
FILE_LIB_MODEL_NAME = "File/Libs/Model"
|
|
1547
|
+
METHOD_NAME = "Method Name"
|
|
1548
|
+
STAGE = "Stage"
|
|
1549
|
+
TIMESTAMP = "Timestamp"
|
|
1550
|
+
ADDITIONAL_DETAILS = "Additional Details"
|
|
1551
|
+
|
|
1552
|
+
|
|
1553
|
+
class CloudProvider(Enum):
|
|
1554
|
+
# Holds variable names for Cloud Providers.
|
|
1555
|
+
AWS = "AWS"
|
|
1556
|
+
AZURE = "Azure"
|
|
1557
|
+
# 'x-ms-version' has 2 allowed constant values '2019-12-12'
|
|
1558
|
+
# and '2018-03-28', using the latest one.
|
|
1559
|
+
X_MS_VERSION = "2019-12-12"
|
|
1560
|
+
X_MS_BLOB_TYPE = "BlockBlob"
|
|
1561
|
+
|
|
1562
|
+
|
|
1563
|
+
class SessionParamsSQL(Enum):
|
|
1564
|
+
# Holds the SQL Statements for Session params.
|
|
1565
|
+
TIMEZONE = "SET TIME ZONE {}"
|
|
1566
|
+
ACCOUNT = "SET SESSION ACCOUNT = '{}' FOR {}"
|
|
1567
|
+
CALENDAR = "SET SESSION CALENDAR = {}"
|
|
1568
|
+
CHARACTER_SET_UNICODE = "SET SESSION CHARACTER SET UNICODE PASS THROUGH {}"
|
|
1569
|
+
COLLATION = "SET SESSION COLLATION {}"
|
|
1570
|
+
CONSTRAINT = "SET SESSION CONSTRAINT = {}"
|
|
1571
|
+
DATABASE = "SET SESSION DATABASE {}"
|
|
1572
|
+
DATEFORM = "SET SESSION DATEFORM = {}"
|
|
1573
|
+
DEBUG_FUNCTION = "SET SESSION DEBUG FUNCTION {} {}"
|
|
1574
|
+
DOT_NOTATION = "SET SESSION DOT NOTATION {} ON ERROR"
|
|
1575
|
+
ISOLATED_LOADING = "SET SESSION FOR {} ISOLATED LOADING"
|
|
1576
|
+
FUNCTION_TRACE = "SET SESSION FUNCTION TRACE USING {} FOR TABLE {}"
|
|
1577
|
+
JSON_IGNORE_ERRORS = "SET SESSION JSON IGNORE ERRORS {}"
|
|
1578
|
+
SEARCHUIFDBPATH = "SET SESSION SEARCHUIFDBPATH = {}"
|
|
1579
|
+
TRANSACTION_ISOLATION_LEVEL = "SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL {}"
|
|
1580
|
+
QUERY_BAND = "SET QUERY_BAND = {} FOR {}"
|
|
1581
|
+
UDFSEARCHPATH = "SET SESSION UDFSEARCHPATH = {} FOR FUNCTION = {}"
|
|
1582
|
+
|
|
1583
|
+
|
|
1584
|
+
class SessionParamsPythonNames(Enum):
|
|
1585
|
+
# Holds the SQL Statements for Session params.
|
|
1586
|
+
TIMEZONE = "Session Time Zone"
|
|
1587
|
+
ACCOUNT = "Account Name"
|
|
1588
|
+
CALENDAR = "Calendar"
|
|
1589
|
+
COLLATION = "Collation"
|
|
1590
|
+
DATABASE = "Current DataBase"
|
|
1591
|
+
DATEFORM = 'Current DateForm'
|
|
1592
|
+
|
|
1593
|
+
|
|
1594
|
+
class AutoMLConstants(Enum):
|
|
1595
|
+
# List stores feature selection methods
|
|
1596
|
+
FEATURE_SELECTION_MTDS = ["lasso", "rfe", "pca"]
|
|
1597
|
+
FEATURE_SELECTION_MTDS_CLUSTERING = ["pca", "non_pca"]
|
|
1598
|
+
# Model lists
|
|
1599
|
+
SUPERVISED_MODELS = ["glm", "svm", "knn", "decision_forest", "xgboost"]
|
|
1600
|
+
CLUSTERING_MODELS = ["kmeans", "gaussianmixture"]
|
|
1601
|
+
ALL_MODELS = SUPERVISED_MODELS + CLUSTERING_MODELS
|
|
1602
|
+
|
|
1603
|
+
# Metric lists
|
|
1604
|
+
CLASSIFICATION_METRICS = ["MICRO-F1", "MACRO-F1", "MICRO-RECALL", "MACRO-RECALL",
|
|
1605
|
+
"MICRO-PRECISION", "MACRO-PRECISION", "WEIGHTED-PRECISION",
|
|
1606
|
+
"WEIGHTED-RECALL", "WEIGHTED-F1", "ACCURACY"]
|
|
1607
|
+
|
|
1608
|
+
REGRESSION_METRICS = ["R2", "MAE", "MSE", "MSLE", "MAPE", "MPE",
|
|
1609
|
+
"RMSE", "RMSLE", "ME", "EV", "MPD", "MGD"]
|
|
1610
|
+
|
|
1611
|
+
CLUSTERING_METRICS = ["SILHOUETTE", "CALINSKI", "DAVIES"]
|
|
1612
|
+
|
|
1613
|
+
# Combined for default case
|
|
1614
|
+
ALL_METRICS = REGRESSION_METRICS + CLASSIFICATION_METRICS + CLUSTERING_METRICS
|
|
1615
|
+
|
|
1616
|
+
# Column lists to create empty leaderboard dataframe
|
|
1617
|
+
CLUSTERING_COLUMNS = [
|
|
1618
|
+
"MODEL_ID", "FEATURE_SELECTION", "SILHOUETTE", "CALINSKI",
|
|
1619
|
+
"DAVIES", "DATA_TABLE", "model-obj", "PARAMETERS"
|
|
1620
|
+
]
|
|
1621
|
+
CLASSIFICATION_COLUMNS = [
|
|
1622
|
+
"MODEL_ID", "FEATURE_SELECTION", "MICRO-F1", "MACRO-F1", "MICRO-RECALL",
|
|
1623
|
+
"MACRO-RECALL", "MICRO-PRECISION", "MACRO-PRECISION", "WEIGHTED-PRECISION",
|
|
1624
|
+
"WEIGHTED-RECALL", "WEIGHTED-F1", "ACCURACY", "DATA_TABLE", "RESULT_TABLE",
|
|
1625
|
+
"model-obj", "PARAMETERS"
|
|
1626
|
+
]
|
|
1627
|
+
REGRESSION_COLUMNS = [
|
|
1628
|
+
"MODEL_ID", "FEATURE_SELECTION", "MAE", "MSE", "MSLE", "MAPE",
|
|
1629
|
+
"MPE", "RMSE", "RMSLE", "R2", "ADJUSTED_R2", "EV", "ME", "MPD",
|
|
1630
|
+
"MGD", "DATA_TABLE", "RESULT_TABLE", "model-obj", "PARAMETERS"
|
|
1631
|
+
]
|
|
1632
|
+
|
|
1633
|
+
|
|
1634
|
+
class AuthMechs(Enum):
|
|
1635
|
+
"""
|
|
1636
|
+
Enum to hold permitted values for authentication mechanism.
|
|
1637
|
+
"""
|
|
1638
|
+
OAUTH = "OAuth"
|
|
1639
|
+
JWT = "JWT"
|
|
1640
|
+
PAT = "PAT"
|
|
1641
|
+
BASIC = "BASIC"
|
|
1642
|
+
KEYCLOAK = "KEYCLOAK"
|
|
1643
|
+
|
|
1644
|
+
class TDServices(Enum):
|
|
1645
|
+
"""
|
|
1646
|
+
Enum to hold permitted values for types for services availed on Teradata vantage.
|
|
1647
|
+
"""
|
|
1648
|
+
VECTORSTORE = "vectorstore"
|
|
1649
|
+
MOPS = "MODELOPS" # For future reference
|
|
1650
|
+
|
|
1651
|
+
class AccessQueries(Enum):
|
|
1652
|
+
"""
|
|
1653
|
+
Enum to hold permitted access queries.
|
|
1654
|
+
"""
|
|
1655
|
+
read = ["{grant_revoke_} SELECT ON {database_} {to_from_} {user_}"]
|
|
1656
|
+
write= ["{grant_revoke_} CREATE TABLE ON {database_} {to_from_} {user_}",
|
|
1657
|
+
"{grant_revoke_} CREATE VIEW ON {database_} {to_from_} {user_}",
|
|
1658
|
+
"{grant_revoke_} DELETE, UPDATE, INSERT ON {database_} {to_from_} {user_}"]
|
|
1659
|
+
|
|
1660
|
+
class LoggingLevel(Enum):
|
|
1661
|
+
"""
|
|
1662
|
+
Enum to hold mapping of log level names to their corresponding numeric values.
|
|
1663
|
+
"""
|
|
1664
|
+
level_map = {
|
|
1665
|
+
'DEBUG': logging.DEBUG,
|
|
1666
|
+
'INFO': logging.INFO,
|
|
1667
|
+
'WARNING': logging.WARNING,
|
|
1668
|
+
'ERROR': logging.ERROR
|
|
1669
|
+
}
|