tomoto 0.2.2 → 0.3.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +10 -0
- data/README.md +8 -10
- data/ext/tomoto/ct.cpp +11 -11
- data/ext/tomoto/dmr.cpp +14 -13
- data/ext/tomoto/dt.cpp +14 -14
- data/ext/tomoto/extconf.rb +7 -5
- data/ext/tomoto/gdmr.cpp +7 -7
- data/ext/tomoto/hdp.cpp +9 -9
- data/ext/tomoto/hlda.cpp +13 -13
- data/ext/tomoto/hpa.cpp +5 -5
- data/ext/tomoto/lda.cpp +42 -39
- data/ext/tomoto/llda.cpp +6 -6
- data/ext/tomoto/mglda.cpp +15 -15
- data/ext/tomoto/pa.cpp +6 -6
- data/ext/tomoto/plda.cpp +6 -6
- data/ext/tomoto/slda.cpp +8 -8
- data/ext/tomoto/{ext.cpp → tomoto.cpp} +8 -8
- data/ext/tomoto/utils.h +16 -70
- data/lib/tomoto/version.rb +1 -1
- data/lib/tomoto.rb +5 -1
- data/vendor/EigenRand/EigenRand/Core.h +10 -10
- data/vendor/EigenRand/EigenRand/Dists/Basic.h +208 -9
- data/vendor/EigenRand/EigenRand/Dists/Discrete.h +52 -31
- data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +9 -8
- data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +28 -21
- data/vendor/EigenRand/EigenRand/EigenRand +11 -6
- data/vendor/EigenRand/EigenRand/Macro.h +13 -7
- data/vendor/EigenRand/EigenRand/MorePacketMath.h +348 -740
- data/vendor/EigenRand/EigenRand/MvDists/Multinomial.h +5 -3
- data/vendor/EigenRand/EigenRand/MvDists/MvNormal.h +9 -3
- data/vendor/EigenRand/EigenRand/PacketFilter.h +11 -253
- data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +21 -47
- data/vendor/EigenRand/EigenRand/RandUtils.h +50 -344
- data/vendor/EigenRand/EigenRand/arch/AVX/MorePacketMath.h +619 -0
- data/vendor/EigenRand/EigenRand/arch/AVX/PacketFilter.h +149 -0
- data/vendor/EigenRand/EigenRand/arch/AVX/RandUtils.h +228 -0
- data/vendor/EigenRand/EigenRand/arch/NEON/MorePacketMath.h +473 -0
- data/vendor/EigenRand/EigenRand/arch/NEON/PacketFilter.h +142 -0
- data/vendor/EigenRand/EigenRand/arch/NEON/RandUtils.h +126 -0
- data/vendor/EigenRand/EigenRand/arch/SSE/MorePacketMath.h +501 -0
- data/vendor/EigenRand/EigenRand/arch/SSE/PacketFilter.h +133 -0
- data/vendor/EigenRand/EigenRand/arch/SSE/RandUtils.h +120 -0
- data/vendor/EigenRand/EigenRand/doc.h +24 -12
- data/vendor/EigenRand/README.md +57 -4
- data/vendor/eigen/COPYING.APACHE +203 -0
- data/vendor/eigen/COPYING.BSD +1 -1
- data/vendor/eigen/COPYING.MINPACK +51 -52
- data/vendor/eigen/Eigen/Cholesky +0 -1
- data/vendor/eigen/Eigen/Core +112 -265
- data/vendor/eigen/Eigen/Eigenvalues +2 -3
- data/vendor/eigen/Eigen/Geometry +5 -8
- data/vendor/eigen/Eigen/Householder +0 -1
- data/vendor/eigen/Eigen/Jacobi +0 -1
- data/vendor/eigen/Eigen/KLUSupport +41 -0
- data/vendor/eigen/Eigen/LU +2 -5
- data/vendor/eigen/Eigen/OrderingMethods +0 -3
- data/vendor/eigen/Eigen/PaStiXSupport +1 -0
- data/vendor/eigen/Eigen/PardisoSupport +0 -0
- data/vendor/eigen/Eigen/QR +2 -3
- data/vendor/eigen/Eigen/QtAlignedMalloc +0 -1
- data/vendor/eigen/Eigen/SVD +0 -1
- data/vendor/eigen/Eigen/Sparse +0 -2
- data/vendor/eigen/Eigen/SparseCholesky +0 -8
- data/vendor/eigen/Eigen/SparseLU +4 -0
- data/vendor/eigen/Eigen/SparseQR +0 -1
- data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +42 -27
- data/vendor/eigen/Eigen/src/Cholesky/LLT.h +39 -23
- data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +90 -47
- data/vendor/eigen/Eigen/src/Core/ArithmeticSequence.h +413 -0
- data/vendor/eigen/Eigen/src/Core/Array.h +99 -11
- data/vendor/eigen/Eigen/src/Core/ArrayBase.h +3 -3
- data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +21 -21
- data/vendor/eigen/Eigen/src/Core/Assign.h +1 -1
- data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +125 -50
- data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +10 -10
- data/vendor/eigen/Eigen/src/Core/BandMatrix.h +16 -16
- data/vendor/eigen/Eigen/src/Core/Block.h +56 -60
- data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +29 -31
- data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +7 -3
- data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +325 -272
- data/vendor/eigen/Eigen/src/Core/CoreIterators.h +5 -0
- data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +21 -22
- data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +153 -18
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +6 -6
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +14 -10
- data/vendor/eigen/Eigen/src/Core/DenseBase.h +132 -42
- data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +25 -21
- data/vendor/eigen/Eigen/src/Core/DenseStorage.h +153 -71
- data/vendor/eigen/Eigen/src/Core/Diagonal.h +21 -23
- data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +50 -2
- data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +1 -1
- data/vendor/eigen/Eigen/src/Core/Dot.h +10 -10
- data/vendor/eigen/Eigen/src/Core/EigenBase.h +10 -9
- data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +8 -4
- data/vendor/eigen/Eigen/src/Core/Fuzzy.h +3 -3
- data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +20 -10
- data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +599 -152
- data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +40 -33
- data/vendor/eigen/Eigen/src/Core/IO.h +40 -7
- data/vendor/eigen/Eigen/src/Core/IndexedView.h +237 -0
- data/vendor/eigen/Eigen/src/Core/Inverse.h +9 -10
- data/vendor/eigen/Eigen/src/Core/Map.h +7 -7
- data/vendor/eigen/Eigen/src/Core/MapBase.h +10 -3
- data/vendor/eigen/Eigen/src/Core/MathFunctions.h +767 -125
- data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +118 -19
- data/vendor/eigen/Eigen/src/Core/Matrix.h +131 -25
- data/vendor/eigen/Eigen/src/Core/MatrixBase.h +21 -3
- data/vendor/eigen/Eigen/src/Core/NestByValue.h +25 -50
- data/vendor/eigen/Eigen/src/Core/NoAlias.h +4 -3
- data/vendor/eigen/Eigen/src/Core/NumTraits.h +107 -20
- data/vendor/eigen/Eigen/src/Core/PartialReduxEvaluator.h +232 -0
- data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +3 -31
- data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +152 -59
- data/vendor/eigen/Eigen/src/Core/Product.h +30 -25
- data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +192 -125
- data/vendor/eigen/Eigen/src/Core/Random.h +37 -1
- data/vendor/eigen/Eigen/src/Core/Redux.h +180 -170
- data/vendor/eigen/Eigen/src/Core/Ref.h +121 -23
- data/vendor/eigen/Eigen/src/Core/Replicate.h +8 -8
- data/vendor/eigen/Eigen/src/Core/Reshaped.h +454 -0
- data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +7 -5
- data/vendor/eigen/Eigen/src/Core/Reverse.h +18 -12
- data/vendor/eigen/Eigen/src/Core/Select.h +8 -6
- data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +33 -20
- data/vendor/eigen/Eigen/src/Core/Solve.h +14 -14
- data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +16 -16
- data/vendor/eigen/Eigen/src/Core/SolverBase.h +41 -3
- data/vendor/eigen/Eigen/src/Core/StableNorm.h +100 -70
- data/vendor/eigen/Eigen/src/Core/StlIterators.h +463 -0
- data/vendor/eigen/Eigen/src/Core/Stride.h +9 -4
- data/vendor/eigen/Eigen/src/Core/Swap.h +5 -4
- data/vendor/eigen/Eigen/src/Core/Transpose.h +88 -27
- data/vendor/eigen/Eigen/src/Core/Transpositions.h +26 -47
- data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +93 -75
- data/vendor/eigen/Eigen/src/Core/VectorBlock.h +5 -5
- data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +159 -70
- data/vendor/eigen/Eigen/src/Core/Visitor.h +137 -29
- data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +50 -129
- data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +126 -337
- data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +1092 -155
- data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +65 -1
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/Complex.h +422 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +207 -236
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1482 -495
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/TypeCasting.h +89 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +152 -165
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +19 -251
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MatrixProduct.h +2937 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MatrixProductCommon.h +221 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MatrixProductMMA.h +629 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +2042 -392
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +235 -80
- data/vendor/eigen/Eigen/src/Core/arch/Default/BFloat16.h +700 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +102 -14
- data/vendor/eigen/Eigen/src/Core/arch/Default/GenericPacketMathFunctions.h +1649 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/GenericPacketMathFunctionsFwd.h +110 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/Half.h +942 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +1 -1
- data/vendor/eigen/Eigen/src/Core/arch/Default/TypeCasting.h +120 -0
- data/vendor/eigen/Eigen/src/Core/arch/{CUDA → GPU}/MathFunctions.h +16 -4
- data/vendor/eigen/Eigen/src/Core/arch/GPU/PacketMath.h +1685 -0
- data/vendor/eigen/Eigen/src/Core/arch/GPU/TypeCasting.h +80 -0
- data/vendor/eigen/Eigen/src/Core/arch/HIP/hcc/math_constants.h +23 -0
- data/vendor/eigen/Eigen/src/Core/arch/MSA/Complex.h +648 -0
- data/vendor/eigen/Eigen/src/Core/arch/MSA/MathFunctions.h +387 -0
- data/vendor/eigen/Eigen/src/Core/arch/MSA/PacketMath.h +1233 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +313 -219
- data/vendor/eigen/Eigen/src/Core/arch/NEON/GeneralBlockPanelKernel.h +183 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +54 -70
- data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +4376 -549
- data/vendor/eigen/Eigen/src/Core/arch/NEON/TypeCasting.h +1419 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +59 -179
- data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +65 -428
- data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +893 -283
- data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +65 -0
- data/vendor/eigen/Eigen/src/Core/arch/SVE/MathFunctions.h +44 -0
- data/vendor/eigen/Eigen/src/Core/arch/SVE/PacketMath.h +752 -0
- data/vendor/eigen/Eigen/src/Core/arch/SVE/TypeCasting.h +49 -0
- data/vendor/eigen/Eigen/src/Core/arch/SYCL/InteropHeaders.h +232 -0
- data/vendor/eigen/Eigen/src/Core/arch/SYCL/MathFunctions.h +301 -0
- data/vendor/eigen/Eigen/src/Core/arch/SYCL/PacketMath.h +670 -0
- data/vendor/eigen/Eigen/src/Core/arch/SYCL/SyclMemoryModel.h +694 -0
- data/vendor/eigen/Eigen/src/Core/arch/SYCL/TypeCasting.h +85 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +212 -183
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +101 -5
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +510 -395
- data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +11 -2
- data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +112 -46
- data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +31 -30
- data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +32 -2
- data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +355 -16
- data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +1075 -586
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +49 -24
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +41 -35
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +6 -6
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +4 -2
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +382 -483
- data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +22 -5
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +53 -30
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +16 -8
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +8 -6
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +4 -4
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +5 -4
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +33 -27
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +14 -12
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +36 -34
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +8 -4
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +13 -10
- data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +304 -119
- data/vendor/eigen/Eigen/src/Core/util/ConfigureVectorization.h +512 -0
- data/vendor/eigen/Eigen/src/Core/util/Constants.h +25 -9
- data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +26 -3
- data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +29 -9
- data/vendor/eigen/Eigen/src/Core/util/IndexedViewHelper.h +186 -0
- data/vendor/eigen/Eigen/src/Core/util/IntegralConstant.h +272 -0
- data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +8 -1
- data/vendor/eigen/Eigen/src/Core/util/Macros.h +709 -246
- data/vendor/eigen/Eigen/src/Core/util/Memory.h +222 -52
- data/vendor/eigen/Eigen/src/Core/util/Meta.h +355 -77
- data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +5 -1
- data/vendor/eigen/Eigen/src/Core/util/ReshapedHelper.h +51 -0
- data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +8 -5
- data/vendor/eigen/Eigen/src/Core/util/SymbolicIndex.h +293 -0
- data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +65 -30
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +1 -1
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +7 -4
- data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +2 -2
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +1 -1
- data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +2 -2
- data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +2 -2
- data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +9 -6
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +21 -9
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +77 -43
- data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +20 -15
- data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +99 -5
- data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +4 -4
- data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +3 -3
- data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +15 -11
- data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +1 -1
- data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +3 -2
- data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +39 -2
- data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +70 -14
- data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +3 -3
- data/vendor/eigen/Eigen/src/Geometry/Scaling.h +23 -5
- data/vendor/eigen/Eigen/src/Geometry/Transform.h +88 -67
- data/vendor/eigen/Eigen/src/Geometry/Translation.h +6 -12
- data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +1 -1
- data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h +168 -0
- data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +9 -2
- data/vendor/eigen/Eigen/src/Householder/Householder.h +8 -4
- data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +123 -48
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +15 -15
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +7 -23
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +5 -22
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +41 -47
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +51 -60
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +70 -20
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +2 -20
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +11 -9
- data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +31 -10
- data/vendor/eigen/Eigen/src/KLUSupport/KLUSupport.h +358 -0
- data/vendor/eigen/Eigen/src/LU/Determinant.h +35 -19
- data/vendor/eigen/Eigen/src/LU/FullPivLU.h +29 -43
- data/vendor/eigen/Eigen/src/LU/InverseImpl.h +25 -8
- data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +71 -58
- data/vendor/eigen/Eigen/src/LU/arch/InverseSize4.h +351 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +7 -17
- data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +297 -277
- data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +6 -10
- data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +1 -1
- data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +9 -7
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +41 -20
- data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +100 -27
- data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +59 -22
- data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +48 -23
- data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +25 -3
- data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +183 -63
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +22 -14
- data/vendor/eigen/Eigen/src/SVD/SVDBase.h +83 -22
- data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +3 -3
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +17 -9
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +12 -37
- data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +3 -2
- data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +16 -0
- data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +6 -6
- data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +81 -27
- data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +25 -57
- data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +40 -11
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +11 -15
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +4 -2
- data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +30 -8
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +126 -11
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +5 -12
- data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +13 -1
- data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +7 -7
- data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +5 -2
- data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +8 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +1 -1
- data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +1 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +162 -12
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +1 -1
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +76 -2
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +2 -2
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +1 -1
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +1 -1
- data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +19 -6
- data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +2 -12
- data/vendor/eigen/Eigen/src/StlSupport/StdList.h +2 -2
- data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +2 -2
- data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +6 -8
- data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +175 -39
- data/vendor/eigen/Eigen/src/misc/lapacke.h +5 -4
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +28 -2
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +155 -11
- data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +626 -242
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +14 -0
- data/vendor/eigen/Eigen/src/plugins/IndexedViewMethods.h +262 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +4 -4
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +10 -0
- data/vendor/eigen/Eigen/src/plugins/ReshapedMethods.h +149 -0
- data/vendor/eigen/README.md +2 -0
- data/vendor/eigen/bench/btl/README +1 -1
- data/vendor/eigen/bench/tensors/README +6 -7
- data/vendor/eigen/ci/README.md +56 -0
- data/vendor/eigen/demos/mix_eigen_and_c/README +1 -1
- data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +213 -158
- data/vendor/eigen/unsupported/README.txt +1 -1
- data/vendor/tomotopy/README.kr.rst +78 -0
- data/vendor/tomotopy/README.rst +75 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +2 -2
- data/vendor/tomotopy/src/Labeling/Phraser.hpp +4 -4
- data/vendor/tomotopy/src/TopicModel/CTModel.hpp +7 -3
- data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +7 -3
- data/vendor/tomotopy/src/TopicModel/DTModel.hpp +6 -3
- data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +2 -2
- data/vendor/tomotopy/src/TopicModel/HDP.h +1 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +57 -6
- data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +6 -3
- data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +3 -2
- data/vendor/tomotopy/src/TopicModel/LDA.h +3 -3
- data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +5 -5
- data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +50 -19
- data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +6 -2
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +3 -2
- data/vendor/tomotopy/src/TopicModel/PAModel.hpp +1 -1
- data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +6 -2
- data/vendor/tomotopy/src/TopicModel/PT.h +3 -1
- data/vendor/tomotopy/src/TopicModel/PTModel.hpp +36 -3
- data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +6 -3
- data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +55 -26
- data/vendor/tomotopy/src/Utils/AliasMethod.hpp +5 -4
- data/vendor/tomotopy/src/Utils/Dictionary.h +2 -2
- data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +36 -1
- data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +1 -1
- data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +1 -1
- data/vendor/tomotopy/src/Utils/exception.h +6 -0
- data/vendor/tomotopy/src/Utils/math.h +2 -2
- data/vendor/tomotopy/src/Utils/sample.hpp +14 -12
- data/vendor/tomotopy/src/Utils/serializer.hpp +30 -5
- data/vendor/tomotopy/src/Utils/sse_gamma.h +0 -3
- metadata +64 -18
- data/vendor/eigen/Eigen/CMakeLists.txt +0 -19
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +0 -674
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +0 -333
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +0 -1124
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +0 -212
- data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +0 -161
- data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +0 -338
@@ -182,32 +182,14 @@ public:
|
|
182
182
|
|
183
183
|
/** \internal */
|
184
184
|
template<typename Rhs,typename Dest>
|
185
|
-
void
|
185
|
+
void _solve_vector_with_guess_impl(const Rhs& b, Dest& x) const
|
186
186
|
{
|
187
187
|
m_iterations = Base::maxIterations();
|
188
188
|
m_error = Base::m_tolerance;
|
189
189
|
|
190
|
-
|
191
|
-
{
|
192
|
-
m_iterations = Base::maxIterations();
|
193
|
-
m_error = Base::m_tolerance;
|
194
|
-
|
195
|
-
typename Dest::ColXpr xj(x,j);
|
196
|
-
internal::least_square_conjugate_gradient(matrix(), b.col(j), xj, Base::m_preconditioner, m_iterations, m_error);
|
197
|
-
}
|
198
|
-
|
199
|
-
m_isInitialized = true;
|
190
|
+
internal::least_square_conjugate_gradient(matrix(), b, x, Base::m_preconditioner, m_iterations, m_error);
|
200
191
|
m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
|
201
192
|
}
|
202
|
-
|
203
|
-
/** \internal */
|
204
|
-
using Base::_solve_impl;
|
205
|
-
template<typename Rhs,typename Dest>
|
206
|
-
void _solve_impl(const MatrixBase<Rhs>& b, Dest& x) const
|
207
|
-
{
|
208
|
-
x.setZero();
|
209
|
-
_solve_with_guess_impl(b.derived(),x);
|
210
|
-
}
|
211
193
|
|
212
194
|
};
|
213
195
|
|
@@ -13,7 +13,7 @@
|
|
13
13
|
namespace Eigen {
|
14
14
|
|
15
15
|
template<typename Decomposition, typename RhsType, typename GuessType> class SolveWithGuess;
|
16
|
-
|
16
|
+
|
17
17
|
/** \class SolveWithGuess
|
18
18
|
* \ingroup IterativeLinearSolvers_Module
|
19
19
|
*
|
@@ -45,13 +45,15 @@ public:
|
|
45
45
|
typedef typename internal::traits<SolveWithGuess>::PlainObject PlainObject;
|
46
46
|
typedef typename internal::generic_xpr_base<SolveWithGuess<Decomposition,RhsType,GuessType>, MatrixXpr, typename internal::traits<RhsType>::StorageKind>::type Base;
|
47
47
|
typedef typename internal::ref_selector<SolveWithGuess>::type Nested;
|
48
|
-
|
48
|
+
|
49
49
|
SolveWithGuess(const Decomposition &dec, const RhsType &rhs, const GuessType &guess)
|
50
50
|
: m_dec(dec), m_rhs(rhs), m_guess(guess)
|
51
51
|
{}
|
52
|
-
|
53
|
-
EIGEN_DEVICE_FUNC
|
54
|
-
|
52
|
+
|
53
|
+
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
|
54
|
+
Index rows() const EIGEN_NOEXCEPT { return m_dec.cols(); }
|
55
|
+
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
|
56
|
+
Index cols() const EIGEN_NOEXCEPT { return m_rhs.cols(); }
|
55
57
|
|
56
58
|
EIGEN_DEVICE_FUNC const Decomposition& dec() const { return m_dec; }
|
57
59
|
EIGEN_DEVICE_FUNC const RhsType& rhs() const { return m_rhs; }
|
@@ -61,7 +63,7 @@ protected:
|
|
61
63
|
const Decomposition &m_dec;
|
62
64
|
const RhsType &m_rhs;
|
63
65
|
const GuessType &m_guess;
|
64
|
-
|
66
|
+
|
65
67
|
private:
|
66
68
|
Scalar coeff(Index row, Index col) const;
|
67
69
|
Scalar coeff(Index i) const;
|
@@ -85,8 +87,8 @@ struct evaluator<SolveWithGuess<Decomposition,RhsType, GuessType> >
|
|
85
87
|
m_result = solve.guess();
|
86
88
|
solve.dec()._solve_with_guess_impl(solve.rhs(), m_result);
|
87
89
|
}
|
88
|
-
|
89
|
-
protected:
|
90
|
+
|
91
|
+
protected:
|
90
92
|
PlainObject m_result;
|
91
93
|
};
|
92
94
|
|
@@ -108,7 +110,7 @@ struct Assignment<DstXprType, SolveWithGuess<DecType,RhsType,GuessType>, interna
|
|
108
110
|
}
|
109
111
|
};
|
110
112
|
|
111
|
-
} // end
|
113
|
+
} // end namespace internal
|
112
114
|
|
113
115
|
} // end namespace Eigen
|
114
116
|
|
@@ -11,7 +11,7 @@
|
|
11
11
|
#ifndef EIGEN_JACOBI_H
|
12
12
|
#define EIGEN_JACOBI_H
|
13
13
|
|
14
|
-
namespace Eigen {
|
14
|
+
namespace Eigen {
|
15
15
|
|
16
16
|
/** \ingroup Jacobi_Module
|
17
17
|
* \jacobi_module
|
@@ -37,17 +37,20 @@ template<typename Scalar> class JacobiRotation
|
|
37
37
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
38
38
|
|
39
39
|
/** Default constructor without any initialization. */
|
40
|
+
EIGEN_DEVICE_FUNC
|
40
41
|
JacobiRotation() {}
|
41
42
|
|
42
43
|
/** Construct a planar rotation from a cosine-sine pair (\a c, \c s). */
|
44
|
+
EIGEN_DEVICE_FUNC
|
43
45
|
JacobiRotation(const Scalar& c, const Scalar& s) : m_c(c), m_s(s) {}
|
44
46
|
|
45
|
-
Scalar& c() { return m_c; }
|
46
|
-
Scalar c() const { return m_c; }
|
47
|
-
Scalar& s() { return m_s; }
|
48
|
-
Scalar s() const { return m_s; }
|
47
|
+
EIGEN_DEVICE_FUNC Scalar& c() { return m_c; }
|
48
|
+
EIGEN_DEVICE_FUNC Scalar c() const { return m_c; }
|
49
|
+
EIGEN_DEVICE_FUNC Scalar& s() { return m_s; }
|
50
|
+
EIGEN_DEVICE_FUNC Scalar s() const { return m_s; }
|
49
51
|
|
50
52
|
/** Concatenates two planar rotation */
|
53
|
+
EIGEN_DEVICE_FUNC
|
51
54
|
JacobiRotation operator*(const JacobiRotation& other)
|
52
55
|
{
|
53
56
|
using numext::conj;
|
@@ -56,19 +59,26 @@ template<typename Scalar> class JacobiRotation
|
|
56
59
|
}
|
57
60
|
|
58
61
|
/** Returns the transposed transformation */
|
62
|
+
EIGEN_DEVICE_FUNC
|
59
63
|
JacobiRotation transpose() const { using numext::conj; return JacobiRotation(m_c, -conj(m_s)); }
|
60
64
|
|
61
65
|
/** Returns the adjoint transformation */
|
66
|
+
EIGEN_DEVICE_FUNC
|
62
67
|
JacobiRotation adjoint() const { using numext::conj; return JacobiRotation(conj(m_c), -m_s); }
|
63
68
|
|
64
69
|
template<typename Derived>
|
70
|
+
EIGEN_DEVICE_FUNC
|
65
71
|
bool makeJacobi(const MatrixBase<Derived>&, Index p, Index q);
|
72
|
+
EIGEN_DEVICE_FUNC
|
66
73
|
bool makeJacobi(const RealScalar& x, const Scalar& y, const RealScalar& z);
|
67
74
|
|
75
|
+
EIGEN_DEVICE_FUNC
|
68
76
|
void makeGivens(const Scalar& p, const Scalar& q, Scalar* r=0);
|
69
77
|
|
70
78
|
protected:
|
79
|
+
EIGEN_DEVICE_FUNC
|
71
80
|
void makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::true_type);
|
81
|
+
EIGEN_DEVICE_FUNC
|
72
82
|
void makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::false_type);
|
73
83
|
|
74
84
|
Scalar m_c, m_s;
|
@@ -80,10 +90,12 @@ template<typename Scalar> class JacobiRotation
|
|
80
90
|
* \sa MatrixBase::makeJacobi(const MatrixBase<Derived>&, Index, Index), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
|
81
91
|
*/
|
82
92
|
template<typename Scalar>
|
93
|
+
EIGEN_DEVICE_FUNC
|
83
94
|
bool JacobiRotation<Scalar>::makeJacobi(const RealScalar& x, const Scalar& y, const RealScalar& z)
|
84
95
|
{
|
85
96
|
using std::sqrt;
|
86
97
|
using std::abs;
|
98
|
+
|
87
99
|
RealScalar deno = RealScalar(2)*abs(y);
|
88
100
|
if(deno < (std::numeric_limits<RealScalar>::min)())
|
89
101
|
{
|
@@ -123,6 +135,7 @@ bool JacobiRotation<Scalar>::makeJacobi(const RealScalar& x, const Scalar& y, co
|
|
123
135
|
*/
|
124
136
|
template<typename Scalar>
|
125
137
|
template<typename Derived>
|
138
|
+
EIGEN_DEVICE_FUNC
|
126
139
|
inline bool JacobiRotation<Scalar>::makeJacobi(const MatrixBase<Derived>& m, Index p, Index q)
|
127
140
|
{
|
128
141
|
return makeJacobi(numext::real(m.coeff(p,p)), m.coeff(p,q), numext::real(m.coeff(q,q)));
|
@@ -145,6 +158,7 @@ inline bool JacobiRotation<Scalar>::makeJacobi(const MatrixBase<Derived>& m, Ind
|
|
145
158
|
* \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
|
146
159
|
*/
|
147
160
|
template<typename Scalar>
|
161
|
+
EIGEN_DEVICE_FUNC
|
148
162
|
void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r)
|
149
163
|
{
|
150
164
|
makeGivens(p, q, r, typename internal::conditional<NumTraits<Scalar>::IsComplex, internal::true_type, internal::false_type>::type());
|
@@ -153,12 +167,13 @@ void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar
|
|
153
167
|
|
154
168
|
// specialization for complexes
|
155
169
|
template<typename Scalar>
|
170
|
+
EIGEN_DEVICE_FUNC
|
156
171
|
void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::true_type)
|
157
172
|
{
|
158
173
|
using std::sqrt;
|
159
174
|
using std::abs;
|
160
175
|
using numext::conj;
|
161
|
-
|
176
|
+
|
162
177
|
if(q==Scalar(0))
|
163
178
|
{
|
164
179
|
m_c = numext::real(p)<0 ? Scalar(-1) : Scalar(1);
|
@@ -212,6 +227,7 @@ void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar
|
|
212
227
|
|
213
228
|
// specialization for reals
|
214
229
|
template<typename Scalar>
|
230
|
+
EIGEN_DEVICE_FUNC
|
215
231
|
void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::false_type)
|
216
232
|
{
|
217
233
|
using std::sqrt;
|
@@ -257,12 +273,13 @@ void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar
|
|
257
273
|
|
258
274
|
namespace internal {
|
259
275
|
/** \jacobi_module
|
260
|
-
* Applies the clock wise 2D rotation \a j to the set of 2D vectors of
|
276
|
+
* Applies the clock wise 2D rotation \a j to the set of 2D vectors of coordinates \a x and \a y:
|
261
277
|
* \f$ \left ( \begin{array}{cc} x \\ y \end{array} \right ) = J \left ( \begin{array}{cc} x \\ y \end{array} \right ) \f$
|
262
278
|
*
|
263
279
|
* \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
|
264
280
|
*/
|
265
281
|
template<typename VectorX, typename VectorY, typename OtherScalar>
|
282
|
+
EIGEN_DEVICE_FUNC
|
266
283
|
void apply_rotation_in_the_plane(DenseBase<VectorX>& xpr_x, DenseBase<VectorY>& xpr_y, const JacobiRotation<OtherScalar>& j);
|
267
284
|
}
|
268
285
|
|
@@ -274,6 +291,7 @@ void apply_rotation_in_the_plane(DenseBase<VectorX>& xpr_x, DenseBase<VectorY>&
|
|
274
291
|
*/
|
275
292
|
template<typename Derived>
|
276
293
|
template<typename OtherScalar>
|
294
|
+
EIGEN_DEVICE_FUNC
|
277
295
|
inline void MatrixBase<Derived>::applyOnTheLeft(Index p, Index q, const JacobiRotation<OtherScalar>& j)
|
278
296
|
{
|
279
297
|
RowXpr x(this->row(p));
|
@@ -289,6 +307,7 @@ inline void MatrixBase<Derived>::applyOnTheLeft(Index p, Index q, const JacobiRo
|
|
289
307
|
*/
|
290
308
|
template<typename Derived>
|
291
309
|
template<typename OtherScalar>
|
310
|
+
EIGEN_DEVICE_FUNC
|
292
311
|
inline void MatrixBase<Derived>::applyOnTheRight(Index p, Index q, const JacobiRotation<OtherScalar>& j)
|
293
312
|
{
|
294
313
|
ColXpr x(this->col(p));
|
@@ -302,7 +321,8 @@ template<typename Scalar, typename OtherScalar,
|
|
302
321
|
int SizeAtCompileTime, int MinAlignment, bool Vectorizable>
|
303
322
|
struct apply_rotation_in_the_plane_selector
|
304
323
|
{
|
305
|
-
static
|
324
|
+
static EIGEN_DEVICE_FUNC
|
325
|
+
inline void run(Scalar *x, Index incrx, Scalar *y, Index incry, Index size, OtherScalar c, OtherScalar s)
|
306
326
|
{
|
307
327
|
for(Index i=0; i<size; ++i)
|
308
328
|
{
|
@@ -429,10 +449,11 @@ struct apply_rotation_in_the_plane_selector<Scalar,OtherScalar,SizeAtCompileTime
|
|
429
449
|
};
|
430
450
|
|
431
451
|
template<typename VectorX, typename VectorY, typename OtherScalar>
|
452
|
+
EIGEN_DEVICE_FUNC
|
432
453
|
void /*EIGEN_DONT_INLINE*/ apply_rotation_in_the_plane(DenseBase<VectorX>& xpr_x, DenseBase<VectorY>& xpr_y, const JacobiRotation<OtherScalar>& j)
|
433
454
|
{
|
434
455
|
typedef typename VectorX::Scalar Scalar;
|
435
|
-
const bool Vectorizable = (VectorX::Flags & VectorY::Flags & PacketAccessBit)
|
456
|
+
const bool Vectorizable = (int(VectorX::Flags) & int(VectorY::Flags) & PacketAccessBit)
|
436
457
|
&& (int(packet_traits<Scalar>::size) == int(packet_traits<OtherScalar>::size));
|
437
458
|
|
438
459
|
eigen_assert(xpr_x.size() == xpr_y.size());
|
@@ -442,7 +463,7 @@ void /*EIGEN_DONT_INLINE*/ apply_rotation_in_the_plane(DenseBase<VectorX>& xpr_x
|
|
442
463
|
|
443
464
|
Scalar* EIGEN_RESTRICT x = &xpr_x.derived().coeffRef(0);
|
444
465
|
Scalar* EIGEN_RESTRICT y = &xpr_y.derived().coeffRef(0);
|
445
|
-
|
466
|
+
|
446
467
|
OtherScalar c = j.c();
|
447
468
|
OtherScalar s = j.s();
|
448
469
|
if (c==OtherScalar(1) && s==OtherScalar(0))
|
@@ -0,0 +1,358 @@
|
|
1
|
+
// This file is part of Eigen, a lightweight C++ template library
|
2
|
+
// for linear algebra.
|
3
|
+
//
|
4
|
+
// Copyright (C) 2017 Kyle Macfarlan <kyle.macfarlan@gmail.com>
|
5
|
+
//
|
6
|
+
// This Source Code Form is subject to the terms of the Mozilla
|
7
|
+
// Public License v. 2.0. If a copy of the MPL was not distributed
|
8
|
+
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
9
|
+
|
10
|
+
#ifndef EIGEN_KLUSUPPORT_H
|
11
|
+
#define EIGEN_KLUSUPPORT_H
|
12
|
+
|
13
|
+
namespace Eigen {
|
14
|
+
|
15
|
+
/* TODO extract L, extract U, compute det, etc... */
|
16
|
+
|
17
|
+
/** \ingroup KLUSupport_Module
|
18
|
+
* \brief A sparse LU factorization and solver based on KLU
|
19
|
+
*
|
20
|
+
* This class allows to solve for A.X = B sparse linear problems via a LU factorization
|
21
|
+
* using the KLU library. The sparse matrix A must be squared and full rank.
|
22
|
+
* The vectors or matrices X and B can be either dense or sparse.
|
23
|
+
*
|
24
|
+
* \warning The input matrix A should be in a \b compressed and \b column-major form.
|
25
|
+
* Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix.
|
26
|
+
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
|
27
|
+
*
|
28
|
+
* \implsparsesolverconcept
|
29
|
+
*
|
30
|
+
* \sa \ref TutorialSparseSolverConcept, class UmfPackLU, class SparseLU
|
31
|
+
*/
|
32
|
+
|
33
|
+
|
34
|
+
inline int klu_solve(klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, double B [ ], klu_common *Common, double) {
|
35
|
+
return klu_solve(Symbolic, Numeric, internal::convert_index<int>(ldim), internal::convert_index<int>(nrhs), B, Common);
|
36
|
+
}
|
37
|
+
|
38
|
+
inline int klu_solve(klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, std::complex<double>B[], klu_common *Common, std::complex<double>) {
|
39
|
+
return klu_z_solve(Symbolic, Numeric, internal::convert_index<int>(ldim), internal::convert_index<int>(nrhs), &numext::real_ref(B[0]), Common);
|
40
|
+
}
|
41
|
+
|
42
|
+
inline int klu_tsolve(klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, double B[], klu_common *Common, double) {
|
43
|
+
return klu_tsolve(Symbolic, Numeric, internal::convert_index<int>(ldim), internal::convert_index<int>(nrhs), B, Common);
|
44
|
+
}
|
45
|
+
|
46
|
+
inline int klu_tsolve(klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, std::complex<double>B[], klu_common *Common, std::complex<double>) {
|
47
|
+
return klu_z_tsolve(Symbolic, Numeric, internal::convert_index<int>(ldim), internal::convert_index<int>(nrhs), &numext::real_ref(B[0]), 0, Common);
|
48
|
+
}
|
49
|
+
|
50
|
+
inline klu_numeric* klu_factor(int Ap [ ], int Ai [ ], double Ax [ ], klu_symbolic *Symbolic, klu_common *Common, double) {
|
51
|
+
return klu_factor(Ap, Ai, Ax, Symbolic, Common);
|
52
|
+
}
|
53
|
+
|
54
|
+
inline klu_numeric* klu_factor(int Ap[], int Ai[], std::complex<double> Ax[], klu_symbolic *Symbolic, klu_common *Common, std::complex<double>) {
|
55
|
+
return klu_z_factor(Ap, Ai, &numext::real_ref(Ax[0]), Symbolic, Common);
|
56
|
+
}
|
57
|
+
|
58
|
+
|
59
|
+
template<typename _MatrixType>
|
60
|
+
class KLU : public SparseSolverBase<KLU<_MatrixType> >
|
61
|
+
{
|
62
|
+
protected:
|
63
|
+
typedef SparseSolverBase<KLU<_MatrixType> > Base;
|
64
|
+
using Base::m_isInitialized;
|
65
|
+
public:
|
66
|
+
using Base::_solve_impl;
|
67
|
+
typedef _MatrixType MatrixType;
|
68
|
+
typedef typename MatrixType::Scalar Scalar;
|
69
|
+
typedef typename MatrixType::RealScalar RealScalar;
|
70
|
+
typedef typename MatrixType::StorageIndex StorageIndex;
|
71
|
+
typedef Matrix<Scalar,Dynamic,1> Vector;
|
72
|
+
typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
|
73
|
+
typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
|
74
|
+
typedef SparseMatrix<Scalar> LUMatrixType;
|
75
|
+
typedef SparseMatrix<Scalar,ColMajor,int> KLUMatrixType;
|
76
|
+
typedef Ref<const KLUMatrixType, StandardCompressedFormat> KLUMatrixRef;
|
77
|
+
enum {
|
78
|
+
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
79
|
+
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
80
|
+
};
|
81
|
+
|
82
|
+
public:
|
83
|
+
|
84
|
+
KLU()
|
85
|
+
: m_dummy(0,0), mp_matrix(m_dummy)
|
86
|
+
{
|
87
|
+
init();
|
88
|
+
}
|
89
|
+
|
90
|
+
template<typename InputMatrixType>
|
91
|
+
explicit KLU(const InputMatrixType& matrix)
|
92
|
+
: mp_matrix(matrix)
|
93
|
+
{
|
94
|
+
init();
|
95
|
+
compute(matrix);
|
96
|
+
}
|
97
|
+
|
98
|
+
~KLU()
|
99
|
+
{
|
100
|
+
if(m_symbolic) klu_free_symbolic(&m_symbolic,&m_common);
|
101
|
+
if(m_numeric) klu_free_numeric(&m_numeric,&m_common);
|
102
|
+
}
|
103
|
+
|
104
|
+
EIGEN_CONSTEXPR inline Index rows() const EIGEN_NOEXCEPT { return mp_matrix.rows(); }
|
105
|
+
EIGEN_CONSTEXPR inline Index cols() const EIGEN_NOEXCEPT { return mp_matrix.cols(); }
|
106
|
+
|
107
|
+
/** \brief Reports whether previous computation was successful.
|
108
|
+
*
|
109
|
+
* \returns \c Success if computation was successful,
|
110
|
+
* \c NumericalIssue if the matrix.appears to be negative.
|
111
|
+
*/
|
112
|
+
ComputationInfo info() const
|
113
|
+
{
|
114
|
+
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
|
115
|
+
return m_info;
|
116
|
+
}
|
117
|
+
#if 0 // not implemented yet
|
118
|
+
inline const LUMatrixType& matrixL() const
|
119
|
+
{
|
120
|
+
if (m_extractedDataAreDirty) extractData();
|
121
|
+
return m_l;
|
122
|
+
}
|
123
|
+
|
124
|
+
inline const LUMatrixType& matrixU() const
|
125
|
+
{
|
126
|
+
if (m_extractedDataAreDirty) extractData();
|
127
|
+
return m_u;
|
128
|
+
}
|
129
|
+
|
130
|
+
inline const IntColVectorType& permutationP() const
|
131
|
+
{
|
132
|
+
if (m_extractedDataAreDirty) extractData();
|
133
|
+
return m_p;
|
134
|
+
}
|
135
|
+
|
136
|
+
inline const IntRowVectorType& permutationQ() const
|
137
|
+
{
|
138
|
+
if (m_extractedDataAreDirty) extractData();
|
139
|
+
return m_q;
|
140
|
+
}
|
141
|
+
#endif
|
142
|
+
/** Computes the sparse Cholesky decomposition of \a matrix
|
143
|
+
* Note that the matrix should be column-major, and in compressed format for best performance.
|
144
|
+
* \sa SparseMatrix::makeCompressed().
|
145
|
+
*/
|
146
|
+
template<typename InputMatrixType>
|
147
|
+
void compute(const InputMatrixType& matrix)
|
148
|
+
{
|
149
|
+
if(m_symbolic) klu_free_symbolic(&m_symbolic, &m_common);
|
150
|
+
if(m_numeric) klu_free_numeric(&m_numeric, &m_common);
|
151
|
+
grab(matrix.derived());
|
152
|
+
analyzePattern_impl();
|
153
|
+
factorize_impl();
|
154
|
+
}
|
155
|
+
|
156
|
+
/** Performs a symbolic decomposition on the sparcity of \a matrix.
|
157
|
+
*
|
158
|
+
* This function is particularly useful when solving for several problems having the same structure.
|
159
|
+
*
|
160
|
+
* \sa factorize(), compute()
|
161
|
+
*/
|
162
|
+
template<typename InputMatrixType>
|
163
|
+
void analyzePattern(const InputMatrixType& matrix)
|
164
|
+
{
|
165
|
+
if(m_symbolic) klu_free_symbolic(&m_symbolic, &m_common);
|
166
|
+
if(m_numeric) klu_free_numeric(&m_numeric, &m_common);
|
167
|
+
|
168
|
+
grab(matrix.derived());
|
169
|
+
|
170
|
+
analyzePattern_impl();
|
171
|
+
}
|
172
|
+
|
173
|
+
|
174
|
+
/** Provides access to the control settings array used by KLU.
|
175
|
+
*
|
176
|
+
* See KLU documentation for details.
|
177
|
+
*/
|
178
|
+
inline const klu_common& kluCommon() const
|
179
|
+
{
|
180
|
+
return m_common;
|
181
|
+
}
|
182
|
+
|
183
|
+
/** Provides access to the control settings array used by UmfPack.
|
184
|
+
*
|
185
|
+
* If this array contains NaN's, the default values are used.
|
186
|
+
*
|
187
|
+
* See KLU documentation for details.
|
188
|
+
*/
|
189
|
+
inline klu_common& kluCommon()
|
190
|
+
{
|
191
|
+
return m_common;
|
192
|
+
}
|
193
|
+
|
194
|
+
/** Performs a numeric decomposition of \a matrix
|
195
|
+
*
|
196
|
+
* The given matrix must has the same sparcity than the matrix on which the pattern anylysis has been performed.
|
197
|
+
*
|
198
|
+
* \sa analyzePattern(), compute()
|
199
|
+
*/
|
200
|
+
template<typename InputMatrixType>
|
201
|
+
void factorize(const InputMatrixType& matrix)
|
202
|
+
{
|
203
|
+
eigen_assert(m_analysisIsOk && "KLU: you must first call analyzePattern()");
|
204
|
+
if(m_numeric)
|
205
|
+
klu_free_numeric(&m_numeric,&m_common);
|
206
|
+
|
207
|
+
grab(matrix.derived());
|
208
|
+
|
209
|
+
factorize_impl();
|
210
|
+
}
|
211
|
+
|
212
|
+
/** \internal */
|
213
|
+
template<typename BDerived,typename XDerived>
|
214
|
+
bool _solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const;
|
215
|
+
|
216
|
+
#if 0 // not implemented yet
|
217
|
+
Scalar determinant() const;
|
218
|
+
|
219
|
+
void extractData() const;
|
220
|
+
#endif
|
221
|
+
|
222
|
+
protected:
|
223
|
+
|
224
|
+
void init()
|
225
|
+
{
|
226
|
+
m_info = InvalidInput;
|
227
|
+
m_isInitialized = false;
|
228
|
+
m_numeric = 0;
|
229
|
+
m_symbolic = 0;
|
230
|
+
m_extractedDataAreDirty = true;
|
231
|
+
|
232
|
+
klu_defaults(&m_common);
|
233
|
+
}
|
234
|
+
|
235
|
+
void analyzePattern_impl()
|
236
|
+
{
|
237
|
+
m_info = InvalidInput;
|
238
|
+
m_analysisIsOk = false;
|
239
|
+
m_factorizationIsOk = false;
|
240
|
+
m_symbolic = klu_analyze(internal::convert_index<int>(mp_matrix.rows()),
|
241
|
+
const_cast<StorageIndex*>(mp_matrix.outerIndexPtr()), const_cast<StorageIndex*>(mp_matrix.innerIndexPtr()),
|
242
|
+
&m_common);
|
243
|
+
if (m_symbolic) {
|
244
|
+
m_isInitialized = true;
|
245
|
+
m_info = Success;
|
246
|
+
m_analysisIsOk = true;
|
247
|
+
m_extractedDataAreDirty = true;
|
248
|
+
}
|
249
|
+
}
|
250
|
+
|
251
|
+
void factorize_impl()
|
252
|
+
{
|
253
|
+
|
254
|
+
m_numeric = klu_factor(const_cast<StorageIndex*>(mp_matrix.outerIndexPtr()), const_cast<StorageIndex*>(mp_matrix.innerIndexPtr()), const_cast<Scalar*>(mp_matrix.valuePtr()),
|
255
|
+
m_symbolic, &m_common, Scalar());
|
256
|
+
|
257
|
+
|
258
|
+
m_info = m_numeric ? Success : NumericalIssue;
|
259
|
+
m_factorizationIsOk = m_numeric ? 1 : 0;
|
260
|
+
m_extractedDataAreDirty = true;
|
261
|
+
}
|
262
|
+
|
263
|
+
template<typename MatrixDerived>
|
264
|
+
void grab(const EigenBase<MatrixDerived> &A)
|
265
|
+
{
|
266
|
+
mp_matrix.~KLUMatrixRef();
|
267
|
+
::new (&mp_matrix) KLUMatrixRef(A.derived());
|
268
|
+
}
|
269
|
+
|
270
|
+
void grab(const KLUMatrixRef &A)
|
271
|
+
{
|
272
|
+
if(&(A.derived()) != &mp_matrix)
|
273
|
+
{
|
274
|
+
mp_matrix.~KLUMatrixRef();
|
275
|
+
::new (&mp_matrix) KLUMatrixRef(A);
|
276
|
+
}
|
277
|
+
}
|
278
|
+
|
279
|
+
// cached data to reduce reallocation, etc.
|
280
|
+
#if 0 // not implemented yet
|
281
|
+
mutable LUMatrixType m_l;
|
282
|
+
mutable LUMatrixType m_u;
|
283
|
+
mutable IntColVectorType m_p;
|
284
|
+
mutable IntRowVectorType m_q;
|
285
|
+
#endif
|
286
|
+
|
287
|
+
KLUMatrixType m_dummy;
|
288
|
+
KLUMatrixRef mp_matrix;
|
289
|
+
|
290
|
+
klu_numeric* m_numeric;
|
291
|
+
klu_symbolic* m_symbolic;
|
292
|
+
klu_common m_common;
|
293
|
+
mutable ComputationInfo m_info;
|
294
|
+
int m_factorizationIsOk;
|
295
|
+
int m_analysisIsOk;
|
296
|
+
mutable bool m_extractedDataAreDirty;
|
297
|
+
|
298
|
+
private:
|
299
|
+
KLU(const KLU& ) { }
|
300
|
+
};
|
301
|
+
|
302
|
+
#if 0 // not implemented yet
|
303
|
+
template<typename MatrixType>
|
304
|
+
void KLU<MatrixType>::extractData() const
|
305
|
+
{
|
306
|
+
if (m_extractedDataAreDirty)
|
307
|
+
{
|
308
|
+
eigen_assert(false && "KLU: extractData Not Yet Implemented");
|
309
|
+
|
310
|
+
// get size of the data
|
311
|
+
int lnz, unz, rows, cols, nz_udiag;
|
312
|
+
umfpack_get_lunz(&lnz, &unz, &rows, &cols, &nz_udiag, m_numeric, Scalar());
|
313
|
+
|
314
|
+
// allocate data
|
315
|
+
m_l.resize(rows,(std::min)(rows,cols));
|
316
|
+
m_l.resizeNonZeros(lnz);
|
317
|
+
|
318
|
+
m_u.resize((std::min)(rows,cols),cols);
|
319
|
+
m_u.resizeNonZeros(unz);
|
320
|
+
|
321
|
+
m_p.resize(rows);
|
322
|
+
m_q.resize(cols);
|
323
|
+
|
324
|
+
// extract
|
325
|
+
umfpack_get_numeric(m_l.outerIndexPtr(), m_l.innerIndexPtr(), m_l.valuePtr(),
|
326
|
+
m_u.outerIndexPtr(), m_u.innerIndexPtr(), m_u.valuePtr(),
|
327
|
+
m_p.data(), m_q.data(), 0, 0, 0, m_numeric);
|
328
|
+
|
329
|
+
m_extractedDataAreDirty = false;
|
330
|
+
}
|
331
|
+
}
|
332
|
+
|
333
|
+
template<typename MatrixType>
|
334
|
+
typename KLU<MatrixType>::Scalar KLU<MatrixType>::determinant() const
|
335
|
+
{
|
336
|
+
eigen_assert(false && "KLU: extractData Not Yet Implemented");
|
337
|
+
return Scalar();
|
338
|
+
}
|
339
|
+
#endif
|
340
|
+
|
341
|
+
template<typename MatrixType>
|
342
|
+
template<typename BDerived,typename XDerived>
|
343
|
+
bool KLU<MatrixType>::_solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const
|
344
|
+
{
|
345
|
+
Index rhsCols = b.cols();
|
346
|
+
EIGEN_STATIC_ASSERT((XDerived::Flags&RowMajorBit)==0, THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
|
347
|
+
eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or analyzePattern()/factorize()");
|
348
|
+
|
349
|
+
x = b;
|
350
|
+
int info = klu_solve(m_symbolic, m_numeric, b.rows(), rhsCols, x.const_cast_derived().data(), const_cast<klu_common*>(&m_common), Scalar());
|
351
|
+
|
352
|
+
m_info = info!=0 ? Success : NumericalIssue;
|
353
|
+
return true;
|
354
|
+
}
|
355
|
+
|
356
|
+
} // end namespace Eigen
|
357
|
+
|
358
|
+
#endif // EIGEN_KLUSUPPORT_H
|