tomoto 0.2.2 → 0.3.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +10 -0
- data/README.md +8 -10
- data/ext/tomoto/ct.cpp +11 -11
- data/ext/tomoto/dmr.cpp +14 -13
- data/ext/tomoto/dt.cpp +14 -14
- data/ext/tomoto/extconf.rb +7 -5
- data/ext/tomoto/gdmr.cpp +7 -7
- data/ext/tomoto/hdp.cpp +9 -9
- data/ext/tomoto/hlda.cpp +13 -13
- data/ext/tomoto/hpa.cpp +5 -5
- data/ext/tomoto/lda.cpp +42 -39
- data/ext/tomoto/llda.cpp +6 -6
- data/ext/tomoto/mglda.cpp +15 -15
- data/ext/tomoto/pa.cpp +6 -6
- data/ext/tomoto/plda.cpp +6 -6
- data/ext/tomoto/slda.cpp +8 -8
- data/ext/tomoto/{ext.cpp → tomoto.cpp} +8 -8
- data/ext/tomoto/utils.h +16 -70
- data/lib/tomoto/version.rb +1 -1
- data/lib/tomoto.rb +5 -1
- data/vendor/EigenRand/EigenRand/Core.h +10 -10
- data/vendor/EigenRand/EigenRand/Dists/Basic.h +208 -9
- data/vendor/EigenRand/EigenRand/Dists/Discrete.h +52 -31
- data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +9 -8
- data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +28 -21
- data/vendor/EigenRand/EigenRand/EigenRand +11 -6
- data/vendor/EigenRand/EigenRand/Macro.h +13 -7
- data/vendor/EigenRand/EigenRand/MorePacketMath.h +348 -740
- data/vendor/EigenRand/EigenRand/MvDists/Multinomial.h +5 -3
- data/vendor/EigenRand/EigenRand/MvDists/MvNormal.h +9 -3
- data/vendor/EigenRand/EigenRand/PacketFilter.h +11 -253
- data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +21 -47
- data/vendor/EigenRand/EigenRand/RandUtils.h +50 -344
- data/vendor/EigenRand/EigenRand/arch/AVX/MorePacketMath.h +619 -0
- data/vendor/EigenRand/EigenRand/arch/AVX/PacketFilter.h +149 -0
- data/vendor/EigenRand/EigenRand/arch/AVX/RandUtils.h +228 -0
- data/vendor/EigenRand/EigenRand/arch/NEON/MorePacketMath.h +473 -0
- data/vendor/EigenRand/EigenRand/arch/NEON/PacketFilter.h +142 -0
- data/vendor/EigenRand/EigenRand/arch/NEON/RandUtils.h +126 -0
- data/vendor/EigenRand/EigenRand/arch/SSE/MorePacketMath.h +501 -0
- data/vendor/EigenRand/EigenRand/arch/SSE/PacketFilter.h +133 -0
- data/vendor/EigenRand/EigenRand/arch/SSE/RandUtils.h +120 -0
- data/vendor/EigenRand/EigenRand/doc.h +24 -12
- data/vendor/EigenRand/README.md +57 -4
- data/vendor/eigen/COPYING.APACHE +203 -0
- data/vendor/eigen/COPYING.BSD +1 -1
- data/vendor/eigen/COPYING.MINPACK +51 -52
- data/vendor/eigen/Eigen/Cholesky +0 -1
- data/vendor/eigen/Eigen/Core +112 -265
- data/vendor/eigen/Eigen/Eigenvalues +2 -3
- data/vendor/eigen/Eigen/Geometry +5 -8
- data/vendor/eigen/Eigen/Householder +0 -1
- data/vendor/eigen/Eigen/Jacobi +0 -1
- data/vendor/eigen/Eigen/KLUSupport +41 -0
- data/vendor/eigen/Eigen/LU +2 -5
- data/vendor/eigen/Eigen/OrderingMethods +0 -3
- data/vendor/eigen/Eigen/PaStiXSupport +1 -0
- data/vendor/eigen/Eigen/PardisoSupport +0 -0
- data/vendor/eigen/Eigen/QR +2 -3
- data/vendor/eigen/Eigen/QtAlignedMalloc +0 -1
- data/vendor/eigen/Eigen/SVD +0 -1
- data/vendor/eigen/Eigen/Sparse +0 -2
- data/vendor/eigen/Eigen/SparseCholesky +0 -8
- data/vendor/eigen/Eigen/SparseLU +4 -0
- data/vendor/eigen/Eigen/SparseQR +0 -1
- data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +42 -27
- data/vendor/eigen/Eigen/src/Cholesky/LLT.h +39 -23
- data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +90 -47
- data/vendor/eigen/Eigen/src/Core/ArithmeticSequence.h +413 -0
- data/vendor/eigen/Eigen/src/Core/Array.h +99 -11
- data/vendor/eigen/Eigen/src/Core/ArrayBase.h +3 -3
- data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +21 -21
- data/vendor/eigen/Eigen/src/Core/Assign.h +1 -1
- data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +125 -50
- data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +10 -10
- data/vendor/eigen/Eigen/src/Core/BandMatrix.h +16 -16
- data/vendor/eigen/Eigen/src/Core/Block.h +56 -60
- data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +29 -31
- data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +7 -3
- data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +325 -272
- data/vendor/eigen/Eigen/src/Core/CoreIterators.h +5 -0
- data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +21 -22
- data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +153 -18
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +6 -6
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +14 -10
- data/vendor/eigen/Eigen/src/Core/DenseBase.h +132 -42
- data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +25 -21
- data/vendor/eigen/Eigen/src/Core/DenseStorage.h +153 -71
- data/vendor/eigen/Eigen/src/Core/Diagonal.h +21 -23
- data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +50 -2
- data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +1 -1
- data/vendor/eigen/Eigen/src/Core/Dot.h +10 -10
- data/vendor/eigen/Eigen/src/Core/EigenBase.h +10 -9
- data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +8 -4
- data/vendor/eigen/Eigen/src/Core/Fuzzy.h +3 -3
- data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +20 -10
- data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +599 -152
- data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +40 -33
- data/vendor/eigen/Eigen/src/Core/IO.h +40 -7
- data/vendor/eigen/Eigen/src/Core/IndexedView.h +237 -0
- data/vendor/eigen/Eigen/src/Core/Inverse.h +9 -10
- data/vendor/eigen/Eigen/src/Core/Map.h +7 -7
- data/vendor/eigen/Eigen/src/Core/MapBase.h +10 -3
- data/vendor/eigen/Eigen/src/Core/MathFunctions.h +767 -125
- data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +118 -19
- data/vendor/eigen/Eigen/src/Core/Matrix.h +131 -25
- data/vendor/eigen/Eigen/src/Core/MatrixBase.h +21 -3
- data/vendor/eigen/Eigen/src/Core/NestByValue.h +25 -50
- data/vendor/eigen/Eigen/src/Core/NoAlias.h +4 -3
- data/vendor/eigen/Eigen/src/Core/NumTraits.h +107 -20
- data/vendor/eigen/Eigen/src/Core/PartialReduxEvaluator.h +232 -0
- data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +3 -31
- data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +152 -59
- data/vendor/eigen/Eigen/src/Core/Product.h +30 -25
- data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +192 -125
- data/vendor/eigen/Eigen/src/Core/Random.h +37 -1
- data/vendor/eigen/Eigen/src/Core/Redux.h +180 -170
- data/vendor/eigen/Eigen/src/Core/Ref.h +121 -23
- data/vendor/eigen/Eigen/src/Core/Replicate.h +8 -8
- data/vendor/eigen/Eigen/src/Core/Reshaped.h +454 -0
- data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +7 -5
- data/vendor/eigen/Eigen/src/Core/Reverse.h +18 -12
- data/vendor/eigen/Eigen/src/Core/Select.h +8 -6
- data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +33 -20
- data/vendor/eigen/Eigen/src/Core/Solve.h +14 -14
- data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +16 -16
- data/vendor/eigen/Eigen/src/Core/SolverBase.h +41 -3
- data/vendor/eigen/Eigen/src/Core/StableNorm.h +100 -70
- data/vendor/eigen/Eigen/src/Core/StlIterators.h +463 -0
- data/vendor/eigen/Eigen/src/Core/Stride.h +9 -4
- data/vendor/eigen/Eigen/src/Core/Swap.h +5 -4
- data/vendor/eigen/Eigen/src/Core/Transpose.h +88 -27
- data/vendor/eigen/Eigen/src/Core/Transpositions.h +26 -47
- data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +93 -75
- data/vendor/eigen/Eigen/src/Core/VectorBlock.h +5 -5
- data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +159 -70
- data/vendor/eigen/Eigen/src/Core/Visitor.h +137 -29
- data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +50 -129
- data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +126 -337
- data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +1092 -155
- data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +65 -1
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/Complex.h +422 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +207 -236
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1482 -495
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/TypeCasting.h +89 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +152 -165
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +19 -251
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MatrixProduct.h +2937 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MatrixProductCommon.h +221 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MatrixProductMMA.h +629 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +2042 -392
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +235 -80
- data/vendor/eigen/Eigen/src/Core/arch/Default/BFloat16.h +700 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +102 -14
- data/vendor/eigen/Eigen/src/Core/arch/Default/GenericPacketMathFunctions.h +1649 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/GenericPacketMathFunctionsFwd.h +110 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/Half.h +942 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +1 -1
- data/vendor/eigen/Eigen/src/Core/arch/Default/TypeCasting.h +120 -0
- data/vendor/eigen/Eigen/src/Core/arch/{CUDA → GPU}/MathFunctions.h +16 -4
- data/vendor/eigen/Eigen/src/Core/arch/GPU/PacketMath.h +1685 -0
- data/vendor/eigen/Eigen/src/Core/arch/GPU/TypeCasting.h +80 -0
- data/vendor/eigen/Eigen/src/Core/arch/HIP/hcc/math_constants.h +23 -0
- data/vendor/eigen/Eigen/src/Core/arch/MSA/Complex.h +648 -0
- data/vendor/eigen/Eigen/src/Core/arch/MSA/MathFunctions.h +387 -0
- data/vendor/eigen/Eigen/src/Core/arch/MSA/PacketMath.h +1233 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +313 -219
- data/vendor/eigen/Eigen/src/Core/arch/NEON/GeneralBlockPanelKernel.h +183 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +54 -70
- data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +4376 -549
- data/vendor/eigen/Eigen/src/Core/arch/NEON/TypeCasting.h +1419 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +59 -179
- data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +65 -428
- data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +893 -283
- data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +65 -0
- data/vendor/eigen/Eigen/src/Core/arch/SVE/MathFunctions.h +44 -0
- data/vendor/eigen/Eigen/src/Core/arch/SVE/PacketMath.h +752 -0
- data/vendor/eigen/Eigen/src/Core/arch/SVE/TypeCasting.h +49 -0
- data/vendor/eigen/Eigen/src/Core/arch/SYCL/InteropHeaders.h +232 -0
- data/vendor/eigen/Eigen/src/Core/arch/SYCL/MathFunctions.h +301 -0
- data/vendor/eigen/Eigen/src/Core/arch/SYCL/PacketMath.h +670 -0
- data/vendor/eigen/Eigen/src/Core/arch/SYCL/SyclMemoryModel.h +694 -0
- data/vendor/eigen/Eigen/src/Core/arch/SYCL/TypeCasting.h +85 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +212 -183
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +101 -5
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +510 -395
- data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +11 -2
- data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +112 -46
- data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +31 -30
- data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +32 -2
- data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +355 -16
- data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +1075 -586
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +49 -24
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +41 -35
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +6 -6
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +4 -2
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +382 -483
- data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +22 -5
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +53 -30
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +16 -8
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +8 -6
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +4 -4
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +5 -4
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +33 -27
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +14 -12
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +36 -34
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +8 -4
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +13 -10
- data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +304 -119
- data/vendor/eigen/Eigen/src/Core/util/ConfigureVectorization.h +512 -0
- data/vendor/eigen/Eigen/src/Core/util/Constants.h +25 -9
- data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +26 -3
- data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +29 -9
- data/vendor/eigen/Eigen/src/Core/util/IndexedViewHelper.h +186 -0
- data/vendor/eigen/Eigen/src/Core/util/IntegralConstant.h +272 -0
- data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +8 -1
- data/vendor/eigen/Eigen/src/Core/util/Macros.h +709 -246
- data/vendor/eigen/Eigen/src/Core/util/Memory.h +222 -52
- data/vendor/eigen/Eigen/src/Core/util/Meta.h +355 -77
- data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +5 -1
- data/vendor/eigen/Eigen/src/Core/util/ReshapedHelper.h +51 -0
- data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +8 -5
- data/vendor/eigen/Eigen/src/Core/util/SymbolicIndex.h +293 -0
- data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +65 -30
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +1 -1
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +7 -4
- data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +2 -2
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +1 -1
- data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +2 -2
- data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +2 -2
- data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +9 -6
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +21 -9
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +77 -43
- data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +20 -15
- data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +99 -5
- data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +4 -4
- data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +3 -3
- data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +15 -11
- data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +1 -1
- data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +3 -2
- data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +39 -2
- data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +70 -14
- data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +3 -3
- data/vendor/eigen/Eigen/src/Geometry/Scaling.h +23 -5
- data/vendor/eigen/Eigen/src/Geometry/Transform.h +88 -67
- data/vendor/eigen/Eigen/src/Geometry/Translation.h +6 -12
- data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +1 -1
- data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h +168 -0
- data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +9 -2
- data/vendor/eigen/Eigen/src/Householder/Householder.h +8 -4
- data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +123 -48
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +15 -15
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +7 -23
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +5 -22
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +41 -47
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +51 -60
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +70 -20
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +2 -20
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +11 -9
- data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +31 -10
- data/vendor/eigen/Eigen/src/KLUSupport/KLUSupport.h +358 -0
- data/vendor/eigen/Eigen/src/LU/Determinant.h +35 -19
- data/vendor/eigen/Eigen/src/LU/FullPivLU.h +29 -43
- data/vendor/eigen/Eigen/src/LU/InverseImpl.h +25 -8
- data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +71 -58
- data/vendor/eigen/Eigen/src/LU/arch/InverseSize4.h +351 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +7 -17
- data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +297 -277
- data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +6 -10
- data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +1 -1
- data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +9 -7
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +41 -20
- data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +100 -27
- data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +59 -22
- data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +48 -23
- data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +25 -3
- data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +183 -63
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +22 -14
- data/vendor/eigen/Eigen/src/SVD/SVDBase.h +83 -22
- data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +3 -3
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +17 -9
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +12 -37
- data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +3 -2
- data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +16 -0
- data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +6 -6
- data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +81 -27
- data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +25 -57
- data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +40 -11
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +11 -15
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +4 -2
- data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +30 -8
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +126 -11
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +5 -12
- data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +13 -1
- data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +7 -7
- data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +5 -2
- data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +8 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +1 -1
- data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +1 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +162 -12
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +1 -1
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +76 -2
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +2 -2
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +1 -1
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +1 -1
- data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +19 -6
- data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +2 -12
- data/vendor/eigen/Eigen/src/StlSupport/StdList.h +2 -2
- data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +2 -2
- data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +6 -8
- data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +175 -39
- data/vendor/eigen/Eigen/src/misc/lapacke.h +5 -4
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +28 -2
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +155 -11
- data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +626 -242
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +14 -0
- data/vendor/eigen/Eigen/src/plugins/IndexedViewMethods.h +262 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +4 -4
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +10 -0
- data/vendor/eigen/Eigen/src/plugins/ReshapedMethods.h +149 -0
- data/vendor/eigen/README.md +2 -0
- data/vendor/eigen/bench/btl/README +1 -1
- data/vendor/eigen/bench/tensors/README +6 -7
- data/vendor/eigen/ci/README.md +56 -0
- data/vendor/eigen/demos/mix_eigen_and_c/README +1 -1
- data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +213 -158
- data/vendor/eigen/unsupported/README.txt +1 -1
- data/vendor/tomotopy/README.kr.rst +78 -0
- data/vendor/tomotopy/README.rst +75 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +2 -2
- data/vendor/tomotopy/src/Labeling/Phraser.hpp +4 -4
- data/vendor/tomotopy/src/TopicModel/CTModel.hpp +7 -3
- data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +7 -3
- data/vendor/tomotopy/src/TopicModel/DTModel.hpp +6 -3
- data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +2 -2
- data/vendor/tomotopy/src/TopicModel/HDP.h +1 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +57 -6
- data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +6 -3
- data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +3 -2
- data/vendor/tomotopy/src/TopicModel/LDA.h +3 -3
- data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +5 -5
- data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +50 -19
- data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +6 -2
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +3 -2
- data/vendor/tomotopy/src/TopicModel/PAModel.hpp +1 -1
- data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +6 -2
- data/vendor/tomotopy/src/TopicModel/PT.h +3 -1
- data/vendor/tomotopy/src/TopicModel/PTModel.hpp +36 -3
- data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +6 -3
- data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +55 -26
- data/vendor/tomotopy/src/Utils/AliasMethod.hpp +5 -4
- data/vendor/tomotopy/src/Utils/Dictionary.h +2 -2
- data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +36 -1
- data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +1 -1
- data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +1 -1
- data/vendor/tomotopy/src/Utils/exception.h +6 -0
- data/vendor/tomotopy/src/Utils/math.h +2 -2
- data/vendor/tomotopy/src/Utils/sample.hpp +14 -12
- data/vendor/tomotopy/src/Utils/serializer.hpp +30 -5
- data/vendor/tomotopy/src/Utils/sse_gamma.h +0 -3
- metadata +64 -18
- data/vendor/eigen/Eigen/CMakeLists.txt +0 -19
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +0 -674
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +0 -333
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +0 -1124
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +0 -212
- data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +0 -161
- data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +0 -338
@@ -14,8 +14,8 @@
|
|
14
14
|
#include <vector>
|
15
15
|
#include <list>
|
16
16
|
|
17
|
-
namespace Eigen {
|
18
|
-
/**
|
17
|
+
namespace Eigen {
|
18
|
+
/**
|
19
19
|
* \brief Modified Incomplete Cholesky with dual threshold
|
20
20
|
*
|
21
21
|
* References : C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with
|
@@ -41,28 +41,22 @@ namespace Eigen {
|
|
41
41
|
* the info() method, then you can either increase the initial shift, or better use another preconditioning technique.
|
42
42
|
*
|
43
43
|
*/
|
44
|
-
template <typename Scalar, int _UpLo = Lower, typename _OrderingType =
|
45
|
-
#ifndef EIGEN_MPL2_ONLY
|
46
|
-
AMDOrdering<int>
|
47
|
-
#else
|
48
|
-
NaturalOrdering<int>
|
49
|
-
#endif
|
50
|
-
>
|
44
|
+
template <typename Scalar, int _UpLo = Lower, typename _OrderingType = AMDOrdering<int> >
|
51
45
|
class IncompleteCholesky : public SparseSolverBase<IncompleteCholesky<Scalar,_UpLo,_OrderingType> >
|
52
46
|
{
|
53
47
|
protected:
|
54
48
|
typedef SparseSolverBase<IncompleteCholesky<Scalar,_UpLo,_OrderingType> > Base;
|
55
49
|
using Base::m_isInitialized;
|
56
50
|
public:
|
57
|
-
typedef typename NumTraits<Scalar>::Real RealScalar;
|
51
|
+
typedef typename NumTraits<Scalar>::Real RealScalar;
|
58
52
|
typedef _OrderingType OrderingType;
|
59
53
|
typedef typename OrderingType::PermutationType PermutationType;
|
60
|
-
typedef typename PermutationType::StorageIndex StorageIndex;
|
54
|
+
typedef typename PermutationType::StorageIndex StorageIndex;
|
61
55
|
typedef SparseMatrix<Scalar,ColMajor,StorageIndex> FactorType;
|
62
56
|
typedef Matrix<Scalar,Dynamic,1> VectorSx;
|
63
57
|
typedef Matrix<RealScalar,Dynamic,1> VectorRx;
|
64
58
|
typedef Matrix<StorageIndex,Dynamic, 1> VectorIx;
|
65
|
-
typedef std::vector<std::list<StorageIndex> > VectorList;
|
59
|
+
typedef std::vector<std::list<StorageIndex> > VectorList;
|
66
60
|
enum { UpLo = _UpLo };
|
67
61
|
enum {
|
68
62
|
ColsAtCompileTime = Dynamic,
|
@@ -76,22 +70,22 @@ class IncompleteCholesky : public SparseSolverBase<IncompleteCholesky<Scalar,_Up
|
|
76
70
|
*
|
77
71
|
* \sa IncompleteCholesky(const MatrixType&)
|
78
72
|
*/
|
79
|
-
IncompleteCholesky() : m_initialShift(1e-3),m_factorizationIsOk(false) {}
|
80
|
-
|
73
|
+
IncompleteCholesky() : m_initialShift(1e-3),m_analysisIsOk(false),m_factorizationIsOk(false) {}
|
74
|
+
|
81
75
|
/** Constructor computing the incomplete factorization for the given matrix \a matrix.
|
82
76
|
*/
|
83
77
|
template<typename MatrixType>
|
84
|
-
IncompleteCholesky(const MatrixType& matrix) : m_initialShift(1e-3),m_factorizationIsOk(false)
|
78
|
+
IncompleteCholesky(const MatrixType& matrix) : m_initialShift(1e-3),m_analysisIsOk(false),m_factorizationIsOk(false)
|
85
79
|
{
|
86
80
|
compute(matrix);
|
87
81
|
}
|
88
|
-
|
82
|
+
|
89
83
|
/** \returns number of rows of the factored matrix */
|
90
|
-
Index rows() const { return m_L.rows(); }
|
91
|
-
|
84
|
+
EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_L.rows(); }
|
85
|
+
|
92
86
|
/** \returns number of columns of the factored matrix */
|
93
|
-
Index cols() const { return m_L.cols(); }
|
94
|
-
|
87
|
+
EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_L.cols(); }
|
88
|
+
|
95
89
|
|
96
90
|
/** \brief Reports whether previous computation was successful.
|
97
91
|
*
|
@@ -106,19 +100,19 @@ class IncompleteCholesky : public SparseSolverBase<IncompleteCholesky<Scalar,_Up
|
|
106
100
|
eigen_assert(m_isInitialized && "IncompleteCholesky is not initialized.");
|
107
101
|
return m_info;
|
108
102
|
}
|
109
|
-
|
103
|
+
|
110
104
|
/** \brief Set the initial shift parameter \f$ \sigma \f$.
|
111
105
|
*/
|
112
106
|
void setInitialShift(RealScalar shift) { m_initialShift = shift; }
|
113
|
-
|
107
|
+
|
114
108
|
/** \brief Computes the fill reducing permutation vector using the sparsity pattern of \a mat
|
115
109
|
*/
|
116
110
|
template<typename MatrixType>
|
117
111
|
void analyzePattern(const MatrixType& mat)
|
118
112
|
{
|
119
|
-
OrderingType ord;
|
113
|
+
OrderingType ord;
|
120
114
|
PermutationType pinv;
|
121
|
-
ord(mat.template selfadjointView<UpLo>(), pinv);
|
115
|
+
ord(mat.template selfadjointView<UpLo>(), pinv);
|
122
116
|
if(pinv.size()>0) m_perm = pinv.inverse();
|
123
117
|
else m_perm.resize(0);
|
124
118
|
m_L.resize(mat.rows(), mat.cols());
|
@@ -126,7 +120,7 @@ class IncompleteCholesky : public SparseSolverBase<IncompleteCholesky<Scalar,_Up
|
|
126
120
|
m_isInitialized = true;
|
127
121
|
m_info = Success;
|
128
122
|
}
|
129
|
-
|
123
|
+
|
130
124
|
/** \brief Performs the numerical factorization of the input matrix \a mat
|
131
125
|
*
|
132
126
|
* The method analyzePattern() or compute() must have been called beforehand
|
@@ -136,7 +130,7 @@ class IncompleteCholesky : public SparseSolverBase<IncompleteCholesky<Scalar,_Up
|
|
136
130
|
*/
|
137
131
|
template<typename MatrixType>
|
138
132
|
void factorize(const MatrixType& mat);
|
139
|
-
|
133
|
+
|
140
134
|
/** Computes or re-computes the incomplete Cholesky factorization of the input matrix \a mat
|
141
135
|
*
|
142
136
|
* It is a shortcut for a sequential call to the analyzePattern() and factorize() methods.
|
@@ -149,7 +143,7 @@ class IncompleteCholesky : public SparseSolverBase<IncompleteCholesky<Scalar,_Up
|
|
149
143
|
analyzePattern(mat);
|
150
144
|
factorize(mat);
|
151
145
|
}
|
152
|
-
|
146
|
+
|
153
147
|
// internal
|
154
148
|
template<typename Rhs, typename Dest>
|
155
149
|
void _solve_impl(const Rhs& b, Dest& x) const
|
@@ -176,16 +170,16 @@ class IncompleteCholesky : public SparseSolverBase<IncompleteCholesky<Scalar,_Up
|
|
176
170
|
|
177
171
|
protected:
|
178
172
|
FactorType m_L; // The lower part stored in CSC
|
179
|
-
VectorRx m_scale; // The vector for scaling the matrix
|
173
|
+
VectorRx m_scale; // The vector for scaling the matrix
|
180
174
|
RealScalar m_initialShift; // The initial shift parameter
|
181
|
-
bool m_analysisIsOk;
|
182
|
-
bool m_factorizationIsOk;
|
175
|
+
bool m_analysisIsOk;
|
176
|
+
bool m_factorizationIsOk;
|
183
177
|
ComputationInfo m_info;
|
184
|
-
PermutationType m_perm;
|
178
|
+
PermutationType m_perm;
|
185
179
|
|
186
180
|
private:
|
187
|
-
inline void updateList(Ref<const VectorIx> colPtr, Ref<VectorIx> rowIdx, Ref<VectorSx> vals, const Index& col, const Index& jk, VectorIx& firstElt, VectorList& listCol);
|
188
|
-
};
|
181
|
+
inline void updateList(Ref<const VectorIx> colPtr, Ref<VectorIx> rowIdx, Ref<VectorSx> vals, const Index& col, const Index& jk, VectorIx& firstElt, VectorList& listCol);
|
182
|
+
};
|
189
183
|
|
190
184
|
// Based on the following paper:
|
191
185
|
// C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with
|
@@ -196,10 +190,10 @@ template<typename _MatrixType>
|
|
196
190
|
void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType& mat)
|
197
191
|
{
|
198
192
|
using std::sqrt;
|
199
|
-
eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
|
200
|
-
|
193
|
+
eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
|
194
|
+
|
201
195
|
// Dropping strategy : Keep only the p largest elements per column, where p is the number of elements in the column of the original matrix. Other strategies will be added
|
202
|
-
|
196
|
+
|
203
197
|
// Apply the fill-reducing permutation computed in analyzePattern()
|
204
198
|
if (m_perm.rows() == mat.rows() ) // To detect the null permutation
|
205
199
|
{
|
@@ -212,8 +206,8 @@ void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType
|
|
212
206
|
{
|
213
207
|
m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>();
|
214
208
|
}
|
215
|
-
|
216
|
-
Index n = m_L.cols();
|
209
|
+
|
210
|
+
Index n = m_L.cols();
|
217
211
|
Index nnz = m_L.nonZeros();
|
218
212
|
Map<VectorSx> vals(m_L.valuePtr(), nnz); //values
|
219
213
|
Map<VectorIx> rowIdx(m_L.innerIndexPtr(), nnz); //Row indices
|
@@ -225,9 +219,9 @@ void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType
|
|
225
219
|
VectorIx col_pattern(n);
|
226
220
|
col_pattern.fill(-1);
|
227
221
|
StorageIndex col_nnz;
|
228
|
-
|
229
|
-
|
230
|
-
// Computes the scaling factors
|
222
|
+
|
223
|
+
|
224
|
+
// Computes the scaling factors
|
231
225
|
m_scale.resize(n);
|
232
226
|
m_scale.setZero();
|
233
227
|
for (Index j = 0; j < n; j++)
|
@@ -237,7 +231,7 @@ void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType
|
|
237
231
|
if(rowIdx[k]!=j)
|
238
232
|
m_scale(rowIdx[k]) += numext::abs2(vals(k));
|
239
233
|
}
|
240
|
-
|
234
|
+
|
241
235
|
m_scale = m_scale.cwiseSqrt().cwiseSqrt();
|
242
236
|
|
243
237
|
for (Index j = 0; j < n; ++j)
|
@@ -247,8 +241,8 @@ void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType
|
|
247
241
|
m_scale(j) = 1;
|
248
242
|
|
249
243
|
// TODO disable scaling if not needed, i.e., if it is roughly uniform? (this will make solve() faster)
|
250
|
-
|
251
|
-
// Scale and compute the shift for the matrix
|
244
|
+
|
245
|
+
// Scale and compute the shift for the matrix
|
252
246
|
RealScalar mindiag = NumTraits<RealScalar>::highest();
|
253
247
|
for (Index j = 0; j < n; j++)
|
254
248
|
{
|
@@ -259,7 +253,7 @@ void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType
|
|
259
253
|
}
|
260
254
|
|
261
255
|
FactorType L_save = m_L;
|
262
|
-
|
256
|
+
|
263
257
|
RealScalar shift = 0;
|
264
258
|
if(mindiag <= RealScalar(0.))
|
265
259
|
shift = m_initialShift - mindiag;
|
@@ -381,7 +375,7 @@ inline void IncompleteCholesky<Scalar,_UpLo, OrderingType>::updateList(Ref<const
|
|
381
375
|
if (jk < colPtr(col+1) )
|
382
376
|
{
|
383
377
|
Index p = colPtr(col+1) - jk;
|
384
|
-
Index minpos;
|
378
|
+
Index minpos;
|
385
379
|
rowIdx.segment(jk,p).minCoeff(&minpos);
|
386
380
|
minpos += jk;
|
387
381
|
if (rowIdx(minpos) != rowIdx(jk))
|
@@ -395,6 +389,6 @@ inline void IncompleteCholesky<Scalar,_UpLo, OrderingType>::updateList(Ref<const
|
|
395
389
|
}
|
396
390
|
}
|
397
391
|
|
398
|
-
} // end namespace Eigen
|
392
|
+
} // end namespace Eigen
|
399
393
|
|
400
394
|
#endif
|
@@ -12,19 +12,19 @@
|
|
12
12
|
#define EIGEN_INCOMPLETE_LUT_H
|
13
13
|
|
14
14
|
|
15
|
-
namespace Eigen {
|
15
|
+
namespace Eigen {
|
16
16
|
|
17
17
|
namespace internal {
|
18
|
-
|
18
|
+
|
19
19
|
/** \internal
|
20
|
-
* Compute a quick-sort split of a vector
|
20
|
+
* Compute a quick-sort split of a vector
|
21
21
|
* On output, the vector row is permuted such that its elements satisfy
|
22
22
|
* abs(row(i)) >= abs(row(ncut)) if i<ncut
|
23
|
-
* abs(row(i)) <= abs(row(ncut)) if i>ncut
|
23
|
+
* abs(row(i)) <= abs(row(ncut)) if i>ncut
|
24
24
|
* \param row The vector of values
|
25
25
|
* \param ind The array of index for the elements in @p row
|
26
26
|
* \param ncut The number of largest elements to keep
|
27
|
-
**/
|
27
|
+
**/
|
28
28
|
template <typename VectorV, typename VectorI>
|
29
29
|
Index QuickSplit(VectorV &row, VectorI &ind, Index ncut)
|
30
30
|
{
|
@@ -34,15 +34,15 @@ Index QuickSplit(VectorV &row, VectorI &ind, Index ncut)
|
|
34
34
|
Index mid;
|
35
35
|
Index n = row.size(); /* length of the vector */
|
36
36
|
Index first, last ;
|
37
|
-
|
37
|
+
|
38
38
|
ncut--; /* to fit the zero-based indices */
|
39
|
-
first = 0;
|
40
|
-
last = n-1;
|
39
|
+
first = 0;
|
40
|
+
last = n-1;
|
41
41
|
if (ncut < first || ncut > last ) return 0;
|
42
|
-
|
42
|
+
|
43
43
|
do {
|
44
|
-
mid = first;
|
45
|
-
RealScalar abskey = abs(row(mid));
|
44
|
+
mid = first;
|
45
|
+
RealScalar abskey = abs(row(mid));
|
46
46
|
for (Index j = first + 1; j <= last; j++) {
|
47
47
|
if ( abs(row(j)) > abskey) {
|
48
48
|
++mid;
|
@@ -53,12 +53,12 @@ Index QuickSplit(VectorV &row, VectorI &ind, Index ncut)
|
|
53
53
|
/* Interchange for the pivot element */
|
54
54
|
swap(row(mid), row(first));
|
55
55
|
swap(ind(mid), ind(first));
|
56
|
-
|
56
|
+
|
57
57
|
if (mid > ncut) last = mid - 1;
|
58
|
-
else if (mid < ncut ) first = mid + 1;
|
58
|
+
else if (mid < ncut ) first = mid + 1;
|
59
59
|
} while (mid != ncut );
|
60
|
-
|
61
|
-
return 0; /* mid is equal to ncut */
|
60
|
+
|
61
|
+
return 0; /* mid is equal to ncut */
|
62
62
|
}
|
63
63
|
|
64
64
|
}// end namespace internal
|
@@ -71,23 +71,23 @@ Index QuickSplit(VectorV &row, VectorI &ind, Index ncut)
|
|
71
71
|
*
|
72
72
|
* During the numerical factorization, two dropping rules are used :
|
73
73
|
* 1) any element whose magnitude is less than some tolerance is dropped.
|
74
|
-
* This tolerance is obtained by multiplying the input tolerance @p droptol
|
74
|
+
* This tolerance is obtained by multiplying the input tolerance @p droptol
|
75
75
|
* by the average magnitude of all the original elements in the current row.
|
76
|
-
* 2) After the elimination of the row, only the @p fill largest elements in
|
77
|
-
* the L part and the @p fill largest elements in the U part are kept
|
78
|
-
* (in addition to the diagonal element ). Note that @p fill is computed from
|
79
|
-
* the input parameter @p fillfactor which is used the ratio to control the fill_in
|
76
|
+
* 2) After the elimination of the row, only the @p fill largest elements in
|
77
|
+
* the L part and the @p fill largest elements in the U part are kept
|
78
|
+
* (in addition to the diagonal element ). Note that @p fill is computed from
|
79
|
+
* the input parameter @p fillfactor which is used the ratio to control the fill_in
|
80
80
|
* relatively to the initial number of nonzero elements.
|
81
|
-
*
|
81
|
+
*
|
82
82
|
* The two extreme cases are when @p droptol=0 (to keep all the @p fill*2 largest elements)
|
83
|
-
* and when @p fill=n/2 with @p droptol being different to zero.
|
84
|
-
*
|
85
|
-
* References : Yousef Saad, ILUT: A dual threshold incomplete LU factorization,
|
83
|
+
* and when @p fill=n/2 with @p droptol being different to zero.
|
84
|
+
*
|
85
|
+
* References : Yousef Saad, ILUT: A dual threshold incomplete LU factorization,
|
86
86
|
* Numerical Linear Algebra with Applications, 1(4), pp 387-402, 1994.
|
87
|
-
*
|
87
|
+
*
|
88
88
|
* NOTE : The following implementation is derived from the ILUT implementation
|
89
|
-
* in the SPARSKIT package, Copyright (C) 2005, the Regents of the University of Minnesota
|
90
|
-
* released under the terms of the GNU LGPL:
|
89
|
+
* in the SPARSKIT package, Copyright (C) 2005, the Regents of the University of Minnesota
|
90
|
+
* released under the terms of the GNU LGPL:
|
91
91
|
* http://www-users.cs.umn.edu/~saad/software/SPARSKIT/README
|
92
92
|
* However, Yousef Saad gave us permission to relicense his ILUT code to MPL2.
|
93
93
|
* See the Eigen mailing list archive, thread: ILUT, date: July 8, 2012:
|
@@ -115,28 +115,28 @@ class IncompleteLUT : public SparseSolverBase<IncompleteLUT<_Scalar, _StorageInd
|
|
115
115
|
};
|
116
116
|
|
117
117
|
public:
|
118
|
-
|
118
|
+
|
119
119
|
IncompleteLUT()
|
120
120
|
: m_droptol(NumTraits<Scalar>::dummy_precision()), m_fillfactor(10),
|
121
121
|
m_analysisIsOk(false), m_factorizationIsOk(false)
|
122
122
|
{}
|
123
|
-
|
123
|
+
|
124
124
|
template<typename MatrixType>
|
125
125
|
explicit IncompleteLUT(const MatrixType& mat, const RealScalar& droptol=NumTraits<Scalar>::dummy_precision(), int fillfactor = 10)
|
126
126
|
: m_droptol(droptol),m_fillfactor(fillfactor),
|
127
127
|
m_analysisIsOk(false),m_factorizationIsOk(false)
|
128
128
|
{
|
129
129
|
eigen_assert(fillfactor != 0);
|
130
|
-
compute(mat);
|
130
|
+
compute(mat);
|
131
131
|
}
|
132
|
-
|
133
|
-
Index rows() const { return m_lu.rows(); }
|
134
|
-
|
135
|
-
Index cols() const { return m_lu.cols(); }
|
132
|
+
|
133
|
+
EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_lu.rows(); }
|
134
|
+
|
135
|
+
EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_lu.cols(); }
|
136
136
|
|
137
137
|
/** \brief Reports whether previous computation was successful.
|
138
138
|
*
|
139
|
-
* \returns \c Success if computation was
|
139
|
+
* \returns \c Success if computation was successful,
|
140
140
|
* \c NumericalIssue if the matrix.appears to be negative.
|
141
141
|
*/
|
142
142
|
ComputationInfo info() const
|
@@ -144,36 +144,36 @@ class IncompleteLUT : public SparseSolverBase<IncompleteLUT<_Scalar, _StorageInd
|
|
144
144
|
eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
|
145
145
|
return m_info;
|
146
146
|
}
|
147
|
-
|
147
|
+
|
148
148
|
template<typename MatrixType>
|
149
149
|
void analyzePattern(const MatrixType& amat);
|
150
|
-
|
150
|
+
|
151
151
|
template<typename MatrixType>
|
152
152
|
void factorize(const MatrixType& amat);
|
153
|
-
|
153
|
+
|
154
154
|
/**
|
155
155
|
* Compute an incomplete LU factorization with dual threshold on the matrix mat
|
156
156
|
* No pivoting is done in this version
|
157
|
-
*
|
157
|
+
*
|
158
158
|
**/
|
159
159
|
template<typename MatrixType>
|
160
160
|
IncompleteLUT& compute(const MatrixType& amat)
|
161
161
|
{
|
162
|
-
analyzePattern(amat);
|
162
|
+
analyzePattern(amat);
|
163
163
|
factorize(amat);
|
164
164
|
return *this;
|
165
165
|
}
|
166
166
|
|
167
|
-
void setDroptol(const RealScalar& droptol);
|
168
|
-
void setFillfactor(int fillfactor);
|
169
|
-
|
167
|
+
void setDroptol(const RealScalar& droptol);
|
168
|
+
void setFillfactor(int fillfactor);
|
169
|
+
|
170
170
|
template<typename Rhs, typename Dest>
|
171
171
|
void _solve_impl(const Rhs& b, Dest& x) const
|
172
172
|
{
|
173
173
|
x = m_Pinv * b;
|
174
174
|
x = m_lu.template triangularView<UnitLower>().solve(x);
|
175
175
|
x = m_lu.template triangularView<Upper>().solve(x);
|
176
|
-
x = m_P * x;
|
176
|
+
x = m_P * x;
|
177
177
|
}
|
178
178
|
|
179
179
|
protected:
|
@@ -200,22 +200,22 @@ protected:
|
|
200
200
|
|
201
201
|
/**
|
202
202
|
* Set control parameter droptol
|
203
|
-
* \param droptol Drop any element whose magnitude is less than this tolerance
|
204
|
-
**/
|
203
|
+
* \param droptol Drop any element whose magnitude is less than this tolerance
|
204
|
+
**/
|
205
205
|
template<typename Scalar, typename StorageIndex>
|
206
206
|
void IncompleteLUT<Scalar,StorageIndex>::setDroptol(const RealScalar& droptol)
|
207
207
|
{
|
208
|
-
this->m_droptol = droptol;
|
208
|
+
this->m_droptol = droptol;
|
209
209
|
}
|
210
210
|
|
211
211
|
/**
|
212
212
|
* Set control parameter fillfactor
|
213
|
-
* \param fillfactor This is used to compute the number @p fill_in of largest elements to keep on each row.
|
214
|
-
**/
|
213
|
+
* \param fillfactor This is used to compute the number @p fill_in of largest elements to keep on each row.
|
214
|
+
**/
|
215
215
|
template<typename Scalar, typename StorageIndex>
|
216
216
|
void IncompleteLUT<Scalar,StorageIndex>::setFillfactor(int fillfactor)
|
217
217
|
{
|
218
|
-
this->m_fillfactor = fillfactor;
|
218
|
+
this->m_fillfactor = fillfactor;
|
219
219
|
}
|
220
220
|
|
221
221
|
template <typename Scalar, typename StorageIndex>
|
@@ -225,24 +225,15 @@ void IncompleteLUT<Scalar,StorageIndex>::analyzePattern(const _MatrixType& amat)
|
|
225
225
|
// Compute the Fill-reducing permutation
|
226
226
|
// Since ILUT does not perform any numerical pivoting,
|
227
227
|
// it is highly preferable to keep the diagonal through symmetric permutations.
|
228
|
-
#ifndef EIGEN_MPL2_ONLY
|
229
228
|
// To this end, let's symmetrize the pattern and perform AMD on it.
|
230
229
|
SparseMatrix<Scalar,ColMajor, StorageIndex> mat1 = amat;
|
231
230
|
SparseMatrix<Scalar,ColMajor, StorageIndex> mat2 = amat.transpose();
|
232
231
|
// FIXME for a matrix with nearly symmetric pattern, mat2+mat1 is the appropriate choice.
|
233
|
-
// on the other hand for a really non-symmetric pattern, mat2*mat1 should be
|
232
|
+
// on the other hand for a really non-symmetric pattern, mat2*mat1 should be preferred...
|
234
233
|
SparseMatrix<Scalar,ColMajor, StorageIndex> AtA = mat2 + mat1;
|
235
234
|
AMDOrdering<StorageIndex> ordering;
|
236
235
|
ordering(AtA,m_P);
|
237
236
|
m_Pinv = m_P.inverse(); // cache the inverse permutation
|
238
|
-
#else
|
239
|
-
// If AMD is not available, (MPL2-only), then let's use the slower COLAMD routine.
|
240
|
-
SparseMatrix<Scalar,ColMajor, StorageIndex> mat1 = amat;
|
241
|
-
COLAMDOrdering<StorageIndex> ordering;
|
242
|
-
ordering(mat1,m_Pinv);
|
243
|
-
m_P = m_Pinv.inverse();
|
244
|
-
#endif
|
245
|
-
|
246
237
|
m_analysisIsOk = true;
|
247
238
|
m_factorizationIsOk = false;
|
248
239
|
m_isInitialized = true;
|
@@ -10,7 +10,7 @@
|
|
10
10
|
#ifndef EIGEN_ITERATIVE_SOLVER_BASE_H
|
11
11
|
#define EIGEN_ITERATIVE_SOLVER_BASE_H
|
12
12
|
|
13
|
-
namespace Eigen {
|
13
|
+
namespace Eigen {
|
14
14
|
|
15
15
|
namespace internal {
|
16
16
|
|
@@ -145,7 +145,7 @@ class IterativeSolverBase : public SparseSolverBase<Derived>
|
|
145
145
|
protected:
|
146
146
|
typedef SparseSolverBase<Derived> Base;
|
147
147
|
using Base::m_isInitialized;
|
148
|
-
|
148
|
+
|
149
149
|
public:
|
150
150
|
typedef typename internal::traits<Derived>::MatrixType MatrixType;
|
151
151
|
typedef typename internal::traits<Derived>::Preconditioner Preconditioner;
|
@@ -169,10 +169,10 @@ public:
|
|
169
169
|
}
|
170
170
|
|
171
171
|
/** Initialize the solver with matrix \a A for further \c Ax=b solving.
|
172
|
-
*
|
172
|
+
*
|
173
173
|
* This constructor is a shortcut for the default constructor followed
|
174
174
|
* by a call to compute().
|
175
|
-
*
|
175
|
+
*
|
176
176
|
* \warning this class stores a reference to the matrix A as well as some
|
177
177
|
* precomputed values that depend on it. Therefore, if \a A is changed
|
178
178
|
* this class becomes invalid. Call compute() to update it with the new
|
@@ -187,7 +187,7 @@ public:
|
|
187
187
|
}
|
188
188
|
|
189
189
|
~IterativeSolverBase() {}
|
190
|
-
|
190
|
+
|
191
191
|
/** Initializes the iterative solver for the sparsity pattern of the matrix \a A for further solving \c Ax=b problems.
|
192
192
|
*
|
193
193
|
* Currently, this function mostly calls analyzePattern on the preconditioner. In the future
|
@@ -203,7 +203,7 @@ public:
|
|
203
203
|
m_info = m_preconditioner.info();
|
204
204
|
return derived();
|
205
205
|
}
|
206
|
-
|
206
|
+
|
207
207
|
/** Initializes the iterative solver with the numerical values of the matrix \a A for further solving \c Ax=b problems.
|
208
208
|
*
|
209
209
|
* Currently, this function mostly calls factorize on the preconditioner.
|
@@ -216,7 +216,7 @@ public:
|
|
216
216
|
template<typename MatrixDerived>
|
217
217
|
Derived& factorize(const EigenBase<MatrixDerived>& A)
|
218
218
|
{
|
219
|
-
eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
|
219
|
+
eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
|
220
220
|
grab(A.derived());
|
221
221
|
m_preconditioner.factorize(matrix());
|
222
222
|
m_factorizationIsOk = true;
|
@@ -247,16 +247,16 @@ public:
|
|
247
247
|
}
|
248
248
|
|
249
249
|
/** \internal */
|
250
|
-
Index rows() const { return matrix().rows(); }
|
250
|
+
EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return matrix().rows(); }
|
251
251
|
|
252
252
|
/** \internal */
|
253
|
-
Index cols() const { return matrix().cols(); }
|
253
|
+
EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return matrix().cols(); }
|
254
254
|
|
255
255
|
/** \returns the tolerance threshold used by the stopping criteria.
|
256
256
|
* \sa setTolerance()
|
257
257
|
*/
|
258
258
|
RealScalar tolerance() const { return m_tolerance; }
|
259
|
-
|
259
|
+
|
260
260
|
/** Sets the tolerance threshold used by the stopping criteria.
|
261
261
|
*
|
262
262
|
* This value is used as an upper bound to the relative residual error: |Ax-b|/|b|.
|
@@ -270,19 +270,19 @@ public:
|
|
270
270
|
|
271
271
|
/** \returns a read-write reference to the preconditioner for custom configuration. */
|
272
272
|
Preconditioner& preconditioner() { return m_preconditioner; }
|
273
|
-
|
273
|
+
|
274
274
|
/** \returns a read-only reference to the preconditioner. */
|
275
275
|
const Preconditioner& preconditioner() const { return m_preconditioner; }
|
276
276
|
|
277
277
|
/** \returns the max number of iterations.
|
278
|
-
* It is either the value
|
278
|
+
* It is either the value set by setMaxIterations or, by default,
|
279
279
|
* twice the number of columns of the matrix.
|
280
280
|
*/
|
281
281
|
Index maxIterations() const
|
282
282
|
{
|
283
283
|
return (m_maxIterations<0) ? 2*matrix().cols() : m_maxIterations;
|
284
284
|
}
|
285
|
-
|
285
|
+
|
286
286
|
/** Sets the max number of iterations.
|
287
287
|
* Default is twice the number of columns of the matrix.
|
288
288
|
*/
|
@@ -328,13 +328,13 @@ public:
|
|
328
328
|
eigen_assert(m_isInitialized && "IterativeSolverBase is not initialized.");
|
329
329
|
return m_info;
|
330
330
|
}
|
331
|
-
|
331
|
+
|
332
332
|
/** \internal */
|
333
333
|
template<typename Rhs, typename DestDerived>
|
334
|
-
void
|
334
|
+
void _solve_with_guess_impl(const Rhs& b, SparseMatrixBase<DestDerived> &aDest) const
|
335
335
|
{
|
336
336
|
eigen_assert(rows()==b.rows());
|
337
|
-
|
337
|
+
|
338
338
|
Index rhsCols = b.cols();
|
339
339
|
Index size = b.rows();
|
340
340
|
DestDerived& dest(aDest.derived());
|
@@ -344,15 +344,65 @@ public:
|
|
344
344
|
// We do not directly fill dest because sparse expressions have to be free of aliasing issue.
|
345
345
|
// For non square least-square problems, b and dest might not have the same size whereas they might alias each-other.
|
346
346
|
typename DestDerived::PlainObject tmp(cols(),rhsCols);
|
347
|
+
ComputationInfo global_info = Success;
|
347
348
|
for(Index k=0; k<rhsCols; ++k)
|
348
349
|
{
|
349
350
|
tb = b.col(k);
|
350
|
-
tx =
|
351
|
+
tx = dest.col(k);
|
352
|
+
derived()._solve_vector_with_guess_impl(tb,tx);
|
351
353
|
tmp.col(k) = tx.sparseView(0);
|
354
|
+
|
355
|
+
// The call to _solve_vector_with_guess_impl updates m_info, so if it failed for a previous column
|
356
|
+
// we need to restore it to the worst value.
|
357
|
+
if(m_info==NumericalIssue)
|
358
|
+
global_info = NumericalIssue;
|
359
|
+
else if(m_info==NoConvergence)
|
360
|
+
global_info = NoConvergence;
|
352
361
|
}
|
362
|
+
m_info = global_info;
|
353
363
|
dest.swap(tmp);
|
354
364
|
}
|
355
365
|
|
366
|
+
template<typename Rhs, typename DestDerived>
|
367
|
+
typename internal::enable_if<Rhs::ColsAtCompileTime!=1 && DestDerived::ColsAtCompileTime!=1>::type
|
368
|
+
_solve_with_guess_impl(const Rhs& b, MatrixBase<DestDerived> &aDest) const
|
369
|
+
{
|
370
|
+
eigen_assert(rows()==b.rows());
|
371
|
+
|
372
|
+
Index rhsCols = b.cols();
|
373
|
+
DestDerived& dest(aDest.derived());
|
374
|
+
ComputationInfo global_info = Success;
|
375
|
+
for(Index k=0; k<rhsCols; ++k)
|
376
|
+
{
|
377
|
+
typename DestDerived::ColXpr xk(dest,k);
|
378
|
+
typename Rhs::ConstColXpr bk(b,k);
|
379
|
+
derived()._solve_vector_with_guess_impl(bk,xk);
|
380
|
+
|
381
|
+
// The call to _solve_vector_with_guess updates m_info, so if it failed for a previous column
|
382
|
+
// we need to restore it to the worst value.
|
383
|
+
if(m_info==NumericalIssue)
|
384
|
+
global_info = NumericalIssue;
|
385
|
+
else if(m_info==NoConvergence)
|
386
|
+
global_info = NoConvergence;
|
387
|
+
}
|
388
|
+
m_info = global_info;
|
389
|
+
}
|
390
|
+
|
391
|
+
template<typename Rhs, typename DestDerived>
|
392
|
+
typename internal::enable_if<Rhs::ColsAtCompileTime==1 || DestDerived::ColsAtCompileTime==1>::type
|
393
|
+
_solve_with_guess_impl(const Rhs& b, MatrixBase<DestDerived> &dest) const
|
394
|
+
{
|
395
|
+
derived()._solve_vector_with_guess_impl(b,dest.derived());
|
396
|
+
}
|
397
|
+
|
398
|
+
/** \internal default initial guess = 0 */
|
399
|
+
template<typename Rhs,typename Dest>
|
400
|
+
void _solve_impl(const Rhs& b, Dest& x) const
|
401
|
+
{
|
402
|
+
x.setZero();
|
403
|
+
derived()._solve_with_guess_impl(b,x);
|
404
|
+
}
|
405
|
+
|
356
406
|
protected:
|
357
407
|
void init()
|
358
408
|
{
|
@@ -370,19 +420,19 @@ protected:
|
|
370
420
|
{
|
371
421
|
return m_matrixWrapper.matrix();
|
372
422
|
}
|
373
|
-
|
423
|
+
|
374
424
|
template<typename InputType>
|
375
425
|
void grab(const InputType &A)
|
376
426
|
{
|
377
427
|
m_matrixWrapper.grab(A);
|
378
428
|
}
|
379
|
-
|
429
|
+
|
380
430
|
MatrixWrapper m_matrixWrapper;
|
381
431
|
Preconditioner m_preconditioner;
|
382
432
|
|
383
433
|
Index m_maxIterations;
|
384
434
|
RealScalar m_tolerance;
|
385
|
-
|
435
|
+
|
386
436
|
mutable RealScalar m_error;
|
387
437
|
mutable Index m_iterations;
|
388
438
|
mutable ComputationInfo m_info;
|