tomoto 0.2.2 → 0.3.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (369) hide show
  1. checksums.yaml +4 -4
  2. data/CHANGELOG.md +10 -0
  3. data/README.md +8 -10
  4. data/ext/tomoto/ct.cpp +11 -11
  5. data/ext/tomoto/dmr.cpp +14 -13
  6. data/ext/tomoto/dt.cpp +14 -14
  7. data/ext/tomoto/extconf.rb +7 -5
  8. data/ext/tomoto/gdmr.cpp +7 -7
  9. data/ext/tomoto/hdp.cpp +9 -9
  10. data/ext/tomoto/hlda.cpp +13 -13
  11. data/ext/tomoto/hpa.cpp +5 -5
  12. data/ext/tomoto/lda.cpp +42 -39
  13. data/ext/tomoto/llda.cpp +6 -6
  14. data/ext/tomoto/mglda.cpp +15 -15
  15. data/ext/tomoto/pa.cpp +6 -6
  16. data/ext/tomoto/plda.cpp +6 -6
  17. data/ext/tomoto/slda.cpp +8 -8
  18. data/ext/tomoto/{ext.cpp → tomoto.cpp} +8 -8
  19. data/ext/tomoto/utils.h +16 -70
  20. data/lib/tomoto/version.rb +1 -1
  21. data/lib/tomoto.rb +5 -1
  22. data/vendor/EigenRand/EigenRand/Core.h +10 -10
  23. data/vendor/EigenRand/EigenRand/Dists/Basic.h +208 -9
  24. data/vendor/EigenRand/EigenRand/Dists/Discrete.h +52 -31
  25. data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +9 -8
  26. data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +28 -21
  27. data/vendor/EigenRand/EigenRand/EigenRand +11 -6
  28. data/vendor/EigenRand/EigenRand/Macro.h +13 -7
  29. data/vendor/EigenRand/EigenRand/MorePacketMath.h +348 -740
  30. data/vendor/EigenRand/EigenRand/MvDists/Multinomial.h +5 -3
  31. data/vendor/EigenRand/EigenRand/MvDists/MvNormal.h +9 -3
  32. data/vendor/EigenRand/EigenRand/PacketFilter.h +11 -253
  33. data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +21 -47
  34. data/vendor/EigenRand/EigenRand/RandUtils.h +50 -344
  35. data/vendor/EigenRand/EigenRand/arch/AVX/MorePacketMath.h +619 -0
  36. data/vendor/EigenRand/EigenRand/arch/AVX/PacketFilter.h +149 -0
  37. data/vendor/EigenRand/EigenRand/arch/AVX/RandUtils.h +228 -0
  38. data/vendor/EigenRand/EigenRand/arch/NEON/MorePacketMath.h +473 -0
  39. data/vendor/EigenRand/EigenRand/arch/NEON/PacketFilter.h +142 -0
  40. data/vendor/EigenRand/EigenRand/arch/NEON/RandUtils.h +126 -0
  41. data/vendor/EigenRand/EigenRand/arch/SSE/MorePacketMath.h +501 -0
  42. data/vendor/EigenRand/EigenRand/arch/SSE/PacketFilter.h +133 -0
  43. data/vendor/EigenRand/EigenRand/arch/SSE/RandUtils.h +120 -0
  44. data/vendor/EigenRand/EigenRand/doc.h +24 -12
  45. data/vendor/EigenRand/README.md +57 -4
  46. data/vendor/eigen/COPYING.APACHE +203 -0
  47. data/vendor/eigen/COPYING.BSD +1 -1
  48. data/vendor/eigen/COPYING.MINPACK +51 -52
  49. data/vendor/eigen/Eigen/Cholesky +0 -1
  50. data/vendor/eigen/Eigen/Core +112 -265
  51. data/vendor/eigen/Eigen/Eigenvalues +2 -3
  52. data/vendor/eigen/Eigen/Geometry +5 -8
  53. data/vendor/eigen/Eigen/Householder +0 -1
  54. data/vendor/eigen/Eigen/Jacobi +0 -1
  55. data/vendor/eigen/Eigen/KLUSupport +41 -0
  56. data/vendor/eigen/Eigen/LU +2 -5
  57. data/vendor/eigen/Eigen/OrderingMethods +0 -3
  58. data/vendor/eigen/Eigen/PaStiXSupport +1 -0
  59. data/vendor/eigen/Eigen/PardisoSupport +0 -0
  60. data/vendor/eigen/Eigen/QR +2 -3
  61. data/vendor/eigen/Eigen/QtAlignedMalloc +0 -1
  62. data/vendor/eigen/Eigen/SVD +0 -1
  63. data/vendor/eigen/Eigen/Sparse +0 -2
  64. data/vendor/eigen/Eigen/SparseCholesky +0 -8
  65. data/vendor/eigen/Eigen/SparseLU +4 -0
  66. data/vendor/eigen/Eigen/SparseQR +0 -1
  67. data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +42 -27
  68. data/vendor/eigen/Eigen/src/Cholesky/LLT.h +39 -23
  69. data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +90 -47
  70. data/vendor/eigen/Eigen/src/Core/ArithmeticSequence.h +413 -0
  71. data/vendor/eigen/Eigen/src/Core/Array.h +99 -11
  72. data/vendor/eigen/Eigen/src/Core/ArrayBase.h +3 -3
  73. data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +21 -21
  74. data/vendor/eigen/Eigen/src/Core/Assign.h +1 -1
  75. data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +125 -50
  76. data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +10 -10
  77. data/vendor/eigen/Eigen/src/Core/BandMatrix.h +16 -16
  78. data/vendor/eigen/Eigen/src/Core/Block.h +56 -60
  79. data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +29 -31
  80. data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +7 -3
  81. data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +325 -272
  82. data/vendor/eigen/Eigen/src/Core/CoreIterators.h +5 -0
  83. data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +21 -22
  84. data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +153 -18
  85. data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +6 -6
  86. data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +14 -10
  87. data/vendor/eigen/Eigen/src/Core/DenseBase.h +132 -42
  88. data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +25 -21
  89. data/vendor/eigen/Eigen/src/Core/DenseStorage.h +153 -71
  90. data/vendor/eigen/Eigen/src/Core/Diagonal.h +21 -23
  91. data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +50 -2
  92. data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +1 -1
  93. data/vendor/eigen/Eigen/src/Core/Dot.h +10 -10
  94. data/vendor/eigen/Eigen/src/Core/EigenBase.h +10 -9
  95. data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +8 -4
  96. data/vendor/eigen/Eigen/src/Core/Fuzzy.h +3 -3
  97. data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +20 -10
  98. data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +599 -152
  99. data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +40 -33
  100. data/vendor/eigen/Eigen/src/Core/IO.h +40 -7
  101. data/vendor/eigen/Eigen/src/Core/IndexedView.h +237 -0
  102. data/vendor/eigen/Eigen/src/Core/Inverse.h +9 -10
  103. data/vendor/eigen/Eigen/src/Core/Map.h +7 -7
  104. data/vendor/eigen/Eigen/src/Core/MapBase.h +10 -3
  105. data/vendor/eigen/Eigen/src/Core/MathFunctions.h +767 -125
  106. data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +118 -19
  107. data/vendor/eigen/Eigen/src/Core/Matrix.h +131 -25
  108. data/vendor/eigen/Eigen/src/Core/MatrixBase.h +21 -3
  109. data/vendor/eigen/Eigen/src/Core/NestByValue.h +25 -50
  110. data/vendor/eigen/Eigen/src/Core/NoAlias.h +4 -3
  111. data/vendor/eigen/Eigen/src/Core/NumTraits.h +107 -20
  112. data/vendor/eigen/Eigen/src/Core/PartialReduxEvaluator.h +232 -0
  113. data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +3 -31
  114. data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +152 -59
  115. data/vendor/eigen/Eigen/src/Core/Product.h +30 -25
  116. data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +192 -125
  117. data/vendor/eigen/Eigen/src/Core/Random.h +37 -1
  118. data/vendor/eigen/Eigen/src/Core/Redux.h +180 -170
  119. data/vendor/eigen/Eigen/src/Core/Ref.h +121 -23
  120. data/vendor/eigen/Eigen/src/Core/Replicate.h +8 -8
  121. data/vendor/eigen/Eigen/src/Core/Reshaped.h +454 -0
  122. data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +7 -5
  123. data/vendor/eigen/Eigen/src/Core/Reverse.h +18 -12
  124. data/vendor/eigen/Eigen/src/Core/Select.h +8 -6
  125. data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +33 -20
  126. data/vendor/eigen/Eigen/src/Core/Solve.h +14 -14
  127. data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +16 -16
  128. data/vendor/eigen/Eigen/src/Core/SolverBase.h +41 -3
  129. data/vendor/eigen/Eigen/src/Core/StableNorm.h +100 -70
  130. data/vendor/eigen/Eigen/src/Core/StlIterators.h +463 -0
  131. data/vendor/eigen/Eigen/src/Core/Stride.h +9 -4
  132. data/vendor/eigen/Eigen/src/Core/Swap.h +5 -4
  133. data/vendor/eigen/Eigen/src/Core/Transpose.h +88 -27
  134. data/vendor/eigen/Eigen/src/Core/Transpositions.h +26 -47
  135. data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +93 -75
  136. data/vendor/eigen/Eigen/src/Core/VectorBlock.h +5 -5
  137. data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +159 -70
  138. data/vendor/eigen/Eigen/src/Core/Visitor.h +137 -29
  139. data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +50 -129
  140. data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +126 -337
  141. data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +1092 -155
  142. data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +65 -1
  143. data/vendor/eigen/Eigen/src/Core/arch/AVX512/Complex.h +422 -0
  144. data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +207 -236
  145. data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1482 -495
  146. data/vendor/eigen/Eigen/src/Core/arch/AVX512/TypeCasting.h +89 -0
  147. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +152 -165
  148. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +19 -251
  149. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MatrixProduct.h +2937 -0
  150. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MatrixProductCommon.h +221 -0
  151. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MatrixProductMMA.h +629 -0
  152. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +2042 -392
  153. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +235 -80
  154. data/vendor/eigen/Eigen/src/Core/arch/Default/BFloat16.h +700 -0
  155. data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +102 -14
  156. data/vendor/eigen/Eigen/src/Core/arch/Default/GenericPacketMathFunctions.h +1649 -0
  157. data/vendor/eigen/Eigen/src/Core/arch/Default/GenericPacketMathFunctionsFwd.h +110 -0
  158. data/vendor/eigen/Eigen/src/Core/arch/Default/Half.h +942 -0
  159. data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +1 -1
  160. data/vendor/eigen/Eigen/src/Core/arch/Default/TypeCasting.h +120 -0
  161. data/vendor/eigen/Eigen/src/Core/arch/{CUDA → GPU}/MathFunctions.h +16 -4
  162. data/vendor/eigen/Eigen/src/Core/arch/GPU/PacketMath.h +1685 -0
  163. data/vendor/eigen/Eigen/src/Core/arch/GPU/TypeCasting.h +80 -0
  164. data/vendor/eigen/Eigen/src/Core/arch/HIP/hcc/math_constants.h +23 -0
  165. data/vendor/eigen/Eigen/src/Core/arch/MSA/Complex.h +648 -0
  166. data/vendor/eigen/Eigen/src/Core/arch/MSA/MathFunctions.h +387 -0
  167. data/vendor/eigen/Eigen/src/Core/arch/MSA/PacketMath.h +1233 -0
  168. data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +313 -219
  169. data/vendor/eigen/Eigen/src/Core/arch/NEON/GeneralBlockPanelKernel.h +183 -0
  170. data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +54 -70
  171. data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +4376 -549
  172. data/vendor/eigen/Eigen/src/Core/arch/NEON/TypeCasting.h +1419 -0
  173. data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +59 -179
  174. data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +65 -428
  175. data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +893 -283
  176. data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +65 -0
  177. data/vendor/eigen/Eigen/src/Core/arch/SVE/MathFunctions.h +44 -0
  178. data/vendor/eigen/Eigen/src/Core/arch/SVE/PacketMath.h +752 -0
  179. data/vendor/eigen/Eigen/src/Core/arch/SVE/TypeCasting.h +49 -0
  180. data/vendor/eigen/Eigen/src/Core/arch/SYCL/InteropHeaders.h +232 -0
  181. data/vendor/eigen/Eigen/src/Core/arch/SYCL/MathFunctions.h +301 -0
  182. data/vendor/eigen/Eigen/src/Core/arch/SYCL/PacketMath.h +670 -0
  183. data/vendor/eigen/Eigen/src/Core/arch/SYCL/SyclMemoryModel.h +694 -0
  184. data/vendor/eigen/Eigen/src/Core/arch/SYCL/TypeCasting.h +85 -0
  185. data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +212 -183
  186. data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +101 -5
  187. data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +510 -395
  188. data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +11 -2
  189. data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +112 -46
  190. data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +31 -30
  191. data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +32 -2
  192. data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +355 -16
  193. data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +1075 -586
  194. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +49 -24
  195. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +41 -35
  196. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +6 -6
  197. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +4 -2
  198. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +382 -483
  199. data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +22 -5
  200. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +53 -30
  201. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +16 -8
  202. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +8 -6
  203. data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +4 -4
  204. data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +5 -4
  205. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +33 -27
  206. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +14 -12
  207. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +36 -34
  208. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +8 -4
  209. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +13 -10
  210. data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +304 -119
  211. data/vendor/eigen/Eigen/src/Core/util/ConfigureVectorization.h +512 -0
  212. data/vendor/eigen/Eigen/src/Core/util/Constants.h +25 -9
  213. data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +26 -3
  214. data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +29 -9
  215. data/vendor/eigen/Eigen/src/Core/util/IndexedViewHelper.h +186 -0
  216. data/vendor/eigen/Eigen/src/Core/util/IntegralConstant.h +272 -0
  217. data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +8 -1
  218. data/vendor/eigen/Eigen/src/Core/util/Macros.h +709 -246
  219. data/vendor/eigen/Eigen/src/Core/util/Memory.h +222 -52
  220. data/vendor/eigen/Eigen/src/Core/util/Meta.h +355 -77
  221. data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +5 -1
  222. data/vendor/eigen/Eigen/src/Core/util/ReshapedHelper.h +51 -0
  223. data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +8 -5
  224. data/vendor/eigen/Eigen/src/Core/util/SymbolicIndex.h +293 -0
  225. data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +65 -30
  226. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +1 -1
  227. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +7 -4
  228. data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +2 -2
  229. data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +1 -1
  230. data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +2 -2
  231. data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +2 -2
  232. data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +9 -6
  233. data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +21 -9
  234. data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +77 -43
  235. data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +20 -15
  236. data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +99 -5
  237. data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +4 -4
  238. data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +3 -3
  239. data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +15 -11
  240. data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +1 -1
  241. data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +3 -2
  242. data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +39 -2
  243. data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +70 -14
  244. data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +3 -3
  245. data/vendor/eigen/Eigen/src/Geometry/Scaling.h +23 -5
  246. data/vendor/eigen/Eigen/src/Geometry/Transform.h +88 -67
  247. data/vendor/eigen/Eigen/src/Geometry/Translation.h +6 -12
  248. data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +1 -1
  249. data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h +168 -0
  250. data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +9 -2
  251. data/vendor/eigen/Eigen/src/Householder/Householder.h +8 -4
  252. data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +123 -48
  253. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +15 -15
  254. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +7 -23
  255. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +5 -22
  256. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +41 -47
  257. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +51 -60
  258. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +70 -20
  259. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +2 -20
  260. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +11 -9
  261. data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +31 -10
  262. data/vendor/eigen/Eigen/src/KLUSupport/KLUSupport.h +358 -0
  263. data/vendor/eigen/Eigen/src/LU/Determinant.h +35 -19
  264. data/vendor/eigen/Eigen/src/LU/FullPivLU.h +29 -43
  265. data/vendor/eigen/Eigen/src/LU/InverseImpl.h +25 -8
  266. data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +71 -58
  267. data/vendor/eigen/Eigen/src/LU/arch/InverseSize4.h +351 -0
  268. data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +7 -17
  269. data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +297 -277
  270. data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +6 -10
  271. data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +1 -1
  272. data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +9 -7
  273. data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +41 -20
  274. data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +100 -27
  275. data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +59 -22
  276. data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +48 -23
  277. data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +25 -3
  278. data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +183 -63
  279. data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +22 -14
  280. data/vendor/eigen/Eigen/src/SVD/SVDBase.h +83 -22
  281. data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +3 -3
  282. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +17 -9
  283. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +12 -37
  284. data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +3 -2
  285. data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +16 -0
  286. data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +6 -6
  287. data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +81 -27
  288. data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +25 -57
  289. data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +40 -11
  290. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +11 -15
  291. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +4 -2
  292. data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +30 -8
  293. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +126 -11
  294. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +5 -12
  295. data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +13 -1
  296. data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +7 -7
  297. data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +5 -2
  298. data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +8 -0
  299. data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +1 -1
  300. data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +1 -0
  301. data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +162 -12
  302. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +1 -1
  303. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +76 -2
  304. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +2 -2
  305. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +1 -1
  306. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +1 -1
  307. data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +19 -6
  308. data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +2 -12
  309. data/vendor/eigen/Eigen/src/StlSupport/StdList.h +2 -2
  310. data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +2 -2
  311. data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +6 -8
  312. data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +175 -39
  313. data/vendor/eigen/Eigen/src/misc/lapacke.h +5 -4
  314. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +28 -2
  315. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +155 -11
  316. data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +626 -242
  317. data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +14 -0
  318. data/vendor/eigen/Eigen/src/plugins/IndexedViewMethods.h +262 -0
  319. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +4 -4
  320. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +10 -0
  321. data/vendor/eigen/Eigen/src/plugins/ReshapedMethods.h +149 -0
  322. data/vendor/eigen/README.md +2 -0
  323. data/vendor/eigen/bench/btl/README +1 -1
  324. data/vendor/eigen/bench/tensors/README +6 -7
  325. data/vendor/eigen/ci/README.md +56 -0
  326. data/vendor/eigen/demos/mix_eigen_and_c/README +1 -1
  327. data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +213 -158
  328. data/vendor/eigen/unsupported/README.txt +1 -1
  329. data/vendor/tomotopy/README.kr.rst +78 -0
  330. data/vendor/tomotopy/README.rst +75 -0
  331. data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +2 -2
  332. data/vendor/tomotopy/src/Labeling/Phraser.hpp +4 -4
  333. data/vendor/tomotopy/src/TopicModel/CTModel.hpp +7 -3
  334. data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +7 -3
  335. data/vendor/tomotopy/src/TopicModel/DTModel.hpp +6 -3
  336. data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +2 -2
  337. data/vendor/tomotopy/src/TopicModel/HDP.h +1 -0
  338. data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +57 -6
  339. data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +6 -3
  340. data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +3 -2
  341. data/vendor/tomotopy/src/TopicModel/LDA.h +3 -3
  342. data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +5 -5
  343. data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +50 -19
  344. data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +6 -2
  345. data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +3 -2
  346. data/vendor/tomotopy/src/TopicModel/PAModel.hpp +1 -1
  347. data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +6 -2
  348. data/vendor/tomotopy/src/TopicModel/PT.h +3 -1
  349. data/vendor/tomotopy/src/TopicModel/PTModel.hpp +36 -3
  350. data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +6 -3
  351. data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +55 -26
  352. data/vendor/tomotopy/src/Utils/AliasMethod.hpp +5 -4
  353. data/vendor/tomotopy/src/Utils/Dictionary.h +2 -2
  354. data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +36 -1
  355. data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +1 -1
  356. data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +1 -1
  357. data/vendor/tomotopy/src/Utils/exception.h +6 -0
  358. data/vendor/tomotopy/src/Utils/math.h +2 -2
  359. data/vendor/tomotopy/src/Utils/sample.hpp +14 -12
  360. data/vendor/tomotopy/src/Utils/serializer.hpp +30 -5
  361. data/vendor/tomotopy/src/Utils/sse_gamma.h +0 -3
  362. metadata +64 -18
  363. data/vendor/eigen/Eigen/CMakeLists.txt +0 -19
  364. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +0 -674
  365. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +0 -333
  366. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +0 -1124
  367. data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +0 -212
  368. data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +0 -161
  369. data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +0 -338
@@ -33,6 +33,7 @@ class NoAlias
33
33
  public:
34
34
  typedef typename ExpressionType::Scalar Scalar;
35
35
 
36
+ EIGEN_DEVICE_FUNC
36
37
  explicit NoAlias(ExpressionType& expression) : m_expression(expression) {}
37
38
 
38
39
  template<typename OtherDerived>
@@ -74,10 +75,10 @@ class NoAlias
74
75
  *
75
76
  * More precisely, noalias() allows to bypass the EvalBeforeAssignBit flag.
76
77
  * Currently, even though several expressions may alias, only product
77
- * expressions have this flag. Therefore, noalias() is only usefull when
78
+ * expressions have this flag. Therefore, noalias() is only useful when
78
79
  * the source expression contains a matrix product.
79
80
  *
80
- * Here are some examples where noalias is usefull:
81
+ * Here are some examples where noalias is useful:
81
82
  * \code
82
83
  * D.noalias() = A * B;
83
84
  * D.noalias() += A.transpose() * B;
@@ -98,7 +99,7 @@ class NoAlias
98
99
  * \sa class NoAlias
99
100
  */
100
101
  template<typename Derived>
101
- NoAlias<Derived,MatrixBase> MatrixBase<Derived>::noalias()
102
+ NoAlias<Derived,MatrixBase> EIGEN_DEVICE_FUNC MatrixBase<Derived>::noalias()
102
103
  {
103
104
  return NoAlias<Derived, Eigen::MatrixBase >(derived());
104
105
  }
@@ -21,12 +21,14 @@ template< typename T,
21
21
  bool is_integer = NumTraits<T>::IsInteger>
22
22
  struct default_digits10_impl
23
23
  {
24
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
24
25
  static int run() { return std::numeric_limits<T>::digits10; }
25
26
  };
26
27
 
27
28
  template<typename T>
28
29
  struct default_digits10_impl<T,false,false> // Floating point
29
30
  {
31
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
30
32
  static int run() {
31
33
  using std::log10;
32
34
  using std::ceil;
@@ -38,11 +40,64 @@ struct default_digits10_impl<T,false,false> // Floating point
38
40
  template<typename T>
39
41
  struct default_digits10_impl<T,false,true> // Integer
40
42
  {
43
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
44
+ static int run() { return 0; }
45
+ };
46
+
47
+
48
+ // default implementation of digits(), based on numeric_limits if specialized,
49
+ // 0 for integer types, and log2(epsilon()) otherwise.
50
+ template< typename T,
51
+ bool use_numeric_limits = std::numeric_limits<T>::is_specialized,
52
+ bool is_integer = NumTraits<T>::IsInteger>
53
+ struct default_digits_impl
54
+ {
55
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
56
+ static int run() { return std::numeric_limits<T>::digits; }
57
+ };
58
+
59
+ template<typename T>
60
+ struct default_digits_impl<T,false,false> // Floating point
61
+ {
62
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
63
+ static int run() {
64
+ using std::log;
65
+ using std::ceil;
66
+ typedef typename NumTraits<T>::Real Real;
67
+ return int(ceil(-log(NumTraits<Real>::epsilon())/log(static_cast<Real>(2))));
68
+ }
69
+ };
70
+
71
+ template<typename T>
72
+ struct default_digits_impl<T,false,true> // Integer
73
+ {
74
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
41
75
  static int run() { return 0; }
42
76
  };
43
77
 
44
78
  } // end namespace internal
45
79
 
80
+ namespace numext {
81
+ /** \internal bit-wise cast without changing the underlying bit representation. */
82
+
83
+ // TODO: Replace by std::bit_cast (available in C++20)
84
+ template <typename Tgt, typename Src>
85
+ EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Tgt bit_cast(const Src& src) {
86
+ #if EIGEN_HAS_TYPE_TRAITS
87
+ // The behaviour of memcpy is not specified for non-trivially copyable types
88
+ EIGEN_STATIC_ASSERT(std::is_trivially_copyable<Src>::value, THIS_TYPE_IS_NOT_SUPPORTED);
89
+ EIGEN_STATIC_ASSERT(std::is_trivially_copyable<Tgt>::value && std::is_default_constructible<Tgt>::value,
90
+ THIS_TYPE_IS_NOT_SUPPORTED);
91
+ #endif
92
+
93
+ EIGEN_STATIC_ASSERT(sizeof(Src) == sizeof(Tgt), THIS_TYPE_IS_NOT_SUPPORTED);
94
+ Tgt tgt;
95
+ EIGEN_USING_STD(memcpy)
96
+ memcpy(&tgt, &src, sizeof(Tgt));
97
+ return tgt;
98
+ }
99
+ } // namespace numext
100
+
46
101
  /** \class NumTraits
47
102
  * \ingroup Core_Module
48
103
  *
@@ -71,7 +126,7 @@ struct default_digits10_impl<T,false,true> // Integer
71
126
  * and to \c 0 otherwise.
72
127
  * \li Enum values ReadCost, AddCost and MulCost representing a rough estimate of the number of CPU cycles needed
73
128
  * to by move / add / mul instructions respectively, assuming the data is already stored in CPU registers.
74
- * Stay vague here. No need to do architecture-specific stuff.
129
+ * Stay vague here. No need to do architecture-specific stuff. If you don't know what this means, just use \c Eigen::HugeCost.
75
130
  * \li An enum value \a IsSigned. It is equal to \c 1 if \a T is a signed type and to 0 if \a T is unsigned.
76
131
  * \li An enum value \a RequireInitialization. It is equal to \c 1 if the constructor of the numeric type \a T must
77
132
  * be called, and to 0 if it is safe not to call it. Default is 0 if \a T is an arithmetic type, and 1 otherwise.
@@ -80,9 +135,18 @@ struct default_digits10_impl<T,false,true> // Integer
80
135
  * \li A dummy_precision() function returning a weak epsilon value. It is mainly used as a default
81
136
  * value by the fuzzy comparison operators.
82
137
  * \li highest() and lowest() functions returning the highest and lowest possible values respectively.
138
+ * \li digits() function returning the number of radix digits (non-sign digits for integers, mantissa for floating-point). This is
139
+ * the analogue of <a href="http://en.cppreference.com/w/cpp/types/numeric_limits/digits">std::numeric_limits<T>::digits</a>
140
+ * which is used as the default implementation if specialized.
83
141
  * \li digits10() function returning the number of decimal digits that can be represented without change. This is
84
142
  * the analogue of <a href="http://en.cppreference.com/w/cpp/types/numeric_limits/digits10">std::numeric_limits<T>::digits10</a>
85
143
  * which is used as the default implementation if specialized.
144
+ * \li min_exponent() and max_exponent() functions returning the highest and lowest possible values, respectively,
145
+ * such that the radix raised to the power exponent-1 is a normalized floating-point number. These are equivalent to
146
+ * <a href="http://en.cppreference.com/w/cpp/types/numeric_limits/min_exponent">std::numeric_limits<T>::min_exponent</a>/
147
+ * <a href="http://en.cppreference.com/w/cpp/types/numeric_limits/max_exponent">std::numeric_limits<T>::max_exponent</a>.
148
+ * \li infinity() function returning a representation of positive infinity, if available.
149
+ * \li quiet_NaN function returning a non-signaling "not-a-number", if available.
86
150
  */
87
151
 
88
152
  template<typename T> struct GenericNumTraits
@@ -106,42 +170,60 @@ template<typename T> struct GenericNumTraits
106
170
  typedef T Nested;
107
171
  typedef T Literal;
108
172
 
109
- EIGEN_DEVICE_FUNC
173
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
110
174
  static inline Real epsilon()
111
175
  {
112
176
  return numext::numeric_limits<T>::epsilon();
113
177
  }
114
178
 
115
- EIGEN_DEVICE_FUNC
179
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
116
180
  static inline int digits10()
117
181
  {
118
182
  return internal::default_digits10_impl<T>::run();
119
183
  }
120
184
 
121
- EIGEN_DEVICE_FUNC
185
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
186
+ static inline int digits()
187
+ {
188
+ return internal::default_digits_impl<T>::run();
189
+ }
190
+
191
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
192
+ static inline int min_exponent()
193
+ {
194
+ return numext::numeric_limits<T>::min_exponent;
195
+ }
196
+
197
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
198
+ static inline int max_exponent()
199
+ {
200
+ return numext::numeric_limits<T>::max_exponent;
201
+ }
202
+
203
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
122
204
  static inline Real dummy_precision()
123
205
  {
124
206
  // make sure to override this for floating-point types
125
207
  return Real(0);
126
208
  }
127
209
 
128
-
129
- EIGEN_DEVICE_FUNC
210
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
130
211
  static inline T highest() {
131
212
  return (numext::numeric_limits<T>::max)();
132
213
  }
133
214
 
134
- EIGEN_DEVICE_FUNC
215
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
135
216
  static inline T lowest() {
136
- return IsInteger ? (numext::numeric_limits<T>::min)() : (-(numext::numeric_limits<T>::max)());
217
+ return IsInteger ? (numext::numeric_limits<T>::min)()
218
+ : static_cast<T>(-(numext::numeric_limits<T>::max)());
137
219
  }
138
220
 
139
- EIGEN_DEVICE_FUNC
221
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
140
222
  static inline T infinity() {
141
223
  return numext::numeric_limits<T>::infinity();
142
224
  }
143
225
 
144
- EIGEN_DEVICE_FUNC
226
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
145
227
  static inline T quiet_NaN() {
146
228
  return numext::numeric_limits<T>::quiet_NaN();
147
229
  }
@@ -153,19 +235,20 @@ template<typename T> struct NumTraits : GenericNumTraits<T>
153
235
  template<> struct NumTraits<float>
154
236
  : GenericNumTraits<float>
155
237
  {
156
- EIGEN_DEVICE_FUNC
238
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
157
239
  static inline float dummy_precision() { return 1e-5f; }
158
240
  };
159
241
 
160
242
  template<> struct NumTraits<double> : GenericNumTraits<double>
161
243
  {
162
- EIGEN_DEVICE_FUNC
244
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
163
245
  static inline double dummy_precision() { return 1e-12; }
164
246
  };
165
247
 
166
248
  template<> struct NumTraits<long double>
167
249
  : GenericNumTraits<long double>
168
250
  {
251
+ EIGEN_CONSTEXPR
169
252
  static inline long double dummy_precision() { return 1e-15l; }
170
253
  };
171
254
 
@@ -182,11 +265,11 @@ template<typename _Real> struct NumTraits<std::complex<_Real> >
182
265
  MulCost = 4 * NumTraits<Real>::MulCost + 2 * NumTraits<Real>::AddCost
183
266
  };
184
267
 
185
- EIGEN_DEVICE_FUNC
268
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
186
269
  static inline Real epsilon() { return NumTraits<Real>::epsilon(); }
187
- EIGEN_DEVICE_FUNC
270
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
188
271
  static inline Real dummy_precision() { return NumTraits<Real>::dummy_precision(); }
189
- EIGEN_DEVICE_FUNC
272
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
190
273
  static inline int digits10() { return NumTraits<Real>::digits10(); }
191
274
  };
192
275
 
@@ -206,16 +289,17 @@ struct NumTraits<Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> >
206
289
  IsInteger = NumTraits<Scalar>::IsInteger,
207
290
  IsSigned = NumTraits<Scalar>::IsSigned,
208
291
  RequireInitialization = 1,
209
- ReadCost = ArrayType::SizeAtCompileTime==Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * NumTraits<Scalar>::ReadCost,
210
- AddCost = ArrayType::SizeAtCompileTime==Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * NumTraits<Scalar>::AddCost,
211
- MulCost = ArrayType::SizeAtCompileTime==Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * NumTraits<Scalar>::MulCost
292
+ ReadCost = ArrayType::SizeAtCompileTime==Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * int(NumTraits<Scalar>::ReadCost),
293
+ AddCost = ArrayType::SizeAtCompileTime==Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * int(NumTraits<Scalar>::AddCost),
294
+ MulCost = ArrayType::SizeAtCompileTime==Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * int(NumTraits<Scalar>::MulCost)
212
295
  };
213
296
 
214
- EIGEN_DEVICE_FUNC
297
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
215
298
  static inline RealScalar epsilon() { return NumTraits<RealScalar>::epsilon(); }
216
- EIGEN_DEVICE_FUNC
299
+ EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
217
300
  static inline RealScalar dummy_precision() { return NumTraits<RealScalar>::dummy_precision(); }
218
301
 
302
+ EIGEN_CONSTEXPR
219
303
  static inline int digits10() { return NumTraits<Scalar>::digits10(); }
220
304
  };
221
305
 
@@ -229,6 +313,7 @@ template<> struct NumTraits<std::string>
229
313
  MulCost = HugeCost
230
314
  };
231
315
 
316
+ EIGEN_CONSTEXPR
232
317
  static inline int digits10() { return 0; }
233
318
 
234
319
  private:
@@ -243,6 +328,8 @@ private:
243
328
  // Empty specialization for void to allow template specialization based on NumTraits<T>::Real with T==void and SFINAE.
244
329
  template<> struct NumTraits<void> {};
245
330
 
331
+ template<> struct NumTraits<bool> : GenericNumTraits<bool> {};
332
+
246
333
  } // end namespace Eigen
247
334
 
248
335
  #endif // EIGEN_NUMTRAITS_H
@@ -0,0 +1,232 @@
1
+ // This file is part of Eigen, a lightweight C++ template library
2
+ // for linear algebra.
3
+ //
4
+ // Copyright (C) 2011-2018 Gael Guennebaud <gael.guennebaud@inria.fr>
5
+ //
6
+ // This Source Code Form is subject to the terms of the Mozilla
7
+ // Public License v. 2.0. If a copy of the MPL was not distributed
8
+ // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
+
10
+ #ifndef EIGEN_PARTIALREDUX_H
11
+ #define EIGEN_PARTIALREDUX_H
12
+
13
+ namespace Eigen {
14
+
15
+ namespace internal {
16
+
17
+
18
+ /***************************************************************************
19
+ *
20
+ * This file provides evaluators for partial reductions.
21
+ * There are two modes:
22
+ *
23
+ * - scalar path: simply calls the respective function on the column or row.
24
+ * -> nothing special here, all the tricky part is handled by the return
25
+ * types of VectorwiseOp's members. They embed the functor calling the
26
+ * respective DenseBase's member function.
27
+ *
28
+ * - vectorized path: implements a packet-wise reductions followed by
29
+ * some (optional) processing of the outcome, e.g., division by n for mean.
30
+ *
31
+ * For the vectorized path let's observe that the packet-size and outer-unrolling
32
+ * are both decided by the assignement logic. So all we have to do is to decide
33
+ * on the inner unrolling.
34
+ *
35
+ * For the unrolling, we can reuse "internal::redux_vec_unroller" from Redux.h,
36
+ * but be need to be careful to specify correct increment.
37
+ *
38
+ ***************************************************************************/
39
+
40
+
41
+ /* logic deciding a strategy for unrolling of vectorized paths */
42
+ template<typename Func, typename Evaluator>
43
+ struct packetwise_redux_traits
44
+ {
45
+ enum {
46
+ OuterSize = int(Evaluator::IsRowMajor) ? Evaluator::RowsAtCompileTime : Evaluator::ColsAtCompileTime,
47
+ Cost = OuterSize == Dynamic ? HugeCost
48
+ : OuterSize * Evaluator::CoeffReadCost + (OuterSize-1) * functor_traits<Func>::Cost,
49
+ Unrolling = Cost <= EIGEN_UNROLLING_LIMIT ? CompleteUnrolling : NoUnrolling
50
+ };
51
+
52
+ };
53
+
54
+ /* Value to be returned when size==0 , by default let's return 0 */
55
+ template<typename PacketType,typename Func>
56
+ EIGEN_DEVICE_FUNC
57
+ PacketType packetwise_redux_empty_value(const Func& ) { return pset1<PacketType>(0); }
58
+
59
+ /* For products the default is 1 */
60
+ template<typename PacketType,typename Scalar>
61
+ EIGEN_DEVICE_FUNC
62
+ PacketType packetwise_redux_empty_value(const scalar_product_op<Scalar,Scalar>& ) { return pset1<PacketType>(1); }
63
+
64
+ /* Perform the actual reduction */
65
+ template<typename Func, typename Evaluator,
66
+ int Unrolling = packetwise_redux_traits<Func, Evaluator>::Unrolling
67
+ >
68
+ struct packetwise_redux_impl;
69
+
70
+ /* Perform the actual reduction with unrolling */
71
+ template<typename Func, typename Evaluator>
72
+ struct packetwise_redux_impl<Func, Evaluator, CompleteUnrolling>
73
+ {
74
+ typedef redux_novec_unroller<Func,Evaluator, 0, Evaluator::SizeAtCompileTime> Base;
75
+ typedef typename Evaluator::Scalar Scalar;
76
+
77
+ template<typename PacketType>
78
+ EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE
79
+ PacketType run(const Evaluator &eval, const Func& func, Index /*size*/)
80
+ {
81
+ return redux_vec_unroller<Func, Evaluator, 0, packetwise_redux_traits<Func, Evaluator>::OuterSize>::template run<PacketType>(eval,func);
82
+ }
83
+ };
84
+
85
+ /* Add a specialization of redux_vec_unroller for size==0 at compiletime.
86
+ * This specialization is not required for general reductions, which is
87
+ * why it is defined here.
88
+ */
89
+ template<typename Func, typename Evaluator, int Start>
90
+ struct redux_vec_unroller<Func, Evaluator, Start, 0>
91
+ {
92
+ template<typename PacketType>
93
+ EIGEN_DEVICE_FUNC
94
+ static EIGEN_STRONG_INLINE PacketType run(const Evaluator &, const Func& f)
95
+ {
96
+ return packetwise_redux_empty_value<PacketType>(f);
97
+ }
98
+ };
99
+
100
+ /* Perform the actual reduction for dynamic sizes */
101
+ template<typename Func, typename Evaluator>
102
+ struct packetwise_redux_impl<Func, Evaluator, NoUnrolling>
103
+ {
104
+ typedef typename Evaluator::Scalar Scalar;
105
+ typedef typename redux_traits<Func, Evaluator>::PacketType PacketScalar;
106
+
107
+ template<typename PacketType>
108
+ EIGEN_DEVICE_FUNC
109
+ static PacketType run(const Evaluator &eval, const Func& func, Index size)
110
+ {
111
+ if(size==0)
112
+ return packetwise_redux_empty_value<PacketType>(func);
113
+
114
+ const Index size4 = (size-1)&(~3);
115
+ PacketType p = eval.template packetByOuterInner<Unaligned,PacketType>(0,0);
116
+ Index i = 1;
117
+ // This loop is optimized for instruction pipelining:
118
+ // - each iteration generates two independent instructions
119
+ // - thanks to branch prediction and out-of-order execution we have independent instructions across loops
120
+ for(; i<size4; i+=4)
121
+ p = func.packetOp(p,
122
+ func.packetOp(
123
+ func.packetOp(eval.template packetByOuterInner<Unaligned,PacketType>(i+0,0),eval.template packetByOuterInner<Unaligned,PacketType>(i+1,0)),
124
+ func.packetOp(eval.template packetByOuterInner<Unaligned,PacketType>(i+2,0),eval.template packetByOuterInner<Unaligned,PacketType>(i+3,0))));
125
+ for(; i<size; ++i)
126
+ p = func.packetOp(p, eval.template packetByOuterInner<Unaligned,PacketType>(i,0));
127
+ return p;
128
+ }
129
+ };
130
+
131
+ template< typename ArgType, typename MemberOp, int Direction>
132
+ struct evaluator<PartialReduxExpr<ArgType, MemberOp, Direction> >
133
+ : evaluator_base<PartialReduxExpr<ArgType, MemberOp, Direction> >
134
+ {
135
+ typedef PartialReduxExpr<ArgType, MemberOp, Direction> XprType;
136
+ typedef typename internal::nested_eval<ArgType,1>::type ArgTypeNested;
137
+ typedef typename internal::add_const_on_value_type<ArgTypeNested>::type ConstArgTypeNested;
138
+ typedef typename internal::remove_all<ArgTypeNested>::type ArgTypeNestedCleaned;
139
+ typedef typename ArgType::Scalar InputScalar;
140
+ typedef typename XprType::Scalar Scalar;
141
+ enum {
142
+ TraversalSize = Direction==int(Vertical) ? int(ArgType::RowsAtCompileTime) : int(ArgType::ColsAtCompileTime)
143
+ };
144
+ typedef typename MemberOp::template Cost<int(TraversalSize)> CostOpType;
145
+ enum {
146
+ CoeffReadCost = TraversalSize==Dynamic ? HugeCost
147
+ : TraversalSize==0 ? 1
148
+ : int(TraversalSize) * int(evaluator<ArgType>::CoeffReadCost) + int(CostOpType::value),
149
+
150
+ _ArgFlags = evaluator<ArgType>::Flags,
151
+
152
+ _Vectorizable = bool(int(_ArgFlags)&PacketAccessBit)
153
+ && bool(MemberOp::Vectorizable)
154
+ && (Direction==int(Vertical) ? bool(_ArgFlags&RowMajorBit) : (_ArgFlags&RowMajorBit)==0)
155
+ && (TraversalSize!=0),
156
+
157
+ Flags = (traits<XprType>::Flags&RowMajorBit)
158
+ | (evaluator<ArgType>::Flags&(HereditaryBits&(~RowMajorBit)))
159
+ | (_Vectorizable ? PacketAccessBit : 0)
160
+ | LinearAccessBit,
161
+
162
+ Alignment = 0 // FIXME this will need to be improved once PartialReduxExpr is vectorized
163
+ };
164
+
165
+ EIGEN_DEVICE_FUNC explicit evaluator(const XprType xpr)
166
+ : m_arg(xpr.nestedExpression()), m_functor(xpr.functor())
167
+ {
168
+ EIGEN_INTERNAL_CHECK_COST_VALUE(TraversalSize==Dynamic ? HugeCost : (TraversalSize==0 ? 1 : int(CostOpType::value)));
169
+ EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
170
+ }
171
+
172
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
173
+
174
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
175
+ const Scalar coeff(Index i, Index j) const
176
+ {
177
+ return coeff(Direction==Vertical ? j : i);
178
+ }
179
+
180
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
181
+ const Scalar coeff(Index index) const
182
+ {
183
+ return m_functor(m_arg.template subVector<DirectionType(Direction)>(index));
184
+ }
185
+
186
+ template<int LoadMode,typename PacketType>
187
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
188
+ PacketType packet(Index i, Index j) const
189
+ {
190
+ return packet<LoadMode,PacketType>(Direction==Vertical ? j : i);
191
+ }
192
+
193
+ template<int LoadMode,typename PacketType>
194
+ EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC
195
+ PacketType packet(Index idx) const
196
+ {
197
+ enum { PacketSize = internal::unpacket_traits<PacketType>::size };
198
+ typedef Block<const ArgTypeNestedCleaned,
199
+ Direction==Vertical ? int(ArgType::RowsAtCompileTime) : int(PacketSize),
200
+ Direction==Vertical ? int(PacketSize) : int(ArgType::ColsAtCompileTime),
201
+ true /* InnerPanel */> PanelType;
202
+
203
+ PanelType panel(m_arg,
204
+ Direction==Vertical ? 0 : idx,
205
+ Direction==Vertical ? idx : 0,
206
+ Direction==Vertical ? m_arg.rows() : Index(PacketSize),
207
+ Direction==Vertical ? Index(PacketSize) : m_arg.cols());
208
+
209
+ // FIXME
210
+ // See bug 1612, currently if PacketSize==1 (i.e. complex<double> with 128bits registers) then the storage-order of panel get reversed
211
+ // and methods like packetByOuterInner do not make sense anymore in this context.
212
+ // So let's just by pass "vectorization" in this case:
213
+ if(PacketSize==1)
214
+ return internal::pset1<PacketType>(coeff(idx));
215
+
216
+ typedef typename internal::redux_evaluator<PanelType> PanelEvaluator;
217
+ PanelEvaluator panel_eval(panel);
218
+ typedef typename MemberOp::BinaryOp BinaryOp;
219
+ PacketType p = internal::packetwise_redux_impl<BinaryOp,PanelEvaluator>::template run<PacketType>(panel_eval,m_functor.binaryFunc(),m_arg.outerSize());
220
+ return p;
221
+ }
222
+
223
+ protected:
224
+ ConstArgTypeNested m_arg;
225
+ const MemberOp m_functor;
226
+ };
227
+
228
+ } // end namespace internal
229
+
230
+ } // end namespace Eigen
231
+
232
+ #endif // EIGEN_PARTIALREDUX_H
@@ -87,25 +87,14 @@ class PermutationBase : public EigenBase<Derived>
87
87
  return derived();
88
88
  }
89
89
 
90
- #ifndef EIGEN_PARSED_BY_DOXYGEN
91
- /** This is a special case of the templated operator=. Its purpose is to
92
- * prevent a default operator= from hiding the templated operator=.
93
- */
94
- Derived& operator=(const PermutationBase& other)
95
- {
96
- indices() = other.indices();
97
- return derived();
98
- }
99
- #endif
100
-
101
90
  /** \returns the number of rows */
102
- inline Index rows() const { return Index(indices().size()); }
91
+ inline EIGEN_DEVICE_FUNC Index rows() const { return Index(indices().size()); }
103
92
 
104
93
  /** \returns the number of columns */
105
- inline Index cols() const { return Index(indices().size()); }
94
+ inline EIGEN_DEVICE_FUNC Index cols() const { return Index(indices().size()); }
106
95
 
107
96
  /** \returns the size of a side of the respective square matrix, i.e., the number of indices */
108
- inline Index size() const { return Index(indices().size()); }
97
+ inline EIGEN_DEVICE_FUNC Index size() const { return Index(indices().size()); }
109
98
 
110
99
  #ifndef EIGEN_PARSED_BY_DOXYGEN
111
100
  template<typename DenseDerived>
@@ -333,12 +322,6 @@ class PermutationMatrix : public PermutationBase<PermutationMatrix<SizeAtCompile
333
322
  inline PermutationMatrix(const PermutationBase<OtherDerived>& other)
334
323
  : m_indices(other.indices()) {}
335
324
 
336
- #ifndef EIGEN_PARSED_BY_DOXYGEN
337
- /** Standard copy constructor. Defined only to prevent a default copy constructor
338
- * from hiding the other templated constructor */
339
- inline PermutationMatrix(const PermutationMatrix& other) : m_indices(other.indices()) {}
340
- #endif
341
-
342
325
  /** Generic constructor from expression of the indices. The indices
343
326
  * array has the meaning that the permutations sends each integer i to indices[i].
344
327
  *
@@ -373,17 +356,6 @@ class PermutationMatrix : public PermutationBase<PermutationMatrix<SizeAtCompile
373
356
  return Base::operator=(tr.derived());
374
357
  }
375
358
 
376
- #ifndef EIGEN_PARSED_BY_DOXYGEN
377
- /** This is a special case of the templated operator=. Its purpose is to
378
- * prevent a default operator= from hiding the templated operator=.
379
- */
380
- PermutationMatrix& operator=(const PermutationMatrix& other)
381
- {
382
- m_indices = other.m_indices;
383
- return *this;
384
- }
385
- #endif
386
-
387
359
  /** const version of indices(). */
388
360
  const IndicesType& indices() const { return m_indices; }
389
361
  /** \returns a reference to the stored array representing the permutation. */