tomoto 0.2.2 → 0.3.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +10 -0
- data/README.md +8 -10
- data/ext/tomoto/ct.cpp +11 -11
- data/ext/tomoto/dmr.cpp +14 -13
- data/ext/tomoto/dt.cpp +14 -14
- data/ext/tomoto/extconf.rb +7 -5
- data/ext/tomoto/gdmr.cpp +7 -7
- data/ext/tomoto/hdp.cpp +9 -9
- data/ext/tomoto/hlda.cpp +13 -13
- data/ext/tomoto/hpa.cpp +5 -5
- data/ext/tomoto/lda.cpp +42 -39
- data/ext/tomoto/llda.cpp +6 -6
- data/ext/tomoto/mglda.cpp +15 -15
- data/ext/tomoto/pa.cpp +6 -6
- data/ext/tomoto/plda.cpp +6 -6
- data/ext/tomoto/slda.cpp +8 -8
- data/ext/tomoto/{ext.cpp → tomoto.cpp} +8 -8
- data/ext/tomoto/utils.h +16 -70
- data/lib/tomoto/version.rb +1 -1
- data/lib/tomoto.rb +5 -1
- data/vendor/EigenRand/EigenRand/Core.h +10 -10
- data/vendor/EigenRand/EigenRand/Dists/Basic.h +208 -9
- data/vendor/EigenRand/EigenRand/Dists/Discrete.h +52 -31
- data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +9 -8
- data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +28 -21
- data/vendor/EigenRand/EigenRand/EigenRand +11 -6
- data/vendor/EigenRand/EigenRand/Macro.h +13 -7
- data/vendor/EigenRand/EigenRand/MorePacketMath.h +348 -740
- data/vendor/EigenRand/EigenRand/MvDists/Multinomial.h +5 -3
- data/vendor/EigenRand/EigenRand/MvDists/MvNormal.h +9 -3
- data/vendor/EigenRand/EigenRand/PacketFilter.h +11 -253
- data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +21 -47
- data/vendor/EigenRand/EigenRand/RandUtils.h +50 -344
- data/vendor/EigenRand/EigenRand/arch/AVX/MorePacketMath.h +619 -0
- data/vendor/EigenRand/EigenRand/arch/AVX/PacketFilter.h +149 -0
- data/vendor/EigenRand/EigenRand/arch/AVX/RandUtils.h +228 -0
- data/vendor/EigenRand/EigenRand/arch/NEON/MorePacketMath.h +473 -0
- data/vendor/EigenRand/EigenRand/arch/NEON/PacketFilter.h +142 -0
- data/vendor/EigenRand/EigenRand/arch/NEON/RandUtils.h +126 -0
- data/vendor/EigenRand/EigenRand/arch/SSE/MorePacketMath.h +501 -0
- data/vendor/EigenRand/EigenRand/arch/SSE/PacketFilter.h +133 -0
- data/vendor/EigenRand/EigenRand/arch/SSE/RandUtils.h +120 -0
- data/vendor/EigenRand/EigenRand/doc.h +24 -12
- data/vendor/EigenRand/README.md +57 -4
- data/vendor/eigen/COPYING.APACHE +203 -0
- data/vendor/eigen/COPYING.BSD +1 -1
- data/vendor/eigen/COPYING.MINPACK +51 -52
- data/vendor/eigen/Eigen/Cholesky +0 -1
- data/vendor/eigen/Eigen/Core +112 -265
- data/vendor/eigen/Eigen/Eigenvalues +2 -3
- data/vendor/eigen/Eigen/Geometry +5 -8
- data/vendor/eigen/Eigen/Householder +0 -1
- data/vendor/eigen/Eigen/Jacobi +0 -1
- data/vendor/eigen/Eigen/KLUSupport +41 -0
- data/vendor/eigen/Eigen/LU +2 -5
- data/vendor/eigen/Eigen/OrderingMethods +0 -3
- data/vendor/eigen/Eigen/PaStiXSupport +1 -0
- data/vendor/eigen/Eigen/PardisoSupport +0 -0
- data/vendor/eigen/Eigen/QR +2 -3
- data/vendor/eigen/Eigen/QtAlignedMalloc +0 -1
- data/vendor/eigen/Eigen/SVD +0 -1
- data/vendor/eigen/Eigen/Sparse +0 -2
- data/vendor/eigen/Eigen/SparseCholesky +0 -8
- data/vendor/eigen/Eigen/SparseLU +4 -0
- data/vendor/eigen/Eigen/SparseQR +0 -1
- data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +42 -27
- data/vendor/eigen/Eigen/src/Cholesky/LLT.h +39 -23
- data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +90 -47
- data/vendor/eigen/Eigen/src/Core/ArithmeticSequence.h +413 -0
- data/vendor/eigen/Eigen/src/Core/Array.h +99 -11
- data/vendor/eigen/Eigen/src/Core/ArrayBase.h +3 -3
- data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +21 -21
- data/vendor/eigen/Eigen/src/Core/Assign.h +1 -1
- data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +125 -50
- data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +10 -10
- data/vendor/eigen/Eigen/src/Core/BandMatrix.h +16 -16
- data/vendor/eigen/Eigen/src/Core/Block.h +56 -60
- data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +29 -31
- data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +7 -3
- data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +325 -272
- data/vendor/eigen/Eigen/src/Core/CoreIterators.h +5 -0
- data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +21 -22
- data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +153 -18
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +6 -6
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +14 -10
- data/vendor/eigen/Eigen/src/Core/DenseBase.h +132 -42
- data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +25 -21
- data/vendor/eigen/Eigen/src/Core/DenseStorage.h +153 -71
- data/vendor/eigen/Eigen/src/Core/Diagonal.h +21 -23
- data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +50 -2
- data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +1 -1
- data/vendor/eigen/Eigen/src/Core/Dot.h +10 -10
- data/vendor/eigen/Eigen/src/Core/EigenBase.h +10 -9
- data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +8 -4
- data/vendor/eigen/Eigen/src/Core/Fuzzy.h +3 -3
- data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +20 -10
- data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +599 -152
- data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +40 -33
- data/vendor/eigen/Eigen/src/Core/IO.h +40 -7
- data/vendor/eigen/Eigen/src/Core/IndexedView.h +237 -0
- data/vendor/eigen/Eigen/src/Core/Inverse.h +9 -10
- data/vendor/eigen/Eigen/src/Core/Map.h +7 -7
- data/vendor/eigen/Eigen/src/Core/MapBase.h +10 -3
- data/vendor/eigen/Eigen/src/Core/MathFunctions.h +767 -125
- data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +118 -19
- data/vendor/eigen/Eigen/src/Core/Matrix.h +131 -25
- data/vendor/eigen/Eigen/src/Core/MatrixBase.h +21 -3
- data/vendor/eigen/Eigen/src/Core/NestByValue.h +25 -50
- data/vendor/eigen/Eigen/src/Core/NoAlias.h +4 -3
- data/vendor/eigen/Eigen/src/Core/NumTraits.h +107 -20
- data/vendor/eigen/Eigen/src/Core/PartialReduxEvaluator.h +232 -0
- data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +3 -31
- data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +152 -59
- data/vendor/eigen/Eigen/src/Core/Product.h +30 -25
- data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +192 -125
- data/vendor/eigen/Eigen/src/Core/Random.h +37 -1
- data/vendor/eigen/Eigen/src/Core/Redux.h +180 -170
- data/vendor/eigen/Eigen/src/Core/Ref.h +121 -23
- data/vendor/eigen/Eigen/src/Core/Replicate.h +8 -8
- data/vendor/eigen/Eigen/src/Core/Reshaped.h +454 -0
- data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +7 -5
- data/vendor/eigen/Eigen/src/Core/Reverse.h +18 -12
- data/vendor/eigen/Eigen/src/Core/Select.h +8 -6
- data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +33 -20
- data/vendor/eigen/Eigen/src/Core/Solve.h +14 -14
- data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +16 -16
- data/vendor/eigen/Eigen/src/Core/SolverBase.h +41 -3
- data/vendor/eigen/Eigen/src/Core/StableNorm.h +100 -70
- data/vendor/eigen/Eigen/src/Core/StlIterators.h +463 -0
- data/vendor/eigen/Eigen/src/Core/Stride.h +9 -4
- data/vendor/eigen/Eigen/src/Core/Swap.h +5 -4
- data/vendor/eigen/Eigen/src/Core/Transpose.h +88 -27
- data/vendor/eigen/Eigen/src/Core/Transpositions.h +26 -47
- data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +93 -75
- data/vendor/eigen/Eigen/src/Core/VectorBlock.h +5 -5
- data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +159 -70
- data/vendor/eigen/Eigen/src/Core/Visitor.h +137 -29
- data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +50 -129
- data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +126 -337
- data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +1092 -155
- data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +65 -1
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/Complex.h +422 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +207 -236
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1482 -495
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/TypeCasting.h +89 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +152 -165
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +19 -251
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MatrixProduct.h +2937 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MatrixProductCommon.h +221 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MatrixProductMMA.h +629 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +2042 -392
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +235 -80
- data/vendor/eigen/Eigen/src/Core/arch/Default/BFloat16.h +700 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +102 -14
- data/vendor/eigen/Eigen/src/Core/arch/Default/GenericPacketMathFunctions.h +1649 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/GenericPacketMathFunctionsFwd.h +110 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/Half.h +942 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +1 -1
- data/vendor/eigen/Eigen/src/Core/arch/Default/TypeCasting.h +120 -0
- data/vendor/eigen/Eigen/src/Core/arch/{CUDA → GPU}/MathFunctions.h +16 -4
- data/vendor/eigen/Eigen/src/Core/arch/GPU/PacketMath.h +1685 -0
- data/vendor/eigen/Eigen/src/Core/arch/GPU/TypeCasting.h +80 -0
- data/vendor/eigen/Eigen/src/Core/arch/HIP/hcc/math_constants.h +23 -0
- data/vendor/eigen/Eigen/src/Core/arch/MSA/Complex.h +648 -0
- data/vendor/eigen/Eigen/src/Core/arch/MSA/MathFunctions.h +387 -0
- data/vendor/eigen/Eigen/src/Core/arch/MSA/PacketMath.h +1233 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +313 -219
- data/vendor/eigen/Eigen/src/Core/arch/NEON/GeneralBlockPanelKernel.h +183 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +54 -70
- data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +4376 -549
- data/vendor/eigen/Eigen/src/Core/arch/NEON/TypeCasting.h +1419 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +59 -179
- data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +65 -428
- data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +893 -283
- data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +65 -0
- data/vendor/eigen/Eigen/src/Core/arch/SVE/MathFunctions.h +44 -0
- data/vendor/eigen/Eigen/src/Core/arch/SVE/PacketMath.h +752 -0
- data/vendor/eigen/Eigen/src/Core/arch/SVE/TypeCasting.h +49 -0
- data/vendor/eigen/Eigen/src/Core/arch/SYCL/InteropHeaders.h +232 -0
- data/vendor/eigen/Eigen/src/Core/arch/SYCL/MathFunctions.h +301 -0
- data/vendor/eigen/Eigen/src/Core/arch/SYCL/PacketMath.h +670 -0
- data/vendor/eigen/Eigen/src/Core/arch/SYCL/SyclMemoryModel.h +694 -0
- data/vendor/eigen/Eigen/src/Core/arch/SYCL/TypeCasting.h +85 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +212 -183
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +101 -5
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +510 -395
- data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +11 -2
- data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +112 -46
- data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +31 -30
- data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +32 -2
- data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +355 -16
- data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +1075 -586
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +49 -24
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +41 -35
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +6 -6
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +4 -2
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +382 -483
- data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +22 -5
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +53 -30
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +16 -8
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +8 -6
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +4 -4
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +5 -4
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +33 -27
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +14 -12
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +36 -34
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +8 -4
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +13 -10
- data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +304 -119
- data/vendor/eigen/Eigen/src/Core/util/ConfigureVectorization.h +512 -0
- data/vendor/eigen/Eigen/src/Core/util/Constants.h +25 -9
- data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +26 -3
- data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +29 -9
- data/vendor/eigen/Eigen/src/Core/util/IndexedViewHelper.h +186 -0
- data/vendor/eigen/Eigen/src/Core/util/IntegralConstant.h +272 -0
- data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +8 -1
- data/vendor/eigen/Eigen/src/Core/util/Macros.h +709 -246
- data/vendor/eigen/Eigen/src/Core/util/Memory.h +222 -52
- data/vendor/eigen/Eigen/src/Core/util/Meta.h +355 -77
- data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +5 -1
- data/vendor/eigen/Eigen/src/Core/util/ReshapedHelper.h +51 -0
- data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +8 -5
- data/vendor/eigen/Eigen/src/Core/util/SymbolicIndex.h +293 -0
- data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +65 -30
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +1 -1
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +7 -4
- data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +2 -2
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +1 -1
- data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +2 -2
- data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +2 -2
- data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +9 -6
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +21 -9
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +77 -43
- data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +20 -15
- data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +99 -5
- data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +4 -4
- data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +3 -3
- data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +15 -11
- data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +1 -1
- data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +3 -2
- data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +39 -2
- data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +70 -14
- data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +3 -3
- data/vendor/eigen/Eigen/src/Geometry/Scaling.h +23 -5
- data/vendor/eigen/Eigen/src/Geometry/Transform.h +88 -67
- data/vendor/eigen/Eigen/src/Geometry/Translation.h +6 -12
- data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +1 -1
- data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h +168 -0
- data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +9 -2
- data/vendor/eigen/Eigen/src/Householder/Householder.h +8 -4
- data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +123 -48
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +15 -15
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +7 -23
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +5 -22
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +41 -47
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +51 -60
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +70 -20
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +2 -20
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +11 -9
- data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +31 -10
- data/vendor/eigen/Eigen/src/KLUSupport/KLUSupport.h +358 -0
- data/vendor/eigen/Eigen/src/LU/Determinant.h +35 -19
- data/vendor/eigen/Eigen/src/LU/FullPivLU.h +29 -43
- data/vendor/eigen/Eigen/src/LU/InverseImpl.h +25 -8
- data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +71 -58
- data/vendor/eigen/Eigen/src/LU/arch/InverseSize4.h +351 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +7 -17
- data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +297 -277
- data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +6 -10
- data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +1 -1
- data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +9 -7
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +41 -20
- data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +100 -27
- data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +59 -22
- data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +48 -23
- data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +25 -3
- data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +183 -63
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +22 -14
- data/vendor/eigen/Eigen/src/SVD/SVDBase.h +83 -22
- data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +3 -3
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +17 -9
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +12 -37
- data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +3 -2
- data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +16 -0
- data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +6 -6
- data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +81 -27
- data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +25 -57
- data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +40 -11
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +11 -15
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +4 -2
- data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +30 -8
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +126 -11
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +5 -12
- data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +13 -1
- data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +7 -7
- data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +5 -2
- data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +8 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +1 -1
- data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +1 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +162 -12
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +1 -1
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +76 -2
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +2 -2
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +1 -1
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +1 -1
- data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +19 -6
- data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +2 -12
- data/vendor/eigen/Eigen/src/StlSupport/StdList.h +2 -2
- data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +2 -2
- data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +6 -8
- data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +175 -39
- data/vendor/eigen/Eigen/src/misc/lapacke.h +5 -4
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +28 -2
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +155 -11
- data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +626 -242
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +14 -0
- data/vendor/eigen/Eigen/src/plugins/IndexedViewMethods.h +262 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +4 -4
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +10 -0
- data/vendor/eigen/Eigen/src/plugins/ReshapedMethods.h +149 -0
- data/vendor/eigen/README.md +2 -0
- data/vendor/eigen/bench/btl/README +1 -1
- data/vendor/eigen/bench/tensors/README +6 -7
- data/vendor/eigen/ci/README.md +56 -0
- data/vendor/eigen/demos/mix_eigen_and_c/README +1 -1
- data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +213 -158
- data/vendor/eigen/unsupported/README.txt +1 -1
- data/vendor/tomotopy/README.kr.rst +78 -0
- data/vendor/tomotopy/README.rst +75 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +2 -2
- data/vendor/tomotopy/src/Labeling/Phraser.hpp +4 -4
- data/vendor/tomotopy/src/TopicModel/CTModel.hpp +7 -3
- data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +7 -3
- data/vendor/tomotopy/src/TopicModel/DTModel.hpp +6 -3
- data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +2 -2
- data/vendor/tomotopy/src/TopicModel/HDP.h +1 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +57 -6
- data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +6 -3
- data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +3 -2
- data/vendor/tomotopy/src/TopicModel/LDA.h +3 -3
- data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +5 -5
- data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +50 -19
- data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +6 -2
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +3 -2
- data/vendor/tomotopy/src/TopicModel/PAModel.hpp +1 -1
- data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +6 -2
- data/vendor/tomotopy/src/TopicModel/PT.h +3 -1
- data/vendor/tomotopy/src/TopicModel/PTModel.hpp +36 -3
- data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +6 -3
- data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +55 -26
- data/vendor/tomotopy/src/Utils/AliasMethod.hpp +5 -4
- data/vendor/tomotopy/src/Utils/Dictionary.h +2 -2
- data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +36 -1
- data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +1 -1
- data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +1 -1
- data/vendor/tomotopy/src/Utils/exception.h +6 -0
- data/vendor/tomotopy/src/Utils/math.h +2 -2
- data/vendor/tomotopy/src/Utils/sample.hpp +14 -12
- data/vendor/tomotopy/src/Utils/serializer.hpp +30 -5
- data/vendor/tomotopy/src/Utils/sse_gamma.h +0 -3
- metadata +64 -18
- data/vendor/eigen/Eigen/CMakeLists.txt +0 -19
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +0 -674
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +0 -333
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +0 -1124
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +0 -212
- data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +0 -161
- data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +0 -338
@@ -3,8 +3,6 @@
|
|
3
3
|
Tensors are multidimensional arrays of elements. Elements are typically scalars,
|
4
4
|
but more complex types such as strings are also supported.
|
5
5
|
|
6
|
-
[TOC]
|
7
|
-
|
8
6
|
## Tensor Classes
|
9
7
|
|
10
8
|
You can manipulate a tensor with one of the following classes. They all are in
|
@@ -21,7 +19,7 @@ matrix.
|
|
21
19
|
Tensors of this class are resizable. For example, if you assign a tensor of a
|
22
20
|
different size to a Tensor, that tensor is resized to match its new value.
|
23
21
|
|
24
|
-
#### Constructor
|
22
|
+
#### Constructor Tensor<data_type, rank>(size0, size1, ...)
|
25
23
|
|
26
24
|
Constructor for a Tensor. The constructor must be passed `rank` integers
|
27
25
|
indicating the sizes of the instance along each of the the `rank`
|
@@ -34,7 +32,7 @@ dimensions.
|
|
34
32
|
// Resize t_3d by assigning a tensor of different sizes, but same rank.
|
35
33
|
t_3d = Tensor<float, 3>(3, 4, 3);
|
36
34
|
|
37
|
-
#### Constructor
|
35
|
+
#### Constructor Tensor<data_type, rank>(size_array)
|
38
36
|
|
39
37
|
Constructor where the sizes for the constructor are specified as an array of
|
40
38
|
values instead of an explicitly list of parameters. The array type to use is
|
@@ -45,7 +43,7 @@ from an initializer list.
|
|
45
43
|
Tensor<string, 2> t_2d({5, 7});
|
46
44
|
|
47
45
|
|
48
|
-
### Class
|
46
|
+
### Class TensorFixedSize<data_type, Sizes<size0, size1, ...>>
|
49
47
|
|
50
48
|
Class to use for tensors of fixed size, where the size is known at compile
|
51
49
|
time. Fixed sized tensors can provide very fast computations because all their
|
@@ -57,7 +55,7 @@ tensor data is held onto the stack and does not cause heap allocation and free.
|
|
57
55
|
// Create a 4 x 3 tensor of floats.
|
58
56
|
TensorFixedSize<float, Sizes<4, 3>> t_4x3;
|
59
57
|
|
60
|
-
### Class
|
58
|
+
### Class TensorMap<Tensor<data_type, rank>>
|
61
59
|
|
62
60
|
This is the class to use to create a tensor on top of memory allocated and
|
63
61
|
owned by another part of your code. It allows to view any piece of allocated
|
@@ -67,7 +65,7 @@ data are stored.
|
|
67
65
|
A TensorMap is not resizable because it does not own the memory where its data
|
68
66
|
are stored.
|
69
67
|
|
70
|
-
#### Constructor
|
68
|
+
#### Constructor TensorMap<Tensor<data_type, rank>>(data, size0, size1, ...)
|
71
69
|
|
72
70
|
Constructor for a Tensor. The constructor must be passed a pointer to the
|
73
71
|
storage for the data, and "rank" size attributes. The storage has to be
|
@@ -83,17 +81,17 @@ large enough to hold all the data.
|
|
83
81
|
|
84
82
|
// You can also map fixed-size tensors. Here we get a 1d view of
|
85
83
|
// the 2d fixed-size tensor.
|
86
|
-
TensorFixedSize<float, Sizes<4,
|
84
|
+
TensorFixedSize<float, Sizes<4, 3>> t_4x3;
|
87
85
|
TensorMap<Tensor<float, 1>> t_12(t_4x3.data(), 12);
|
88
86
|
|
89
87
|
|
90
|
-
#### Class
|
88
|
+
#### Class TensorRef
|
91
89
|
|
92
90
|
See Assigning to a TensorRef below.
|
93
91
|
|
94
92
|
## Accessing Tensor Elements
|
95
93
|
|
96
|
-
####
|
94
|
+
#### <data_type> tensor(index0, index1...)
|
97
95
|
|
98
96
|
Return the element at position `(index0, index1...)` in tensor
|
99
97
|
`tensor`. You must pass as many parameters as the rank of `tensor`.
|
@@ -278,7 +276,7 @@ Simiarly, assigning an expression to a TensorMap causes its evaluation. Like
|
|
278
276
|
tensors of type TensorFixedSize, TensorMaps cannot be resized so they have to
|
279
277
|
have the rank and sizes of the expression that are assigned to them.
|
280
278
|
|
281
|
-
#### Calling
|
279
|
+
#### Calling eval().
|
282
280
|
|
283
281
|
When you compute large composite expressions, you sometimes want to tell Eigen
|
284
282
|
that an intermediate value in the expression tree is worth evaluating ahead of
|
@@ -355,7 +353,7 @@ call for the right hand side:
|
|
355
353
|
(Y / (Y.sum(depth_dim).eval().reshape(dims2d).broadcast(bcast))).eval();
|
356
354
|
|
357
355
|
|
358
|
-
#### Assigning to a
|
356
|
+
#### Assigning to a TensorRef.
|
359
357
|
|
360
358
|
If you need to access only a few elements from the value of an expression you
|
361
359
|
can avoid materializing the value in a full tensor by using a TensorRef.
|
@@ -430,8 +428,11 @@ This is exactly the same as not inserting a `device()` call.
|
|
430
428
|
|
431
429
|
#### Evaluating with a Thread Pool
|
432
430
|
|
431
|
+
// Create the Eigen ThreadPool
|
432
|
+
Eigen::ThreadPool pool(8 /* number of threads in pool */)
|
433
|
+
|
433
434
|
// Create the Eigen ThreadPoolDevice.
|
434
|
-
Eigen::ThreadPoolDevice my_device(4 /* number of threads to use */);
|
435
|
+
Eigen::ThreadPoolDevice my_device(&pool, 4 /* number of threads to use */);
|
435
436
|
|
436
437
|
// Now just use the device when evaluating expressions.
|
437
438
|
Eigen::Tensor<float, 2> c(30, 50);
|
@@ -452,24 +453,24 @@ memory for tensors with cuda.
|
|
452
453
|
In the documentation of the tensor methods and Operation we mention datatypes
|
453
454
|
that are tensor-type specific:
|
454
455
|
|
455
|
-
####
|
456
|
+
#### <Tensor-Type>::Dimensions
|
456
457
|
|
457
458
|
Acts like an array of ints. Has an `int size` attribute, and can be
|
458
459
|
indexed like an array to access individual values. Used to represent the
|
459
460
|
dimensions of a tensor. See `dimensions()`.
|
460
461
|
|
461
|
-
####
|
462
|
+
#### <Tensor-Type>::Index
|
462
463
|
|
463
464
|
Acts like an `int`. Used for indexing tensors along their dimensions. See
|
464
465
|
`operator()`, `dimension()`, and `size()`.
|
465
466
|
|
466
|
-
####
|
467
|
+
#### <Tensor-Type>::Scalar
|
467
468
|
|
468
469
|
Represents the datatype of individual tensor elements. For example, for a
|
469
470
|
`Tensor<float>`, `Scalar` is the type `float`. See
|
470
471
|
`setConstant()`.
|
471
472
|
|
472
|
-
####
|
473
|
+
#### <Operation>
|
473
474
|
|
474
475
|
We use this pseudo type to indicate that a tensor Operation is returned by a
|
475
476
|
method. We indicate in the text the type and dimensions of the tensor that the
|
@@ -489,7 +490,7 @@ Tensor, TensorFixedSize, and TensorMap.
|
|
489
490
|
|
490
491
|
## Metadata
|
491
492
|
|
492
|
-
###
|
493
|
+
### int NumDimensions
|
493
494
|
|
494
495
|
Constant value indicating the number of dimensions of a Tensor. This is also
|
495
496
|
known as the tensor "rank".
|
@@ -498,7 +499,7 @@ known as the tensor "rank".
|
|
498
499
|
cout << "Dims " << a.NumDimensions;
|
499
500
|
=> Dims 2
|
500
501
|
|
501
|
-
###
|
502
|
+
### Dimensions dimensions()
|
502
503
|
|
503
504
|
Returns an array-like object representing the dimensions of the tensor.
|
504
505
|
The actual type of the `dimensions()` result is `<Tensor-Type>::``Dimensions`.
|
@@ -516,7 +517,7 @@ If you use a C++11 compiler, you can use `auto` to simplify the code:
|
|
516
517
|
<< ", dim 1: " << d[1];
|
517
518
|
=> Dim size: 2, dim 0: 3, dim 1: 4
|
518
519
|
|
519
|
-
###
|
520
|
+
### Index dimension(Index n)
|
520
521
|
|
521
522
|
Returns the n-th dimension of the tensor. The actual type of the
|
522
523
|
`dimension()` result is `<Tensor-Type>::``Index`, but you can
|
@@ -527,7 +528,7 @@ always use it like an int.
|
|
527
528
|
cout << "Dim 1: " << dim1;
|
528
529
|
=> Dim 1: 4
|
529
530
|
|
530
|
-
###
|
531
|
+
### Index size()
|
531
532
|
|
532
533
|
Returns the total number of elements in the tensor. This is the product of all
|
533
534
|
the tensor dimensions. The actual type of the `size()` result is
|
@@ -602,7 +603,7 @@ You can use one of the methods below to initialize the tensor memory. These
|
|
602
603
|
have an immediate effect on the tensor and return the tensor itself as a
|
603
604
|
result. These are not tensor Operations which delay evaluation.
|
604
605
|
|
605
|
-
###
|
606
|
+
### <Tensor-Type> setConstant(const Scalar& val)
|
606
607
|
|
607
608
|
Sets all elements of the tensor to the constant value `val`. `Scalar`
|
608
609
|
is the type of data stored in the tensor. You can pass any value that is
|
@@ -630,7 +631,7 @@ has a copy constructor and an `operator=()`:
|
|
630
631
|
yolo yolo yolo
|
631
632
|
|
632
633
|
|
633
|
-
###
|
634
|
+
### <Tensor-Type> setZero()
|
634
635
|
|
635
636
|
Fills the tensor with zeros. Equivalent to `setConstant(Scalar(0))`.
|
636
637
|
Returns the tensor itself in case you want to chain another call.
|
@@ -644,7 +645,7 @@ Returns the tensor itself in case you want to chain another call.
|
|
644
645
|
0 0 0 0
|
645
646
|
|
646
647
|
|
647
|
-
###
|
648
|
+
### <Tensor-Type> setValues({..initializer_list})
|
648
649
|
|
649
650
|
Fills the tensor with explicit values specified in a std::initializer_list.
|
650
651
|
The type of the initializer list depends on the type and rank of the tensor.
|
@@ -680,7 +681,7 @@ code only sets the values of the first row of the tensor.
|
|
680
681
|
10 20 30
|
681
682
|
1000 1000 1000
|
682
683
|
|
683
|
-
###
|
684
|
+
### <Tensor-Type> setRandom()
|
684
685
|
|
685
686
|
Fills the tensor with random values. Returns the tensor itself in case you
|
686
687
|
want to chain another call.
|
@@ -747,7 +748,7 @@ values of a tensor expression, the expression must either be evaluated or
|
|
747
748
|
wrapped in a TensorRef.
|
748
749
|
|
749
750
|
|
750
|
-
###
|
751
|
+
### Scalar* data() and const Scalar* data() const
|
751
752
|
|
752
753
|
Returns a pointer to the storage for the tensor. The pointer is const if the
|
753
754
|
tensor was const. This allows direct access to the data. The layout of the
|
@@ -775,7 +776,7 @@ The chain of Operation is evaluated lazily, typically when it is assigned to a
|
|
775
776
|
tensor. See "Controlling when Expression are Evaluated" for more details about
|
776
777
|
their evaluation.
|
777
778
|
|
778
|
-
###
|
779
|
+
### <Operation> constant(const Scalar& val)
|
779
780
|
|
780
781
|
Returns a tensor of the same type and dimensions as the original tensor but
|
781
782
|
where all elements have the value `val`.
|
@@ -803,7 +804,7 @@ tensor, or multiply every element of a tensor by a scalar.
|
|
803
804
|
0.6 0.6 0.6
|
804
805
|
0.6 0.6 0.6
|
805
806
|
|
806
|
-
###
|
807
|
+
### <Operation> random()
|
807
808
|
|
808
809
|
Returns a tensor of the same type and dimensions as the current tensor
|
809
810
|
but where all elements have random values.
|
@@ -833,7 +834,7 @@ All these operations take a single input tensor as argument and return a tensor
|
|
833
834
|
of the same type and dimensions as the tensor to which they are applied. The
|
834
835
|
requested operations are applied to each element independently.
|
835
836
|
|
836
|
-
###
|
837
|
+
### <Operation> operator-()
|
837
838
|
|
838
839
|
Returns a tensor of the same type and dimensions as the original tensor
|
839
840
|
containing the opposite values of the original tensor.
|
@@ -852,42 +853,42 @@ containing the opposite values of the original tensor.
|
|
852
853
|
-1 -1 -1
|
853
854
|
-1 -1 -1
|
854
855
|
|
855
|
-
###
|
856
|
+
### <Operation> sqrt()
|
856
857
|
|
857
858
|
Returns a tensor of the same type and dimensions as the original tensor
|
858
859
|
containing the square roots of the original tensor.
|
859
860
|
|
860
|
-
###
|
861
|
+
### <Operation> rsqrt()
|
861
862
|
|
862
863
|
Returns a tensor of the same type and dimensions as the original tensor
|
863
864
|
containing the inverse square roots of the original tensor.
|
864
865
|
|
865
|
-
###
|
866
|
+
### <Operation> square()
|
866
867
|
|
867
868
|
Returns a tensor of the same type and dimensions as the original tensor
|
868
869
|
containing the squares of the original tensor values.
|
869
870
|
|
870
|
-
###
|
871
|
+
### <Operation> inverse()
|
871
872
|
|
872
873
|
Returns a tensor of the same type and dimensions as the original tensor
|
873
874
|
containing the inverse of the original tensor values.
|
874
875
|
|
875
|
-
###
|
876
|
+
### <Operation> exp()
|
876
877
|
|
877
878
|
Returns a tensor of the same type and dimensions as the original tensor
|
878
879
|
containing the exponential of the original tensor.
|
879
880
|
|
880
|
-
###
|
881
|
+
### <Operation> log()
|
881
882
|
|
882
883
|
Returns a tensor of the same type and dimensions as the original tensor
|
883
884
|
containing the natural logarithms of the original tensor.
|
884
885
|
|
885
|
-
###
|
886
|
+
### <Operation> abs()
|
886
887
|
|
887
888
|
Returns a tensor of the same type and dimensions as the original tensor
|
888
889
|
containing the absolute values of the original tensor.
|
889
890
|
|
890
|
-
###
|
891
|
+
### <Operation> pow(Scalar exponent)
|
891
892
|
|
892
893
|
Returns a tensor of the same type and dimensions as the original tensor
|
893
894
|
containing the coefficients of the original tensor to the power of the
|
@@ -914,17 +915,17 @@ cubic roots of an int Tensor:
|
|
914
915
|
0 1 2
|
915
916
|
3 4 5
|
916
917
|
|
917
|
-
###
|
918
|
+
### <Operation> operator * (Scalar scale)
|
918
919
|
|
919
920
|
Multiplies all the coefficients of the input tensor by the provided scale.
|
920
921
|
|
921
|
-
###
|
922
|
+
### <Operation> cwiseMax(Scalar threshold)
|
922
923
|
TODO
|
923
924
|
|
924
|
-
###
|
925
|
+
### <Operation> cwiseMin(Scalar threshold)
|
925
926
|
TODO
|
926
927
|
|
927
|
-
###
|
928
|
+
### <Operation> unaryExpr(const CustomUnaryOp& func)
|
928
929
|
TODO
|
929
930
|
|
930
931
|
|
@@ -936,39 +937,39 @@ dimensions as the tensors to which they are applied, and unless otherwise
|
|
936
937
|
specified it is also of the same type. The requested operations are applied to
|
937
938
|
each pair of elements independently.
|
938
939
|
|
939
|
-
###
|
940
|
+
### <Operation> operator+(const OtherDerived& other)
|
940
941
|
|
941
942
|
Returns a tensor of the same type and dimensions as the input tensors
|
942
943
|
containing the coefficient wise sums of the inputs.
|
943
944
|
|
944
|
-
###
|
945
|
+
### <Operation> operator-(const OtherDerived& other)
|
945
946
|
|
946
947
|
Returns a tensor of the same type and dimensions as the input tensors
|
947
948
|
containing the coefficient wise differences of the inputs.
|
948
949
|
|
949
|
-
###
|
950
|
+
### <Operation> operator*(const OtherDerived& other)
|
950
951
|
|
951
952
|
Returns a tensor of the same type and dimensions as the input tensors
|
952
953
|
containing the coefficient wise products of the inputs.
|
953
954
|
|
954
|
-
###
|
955
|
+
### <Operation> operator/(const OtherDerived& other)
|
955
956
|
|
956
957
|
Returns a tensor of the same type and dimensions as the input tensors
|
957
958
|
containing the coefficient wise quotients of the inputs.
|
958
959
|
|
959
960
|
This operator is not supported for integer types.
|
960
961
|
|
961
|
-
###
|
962
|
+
### <Operation> cwiseMax(const OtherDerived& other)
|
962
963
|
|
963
964
|
Returns a tensor of the same type and dimensions as the input tensors
|
964
965
|
containing the coefficient wise maximums of the inputs.
|
965
966
|
|
966
|
-
###
|
967
|
+
### <Operation> cwiseMin(const OtherDerived& other)
|
967
968
|
|
968
969
|
Returns a tensor of the same type and dimensions as the input tensors
|
969
970
|
containing the coefficient wise mimimums of the inputs.
|
970
971
|
|
971
|
-
###
|
972
|
+
### <Operation> Logical operators
|
972
973
|
|
973
974
|
The following logical operators are supported as well:
|
974
975
|
|
@@ -1126,55 +1127,107 @@ scalar, represented as a zero-dimension tensor.
|
|
1126
1127
|
276
|
1127
1128
|
|
1128
1129
|
|
1129
|
-
###
|
1130
|
-
###
|
1130
|
+
### <Operation> sum(const Dimensions& new_dims)
|
1131
|
+
### <Operation> sum()
|
1131
1132
|
|
1132
1133
|
Reduce a tensor using the sum() operator. The resulting values
|
1133
1134
|
are the sum of the reduced values.
|
1134
1135
|
|
1135
|
-
###
|
1136
|
-
###
|
1136
|
+
### <Operation> mean(const Dimensions& new_dims)
|
1137
|
+
### <Operation> mean()
|
1137
1138
|
|
1138
1139
|
Reduce a tensor using the mean() operator. The resulting values
|
1139
1140
|
are the mean of the reduced values.
|
1140
1141
|
|
1141
|
-
###
|
1142
|
-
###
|
1142
|
+
### <Operation> maximum(const Dimensions& new_dims)
|
1143
|
+
### <Operation> maximum()
|
1143
1144
|
|
1144
1145
|
Reduce a tensor using the maximum() operator. The resulting values are the
|
1145
1146
|
largest of the reduced values.
|
1146
1147
|
|
1147
|
-
###
|
1148
|
-
###
|
1148
|
+
### <Operation> minimum(const Dimensions& new_dims)
|
1149
|
+
### <Operation> minimum()
|
1149
1150
|
|
1150
1151
|
Reduce a tensor using the minimum() operator. The resulting values
|
1151
1152
|
are the smallest of the reduced values.
|
1152
1153
|
|
1153
|
-
###
|
1154
|
-
###
|
1154
|
+
### <Operation> prod(const Dimensions& new_dims)
|
1155
|
+
### <Operation> prod()
|
1155
1156
|
|
1156
1157
|
Reduce a tensor using the prod() operator. The resulting values
|
1157
1158
|
are the product of the reduced values.
|
1158
1159
|
|
1159
|
-
###
|
1160
|
-
###
|
1160
|
+
### <Operation> all(const Dimensions& new_dims)
|
1161
|
+
### <Operation> all()
|
1161
1162
|
Reduce a tensor using the all() operator. Casts tensor to bool and then checks
|
1162
1163
|
whether all elements are true. Runs through all elements rather than
|
1163
1164
|
short-circuiting, so may be significantly inefficient.
|
1164
1165
|
|
1165
|
-
###
|
1166
|
-
###
|
1166
|
+
### <Operation> any(const Dimensions& new_dims)
|
1167
|
+
### <Operation> any()
|
1167
1168
|
Reduce a tensor using the any() operator. Casts tensor to bool and then checks
|
1168
1169
|
whether any element is true. Runs through all elements rather than
|
1169
1170
|
short-circuiting, so may be significantly inefficient.
|
1170
1171
|
|
1171
1172
|
|
1172
|
-
###
|
1173
|
+
### <Operation> reduce(const Dimensions& new_dims, const Reducer& reducer)
|
1173
1174
|
|
1174
1175
|
Reduce a tensor using a user-defined reduction operator. See `SumReducer`
|
1175
1176
|
in TensorFunctors.h for information on how to implement a reduction operator.
|
1176
1177
|
|
1177
1178
|
|
1179
|
+
## Trace
|
1180
|
+
|
1181
|
+
A *Trace* operation returns a tensor with fewer dimensions than the original
|
1182
|
+
tensor. It returns a tensor whose elements are the sum of the elements of the
|
1183
|
+
original tensor along the main diagonal for a list of specified dimensions, the
|
1184
|
+
"trace dimensions". Similar to the `Reduction Dimensions`, the trace dimensions
|
1185
|
+
are passed as an input parameter to the operation, are of type `<TensorType>::``Dimensions`
|
1186
|
+
, and have the same requirements when passed as an input parameter. In addition,
|
1187
|
+
the trace dimensions must have the same size.
|
1188
|
+
|
1189
|
+
Example: Trace along 2 dimensions.
|
1190
|
+
|
1191
|
+
// Create a tensor of 3 dimensions
|
1192
|
+
Eigen::Tensor<int, 3> a(2, 2, 3);
|
1193
|
+
a.setValues({{{1, 2, 3}, {4, 5, 6}}, {{7, 8, 9}, {10, 11, 12}}});
|
1194
|
+
// Specify the dimensions along which the trace will be computed.
|
1195
|
+
// In this example, the trace can only be computed along the dimensions
|
1196
|
+
// with indices 0 and 1
|
1197
|
+
Eigen::array<int, 2> dims({0, 1});
|
1198
|
+
// The output tensor contains all but the trace dimensions.
|
1199
|
+
Tensor<int, 1> a_trace = a.trace(dims);
|
1200
|
+
cout << "a_trace:" << endl;
|
1201
|
+
cout << a_trace << endl;
|
1202
|
+
=>
|
1203
|
+
a_trace:
|
1204
|
+
11
|
1205
|
+
13
|
1206
|
+
15
|
1207
|
+
|
1208
|
+
|
1209
|
+
### <Operation> trace(const Dimensions& new_dims)
|
1210
|
+
### <Operation> trace()
|
1211
|
+
|
1212
|
+
As a special case, if no parameter is passed to the operation, trace is computed
|
1213
|
+
along *all* dimensions of the input tensor.
|
1214
|
+
|
1215
|
+
Example: Trace along all dimensions.
|
1216
|
+
|
1217
|
+
// Create a tensor of 3 dimensions, with all dimensions having the same size.
|
1218
|
+
Eigen::Tensor<int, 3> a(3, 3, 3);
|
1219
|
+
a.setValues({{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}},
|
1220
|
+
{{10, 11, 12}, {13, 14, 15}, {16, 17, 18}},
|
1221
|
+
{{19, 20, 21}, {22, 23, 24}, {25, 26, 27}}});
|
1222
|
+
// Result is a zero dimension tensor
|
1223
|
+
Tensor<int, 0> a_trace = a.trace();
|
1224
|
+
cout<<"a_trace:"<<endl;
|
1225
|
+
cout<<a_trace<<endl;
|
1226
|
+
=>
|
1227
|
+
a_trace:
|
1228
|
+
42
|
1229
|
+
|
1230
|
+
|
1178
1231
|
## Scan Operations
|
1179
1232
|
|
1180
1233
|
A *Scan* operation returns a tensor with the same dimensions as the original
|
@@ -1204,18 +1257,18 @@ dd a comment to this line
|
|
1204
1257
|
1 3 6
|
1205
1258
|
4 9 15
|
1206
1259
|
|
1207
|
-
###
|
1260
|
+
### <Operation> cumsum(const Index& axis)
|
1208
1261
|
|
1209
1262
|
Perform a scan by summing consecutive entries.
|
1210
1263
|
|
1211
|
-
###
|
1264
|
+
### <Operation> cumprod(const Index& axis)
|
1212
1265
|
|
1213
1266
|
Perform a scan by multiplying consecutive entries.
|
1214
1267
|
|
1215
1268
|
|
1216
1269
|
## Convolutions
|
1217
1270
|
|
1218
|
-
###
|
1271
|
+
### <Operation> convolve(const Kernel& kernel, const Dimensions& dims)
|
1219
1272
|
|
1220
1273
|
Returns a tensor that is the output of the convolution of the input tensor with the kernel,
|
1221
1274
|
along the specified dimensions of the input tensor. The dimension size for dimensions of the output tensor
|
@@ -1258,7 +1311,7 @@ These operations return a Tensor with different dimensions than the original
|
|
1258
1311
|
Tensor. They can be used to access slices of tensors, see them with different
|
1259
1312
|
dimensions, or pad tensors with additional data.
|
1260
1313
|
|
1261
|
-
###
|
1314
|
+
### <Operation> reshape(const Dimensions& new_dims)
|
1262
1315
|
|
1263
1316
|
Returns a view of the input tensor that has been reshaped to the specified
|
1264
1317
|
new dimensions. The argument new_dims is an array of Index values. The
|
@@ -1337,7 +1390,7 @@ Note that "b" itself was not reshaped but that instead the assignment is done to
|
|
1337
1390
|
the reshape view of b.
|
1338
1391
|
|
1339
1392
|
|
1340
|
-
###
|
1393
|
+
### <Operation> shuffle(const Shuffle& shuffle)
|
1341
1394
|
|
1342
1395
|
Returns a copy of the input tensor whose dimensions have been
|
1343
1396
|
reordered according to the specified permutation. The argument shuffle
|
@@ -1378,7 +1431,7 @@ Let's rewrite the previous example to take advantage of this feature:
|
|
1378
1431
|
output.shuffle({2, 0, 1}) = input;
|
1379
1432
|
|
1380
1433
|
|
1381
|
-
###
|
1434
|
+
### <Operation> stride(const Strides& strides)
|
1382
1435
|
|
1383
1436
|
Returns a view of the input tensor that strides (skips stride-1
|
1384
1437
|
elements) along each of the dimensions. The argument strides is an
|
@@ -1404,7 +1457,7 @@ It is possible to assign a tensor to a stride:
|
|
1404
1457
|
output.stride({2, 3, 4}) = input;
|
1405
1458
|
|
1406
1459
|
|
1407
|
-
###
|
1460
|
+
### <Operation> slice(const StartIndices& offsets, const Sizes& extents)
|
1408
1461
|
|
1409
1462
|
Returns a sub-tensor of the given tensor. For each dimension i, the slice is
|
1410
1463
|
made of the coefficients stored between offset[i] and offset[i] + extents[i] in
|
@@ -1430,7 +1483,7 @@ the input tensor.
|
|
1430
1483
|
600 700
|
1431
1484
|
|
1432
1485
|
|
1433
|
-
###
|
1486
|
+
### <Operation> chip(const Index offset, const Index dim)
|
1434
1487
|
|
1435
1488
|
A chip is a special kind of slice. It is the subtensor at the given offset in
|
1436
1489
|
the dimension dim. The returned tensor has one fewer dimension than the input
|
@@ -1481,7 +1534,7 @@ lvalue. For example:
|
|
1481
1534
|
0 0 0
|
1482
1535
|
|
1483
1536
|
|
1484
|
-
###
|
1537
|
+
### <Operation> reverse(const ReverseDimensions& reverse)
|
1485
1538
|
|
1486
1539
|
Returns a view of the input tensor that reverses the order of the coefficients
|
1487
1540
|
along a subset of the dimensions. The argument reverse is an array of boolean
|
@@ -1511,7 +1564,7 @@ of a 2D tensor:
|
|
1511
1564
|
0 100 200
|
1512
1565
|
|
1513
1566
|
|
1514
|
-
###
|
1567
|
+
### <Operation> broadcast(const Broadcast& broadcast)
|
1515
1568
|
|
1516
1569
|
Returns a view of the input tensor in which the input is replicated one to many
|
1517
1570
|
times.
|
@@ -1535,11 +1588,11 @@ made in each of the dimensions.
|
|
1535
1588
|
0 100 200 0 100 200
|
1536
1589
|
300 400 500 300 400 500
|
1537
1590
|
|
1538
|
-
###
|
1591
|
+
### <Operation> concatenate(const OtherDerived& other, Axis axis)
|
1539
1592
|
|
1540
1593
|
TODO
|
1541
1594
|
|
1542
|
-
###
|
1595
|
+
### <Operation> pad(const PaddingDimensions& padding)
|
1543
1596
|
|
1544
1597
|
Returns a view of the input tensor in which the input is padded with zeros.
|
1545
1598
|
|
@@ -1564,7 +1617,7 @@ Returns a view of the input tensor in which the input is padded with zeros.
|
|
1564
1617
|
0 0 0 0
|
1565
1618
|
|
1566
1619
|
|
1567
|
-
###
|
1620
|
+
### <Operation> extract_patches(const PatchDims& patch_dims)
|
1568
1621
|
|
1569
1622
|
Returns a tensor of coefficient patches extracted from the input tensor, where
|
1570
1623
|
each patch is of dimension specified by 'patch_dims'. The returned tensor has
|
@@ -1575,83 +1628,83 @@ dimension in RowMajor layout.
|
|
1575
1628
|
|
1576
1629
|
For example, given the following input tensor:
|
1577
1630
|
|
1578
|
-
|
1579
|
-
|
1580
|
-
|
1581
|
-
|
1631
|
+
Eigen::Tensor<float, 2, DataLayout> tensor(3,4);
|
1632
|
+
tensor.setValues({{0.0f, 1.0f, 2.0f, 3.0f},
|
1633
|
+
{4.0f, 5.0f, 6.0f, 7.0f},
|
1634
|
+
{8.0f, 9.0f, 10.0f, 11.0f}});
|
1582
1635
|
|
1583
|
-
|
1584
|
-
=>
|
1585
|
-
tensor:
|
1586
|
-
|
1587
|
-
|
1588
|
-
|
1636
|
+
cout << "tensor: " << endl << tensor << endl;
|
1637
|
+
=>
|
1638
|
+
tensor:
|
1639
|
+
0 1 2 3
|
1640
|
+
4 5 6 7
|
1641
|
+
8 9 10 11
|
1589
1642
|
|
1590
1643
|
Six 2x2 patches can be extracted and indexed using the following code:
|
1591
1644
|
|
1592
|
-
|
1593
|
-
|
1594
|
-
|
1595
|
-
|
1596
|
-
|
1597
|
-
|
1598
|
-
|
1599
|
-
|
1600
|
-
|
1601
|
-
|
1602
|
-
|
1603
|
-
|
1604
|
-
|
1605
|
-
|
1645
|
+
Eigen::Tensor<float, 3, DataLayout> patch;
|
1646
|
+
Eigen::array<ptrdiff_t, 2> patch_dims;
|
1647
|
+
patch_dims[0] = 2;
|
1648
|
+
patch_dims[1] = 2;
|
1649
|
+
patch = tensor.extract_patches(patch_dims);
|
1650
|
+
for (int k = 0; k < 6; ++k) {
|
1651
|
+
cout << "patch index: " << k << endl;
|
1652
|
+
for (int i = 0; i < 2; ++i) {
|
1653
|
+
for (int j = 0; j < 2; ++j) {
|
1654
|
+
if (DataLayout == ColMajor) {
|
1655
|
+
cout << patch(i, j, k) << " ";
|
1656
|
+
} else {
|
1657
|
+
cout << patch(k, i, j) << " ";
|
1658
|
+
}
|
1659
|
+
}
|
1660
|
+
cout << endl;
|
1606
1661
|
}
|
1607
|
-
cout << endl;
|
1608
1662
|
}
|
1609
|
-
}
|
1610
1663
|
|
1611
1664
|
This code results in the following output when the data layout is ColMajor:
|
1612
1665
|
|
1613
|
-
patch index: 0
|
1614
|
-
0 1
|
1615
|
-
4 5
|
1616
|
-
patch index: 1
|
1617
|
-
4 5
|
1618
|
-
8 9
|
1619
|
-
patch index: 2
|
1620
|
-
1 2
|
1621
|
-
5 6
|
1622
|
-
patch index: 3
|
1623
|
-
5 6
|
1624
|
-
9 10
|
1625
|
-
patch index: 4
|
1626
|
-
2 3
|
1627
|
-
6 7
|
1628
|
-
patch index: 5
|
1629
|
-
6 7
|
1630
|
-
10 11
|
1666
|
+
patch index: 0
|
1667
|
+
0 1
|
1668
|
+
4 5
|
1669
|
+
patch index: 1
|
1670
|
+
4 5
|
1671
|
+
8 9
|
1672
|
+
patch index: 2
|
1673
|
+
1 2
|
1674
|
+
5 6
|
1675
|
+
patch index: 3
|
1676
|
+
5 6
|
1677
|
+
9 10
|
1678
|
+
patch index: 4
|
1679
|
+
2 3
|
1680
|
+
6 7
|
1681
|
+
patch index: 5
|
1682
|
+
6 7
|
1683
|
+
10 11
|
1631
1684
|
|
1632
1685
|
This code results in the following output when the data layout is RowMajor:
|
1633
1686
|
(NOTE: the set of patches is the same as in ColMajor, but are indexed differently).
|
1634
1687
|
|
1635
|
-
patch index: 0
|
1636
|
-
0 1
|
1637
|
-
4 5
|
1638
|
-
patch index: 1
|
1639
|
-
1 2
|
1640
|
-
5 6
|
1641
|
-
patch index: 2
|
1642
|
-
2 3
|
1643
|
-
6 7
|
1644
|
-
patch index: 3
|
1645
|
-
4 5
|
1646
|
-
8 9
|
1647
|
-
patch index: 4
|
1648
|
-
5 6
|
1649
|
-
9 10
|
1650
|
-
patch index: 5
|
1651
|
-
6 7
|
1652
|
-
10 11
|
1653
|
-
|
1654
|
-
###
|
1688
|
+
patch index: 0
|
1689
|
+
0 1
|
1690
|
+
4 5
|
1691
|
+
patch index: 1
|
1692
|
+
1 2
|
1693
|
+
5 6
|
1694
|
+
patch index: 2
|
1695
|
+
2 3
|
1696
|
+
6 7
|
1697
|
+
patch index: 3
|
1698
|
+
4 5
|
1699
|
+
8 9
|
1700
|
+
patch index: 4
|
1701
|
+
5 6
|
1702
|
+
9 10
|
1703
|
+
patch index: 5
|
1704
|
+
6 7
|
1705
|
+
10 11
|
1706
|
+
|
1707
|
+
### <Operation> extract_image_patches(const Index patch_rows, const Index patch_cols, const Index row_stride, const Index col_stride, const PaddingType padding_type)
|
1655
1708
|
|
1656
1709
|
Returns a tensor of coefficient image patches extracted from the input tensor,
|
1657
1710
|
which is expected to have dimensions ordered as follows (depending on the data
|
@@ -1681,32 +1734,34 @@ sizes:
|
|
1681
1734
|
*) columns: 5
|
1682
1735
|
*) batch: 7
|
1683
1736
|
|
1684
|
-
|
1685
|
-
|
1737
|
+
Tensor<float, 4> tensor(2,3,5,7);
|
1738
|
+
Tensor<float, 4, RowMajor> tensor_row_major = tensor.swap_layout();
|
1686
1739
|
|
1687
1740
|
2x2 image patches can be extracted and indexed using the following code:
|
1688
1741
|
|
1689
1742
|
*) 2D patch: ColMajor (patch indexed by second-to-last dimension)
|
1690
|
-
|
1691
|
-
|
1692
|
-
|
1693
|
-
|
1694
|
-
|
1695
|
-
|
1696
|
-
|
1743
|
+
|
1744
|
+
Tensor<float, 5> twod_patch;
|
1745
|
+
twod_patch = tensor.extract_image_patches<2, 2>();
|
1746
|
+
// twod_patch.dimension(0) == 2
|
1747
|
+
// twod_patch.dimension(1) == 2
|
1748
|
+
// twod_patch.dimension(2) == 2
|
1749
|
+
// twod_patch.dimension(3) == 3*5
|
1750
|
+
// twod_patch.dimension(4) == 7
|
1697
1751
|
|
1698
1752
|
*) 2D patch: RowMajor (patch indexed by the second dimension)
|
1699
|
-
|
1700
|
-
|
1701
|
-
|
1702
|
-
|
1703
|
-
|
1704
|
-
|
1705
|
-
|
1753
|
+
|
1754
|
+
Tensor<float, 5, RowMajor> twod_patch_row_major;
|
1755
|
+
twod_patch_row_major = tensor_row_major.extract_image_patches<2, 2>();
|
1756
|
+
// twod_patch_row_major.dimension(0) == 7
|
1757
|
+
// twod_patch_row_major.dimension(1) == 3*5
|
1758
|
+
// twod_patch_row_major.dimension(2) == 2
|
1759
|
+
// twod_patch_row_major.dimension(3) == 2
|
1760
|
+
// twod_patch_row_major.dimension(4) == 2
|
1706
1761
|
|
1707
1762
|
## Special Operations
|
1708
1763
|
|
1709
|
-
###
|
1764
|
+
### <Operation> cast<T>()
|
1710
1765
|
|
1711
1766
|
Returns a tensor of type T with the same dimensions as the original tensor.
|
1712
1767
|
The returned tensor contains the values of the original tensor converted to
|
@@ -1735,7 +1790,7 @@ but you can easily cast the tensors to floats to do the division:
|
|
1735
1790
|
1 2 2
|
1736
1791
|
|
1737
1792
|
|
1738
|
-
###
|
1793
|
+
### <Operation> eval()
|
1739
1794
|
|
1740
1795
|
TODO
|
1741
1796
|
|