teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (1285) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +1864 -1640
  4. teradataml/__init__.py +70 -60
  5. teradataml/_version.py +11 -11
  6. teradataml/analytics/Transformations.py +2995 -2995
  7. teradataml/analytics/__init__.py +81 -83
  8. teradataml/analytics/analytic_function_executor.py +2013 -2010
  9. teradataml/analytics/analytic_query_generator.py +958 -958
  10. teradataml/analytics/byom/H2OPredict.py +514 -514
  11. teradataml/analytics/byom/PMMLPredict.py +437 -437
  12. teradataml/analytics/byom/__init__.py +14 -14
  13. teradataml/analytics/json_parser/__init__.py +130 -130
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
  15. teradataml/analytics/json_parser/json_store.py +191 -191
  16. teradataml/analytics/json_parser/metadata.py +1637 -1637
  17. teradataml/analytics/json_parser/utils.py +804 -803
  18. teradataml/analytics/meta_class.py +196 -196
  19. teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
  21. teradataml/analytics/sqle/__init__.py +97 -110
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
  24. teradataml/analytics/table_operator/__init__.py +10 -10
  25. teradataml/analytics/uaf/__init__.py +63 -63
  26. teradataml/analytics/utils.py +693 -692
  27. teradataml/analytics/valib.py +1603 -1600
  28. teradataml/automl/__init__.py +1628 -0
  29. teradataml/automl/custom_json_utils.py +1270 -0
  30. teradataml/automl/data_preparation.py +993 -0
  31. teradataml/automl/data_transformation.py +727 -0
  32. teradataml/automl/feature_engineering.py +1648 -0
  33. teradataml/automl/feature_exploration.py +547 -0
  34. teradataml/automl/model_evaluation.py +163 -0
  35. teradataml/automl/model_training.py +887 -0
  36. teradataml/catalog/__init__.py +1 -3
  37. teradataml/catalog/byom.py +1759 -1716
  38. teradataml/catalog/function_argument_mapper.py +859 -861
  39. teradataml/catalog/model_cataloging_utils.py +491 -1510
  40. teradataml/clients/pkce_client.py +481 -481
  41. teradataml/common/aed_utils.py +6 -2
  42. teradataml/common/bulk_exposed_utils.py +111 -111
  43. teradataml/common/constants.py +1433 -1441
  44. teradataml/common/deprecations.py +160 -0
  45. teradataml/common/exceptions.py +73 -73
  46. teradataml/common/formula.py +742 -742
  47. teradataml/common/garbagecollector.py +592 -635
  48. teradataml/common/messagecodes.py +422 -431
  49. teradataml/common/messages.py +227 -231
  50. teradataml/common/sqlbundle.py +693 -693
  51. teradataml/common/td_coltype_code_to_tdtype.py +48 -48
  52. teradataml/common/utils.py +2418 -2500
  53. teradataml/common/warnings.py +25 -25
  54. teradataml/common/wrapper_utils.py +1 -110
  55. teradataml/config/dummy_file1.cfg +4 -4
  56. teradataml/config/dummy_file2.cfg +2 -2
  57. teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
  58. teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
  59. teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
  60. teradataml/context/aed_context.py +217 -217
  61. teradataml/context/context.py +1071 -999
  62. teradataml/data/A_loan.csv +19 -19
  63. teradataml/data/BINARY_REALS_LEFT.csv +11 -11
  64. teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
  65. teradataml/data/B_loan.csv +49 -49
  66. teradataml/data/BuoyData2.csv +17 -17
  67. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
  68. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
  69. teradataml/data/Convolve2RealsLeft.csv +5 -5
  70. teradataml/data/Convolve2RealsRight.csv +5 -5
  71. teradataml/data/Convolve2ValidLeft.csv +11 -11
  72. teradataml/data/Convolve2ValidRight.csv +11 -11
  73. teradataml/data/DFFTConv_Real_8_8.csv +65 -65
  74. teradataml/data/Orders1_12mf.csv +24 -24
  75. teradataml/data/Pi_loan.csv +7 -7
  76. teradataml/data/SMOOTHED_DATA.csv +7 -7
  77. teradataml/data/TestDFFT8.csv +9 -9
  78. teradataml/data/TestRiver.csv +109 -109
  79. teradataml/data/Traindata.csv +28 -28
  80. teradataml/data/acf.csv +17 -17
  81. teradataml/data/adaboost_example.json +34 -34
  82. teradataml/data/adaboostpredict_example.json +24 -24
  83. teradataml/data/additional_table.csv +10 -10
  84. teradataml/data/admissions_test.csv +21 -21
  85. teradataml/data/admissions_train.csv +41 -41
  86. teradataml/data/admissions_train_nulls.csv +41 -41
  87. teradataml/data/ageandheight.csv +13 -13
  88. teradataml/data/ageandpressure.csv +31 -31
  89. teradataml/data/antiselect_example.json +36 -36
  90. teradataml/data/antiselect_input.csv +8 -8
  91. teradataml/data/antiselect_input_mixed_case.csv +8 -8
  92. teradataml/data/applicant_external.csv +6 -6
  93. teradataml/data/applicant_reference.csv +6 -6
  94. teradataml/data/arima_example.json +9 -9
  95. teradataml/data/assortedtext_input.csv +8 -8
  96. teradataml/data/attribution_example.json +33 -33
  97. teradataml/data/attribution_sample_table.csv +27 -27
  98. teradataml/data/attribution_sample_table1.csv +6 -6
  99. teradataml/data/attribution_sample_table2.csv +11 -11
  100. teradataml/data/bank_churn.csv +10001 -0
  101. teradataml/data/bank_web_clicks1.csv +42 -42
  102. teradataml/data/bank_web_clicks2.csv +91 -91
  103. teradataml/data/bank_web_url.csv +85 -85
  104. teradataml/data/barrier.csv +2 -2
  105. teradataml/data/barrier_new.csv +3 -3
  106. teradataml/data/betweenness_example.json +13 -13
  107. teradataml/data/bin_breaks.csv +8 -8
  108. teradataml/data/bin_fit_ip.csv +3 -3
  109. teradataml/data/binary_complex_left.csv +11 -11
  110. teradataml/data/binary_complex_right.csv +11 -11
  111. teradataml/data/binary_matrix_complex_left.csv +21 -21
  112. teradataml/data/binary_matrix_complex_right.csv +21 -21
  113. teradataml/data/binary_matrix_real_left.csv +21 -21
  114. teradataml/data/binary_matrix_real_right.csv +21 -21
  115. teradataml/data/blood2ageandweight.csv +26 -26
  116. teradataml/data/bmi.csv +501 -0
  117. teradataml/data/boston.csv +507 -507
  118. teradataml/data/buoydata_mix.csv +11 -11
  119. teradataml/data/burst_data.csv +5 -5
  120. teradataml/data/burst_example.json +20 -20
  121. teradataml/data/byom_example.json +17 -17
  122. teradataml/data/bytes_table.csv +3 -3
  123. teradataml/data/cal_housing_ex_raw.csv +70 -70
  124. teradataml/data/callers.csv +7 -7
  125. teradataml/data/calls.csv +10 -10
  126. teradataml/data/cars_hist.csv +33 -33
  127. teradataml/data/cat_table.csv +24 -24
  128. teradataml/data/ccm_example.json +31 -31
  129. teradataml/data/ccm_input.csv +91 -91
  130. teradataml/data/ccm_input2.csv +13 -13
  131. teradataml/data/ccmexample.csv +101 -101
  132. teradataml/data/ccmprepare_example.json +8 -8
  133. teradataml/data/ccmprepare_input.csv +91 -91
  134. teradataml/data/cfilter_example.json +12 -12
  135. teradataml/data/changepointdetection_example.json +18 -18
  136. teradataml/data/changepointdetectionrt_example.json +8 -8
  137. teradataml/data/chi_sq.csv +2 -2
  138. teradataml/data/churn_data.csv +14 -14
  139. teradataml/data/churn_emission.csv +35 -35
  140. teradataml/data/churn_initial.csv +3 -3
  141. teradataml/data/churn_state_transition.csv +5 -5
  142. teradataml/data/citedges_2.csv +745 -745
  143. teradataml/data/citvertices_2.csv +1210 -1210
  144. teradataml/data/clicks2.csv +16 -16
  145. teradataml/data/clickstream.csv +12 -12
  146. teradataml/data/clickstream1.csv +11 -11
  147. teradataml/data/closeness_example.json +15 -15
  148. teradataml/data/complaints.csv +21 -21
  149. teradataml/data/complaints_mini.csv +3 -3
  150. teradataml/data/complaints_testtoken.csv +224 -224
  151. teradataml/data/complaints_tokens_test.csv +353 -353
  152. teradataml/data/complaints_traintoken.csv +472 -472
  153. teradataml/data/computers_category.csv +1001 -1001
  154. teradataml/data/computers_test1.csv +1252 -1252
  155. teradataml/data/computers_train1.csv +5009 -5009
  156. teradataml/data/computers_train1_clustered.csv +5009 -5009
  157. teradataml/data/confusionmatrix_example.json +9 -9
  158. teradataml/data/conversion_event_table.csv +3 -3
  159. teradataml/data/corr_input.csv +17 -17
  160. teradataml/data/correlation_example.json +11 -11
  161. teradataml/data/coxhazardratio_example.json +39 -39
  162. teradataml/data/coxph_example.json +15 -15
  163. teradataml/data/coxsurvival_example.json +28 -28
  164. teradataml/data/cpt.csv +41 -41
  165. teradataml/data/credit_ex_merged.csv +45 -45
  166. teradataml/data/customer_loyalty.csv +301 -301
  167. teradataml/data/customer_loyalty_newseq.csv +31 -31
  168. teradataml/data/dataframe_example.json +146 -146
  169. teradataml/data/decisionforest_example.json +37 -37
  170. teradataml/data/decisionforestpredict_example.json +38 -38
  171. teradataml/data/decisiontree_example.json +21 -21
  172. teradataml/data/decisiontreepredict_example.json +45 -45
  173. teradataml/data/dfft2_size4_real.csv +17 -17
  174. teradataml/data/dfft2_test_matrix16.csv +17 -17
  175. teradataml/data/dfft2conv_real_4_4.csv +65 -65
  176. teradataml/data/diabetes.csv +443 -443
  177. teradataml/data/diabetes_test.csv +89 -89
  178. teradataml/data/dict_table.csv +5 -5
  179. teradataml/data/docperterm_table.csv +4 -4
  180. teradataml/data/docs/__init__.py +1 -1
  181. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
  182. teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
  183. teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
  184. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
  185. teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
  186. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
  187. teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
  188. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
  189. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
  190. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
  191. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
  192. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
  193. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
  194. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
  195. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
  196. teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
  197. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
  198. teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
  199. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
  200. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
  201. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
  202. teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
  203. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
  204. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
  205. teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
  206. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
  207. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
  208. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
  209. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +132 -132
  210. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +103 -103
  211. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
  212. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +101 -101
  213. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
  214. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
  215. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
  216. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
  217. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
  218. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
  219. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
  220. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
  221. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
  222. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
  223. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
  224. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
  225. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
  226. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
  227. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
  228. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
  229. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
  230. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
  231. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
  232. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
  233. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
  234. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +126 -126
  235. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
  236. teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
  237. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
  238. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
  239. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
  240. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
  241. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
  242. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
  243. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +243 -243
  244. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
  245. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
  246. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
  247. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
  248. teradataml/data/docs/sqle/docs_17_20/FTest.py +160 -160
  249. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
  250. teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
  251. teradataml/data/docs/sqle/docs_17_20/GLM.py +380 -380
  252. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
  253. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
  254. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
  255. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +123 -123
  256. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
  257. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
  258. teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
  259. teradataml/data/docs/sqle/docs_17_20/KMeans.py +204 -204
  260. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
  261. teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
  262. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
  263. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
  264. teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
  265. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
  266. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
  267. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
  268. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +117 -117
  269. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
  270. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
  271. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
  272. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
  273. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +225 -225
  274. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +115 -115
  275. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
  276. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
  277. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
  278. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
  279. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
  280. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
  281. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
  282. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
  283. teradataml/data/docs/sqle/docs_17_20/ROC.py +163 -163
  284. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
  285. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
  286. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
  287. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
  288. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
  289. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
  290. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
  291. teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
  292. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +202 -202
  293. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
  294. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +197 -197
  295. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +110 -109
  296. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
  297. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
  298. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
  299. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
  300. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
  301. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
  302. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
  303. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
  304. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +171 -171
  305. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
  306. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
  307. teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
  308. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
  309. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
  310. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
  311. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
  312. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
  313. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
  314. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
  315. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
  316. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +353 -353
  317. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +275 -275
  318. teradataml/data/docs/sqle/docs_17_20/ZTest.py +155 -155
  319. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
  320. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
  321. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
  322. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
  323. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
  324. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
  325. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
  326. teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
  327. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
  328. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
  329. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
  330. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
  331. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
  332. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
  333. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
  334. teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
  335. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
  336. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
  337. teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
  338. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
  339. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
  340. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
  341. teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
  342. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
  343. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
  344. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
  345. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
  346. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
  347. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
  348. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
  349. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
  350. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
  351. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
  352. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
  353. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
  354. teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
  355. teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
  356. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
  357. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
  358. teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
  359. teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
  360. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
  361. teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
  362. teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
  363. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
  364. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
  365. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
  366. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
  367. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
  368. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
  369. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
  370. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
  371. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
  372. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
  373. teradataml/data/dtw_example.json +17 -17
  374. teradataml/data/dtw_t1.csv +11 -11
  375. teradataml/data/dtw_t2.csv +4 -4
  376. teradataml/data/dwt2d_example.json +15 -15
  377. teradataml/data/dwt_example.json +14 -14
  378. teradataml/data/dwt_filter_dim.csv +5 -5
  379. teradataml/data/emission.csv +9 -9
  380. teradataml/data/emp_table_by_dept.csv +19 -19
  381. teradataml/data/employee_info.csv +4 -4
  382. teradataml/data/employee_table.csv +6 -6
  383. teradataml/data/excluding_event_table.csv +2 -2
  384. teradataml/data/finance_data.csv +6 -6
  385. teradataml/data/finance_data2.csv +61 -61
  386. teradataml/data/finance_data3.csv +93 -93
  387. teradataml/data/fish.csv +160 -0
  388. teradataml/data/fm_blood2ageandweight.csv +26 -26
  389. teradataml/data/fmeasure_example.json +11 -11
  390. teradataml/data/followers_leaders.csv +10 -10
  391. teradataml/data/fpgrowth_example.json +12 -12
  392. teradataml/data/frequentpaths_example.json +29 -29
  393. teradataml/data/friends.csv +9 -9
  394. teradataml/data/fs_input.csv +33 -33
  395. teradataml/data/fs_input1.csv +33 -33
  396. teradataml/data/genData.csv +513 -513
  397. teradataml/data/geodataframe_example.json +39 -39
  398. teradataml/data/glass_types.csv +215 -0
  399. teradataml/data/glm_admissions_model.csv +12 -12
  400. teradataml/data/glm_example.json +29 -29
  401. teradataml/data/glml1l2_example.json +28 -28
  402. teradataml/data/glml1l2predict_example.json +54 -54
  403. teradataml/data/glmpredict_example.json +54 -54
  404. teradataml/data/gq_t1.csv +21 -21
  405. teradataml/data/hconvolve_complex_right.csv +5 -5
  406. teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
  407. teradataml/data/histogram_example.json +11 -11
  408. teradataml/data/hmmdecoder_example.json +78 -78
  409. teradataml/data/hmmevaluator_example.json +24 -24
  410. teradataml/data/hmmsupervised_example.json +10 -10
  411. teradataml/data/hmmunsupervised_example.json +7 -7
  412. teradataml/data/house_values.csv +12 -12
  413. teradataml/data/house_values2.csv +13 -13
  414. teradataml/data/housing_cat.csv +7 -7
  415. teradataml/data/housing_data.csv +9 -9
  416. teradataml/data/housing_test.csv +47 -47
  417. teradataml/data/housing_test_binary.csv +47 -47
  418. teradataml/data/housing_train.csv +493 -493
  419. teradataml/data/housing_train_attribute.csv +4 -4
  420. teradataml/data/housing_train_binary.csv +437 -437
  421. teradataml/data/housing_train_parameter.csv +2 -2
  422. teradataml/data/housing_train_response.csv +493 -493
  423. teradataml/data/ibm_stock.csv +370 -370
  424. teradataml/data/ibm_stock1.csv +370 -370
  425. teradataml/data/identitymatch_example.json +21 -21
  426. teradataml/data/idf_table.csv +4 -4
  427. teradataml/data/impressions.csv +101 -101
  428. teradataml/data/inflation.csv +21 -21
  429. teradataml/data/initial.csv +3 -3
  430. teradataml/data/insect_sprays.csv +12 -12
  431. teradataml/data/insurance.csv +1339 -1339
  432. teradataml/data/interpolator_example.json +12 -12
  433. teradataml/data/iris_altinput.csv +481 -481
  434. teradataml/data/iris_attribute_output.csv +8 -8
  435. teradataml/data/iris_attribute_test.csv +121 -121
  436. teradataml/data/iris_attribute_train.csv +481 -481
  437. teradataml/data/iris_category_expect_predict.csv +31 -31
  438. teradataml/data/iris_data.csv +151 -0
  439. teradataml/data/iris_input.csv +151 -151
  440. teradataml/data/iris_response_train.csv +121 -121
  441. teradataml/data/iris_test.csv +31 -31
  442. teradataml/data/iris_train.csv +121 -121
  443. teradataml/data/join_table1.csv +4 -4
  444. teradataml/data/join_table2.csv +4 -4
  445. teradataml/data/jsons/anly_function_name.json +6 -6
  446. teradataml/data/jsons/byom/dataikupredict.json +147 -147
  447. teradataml/data/jsons/byom/datarobotpredict.json +146 -146
  448. teradataml/data/jsons/byom/h2opredict.json +194 -194
  449. teradataml/data/jsons/byom/onnxpredict.json +186 -186
  450. teradataml/data/jsons/byom/pmmlpredict.json +146 -146
  451. teradataml/data/jsons/paired_functions.json +435 -435
  452. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
  453. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
  454. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
  455. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
  456. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
  457. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
  458. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
  459. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
  460. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
  461. teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
  462. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
  463. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
  464. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
  465. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
  466. teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
  467. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
  468. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
  469. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
  470. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
  471. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
  472. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
  473. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
  474. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
  475. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
  476. teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
  477. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
  478. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
  479. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
  480. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
  481. teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
  482. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
  483. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
  484. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
  485. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
  486. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
  487. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
  488. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
  489. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
  490. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
  491. teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
  492. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
  493. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
  494. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
  495. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
  496. teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
  497. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
  498. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
  499. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
  500. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
  501. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
  502. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
  503. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
  504. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
  505. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
  506. teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
  507. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
  508. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
  509. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
  510. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
  511. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
  512. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
  513. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
  514. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
  515. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
  516. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
  517. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
  518. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
  519. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
  520. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
  521. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
  522. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
  523. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
  524. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
  525. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
  526. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
  527. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
  528. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
  529. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
  530. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
  531. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
  532. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
  533. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
  534. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
  535. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
  536. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
  537. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
  538. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
  539. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
  540. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
  541. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
  542. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
  543. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
  544. teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
  545. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
  546. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
  547. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
  548. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
  549. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
  550. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
  551. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
  552. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
  553. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
  554. teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
  555. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
  556. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
  557. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
  558. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +76 -76
  559. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
  560. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
  561. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
  562. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
  563. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
  564. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
  565. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
  566. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
  567. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
  568. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
  569. teradataml/data/jsons/sqle/17.20/TD_FTest.json +186 -186
  570. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
  571. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
  572. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
  573. teradataml/data/jsons/sqle/17.20/TD_GLM.json +431 -431
  574. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +125 -125
  575. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
  576. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
  577. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +91 -91
  578. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
  579. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
  580. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
  581. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +211 -211
  582. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
  583. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
  584. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
  585. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +101 -101
  586. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
  587. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
  588. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
  589. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
  590. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
  591. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
  592. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
  593. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
  594. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
  595. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
  596. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
  597. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
  598. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
  599. teradataml/data/jsons/sqle/17.20/TD_ROC.json +177 -177
  600. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
  601. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
  602. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
  603. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
  604. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
  605. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
  606. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
  607. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
  608. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +124 -124
  609. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +156 -156
  610. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +70 -70
  611. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
  612. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
  613. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
  614. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
  615. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
  616. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
  617. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
  618. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
  619. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
  620. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
  621. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
  622. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
  623. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
  624. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
  625. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +312 -312
  626. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +182 -182
  627. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +170 -170
  628. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
  629. teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
  630. teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
  631. teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
  632. teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
  633. teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
  634. teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
  635. teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
  636. teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
  637. teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
  638. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
  639. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
  640. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
  641. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
  642. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
  643. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
  644. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
  645. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
  646. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
  647. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
  648. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
  649. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
  650. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
  651. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
  652. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
  653. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
  654. teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
  655. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
  656. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
  657. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
  658. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
  659. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
  660. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
  661. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
  662. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
  663. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
  664. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
  665. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
  666. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
  667. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
  668. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
  669. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
  670. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
  671. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
  672. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
  673. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
  674. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
  675. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
  676. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
  677. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
  678. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
  679. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
  680. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
  681. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
  682. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
  683. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
  684. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
  685. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
  686. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
  687. teradataml/data/kmeans_example.json +17 -17
  688. teradataml/data/kmeans_us_arrests_data.csv +0 -0
  689. teradataml/data/knn_example.json +18 -18
  690. teradataml/data/knnrecommender_example.json +6 -6
  691. teradataml/data/knnrecommenderpredict_example.json +12 -12
  692. teradataml/data/lar_example.json +17 -17
  693. teradataml/data/larpredict_example.json +30 -30
  694. teradataml/data/lc_new_predictors.csv +5 -5
  695. teradataml/data/lc_new_reference.csv +9 -9
  696. teradataml/data/lda_example.json +8 -8
  697. teradataml/data/ldainference_example.json +14 -14
  698. teradataml/data/ldatopicsummary_example.json +8 -8
  699. teradataml/data/levendist_input.csv +13 -13
  700. teradataml/data/levenshteindistance_example.json +10 -10
  701. teradataml/data/linreg_example.json +9 -9
  702. teradataml/data/load_example_data.py +326 -323
  703. teradataml/data/loan_prediction.csv +295 -295
  704. teradataml/data/lungcancer.csv +138 -138
  705. teradataml/data/mappingdata.csv +12 -12
  706. teradataml/data/milk_timeseries.csv +157 -157
  707. teradataml/data/min_max_titanic.csv +4 -4
  708. teradataml/data/minhash_example.json +6 -6
  709. teradataml/data/ml_ratings.csv +7547 -7547
  710. teradataml/data/ml_ratings_10.csv +2445 -2445
  711. teradataml/data/model1_table.csv +5 -5
  712. teradataml/data/model2_table.csv +5 -5
  713. teradataml/data/models/iris_db_glm_model.pmml +56 -56
  714. teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
  715. teradataml/data/modularity_example.json +12 -12
  716. teradataml/data/movavg_example.json +7 -7
  717. teradataml/data/mtx1.csv +7 -7
  718. teradataml/data/mtx2.csv +13 -13
  719. teradataml/data/multi_model_classification.csv +401 -0
  720. teradataml/data/multi_model_regression.csv +401 -0
  721. teradataml/data/mvdfft8.csv +9 -9
  722. teradataml/data/naivebayes_example.json +9 -9
  723. teradataml/data/naivebayespredict_example.json +19 -19
  724. teradataml/data/naivebayestextclassifier2_example.json +6 -6
  725. teradataml/data/naivebayestextclassifier_example.json +8 -8
  726. teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
  727. teradataml/data/name_Find_configure.csv +10 -10
  728. teradataml/data/namedentityfinder_example.json +14 -14
  729. teradataml/data/namedentityfinderevaluator_example.json +10 -10
  730. teradataml/data/namedentityfindertrainer_example.json +6 -6
  731. teradataml/data/nb_iris_input_test.csv +31 -31
  732. teradataml/data/nb_iris_input_train.csv +121 -121
  733. teradataml/data/nbp_iris_model.csv +13 -13
  734. teradataml/data/ner_extractor_text.csv +2 -2
  735. teradataml/data/ner_sports_test2.csv +29 -29
  736. teradataml/data/ner_sports_train.csv +501 -501
  737. teradataml/data/nerevaluator_example.json +5 -5
  738. teradataml/data/nerextractor_example.json +18 -18
  739. teradataml/data/nermem_sports_test.csv +17 -17
  740. teradataml/data/nermem_sports_train.csv +50 -50
  741. teradataml/data/nertrainer_example.json +6 -6
  742. teradataml/data/ngrams_example.json +6 -6
  743. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
  744. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
  745. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
  746. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
  747. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
  748. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
  749. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
  750. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
  751. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
  752. teradataml/data/npath_example.json +23 -23
  753. teradataml/data/ntree_example.json +14 -14
  754. teradataml/data/numeric_strings.csv +4 -4
  755. teradataml/data/numerics.csv +4 -4
  756. teradataml/data/ocean_buoy.csv +17 -17
  757. teradataml/data/ocean_buoy2.csv +17 -17
  758. teradataml/data/ocean_buoys.csv +27 -27
  759. teradataml/data/ocean_buoys2.csv +10 -10
  760. teradataml/data/ocean_buoys_nonpti.csv +28 -28
  761. teradataml/data/ocean_buoys_seq.csv +29 -29
  762. teradataml/data/openml_example.json +63 -0
  763. teradataml/data/optional_event_table.csv +4 -4
  764. teradataml/data/orders1.csv +11 -11
  765. teradataml/data/orders1_12.csv +12 -12
  766. teradataml/data/orders_ex.csv +4 -4
  767. teradataml/data/pack_example.json +8 -8
  768. teradataml/data/package_tracking.csv +19 -19
  769. teradataml/data/package_tracking_pti.csv +18 -18
  770. teradataml/data/pagerank_example.json +13 -13
  771. teradataml/data/paragraphs_input.csv +6 -6
  772. teradataml/data/pathanalyzer_example.json +7 -7
  773. teradataml/data/pathgenerator_example.json +7 -7
  774. teradataml/data/phrases.csv +7 -7
  775. teradataml/data/pivot_example.json +8 -8
  776. teradataml/data/pivot_input.csv +22 -22
  777. teradataml/data/playerRating.csv +31 -31
  778. teradataml/data/postagger_example.json +6 -6
  779. teradataml/data/posttagger_output.csv +44 -44
  780. teradataml/data/production_data.csv +16 -16
  781. teradataml/data/production_data2.csv +7 -7
  782. teradataml/data/randomsample_example.json +31 -31
  783. teradataml/data/randomwalksample_example.json +8 -8
  784. teradataml/data/rank_table.csv +6 -6
  785. teradataml/data/ref_mobile_data.csv +4 -4
  786. teradataml/data/ref_mobile_data_dense.csv +2 -2
  787. teradataml/data/ref_url.csv +17 -17
  788. teradataml/data/restaurant_reviews.csv +7 -7
  789. teradataml/data/river_data.csv +145 -145
  790. teradataml/data/roc_example.json +7 -7
  791. teradataml/data/roc_input.csv +101 -101
  792. teradataml/data/rule_inputs.csv +6 -6
  793. teradataml/data/rule_table.csv +2 -2
  794. teradataml/data/sales.csv +7 -7
  795. teradataml/data/sales_transaction.csv +501 -501
  796. teradataml/data/salesdata.csv +342 -342
  797. teradataml/data/sample_cities.csv +2 -2
  798. teradataml/data/sample_shapes.csv +10 -10
  799. teradataml/data/sample_streets.csv +2 -2
  800. teradataml/data/sampling_example.json +15 -15
  801. teradataml/data/sax_example.json +8 -8
  802. teradataml/data/scale_example.json +23 -23
  803. teradataml/data/scale_housing.csv +11 -11
  804. teradataml/data/scale_housing_test.csv +6 -6
  805. teradataml/data/scale_stat.csv +11 -11
  806. teradataml/data/scalebypartition_example.json +13 -13
  807. teradataml/data/scalemap_example.json +13 -13
  808. teradataml/data/scalesummary_example.json +12 -12
  809. teradataml/data/score_category.csv +101 -101
  810. teradataml/data/score_summary.csv +4 -4
  811. teradataml/data/script_example.json +9 -9
  812. teradataml/data/scripts/deploy_script.py +65 -0
  813. teradataml/data/scripts/mapper.R +20 -0
  814. teradataml/data/scripts/mapper.py +15 -15
  815. teradataml/data/scripts/mapper_replace.py +15 -15
  816. teradataml/data/scripts/sklearn/__init__.py +0 -0
  817. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  818. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  819. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  820. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  821. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  822. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  823. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  824. teradataml/data/seeds.csv +10 -10
  825. teradataml/data/sentenceextractor_example.json +6 -6
  826. teradataml/data/sentiment_extract_input.csv +11 -11
  827. teradataml/data/sentiment_train.csv +16 -16
  828. teradataml/data/sentiment_word.csv +20 -20
  829. teradataml/data/sentiment_word_input.csv +19 -19
  830. teradataml/data/sentimentextractor_example.json +24 -24
  831. teradataml/data/sentimenttrainer_example.json +8 -8
  832. teradataml/data/sequence_table.csv +10 -10
  833. teradataml/data/seriessplitter_example.json +7 -7
  834. teradataml/data/sessionize_example.json +17 -17
  835. teradataml/data/sessionize_table.csv +116 -116
  836. teradataml/data/setop_test1.csv +24 -24
  837. teradataml/data/setop_test2.csv +22 -22
  838. teradataml/data/soc_nw_edges.csv +10 -10
  839. teradataml/data/soc_nw_vertices.csv +7 -7
  840. teradataml/data/souvenir_timeseries.csv +167 -167
  841. teradataml/data/sparse_iris_attribute.csv +5 -5
  842. teradataml/data/sparse_iris_test.csv +121 -121
  843. teradataml/data/sparse_iris_train.csv +601 -601
  844. teradataml/data/star1.csv +6 -6
  845. teradataml/data/state_transition.csv +5 -5
  846. teradataml/data/stock_data.csv +53 -53
  847. teradataml/data/stock_movement.csv +11 -11
  848. teradataml/data/stock_vol.csv +76 -76
  849. teradataml/data/stop_words.csv +8 -8
  850. teradataml/data/store_sales.csv +37 -37
  851. teradataml/data/stringsimilarity_example.json +7 -7
  852. teradataml/data/strsimilarity_input.csv +13 -13
  853. teradataml/data/students.csv +101 -101
  854. teradataml/data/svm_iris_input_test.csv +121 -121
  855. teradataml/data/svm_iris_input_train.csv +481 -481
  856. teradataml/data/svm_iris_model.csv +7 -7
  857. teradataml/data/svmdense_example.json +9 -9
  858. teradataml/data/svmdensepredict_example.json +18 -18
  859. teradataml/data/svmsparse_example.json +7 -7
  860. teradataml/data/svmsparsepredict_example.json +13 -13
  861. teradataml/data/svmsparsesummary_example.json +7 -7
  862. teradataml/data/target_mobile_data.csv +13 -13
  863. teradataml/data/target_mobile_data_dense.csv +5 -5
  864. teradataml/data/templatedata.csv +1201 -1201
  865. teradataml/data/templates/open_source_ml.json +9 -0
  866. teradataml/data/teradataml_example.json +73 -1
  867. teradataml/data/test_classification.csv +101 -0
  868. teradataml/data/test_loan_prediction.csv +53 -53
  869. teradataml/data/test_pacf_12.csv +37 -37
  870. teradataml/data/test_prediction.csv +101 -0
  871. teradataml/data/test_regression.csv +101 -0
  872. teradataml/data/test_river2.csv +109 -109
  873. teradataml/data/text_inputs.csv +6 -6
  874. teradataml/data/textchunker_example.json +7 -7
  875. teradataml/data/textclassifier_example.json +6 -6
  876. teradataml/data/textclassifier_input.csv +7 -7
  877. teradataml/data/textclassifiertrainer_example.json +6 -6
  878. teradataml/data/textmorph_example.json +5 -5
  879. teradataml/data/textparser_example.json +15 -15
  880. teradataml/data/texttagger_example.json +11 -11
  881. teradataml/data/texttokenizer_example.json +6 -6
  882. teradataml/data/texttrainer_input.csv +11 -11
  883. teradataml/data/tf_example.json +6 -6
  884. teradataml/data/tfidf_example.json +13 -13
  885. teradataml/data/tfidf_input1.csv +201 -201
  886. teradataml/data/tfidf_train.csv +6 -6
  887. teradataml/data/time_table1.csv +535 -535
  888. teradataml/data/time_table2.csv +14 -14
  889. teradataml/data/timeseriesdata.csv +1601 -1601
  890. teradataml/data/timeseriesdatasetsd4.csv +105 -105
  891. teradataml/data/titanic.csv +892 -892
  892. teradataml/data/token_table.csv +696 -696
  893. teradataml/data/train_multiclass.csv +101 -0
  894. teradataml/data/train_regression.csv +101 -0
  895. teradataml/data/train_regression_multiple_labels.csv +101 -0
  896. teradataml/data/train_tracking.csv +27 -27
  897. teradataml/data/transformation_table.csv +5 -5
  898. teradataml/data/transformation_table_new.csv +1 -1
  899. teradataml/data/tv_spots.csv +16 -16
  900. teradataml/data/twod_climate_data.csv +117 -117
  901. teradataml/data/uaf_example.json +475 -475
  902. teradataml/data/univariatestatistics_example.json +8 -8
  903. teradataml/data/unpack_example.json +9 -9
  904. teradataml/data/unpivot_example.json +9 -9
  905. teradataml/data/unpivot_input.csv +8 -8
  906. teradataml/data/us_air_pass.csv +36 -36
  907. teradataml/data/us_population.csv +624 -624
  908. teradataml/data/us_states_shapes.csv +52 -52
  909. teradataml/data/varmax_example.json +17 -17
  910. teradataml/data/vectordistance_example.json +25 -25
  911. teradataml/data/ville_climatedata.csv +121 -121
  912. teradataml/data/ville_tempdata.csv +12 -12
  913. teradataml/data/ville_tempdata1.csv +12 -12
  914. teradataml/data/ville_temperature.csv +11 -11
  915. teradataml/data/waveletTable.csv +1605 -1605
  916. teradataml/data/waveletTable2.csv +1605 -1605
  917. teradataml/data/weightedmovavg_example.json +8 -8
  918. teradataml/data/wft_testing.csv +5 -5
  919. teradataml/data/wine_data.csv +1600 -0
  920. teradataml/data/word_embed_input_table1.csv +5 -5
  921. teradataml/data/word_embed_input_table2.csv +4 -4
  922. teradataml/data/word_embed_model.csv +22 -22
  923. teradataml/data/words_input.csv +13 -13
  924. teradataml/data/xconvolve_complex_left.csv +6 -6
  925. teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
  926. teradataml/data/xgboost_example.json +35 -35
  927. teradataml/data/xgboostpredict_example.json +31 -31
  928. teradataml/dataframe/copy_to.py +1764 -1698
  929. teradataml/dataframe/data_transfer.py +2753 -2745
  930. teradataml/dataframe/dataframe.py +17545 -16946
  931. teradataml/dataframe/dataframe_utils.py +1837 -1740
  932. teradataml/dataframe/fastload.py +611 -603
  933. teradataml/dataframe/indexer.py +424 -424
  934. teradataml/dataframe/setop.py +1179 -1166
  935. teradataml/dataframe/sql.py +10090 -6432
  936. teradataml/dataframe/sql_function_parameters.py +439 -388
  937. teradataml/dataframe/sql_functions.py +652 -652
  938. teradataml/dataframe/sql_interfaces.py +220 -220
  939. teradataml/dataframe/vantage_function_types.py +674 -630
  940. teradataml/dataframe/window.py +693 -692
  941. teradataml/dbutils/__init__.py +3 -3
  942. teradataml/dbutils/dbutils.py +1167 -1150
  943. teradataml/dbutils/filemgr.py +267 -267
  944. teradataml/gen_ai/__init__.py +2 -2
  945. teradataml/gen_ai/convAI.py +472 -472
  946. teradataml/geospatial/__init__.py +3 -3
  947. teradataml/geospatial/geodataframe.py +1105 -1094
  948. teradataml/geospatial/geodataframecolumn.py +392 -387
  949. teradataml/geospatial/geometry_types.py +925 -925
  950. teradataml/hyperparameter_tuner/__init__.py +1 -1
  951. teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
  952. teradataml/hyperparameter_tuner/utils.py +281 -187
  953. teradataml/lib/aed_0_1.dll +0 -0
  954. teradataml/lib/libaed_0_1.dylib +0 -0
  955. teradataml/lib/libaed_0_1.so +0 -0
  956. teradataml/libaed_0_1.dylib +0 -0
  957. teradataml/libaed_0_1.so +0 -0
  958. teradataml/opensource/__init__.py +1 -0
  959. teradataml/opensource/sklearn/__init__.py +1 -0
  960. teradataml/opensource/sklearn/_class.py +255 -0
  961. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  962. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  963. teradataml/opensource/sklearn/constants.py +54 -0
  964. teradataml/options/__init__.py +121 -124
  965. teradataml/options/configure.py +337 -336
  966. teradataml/options/display.py +176 -176
  967. teradataml/plot/__init__.py +2 -2
  968. teradataml/plot/axis.py +1388 -1388
  969. teradataml/plot/constants.py +15 -15
  970. teradataml/plot/figure.py +398 -398
  971. teradataml/plot/plot.py +760 -760
  972. teradataml/plot/query_generator.py +83 -83
  973. teradataml/plot/subplot.py +216 -216
  974. teradataml/scriptmgmt/UserEnv.py +3788 -3761
  975. teradataml/scriptmgmt/__init__.py +3 -3
  976. teradataml/scriptmgmt/lls_utils.py +1616 -1604
  977. teradataml/series/series.py +532 -532
  978. teradataml/series/series_utils.py +71 -71
  979. teradataml/table_operators/Apply.py +949 -917
  980. teradataml/table_operators/Script.py +1719 -1982
  981. teradataml/table_operators/TableOperator.py +1207 -1616
  982. teradataml/table_operators/__init__.py +2 -3
  983. teradataml/table_operators/apply_query_generator.py +262 -262
  984. teradataml/table_operators/query_generator.py +507 -507
  985. teradataml/table_operators/table_operator_query_generator.py +460 -460
  986. teradataml/table_operators/table_operator_util.py +631 -639
  987. teradataml/table_operators/templates/dataframe_apply.template +184 -184
  988. teradataml/table_operators/templates/dataframe_map.template +176 -176
  989. teradataml/table_operators/templates/script_executor.template +170 -170
  990. teradataml/utils/dtypes.py +684 -684
  991. teradataml/utils/internal_buffer.py +84 -84
  992. teradataml/utils/print_versions.py +205 -205
  993. teradataml/utils/utils.py +410 -410
  994. teradataml/utils/validators.py +2239 -2115
  995. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +270 -41
  996. teradataml-20.0.0.0.dist-info/RECORD +1038 -0
  997. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +1 -1
  998. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +1 -1
  999. teradataml/analytics/mle/AdaBoost.py +0 -651
  1000. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  1001. teradataml/analytics/mle/Antiselect.py +0 -342
  1002. teradataml/analytics/mle/Arima.py +0 -641
  1003. teradataml/analytics/mle/ArimaPredict.py +0 -477
  1004. teradataml/analytics/mle/Attribution.py +0 -1070
  1005. teradataml/analytics/mle/Betweenness.py +0 -658
  1006. teradataml/analytics/mle/Burst.py +0 -711
  1007. teradataml/analytics/mle/CCM.py +0 -600
  1008. teradataml/analytics/mle/CCMPrepare.py +0 -324
  1009. teradataml/analytics/mle/CFilter.py +0 -460
  1010. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  1011. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  1012. teradataml/analytics/mle/Closeness.py +0 -737
  1013. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  1014. teradataml/analytics/mle/Correlation.py +0 -477
  1015. teradataml/analytics/mle/Correlation2.py +0 -573
  1016. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  1017. teradataml/analytics/mle/CoxPH.py +0 -556
  1018. teradataml/analytics/mle/CoxSurvival.py +0 -478
  1019. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  1020. teradataml/analytics/mle/DTW.py +0 -623
  1021. teradataml/analytics/mle/DWT.py +0 -564
  1022. teradataml/analytics/mle/DWT2D.py +0 -599
  1023. teradataml/analytics/mle/DecisionForest.py +0 -716
  1024. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  1025. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  1026. teradataml/analytics/mle/DecisionTree.py +0 -830
  1027. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  1028. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  1029. teradataml/analytics/mle/FMeasure.py +0 -402
  1030. teradataml/analytics/mle/FPGrowth.py +0 -734
  1031. teradataml/analytics/mle/FrequentPaths.py +0 -695
  1032. teradataml/analytics/mle/GLM.py +0 -558
  1033. teradataml/analytics/mle/GLML1L2.py +0 -547
  1034. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  1035. teradataml/analytics/mle/GLMPredict.py +0 -529
  1036. teradataml/analytics/mle/HMMDecoder.py +0 -945
  1037. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  1038. teradataml/analytics/mle/HMMSupervised.py +0 -521
  1039. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  1040. teradataml/analytics/mle/Histogram.py +0 -561
  1041. teradataml/analytics/mle/IDWT.py +0 -476
  1042. teradataml/analytics/mle/IDWT2D.py +0 -493
  1043. teradataml/analytics/mle/IdentityMatch.py +0 -763
  1044. teradataml/analytics/mle/Interpolator.py +0 -918
  1045. teradataml/analytics/mle/KMeans.py +0 -485
  1046. teradataml/analytics/mle/KNN.py +0 -627
  1047. teradataml/analytics/mle/KNNRecommender.py +0 -488
  1048. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  1049. teradataml/analytics/mle/LAR.py +0 -439
  1050. teradataml/analytics/mle/LARPredict.py +0 -478
  1051. teradataml/analytics/mle/LDA.py +0 -548
  1052. teradataml/analytics/mle/LDAInference.py +0 -492
  1053. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  1054. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  1055. teradataml/analytics/mle/LinReg.py +0 -433
  1056. teradataml/analytics/mle/LinRegPredict.py +0 -438
  1057. teradataml/analytics/mle/MinHash.py +0 -544
  1058. teradataml/analytics/mle/Modularity.py +0 -587
  1059. teradataml/analytics/mle/NEREvaluator.py +0 -410
  1060. teradataml/analytics/mle/NERExtractor.py +0 -595
  1061. teradataml/analytics/mle/NERTrainer.py +0 -458
  1062. teradataml/analytics/mle/NGrams.py +0 -570
  1063. teradataml/analytics/mle/NPath.py +0 -634
  1064. teradataml/analytics/mle/NTree.py +0 -549
  1065. teradataml/analytics/mle/NaiveBayes.py +0 -462
  1066. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  1067. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  1068. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  1069. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  1070. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  1071. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  1072. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  1073. teradataml/analytics/mle/POSTagger.py +0 -417
  1074. teradataml/analytics/mle/Pack.py +0 -411
  1075. teradataml/analytics/mle/PageRank.py +0 -535
  1076. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  1077. teradataml/analytics/mle/PathGenerator.py +0 -367
  1078. teradataml/analytics/mle/PathStart.py +0 -464
  1079. teradataml/analytics/mle/PathSummarizer.py +0 -470
  1080. teradataml/analytics/mle/Pivot.py +0 -471
  1081. teradataml/analytics/mle/ROC.py +0 -425
  1082. teradataml/analytics/mle/RandomSample.py +0 -637
  1083. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  1084. teradataml/analytics/mle/SAX.py +0 -779
  1085. teradataml/analytics/mle/SVMDense.py +0 -677
  1086. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  1087. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  1088. teradataml/analytics/mle/SVMSparse.py +0 -557
  1089. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  1090. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  1091. teradataml/analytics/mle/Sampling.py +0 -549
  1092. teradataml/analytics/mle/Scale.py +0 -565
  1093. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  1094. teradataml/analytics/mle/ScaleMap.py +0 -378
  1095. teradataml/analytics/mle/ScaleSummary.py +0 -320
  1096. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  1097. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  1098. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  1099. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  1100. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  1101. teradataml/analytics/mle/Sessionize.py +0 -475
  1102. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  1103. teradataml/analytics/mle/StringSimilarity.py +0 -425
  1104. teradataml/analytics/mle/TF.py +0 -389
  1105. teradataml/analytics/mle/TFIDF.py +0 -504
  1106. teradataml/analytics/mle/TextChunker.py +0 -414
  1107. teradataml/analytics/mle/TextClassifier.py +0 -399
  1108. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  1109. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  1110. teradataml/analytics/mle/TextMorph.py +0 -494
  1111. teradataml/analytics/mle/TextParser.py +0 -623
  1112. teradataml/analytics/mle/TextTagger.py +0 -530
  1113. teradataml/analytics/mle/TextTokenizer.py +0 -502
  1114. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  1115. teradataml/analytics/mle/Unpack.py +0 -526
  1116. teradataml/analytics/mle/Unpivot.py +0 -438
  1117. teradataml/analytics/mle/VarMax.py +0 -776
  1118. teradataml/analytics/mle/VectorDistance.py +0 -762
  1119. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  1120. teradataml/analytics/mle/XGBoost.py +0 -842
  1121. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  1122. teradataml/analytics/mle/__init__.py +0 -123
  1123. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  1124. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  1125. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  1126. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  1127. teradataml/analytics/mle/json/arima_mle.json +0 -172
  1128. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  1129. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  1130. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  1131. teradataml/analytics/mle/json/burst_mle.json +0 -140
  1132. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  1133. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  1134. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  1135. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  1136. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  1137. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  1138. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  1139. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  1140. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  1141. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  1142. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  1143. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  1144. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  1145. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  1146. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  1147. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  1148. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  1149. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  1150. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  1151. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  1152. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  1153. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  1154. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  1155. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  1156. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  1157. teradataml/analytics/mle/json/glm_mle.json +0 -111
  1158. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  1159. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  1160. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  1161. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  1162. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  1163. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  1164. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  1165. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  1166. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  1167. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  1168. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  1169. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  1170. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  1171. teradataml/analytics/mle/json/knn_mle.json +0 -141
  1172. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  1173. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  1174. teradataml/analytics/mle/json/lar_mle.json +0 -78
  1175. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  1176. teradataml/analytics/mle/json/lda_mle.json +0 -130
  1177. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  1178. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  1179. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  1180. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  1181. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  1182. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  1183. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  1184. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  1185. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  1186. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  1187. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  1188. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  1189. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  1190. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  1191. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  1192. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  1193. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  1194. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  1195. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  1196. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  1197. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  1198. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  1199. teradataml/analytics/mle/json/pack_mle.json +0 -58
  1200. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  1201. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  1202. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  1203. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  1204. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  1205. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  1206. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  1207. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  1208. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  1209. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  1210. teradataml/analytics/mle/json/roc_mle.json +0 -73
  1211. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  1212. teradataml/analytics/mle/json/sax_mle.json +0 -154
  1213. teradataml/analytics/mle/json/scale_mle.json +0 -93
  1214. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  1215. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  1216. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  1217. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  1218. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  1219. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  1220. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  1221. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  1222. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  1223. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  1224. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  1225. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  1226. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  1227. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  1228. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  1229. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  1230. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  1231. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  1232. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  1233. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  1234. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  1235. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  1236. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  1237. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  1238. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  1239. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  1240. teradataml/analytics/mle/json/tf_mle.json +0 -33
  1241. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  1242. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  1243. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  1244. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  1245. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  1246. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  1247. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  1248. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  1249. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  1250. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  1251. teradataml/analytics/sqle/Antiselect.py +0 -321
  1252. teradataml/analytics/sqle/Attribution.py +0 -603
  1253. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  1254. teradataml/analytics/sqle/GLMPredict.py +0 -430
  1255. teradataml/analytics/sqle/MovingAverage.py +0 -543
  1256. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  1257. teradataml/analytics/sqle/NPath.py +0 -632
  1258. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  1259. teradataml/analytics/sqle/Pack.py +0 -388
  1260. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  1261. teradataml/analytics/sqle/Sessionize.py +0 -390
  1262. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  1263. teradataml/analytics/sqle/Unpack.py +0 -503
  1264. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  1265. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  1266. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  1267. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  1268. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  1269. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  1270. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  1271. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  1272. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  1273. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  1274. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  1275. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  1276. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  1277. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  1278. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  1279. teradataml/catalog/model_cataloging.py +0 -980
  1280. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  1281. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  1282. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  1283. teradataml/table_operators/sandbox_container_util.py +0 -643
  1284. teradataml-17.20.0.7.dist-info/RECORD +0 -1280
  1285. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
@@ -1,1280 +0,0 @@
1
- teradataml/LICENSE-3RD-PARTY.pdf,sha256=SWfkTUUrQKMpnrvtLwr4UtcX-30fP4sFYOsZj_z0fHs,283624
2
- teradataml/LICENSE.pdf,sha256=1LmynbsiMxIghDdtKQJkx9K7R_bJ9avz68LDCg2mDE0,66596
3
- teradataml/README.md,sha256=2P4DhAOkEk0HpkXyFzIDbI-yckWqkmJy1QQmzOFJ8HQ,81546
4
- teradataml/__init__.py,sha256=eRCb7xq2bca-WGaerAwucBy2GOoghliZcOrXtK8qACo,2187
5
- teradataml/_version.py,sha256=-S6KFBCyllPXo-SXEw4_5B60SVe2AHx77qVcY8SJEeU,353
6
- teradataml/analytics/Transformations.py,sha256=9A-7fonAeJK_moWC-FolMF0lc39Ld4vV-6aZcupgq44,146404
7
- teradataml/analytics/__init__.py,sha256=KhvW-e9FwrHDtuPnCLgh1OTOvmQatqDXQKZiayGMpBk,2880
8
- teradataml/analytics/analytic_function_executor.py,sha256=H07nNWI8BkSGCH9C8ZuqYbaTKvtnzbyIXL2_DVDS7ew,89002
9
- teradataml/analytics/analytic_query_generator.py,sha256=9kYsGDjzA5stdGZqHWkRPGdxx8_dlLbqMfY1S29rFR4,41501
10
- teradataml/analytics/meta_class.py,sha256=pHrhFgscCwcs43jrjYIBd7YUCBFmsOfLUWWCjM9n-_o,6828
11
- teradataml/analytics/utils.py,sha256=P9dtot-FcrBgYud-z-qVI5R5p69qcAr-JKv19apyQNE,26978
12
- teradataml/analytics/valib.py,sha256=oozinPlCEy8PEa8RyNTX3Za2gMcxq5ea8bueWuae4hU,71863
13
- teradataml/analytics/byom/H2OPredict.py,sha256=YlK5C0SLcko0D8J2OOFQckiVAlHnTmGL3GJIMwCtums,24614
14
- teradataml/analytics/byom/PMMLPredict.py,sha256=CQ35EgxSVnTQ7aVug4i3CDC2F3dOJzBvIZiYg3Man5w,19832
15
- teradataml/analytics/byom/__init__.py,sha256=LCIaf4hTBZ1MyZy7fD-c3zvEXguN4w6V3dngHniHKJE,796
16
- teradataml/analytics/json_parser/__init__.py,sha256=f6dQyfxbWqH7VrXo7NIs7LstPM7Im06dUJBObeptfOE,4262
17
- teradataml/analytics/json_parser/analytic_functions_argument.py,sha256=vhwFWSw_gbqpl2DpEdHM3NkdF3PP6YU_i8wNEvrmgKk,63996
18
- teradataml/analytics/json_parser/json_store.py,sha256=kRM8vZNCM9uyhB6TnoauNOxrkeOfpqdyotZb32v70Y8,6984
19
- teradataml/analytics/json_parser/metadata.py,sha256=BhuSEcEB1Tk4hJMYlKltaIrX8-vtqRDlYn6tOC6uODU,72640
20
- teradataml/analytics/json_parser/utils.py,sha256=3FohDzMScikUqnv-fsNaEqrQXr-iuvK4GTKKhdZRQnU,32958
21
- teradataml/analytics/mle/AdaBoost.py,sha256=n9cVptHx4IUtAIIUFLeB8Ey3YwQziQrIysFU4bpAN0w,34015
22
- teradataml/analytics/mle/AdaBoostPredict.py,sha256=T-b3xuyoKYSpEL-nFofHQAR-D0azA3sMBCy5w1fCIaQ,28936
23
- teradataml/analytics/mle/Antiselect.py,sha256=XnpuH4D99RQ8AEtVaddHbFKy1Mbw6g6T1K0ieUGtx7s,14420
24
- teradataml/analytics/mle/Arima.py,sha256=Th7g22V1RCGLMk5nZo_pKOLDOHRf3fjXIBeDK4Ne0JY,31351
25
- teradataml/analytics/mle/ArimaPredict.py,sha256=_S1AYpBRDiFZ4H7fhJ1ah--QKTfI2-kOQb27YyyO7JA,23288
26
- teradataml/analytics/mle/Attribution.py,sha256=kZpl0KvBITPeW5yS0NLKHTqjXzBkA-PrIsu2kiGByQg,60978
27
- teradataml/analytics/mle/Betweenness.py,sha256=it2L4L0a-pMqB-xxyTAA0lb50Ahvh4xk_lyN9S8ihMk,35062
28
- teradataml/analytics/mle/Burst.py,sha256=cbJds7A_e7NdtKmaBBk0bg382uQ2Zmp9tVQfPi4Ga2Y,35637
29
- teradataml/analytics/mle/CCM.py,sha256=E6J-VzPpLck82GqXn0uBmXpYToQ8MFd4ln9NvkzjfXA,28286
30
- teradataml/analytics/mle/CCMPrepare.py,sha256=zfL6stQG0VxBgihwr5MuPWwZ25YUiGa4I6CQLYGMyA0,13724
31
- teradataml/analytics/mle/CFilter.py,sha256=-d5_2qJrs_RBN2zPTj7QJoNUACqsmknIeMaHvb8QWx0,21345
32
- teradataml/analytics/mle/ChangePointDetection.py,sha256=QV9BsFzWlAYo26tKFcEVcVFGmGcGXEOAtSf6MVZvpIM,27594
33
- teradataml/analytics/mle/ChangePointDetectionRT.py,sha256=JF3AeAGa-gVQvTCdwp6p28rEsw8bxZJjDTNRmuHwRko,22795
34
- teradataml/analytics/mle/Closeness.py,sha256=qWsm4fXvZmctRaNrZnXesfjIZbLlxJClmew0H2d_3cI,39004
35
- teradataml/analytics/mle/ConfusionMatrix.py,sha256=rPbHGVqAD_zdFz6WFPlp-95rhZHcOJlRa-uDmTAgBQQ,20391
36
- teradataml/analytics/mle/Correlation.py,sha256=NN4esXkCFidxxqK7azkpXz3tEi8qC0ahqHdsVQCANZc,22733
37
- teradataml/analytics/mle/Correlation2.py,sha256=Wz_2vJxTiSARM69h6_v-YoOnWAFqiRYiXFnmg8B3m2A,29218
38
- teradataml/analytics/mle/CoxHazardRatio.py,sha256=6EHiw69bWvWnRNfW1a53Jxka8VKR1FX29wnTgF3JYxk,35554
39
- teradataml/analytics/mle/CoxPH.py,sha256=vvZK8kzidqr3OMEgkuWSie2OxFo2kVJ_iBbKima1jHA,28029
40
- teradataml/analytics/mle/CoxSurvival.py,sha256=Rno4jCiytEXqEekclvia5wFC0MLov5kPRhAmLR6ANjI,24406
41
- teradataml/analytics/mle/CumulativeMovAvg.py,sha256=fuJvn4IZN3EoXikZecojiAHtXV6xsu0WDTHbV-8FT40,16162
42
- teradataml/analytics/mle/DTW.py,sha256=aOg1HqULhNdfQntZzUyoJ-rZziJFCD4oRgRf7mc_KdA,31985
43
- teradataml/analytics/mle/DWT.py,sha256=ZUESaJ-ZSQowabeRxOXChePRaS1tXI6QfX3DihSDlxU,29040
44
- teradataml/analytics/mle/DWT2D.py,sha256=Ob8lx5rNZIyq9-9wbNl_aqOkeE89_SPz16XmEjgCFw8,31009
45
- teradataml/analytics/mle/DecisionForest.py,sha256=knsA_mI3FLTpo-nvCGQry42YjdmzAzl7vkHSzhCaQO4,35956
46
- teradataml/analytics/mle/DecisionForestEvaluator.py,sha256=4Mn4tbqUmE06yd1U9BNq9x-o6kdAP240KH2Cw_NpnnM,16085
47
- teradataml/analytics/mle/DecisionForestPredict.py,sha256=qJD9TwgQM-a7SIcSpvnqbJbYUr1BWw0oxkoebmwcH2A,27525
48
- teradataml/analytics/mle/DecisionTree.py,sha256=hpDuHc7utBhSQJAEu8np0Fjh6vKTR_ZhihdfRkSMCao,45398
49
- teradataml/analytics/mle/DecisionTreePredict.py,sha256=quGdsmFAZr9gVU7IiFjdss_PK8k_8f2u_aG-mH4uZ8k,26702
50
- teradataml/analytics/mle/ExponentialMovAvg.py,sha256=jR5jFBD7nye0j2yK-dAu3qzoD-BQdfapBFva8AMyrtE,19059
51
- teradataml/analytics/mle/FMeasure.py,sha256=hpNFYU6yRRyqQouda-IJ1Mb_OUqSRnmaL5mgV8n1ul0,17886
52
- teradataml/analytics/mle/FPGrowth.py,sha256=FqJYQZjMis5hlb2eeQ6TR7f2SqM6pC_eO5KiMJgBJOQ,38509
53
- teradataml/analytics/mle/FrequentPaths.py,sha256=K8p0Kl2yd5_0UmAHVkmGi0TBQBYB4kPzsGl6gdhCfYc,37713
54
- teradataml/analytics/mle/GLM.py,sha256=H3Te24KxlS3gnc1-jAIB2l3SctJ7-nqSdbrKNyz_sS0,26482
55
- teradataml/analytics/mle/GLML1L2.py,sha256=YuFn8wOT6cC90i-qiKzNoS6GMY1jSzRLzqHk36lQxv4,26314
56
- teradataml/analytics/mle/GLML1L2Predict.py,sha256=XJZXZwSxt4DdLfDe7uXgVaExYqR5yVBdjDA88kjwCNk,25044
57
- teradataml/analytics/mle/GLMPredict.py,sha256=EsPgdnfEnhTN9T3YXOApf_DI4tww9gkjoeOCGDBB-0c,25848
58
- teradataml/analytics/mle/HMMDecoder.py,sha256=euWGcwMt2KazPgRhFh-cKhqD3Or4JTjmfbX5vUV9YRE,54448
59
- teradataml/analytics/mle/HMMEvaluator.py,sha256=YU5-ZlgsBdRrSdfQ_0xi-_H6r5W1KNZifFAOTrTh2nE,51404
60
- teradataml/analytics/mle/HMMSupervised.py,sha256=bpYrs3rDMq-X1w-x6B75S3yCpdrIl-whJk5F4ayanPQ,27781
61
- teradataml/analytics/mle/HMMUnsupervised.py,sha256=ZF6cwJuU0aS0w6GjBBSIK1d0QSyIG_QTz32svxJzl64,30998
62
- teradataml/analytics/mle/Histogram.py,sha256=4_vx3eb_64QAahQmQOc26KYQRQD6d94bQ78m7nyinHE,27224
63
- teradataml/analytics/mle/IDWT.py,sha256=ENgFY1NT8xUdMbbiLBAV-sv6FbtgU7VlWfh2Zeiu9Vg,23253
64
- teradataml/analytics/mle/IDWT2D.py,sha256=nOi-0EiWT7mcxayxWr262gqFKJbUMlUETTxXzxYlR_A,24310
65
- teradataml/analytics/mle/IdentityMatch.py,sha256=uyAFNMi1gYcmzCVM8BSb2kq2i92pF-imbCnlM5KPYSU,44950
66
- teradataml/analytics/mle/Interpolator.py,sha256=0yeE9hTsvfS4qQwtIr3c25ZF2UjYF9BaNqkhX9YO6Tk,48883
67
- teradataml/analytics/mle/KMeans.py,sha256=jdytMjsC2GEGfLAergsc_6RWg1bsYjwYX_HMXQhishc,24022
68
- teradataml/analytics/mle/KNN.py,sha256=HCrEv6I71DuLFNEWeFE0gk7g7F_x7uKpby_U5BcyHVk,31937
69
- teradataml/analytics/mle/KNNRecommender.py,sha256=7LDK4Lyv0mzQXpkNE2CRV-gwjH1_xFHMQykFTI8vQbI,24443
70
- teradataml/analytics/mle/KNNRecommenderPredict.py,sha256=M4sp4uIkDvXgHL0JnZ35dhNmYwyP_2oae21DnZ0WEQM,29507
71
- teradataml/analytics/mle/LAR.py,sha256=1baW6ff6kmuksTkHSZIFTU2A4t23dJjfy-mA631a77A,19961
72
- teradataml/analytics/mle/LARPredict.py,sha256=c5VBIly_RxWMTVq3GjqdfScN2UG5L43T9yYCnJ5hR4Q,22514
73
- teradataml/analytics/mle/LDA.py,sha256=AzcQ6IhTbztC1aLfzocDp2QPBBiXUiD38vMvv_O5yaY,26930
74
- teradataml/analytics/mle/LDAInference.py,sha256=XhF--r03LK9NzSHAiWJkNMFOLp1OVKnSG1Ua9E_lXwU,23815
75
- teradataml/analytics/mle/LDATopicSummary.py,sha256=uMzTEsftfhMxfwsz1Ht5LvcA8-ADiaRaJ4N_zgjymj8,20799
76
- teradataml/analytics/mle/LevenshteinDistance.py,sha256=roJBr690y3CMFaeiaNxBKQdwoSvdILz3-i4AczsdUc8,20790
77
- teradataml/analytics/mle/LinReg.py,sha256=JMCTFTp-1pKw6j9he8DAYyB5pMYaNZFBWyz5YKRknqk,19933
78
- teradataml/analytics/mle/LinRegPredict.py,sha256=l2atcZK0DEVXPRWriVcpWb-L8jVdGTWw7pxtKBx1gmI,20295
79
- teradataml/analytics/mle/MinHash.py,sha256=KWkgX9CvvgIDChm07uUGQSKSf-9JlLQNfzgWJlvydwY,26386
80
- teradataml/analytics/mle/Modularity.py,sha256=1UcuKw28_TdjHgW5CE3p1XSlJCKdASLzMKKvBifvr7s,31565
81
- teradataml/analytics/mle/NEREvaluator.py,sha256=am8FZirKus3JujYeXJSpqqe8n_0gi9fpPNcMEGVwWFM,18181
82
- teradataml/analytics/mle/NERExtractor.py,sha256=mcWT_SpmXKD6Q-ANx0P7xkhF4dx8B3wbmjp7UlP8s1o,28975
83
- teradataml/analytics/mle/NERTrainer.py,sha256=EXo-myCUSl6mPpyQ5KlNIn6wVG4HkRjgWWOG12DLGdI,20807
84
- teradataml/analytics/mle/NGrams.py,sha256=in2RGMrP6ksw5zRVnrab3djkhbkfQG7YHdPCd21MNck,27194
85
- teradataml/analytics/mle/NPath.py,sha256=fM4BTg9BT8B2Egh79a8A4tJm5Z00Y-Uaqkz4RkBsscg,31925
86
- teradataml/analytics/mle/NTree.py,sha256=AvVNPEXRXZBsmaRvY319KSgvnAuA1wd0tpZctwPe77U,25358
87
- teradataml/analytics/mle/NaiveBayes.py,sha256=lYi2L4FhQjEf73geVXa8CzqP-xQHAW9Bz6qpqcumZrg,21258
88
- teradataml/analytics/mle/NaiveBayesPredict.py,sha256=_ACEd9XIexH5grRKx_77IaaPbYQkkSyP1KvMjjwa_oM,24787
89
- teradataml/analytics/mle/NaiveBayesTextClassifier.py,sha256=vOUJuAZRd6u9rwfcxWKEe_272-mVAe_02H87ZiZSFy0,30132
90
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py,sha256=JacuadwSp6vOo-B1msOKMcr0bLC72m349H-5u0oYA0Y,26068
91
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py,sha256=eSAMwJSI_rRk9AdHNgLHIChaGl75dRirSpJQmIsMMa4,42344
92
- teradataml/analytics/mle/NamedEntityFinder.py,sha256=Vvc95wHrGs23sKlpD2k1zCY-md1p9L4RA23yMZadGRw,26800
93
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py,sha256=n8VeqilrzIrzyn8BKJT9D3nKI8khf-Pa_FW3NOUYkTc,18707
94
- teradataml/analytics/mle/NamedEntityFinderTrainer.py,sha256=nQWtSZFVvgmuSbrpsZcD0K7WwTKN643TAxJlCCMjkP0,17490
95
- teradataml/analytics/mle/POSTagger.py,sha256=oTIuH556lkQ02EMmTF-Dpuy9KGBm00ICBD2pCuqrwl0,18746
96
- teradataml/analytics/mle/Pack.py,sha256=QiJwGxbrDRs48chyCvGTpI-jUxOF5gqfxjXoyFO7Xjw,18295
97
- teradataml/analytics/mle/PageRank.py,sha256=pZYSLZRm69efqxYrafzUP-APZN1fVBTOYSwOi_h2VQ8,25873
98
- teradataml/analytics/mle/PathAnalyzer.py,sha256=m7gEJyUbiX3b-W2VrsKdMKF6sIg8AUXL3xQj2exW0DY,19769
99
- teradataml/analytics/mle/PathGenerator.py,sha256=AM9b_ZJt-Ux6tg7hEhkaPzbSPG_DggolnWA_Ya7DyU4,15838
100
- teradataml/analytics/mle/PathStart.py,sha256=QIBkchrx_AddADlfOsSYWWuSEw7ij6c_CcObO9bkvq4,21680
101
- teradataml/analytics/mle/PathSummarizer.py,sha256=qMeCUT_7JegSHx1SVLuPFuECFYJ5K-od1P_SxC0cHU0,21806
102
- teradataml/analytics/mle/Pivot.py,sha256=qNN9Zm-EOGKXqxePHJomotg596f_2CUORudtMo4Cewc,21800
103
- teradataml/analytics/mle/ROC.py,sha256=ZIgaXWlLLPSW-_alLfnk2nLdNVWASAU18O6BBRbz8Eg,19786
104
- teradataml/analytics/mle/RandomSample.py,sha256=TYucA4oTxaM3ToqClRPkU6u5MFJmBWsbRaceoOFPXwU,32012
105
- teradataml/analytics/mle/RandomWalkSample.py,sha256=DV7-AAUTI6vnUHHWKpVG9ZpL308XPvyhQyy7n0YC0xI,25127
106
- teradataml/analytics/mle/SAX.py,sha256=d1d7ac9ENl5N03peI-FufF_Q29yZdxKf-Poo8ZuFPZQ,41029
107
- teradataml/analytics/mle/SVMDense.py,sha256=Agml1Q6COVQqkQumH-36ZF11SjNGN7PJBNNWmo8Bh40,32847
108
- teradataml/analytics/mle/SVMDensePredict.py,sha256=L1Qo1dkLNGV3AzBEr04qXc8DyBf9pGVCcqvmRuoQvh0,26897
109
- teradataml/analytics/mle/SVMDenseSummary.py,sha256=V4x6qMLXtHwLPIhHQr81FrPJPCUwSHkTF0HB3UJPJzs,20405
110
- teradataml/analytics/mle/SVMSparse.py,sha256=l6oPYGQ-TFID7YIc_Z-N68PcVotGea3_Ya8xAdpJ_H8,26796
111
- teradataml/analytics/mle/SVMSparsePredict.py,sha256=rpjew9LQWxKpJIb91YZuZ9f8XiFX37el9yY-5q1KJws,27808
112
- teradataml/analytics/mle/SVMSparseSummary.py,sha256=JosUQCno0FppVTOQJwSk23rjj6tQ1LFxkJV__18LezU,19975
113
- teradataml/analytics/mle/Sampling.py,sha256=oBI-M8xpUP4oCJd5zxTEJRDhAPlfVsunp--rdXTcQ9E,27287
114
- teradataml/analytics/mle/Scale.py,sha256=vr6uScW-iieTBsxQejdowdKiDXb9nTsiqQBkQ5VEy8U,27530
115
- teradataml/analytics/mle/ScaleByPartition.py,sha256=wd7Ep-DXvLPHsoyPQMpCVNsZ3bfLFTl9dZcbPAQ5m_U,23747
116
- teradataml/analytics/mle/ScaleMap.py,sha256=3FBlW0AMznLs6z28jF9KDAztxiuNg0NFbIxLUP5W1PI,16747
117
- teradataml/analytics/mle/ScaleSummary.py,sha256=YMPAuAWCSsv17KE_9K-foqchm5i4jrYIIvacs-QHak4,13301
118
- teradataml/analytics/mle/SentenceExtractor.py,sha256=7BVeo_9JcHwm_l0MaAVglPdnd6kdpI-Y_ScYfmOmGb4,15941
119
- teradataml/analytics/mle/SentimentEvaluator.py,sha256=WLUlIu4gdhEYRGVQ0-rDm5Qp-2Hu-6jmes8bmvaXr0E,20496
120
- teradataml/analytics/mle/SentimentExtractor.py,sha256=0Oa6Rq2h6-64xRfPID9f_5NTVqMoNtu9dfvAeNfQJGs,29035
121
- teradataml/analytics/mle/SentimentTrainer.py,sha256=WKtN_XJomII9_hZBfo4hZUmdrWZCdPD_ty0JTjO3YUg,18048
122
- teradataml/analytics/mle/SeriesSplitter.py,sha256=f2e9GbNOPi2Vp95_EzIgHdd3MRWMQPt-G3tjgSHvl48,33977
123
- teradataml/analytics/mle/Sessionize.py,sha256=cZgbWzSwM5h93W1hoyhoodvYH7uGXk8hw_WBDImrGXg,21835
124
- teradataml/analytics/mle/SimpleMovAvg.py,sha256=GppQ4oOPyV-85HzAJGJZLbZWv2HLq0j05A4Hv1epxwI,17808
125
- teradataml/analytics/mle/StringSimilarity.py,sha256=FzuQ0G19iPVemT3fhs4Jh-ZE6BKpWOPEoMUrqRuTOfE,20303
126
- teradataml/analytics/mle/TF.py,sha256=6msiPK84-SD32zEK-_mps-xKtjfPBB3epDCLb5MQClc,17361
127
- teradataml/analytics/mle/TFIDF.py,sha256=h5bSmLI_Rxb4f_51rrZjwoJSP2q_WQpXcv75_Yic7w0,24600
128
- teradataml/analytics/mle/TextChunker.py,sha256=MieJY5l7ENcw3LqWlk2fJa5APteysp5PWf4QG10HtuY,18719
129
- teradataml/analytics/mle/TextClassifier.py,sha256=wrcsjYMKSQmJSqiGE2oVXJIqHkLrtbLYMlARvNir9R0,18167
130
- teradataml/analytics/mle/TextClassifierEvaluator.py,sha256=uA-25RyNU0lR4UHAbDI0_0RONQfWKDBgtGyVO5-6Tak,19175
131
- teradataml/analytics/mle/TextClassifierTrainer.py,sha256=jc3XRkaJC6U0oDEetKYZ8AXR3y69tWeuIFWqjJuGWNM,28117
132
- teradataml/analytics/mle/TextMorph.py,sha256=l60jJeNaith12sSRmG4r5YcBBLJaoPYrVEeDKDMjOwM,22488
133
- teradataml/analytics/mle/TextParser.py,sha256=eP8mK8so5xaKAL9MExoud6SSAjpq0wLptsmTBuUdHvg,29914
134
- teradataml/analytics/mle/TextTagger.py,sha256=Gt2oLcmE7UL5U_gFhR2NUziTMCM-a1cWNgfTb6yYAGA,25308
135
- teradataml/analytics/mle/TextTokenizer.py,sha256=aaovu3cbnvp3J7i4-mIfcnGmxx1_lcMFYAIxrGzYZsA,23380
136
- teradataml/analytics/mle/UnivariateStatistics.py,sha256=MSL0AK0HWCSan5JdyXo2TNro3Be-uq6xW87SEnznRIQ,24804
137
- teradataml/analytics/mle/Unpack.py,sha256=xe--h_0q8ZkJItyHNW0O3QT1-EgYwduvs3pXU8R87Zw,25210
138
- teradataml/analytics/mle/Unpivot.py,sha256=8804yBv7XGXlIda4vH1TH1zAoqN8mGIQQHpweatPpBY,19825
139
- teradataml/analytics/mle/VarMax.py,sha256=sEVruhjttmqzeaIQsLPd8TTOYgE1Xj1lNrytMtwYW9w,38582
140
- teradataml/analytics/mle/VectorDistance.py,sha256=ryie4cA2N2U-bffL2g9nGwDyE6QNfnSk0ASfqngq9_M,40003
141
- teradataml/analytics/mle/WeightedMovAvg.py,sha256=UjoJPDO_otnozGU8CoACClMziYozy20gvFlU-ob22_s,18182
142
- teradataml/analytics/mle/XGBoost.py,sha256=JLmhdB0SpbnZagrXZrcCHMDMvMA1Q9RpQvCrrbrEMJ4,43340
143
- teradataml/analytics/mle/XGBoostPredict.py,sha256=GujWyK40FZp4nReHfcOClXogIlCBi7wRsZMOYUP7B3A,31847
144
- teradataml/analytics/mle/__init__.py,sha256=ivqzHR06I12fTxsXcxM7tu2ZWOLVCTO4M5Raj77oO_Y,7631
145
- teradataml/analytics/mle/json/adaboost_mle.json,sha256=_IudtCo-iFGYXeM8XE0k0rW_L19G6R0bPDyGINLoyeg,3627
146
- teradataml/analytics/mle/json/adaboostpredict_mle.json,sha256=fndsmd2AJXZqAr87mEF80XNcN3wcGjAknExZ6Ck-HMo,2263
147
- teradataml/analytics/mle/json/antiselect_mle.json,sha256=uGQItDuaI2DYYeyefut9Ou1VMgvhU2jqIAD8SLmAlrs,868
148
- teradataml/analytics/mle/json/antiselect_mle_mle.json,sha256=uGQItDuaI2DYYeyefut9Ou1VMgvhU2jqIAD8SLmAlrs,868
149
- teradataml/analytics/mle/json/arima_mle.json,sha256=M6sPfbfkDutOdxdnm2535_Kq_R_IyKUAG5asxfByuvY,4400
150
- teradataml/analytics/mle/json/arimapredict_mle.json,sha256=dq73jOBXBZ71ptErmGo2dUMefEs1h02deJ50YkUh2Ls,1327
151
- teradataml/analytics/mle/json/attribution_mle_mle.json,sha256=X9NpEcnKWHl77Hyi5xgqJ8D1HdXYNHJs--Nhawl-Kag,3647
152
- teradataml/analytics/mle/json/betweenness_mle.json,sha256=7sSnJSYODhHIVx1TBaAgmvPBwP7XL6YxLXBI6ILusSQ,2481
153
- teradataml/analytics/mle/json/burst_mle.json,sha256=E6mGVysD1Hq1xWOjWnsI_7LgwR1lF6V0ypLohbXg5Po,3611
154
- teradataml/analytics/mle/json/ccm_mle.json,sha256=NUTuPMnbpLaFaTpn5lL7xyJXvHHNpKW_dBPQ_xAVs3s,3268
155
- teradataml/analytics/mle/json/ccmprepare_mle.json,sha256=XBgWqoWDzsXkbdfWoT3mjXf36qccIZ5V5TufqetKwj8,368
156
- teradataml/analytics/mle/json/cfilter_mle.json,sha256=t-3sKVnN5UNrmx4UoRyxJhTyCfeirUWxlQapFN58Cx8,2416
157
- teradataml/analytics/mle/json/changepointdetection_mle.json,sha256=PA3UREHAvC2ZJKBM4TX1x8sbjrE-4RTCMtCVB7nXlrE,2404
158
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json,sha256=SB8lYIK9hp1TeipaH3GERaOLmSYjfI-WrOL1xwDTPp4,2061
159
- teradataml/analytics/mle/json/closeness_mle.json,sha256=qz5_PIJYl5yr3wyGoWY3MXSVKNyz_QPu1f_E74SnCQA,2642
160
- teradataml/analytics/mle/json/confusionmatrix_mle.json,sha256=00h9ln6c1BOYWIiBe15sEHo7i7vr_Twv_uDTOedMkEo,2020
161
- teradataml/analytics/mle/json/correlation_mle.json,sha256=dNwmmVNX0SVU0NVBGqQLiniBFh6FzuT-yHQNmuYPis8,2321
162
- teradataml/analytics/mle/json/correlationreduce_mle.json,sha256=URi758EvroFJaQrKJSKsGGbQ5T_6PsVhOwxeonjNzOk,1284
163
- teradataml/analytics/mle/json/coxhazardratio_mle.json,sha256=SbJgbhRUMLdb5DEHtP7V1kVl5J0_GvIc1b16J0fAcYQ,2359
164
- teradataml/analytics/mle/json/coxph_mle.json,sha256=vCU2BXqZ2g5yAEIM_FrbHCegMVsPTHkZms61WqKCas4,2571
165
- teradataml/analytics/mle/json/coxsurvival_mle.json,sha256=L6Wdbeu4w9O_TqVXg6BAGPhwYSK9KFnqXBUZMU0sKX0,2079
166
- teradataml/analytics/mle/json/cumulativemovavg_mle.json,sha256=orNQp9SdVLzf0ejIdpt_lYGEMNdLcfgO8xLVkzEnqKQ,891
167
- teradataml/analytics/mle/json/decisionforest_mle.json,sha256=6B5QIR8zyOsqnlJKJ1RBXZTGuQTiYVZXxSjVTd1qOBw,4411
168
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json,sha256=-CrFBQmtBjJEEq0T4586XIieI5itOo9NEVZl4Vzl_qk,892
169
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json,sha256=QhyeX5RVn7zI_sO9QnZ2KcCODaytP9LpXNVUh_bzroE,1920
170
- teradataml/analytics/mle/json/decisiontree_mle.json,sha256=or3s4OwO1KsOPo-De-0tfBdWkWN5Gg8TO7eUBsEniC4,5199
171
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json,sha256=vAM8O_A49zyy9qMdj76en35IL229sjr0S8a1krv9Fsk,2333
172
- teradataml/analytics/mle/json/dtw_mle.json,sha256=UYPHMgjangr5pOLwoXBQe61alrtgibnV4xUZmL20z7o,2446
173
- teradataml/analytics/mle/json/dwt2d_mle.json,sha256=-NzK9bDFnBFvvMHvVCxvlISNPdTu_FWwE4j7Ae4D_2o,2943
174
- teradataml/analytics/mle/json/dwt_mle.json,sha256=Ubn8N7UklyytL8jOBw20iuKRl85HWm1zKy-66X-Jbnk,2535
175
- teradataml/analytics/mle/json/exponentialmovavg_mle.json,sha256=-HHnN5wS14SKwVMZcbXXFLzhdXkCDlyVbm7evdz5g4o,1433
176
- teradataml/analytics/mle/json/fmeasure_mle.json,sha256=pxijNEiSmQFuTHv5yrmLRp9FkYz45VWLWChx0nmjeTM,1463
177
- teradataml/analytics/mle/json/fpgrowth_mle.json,sha256=5cbtlovhWfvmah5d0Zfgg969jp2XoNW9MobpBjNBSjE,4244
178
- teradataml/analytics/mle/json/frequentpaths_mle.json,sha256=KBB-cr3hcuOKSBgBbtsjIiKcg56zsH6njosbch-E_6k,3446
179
- teradataml/analytics/mle/json/glm_mle.json,sha256=XTtZv7UA2LhTCuMQ9IczqBB7sAwOjphzNdt04S8726Y,2796
180
- teradataml/analytics/mle/json/glml1l2_mle.json,sha256=rDf_QCxZQmsNQjWa5R_KgdAGoU1HBC8VbeyHdVdJE80,2774
181
- teradataml/analytics/mle/json/glml1l2predict_mle.json,sha256=M_E6V9mQ1oFipgQWUsLSMDSTKn7n4fxsggLLwdDyDTI,1476
182
- teradataml/analytics/mle/json/glmpredict_mle_mle.json,sha256=Eevv6g2MKG4DGqe6DDVWaYpQI11g1dQw3--SQQJD-d8,1876
183
- teradataml/analytics/mle/json/histogram_mle.json,sha256=4qJjEepSYaOb5ubDBoRKjNDSlqUaKKd8Fyk5Cvw6biM,2564
184
- teradataml/analytics/mle/json/hmmdecoder_mle.json,sha256=kEu9ais46XIJ2CJKmnQkMq2hSEk4wAc5YlpxzjoYJh0,5129
185
- teradataml/analytics/mle/json/hmmevaluator_mle.json,sha256=tLxvkMfUa__TP-czAZHBAUefVupZIPlReqV2gevVwRM,5509
186
- teradataml/analytics/mle/json/hmmsupervised_mle.json,sha256=rfZZZ_kp5cHmvr30x0s6ODt-gD2kiE4r9GZ2zWUGSdU,2388
187
- teradataml/analytics/mle/json/hmmunsupervised_mle.json,sha256=J_BChJ6IztagGBUEzWTEbFax5FdMY8VUhC3NlM_rTfA,3025
188
- teradataml/analytics/mle/json/identitymatch_mle.json,sha256=7ZbImDkTLwS6rAGMwNzrZO4IhPMM3Fgi6HriW0byPi4,2262
189
- teradataml/analytics/mle/json/idwt2d_mle.json,sha256=FKnOv2E9tcGYvJS5ZPD4akLeWzIwHNGMDSJHvsnoAEE,1874
190
- teradataml/analytics/mle/json/idwt_mle.json,sha256=wXwaFtQCSgOD62Vec3lSYHeA5xj5Evr56MrQAn_KdDY,1677
191
- teradataml/analytics/mle/json/interpolator_mle.json,sha256=1fZlcrUBg3vj8TpcvBPpmoV3bIkeAhk6rqE5imtRJqI,3979
192
- teradataml/analytics/mle/json/kmeans_mle.json,sha256=GNrdhSS41wb2LPuxbGJh0CqeTVu0HOCrZ5C7p6X_pOM,2433
193
- teradataml/analytics/mle/json/knn_mle.json,sha256=vxK3gL-bHtOcRhosHjL1lSApUeJNnkXT9L6IGss-sTQ,3665
194
- teradataml/analytics/mle/json/knnrecommender_mle.json,sha256=uSYupxPLt7UtBRdN64anAeC-g6pveXClTkDeNKSsUys,2871
195
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json,sha256=F1S61VIdDdGbLdg6bR-RPri4ZypQFudbIgqPFcJsU8s,1955
196
- teradataml/analytics/mle/json/lar_mle.json,sha256=oZo8U17mTGFOJn1V_h341FA1n8Q87synuTigMDz2HsU,1938
197
- teradataml/analytics/mle/json/larpredict_mle.json,sha256=PMOLvud_XrYrIl7ThiW4RMMyFCmfsSsL5_t5jFhPye8,1661
198
- teradataml/analytics/mle/json/lda_mle.json,sha256=T-mFHgGg9OY0L-RhNI9fUDIKFEf8Sge8L4QXjz5C8qM,3308
199
- teradataml/analytics/mle/json/ldainference_mle.json,sha256=57Unq7He2wU_appFYD7Vow8504qkqMdW2hY0Hz25NJ8,2014
200
- teradataml/analytics/mle/json/ldatopicsummary_mle.json,sha256=N7CJiDFhKfo6wTqSd1a6DVasWDUYia0rs6-inTwAdXg,1671
201
- teradataml/analytics/mle/json/levenshteindistance_mle.json,sha256=Jcqw5Io5xpEgDr1gvRySnPQlo1hxeWso74BYXXTZODw,2380
202
- teradataml/analytics/mle/json/linreg_mle.json,sha256=MzW3RBteWqi4u85CvhxycEEy5OKXWN0yRPDwbjJbcOQ,1079
203
- teradataml/analytics/mle/json/linregpredict_mle.json,sha256=EBp-mN_Mh9tKBghzmkiFz8JRkOSIuD9pmLDwajjAB0U,1405
204
- teradataml/analytics/mle/json/minhash_mle.json,sha256=0xKJmRzdCyG47aRPmSpLHBWL4KULCsokXLahftBXb7s,2829
205
- teradataml/analytics/mle/json/modularity_mle.json,sha256=fGLVa2bPcVJh3c1tYicFHMyRxK7Dgr6syDn-4P3pmuM,2349
206
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json,sha256=99WuuKel8hPW-7gX2KpCT8zP0LmwCJiS8ECO-Nx0-4k,2234
207
- teradataml/analytics/mle/json/naivebayesreduce_mle.json,sha256=u02O-QGeK2DKQu9qLUUosVzKEIK8sEv2eFtr77nx5us,1427
208
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json,sha256=FEoZd3HlAtEBBvlcvf06jPYdLw9Z6d-Q2uhCgRBicpc,3928
209
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json,sha256=eK7AMu6SgzI28r7uU1z_gj2FXZGoyQM83v9ho37xQQc,2862
210
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json,sha256=JvcYkF0UO8F1t471Sao-__oqBqyP61kiHrvJ5SrUrHg,2768
211
- teradataml/analytics/mle/json/namedentityfinder_mle.json,sha256=vm8sTT5Y2LpNGXf8G9Tt5wbwPWDZ6S001-eB6Qh63jk,2157
212
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json,sha256=udzInF1B4T02ZwR6QFWWGkP4DvLE6grD8tp6UOJ97Gw,1177
213
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json,sha256=t6PC8DakRXiw7nsNLrzhrWDtdIdHHjftz6GCU9FZRHo,1681
214
- teradataml/analytics/mle/json/nerevaluator_mle.json,sha256=KZkC-uAOHFxy4rGbpY0AVv-Y20vLnpB1uwcRKBmIFq8,1358
215
- teradataml/analytics/mle/json/nerextractor_mle.json,sha256=e8nv_UXGV2gWKZEMoRLEOzr5A5Hs-oT1NnMZiJzoDUk,2164
216
- teradataml/analytics/mle/json/nertrainer_mle.json,sha256=1Z-k3Vqd4R4PstKpG-RQvg2ITUHUlCvkDXVlCNKtnWM,2276
217
- teradataml/analytics/mle/json/ngrams_mle.json,sha256=45fLhZP4bOQoGDsrsDsNvpuxl38QPXxXsRMvBmTLe50,3516
218
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json,sha256=45fLhZP4bOQoGDsrsDsNvpuxl38QPXxXsRMvBmTLe50,3516
219
- teradataml/analytics/mle/json/npath@coprocessor_mle.json,sha256=2T1sRa35jCFQL4dJ-Gm-aqSly8RNEh3INLGMIeyqpCU,1712
220
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json,sha256=GOyMB7ZrQCbIvry3R9VwPEFPbRtm57IjpKxaEiDDec4,2950
221
- teradataml/analytics/mle/json/pack_mle.json,sha256=QkOOs9QGo7xYYDPAM_NRIu3dEXoRU9Ocx5TW3rE4TvY,1476
222
- teradataml/analytics/mle/json/pack_mle_mle.json,sha256=QkOOs9QGo7xYYDPAM_NRIu3dEXoRU9Ocx5TW3rE4TvY,1476
223
- teradataml/analytics/mle/json/pagerank_mle.json,sha256=YVdWhJpCVJwSXaWE3rQxg2eH6S4-IcdQ9XYSiSJ9e3c,2037
224
- teradataml/analytics/mle/json/pathanalyzer_mle.json,sha256=1bfeCV6XBoxN9LHidUQ4CrjZzdJLJuMD14bc-rBbUZ4,1607
225
- teradataml/analytics/mle/json/pathgenerator_mle.json,sha256=35gsBjUSESMdXwU4mqHIBGDBAQY3AZY3C5czngFOFAo,1037
226
- teradataml/analytics/mle/json/pathstart_mle.json,sha256=N6kvvrL9JIwzAHeurhygb7c-jITl2yO9Ehek5mUQqM8,1616
227
- teradataml/analytics/mle/json/pathsummarizer_mle.json,sha256=gIE_lTrJW64z11SgP2-mB3mjjoMUp3A4tR8MFgMaDJM,1864
228
- teradataml/analytics/mle/json/pivoting_mle.json,sha256=Va8W70e4doXNAOsZNGZOrc79pgciLjgtN9xA-p3iRKc,1860
229
- teradataml/analytics/mle/json/postagger_mle.json,sha256=W7fL1F02NoTbGg3g-OqJHZ7UY2fnUtmwyiBhHstFYAk,1294
230
- teradataml/analytics/mle/json/randomsample_mle.json,sha256=Xb0QEAdhkcAf0g-e1yajKV5dziWJTF5FOYT6GcroSkQ,3486
231
- teradataml/analytics/mle/json/randomwalksample_mle.json,sha256=O_Tl2HqX3J1ur_sUGdlXBuAwb3FvgKqbTnr7oNts_pA,2198
232
- teradataml/analytics/mle/json/roc_mle.json,sha256=hvZJgVTcNkksWmMce5ZGqT1nSyxmEGHc1w6IM13ITEI,1868
233
- teradataml/analytics/mle/json/sampling_mle.json,sha256=zyUCIUvuI8SjaBslDJ78fvMpG2DnZy685RMeiYWeKYc,1905
234
- teradataml/analytics/mle/json/sax_mle.json,sha256=Gtmn2m7XsUuKkicPDYOf4W3Jit3qflJWRd3fUJ6cXR4,3916
235
- teradataml/analytics/mle/json/scale_mle.json,sha256=2GI6L2Q18HkumN7HOXAsxBBRHF2J0a1ACDepwukIvzY,2302
236
- teradataml/analytics/mle/json/scalebypartition_mle.json,sha256=8K6e8GdaETzZVMDquHvaVW0U66ivd29ekYNlN3upW_M,2300
237
- teradataml/analytics/mle/json/scalemap_mle.json,sha256=08cXqWtubtOaznuFezdSYwGwdLneSFR_d0C74QjgPAI,1115
238
- teradataml/analytics/mle/json/scalesummary_mle.json,sha256=gOw1vwtaBoTzjUmEyiBuA2cT5n8ZZjlxtTn30WNOQPE,380
239
- teradataml/analytics/mle/json/sentenceextractor_mle.json,sha256=MdT7hlo6h2R7MSmjeTyksKkqbAWvW2UqeJETxhxwWKA,1079
240
- teradataml/analytics/mle/json/sentimentevaluator_mle.json,sha256=OYzSJ7-LbTpbrXP44iHVYJtOyeA8p3nAMusCPDDie8o,1151
241
- teradataml/analytics/mle/json/sentimentextractor_mle.json,sha256=c3HSRytFg0YG2ZwlnixF96Fe5vaMTvsoVjbEZWCW0zM,2487
242
- teradataml/analytics/mle/json/sentimenttrainer_mle.json,sha256=99r_o1v1pswtZUZJMeSMmP2ukXNnAwXIp77--6v7MBE,1788
243
- teradataml/analytics/mle/json/seriessplitter_mle.json,sha256=N3FXICqGozvjFrUsfQOHN8N-MP4EHAlNldoU2EZLlqg,3592
244
- teradataml/analytics/mle/json/sessionize_mle_mle.json,sha256=_Q3QdXLJpabRGEat6LNL1V4OZUeRhRavmVOyw46JtDQ,1594
245
- teradataml/analytics/mle/json/simplemovavg_mle.json,sha256=NI4yCOIYWm02KU9phfcpQHrXWqtfXaO3VHSZhsyEB3g,1247
246
- teradataml/analytics/mle/json/stringsimilarity_mle.json,sha256=0ov7pkjJR5-OEIacNCzUpYwQcxS_7USNbrnrAzYbH8g,1361
247
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json,sha256=0ov7pkjJR5-OEIacNCzUpYwQcxS_7USNbrnrAzYbH8g,1361
248
- teradataml/analytics/mle/json/svmdense_mle.json,sha256=EDLHxza0jRrzwgz2br3UojnchPEH3hW7jM_Cf-y-m2k,4207
249
- teradataml/analytics/mle/json/svmdensepredict_mle.json,sha256=5Ajla-pyKQMZ5Fxr3U2SgyuwK9k2m66d_UwkED362gU,2445
250
- teradataml/analytics/mle/json/svmdensesummary_mle.json,sha256=rPaGuKEldQGZKB09ZtiqzuajMXHqUf638kioChob14g,1460
251
- teradataml/analytics/mle/json/svmsparse_mle.json,sha256=6-kk2eiYnbjlRKXZ7KkFy4tjyPlfLFYBIlXhq5NH5cM,3739
252
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json,sha256=TFgOUXUn7dJPjqz1ry2_gHRU9KQhstDNecJ7_9f5kg8,2644
253
- teradataml/analytics/mle/json/svmsparsesummary_mle.json,sha256=5lxBKeoOIWFABj5cVXwKe6ngfyl55TwIWP-8TG4q-10,1430
254
- teradataml/analytics/mle/json/textchunker_mle.json,sha256=ppv_S_XKhKiL4HL7vRHe4JAaRNZU3BCjFzik7eKZeq4,1030
255
- teradataml/analytics/mle/json/textclassifier_mle.json,sha256=naeaZXh_-gD9_-VWrfnSJmFEdDIr0Q1Jh4LhyILzd7Q,1330
256
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json,sha256=qLEf6kgY-65Aa8Wm5UmGHkp_KzIR1FviUOYrtDzhpDk,1166
257
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json,sha256=lSwN43SUKZUS-5icQcwwpCJGFbfmFwtI3Bz5sbC7gbU,2772
258
- teradataml/analytics/mle/json/textmorph_mle.json,sha256=fjb1HEqiP1C_hwm4KH_Aep1RHGpIWOsfjZzx8bVlQ-o,1628
259
- teradataml/analytics/mle/json/textparser_mle.json,sha256=i3ZzrejuoGFDFdEiiJcdUmfk7VHL_Mr_wIcY6NQ3D8s,4259
260
- teradataml/analytics/mle/json/texttagger_mle.json,sha256=5yRDGz8c_UsobNWSk_UJx0iFYGj42F_9qyOKisSH0HI,2054
261
- teradataml/analytics/mle/json/texttokenizer_mle.json,sha256=JLbD_bg7X3eb0Woa5wB6WKAcI61u-SSf9Qhh-QatEYw,2326
262
- teradataml/analytics/mle/json/tf_mle.json,sha256=s1BDL82-KwBsbsCO4Q4X7cAbcTT8oZ8XfFgX1SScICI,794
263
- teradataml/analytics/mle/json/tfidf_mle.json,sha256=OPrsJE5KXQbXu74Um9TMm15KNWM76PRQZW5-oRImdyU,814
264
- teradataml/analytics/mle/json/univariatestatistics_mle.json,sha256=MCW_t0M-QRbW9QDO-aP13KJXw34DlQES2wnILjFW16Y,2181
265
- teradataml/analytics/mle/json/unpack_mle.json,sha256=pxTusbopeab8dsD0jes7QLXfCGHDCmmNLZwI5FdQbRQ,2323
266
- teradataml/analytics/mle/json/unpack_mle_mle.json,sha256=pxTusbopeab8dsD0jes7QLXfCGHDCmmNLZwI5FdQbRQ,2323
267
- teradataml/analytics/mle/json/unpivoting_mle.json,sha256=Vef-aiGTcvM47wwOGyf5wO9hWuqs3L-VQUURJwFNbX0,1636
268
- teradataml/analytics/mle/json/varmax_mle.json,sha256=fB13aLzoqJNrgbQpNLY40HiSvfB5UmIYJAPUVaCNMeY,4542
269
- teradataml/analytics/mle/json/vectordistance_mle.json,sha256=YhIab7QGZEiLFmzcaastHXtI2oJn3Xm7WXfMWmitCAw,4663
270
- teradataml/analytics/mle/json/weightedmovavg_mle.json,sha256=u4hhmV6-ei_DtiQuY1z-ZJn3MbUz4cU61vKLRHzlz70,1255
271
- teradataml/analytics/mle/json/xgboost_mle.json,sha256=irxzt8-jIqZeu3D42DTkEeBqWzlvqdD-2cVPd0zlSRQ,4793
272
- teradataml/analytics/mle/json/xgboostpredict_mle.json,sha256=en325h6QzaRK9KEnn90v0T2jrvUd4UgL94i5nH5QIC0,2686
273
- teradataml/analytics/sqle/Antiselect.py,sha256=-LH1ZtyA3uaMjxfnxQHq4lRYAWN7wsmmcU5MP4lkHNg,13138
274
- teradataml/analytics/sqle/Attribution.py,sha256=ajyY4ZWlhiFVRIEuRlOsapR4nxJjtZpPYOy0hOAOJpI,31142
275
- teradataml/analytics/sqle/DecisionForestPredict.py,sha256=IevNdBdfyQBfwoEa4bvRZmswQf6bvjEi-aWwk8lj-D8,18314
276
- teradataml/analytics/sqle/DecisionTreePredict.py,sha256=LNHiVyVlvxjkrkt344Yqq8Cbvw-LXDTousgGsuzbTfM,22998
277
- teradataml/analytics/sqle/GLMPredict.py,sha256=COtsD5y9HD5JwGejndXYxi9AsLE6GcpiGuvrIWi7bBw,19375
278
- teradataml/analytics/sqle/MovingAverage.py,sha256=fk71WJbWsXvorPmtM_a2lutUQZ95lNI32C6TEQASmXk,26204
279
- teradataml/analytics/sqle/NGramSplitter.py,sha256=GgKCb-HPVbKtk309Zy9DTpm8RRxyr6K2o4j1WGrQh18,25863
280
- teradataml/analytics/sqle/NPath.py,sha256=AkH7PDLrYX0-wHiHumNM_DOGm2mMCrZb-dfTUiH482I,31926
281
- teradataml/analytics/sqle/NaiveBayesPredict.py,sha256=Jx4V4ZPOMIBB-MICfwz4R-Vnewl0U_mO6iv8ej6TANA,19669
282
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py,sha256=U0grIqxt8NR6WVKAdESNdhZ_WVN7_4o6PGUFxXip7oQ,24790
283
- teradataml/analytics/sqle/Pack.py,sha256=3JzAB_tplK96puqLihIF7xTVBnmyfAVCdObvq6P5qDQ,17062
284
- teradataml/analytics/sqle/SVMSparsePredict.py,sha256=KSV4R9Pph9QgCvlQSnJMOD20Lo8FGZ4XQDe5cO8-JIo,21967
285
- teradataml/analytics/sqle/Sessionize.py,sha256=nVypaTFozzosFonljPqMP-x4IsygkoO8RI-1kNgXbJU,17222
286
- teradataml/analytics/sqle/StringSimilarity.py,sha256=8dO0E4t6aAOONoztTMX9uP9_AQkUJHoINpq5J7ACLd8,18530
287
- teradataml/analytics/sqle/Unpack.py,sha256=CEJkXKv3yewQxGhI4t5lwqvFDgWNOpolBr-OV7l7y0w,24096
288
- teradataml/analytics/sqle/__init__.py,sha256=DXvqZ9ZwQN7UFCoi51p7dyDTytq1xnkKn8p9CwIJk2c,4608
289
- teradataml/analytics/sqle/json/antiselect_sqle.json,sha256=vjWYs4IBpiG43DSS37hfD9GoTxfbBPrDV96CHGU9ups,538
290
- teradataml/analytics/sqle/json/attribution_sqle.json,sha256=mEi4MgiO-wB06T7hE3f251TuXntCUlfwdeae6iE23wI,2245
291
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json,sha256=fLU_DvpBck8vMs_ogwBgzd_GcH-dGvd53Dg2J14Uuts,1232
292
- teradataml/analytics/sqle/json/decisiontreepredict_sqle.json,sha256=tvNtJhi-0zpFptFsOnLd7hClVnvMS64dehcgQJH2Vpo,2118
293
- teradataml/analytics/sqle/json/glmpredict_sqle.json,sha256=GIt1Fx7bjSsZYzOS2modyd15ppMjv15DyDGYYB-nr98,1173
294
- teradataml/analytics/sqle/json/h2opredict_sqle.json,sha256=o2TJKsL9j6Qut3KYv7Gjuto9vpfJpwASeweMX4bDTQM,1671
295
- teradataml/analytics/sqle/json/movingaverage_sqle.json,sha256=ilpU7Kr3eCvqMF-pRkLHHfhgK-fvM8FHIYy2fN7Uw10,1509
296
- teradataml/analytics/sqle/json/naivebayespredict_sqle.json,sha256=nqsPdOk4rUqdp5Gj3J3uYggnOvrgce0uvbrcVZTIlv8,1621
297
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json,sha256=RLETYonYYPhHQk5EI3KtmjMKvfHnXUWNg6Wq3fQBqAA,2083
298
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json,sha256=ULhr4rqtQNzfFMeNRwmCl8ElSvFCi-7ilk-U9fuQlGE,3251
299
- teradataml/analytics/sqle/json/npath_sqle.json,sha256=BlEBQUN6kVGSWWHtCpmFEt1UodR-0KABYEfHV9lh60s,1622
300
- teradataml/analytics/sqle/json/pack_sqle.json,sha256=eStm3t1y7UqcqaCTzbD3lcs-4cz9CgOs1ucdCXyh-pw,1187
301
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json,sha256=7-WORyM6jSFamRuizIOCGxCvPHinxubhDn_E0g-WmSA,1449
302
- teradataml/analytics/sqle/json/sessionize_sqle.json,sha256=B0aqbbP62wk4QLaeIffqWruMRuJrgyy2QFTVWqceZR0,1107
303
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json,sha256=ZfSZ1wH74IWzpNKMjrX7IdAJA-h8SZ1msrWEJ58JlpI,1073
304
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json,sha256=CTTI0eBUKiN6PsA-xUPXuZBpNou88KdVcmmrjWIVKbI,1885
305
- teradataml/analytics/sqle/json/unpack_sqle.json,sha256=JzGAtsZDIreCMKjC0A1aIR2X5J5kGRTdGuC9r9enAAU,2035
306
- teradataml/analytics/table_operator/__init__.py,sha256=c7K_J2hhEvzZPJMfuh9IR0Senb3xU394rYga_lG2pcg,453
307
- teradataml/analytics/uaf/__init__.py,sha256=TdQCI4CYj6qdnU04cAVMVqG82u2yFblaN1AUNGyUF8I,2232
308
- teradataml/catalog/__init__.py,sha256=fh91S_WyK5b8a9WdnfN3XqdB2Z47MV0h_FMlu2l2lKI,271
309
- teradataml/catalog/byom.py,sha256=BXezE4k3Fbs2U5YBO3glugjlDaULcOMI-ZHleRWdCfI,96090
310
- teradataml/catalog/function_argument_mapper.py,sha256=KKIjiEta9kG1an02vy7M9O55HrgiZT9_wB9EAWtx2tg,39260
311
- teradataml/catalog/model_cataloging.py,sha256=hd8Q9NetvJVQdnSE9od3WlG5938st4evf-GMWaKmrXA,45072
312
- teradataml/catalog/model_cataloging_utils.py,sha256=UQ2Dhm5DMk6wdgXo5p2auy3gIl6ped9NSakqd-xG_sU,62760
313
- teradataml/clients/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
314
- teradataml/clients/pkce_client.py,sha256=DYjzFGP9sNd23MCm-R990KLIJdjvUdhnkPIAjeXqDOw,16104
315
- teradataml/common/__init__.py,sha256=KeFSq3wtcYMpZEFepWsgC7e9ocmmsv6WSrDosIviAVY,52
316
- teradataml/common/aed_utils.py,sha256=IB1SH8nukb6Xygchc71MJjZSMVpdOC3Q0si7nS6mu5c,105849
317
- teradataml/common/bulk_exposed_utils.py,sha256=a0qmN2LoZUUYnEqWkKAClxD-_P3J1ImTDi9tEhylVAw,4511
318
- teradataml/common/constants.py,sha256=AnDfir5uMUWQAYY9YbGqbQ0dHGKsYV-KphWPekAhxP4,56508
319
- teradataml/common/exceptions.py,sha256=YE9VxAuEOLvPoxR33efjocZSyE--JyfCeKv8gH6Ocug,2702
320
- teradataml/common/formula.py,sha256=HE8WpKTtRN57Ny2SUqvYi4aZn9lPdsRDsOLJSuT1jhM,30347
321
- teradataml/common/garbagecollector.py,sha256=wxfMplTixEHBdnWw0pUwtgE1exqkR_FUuAcVwTdl3Lk,26902
322
- teradataml/common/messagecodes.py,sha256=sz06AiVJQb5at8hKAfjTr8raPKcLkFyjdLWgvaKi9A8,28448
323
- teradataml/common/messages.py,sha256=W7ZgYQiH9_0tib4jATL6uY_bOZmaOu2s5Br_DC0Ufr8,17654
324
- teradataml/common/pylogger.py,sha256=8G36wPGbnCVAaabYeimuSuRazwbnX-NhKyZc-a_deJ0,1752
325
- teradataml/common/sqlbundle.py,sha256=wwanM4cdc1WVJK39S7JJsobeCkJwnxdFPnHU4zdUXjk,22948
326
- teradataml/common/td_coltype_code_to_tdtype.py,sha256=h7-2g_7AMA0xck9QruPhQEg4-3LK9TaK1Wthz9E7zt8,1145
327
- teradataml/common/utils.py,sha256=OB5eg_p0QLP4_bHdKQ7VZGUZUu8GCJv_loUF09lVS1I,90711
328
- teradataml/common/warnings.py,sha256=finqSzwdqG4h-wOy4bC-A0cMVTjFOpWsq5z0TWyPOwM,696
329
- teradataml/common/wrapper_utils.py,sha256=Z2mgYVByYLz4-OBRs3Tp0f9yKDecOcuV7ZK9gce3qkg,34784
330
- teradataml/config/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
331
- teradataml/config/dummy_file1.cfg,sha256=wLmgwwyHXmJQP07hCSWNDnQkWqA6ISFmo_ysdJgxSEQ,31
332
- teradataml/config/dummy_file2.cfg,sha256=NU2GRMfDxD9GebyubnjZYWZDuTaysANeFmD844ZnOkk,42
333
- teradataml/config/mlengine_alias_definitions_v1.0,sha256=z6f8e1XSVa0YRuRKePGbgBPru5afhXWqDQJftaCHGWw,3074
334
- teradataml/config/mlengine_alias_definitions_v1.1,sha256=IDZooedBhD4Z_3cQv608bwm81-BvYWkkam8fwRNE6_Q,3427
335
- teradataml/config/mlengine_alias_definitions_v1.3,sha256=Kb9QxutKpuPcUAaX2WPmeO7psMValXNX9sjv5Jj8OcM,3517
336
- teradataml/config/sqlengine_alias_definitions_v1.0,sha256=qJ4rVpvmdnPniw3TRBVNJXfcDmQMAB0JPbMH9A-9wl0,392
337
- teradataml/config/sqlengine_alias_definitions_v1.1,sha256=v7YmP_ffFYRgbesN0uql7TJxTJNZrQMGcf7ujrMlo1E,528
338
- teradataml/config/sqlengine_alias_definitions_v1.3,sha256=Kb0xaIXsTdQvT3_YCXHKfn61NBXai5muiw1c44S-RLI,516
339
- teradataml/context/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
340
- teradataml/context/aed_context.py,sha256=rmqgSejjK4jYZ8NRD0mBW0MBpPt4RmasaZPqsaO9mZY,7361
341
- teradataml/context/context.py,sha256=SarzoFmKx96rTsgUdHQxv33IcPr3qdKyczh3baAqxBg,39304
342
- teradataml/data/A_loan.csv,sha256=TbS0GdrxVbPjzBsCg5UHK3FRseq4bfTb09Y2zF-O7nI,565
343
- teradataml/data/BINARY_REALS_LEFT.csv,sha256=2cnH7E3cWDC85RBCDuEfnlcQ02OBb3RS0y70FjBl9ks,405
344
- teradataml/data/BINARY_REALS_RIGHT.csv,sha256=2cnH7E3cWDC85RBCDuEfnlcQ02OBb3RS0y70FjBl9ks,405
345
- teradataml/data/B_loan.csv,sha256=evuSVqVqY_wPTjfL8qM6bywGBVSi8pcDzDJp5BXD2Xo,1594
346
- teradataml/data/BuoyData2.csv,sha256=AWBAUD5xpBYx1Sinb1_J0tA8MpEEmN6GTQOAGNNL3fA,158
347
- teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv,sha256=rx_A24_6oOVEXoX7VgRg0T5Yxkdg6tgZFFEe4tHv1OI,442
348
- teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv,sha256=rx_A24_6oOVEXoX7VgRg0T5Yxkdg6tgZFFEe4tHv1OI,442
349
- teradataml/data/Convolve2RealsLeft.csv,sha256=amyVRg2geBd7fey660RUTfGY1yTl9NEgM325B5cqN_o,432
350
- teradataml/data/Convolve2RealsRight.csv,sha256=amyVRg2geBd7fey660RUTfGY1yTl9NEgM325B5cqN_o,432
351
- teradataml/data/Convolve2ValidLeft.csv,sha256=bmm5-rHZMbCfUz0gFb_nkqUC3K4ZPQEeZc3TYfS0Anw,456
352
- teradataml/data/Convolve2ValidRight.csv,sha256=bmm5-rHZMbCfUz0gFb_nkqUC3K4ZPQEeZc3TYfS0Anw,456
353
- teradataml/data/DFFTConv_Real_8_8.csv,sha256=YPhEBPwYa2aKrFgTNiN-rcrcFQhvbXBPrn0lXG0HxMQ,875
354
- teradataml/data/Orders1_12mf.csv,sha256=kHjp9gKH7CJvfnYrYbrQw5hdqmiubczXvYmHDuXO6cY,288
355
- teradataml/data/Pi_loan.csv,sha256=UzlKw_mw6GYRr2KV9ek3s2UIrY3tKUhaqIesCZS3N1Y,184
356
- teradataml/data/SMOOTHED_DATA.csv,sha256=Ycemp-afFVUDE7D6FSnRukMfK-SsV6pd3ewMkd2p9p4,110
357
- teradataml/data/TestDFFT8.csv,sha256=8YPAQGeq8WScLiJ6JD1Wjlv-gPex4JGd35PlJHy6Shs,113
358
- teradataml/data/TestRiver.csv,sha256=jK_PtWYHKJ4Ul9IUopDA-ZivmB2X6IcpmDUx975atKw,1524
359
- teradataml/data/Traindata.csv,sha256=wbsnT_q8kEHByj8lNHLQx3KM2LddDjJC_WMGXzyhbzM,3301
360
- teradataml/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
361
- teradataml/data/acf.csv,sha256=Tc8l95c14N38a13SYn8dvTdqYYw2Pab2ybhcKDrUbCk,1497
362
- teradataml/data/adaboost_example.json,sha256=Bm0r-3p42EME1BH0AT_p4Nj1wzXIGmWt8Td3wSQr3p4,877
363
- teradataml/data/adaboostpredict_example.json,sha256=e6q3BocdQ_vsHn-oty0w6GKV5SrVmPTURhGn5wySrRY,615
364
- teradataml/data/additional_table.csv,sha256=Mrf-tNYICUkpXvWA0RWcu7y6jZUiG7QulfCC_Biuhis,179
365
- teradataml/data/admissions_test.csv,sha256=YZ9UH2UZzpatbBwk9cefcGCL6VHHPaW68tAg60wgSmw,654
366
- teradataml/data/admissions_train.csv,sha256=6ELnIQ5ye2WL0vihzHU7xA7SEClX5ySR66SJyLPRRTg,1244
367
- teradataml/data/admissions_train_nulls.csv,sha256=bq_E6Jv4sWdKtmLBw0GXr7NcZKBlJjIS9FzJscCtP8Y,1157
368
- teradataml/data/ageandheight.csv,sha256=PaN3oMTzhccTS9dD2CqECyRD1fWIUbYevGJ5s8xOew0,231
369
- teradataml/data/ageandpressure.csv,sha256=xP9-2OXj630MPjfVu-ZlsWQCGg-VXRbF_8FEJTxHLxo,361
370
- teradataml/data/antiselect_example.json,sha256=9FI8QJtkdk3uPAF2xR3AXLIYIefOVXoAjJAPLNLvwsY,1244
371
- teradataml/data/antiselect_input.csv,sha256=bY65wDw7OkZfbk3sVDAAx1BLUP10isxzeRxtni9CfwM,992
372
- teradataml/data/antiselect_input_mixed_case.csv,sha256=6Cbj9PluKFTGy1o_MN_kT0hHYCljXtswA5sE8Yc6SOY,992
373
- teradataml/data/applicant_external.csv,sha256=ETbClUAz8UH_zTajcwhMAz-p6CKalQR6vmkvGviayaI,447
374
- teradataml/data/applicant_reference.csv,sha256=knQ0seZcK_mier72o3uBAs8icFSlhkxMN614y_tmrqo,598
375
- teradataml/data/arima_example.json,sha256=1ZjF2XD2rb-DeyhPKlGwjwPK7mIYED4d_7bVHd2BvT8,217
376
- teradataml/data/assortedtext_input.csv,sha256=QhFIahbVHXyVgtq8DQyUlgSMlO799uXkcfgv4mXE7eI,939
377
- teradataml/data/attribution_example.json,sha256=Eg1SLWdIhVl1snoeuPwy0q_rWaVo30b4fvriZCxtnQ8,890
378
- teradataml/data/attribution_sample_table.csv,sha256=gqOuG5ktvTu6Jcs_AyXT8GlFlpAMt2QFheOqNI4nnXc,1043
379
- teradataml/data/attribution_sample_table1.csv,sha256=zBkpNmSV9h6bP9vuut-79CJdcxxT7y-54R0Qfnc0AQU,201
380
- teradataml/data/attribution_sample_table2.csv,sha256=mtg-44EFBx0jx09nu8lr2F14ahb-weUu9q_5AYTkZYA,378
381
- teradataml/data/bank_web_clicks1.csv,sha256=Haer_uwWgY0GxmEGCjR-hdlWki4kdaT1pwk5ad5bzV8,2122
382
- teradataml/data/bank_web_clicks2.csv,sha256=EqO-Ao39Kx_gwC2oUMb2mjTfk3uZ8HyRRGxrZHJ41yI,3719
383
- teradataml/data/bank_web_url.csv,sha256=sx5j9ecDYmYHln8hHRP6YObNeMhdxX0N_ml2dRz79N4,4630
384
- teradataml/data/barrier.csv,sha256=WAUtP6O9y6su_jv6ZjuduyXcNZ-vMkIX9ddLezUKgk0,41
385
- teradataml/data/barrier_new.csv,sha256=0rLlvJcwAye6iaqfC9GGLhJwoLg9d85cGYIbl9HGJho,70
386
- teradataml/data/betweenness_example.json,sha256=QBpdaGgpnTMti24Cf6bnO22jJQxW-2_xOS-UzrhVgDk,201
387
- teradataml/data/bin_breaks.csv,sha256=la2lvRsfI-3Ze0-t8mgvgJqTn32WCxYCdzh0WiL7xT0,35
388
- teradataml/data/bin_fit_ip.csv,sha256=cF-rYl9PLlPfy0Bem0jW-CHZDqW_F4Yw1XCSRgf-Ee0,97
389
- teradataml/data/binary_complex_left.csv,sha256=t-_PhfGaIy5dhfX7EBR__KI8nfwtmndFDK8ECmUGT7I,240
390
- teradataml/data/binary_complex_right.csv,sha256=_kW8UElsDsLvp_hCJ8THaEchCW-EnxXF4mGsH7UpjpI,240
391
- teradataml/data/binary_matrix_complex_left.csv,sha256=u1lzxO9B1B_7aCflyoEuwIS3wlgh_aYxFJCQfg_qzKg,495
392
- teradataml/data/binary_matrix_complex_right.csv,sha256=LQOBj_EkyPFWUj_WijoZYtMopXKS5Z6CsyVGavcAgfw,495
393
- teradataml/data/binary_matrix_real_left.csv,sha256=wKk6kpPBMlfr9koQkYdiRvbOZci302thM_0YkIwQhMI,840
394
- teradataml/data/binary_matrix_real_right.csv,sha256=BGfg8ETULrWXTTjH5rBh6ZShPVP3-eHt58T4TwCyyyo,840
395
- teradataml/data/blood2ageandweight.csv,sha256=8Fh_EgE23NG9BljQcj4B-Hi7dg7WQiUu9_vpu_tw61g,480
396
- teradataml/data/boston.csv,sha256=1yRBA6WJTr1Rj4x4R63DZXgI-ghuyGjIBOMDgFqtLhs,36648
397
- teradataml/data/buoydata_mix.csv,sha256=AICS8jG_tOf5uubfNzuzGbpAWmZJ1Tjr9hw4ut-hdQg,1619
398
- teradataml/data/burst_data.csv,sha256=9uowp6kmG1_YivA2h-FFtuFQc1LLxkYLEbks1HP_QdM,167
399
- teradataml/data/burst_example.json,sha256=prFE6M5Vpp1KmK2qO30MpxFCwFsSigBCt2ol2OUQJLk,414
400
- teradataml/data/byom_example.json,sha256=iiPf6ppdnAdTEE6CTJimZcFkfeFfRrKxPu1jKnJMJOE,377
401
- teradataml/data/bytes_table.csv,sha256=zSXHUqCeEVvz98vmH7TANqlolZATJGlzY6g0TUSY1CA,106
402
- teradataml/data/cal_housing_ex_raw.csv,sha256=PhK5uVypgKHQEIaxJVbUcIAHUvqD76N6jEtqkBVB0BQ,9389
403
- teradataml/data/callers.csv,sha256=R1_HF1dA338waI0LkxLsmOyhW4lBSVSZAtGbJ0P7VCw,86
404
- teradataml/data/calls.csv,sha256=WCTk-WtqQppPJJMl8CLWGVTF6EeZ3BXF2zdd_d6GbeI,89
405
- teradataml/data/cars_hist.csv,sha256=vRQEux-7L_PInFWELr4k8McXAaqVzZ-I_iwgtB3aNlM,770
406
- teradataml/data/cat_table.csv,sha256=i6fpAXswCv04jZvb6VcnwjgEV7nRsJKWPNoTCUWzNtc,539
407
- teradataml/data/ccm_example.json,sha256=Y-CuGrsUztqXjW1pGoar_LQfqjoIg3XUlywIWitBi8g,675
408
- teradataml/data/ccm_input.csv,sha256=upl8yzoICeuKgJff4ykMXTMdb8pogXgKEIcFyDh8H0U,1789
409
- teradataml/data/ccm_input2.csv,sha256=1_AMFwUiY-BjJUD-R1BtFQdSeTAbsiwsaOrRzhj4E4s,474
410
- teradataml/data/ccmexample.csv,sha256=Ywjh95Z-oTWO_PNsdw794Mgvo38Gjn3Y7eEbLPM2-ZY,3621
411
- teradataml/data/ccmprepare_example.json,sha256=2XmPTKVGAJhwlmz_Wrw8MAwFwIatblUPtVxa0-qkMJw,160
412
- teradataml/data/ccmprepare_input.csv,sha256=IT8PBPgcldUjfRCUnnR_lLFPFpDKkVMHE4E77JHXRYg,1594
413
- teradataml/data/cfilter_example.json,sha256=G_rrEt-3TemhLNNdi3Lu69QF7HBj23LAMiprxY55M-Q,279
414
- teradataml/data/changepointdetection_example.json,sha256=oJKNbwqBGYJZdCo1enzIlat6tVhG0PH4_WF9ZtWesVw,423
415
- teradataml/data/changepointdetectionrt_example.json,sha256=8FO0_N9Tzzbtn0N53qKtZNn2SoPm02JgCIiJNdAncew,137
416
- teradataml/data/chi_sq.csv,sha256=BPEWuuSw78GfmX-3_7sewK-2mP3J_gRPse-SvcjC9QE,34
417
- teradataml/data/churn_data.csv,sha256=Onf9CylE00oVBMJQ_jMxDf4DrUNX5ce8DzdMw7T7uao,515
418
- teradataml/data/churn_emission.csv,sha256=MVQt7NiM9nU_ORdbjsVJAaNUUkRiWPzr3fxz52W_j88,986
419
- teradataml/data/churn_initial.csv,sha256=2ggHy5G0HDywLac1-xlDcmAHuzPyjGzzLgQaXATUA-4,52
420
- teradataml/data/churn_state_transition.csv,sha256=4zFGNVtVjeAYchOSPNNv8IaxuD_g_Cqx8lo0mQMLXrA,90
421
- teradataml/data/citedges_2.csv,sha256=tskfrKi5S6Zh-aEwOqydaKMv7TGZGEC5l0J0Oz3-kzs,7458
422
- teradataml/data/citvertices_2.csv,sha256=9Mdfr2KC4gSEG2qIxQjBNtfKaauotVHKxuL0eDFtdUc,6050
423
- teradataml/data/clicks2.csv,sha256=3ZhFocT3T85xqASp-Ly5xUcKBv0wckhg2l4JYLVEyUM,379
424
- teradataml/data/clickstream.csv,sha256=77LTUne0s0dsA7kz-FB-K_BeW9xyZmK7NjNtw3SBuiU,414
425
- teradataml/data/clickstream1.csv,sha256=owEjrSn0Xrl-iTXyQtK2MMhTZlwzSzpt2OxKbDr-sSw,273
426
- teradataml/data/closeness_example.json,sha256=g0F__tFR6yIYUasATA7S2DFneJIUDZWrMrHkhVXzST4,265
427
- teradataml/data/complaints.csv,sha256=sEzS-eViq4WTloFpcNeenlU9iqiuD6qnmZS-qRpTchU,4278
428
- teradataml/data/complaints_mini.csv,sha256=dHbxaXhHnPC6s_kpbEn-H5FGEPC5DGD58DL_ScUI2jI,659
429
- teradataml/data/complaints_testtoken.csv,sha256=rNqN4b0ojNbufwcroRQFuziqymzLmkP1E3eHuPAkmCU,4821
430
- teradataml/data/complaints_tokens_test.csv,sha256=PfWj00Ccb9XfYTsSix7NDLCTxIZuFVUlEKO1lrN7t1A,4052
431
- teradataml/data/complaints_traintoken.csv,sha256=GZHkRVBED6BQcvC5du0BfUxJie6S4rHpDTmUzUZRyr8,15246
432
- teradataml/data/computers_category.csv,sha256=C9mDrRKC8yc4JHZe1HM-ei1ySlUzITkHcJ2LcQgU4W8,58744
433
- teradataml/data/computers_test1.csv,sha256=ZozbxmSim_kUrYTN9OgmbayUQ6TtxVJNGRuT5PCSTMI,27743
434
- teradataml/data/computers_train1.csv,sha256=iM3OJGPrjr8W2GyrTIHCEj6zs5v6m4u1-Zq7JUe8SvI,111204
435
- teradataml/data/computers_train1_clustered.csv,sha256=RNf8y_4vhoiuLO9AeId7MoKj0j6yNVZm0nIVXlXrDMI,154244
436
- teradataml/data/confusionmatrix_example.json,sha256=PUhm8yx2-FMNcx6IdSf_LfcnpjuYOaUsoQeN1r18rWA,214
437
- teradataml/data/conversion_event_table.csv,sha256=1JARpy_moykjSwckNAZV7ZbB7RXn8pqpPtmNSleMOUU,49
438
- teradataml/data/corr_input.csv,sha256=cMHLC5aNj7oTknp-xLXt80BsDfKaXa7EHHJbuHnJwbg,965
439
- teradataml/data/correlation_example.json,sha256=qsXkY_vFXu54A7Y6DHjwQ9I7fiq_bUJ9vzY88MxYTtE,206
440
- teradataml/data/coxhazardratio_example.json,sha256=UKW59ioCljuoXXMJJ1iT-8AJlB0YJJm_xxHrMOxVW9E,1168
441
- teradataml/data/coxph_example.json,sha256=sCNiuWnIU_Dh8LlqGIxZcbEYGYitInSeBZ2szzvIEcE,428
442
- teradataml/data/coxsurvival_example.json,sha256=bzrtila4-wwlJHwELt52VMKqS9acJVTzR9LgQ-6CqAs,832
443
- teradataml/data/cpt.csv,sha256=lQEozTGM_bZCinSosG6uBOhBl8mlyDOExAqdhUEqNLs,867
444
- teradataml/data/credit_ex_merged.csv,sha256=fTmzv71yReBWd8SGz_WPiLA-GUrWAhyDn001Ri-n08w,10448
445
- teradataml/data/customer_loyalty.csv,sha256=gZGCKOq2tFleP-yg3fRHE6DcjeURaq1OQUJ5dJVvfbQ,8362
446
- teradataml/data/customer_loyalty_newseq.csv,sha256=sOoy4UEFD2hfJhCSs1ZXKiCnxwvsqDo31cLUvo2R6hI,774
447
- teradataml/data/dataframe_example.json,sha256=3nsR6PXZf5Z7_CHlYnXozGXSx7feGolmRnB-H6lSsbU,3859
448
- teradataml/data/decisionforest_example.json,sha256=UesMKQhpTQ2nEk4jJfq2RQwFB3wbeD4EqYuoIx0NREI,1151
449
- teradataml/data/decisionforestpredict_example.json,sha256=7deDTvwkBzOjYUUIFFqmd-ifPQhJZmAR6GrPH7ljLVE,1326
450
- teradataml/data/decisiontree_example.json,sha256=vgm9wWyIhRomHAAfJYp865VZLN_DmGPdTSXcEtylY6A,539
451
- teradataml/data/decisiontreepredict_example.json,sha256=A2xrUIPUyK3OMGhAUUoec2l6UXjYOSDtr_-TnI5BLvw,1759
452
- teradataml/data/dfft2_size4_real.csv,sha256=uQ5Hn2U9AYV74_T5Jv-kgdscAJ4WcMALcEitO7bkKJA,237
453
- teradataml/data/dfft2_test_matrix16.csv,sha256=AFr1Z62rgIXwQ9NV9FIUOTTdQcI1ojNQt2wphme-wEc,253
454
- teradataml/data/dfft2conv_real_4_4.csv,sha256=-5rWS0ca894iaery2jmyIpmqPdPzjITYhOLOKGR_Idk,958
455
- teradataml/data/diabetes.csv,sha256=0FNI8Ul6L7VtmNPLE68XFpv_Ym0ZUvTPhJafYixzt50,89677
456
- teradataml/data/diabetes_test.csv,sha256=UBA3swEgBmWPP1S9g6CPNTqiFXhFcE1SxptezcDKLSs,17950
457
- teradataml/data/dict_table.csv,sha256=ktrWWSMrqREliDyxzgwWDx11lVNMJBJIp0uy6MD57nQ,111
458
- teradataml/data/docperterm_table.csv,sha256=LTqVICXKV13tEtKsu9dDvnmKjtEvzeXaORBgDMAfI5M,47
459
- teradataml/data/dtw_example.json,sha256=ARuCWae4EQ2psageF6cGMAVaQAlD0tC1xiYhn6W0Jic,445
460
- teradataml/data/dtw_t1.csv,sha256=ZUlPT4YFCKvD1pinhkCledtaG3eifxgJ0es66gJseVE,207
461
- teradataml/data/dtw_t2.csv,sha256=cB1iGy9XfDE6mVNU-zXgQtw54C7nqo7ndB1bSj4-Lzw,66
462
- teradataml/data/dwt2d_example.json,sha256=JOzUaptbER5vox-BrKfHIDHCw4Ro86GoZ9Qo4F8lwws,459
463
- teradataml/data/dwt_example.json,sha256=SEwUhihN0RQ1FcuVqeHZrKEVQ7-kETwJElEWElDXTL8,402
464
- teradataml/data/dwt_filter_dim.csv,sha256=NDQiRkYGD26uWiXwHF1krMLCaT60U42FzUnENG91RD0,261
465
- teradataml/data/emission.csv,sha256=s6PUM5sHZNEgelJZZmD-Rsnc3mFlclGCpHq3yTlS0yU,175
466
- teradataml/data/emp_table_by_dept.csv,sha256=QHQR0AbtjIqW6EsEuKrCEUQkVkUXh3h2LvYktJChwn0,578
467
- teradataml/data/employee_info.csv,sha256=L0dqapNLTeVS-jSBk3RylkaXwCBe3J2p0gJe8MnOMr8,96
468
- teradataml/data/employee_table.csv,sha256=Kzj35JhQdnwW45RpC-4UBrYYsDp9KUNkKjBN3xFJVdE,137
469
- teradataml/data/excluding_event_table.csv,sha256=ZoWGHBu8lxe7ZB0tiwJnYcsCacWDaWSa_ig4aRCN8ro,27
470
- teradataml/data/finance_data.csv,sha256=ynC1vL1YMIx3eTQzsIoKvSr__pWbzesGDyJYd-8JekE,259
471
- teradataml/data/finance_data2.csv,sha256=e0Vir9BdyDVBCShMT9havYrEzyn9sfS-5HsqeOLDfDE,3651
472
- teradataml/data/finance_data3.csv,sha256=uBLjMw5I-bQFuLKmLiTjZ4nZrnTOlfCjUZQgTJW7Te8,2265
473
- teradataml/data/fm_blood2ageandweight.csv,sha256=T5M97u2dXjvjer5PufJEu5n3wlA7CWVXvqlMkIE0Zd0,469
474
- teradataml/data/fmeasure_example.json,sha256=knL3-G7k0agBEj176xHU1U3Y6x12lMy_XcXedCNd5ms,287
475
- teradataml/data/followers_leaders.csv,sha256=d89PxN_h3-F0SJlgRf5X5RmxSG5PDGIQ5WoBuWNNQ3E,181
476
- teradataml/data/fpgrowth_example.json,sha256=G_rrEt-3TemhLNNdi3Lu69QF7HBj23LAMiprxY55M-Q,279
477
- teradataml/data/frequentpaths_example.json,sha256=Pl7iDldkSV_WykXFm4VaOTAmfwYxHW6nPc2Hla8ko5g,964
478
- teradataml/data/friends.csv,sha256=mheRsV90w0jOC-h1iGL_1xDPfK-i-9sBKkz7P6SyzfQ,294
479
- teradataml/data/fs_input.csv,sha256=B-1DL_0foU-2maNutUg_ZZhnE0xulQtrRkJMZ31krkA,2225
480
- teradataml/data/fs_input1.csv,sha256=_0zrsdwasFR58VWSJlUtdGKdZ9TG0fH9g4ZOVSZFGgY,2264
481
- teradataml/data/genData.csv,sha256=XS1QskFfWUsBM4WHGjHmeunXBNw1Ntyf_z-vVbKp3HA,7404
482
- teradataml/data/geodataframe_example.json,sha256=E06pg_vFJwZ5zrbSFaa3xrmuYgzAbRdZFu7crkT6sf4,922
483
- teradataml/data/glm_admissions_model.csv,sha256=AMXbPQmPc1w4mlBXlFbLFZQK-sBwxuHZ2sZUBjdGUjs,741
484
- teradataml/data/glm_example.json,sha256=BX4mMw1nZn7olQT8D3aj3w345nNYHY96bTrXRwSk0RE,959
485
- teradataml/data/glml1l2_example.json,sha256=ni6QF1pGvEAB2CFMYCM0gus_G0vTyb2TeQ0o_o4jsLE,879
486
- teradataml/data/glml1l2predict_example.json,sha256=R76bCNdNMF0hLWRGarWuOsuYCW_AOcGVyR0G8wOb8rA,1728
487
- teradataml/data/glmpredict_example.json,sha256=VjIgTn8URDgSD1V6Fc81DJ4HtU48cSM-o707WbZGado,1857
488
- teradataml/data/gq_t1.csv,sha256=LGdKJ0_5XNztD_jtKdylLdnRewXNcTs0NXvzaH4clzs,580
489
- teradataml/data/hconvolve_complex_right.csv,sha256=uhRNnn1qwJUN843epRGssqfG1lGMTvMIXPgVi9LN5vs,98
490
- teradataml/data/hconvolve_complex_rightmulti.csv,sha256=4yDtk2pSWVxGiXuc96_FxwShI03l7BteVOMMVrc3XgI,240
491
- teradataml/data/histogram_example.json,sha256=644bk_JDPH1Vksq6wCELwW8WYnctYmqqbZiV0M9oX_4,230
492
- teradataml/data/hmmdecoder_example.json,sha256=MlB0NG6T07fRTLNz-Uxhei6AiRhXhhhxOe1hfCzOiug,1774
493
- teradataml/data/hmmevaluator_example.json,sha256=vdTJiaDA-mQtEcKFjXK7xIlyMdgY7kfp6tcYi-upHGI,545
494
- teradataml/data/hmmsupervised_example.json,sha256=zQUEPkIFWEIGAcvYmTdfReXtMl1UkKE4_1ftB0nk4JY,207
495
- teradataml/data/hmmunsupervised_example.json,sha256=HEmTrxEKMANC0s-IOemDM2MmhbGMl9jnHtxAR4EZrQM,150
496
- teradataml/data/house_values.csv,sha256=LaheGaOjAGH98L83AT0SCAhuHmZ4sa7Ob3UbW3yfkis,559
497
- teradataml/data/house_values2.csv,sha256=tKYjHO9Ht8_ZyuIeOpd7j59rrxjgjE3vvsJSmJjUopc,186
498
- teradataml/data/housing_cat.csv,sha256=F6bgR09005z9PozVpamOlqR6vYzCbWmSTcp0ZM1dYWg,71
499
- teradataml/data/housing_data.csv,sha256=zJ8odOpMdrqUhrs5F8M5Wqu3y7it9cemQmP4YHdWdZI,259
500
- teradataml/data/housing_test.csv,sha256=YIANwtmR-STHDHvbGdlUyl5rTmrIg6KhsMFt7H11YFk,2500
501
- teradataml/data/housing_test_binary.csv,sha256=nw-cz1usrPzSjGshNyp6PEurkU1wc6eNCXWxGWfzN8o,3144
502
- teradataml/data/housing_train.csv,sha256=G4JSVrYCqBetd-xK_VzvMucGlojI_a5438WHmvEemG4,25543
503
- teradataml/data/housing_train_attribute.csv,sha256=9yQOMfX9ztyT7NehS4nWgKsepUSAYgOq3-_8194M2CY,74
504
- teradataml/data/housing_train_binary.csv,sha256=R7tbWOf56Birgaw62qWqoBHOreXc-z9wi6TsMO4x1Hw,28625
505
- teradataml/data/housing_train_parameter.csv,sha256=R7X73Y_EI50gU-Ur6FFT0B1gieTbNb1vlx9xn_SZAXI,57
506
- teradataml/data/housing_train_response.csv,sha256=jTiMVUohpFXHy7K5-W6BLj-PRvkkP8oOicZJnq7O_EM,7153
507
- teradataml/data/ibm_stock.csv,sha256=HSBpIOrPzAHUOorIrpsjBaM2bEb919v851CAn8VGXWM,9151
508
- teradataml/data/ibm_stock1.csv,sha256=pu5CY0myNqzoTFUFxiAWf4_cqNtBfkl6vyf8EU9ndLo,17377
509
- teradataml/data/identitymatch_example.json,sha256=jtL0bknjqHWofAKQ2Kj4HU3m2nN1tCk0dTbA-CfXhmA,532
510
- teradataml/data/idf_table.csv,sha256=LOkYLhRki5myiZGaaLElk8VmNln6FexYXksoHKgPP2A,93
511
- teradataml/data/impressions.csv,sha256=-Gr5JRF5ihUUMSXbAXNZLBSByTmW4AMJ5tNKa1_Tn4E,2382
512
- teradataml/data/inflation.csv,sha256=rEtCD8Z5EXcqmDY6dbpE-hPGmYbWDb2FHbfBZbpgHaM,532
513
- teradataml/data/initial.csv,sha256=SAGEJj0gOt3CI0AmWF8lz5ypmBATPTbOVI1OCuDFVag,50
514
- teradataml/data/insect_sprays.csv,sha256=qDdiiXah1Y1OVcDCIKyzjkvsumPGbHeSsk1c88d7zV8,295
515
- teradataml/data/insurance.csv,sha256=UFwcvC5j0DY7rFlQFWPfJTCq30zbnP7iJvTvMvVGgoE,54288
516
- teradataml/data/interpolator_example.json,sha256=0sYGt8zIrLnoAFf68e489ePmh1DZpImQDQejZkc7loM,333
517
- teradataml/data/iris_altinput.csv,sha256=RWglfCEgN6N1JXAownR4_4TOov1p3ZPwtkitFD6Q1v8,17809
518
- teradataml/data/iris_attribute_output.csv,sha256=yKlje5Iqbtpr12oxImz4lwoozXaJqtyDR3JyTmhvTNg,2004
519
- teradataml/data/iris_attribute_test.csv,sha256=67UG-3LF9lUjaQIxywbdruerF5dMUjtVRn22CirCfYc,2808
520
- teradataml/data/iris_attribute_train.csv,sha256=Qo4avGux0XrqkzqwuTFdjlfxJnZrXQ_3dxanPAJExCY,11078
521
- teradataml/data/iris_category_expect_predict.csv,sha256=ihi03_qNUUs5BnGh6HpEuA2P8C_xn2Jp72GeprPe9Wc,822
522
- teradataml/data/iris_input.csv,sha256=go6uTY7MDFIVDEvy9QrIf4qAPOcPWNkvFvbIUcoTPP0,3123
523
- teradataml/data/iris_response_train.csv,sha256=V_IROlXxCvEPh85DPqlFQ0_ZJTsBddr2cjQjm7Msbeg,2089
524
- teradataml/data/iris_test.csv,sha256=wnwn9SYxwW4NGzAcsi_24W3AumxJjfHlfw04509PkcQ,691
525
- teradataml/data/iris_train.csv,sha256=CUXcj_vyuQHhDwkYmEgDq0wICmV804AG_Si357tRZ5M,2505
526
- teradataml/data/join_table1.csv,sha256=860cB-AfIL8QUUlIO-uPAFZzimcUnZNZUJNUT3VM1BE,72
527
- teradataml/data/join_table2.csv,sha256=diW1-sNA4ESk-9tN9ZHkxcd8NMnpAjnLPzxy0tYTuh0,91
528
- teradataml/data/kmeans_example.json,sha256=YEdsJZhomT4LZkSR-1krTxJyUqJB175Um2UhvnypJlM,329
529
- teradataml/data/kmeans_us_arrests_data.csv,sha256=VPIkcXCbueSuGesRK4e4m9QKNSjfj5RVtjZIwgtPoyM,1479
530
- teradataml/data/knn_example.json,sha256=q66P-5EIl9wqDDYqm9hjd-8VNf7sxHLHpCSWI5unqyA,372
531
- teradataml/data/knnrecommender_example.json,sha256=Y-dW7TasUbFYmgLmITiip_t5qpJX32Td4VqahFP8SW0,111
532
- teradataml/data/knnrecommenderpredict_example.json,sha256=6lMIfKTHTh1Hma3DV25ETDoDYKUj3BN_VvxaEUIK2v0,224
533
- teradataml/data/lar_example.json,sha256=8QxSzU4ChUjVU5822SqGPM9sr05SkymkBtnLuVHgOpM,265
534
- teradataml/data/larpredict_example.json,sha256=efBe-wvt4pf7ie1sG4TQbtSbUILT3QnQfNb1bxWMpSE,528
535
- teradataml/data/lc_new_predictors.csv,sha256=kUY2W2RdHvn718WNHbltqWMtx7NgucBjBRr8S-Aib30,233
536
- teradataml/data/lc_new_reference.csv,sha256=OpjFdyLaPyID59Ci3IHLpTpzYHQWoPCxVir-zwENY2k,332
537
- teradataml/data/lda_example.json,sha256=KmnlIwBYlcFz-8Ty0tJYZHpJq6pwKF5gy_Xe_5FdO4s,178
538
- teradataml/data/ldainference_example.json,sha256=vRB-exC5F0WTIhwyrXCuazI-NhHykAE8ugEYyiEENws,322
539
- teradataml/data/ldatopicsummary_example.json,sha256=KmnlIwBYlcFz-8Ty0tJYZHpJq6pwKF5gy_Xe_5FdO4s,178
540
- teradataml/data/levendist_input.csv,sha256=zmw1fE4DvJtIXKV5AENld5Nul-2rkVj9uITx4lHk4Ww,392
541
- teradataml/data/levenshteindistance_example.json,sha256=w_kjcjS7RFUKAoO4mtFkHiQFIcaWJckDflqXvoTz2UA,250
542
- teradataml/data/linreg_example.json,sha256=11LC8CCilNi59yfLOJmPBvVWfGuyVqkwpt3rctq3Z0c,195
543
- teradataml/data/load_example_data.py,sha256=AwGuPhxVaK6rHHskZM4B-kLB2gp1n6VHgt68_DyfAd4,13835
544
- teradataml/data/loan_prediction.csv,sha256=BPyw9aietHKvJlR7rhxuCTjvZtdBTaU33pDB1HeoC2g,4296
545
- teradataml/data/lungcancer.csv,sha256=h7sbOfN7GCNuBhvt8CU8TItlbOa7ajtwYGr-X0wyFqU,5735
546
- teradataml/data/mappingdata.csv,sha256=TmYIcuFsI2SYqv8ae1FaK1-YFm_9q6rtRMOSotWtc4U,72
547
- teradataml/data/milk_timeseries.csv,sha256=yN3K3MKAJepuqFCWix9uT08Ay3AjiLAFFeOd4P6Qhxk,3341
548
- teradataml/data/min_max_titanic.csv,sha256=Hq24JVuaAgrBZQJs6nuQz5UVyoIb1SmUjtfc9hmtDYA,84
549
- teradataml/data/minhash_example.json,sha256=5y2g6YcO0FE16qmOWQe1PJxtFk7Z8SU6-XBUmbNWpSE,81
550
- teradataml/data/ml_ratings.csv,sha256=BF9TH9he05fOcvF9IMhJtQrlAJJJSyy-gasdh6Y00FA,75587
551
- teradataml/data/ml_ratings_10.csv,sha256=4vhBHzWhy3rNTTEgPfv4XjGHFaCfnEiucr94cr7fOlg,22785
552
- teradataml/data/mobile_data.csv,sha256=NqDzy7QWpKPxOsuxwzJ9qC6Xq02zhstFivrN42Glwi0,274
553
- teradataml/data/model1_table.csv,sha256=a8UNSbesHIZ4QomPpaVe7rGo9OGNe7zEScCkFpJlIcg,123
554
- teradataml/data/model2_table.csv,sha256=1IRC2ttdtK6lv33Mefe9JzxHiQ9gRowL--Hzt8KTY-0,103
555
- teradataml/data/modularity_example.json,sha256=XTM9IUc-byS6wwdMtc5M7iYMXpd3SQVikcMsWa1HXeE,240
556
- teradataml/data/movavg_example.json,sha256=qiJDXB29W_qB4tbDg7M6c5uUbB8lAk07_zg0n676Xpk,123
557
- teradataml/data/mtx1.csv,sha256=-j7D5hG7bClGOoFt_Wdx8897odTUwSCQM19b_okoGY8,108
558
- teradataml/data/mtx2.csv,sha256=1bErtfvQpeUa63L4XAmFO0wTbdeZugZYE94ETbeZSKI,188
559
- teradataml/data/mvdfft8.csv,sha256=W-fduhuHiL40J_rY4T1fD1QjLaV4VraOrlbknBW1dTU,229
560
- teradataml/data/naivebayes_example.json,sha256=GylUAPghICtShFImyoM8rbsviwPYi7Eei4v_pBoz2Nk,194
561
- teradataml/data/naivebayespredict_example.json,sha256=dtNXHOYfe-pIad1SAnZ0NU1TZYjHNlIpxcsenuJua1g,502
562
- teradataml/data/naivebayestextclassifier2_example.json,sha256=gOn9DuUSrSXkmVGmFwq8mzXm9VAa3l9dJOR4JhhU5AU,145
563
- teradataml/data/naivebayestextclassifier_example.json,sha256=DuC7sZbdvkGmdDcIw7Z2De7C8xQIvxwzMbci-pu7I70,147
564
- teradataml/data/naivebayestextclassifierpredict_example.json,sha256=mFvLvS-KtbaTkdWaU4azDTYnPJvDCaP9jdvQh1pnBVs,472
565
- teradataml/data/name_Find_configure.csv,sha256=Wun7K5-RMr278-8T7d1IquvhyovM6hwGB3BfdUFnvW0,370
566
- teradataml/data/namedentityfinder_example.json,sha256=_V01rb3s03IvtbaHtLdXd2HxkrVwV0GziNWt4YZTAxE,340
567
- teradataml/data/namedentityfinderevaluator_example.json,sha256=LTa0sEMeC0MbrxFzQciXg0OMcmQJkxWHTjSdI8mZ0dY,250
568
- teradataml/data/namedentityfindertrainer_example.json,sha256=kBQO_qtxwUTpm4Gh5VxUjXFUe2xmC3mMiNDeqlt7yAY,127
569
- teradataml/data/nb_iris_input_test.csv,sha256=j3x736U--HJRVTJfE0SOPX0mORzBaG9s5Ix8E8isV5U,971
570
- teradataml/data/nb_iris_input_train.csv,sha256=igXq25VgE1z7HkLmf4ZzEduvFhJ3dpCT2BZt0d4XzeI,3625
571
- teradataml/data/nbp_iris_model.csv,sha256=XsLsxH7GV1quWFYTBxG8tN1SD97Xlbqf3-5IgMGwb_c,746
572
- teradataml/data/ner_extractor_text.csv,sha256=PIYBG0duViggR2KMXLTIFLpQOGN_k17-cPeidIUJ66U,166
573
- teradataml/data/ner_sports_test2.csv,sha256=AOy9N_GI27EF4zX7H4HUaXWCd_1op8R0DaHd1k6vppM,2423
574
- teradataml/data/ner_sports_train.csv,sha256=MB7wWjoQYPeqlTAeGjGdtCOC53LF39Rv9nQkyVBxC0Y,34915
575
- teradataml/data/nerevaluator_example.json,sha256=tD-Y2Kb-sQ-3n6zvjuZ780-jjYX9y4FCPS9QUr2XXN8,112
576
- teradataml/data/nerextractor_example.json,sha256=fPm1kSsDSfKdptRhDKwSOe7Ux-9CktPrC-AXGAb2F4g,432
577
- teradataml/data/nermem_sports_test.csv,sha256=vy_65XXNSHTCUk96fL2QtvFPLooFccDZKF9IYBYwRyo,1567
578
- teradataml/data/nermem_sports_train.csv,sha256=j3u-V0n0IPmbrBsaDnZOmILHwLEYV6MmqbKKgNUUaGs,3979
579
- teradataml/data/nertrainer_example.json,sha256=vXN2zJy2sWDp2GBDri76MMzcK-msmd8p7mUed2rh-SM,87
580
- teradataml/data/ngrams_example.json,sha256=m13p0Duf3ygsCRzRpgJ-gYdErZYWynwUyVTAlYhwtwQ,120
581
- teradataml/data/npath_example.json,sha256=C4ONZUz3MuAkVkWG1VvxtibdQfdxmoQBOSsgDKTX_eg,398
582
- teradataml/data/ntree_example.json,sha256=2dKeSC6AM1n4ckQln1c91keVZabNCm5fzj8DMTqDK8w,417
583
- teradataml/data/numeric_strings.csv,sha256=xBQfF320zKr6U9LzLylkO9Y2HXDHEnCj9yyp3D7S9DM,143
584
- teradataml/data/numerics.csv,sha256=Hv-hHBHYVuj4SrBKBGE1GsOmTSij9cXSNbQR5mfyLGE,271
585
- teradataml/data/ocean_buoy.csv,sha256=zauXn7Nyp55ufJEB05w34CltwID6eXU4AZOKU6P2t50,237
586
- teradataml/data/ocean_buoy2.csv,sha256=WJzKfJZAVJrUdIzu_D2zKtz7rpEdc7TX-wtPkeVMXsY,373
587
- teradataml/data/ocean_buoys.csv,sha256=t3lWCxGZpewk_SsfrDNLUXWyd0J-l6a9nVO-n-R2yJQ,1004
588
- teradataml/data/ocean_buoys2.csv,sha256=sdL032huEBlj56-iJ-qeC660svOfRo9UVHXzKjpxNjA,1546
589
- teradataml/data/ocean_buoys_nonpti.csv,sha256=EQA9pbwxgyPdyVGTOElEcYcf8JQCqFqAd-9d6kzxvu4,1002
590
- teradataml/data/ocean_buoys_seq.csv,sha256=D1Ew_MiJbxTn8tR-0Al-OLuABsuJFm67eXm84NUKADk,1442
591
- teradataml/data/optional_event_table.csv,sha256=u6DHUHV03pv94vjNGK6IgOXHNgDhD3Lwk0OQSquKf4U,54
592
- teradataml/data/orders1.csv,sha256=CnH4Sp0gLYn9Ai5hE9U_oLhNPMhfaPlqXIvw38LbH3s,169
593
- teradataml/data/orders1_12.csv,sha256=OuWVb7QQWrhsjsFezDR6c9yHQ63PqWV70cH48YY0uec,117
594
- teradataml/data/orders_ex.csv,sha256=O0C7so0ok_gmToGiHpTEB8zqSrZlUE9E9dZbHS7fmi4,84
595
- teradataml/data/pack_example.json,sha256=I_zbTtf3fJyBw3IjOIpYPMNUETcEOLCDN_YpI7Q6UqA,164
596
- teradataml/data/package_tracking.csv,sha256=fYJTYWk6R__wBacE_RAgIIDDa77i-7v15x35E0ZDZLM,935
597
- teradataml/data/package_tracking_pti.csv,sha256=YBnMoqG_ogcS1I-hJMHlWty-mu7W82GXo2N-clC9fZ4,915
598
- teradataml/data/pagerank_example.json,sha256=ul0eUpyEC5q1fr-I2P2WK8fs5mPiHGdThcmZ4PkZN1w,251
599
- teradataml/data/paragraphs_input.csv,sha256=qIJNzcSclDVlnK5UjRamrud1aHBS2_45JtobccD0agw,2994
600
- teradataml/data/pathanalyzer_example.json,sha256=5Xbsajqvnpw4Kkp8xflLASkanbWeq-FcuKs8rar3Nsc,131
601
- teradataml/data/pathgenerator_example.json,sha256=5Xbsajqvnpw4Kkp8xflLASkanbWeq-FcuKs8rar3Nsc,131
602
- teradataml/data/phrases.csv,sha256=nsyAG5AT_XY29-8I28SwmdGlmRR_fdX_0sMhE2BRy_U,103
603
- teradataml/data/pivot_example.json,sha256=V2X9Q6AuZza8pm5_5i6nM7NYiJCfg95MN_KW75HKftU,157
604
- teradataml/data/pivot_input.csv,sha256=LVqCkNwlKWy7Pfvb221onmP1Vs3CAkOqNHU1ALYFXjk,741
605
- teradataml/data/playerRating.csv,sha256=NbQOS9y44ytwF0Iic1lVQeEFitFwlUd0uibIET7ZNWI,473
606
- teradataml/data/postagger_example.json,sha256=m13p0Duf3ygsCRzRpgJ-gYdErZYWynwUyVTAlYhwtwQ,120
607
- teradataml/data/posttagger_output.csv,sha256=qWBneDs2fOku7eI4zdvjk3kaDCxoKMfBNjCmZRn8gVg,901
608
- teradataml/data/production_data.csv,sha256=3WK6aVV4REnThi7bJ5_RKxCTXPDA1QF5n5r2iDOGwz8,805
609
- teradataml/data/production_data2.csv,sha256=T7b_Zruzh_WErF007Y0q7cDkTcYgT4ahAOSgz7MVAXk,239
610
- teradataml/data/randomsample_example.json,sha256=d5XrgqvLHYzB7fgKWy954lQTDU1n8Z8M3msfHwwaoDQ,769
611
- teradataml/data/randomwalksample_example.json,sha256=WqbZfagv5SXzNHGVpH3DJgXLz419W90dyyBfLjT9QXE,120
612
- teradataml/data/rank_table.csv,sha256=lP9S-_V5gFGvVk0-5KqMklbPT_v0KxHvL3nsRgJIINo,94
613
- teradataml/data/ref_mobile_data.csv,sha256=FTnGLhO5erR7SP5AQ2_hHKnzPvqyaumXEa68-MLmnHg,102
614
- teradataml/data/ref_mobile_data_dense.csv,sha256=DkAeC7H0H-xFggSv_PsUGmZBKiwPFqbjJSMYo54VuTE,61
615
- teradataml/data/ref_url.csv,sha256=IKoBkB6aJIjApatAd1GOvSjkKG1IvTuOxCD1uQnlhAQ,833
616
- teradataml/data/restaurant_reviews.csv,sha256=QAztzcSOqxR0nHZgM5YWGP4X6UXkB7wBGYmPQouEzrE,605
617
- teradataml/data/retail_churn_table.csv,sha256=rqOS2uaoniztpNgzF8w-KvAyFurECdYeAgs6C-8weEg,1381490
618
- teradataml/data/river_data.csv,sha256=ttjwy809pv0LIOVKwPcFZpiyuI9Ey4972ObdjH7MpYk,4436
619
- teradataml/data/roc_example.json,sha256=iewbF2VoaPaZWZJuqfgQbs-Bs_i_lNPV6f2NCWDNg4k,133
620
- teradataml/data/roc_input.csv,sha256=DFkPBB5L69fZSt03Gd1Kjy-XZxeN_tQEVwn3YJY9aDs,2057
621
- teradataml/data/rule_inputs.csv,sha256=lJfkgqN_1kis3TllYq4s6H8ADQbx3LuO46zqJLeWAJA,448
622
- teradataml/data/rule_table.csv,sha256=T4YcXCPKtvMNLjSbhrbLOOgBL828CS8F3qFTQm6I5s8,73
623
- teradataml/data/sales.csv,sha256=Lwz6sfw7leeX6vpb_ju2turdk-2o5Y8AWM5HKKovyTI,232
624
- teradataml/data/sales_transaction.csv,sha256=WcEqv0nbwAbZpGqOG8nbFjbUBjgar68hh6qNCZ70cww,45115
625
- teradataml/data/salesdata.csv,sha256=gcv8Qf7MfZjat5Io1u-4wT17fJW9swAGxwMR6HZDGpQ,3923
626
- teradataml/data/sample_cities.csv,sha256=N5Qou3h3ZJ-PM1Qa-ZjRHx9U2WPEmgUPR-z5vrzdWeE,142
627
- teradataml/data/sample_shapes.csv,sha256=2--pRQai5BaBm4ACBr7QKkbyWjKNbc3vz-a0pQspJvI,2662
628
- teradataml/data/sample_streets.csv,sha256=D78uJOfHXLG9WjpYkrKfJ0B8R3A7OOBZRIszX2W_D7c,121
629
- teradataml/data/sampling_example.json,sha256=_MDnzW280eXSShSR3dsYAKzcgEuJxF-XI8SraJBJ6oU,254
630
- teradataml/data/sax_example.json,sha256=DBye-qJPZj6Zo022vdgdm_4GzUYdC9GuMP-F1gVGm8c,161
631
- teradataml/data/scale_example.json,sha256=JkdJaNtlp2CQ9u0K7QHNZMr1PeXNhaHLS_Pwe6mvkZw,646
632
- teradataml/data/scale_housing.csv,sha256=ug7AmMI0TUR4-kQ2x43uB1RqJY4mHc3ZgflNG7ELVzg,352
633
- teradataml/data/scale_housing_test.csv,sha256=HeOrHcJWq2YqW7bPN285e3mpnPTeLoEc6wRj0OvCn3w,213
634
- teradataml/data/scale_stat.csv,sha256=zUu2gEWHFot6k02ErtTdHmqt6hMVWSCo3mn6zOawdv4,297
635
- teradataml/data/scalebypartition_example.json,sha256=pX5kQLVw09YiSi0UGydRLg1bNGsNPJV_73dNsUDxwmM,343
636
- teradataml/data/scalemap_example.json,sha256=isoDge-eFdWdSVe0WSF4hEDB0qR16Ef39fRIxpoNwek,340
637
- teradataml/data/scalesummary_example.json,sha256=5933_9pVNFm6daWzURUI_3SE3Hevhn3nDxaEkMG4Dz8,304
638
- teradataml/data/score_category.csv,sha256=FCkXQcmjB9eJdPhCwnuZdonMyvZkZCED51AcePOE-K8,1422
639
- teradataml/data/score_summary.csv,sha256=aCf0KwiQKFYFEcbJMORQMVTaDmYkCa5zCbRipUZPNr8,71
640
- teradataml/data/script_example.json,sha256=CuKGmzWet-iIEP6rt3i2VsdB17mGGrGRrVGxnDnoBHE,170
641
- teradataml/data/seeds.csv,sha256=YBrHGqEJ4kYPJnG1PFOaOh8XFrn1EIP7wz3Wm0Cozoo,153
642
- teradataml/data/sentenceextractor_example.json,sha256=m13p0Duf3ygsCRzRpgJ-gYdErZYWynwUyVTAlYhwtwQ,120
643
- teradataml/data/sentiment_extract_input.csv,sha256=1m8qtdc_gkXpPVLf8bEsrpgD2vFHngdYijb5719XBcI,2812
644
- teradataml/data/sentiment_train.csv,sha256=XOhfypShJhupHjSTXC2_WMXFqDtUGmDmhqDUkfBNPPQ,4004
645
- teradataml/data/sentiment_word.csv,sha256=IA7BdVEOW48YTZ6YebQsahkLH3rTSp97y_YWExjS9VE,256
646
- teradataml/data/sentiment_word_input.csv,sha256=upBnfdJVk5TBYsQSm62liGYsI-hF2KJVAd7kw-dsYTU,267
647
- teradataml/data/sentimentextractor_example.json,sha256=TTHW8fGHjD4gLzpVLzeQzHwraU1AQJ9nv5dJrr_rHpU,530
648
- teradataml/data/sentimenttrainer_example.json,sha256=2yznUIFPys2hSFiq6c1zNLceFk85U6RQeE39GMQ9i_Y,149
649
- teradataml/data/sequence_table.csv,sha256=8JAo00Ixg1QektzpiH_OdKU3FTf8DOX4efGsdlrnQDw,276
650
- teradataml/data/seriessplitter_example.json,sha256=JQ78HgRKif0ddR7dFJQzHmhLcBW1zqxQdkeLpzN1anw,123
651
- teradataml/data/sessionize_example.json,sha256=qv-I3wGD0g-eM-j2UVxSiCPSTrbeHK4ScxNNsBpT7yI,389
652
- teradataml/data/sessionize_table.csv,sha256=YBeWlcM7hoSPsiKpuAaQKUpEpogluV5-KcvzhfDIr2w,4498
653
- teradataml/data/setop_test1.csv,sha256=ZMuRUHlaiDRL5KZBi-XL9Y6BYZAj0jNENT12ULIzsDw,736
654
- teradataml/data/setop_test2.csv,sha256=zH_546_MBXlYwOxKKQNuEgdRNKFIwdDYFMcrXW6H1As,666
655
- teradataml/data/soc_nw_edges.csv,sha256=1N3WhviE0S4MmPLDVKuC8jLMijgU_z3zpCi6_JguE-M,167
656
- teradataml/data/soc_nw_vertices.csv,sha256=XDuBPkK2vgOdtITrNbC5U32ItrDlzju1Idz29Mbm8nw,60
657
- teradataml/data/souvenir_timeseries.csv,sha256=ARiHNgOYBRt1l9rxK6VKG0hBkMxOkiec9f1-Af7EC5E,2391
658
- teradataml/data/sparse_iris_attribute.csv,sha256=U1QOwyEA4Z5zrSbis1ZPdmOCZt1ZaL_UxsZDHCwV7tU,102
659
- teradataml/data/sparse_iris_test.csv,sha256=NV85IzF9QwvsdYRdb3QK229E-NUGHsOoG3QNgdTnjeE,3139
660
- teradataml/data/sparse_iris_train.csv,sha256=8epds-ACVMQS5857mKQjp7A6460z12-nJyszksY2eCM,21107
661
- teradataml/data/star1.csv,sha256=PIowckvtY7dRME1da0OVAx6FmWQC9Qwtx45_yO9pmmA,141
662
- teradataml/data/state_transition.csv,sha256=S5Wwkvl59drfvu-B2SguN7iA_YHHThKp4x0AzdC32HI,94
663
- teradataml/data/stock_data.csv,sha256=da4pvS2DIbvVsIekh7WDjXw0BUlt2XHtNWawcCizWKc,1516
664
- teradataml/data/stock_movement.csv,sha256=5TcmnIsgiZGRMv5lVPJ15iTwr9jvHcuyWbjQ4sMzTyw,129687
665
- teradataml/data/stock_vol.csv,sha256=iPadJAioT5-q5irkDxGsOahtvky3hKDBgaj9Sta4uT8,2462
666
- teradataml/data/stop_words.csv,sha256=Ywe0N6gFHEieuFlGvT_nxiNbMyJ0Gp5S1QdM8rnEwlE,28
667
- teradataml/data/store_sales.csv,sha256=ezDh7XBqUW5hZ3_qFmcBF0jJcQqytQzeSvSCM6L4gO0,715
668
- teradataml/data/stringsimilarity_example.json,sha256=yIFfwPRyGlOzDe-oAqbucdEkRYfJ_XF7GC1NToFwUoU,149
669
- teradataml/data/strsimilarity_input.csv,sha256=irT4SSKKKCj4H8BtP_OCYY0knyApdPk36YoesQMy9Wk,392
670
- teradataml/data/students.csv,sha256=k9Ulug-sVvxSPlI8TZXGxyp0KOsU_DFNeCge6zVlxgY,597
671
- teradataml/data/svm_iris_input_test.csv,sha256=lnNxzUHxW5W_7wdHdzVCBgukqyTd4cDFZxSxygY12rE,3994
672
- teradataml/data/svm_iris_input_train.csv,sha256=fFI1FdE6S8y4Q2F23aVy8pgACz-bL3yN5yPeKPLAiy0,15804
673
- teradataml/data/svm_iris_model.csv,sha256=9F-Gahv-6nyUDn9tsppAc62PHEow20OWN1up0Stt01Q,891
674
- teradataml/data/svmdense_example.json,sha256=GylUAPghICtShFImyoM8rbsviwPYi7Eei4v_pBoz2Nk,194
675
- teradataml/data/svmdensepredict_example.json,sha256=EzkvePa6i8-v-UJ1H8Aq0735DhGHYA47-M8uyU2YU0o,501
676
- teradataml/data/svmsparse_example.json,sha256=RQK0pSUAaDSa58mQglJdcbMpRQ2KH3wVqE6oRRXPW08,149
677
- teradataml/data/svmsparsepredict_example.json,sha256=l0H7ZrRPGP7KTfz0_w3UYdZ7nfRKSJLQxOAV3xz28Vg,295
678
- teradataml/data/svmsparsesummary_example.json,sha256=RQK0pSUAaDSa58mQglJdcbMpRQ2KH3wVqE6oRRXPW08,149
679
- teradataml/data/target_mobile_data.csv,sha256=o26XjdziWIHep4fS27aHrP9TDitz0RaQ5fVf6HzDrCA,303
680
- teradataml/data/target_mobile_data_dense.csv,sha256=3ifh3l3NFwqingiAcw3RQtPX-MZgwxkQ_QDb0xButxY,117
681
- teradataml/data/templatedata.csv,sha256=DugdI8dKRetUdodlinNK-q9qV9yf5LaqZOU4YJixhdE,21190
682
- teradataml/data/teradata_icon.ico,sha256=M4qHNiblJAmGmYqsy9bD5xSP83ePf6089KdFuoQhaFM,1150
683
- teradataml/data/teradataml_example.json,sha256=lsa_hFr9CneEhxAozjbZQv3kZV6AowYhZxGf1Cwoen4,37555
684
- teradataml/data/test_loan_prediction.csv,sha256=OG8wtvja91AvBxzkEvSUyTJ2L6-5IfNPNI2vJOTycgo,810
685
- teradataml/data/test_pacf_12.csv,sha256=qNNPJxKNrAEJLzPa4iCSKbP6RGXnm-XMx9skKQP7YKc,966
686
- teradataml/data/test_river2.csv,sha256=aDRen712Wz4NItgu506PdJ0_JDsBNzRMM94OBXd65lc,1117
687
- teradataml/data/text_inputs.csv,sha256=qyV8He3hIKURsXXspjJIqeCS1DZErLtmAW_MorZOfmA,1715
688
- teradataml/data/textchunker_example.json,sha256=OLyj6GNS9pbKj7q_elt1a1O6TvIrqSwqiZ1cbYjZi74,139
689
- teradataml/data/textclassifier_example.json,sha256=DIXxZoECQkLoapNabLUkH0qxrB3ufAFg-hNxjH5Llbg,119
690
- teradataml/data/textclassifier_input.csv,sha256=PWigxBhQ0azCopBmnZ85upQlnyj4q60vfvYa4pL7WzA,1137
691
- teradataml/data/textclassifiertrainer_example.json,sha256=meO9szj2C60zN57VBsyLbJwSSQ2W9BoT-nXAgr2-g9o,116
692
- teradataml/data/textmorph_example.json,sha256=1D7i6a2iSI9MMVjh9qFvwfryUaXSq6VnwxqIvP_wn3E,73
693
- teradataml/data/textparser_example.json,sha256=k-t6XthTaWzw8kvcxuKiZVwKRaClS98bgAPZRQwU5ZI,279
694
- teradataml/data/texttagger_example.json,sha256=0vmoQOmME3qtkfVFh9LitFUmjrya7tVFJVbH9aOGNZk,225
695
- teradataml/data/texttokenizer_example.json,sha256=bhnvOArl9OQMeI7qWhjHfeRw1-UD7n9WcAcEUliWxYM,114
696
- teradataml/data/texttrainer_input.csv,sha256=TsuVxnowE1ntpDAgHE_1QEXKV0mLcBB_mlDIpEPFfNI,1392
697
- teradataml/data/tf_example.json,sha256=fvvN7nv0D5SkT1JwRaBOkyy1K0luOeYCFNxb7J92BRo,105
698
- teradataml/data/tfidf_example.json,sha256=tdD1PKVHCCsB9WYEnVJU9IZDzDLZ0E4hQ4ClWEp_Trc,243
699
- teradataml/data/tfidf_input1.csv,sha256=yJXyujrzl3xjgTCsKTXObFoG4OjAii-T6IdK2NozUQc,2451
700
- teradataml/data/tfidf_train.csv,sha256=jKJELXu2nUGsK_OVXgt1-x-gE5xyrzL7V-Z8WmMGrwM,1564
701
- teradataml/data/time_table1.csv,sha256=4NhRrJYHuHVd8V0ObLitkTrXUVtQiG66fZuUTziw3vY,18596
702
- teradataml/data/time_table2.csv,sha256=2is2D-j_UFSP0pk2-WPfELOU4fy7PbNRrnJtG5bweco,343
703
- teradataml/data/timeseriesdata.csv,sha256=ETueazXykvXFNln8Ww5q3rF3vChD9G1mWWB7ZStg9rU,28049
704
- teradataml/data/timeseriesdatasetsd4.csv,sha256=8qN7SDC-uO6x_t1VuJapdwlYlAjwn4XP-xhdV4088fo,2719
705
- teradataml/data/titanic.csv,sha256=3XsdSGnPR-cqQDK5rYTAcmdd4XBcnWZ1JxXHaNE-SoM,60300
706
- teradataml/data/token_table.csv,sha256=rwkH5rzTnAbwNZmwbGHX-AuAWQ8InnH1HgEB-Eg_W0U,14116
707
- teradataml/data/train_tracking.csv,sha256=jJTj9DAY8AuXFyJtVLka3uKob8TIJqEWVLGv9FJrr6w,3290
708
- teradataml/data/transformation_table.csv,sha256=LiYsVfcFy4mXCg_GHPwuRqBZRNZc4LkqrL93QET3Yk8,168
709
- teradataml/data/transformation_table_new.csv,sha256=T-ijO5694x5k3EQQ_7FYWjRm_BLpkM_EYN40YKAbgSk,75
710
- teradataml/data/tv_spots.csv,sha256=URb3SF-G7OxW6Zz4Dn0BqmgrPekgDyGcCfIiifd58b8,305
711
- teradataml/data/twod_climate_data.csv,sha256=5979oFvrp5EjgtUJfLPfRx_bXKESc1465SRJ8Nn_2Kw,4193
712
- teradataml/data/uaf_example.json,sha256=7UCaO8AkAk3KpItavHnEAcnNLKhgeueAD7CR6bj7A0A,10880
713
- teradataml/data/univariatestatistics_example.json,sha256=DBye-qJPZj6Zo022vdgdm_4GzUYdC9GuMP-F1gVGm8c,161
714
- teradataml/data/unpack_example.json,sha256=PxWezUw1bjF6itD21Kcc9Ugw8MufLQrRlhU71rueW_U,177
715
- teradataml/data/unpivot_example.json,sha256=C5OsQ-RcL7Hizj1MGF5tq-NK5dVGcBvwI5twmhm7lb4,176
716
- teradataml/data/unpivot_input.csv,sha256=RSam-3Cg2cMO0xXNYdrhrP8FaE5zg4LvfBgz_PP8sYM,286
717
- teradataml/data/us_air_pass.csv,sha256=Qz4imjSae8Sl-ny7Ec7ZGP50zdoqniw8OluOPFYqUas,1020
718
- teradataml/data/us_population.csv,sha256=GhZc0OlEZJ2hDLXJuSXbS8nSBJ1l2GQE_JTrJTAuE-I,17796
719
- teradataml/data/us_states_shapes.csv,sha256=m4iAYOJTyKE5WOC4mdp9SJRKQqWG-bApmZXyrKrDpL0,86256
720
- teradataml/data/varmax_example.json,sha256=uqsnmaiz-A3DKVtjZQqn_OXj87-l8WDW8Ew_3c0h8uE,412
721
- teradataml/data/vectordistance_example.json,sha256=vAs9IfHbYDRTPHqxzCoCFyKtwR3U81NctmRorSeNnUc,560
722
- teradataml/data/ville_climatedata.csv,sha256=7PdX5Bj_256z-nRiJ-0xAAzkpxoeBWSYlYikxWyRbPQ,7110
723
- teradataml/data/ville_tempdata.csv,sha256=cgK-dvpbIJtrNJgJxPsbEa3A2ZHMNut7SGeLlW2Rxbg,343
724
- teradataml/data/ville_tempdata1.csv,sha256=Nazim9uDl4UuKFXFtnYoWqGeSf9O6cLZYA6XKDOZiLA,323
725
- teradataml/data/ville_temperature.csv,sha256=7VUqKceq1mOTVzR4_jNzdfJto1AnyzapFLa943HBDJ8,549
726
- teradataml/data/waveletTable.csv,sha256=Joi0dFLUgHXPDZxFjF09kMF5vB4vZbPbO5LwjdDWibo,79896
727
- teradataml/data/waveletTable2.csv,sha256=Joi0dFLUgHXPDZxFjF09kMF5vB4vZbPbO5LwjdDWibo,79896
728
- teradataml/data/weightedmovavg_example.json,sha256=rs9Wc2HuUQdF1i6_TCI5hDnWt1EPssZqZnynfDBMMzk,145
729
- teradataml/data/wft_testing.csv,sha256=7gcIHJM7srhBt3bz91Evjs3Mv4wnkM9hXTuZPpE8QGA,417
730
- teradataml/data/word_embed_input_table1.csv,sha256=PbwxMPAB-Ep9Us2Sg5afzUavI-viJwJx9WylGFsz-AI,215
731
- teradataml/data/word_embed_input_table2.csv,sha256=gX4BnZgav9y77t0JUiCp6JPtFW82fEOS3lks_ZnUF5E,91
732
- teradataml/data/word_embed_model.csv,sha256=lMyoFwBmfp_C6InG9-cv485jkp6InfM1M7ZukEPWUu4,891
733
- teradataml/data/words_input.csv,sha256=UfBpFlsJriEQrw91XUVZQFobcG8ZHVfKzYRTQBnjPEw,150
734
- teradataml/data/xconvolve_complex_left.csv,sha256=LXh8O4KgP2WzSnK5ljRf7FdnRZnCiOirjQB_ApPnIkQ,113
735
- teradataml/data/xconvolve_complex_leftmulti.csv,sha256=2V21NUyyEIshxr9NMrQov9dLeSHpRZ5PMS_t2dK0YUo,275
736
- teradataml/data/xgboost_example.json,sha256=9uWWMjVUsgr-3_iB5HBPkxZ7PlhbhUyZbCM9R07lilE,856
737
- teradataml/data/xgboostpredict_example.json,sha256=n6qJZcUxPzhg1hp-VGLNc-2bGubislazuoPaY62kYcY,756
738
- teradataml/data/docs/__init__.py,sha256=KLr9inajw7XsohADfs38Jdv2ozqGcZCGf5f9zCpz7Mk,35
739
- teradataml/data/docs/byom/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
740
- teradataml/data/docs/byom/docs/DataRobotPredict.py,sha256=kiOWbKkhV9MsMQUBcv3aLmRTicxIGAv-Y9PZc4bwp_U,8741
741
- teradataml/data/docs/byom/docs/DataikuPredict.py,sha256=yi3tCoUm3RPjjPwuYS6-xtsqRtQmtpFBrE5hMPHZWNc,8378
742
- teradataml/data/docs/byom/docs/H2OPredict.py,sha256=kV2YKaBdaHXFJtg0JmjgqMvswO3D6OQPoQH2uLB4-QM,16080
743
- teradataml/data/docs/byom/docs/ONNXPredict.py,sha256=YFPEBp187O-9UBl6q4E18zRpKyGZ96u3C3yfYfcCwls,14023
744
- teradataml/data/docs/byom/docs/PMMLPredict.py,sha256=KfZeoPIEpagk9dbOirkCkd3VH9yLNwCMlzx0i1xYd_k,12840
745
- teradataml/data/docs/byom/docs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
746
- teradataml/data/docs/sqle/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
747
- teradataml/data/docs/sqle/docs_17_10/Antiselect.py,sha256=za9Y-Dg0d9Pst-zfSCO863C0C1QhNI1XPCXkCQi5Pwg,3413
748
- teradataml/data/docs/sqle/docs_17_10/Attribution.py,sha256=AAjQMyRIJ3rLvPtS0Q_Rh1_iwQKC3sFmV8rpFhhroZQ,9065
749
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py,sha256=jM8ClUCQ_rIzRnDpMvyCNEQllRzvQ0BPYCwUBcf-EZs,7222
750
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py,sha256=gK91XkrD4XjCH7WIDC4oHUOOuyl_qlxbU2FwkvfITg8,5871
751
- teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py,sha256=1yhvSaEpcSxOrwAfqJ_PzfS8yxw5K4abMQiQoP8NJIQ,3580
752
- teradataml/data/docs/sqle/docs_17_10/ChiSq.py,sha256=DFpbo-yauRNW2UXaIbJzZNKJkKhLfnpJ6RIdjn1YyT0,3714
753
- teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py,sha256=GhKCuK65yaVBBRGmreJYlMTW9e4lmyVpLGmvncVJmaw,3599
754
- teradataml/data/docs/sqle/docs_17_10/ConvertTo.py,sha256=5vkVLIEXsjpLE44cUS1c38p-QfoucMVnl18JHOjMspE,3894
755
- teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py,sha256=5P7dTAfrOZ3RsRcTgLw68xCqtHbf9m_4Bx19ycVdV_U,6298
756
- teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py,sha256=NL5HDcRsT9etcgaleeZv-L14g914-KkFtwj_8B0R_04,7455
757
- teradataml/data/docs/sqle/docs_17_10/FTest.py,sha256=E4bwVjn_yGCsmFIjbrHxlBdLPeQSGQVdqrbvczlc05M,6803
758
- teradataml/data/docs/sqle/docs_17_10/FillRowId.py,sha256=Sv0Pz8afrZKw5Vm4rFzUfPh0aYZcvRVc3qvUzT4Ibbs,3444
759
- teradataml/data/docs/sqle/docs_17_10/Fit.py,sha256=LgEfEtf2NrP4VqEQgWOYI36vZYhz2EeLZZBVAXJcfeo,3732
760
- teradataml/data/docs/sqle/docs_17_10/GLMPredict.py,sha256=ORYyN-Ir3QhvWpL0vleSW8Tj4YEWD-XDIzhQoeRuSHM,6254
761
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py,sha256=D-wy1PTi57XYER6ZHuSFqleznneIyjgypqyZfSyMbiU,3648
762
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py,sha256=m63w3ZCVFBDcvO51Vdve7xUJ1pScXPXVC7GupFLrX1Q,3522
763
- teradataml/data/docs/sqle/docs_17_10/Histogram.py,sha256=BIS0M_aP_sBq6aCJHvaXnoEdHn-blwUCv7wxOGXeO8U,7085
764
- teradataml/data/docs/sqle/docs_17_10/MovingAverage.py,sha256=edppqTaH89yA1Pz0hfny_gk8dW_7YBnWoEA7BY0NeeE,5597
765
- teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py,sha256=D18PsfmoJR7sj-nZTLzHZxbRjHTOiFl-AEVVe7N9zXQ,9143
766
- teradataml/data/docs/sqle/docs_17_10/NPath.py,sha256=e1tPhQv0CL5ncjfNQqUVW2fMApMbAIjgCF7x7L8S_sc,13659
767
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py,sha256=TYkNjE9Fkz26LdumjaoCk0NYRxTxdv1rXLxvsU7MHaM,5256
768
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py,sha256=es_CBSPyQwJ9mPBBh57al54SYKMIWWM17MgnAEOh7-k,7926
769
- teradataml/data/docs/sqle/docs_17_10/NumApply.py,sha256=UjLfOjAar_OF_I6P2EMjbyfMuB8yLUD7pIvf1aq0Zu0,6180
770
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py,sha256=vxPSiqcMXEs2-eYBNKq2DYfveF4R1GE7nYH1A_YGH8U,5891
771
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py,sha256=FeYCpuG7HQ9QB62fmv1CvBe_jxs7A_2tprx53f9P0Go,4405
772
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py,sha256=FrN0X8nAZOMZXrztV--hhLGIuniCeNf6rTXKwumHmcM,7254
773
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py,sha256=emoSDDCn-qwQZuAC1G4aCz-LK5f4YvEUCZ2HJE4uoio,4456
774
- teradataml/data/docs/sqle/docs_17_10/Pack.py,sha256=oPLHyBd-jTTyBMXlYMCXKa_KkPOsVAFQ2MbCaOZEFfk,5240
775
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py,sha256=ZafBotiv62bmE0WB-nsHM59it6xsTHsqdV8JfQeZGHw,4816
776
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py,sha256=tI6GjooxnZubPGRgCtEUThDPLJKLonZRLyMnhqc0Iag,4408
777
- teradataml/data/docs/sqle/docs_17_10/QQNorm.py,sha256=YXB6gHA1ijhtplhkkfG_UvKLL58ykGLEd9CqLBhOS9M,4581
778
- teradataml/data/docs/sqle/docs_17_10/RoundColumns.py,sha256=LmEh-0K3VBCMH5y7NBT1Mw5fNLh4pLkZDuAYDsq9gaI,4842
779
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py,sha256=Qk7nIEBdtkmnLb1wVA7TpJS7Fx7Bp-2BA1gvY4F_PO0,5213
780
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py,sha256=NzywT0AP3FyTVuQnaNpuXfO_JGDaNl1c48HF5T4F1Y0,4325
781
- teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py,sha256=oyxrCgFixGU538nlfIzSZ1I6EqlWKkGz0xzF_droCco,6943
782
- teradataml/data/docs/sqle/docs_17_10/ScaleFit.py,sha256=Yby3Pet1vS-mN0rs4oiRe-QzL9_t8UiSuOHMLtFxamI,10940
783
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py,sha256=OAfU97Duc1l6SGT2GK1ptRExRgC-YjQLwIgQGcvVgS8,4141
784
- teradataml/data/docs/sqle/docs_17_10/Sessionize.py,sha256=BkVz9GPbeWkuefy5hUbvlm26Xv0r3ac_0-KqBvucT3c,4775
785
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py,sha256=Bq2hPdOG0HWK7ipsUULCTmmy6Xe0BbTiytVszFV3uok,4758
786
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py,sha256=TUuX9ORq4W55Rsg3qTcAZFJ4H5VsGTkSTleqQUduVG8,4049
787
- teradataml/data/docs/sqle/docs_17_10/StrApply.py,sha256=F8b2tvZAC7lhF6JOxwGRRRQpKoAp_pBx-ycg2irlwyo,7056
788
- teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py,sha256=APskeLKXhKBisv6d2i-bcd9IvlD8uWBtwARjuynyug0,7424
789
- teradataml/data/docs/sqle/docs_17_10/Transform.py,sha256=7i6dgzlSZuyyB98vHCtNNCWbbZGCMKVMNnn5yInzSZw,4562
790
- teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py,sha256=EXVO38ECqu1bYyh1vzuV85_RQzZx3SDRDrbTNvSJmV8,5860
791
- teradataml/data/docs/sqle/docs_17_10/Unpack.py,sha256=2qHzmKqtE-OE9HG-eCasH4imAxOaZ47V9f5u9sFfJ6U,11019
792
- teradataml/data/docs/sqle/docs_17_10/WhichMax.py,sha256=EljSn0SEhFXoqRfnGloSpybBPVcXX60iPcrVdsoGa6E,3365
793
- teradataml/data/docs/sqle/docs_17_10/WhichMin.py,sha256=C5cg3EAkR6LaJQOR-Gc3YoFo0USoZcBjS1AWuTwpAQ8,3346
794
- teradataml/data/docs/sqle/docs_17_10/ZTest.py,sha256=p02q0gVUlk0ktR9u9dAn9_1P5OSx6Nrs6fHFlTYHHEc,6321
795
- teradataml/data/docs/sqle/docs_17_10/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
796
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py,sha256=qQ6Bko4cMaL-9vtSuIpjP4bBI9B_hgwvUHEdRgQ0Bbo,5154
797
- teradataml/data/docs/sqle/docs_17_20/Antiselect.py,sha256=45i09EQFtJVWqtZ8kFR1k_-sWajNLA2BV6lTRJZesG8,3420
798
- teradataml/data/docs/sqle/docs_17_20/Attribution.py,sha256=3wmQEP-ib70kH3tmc1MB0-jwX9mq9rhHGIcmk8qXbgU,8931
799
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py,sha256=73-6ljDAqiV9OUy7yAibaBjTdooVJ6XM2FeuiMXFgwA,7230
800
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py,sha256=vPgngxIqxQWP61c1EjUZ8xkV5UG4bxHiQEOVP3jfwFI,6414
801
- teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py,sha256=Q4dKR8dntMcvVEY98Y-bfGwf6S42W_R9sLrABnBGQoQ,3587
802
- teradataml/data/docs/sqle/docs_17_20/ChiSq.py,sha256=VI9QY-ortxxBQ2pzOaCkVbSvf9WK2Q0hWEld_9shE68,3721
803
- teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py,sha256=NoecZBnmSC5AqnBqY_GV_cEXD0P8G04CeJtXw0KOVNA,8012
804
- teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py,sha256=VSRKMAio6Fc8_X5jRoAhZtl-jNFdddJXxeCAtculDxA,3606
805
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py,sha256=hurGnuW7CLshys3uZnyf_xa-vk7rTAdD26_IaMZ4faU,12185
806
- teradataml/data/docs/sqle/docs_17_20/ConvertTo.py,sha256=fU2cnio77D8xQfAeploMilkf4RNey0r-AJrAKfZX3nU,4585
807
- teradataml/data/docs/sqle/docs_17_20/DecisionForest.py,sha256=VB47sstSmtlsTb5YHxtHe5yeunYWOK3pe9Wrs5hU4M0,14274
808
- teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py,sha256=A08PCO6n9fN6MJ-FZ5L3sTfWBXYrA3orIG5C24Oujzw,6642
809
- teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py,sha256=WKuLB8kZELqg4Ns51U3b_AD0aLvA67CbTeEroXmrigg,6319
810
- teradataml/data/docs/sqle/docs_17_20/FTest.py,sha256=uwr4G870By5HDJJK4GAPNMJDhpvEGdDVZwjAcONiwzM,6810
811
- teradataml/data/docs/sqle/docs_17_20/FillRowId.py,sha256=MdQ_cSk8T9D3fExP3b0G2ssMTUwWb0yH807opV8RNA8,3451
812
- teradataml/data/docs/sqle/docs_17_20/Fit.py,sha256=4ckkAh7nxFnkZd9cUsmzCpi_GwV85N6lWwn9yIEQ248,3739
813
- teradataml/data/docs/sqle/docs_17_20/GLM.py,sha256=nuE0GlTkJm1E0Y6ooOTw5o1qWmd9gfF1PfmlCJZ8NFQ,17790
814
- teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py,sha256=BYOQTFBtqlNYzToYIIfDZQL0o0Qk1Q5T9oPRugf3OiE,20586
815
- teradataml/data/docs/sqle/docs_17_20/GLMPredict.py,sha256=VHKS1PslkPv9-E6TqIoRE8fZ92juFbpSwAqLkX74qI8,6261
816
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py,sha256=i4a3Az6H0Esm0yFmgcuJqe8qh21JprnJoNI-nBviQtE,11560
817
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py,sha256=gZTHBB05SZ6MPUfN2u6_Zio2GVCghQ5RDdMZEbmx49Y,5454
818
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py,sha256=2tYsnqbynAxyUQJvhxKLR-8jpLNpaa1_nKzAyRzKuUI,4860
819
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py,sha256=OjdR9Q0csBQBenxl6qcg_e5MxXzEXyO1cXDtg-vVoww,4694
820
- teradataml/data/docs/sqle/docs_17_20/Histogram.py,sha256=YDfxEj6Jzgshbi6VPZ3wnDYdPlhdKSZRPgCmqtLiBG8,10340
821
- teradataml/data/docs/sqle/docs_17_20/KMeans.py,sha256=c9bQ1TWgv_M6NlkU5DjEVSoGVKrFJSfrhPkCV2l2y2w,8998
822
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py,sha256=wQtomKvLINb1UBW5xeaL7uU4EM6AF2P6iu526SAdoKU,5930
823
- teradataml/data/docs/sqle/docs_17_20/KNN.py,sha256=MzRp4_2GSJ-Any3yMyJKsY9c-nQMPJLVvUGx1j_EK8s,9326
824
- teradataml/data/docs/sqle/docs_17_20/MovingAverage.py,sha256=5MytYp9YfBfK4csy0ogsuzg8fFfbgIH16H3ZavgOGyE,5604
825
- teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py,sha256=-BbjTQUmFs_i2DlvEyFmmTGjMTvY3tS1-TnRuauYVsQ,9150
826
- teradataml/data/docs/sqle/docs_17_20/NPath.py,sha256=c-O8wd1wGjgIziefvBy-7avCv85oNAV5xp3SWM1-BKI,13666
827
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py,sha256=iuVgW_VYUR4HoLhvKRR0su7ZSyoprqYwmiS178cxDZs,5263
828
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py,sha256=UWaaYdtTzM8L8sFqv1MueGV6OuunKe1tq12mv7rKaHs,8009
829
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py,sha256=vsG1OPM1dTfuWDWO4F8oNHmpAS6YsajSNQtO55CicHk,5609
830
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py,sha256=jrcddsc_E8mokwaBn0gl8ZBV9LO4s_MUw6m51-6gUH8,5067
831
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py,sha256=cm9xhW9D-G-pXWXFZR2kNFt_mNjrcpPIIG2-AJvRPzg,4859
832
- teradataml/data/docs/sqle/docs_17_20/NumApply.py,sha256=RdrAk3VdiIJOPCcV0tuTUXGlQySe2bBoQy1bP0SwmZI,6187
833
- teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py,sha256=jVq9IC2cQWVPUzJx6Kxx2BI_TZevU0Ivlw4X6pJfzak,13639
834
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py,sha256=WbMuIY3_Bnb5nyNIwuYNacVR_RD24aGmNLpwd7vFyvw,8275
835
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py,sha256=8lSnFnMaXiTNvDVticnd6op9XVT9t1EDdexeeuy41ok,10685
836
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py,sha256=fZJpbxKwc6Y3asGel5t8mfejExd7QjIoxS-PT3dWOpM,4944
837
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py,sha256=8jUr39UfFD_7YvfEf129LcF0Ol0DYh0b27GkRmK9Ko0,10156
838
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py,sha256=pYaMk3TfqN4nROZS59AmxEk-h9MeslMD6kwHutyKdVY,5747
839
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py,sha256=eNwrHzyxACRR4hC-fUCKy40kIqS6JQRI3ZwvDOr3NV0,8008
840
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py,sha256=1MwVIxxQEpTf7bGmO8npdDMdrtMNaExf9Ep9z3NSyzc,4950
841
- teradataml/data/docs/sqle/docs_17_20/Pack.py,sha256=zJnvFcU9yXx5L5CsN7KpgcOI5N71MLUF_RmCjAkvJrY,5248
842
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py,sha256=k716yF7SzTsug-Oo8JMb7qoJBAsNOCeUzj-gwViH0vk,4823
843
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py,sha256=NzNZvEPGlmZRngNyLgXgKN0aZfAvNY9g8U0hGy5iVDI,4842
844
- teradataml/data/docs/sqle/docs_17_20/QQNorm.py,sha256=W_zw4VS4AUrWPpL2gcninG5MHKKUN3sLCaPW5igbH3Y,4588
845
- teradataml/data/docs/sqle/docs_17_20/ROC.py,sha256=SDJbydIK6_fhUDl7iFDnROzrD8vkwppPOVd3cfEEnEw,6647
846
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py,sha256=dWU9EOemvac_t5kTCAzNIGmqrSJWNKd4recd4lLMTeI,6538
847
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py,sha256=D_h-jo0YRsDnpUFTEhUZRzpmQ8wPzAT2CUUDXKN-_fc,4707
848
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py,sha256=tCU5Fj3rzHegBKf_YyJ8yRlhVvXHoWwKbYWW14A7zW8,5146
849
- teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py,sha256=9931yxOPdtBgHdcoJRRRELu_iQla-EQGEDLiXrYTvHY,9952
850
- teradataml/data/docs/sqle/docs_17_20/RoundColumns.py,sha256=FIqsfNOt2i6v6rYhlg7Ho6Aq5DnsfVDy1r9_evzhnXc,4848
851
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py,sha256=nhH17SU95b9fyGRD6v3vfy9j4tptC9RmtcssS3edI2s,5231
852
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py,sha256=p6CPXBwzLWYNisxTNKkwIKpdNw6DVywNdi1nYZ3Fptg,4881
853
- teradataml/data/docs/sqle/docs_17_20/SVM.py,sha256=kfIJcUXRze1o96LGWCSUAz8JxhP67UbQdEVuXpdMHHg,18071
854
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py,sha256=wVBii7plFxkUpHWg9DqwXlPsNnxJDQ05CBhVM33-cKg,8651
855
- teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py,sha256=bD3umcYad9w220OFR-iIySkqk0Ji3TZyUn2u0xtRZGk,6950
856
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py,sha256=j7z9GVFwCs0J86NlNDipWN8IlwLqOg2W93OnCefW8oc,10947
857
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py,sha256=7mC6hkFxcwke9fJ_7NXcWMkAevuJCU5NNJKp5sqg0xk,4596
858
- teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py,sha256=dX8XTUYuGSEExNZ0Xd508vPJ-bIR7eAxXm1WoTg2HzY,9859
859
- teradataml/data/docs/sqle/docs_17_20/Sessionize.py,sha256=VlWJZMGaapgymCzAWcl6bpEV0E4xGy4ExBN0A4OgzhA,4782
860
- teradataml/data/docs/sqle/docs_17_20/Silhouette.py,sha256=1bvnLqOp2M9i5VOMsMR1UHhXnaEe92xQ5tCH4vlO3Zo,7091
861
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py,sha256=Yrks8z9St7ZXeecrq6ZphdLZ9v8i5A6t2tTFsl7eA-k,4765
862
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py,sha256=42QX3xlCtKugvZbQa16S5KslqjqTgnp92PjM6BkxA2Y,4484
863
- teradataml/data/docs/sqle/docs_17_20/StrApply.py,sha256=C73-VDDNhur63saOdJckVExnL0eITJLOo_pjD8wD26Q,7063
864
- teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py,sha256=JMqrgJI5IRD2aMKC1O4rC16HE4kwS7iMulVhxZJwCfI,7431
865
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py,sha256=EIFbsHvmaiptJZZCvCmYeY6flMLojP0eFM0FKFF4rZ0,10007
866
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py,sha256=zm7Ras93RfSN9rv5g9xDCoQFXKexPDgSwUULoFsP450,7860
867
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py,sha256=ljjKP2BqV6NywpjlJoXu7AiUyB3orNR8xoiAhUds2iE,12432
868
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py,sha256=FZ1veotjfThjMiDnHrBmYJXddi_IOy-uKS-exRISLbs,6373
869
- teradataml/data/docs/sqle/docs_17_20/TextParser.py,sha256=ivaZBunQbNamV9DZ7xcq9QD_NWIOO_zo66-wAV1xaY8,7387
870
- teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py,sha256=iyziZh6tKVN8vRdvx4auDflK3w1YG2SOZfnNto7MZS0,7444
871
- teradataml/data/docs/sqle/docs_17_20/Transform.py,sha256=LNl5-oISywzeNfU3ys2lOaCZ2wHcyMm7RVkmbTWvCBc,5608
872
- teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py,sha256=EXVO38ECqu1bYyh1vzuV85_RQzZx3SDRDrbTNvSJmV8,5860
873
- teradataml/data/docs/sqle/docs_17_20/Unpack.py,sha256=2qHzmKqtE-OE9HG-eCasH4imAxOaZ47V9f5u9sFfJ6U,11019
874
- teradataml/data/docs/sqle/docs_17_20/VectorDistance.py,sha256=pl2VHBjdUfJWwW2rYbUUUqqzsMzvS-VFBQPqZlOVqkY,8091
875
- teradataml/data/docs/sqle/docs_17_20/WhichMax.py,sha256=A9TahF6AzdzjcR5eaCVcB5DabZ8RENqHC5qCfBwf_w4,3372
876
- teradataml/data/docs/sqle/docs_17_20/WhichMin.py,sha256=c8BJbDtWTD1mwR6jcGw82A6waJ7jOibDFpD2uqeqV5c,3353
877
- teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py,sha256=tGuWq0GqYL4COcUm6MftKfevmbVrxOU_-eZhnTbncq8,10976
878
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py,sha256=JWekg4BWJ-DSBYzEYUNr7zddwPANbg0NI5wDvpGyMBY,17054
879
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py,sha256=0yB8HrQOa9cM0670AbYCTaNJh7z7PhwTc-RBmFu8JXI,14090
880
- teradataml/data/docs/sqle/docs_17_20/ZTest.py,sha256=P5C2tl3g99cf18MA21MWA4MlMDfFaB1dQrTYVAXNdio,6328
881
- teradataml/data/docs/sqle/docs_17_20/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
882
- teradataml/data/docs/tableoperator/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
883
- teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py,sha256=D4VjLJnUM-KISBMLJoME47vW5wkaxaL1bFxpcJUyYv0,22472
884
- teradataml/data/docs/tableoperator/docs_17_00/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
885
- teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py,sha256=FMmEFQqgp7x6vzQ9MYEU2zPOhrcuCs7qWRVvpdLWKQQ,22486
886
- teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py,sha256=MFB2YSsZAxys9T-rvXTOKJ3EX1LCzFIKmFQntQ_x0HI,18207
887
- teradataml/data/docs/tableoperator/docs_17_05/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
888
- teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py,sha256=XZ_LY0ciDnYGSus-wRiNYpveVL5F8_5o_JaB1xRKlvU,23142
889
- teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py,sha256=MFB2YSsZAxys9T-rvXTOKJ3EX1LCzFIKmFQntQ_x0HI,18207
890
- teradataml/data/docs/tableoperator/docs_17_10/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
891
- teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py,sha256=p35244rSmlcEekH2hairT5UR7fcNDyTNg2emUzRg6Bo,24930
892
- teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py,sha256=8tMVQ4UwxKgy1y1bcqO4_xUYTjxMIxNsMAwWJlxtUdA,20037
893
- teradataml/data/docs/tableoperator/docs_17_20/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
894
- teradataml/data/docs/uaf/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
895
- teradataml/data/docs/uaf/docs_17_20/ACF.py,sha256=t6m_kjyCjHQfaC4T_KtesopRdctHY4de421lCjuqVLo,7850
896
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py,sha256=9ZfUzJwTtPATGzzyvp_9bVhTUIrZ_dk1i7FtHTxpcH8,16413
897
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py,sha256=IMeQHlDWUhtrtd8l5HlFfiYKUNtY1RrM-V6BE18D7ys,6043
898
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py,sha256=A-uajeANklFAaIdKKt2-qq71uWi9s7r23FA9NEYVQXc,6747
899
- teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py,sha256=u3pUPlJokq3om9JZkh-nZhPQ2kpr4DDLyXyDpMCNyQw,11814
900
- teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py,sha256=w11116cgY3IHUg_RAzS4sGuJx3eocRgqAe4LxFDnQVc,11859
901
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py,sha256=o-7tMyxkV11f0r7KbMvGaa4otHMK5d0FDS9gqBVaW04,7773
902
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py,sha256=oc_Z5tuYNjksS_W7AUvhS-O80TMMnnYIN1ilXKwAEAY,7420
903
- teradataml/data/docs/uaf/docs_17_20/Convolve.py,sha256=s8m4TG3Is-7po_ESaEywqzy8NqU3qWfe1F8lBkSlkfY,10790
904
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py,sha256=_brDoeGc4reJ-TcTR6Xh7hbDOHKIvyeRLr7dwe12D7c,10093
905
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py,sha256=LVTon3QyDymGHqO2XH5vAddKsR7PqcTW_hVKABy2KSM,8210
906
- teradataml/data/docs/uaf/docs_17_20/DFFT.py,sha256=Zk3Uup9xFC6jGgmJHAMMNjW1MP4Sf9maCLb1WloSgdQ,8823
907
- teradataml/data/docs/uaf/docs_17_20/DFFT2.py,sha256=uznsmX0m9AXc6DSlYNGiWO6qd-EnUfpSp2plCSzawLY,9446
908
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py,sha256=KhqWTh8Jq51kpt5XGGca6Bst8ZQYKiS_0QWjUgsnoxQ,9229
909
- teradataml/data/docs/uaf/docs_17_20/DFFTConv.py,sha256=vAnXGpPXxOIe7PM6ahsjgCPf6Asl0Xpwvk42F9QRoek,7991
910
- teradataml/data/docs/uaf/docs_17_20/DIFF.py,sha256=QQLYLVW5bbm2orirYrr7avv4UcQKOSK5sXwC82ykt88,7299
911
- teradataml/data/docs/uaf/docs_17_20/DTW.py,sha256=MwcIDIxcTZVIzVWFKVE85_9ukNfLxVLBh8FUTouFpdw,7120
912
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py,sha256=i22K-J3i6XZJjesG83SSSeX3eKnAObmkAm2DpjJ5tLI,5728
913
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py,sha256=fBTOoMZtFeuongkgTPsRIupYYe4jLYRF1jlKfYQKJRQ,7690
914
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py,sha256=CgYE0myAYcyGTts_5ZKjf9ha-oRABpzoz_mYdMu8bAw,9129
915
- teradataml/data/docs/uaf/docs_17_20/FitMetrics.py,sha256=Dx4XL2kWw0XmjIK3LE7qbxbYwuHRKmLmOtpUvCkxgh8,7120
916
- teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py,sha256=d6xBhZJ7GjNokLe-prJvQTeKT8C4TwH1LI0jEr5E6Ho,9135
917
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py,sha256=AM58E3J1Iaf19XhCJwslJiDGosOiPElNq9DdalvGtoI,5895
918
- teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py,sha256=rODhub2j2L3S7D3lWRADm8gBehTn-65Z86jnw5Rq9e4,10057
919
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py,sha256=UzvGWMGABF3vG-WrYUVqSgR3mMSQCs-0eNRdsWUuM7o,10851
920
- teradataml/data/docs/uaf/docs_17_20/IDFFT.py,sha256=zRAjY4Joz1kx8JybIsWenXKrjM1Nx3HvJJ09v_q-nqA,7062
921
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py,sha256=GXiKLxZcbqLzhOhby0KCYhTHOEwdkXEnBKb585qOJOo,8513
922
- teradataml/data/docs/uaf/docs_17_20/InputValidator.py,sha256=4ASqk_iFkqi4yY2Hul7uSAagi11tdaaNHetZHnU9YRs,4948
923
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py,sha256=SxE6iK9mOe_b-PmKv39suq9HUhN-oo6mWTlTxNe5JIk,6188
924
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py,sha256=qo0801yVFag5Zt45kp0eUjVSiXyF6HZFMMeILI--x_M,9210
925
- teradataml/data/docs/uaf/docs_17_20/MAMean.py,sha256=Emj2uOrOuVtGZy7fkK60TX6oN5QmWiwa9D9TA31RidY,6948
926
- teradataml/data/docs/uaf/docs_17_20/MInfo.py,sha256=LymH_k2TMFhEbHl5X86QYlDiuFYKy14XQYr1fSgBlpg,5395
927
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py,sha256=nTHdnN8pQlZZ4Eh41G8LI16CXY8IkEwBUT4rRCpygV0,5732
928
- teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py,sha256=luQAEoGE5ZcKYNeF0MjMv64zFGQGc0ceZbdIFr8J1Uo,8154
929
- teradataml/data/docs/uaf/docs_17_20/PACF.py,sha256=GYlHNsL8EBzexMxTyjV6421eBSuK7I5fws4UEB_KZ-E,6470
930
- teradataml/data/docs/uaf/docs_17_20/Portman.py,sha256=2reHY-drtvAQX_LBcq-Nq-mYE71-3ReEmLCVKAQ7zcs,9648
931
- teradataml/data/docs/uaf/docs_17_20/PowerSpec.py,sha256=7Gdr6orIAbwyfPkhZDGqiw5SNCxvs69p2_c6kzcmrV0,8571
932
- teradataml/data/docs/uaf/docs_17_20/PowerTransform.py,sha256=WuVx3WivkdWc-cpECvqRtOD7Qsm0mrPIgcHFPgqK9Ps,6297
933
- teradataml/data/docs/uaf/docs_17_20/Resample.py,sha256=wHrQqgBFvGg9RdIBau_hM7fKUWhsdXMLea4q7SY4p74,8771
934
- teradataml/data/docs/uaf/docs_17_20/SInfo.py,sha256=6FUTCIU06k4Pb4HjGlVnFcX0MySE-93CEAitMaWRTT4,4806
935
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py,sha256=lY-5X4aHAENXXTuqn8MGLY4iADWXrnYvzw9ZNipekSA,6400
936
- teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py,sha256=HsnTDC3-L97iHHoZqjjoBoR2qZI4q5qe-9EOS06lYsw,7410
937
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py,sha256=bCyMvHEv4xxCwt2JVsBry6U14iL3S0OtB5BREvmSuzQ,7305
938
- teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py,sha256=5BnwJG0BBb6vbXUGHkvOurcfp1TciQxYKeJ24o-onr4,7312
939
- teradataml/data/docs/uaf/docs_17_20/SimpleExp.py,sha256=tIHDaLesSLGrr5ZG946wdJcrVI5DD7jRIdwPGNCaGVQ,7191
940
- teradataml/data/docs/uaf/docs_17_20/Smoothma.py,sha256=A5OGtCRC6Nop_Tl5veDpwazFOPT-3CDvIb9YHmFN1y0,8713
941
- teradataml/data/docs/uaf/docs_17_20/TrackingOp.py,sha256=Dwr2CXMUmHJUK-Ykm17pyEuOZbtqg1_Z1uqcrhuXa9A,6368
942
- teradataml/data/docs/uaf/docs_17_20/UNDIFF.py,sha256=PgJtDmHkqH-5-9paqgJfsaqALEgZvGhpdiRsQTTzHxs,6943
943
- teradataml/data/docs/uaf/docs_17_20/Unnormalize.py,sha256=FTlmv3w-ptZZof1yQLbdzuweufN0JZtJoWUgJQtqDUA,8431
944
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py,sha256=M7nvB0uUxuMWnLlTZ1TNTUdxnuhUdTVmBiyLzN99csY,7305
945
- teradataml/data/docs/uaf/docs_17_20/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
946
- teradataml/data/jsons/anly_function_name.json,sha256=E2mIC50jgW0qrznazLQ5odTUkGLOzcZWvIxRA-HnB8E,140
947
- teradataml/data/jsons/paired_functions.json,sha256=Ya2XlmgK9KftrdUu5i0647JWoqzCvTxSL97jHwRjMx4,9061
948
- teradataml/data/jsons/byom/dataikupredict.json,sha256=U70DMJ-zRe6Ik0-_TrWzkDxyxUPz4YkF1oeTt4yw1c4,4605
949
- teradataml/data/jsons/byom/datarobotpredict.json,sha256=ILAHhoEc3mjGMEsAI0GKWlpbwd90I2ojEWbAvjO8E1k,4589
950
- teradataml/data/jsons/byom/h2opredict.json,sha256=rATUpabDZlKKtPJHxvnig612916TFVsnRd3t_Fhe0CU,5937
951
- teradataml/data/jsons/byom/onnxpredict.json,sha256=juAht6U8YJihXEos-dWVUGa7o_TtFSCyiRCblLV5CLw,5928
952
- teradataml/data/jsons/byom/pmmlpredict.json,sha256=AcHdWKzpftSfUnzRzaTBT95pI_PbsQIBPDZcGeVzkIM,4540
953
- teradataml/data/jsons/sqle/16.20/Antiselect.json,sha256=C5OXNxqRxAhMD665RmF5V4LxTh2x-YDj3On05tX4P6k,1565
954
- teradataml/data/jsons/sqle/16.20/Attribution.json,sha256=fVo8gf65ot9uoeRUz3jV1gX9wDrjqGx6Uu1akfYoHzY,9549
955
- teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json,sha256=iPFby-4pWqKiDC0wl0tMVTa9HkRuz59Ij6w1BDvhtkk,6037
956
- teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json,sha256=CRNAIC59eSd7ZppLw0GJt08VvuEo8bgBFSIQ32N-xzk,5542
957
- teradataml/data/jsons/sqle/16.20/GLMPredict.json,sha256=Kx9zCKfsiMQRMDpW3fpY3_zbX6xLmnbHFI0zV-j90fQ,4322
958
- teradataml/data/jsons/sqle/16.20/MovingAverage.json,sha256=mOtdvpeGw8hlcv--IeHGLgwFYem_ekszT6CWypgXdas,12285
959
- teradataml/data/jsons/sqle/16.20/NGramSplitter.json,sha256=ss6Lb1P4P9W6VMJmgFf9uOXMwTpCrx-ekveJVNZ5MsI,11517
960
- teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json,sha256=XsHSeL6jmKLPGnw7-ov0v337XdYBEByH74mBRoMNTSI,4505
961
- teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json,sha256=wN5J8yB_n2ZkJ-WK15DIElnl9iY_m-vDt6UJX3o8Wyw,7718
962
- teradataml/data/jsons/sqle/16.20/Pack.json,sha256=9r6Nc8qAhAOFgvU96winBtFnrIcktCYX3DmR1VLsTOU,3958
963
- teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json,sha256=iyc8CgvygrbeA4TL3S7T9y3zWm6tbHyd0Oz8AivM2cI,5616
964
- teradataml/data/jsons/sqle/16.20/Sessionize.json,sha256=mPhIFgNYiRaaLk3EqI_Qq_aOH-cxRc4nr8LhHx6tadI,4360
965
- teradataml/data/jsons/sqle/16.20/StringSimilarity.json,sha256=eZR3WVXTsSSHHnqGfK_OrBACEsBBPlbvrqo1Bu1CA58,7056
966
- teradataml/data/jsons/sqle/16.20/Unpack.json,sha256=yvlfSwo6sSRJBZCEwbMtbVWeXxzI4z8mneVMvDFv8To,12460
967
- teradataml/data/jsons/sqle/16.20/nPath.json,sha256=HNja42DaYqz5WvMJcSpTOQ937NAWqmCU6RyVMzmzB9w,13853
968
- teradataml/data/jsons/sqle/17.00/Antiselect.json,sha256=C5OXNxqRxAhMD665RmF5V4LxTh2x-YDj3On05tX4P6k,1565
969
- teradataml/data/jsons/sqle/17.00/Attribution.json,sha256=fVo8gf65ot9uoeRUz3jV1gX9wDrjqGx6Uu1akfYoHzY,9549
970
- teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json,sha256=iPFby-4pWqKiDC0wl0tMVTa9HkRuz59Ij6w1BDvhtkk,6037
971
- teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json,sha256=CRNAIC59eSd7ZppLw0GJt08VvuEo8bgBFSIQ32N-xzk,5542
972
- teradataml/data/jsons/sqle/17.00/GLMPredict.json,sha256=Kx9zCKfsiMQRMDpW3fpY3_zbX6xLmnbHFI0zV-j90fQ,4322
973
- teradataml/data/jsons/sqle/17.00/MovingAverage.json,sha256=mOtdvpeGw8hlcv--IeHGLgwFYem_ekszT6CWypgXdas,12285
974
- teradataml/data/jsons/sqle/17.00/NGramSplitter.json,sha256=ss6Lb1P4P9W6VMJmgFf9uOXMwTpCrx-ekveJVNZ5MsI,11517
975
- teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json,sha256=XsHSeL6jmKLPGnw7-ov0v337XdYBEByH74mBRoMNTSI,4505
976
- teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json,sha256=wN5J8yB_n2ZkJ-WK15DIElnl9iY_m-vDt6UJX3o8Wyw,7718
977
- teradataml/data/jsons/sqle/17.00/Pack.json,sha256=6alDkP4bqTuJi7MaQnzy-1c8W7jdEG0fRQSORmwUa18,3957
978
- teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json,sha256=iyc8CgvygrbeA4TL3S7T9y3zWm6tbHyd0Oz8AivM2cI,5616
979
- teradataml/data/jsons/sqle/17.00/Sessionize.json,sha256=mPhIFgNYiRaaLk3EqI_Qq_aOH-cxRc4nr8LhHx6tadI,4360
980
- teradataml/data/jsons/sqle/17.00/StringSimilarity.json,sha256=eZR3WVXTsSSHHnqGfK_OrBACEsBBPlbvrqo1Bu1CA58,7056
981
- teradataml/data/jsons/sqle/17.00/Unpack.json,sha256=yvlfSwo6sSRJBZCEwbMtbVWeXxzI4z8mneVMvDFv8To,12460
982
- teradataml/data/jsons/sqle/17.00/nPath.json,sha256=HNja42DaYqz5WvMJcSpTOQ937NAWqmCU6RyVMzmzB9w,13853
983
- teradataml/data/jsons/sqle/17.05/Antiselect.json,sha256=C5OXNxqRxAhMD665RmF5V4LxTh2x-YDj3On05tX4P6k,1565
984
- teradataml/data/jsons/sqle/17.05/Attribution.json,sha256=fVo8gf65ot9uoeRUz3jV1gX9wDrjqGx6Uu1akfYoHzY,9549
985
- teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json,sha256=iPFby-4pWqKiDC0wl0tMVTa9HkRuz59Ij6w1BDvhtkk,6037
986
- teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json,sha256=CRNAIC59eSd7ZppLw0GJt08VvuEo8bgBFSIQ32N-xzk,5542
987
- teradataml/data/jsons/sqle/17.05/GLMPredict.json,sha256=Kx9zCKfsiMQRMDpW3fpY3_zbX6xLmnbHFI0zV-j90fQ,4322
988
- teradataml/data/jsons/sqle/17.05/MovingAverage.json,sha256=mOtdvpeGw8hlcv--IeHGLgwFYem_ekszT6CWypgXdas,12285
989
- teradataml/data/jsons/sqle/17.05/NGramSplitter.json,sha256=ss6Lb1P4P9W6VMJmgFf9uOXMwTpCrx-ekveJVNZ5MsI,11517
990
- teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json,sha256=XsHSeL6jmKLPGnw7-ov0v337XdYBEByH74mBRoMNTSI,4505
991
- teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json,sha256=wN5J8yB_n2ZkJ-WK15DIElnl9iY_m-vDt6UJX3o8Wyw,7718
992
- teradataml/data/jsons/sqle/17.05/Pack.json,sha256=6alDkP4bqTuJi7MaQnzy-1c8W7jdEG0fRQSORmwUa18,3957
993
- teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json,sha256=iyc8CgvygrbeA4TL3S7T9y3zWm6tbHyd0Oz8AivM2cI,5616
994
- teradataml/data/jsons/sqle/17.05/Sessionize.json,sha256=mPhIFgNYiRaaLk3EqI_Qq_aOH-cxRc4nr8LhHx6tadI,4360
995
- teradataml/data/jsons/sqle/17.05/StringSimilarity.json,sha256=eZR3WVXTsSSHHnqGfK_OrBACEsBBPlbvrqo1Bu1CA58,7056
996
- teradataml/data/jsons/sqle/17.05/Unpack.json,sha256=yvlfSwo6sSRJBZCEwbMtbVWeXxzI4z8mneVMvDFv8To,12460
997
- teradataml/data/jsons/sqle/17.05/nPath.json,sha256=HNja42DaYqz5WvMJcSpTOQ937NAWqmCU6RyVMzmzB9w,13853
998
- teradataml/data/jsons/sqle/17.10/Antiselect.json,sha256=C5OXNxqRxAhMD665RmF5V4LxTh2x-YDj3On05tX4P6k,1565
999
- teradataml/data/jsons/sqle/17.10/Attribution.json,sha256=fVo8gf65ot9uoeRUz3jV1gX9wDrjqGx6Uu1akfYoHzY,9549
1000
- teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json,sha256=Si2WJEfuMquOnnmnhU-Mll2Lu-JgOWEFCPUSXkZsqiE,6938
1001
- teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json,sha256=UlplxQYaZ6uiJzjCU2WprKUNc85ABNahaXdF4f3wm7A,5601
1002
- teradataml/data/jsons/sqle/17.10/GLMPredict.json,sha256=7eQ9oyLItZhok0hvzMZI0AfsdKVylJKRxlY6Y4NzK0g,5225
1003
- teradataml/data/jsons/sqle/17.10/MovingAverage.json,sha256=f5G0GwbexYf_UsyMCUQvYXkH1b92RkQgWpp409WttgY,12311
1004
- teradataml/data/jsons/sqle/17.10/NGramSplitter.json,sha256=ss6Lb1P4P9W6VMJmgFf9uOXMwTpCrx-ekveJVNZ5MsI,11517
1005
- teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json,sha256=9x7JD9GvH266wv-rD3mebzQ9XyCPqCzkHWtUKKYcxmI,4895
1006
- teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json,sha256=MsaP8LYvvdpRTlYxwQzL9Krx3s5s-SMNMPWy6GMShuE,9290
1007
- teradataml/data/jsons/sqle/17.10/Pack.json,sha256=NAKbkAmClBdArzWt_Fp2fi-dKFxhMNH37oI7sF1GvJA,5202
1008
- teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json,sha256=exsbSKy2o8_h26MKc6n3f1MQedn5Cj-Mz5KnVRFvSBs,6673
1009
- teradataml/data/jsons/sqle/17.10/Sessionize.json,sha256=AsOJBUaYgcTc8F06oMuDNtV5DWneVIWNsyEk-vdqTKc,4360
1010
- teradataml/data/jsons/sqle/17.10/StringSimilarity.json,sha256=eZR3WVXTsSSHHnqGfK_OrBACEsBBPlbvrqo1Bu1CA58,7056
1011
- teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json,sha256=oCijz1v-duFIJOdcrIsTdB58FOrWiqjN4saQZoPWUaQ,9053
1012
- teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json,sha256=sp3FbkO_QnfR5G1RvaJXAHg_tY32NCeKi7rUN6BGEnI,2351
1013
- teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json,sha256=rpV_r_ung-eCZl7WkComuIqjX3TFUDFmgpV7VsBVb5I,1733
1014
- teradataml/data/jsons/sqle/17.10/TD_Chisq.json,sha256=7R0au_kNsOuXTfYnWI452KcB-M1TLG67Cgidqo2I9j8,2159
1015
- teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json,sha256=YVes-_NtgE7ZQy9O1bfF4oHuvIk_jZ6xlu1zqi_acqk,1760
1016
- teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json,sha256=qpBeF6-GT0TeQJ0tPNFOswwQbK6D6UmSwqbNt4HE-b8,2623
1017
- teradataml/data/jsons/sqle/17.10/TD_FTest.json,sha256=0mBXfezqhjPDI6wGWGz1As9y8bbcyCJbHJQK7nzlHjk,5462
1018
- teradataml/data/jsons/sqle/17.10/TD_FillRowID.json,sha256=5ZDuU-4U_db--cuat8rvnmF2-UMF2vAiAZzZPWWYDls,1548
1019
- teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json,sha256=AOa_c1FuikO6mIovfWi1ZIzmrJUN7Jkkl2hLlbbNaIM,1632
1020
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json,sha256=ULVjhkG8UFhcwdr2sgH4wgupiUzKUNlKIAu3EY5Uvls,2307
1021
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json,sha256=Cqlhi1uvhCZx0JQvjQu5UGekadDXoIzXazWJDhIlreM,1775
1022
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json,sha256=2tjzKpmfBnQ9b3DMp5VM5bMxNQy4_VRCCaWlFRaD2wU,1787
1023
- teradataml/data/jsons/sqle/17.10/TD_Histogram.json,sha256=2_xlfIBnudpPni3jvXOIV0wFWFt44K17KfUN5lML8_c,4768
1024
- teradataml/data/jsons/sqle/17.10/TD_NumApply.json,sha256=SZ_4oOwo_OS95RVq3Iholzr7haMYQM2K0a9rjIYGqIs,5065
1025
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json,sha256=UfXq4ql601Ui_5aUmltEplzB-Pu-_TiO5Xp6qgnvSTs,7143
1026
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json,sha256=-dZgP2HF7T1ODBNMqGo2c6tuF7LH46Sn-cw0n2ikQXk,2269
1027
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json,sha256=ZIcaOfoDNEkpTQ7ZjHkyPMUQfphvC3gdkcdN5YDWyl4,6947
1028
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json,sha256=mz_SOOasWeSaChyKtUNytHohft1hzxLbJr3gZ-D4mCU,2103
1029
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json,sha256=FzNBcN12i_l67mbVs-eqSL1ndH-5eNqpBzk3ztSrsb8,3996
1030
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json,sha256=u_iBhdWRSVhjXUKEyw5yeQhB2f5iV5sMjMm-4Ldqfvs,2396
1031
- teradataml/data/jsons/sqle/17.10/TD_QQNorm.json,sha256=UYiwXOX1glD66AhUOd3JjDGfcZ6mtYq5bFi1hz9RbzA,4047
1032
- teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json,sha256=tYkyqIeLODuyCLU1lrmlxdJ1UQyqpjR6SdYdYEahvHA,3453
1033
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json,sha256=IIjD43JfK8qJHenqV8wsZk5EMrF2OPJ_FMzcXI0JMMs,4084
1034
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json,sha256=4VeSj9njZelgc7tRFiMXYB16455chtUHsZ_hOLjhBCM,2359
1035
- teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json,sha256=oac-Xyon9XH9vURvcKdgaRiERxT0oHXslscbLfmvAEo,8288
1036
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json,sha256=Cm9ClFQNhOvvVZZZQ4MbGM1EtoZ9PDNjEmj4V8Jgtqg,2284
1037
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json,sha256=xBkTcs9H-MnNY36GCcXR26C1I-TTgpOdZAxth1fTCI0,4873
1038
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json,sha256=HVJGtob9vOSaPU8-Qyt137Y63Bchc8l1XITkAtcBSr0,1779
1039
- teradataml/data/jsons/sqle/17.10/TD_StrApply.json,sha256=zBSkChOx5Pyjd8yvXS197ZE2tuZDNSUyFAuSKvMSfkk,8734
1040
- teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json,sha256=ZNYpx7mF5J9qC4mBDCtlboIyH8U2yE0ol1ZssiTq7Xw,4771
1041
- teradataml/data/jsons/sqle/17.10/TD_WhichMax.json,sha256=2tyKmR1wlj8vkIKwb78_zgnkPLhSjuXKFN1mQbvUloY,1643
1042
- teradataml/data/jsons/sqle/17.10/TD_WhichMin.json,sha256=sR5pNhlBLlawGhGSBdtm38UlF7Uv-3PHd3IVpi_qSxA,1643
1043
- teradataml/data/jsons/sqle/17.10/TD_ZTest.json,sha256=ZU8Ta7zFbR3ZQYrUn09YEUjyfsiDg6aIostcXB4bLZA,5038
1044
- teradataml/data/jsons/sqle/17.10/Unpack.json,sha256=1ngo3B7iDuhyBJm_Qi4mnslWx43O9boZeLYU8SWZfTs,13232
1045
- teradataml/data/jsons/sqle/17.10/nPath.json,sha256=HNja42DaYqz5WvMJcSpTOQ937NAWqmCU6RyVMzmzB9w,13853
1046
- teradataml/data/jsons/sqle/17.20/Antiselect.json,sha256=C5OXNxqRxAhMD665RmF5V4LxTh2x-YDj3On05tX4P6k,1565
1047
- teradataml/data/jsons/sqle/17.20/Attribution.json,sha256=Mk0wvIZteahk92EGACRIwKBN056VrC8Vkrn1WfLzJBU,9559
1048
- teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json,sha256=OwHtYYmH2ZwEklfFdxkx7_J_6OpyGgBOgUG3qNrHgVY,6943
1049
- teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json,sha256=dA7Pxdb9UCtKgY-DhzuhE6HOHzn5oSlhG9NtpS16tJQ,5602
1050
- teradataml/data/jsons/sqle/17.20/GLMPredict.json,sha256=7eQ9oyLItZhok0hvzMZI0AfsdKVylJKRxlY6Y4NzK0g,5225
1051
- teradataml/data/jsons/sqle/17.20/MovingAverage.json,sha256=mOtdvpeGw8hlcv--IeHGLgwFYem_ekszT6CWypgXdas,12285
1052
- teradataml/data/jsons/sqle/17.20/NGramSplitter.json,sha256=ss6Lb1P4P9W6VMJmgFf9uOXMwTpCrx-ekveJVNZ5MsI,11517
1053
- teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json,sha256=9x7JD9GvH266wv-rD3mebzQ9XyCPqCzkHWtUKKYcxmI,4895
1054
- teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json,sha256=rPBLweO2ipS9sso3IPQHgbQRXpGtXssSljYOULDgdSQ,9266
1055
- teradataml/data/jsons/sqle/17.20/Pack.json,sha256=NAKbkAmClBdArzWt_Fp2fi-dKFxhMNH37oI7sF1GvJA,5202
1056
- teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json,sha256=BEi1OnGlVtTmZb3vuojkhn5lhzhuTxv4DVFuu8Gcg3A,6647
1057
- teradataml/data/jsons/sqle/17.20/Sessionize.json,sha256=iaWKhpjYShdpIhgpGVtlh_40-tsAvlFDGx-K7m1QI7A,4364
1058
- teradataml/data/jsons/sqle/17.20/StringSimilarity.json,sha256=eZR3WVXTsSSHHnqGfK_OrBACEsBBPlbvrqo1Bu1CA58,7056
1059
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json,sha256=v8QIIFlqm9JKKSXFdHjaHEUz220bdOmFk4Bmk583Yb0,2317
1060
- teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json,sha256=oCijz1v-duFIJOdcrIsTdB58FOrWiqjN4saQZoPWUaQ,9053
1061
- teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json,sha256=coT5SaRMNtPRE7PWqwH873IKIsklGx9lIuwA54lzzUw,2397
1062
- teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json,sha256=129S7MK0fjjVcJ7R09Pjaqb2bE5PokSAN0zz6Zu-VpQ,1708
1063
- teradataml/data/jsons/sqle/17.20/TD_Chisq.json,sha256=7R0au_kNsOuXTfYnWI452KcB-M1TLG67Cgidqo2I9j8,2159
1064
- teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json,sha256=zrfkgseHdnLSyA5hw3mQvBeY-dUUxIR4ZT1jEekYs-Q,4714
1065
- teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json,sha256=ldU1L8wnZIaqhZEGZwHJnERT4KJdjIEYI55UKkcdc84,1735
1066
- teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json,sha256=Y2ShreZNlK0g-7RhsySHfGc4oFCHXKAxLzEhpkfrKMU,6693
1067
- teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json,sha256=rT235N6kgQBmIvBFkqjm7svE7WNIILX5LvB3Ay2pcL0,3407
1068
- teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json,sha256=CBCwHYEKLrlAVgPAqOeeFmhUHxREdiOYMfj1yHLC-uo,13803
1069
- teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json,sha256=oOlOWaV7L9JZi32j2EAXmd5oB5xs4klm8HMbModMZuk,4733
1070
- teradataml/data/jsons/sqle/17.20/TD_FTest.json,sha256=PDkN_T03k_9hWgCO12neLyBb0aRPn_Kj403mkgridf4,5436
1071
- teradataml/data/jsons/sqle/17.20/TD_FillRowID.json,sha256=6sR9v1L3afRi-v_T-J1xWBP526B2z6y-u442L1rRD-U,1549
1072
- teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json,sha256=AOa_c1FuikO6mIovfWi1ZIzmrJUN7Jkkl2hLlbbNaIM,1632
1073
- teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json,sha256=p8ph91SD_NzccOCoFqVqK4VRg_h-iAxphh3bNqQ0Gf0,2353
1074
- teradataml/data/jsons/sqle/17.20/TD_GLM.json,sha256=yoxkIDO_st1WJ3vzieIiev67OVYoW6hXYql1BFrABUw,19775
1075
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json,sha256=DLcPkFCG_9KjPm49I1PD7phRKB3hvg1F93CWXbs5Fm4,4306
1076
- teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json,sha256=T7K2IgiZg9sqzfocKs5_GbGm2fFnn_uLUtvUTaJHxaI,18562
1077
- teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json,sha256=nilrpD2x216thJXGJVF2GRfo1rWFEZ0bmAXg_eaD7UQ,5664
1078
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json,sha256=2ASopsfeUnA7PtI_9ef_AUd7mEfD8CljSK-aVPZfjg8,3161
1079
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json,sha256=foxEVNpeC9KCVjbmFV7-ewU34kYSSyTB66n8YpFKAjo,2559
1080
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json,sha256=kkzENvEdmDWf1-vO8HnIJ1Mp9BLnqea-lgNPk9byZfU,2567
1081
- teradataml/data/jsons/sqle/17.20/TD_Histogram.json,sha256=hWHUlpAIVh-Xzm7vYO5DOUT-GqpDHxlNQdn-ssCVf6E,5689
1082
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json,sha256=htKiJnZyHpST8Y694B64hs9cnlH_-330pXZNAZYGqLo,7360
1083
- teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json,sha256=qZv-iJX9QA29xEjPtlyS4uu2nmHgGu4FOCenKmuhfHY,2890
1084
- teradataml/data/jsons/sqle/17.20/TD_KNN.json,sha256=_-imAFfJujPjkUD9eazBKVGF4XOx6FqLvcMFIzcz1F8,10177
1085
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json,sha256=EtopoC7xCG-fgiA72w9tUn2o5b-O7BUg3txOoJKRLLQ,4248
1086
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json,sha256=Dr8gkZ5du7lhEMjM_twsI5wPR7u8omS7cIxwWtd0bdc,3315
1087
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json,sha256=CEqRCTO4BDeFJ3uXjTLR2Ln1kg4tl9Tr3XHNsRDXaDI,2637
1088
- teradataml/data/jsons/sqle/17.20/TD_NumApply.json,sha256=SZ_4oOwo_OS95RVq3Iholzr7haMYQM2K0a9rjIYGqIs,5065
1089
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json,sha256=IsnQYgrHm1kS3bHGjopGxq91Z1WdTwlrVsQ75NfRZJ8,14269
1090
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json,sha256=KFVJt8InMgXR5jZr7B4rvyXbLqI7asI4E4H0vVUcB-A,4441
1091
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json,sha256=WgFZQLNa8g-QY1Q9ytRjNUgalCOuuUdCp10UM-04PQI,10357
1092
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json,sha256=zvER-E2I9tDqqczQHTue2ZjEtzyk2zHf9ckVNLnOIEI,2299
1093
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json,sha256=AEuis2v1u5UAIZC7GeinnXmkgsS8TVL1_YR0F88HsHY,7982
1094
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json,sha256=mTCVP65t0AAIdxn4yhjg21DNv_uYYf7hgUe829OZmqE,2626
1095
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json,sha256=vhHvwjxpETIK3vPqr07sXvg1IHK1hxmkpZL2tb1N8yE,7664
1096
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json,sha256=0KeqbKFGrsT10RTnbrt9J9ZumYwSorOZxdt3HTfXYNA,2154
1097
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json,sha256=FzNBcN12i_l67mbVs-eqSL1ndH-5eNqpBzk3ztSrsb8,3996
1098
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json,sha256=91aQeXajI64VqEz9F7ft57ga8zelHReR1Zn8PEV3yYM,2452
1099
- teradataml/data/jsons/sqle/17.20/TD_QQNorm.json,sha256=jropVKxk1TMS8rLB1S6W2s7kbANwTXDVvjLeAqqTO5U,4022
1100
- teradataml/data/jsons/sqle/17.20/TD_ROC.json,sha256=_fJGUpQcelXPC89IN1GGNy0eWOCGdjDU_EwdthXxSBQ,6875
1101
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json,sha256=3nYCyArSqE5CxyzuM0M4GnLHwBzDEQ1-JfidVSPl-X0,6068
1102
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json,sha256=Rd8fn06DZSX16hVbQj664koVCAJdC5h-KqaE-h8biVI,2327
1103
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json,sha256=B75kdzzyPzsBPlP0Flvcb_28_ai0ZzUUNbx3r-Ks_9s,2608
1104
- teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json,sha256=MhzI5nrJt5am-tYAgYI_RnPq_unM6hyxXYm0_YOqQDo,5208
1105
- teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json,sha256=tYkyqIeLODuyCLU1lrmlxdJ1UQyqpjR6SdYdYEahvHA,3453
1106
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json,sha256=IIjD43JfK8qJHenqV8wsZk5EMrF2OPJ_FMzcXI0JMMs,4084
1107
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json,sha256=qF89oTFWj1odXUmLzVzQc4drh28ArmpynIhPoclzmUQ,2410
1108
- teradataml/data/jsons/sqle/17.20/TD_SVM.json,sha256=jdM_ACqkr1Ex7zAV5DtEwQXPSBPl7Lw6DZMUUV42nNA,17375
1109
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json,sha256=eCnDtdX4Cv8MHkR_HRsgd1D7BwDdC-0agrkmg--ZU28,4408
1110
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json,sha256=oac-Xyon9XH9vURvcKdgaRiERxT0oHXslscbLfmvAEo,8288
1111
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json,sha256=tbW-biumwxwl4u091WkyfIMBGtwoHraAyZQ3RyHGBwE,2328
1112
- teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json,sha256=nB5moMxtY3-qn70cXLjtwsXo_p8V6fFRZC1SX3i0Pvo,6852
1113
- teradataml/data/jsons/sqle/17.20/TD_Silhouette.json,sha256=NJISY63PiNl_iZHso7DYrwnivYBaotBVdHtsK55JsII,4698
1114
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json,sha256=h5DGv3Rn6XQ8k6ZJirzlyoZjbS-h09vHY4fR6Y7YHRs,4848
1115
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json,sha256=gturLZHZDmJFxT8DIcuevTe7_bTp4nuKVWZwITpjO3k,1829
1116
- teradataml/data/jsons/sqle/17.20/TD_StrApply.json,sha256=zBSkChOx5Pyjd8yvXS197ZE2tuZDNSUyFAuSKvMSfkk,8734
1117
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json,sha256=IXLUS-3WyNIwsvvGDwRjKfI4iqn76Lxet7lC05e0AYw,9066
1118
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json,sha256=NTUhKE3hFbJqa41YXICN2iRPqJlQLjs_VCd6h0PBWdc,2690
1119
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json,sha256=IsMZsmvHvZUt-PaJVV68MysJ8-FrCPuYkzFgNRp6EYQ,5733
1120
- teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json,sha256=YZjRNq6K1hom5J0EiMCMBlkO2QEXYLCybfabqNw7ua4,5602
1121
- teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json,sha256=K-_XssNbWTg-EoVMd7ynRa7_fmyZvkhQWSBA7kyQuLA,4690
1122
- teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json,sha256=O2T_TL6OWFPmp1QRlA6zamJ38J1VsuBFe-gFk-VPqjs,6233
1123
- teradataml/data/jsons/sqle/17.20/TD_WhichMax.json,sha256=2tyKmR1wlj8vkIKwb78_zgnkPLhSjuXKFN1mQbvUloY,1643
1124
- teradataml/data/jsons/sqle/17.20/TD_WhichMin.json,sha256=sR5pNhlBLlawGhGSBdtm38UlF7Uv-3PHd3IVpi_qSxA,1643
1125
- teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json,sha256=5HDwgyy8JRbMmBlkOR9N7wI1MaEQGG8xcvqiC0mYXbs,7628
1126
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json,sha256=W5xBGuzbqSXOFhlk3nG5HE9ojxwFWgrNbtREnj7xACU,13488
1127
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json,sha256=04zoPoGk3JHfWSxHmGZGu7ZeXcKGQ9bnk3lq4kALY1w,5863
1128
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json,sha256=-PnhDU6D0FTuTcHJj0hzx3-vBq_LId-JpjwCe8mQ1lQ,5012
1129
- teradataml/data/jsons/sqle/17.20/Unpack.json,sha256=1ngo3B7iDuhyBJm_Qi4mnslWx43O9boZeLYU8SWZfTs,13232
1130
- teradataml/data/jsons/sqle/17.20/nPath.json,sha256=HNja42DaYqz5WvMJcSpTOQ937NAWqmCU6RyVMzmzB9w,13853
1131
- teradataml/data/jsons/tableoperator/17.00/read_nos.json,sha256=v2y9CD2Axsq2HRLSObKqiqqKR-aQy91T0K-WmcD_Do8,25607
1132
- teradataml/data/jsons/tableoperator/17.05/read_nos.json,sha256=v2y9CD2Axsq2HRLSObKqiqqKR-aQy91T0K-WmcD_Do8,25607
1133
- teradataml/data/jsons/tableoperator/17.05/write_nos.json,sha256=pjpykeWVlqhTT4atVkBxf9_DAWByfeOeDxhtGL4stFI,15062
1134
- teradataml/data/jsons/tableoperator/17.10/read_nos.json,sha256=okeU5N6tl6il9y8vULNONvuJ4CnfLXdHHKT1ebYoOj4,27714
1135
- teradataml/data/jsons/tableoperator/17.10/write_nos.json,sha256=LHyFQKKAgVO4wVsa__sZGV-jmBwdsZEL--oidUlX0AI,17921
1136
- teradataml/data/jsons/tableoperator/17.20/read_nos.json,sha256=CG1ydy5jXHq1-_KKZrixpG8a0-CCKsMt2j9ITsuKy5Y,23492
1137
- teradataml/data/jsons/tableoperator/17.20/write_nos.json,sha256=T0kYEw96Bx7S5UtYCea_oNQwTgTGYG9aGkEMfQ_VwoA,18935
1138
- teradataml/data/jsons/uaf/17.20/TD_ACF.json,sha256=muUYnDf_SxDBtshvNGAdCLrhBlblQmk9a6OVUAzyv2M,6644
1139
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json,sha256=rV2Ve_V1DaE_Gby4ENK53Tw5frQIe4tOWGyIQgltE5s,25418
1140
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json,sha256=EK8o3ZkKaGslGqBFjSG8Qfm4-L1F-NBqxkn7jqJTmiA,4557
1141
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json,sha256=P7x_9n0n5GO86pzm82vtTZaHDmcwvOkbtqD8ndZ5lao,8830
1142
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json,sha256=CkPBzjdlpqIidOsFIccXQQPIKQnyjfG8-Xs4LSod9N4,10714
1143
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json,sha256=JPWHoXBDcAa_dDohQRMJDMTCj_elajXCtMrdMGOlmFM,10623
1144
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json,sha256=3jo5lG6qPH9Xuq38iAvmINJaiLPJ4455Rxm6YO1Ozfs,4675
1145
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json,sha256=WO0V6S2ne6h0JD0PufeawlWU14VPGygcOP8GqQVSF1s,7913
1146
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json,sha256=OYU1e-LAiXz5G5K2xprzmkWgA18MKo1AOzeXrvvot_A,4046
1147
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json,sha256=SgZssTMJ6ccR4IKDZkw18ZW95P-4KyD2AwDpYB5tEKg,3073
1148
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json,sha256=rdKuPbq8gvpL3ol5sUTxmcVBIt5yFCgjGsOu9QQyc4Y,6133
1149
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json,sha256=nnJfYd4o2EToJrOC6z4nXpCZisFKq7zba4dENACZJqY,11217
1150
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json,sha256=Z-drwky_S75dfjocVdI_OVb6RGsk_YRoGaOugW2VQYA,9001
1151
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json,sha256=XvshVzv9NjOjPjNdNKyZe54M9HXAZy7eklCV5uYppg8,7691
1152
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json,sha256=uFpLQu6nz7MeLjIgEVEpC9ylc9pwGUnmDzU7Mmr9W18,7584
1153
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json,sha256=cE7Lh9RYepvBGwFSOQQ2iZzhxIZYvuFDE8VjnImfWRM,5139
1154
- teradataml/data/jsons/uaf/17.20/TD_DIFF.json,sha256=ErLYq61VKK0n9feSE716sM000-4GfANppoSorBw3LzY,5280
1155
- teradataml/data/jsons/uaf/17.20/TD_DTW.json,sha256=xLMVV4ZpBysQkpG4vI7hyAjV2j5lR2I3-IjzUzGn09w,7130
1156
- teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json,sha256=ZvzJjpdSfg6UNF1Wst94hKPSs_1Bi4omDFeyPMUmxp8,5679
1157
- teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json,sha256=nU8hF2a6VtyrZIcMCMtZ87j_uOblFltBDTidEpISJHE,2111
1158
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json,sha256=2FHbN3Wls-A--dV3Ee1ApeWnoP6w8iUqBVGUkL1MonQ,5786
1159
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json,sha256=3I7LzZC_FceXiYetezz5XjRkFYUYLf1kYUEFfOnNlec,5210
1160
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json,sha256=uBQIlU5H_VHLAIOG-wcg4MvXk_nUveH5p2auvvwyZlw,4679
1161
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json,sha256=XkRA8W70OkDFIH9s3JREUdhjVbXgmSknOsczIrSpR5A,8809
1162
- teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json,sha256=n8qq253qRwGH221eG5VqXu9J1BrcCwCbmxNgaVUlp68,19159
1163
- teradataml/data/jsons/uaf/17.20/TD_IDFFT.json,sha256=whVcfTKSdNFMKUS2C8LP50w9_-QZPk-1-dzI84xg-CM,3954
1164
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json,sha256=pdhNlXBqUMj5sgReyZmj0jnZ4C2yicIo5QzIup2zyvY,6566
1165
- teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json,sha256=u5NOjM3Y1Uq5ESah6zUhEIfqYu72cdIdh4nXEj0zpPY,4262
1166
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json,sha256=8xOFk5xqGMl-53RYFE3un69jmpp81Xr3ZN8XiT8WLo8,11990
1167
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json,sha256=BIVS77wkMBmdbeyvOBD35Or3GazSwGWpQFSAXzZzl7k,6046
1168
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json,sha256=EaKXs5oySXNFpSDGJ3TQLUK-i4T36MondVSXf1tfH8M,10334
1169
- teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json,sha256=5_3gq9rbpe_XW4vu0ZmQA5q_iImMlDhpXaEmDG6v0Ck,4129
1170
- teradataml/data/jsons/uaf/17.20/TD_MINFO.json,sha256=HpBAICcxtwGgPENIgVP-5MRHQo8jk2Djk7lf_lYXV1s,4201
1171
- teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json,sha256=17L9VQZFtUdgkiIeNX0L_F88JXzjuveUbrrA1UEvYbs,11800
1172
- teradataml/data/jsons/uaf/17.20/TD_PACF.json,sha256=wdCI9zoWG3VBlJJrAKNEJ0oKPW-fIcWJpFp5K0UiI98,7473
1173
- teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json,sha256=F1qAE-XRum9CV2mwFLxTH-c0wwcY3CEhd5LQVy4AONc,6952
1174
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json,sha256=4T5nomO0m2Qu2ORnelU9gYIzRlv6nYO6xzFRGhW82qY,10311
1175
- teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json,sha256=8G5NwPGBABOF-uhC7hoIxg-GDUjRwDDULhXSFP7ApN0,4983
1176
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json,sha256=sHZxX3p8lJZOjTkPymStLDBp-3WcgWKypKkrHFbm_AA,10371
1177
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json,sha256=TjGfSDLHIyxdmMbdbZ0t5_8RxEf0xKM_-6KYNKAH4PU,7235
1178
- teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json,sha256=9qIXs5ZH_6AMKPQmfdZ3v4pVGbVtvGIf6i6v7yZzc-A,5511
1179
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json,sha256=TiGGeZZT5v5uwkahMXXVjGt-Tj32APeIOAkoMKdFLzo,5180
1180
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json,sha256=rl8XUs07-YKj5IwqPr5nmwCoXClIBJOKgX7I_wv5gCk,4537
1181
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json,sha256=MQ1Wf71Ke17DCKoVNbjkps0aHxQA_sLKwMK1-35nKW0,10348
1182
- teradataml/data/jsons/uaf/17.20/TD_SINFO.json,sha256=KYrnSjuufU7HoZitshIOAJDRqErtQjvqFFSQYxTntqY,3688
1183
- teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json,sha256=TVXqByzoFcuhlKg67EgaHv2gkrQdzKiTmPipizTCNX4,9725
1184
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json,sha256=_14NDzR7JYOIlNYmY4qoyclMceCmGEEbALSEjRLXJlc,4776
1185
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json,sha256=OePiYjTuZHmqGDxOjkHxminLkrZE_eAmfKsCX_s_fWc,6726
1186
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json,sha256=17j9kOde6bojKIbQM2fMOajqeHjUkyePskkn8EmFGvw,4660
1187
- teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json,sha256=tsJzxt-Zgh6EBN_9U_Kh31hfemDgB7r0UkMj2GxyBMY,4723
1188
- teradataml/data/models/License_file.txt,sha256=SnWU9MK5E-B6ZUwR1TB19iSUyCcQaTxJ9Zar_WVQ7_g,14
1189
- teradataml/data/models/License_file_empty.txt,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1190
- teradataml/data/models/dataiku_iris_data_ann_thin,sha256=9cfSt9MHz_ouXXMzfoByrX-yD-iVINFr8Txn3e7VukA,20894
1191
- teradataml/data/models/dr_iris_rf,sha256=thNFaIIvzZgSHZecssOS55zNn7XZjimF199bfZ2iAN4,856761
1192
- teradataml/data/models/iris_db_dt_model_sklearn.onnx,sha256=5aTtOPcQ4h0Xdksfc0UqRlcqO-PdGBDee08VZbpWwo0,1455
1193
- teradataml/data/models/iris_db_dt_model_sklearn_floattensor.onnx,sha256=Kik8AhmoBdVKoCM-4QuWNwe3GQJuedpkCTJLkLbC8No,1000
1194
- teradataml/data/models/iris_db_glm_model.pmml,sha256=8sJxuxKxjHDyVDc1JnHl6ygApF8vfK21UDHAxxkvAPg,3065
1195
- teradataml/data/models/iris_db_xgb_model.pmml,sha256=aLfKw5ow8DXtjRlOd9Yxod1ne57PclKovagF3eLa-DM,160776
1196
- teradataml/data/models/iris_kmeans_model,sha256=DtqDxJbLQi87vns9V3Zxznovzvmr8s0CYXx4gKzal9U,5659
1197
- teradataml/data/models/iris_mojo_glm_h2o_model,sha256=ITe3SHKElnAPiDGYiogkGrmEZeDeBO50_0O5oKJolNs,11097
1198
- teradataml/data/models/iris_mojo_xgb_h2o_model,sha256=OWFu3zozDuoxL2KMc6CG6wtiSV1U1VJvzDl5Lib4JxE,22535
1199
- teradataml/data/notebooks/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1200
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb,sha256=WguPP4GwPKkwZvH7nOtjvmEczHH898VhWxqL1W7QJic,40973
1201
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb,sha256=6NPTrCVGGsJXmT-NZ9KJX_B9z33bV06THpfcQQa3IBg,80244
1202
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb,sha256=aFQInj9LgCjGoJ6aiWCgnaXCavYIowzi4Q7fpMpuPl8,52724
1203
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb,sha256=RQ2wi4JlqtNJNMip1sDgBfIpRrkG5XO3WeuYevCXAdw,19266
1204
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb,sha256=lhkOfc7yMz5GnDZeliB9QC1EOX_Fcg6Ixob-iwW98D8,19790
1205
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb,sha256=IApJFUBvFP5Hi-LT-otQiS9efrazcFDV0b3GQLshQUU,83066
1206
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb,sha256=IEXc-rBl2B_-cXBIDOJfw3ipdVB4xnhdRX_sTMKkJcc,106396
1207
- teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb,sha256=dw0VKkSxzEsxCSXb_swPi-YvShfVeexNMb7gDs2dpK0,37314
1208
- teradataml/data/notebooks/sqlalchemy/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1209
- teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb,sha256=9Yt5Dguh5NIiemT0KtGgls87_D-ei90Ii9VoKquMRwo,23629
1210
- teradataml/data/scripts/mapper.py,sha256=Nuw7ERFZg-j43HGZzd6WPSOfEeUhLOfX_WnGAr1ewRQ,532
1211
- teradataml/data/scripts/mapper_replace.py,sha256=Lzdf0WyUXcj9PsABk68ICJnkmlre6LqU0KZhLqA6XOU,537
1212
- teradataml/dataframe/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1213
- teradataml/dataframe/copy_to.py,sha256=qHAIlOcuSRe87VGpa9M2_vjz0xJINHYwHU4ghxxIHmo,71966
1214
- teradataml/dataframe/data_transfer.py,sha256=q6nMgbUYRv8Dl_O3TQG8VSLwsfhQK5ZGlBTKVUDRWzY,117950
1215
- teradataml/dataframe/dataframe.py,sha256=O_MsuFaNC68V7L1KpnsfXfJYg2drHAy6k0HeGkQFPgg,883539
1216
- teradataml/dataframe/dataframe_utils.py,sha256=jrKZeaK1igyKrA2-DunhdJXhCSU7SjbwVmDHsDgquqw,80144
1217
- teradataml/dataframe/fastload.py,sha256=NMfpjAad4OBo42i4trdLmURCOJzP_PLLUssDjgRuV5M,30056
1218
- teradataml/dataframe/indexer.py,sha256=aYnYIeGuDgoXiNV8EpqHRAeby558Mqoq8sTujblp3v4,19363
1219
- teradataml/dataframe/setop.py,sha256=eVOp5jl6Di4MGRbmTDmi7H8KHNJWSdo7heNKp00HqSI,55491
1220
- teradataml/dataframe/sql.py,sha256=bieYQhXTvoOWKGEbM3YSHG0tVY2XrkF_YlNHDuk0oxQ,283091
1221
- teradataml/dataframe/sql_function_parameters.py,sha256=DKnmsbzUFCLZHw35_k9_Qvmipp9-PgK7kVtmiX63an8,18625
1222
- teradataml/dataframe/sql_functions.py,sha256=OI7KTRYiWjnEfgAd6Qj6oAoVP_LOwpVioZcJiW_qfSQ,28830
1223
- teradataml/dataframe/sql_interfaces.py,sha256=GnnjS67KrpH2XlfVm9OQFGgstX6pw3F_8Spx6V2kiOw,3592
1224
- teradataml/dataframe/vantage_function_types.py,sha256=ESwN0wUBDSNa0qUHJaJBVxw_T6xLd9f5CQkk-w06Pio,26311
1225
- teradataml/dataframe/window.py,sha256=-5_mRjv_8RwKvX1s9U7Cvp-IG4nP1V26xwFx1I4I6cE,31669
1226
- teradataml/dbutils/__init__.py,sha256=BZ_X0AYQcPUQ0Myp49fdlm3-ptKkTuGzHI2EzizPT6g,218
1227
- teradataml/dbutils/dbutils.py,sha256=4hINtKqZ4MlRyuf2F_NWm3RaI3PXnfCUaya0HZql2lU,45902
1228
- teradataml/dbutils/filemgr.py,sha256=Lr4EpuzZjB0wTjsTLOEktYdt2U5uF9jkTQphUFGU2P0,12070
1229
- teradataml/gen_ai/__init__.py,sha256=fwGSC7lsAjyvtUJ6aiD0rI1AQSS0t5yu-24dAjXQyi8,89
1230
- teradataml/gen_ai/convAI.py,sha256=MgFPS5eLKtKF1C2l8A-bY1eOE8DiA7LWkRlXC_Io7e8,16001
1231
- teradataml/geospatial/__init__.py,sha256=j_0G5cpqArseQmX00tqkaFJxpOoquzBpZ6QieoCLBK8,289
1232
- teradataml/geospatial/geodataframe.py,sha256=CPS7fYaJppJ3YzWGQwMy6Y-IDrCbanGDBN3qHfXOwbg,49767
1233
- teradataml/geospatial/geodataframecolumn.py,sha256=LzlTuN2LBa4Vylpur1ZOAZ8s2HFIzRyGOiKrkihWvpI,15637
1234
- teradataml/geospatial/geometry_types.py,sha256=dPiV_9ylKqRcO5P1F3Z2bVi0MEvCF8byUwCIuRBle4c,37593
1235
- teradataml/hyperparameter_tuner/__init__.py,sha256=xkdlejCSJQy3rRoti-BWPhPwktIzl73-uXWuF_emTak,79
1236
- teradataml/hyperparameter_tuner/optimizer.py,sha256=hFVhuFebeN3pHkCTngfL0qmz1yVWG4K0pPIAsQ2JGVk,152188
1237
- teradataml/hyperparameter_tuner/utils.py,sha256=eLqPBhJCybpC-yThuWGfX57CLigCvpXDfnA215WvH6s,8491
1238
- teradataml/lib/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1239
- teradataml/lib/aed_0_1.dll,sha256=Eg1_QkUl9K3r3VgbO3tvYxoO_uMPP1QKht-66b69AZ4,3928304
1240
- teradataml/lib/libaed_0_1.dylib,sha256=ezMaf-7NOXiHbRrrE_5lcMd-rj4kquWY5jFrzd7NckE,1806033
1241
- teradataml/lib/libaed_0_1.so,sha256=nHwZQZYNcy6n_wyG8PrrxwsW6QOFuqxFAglOhdKCamE,1040680
1242
- teradataml/options/__init__.py,sha256=gFUNP8juKiVIYAkspHnci6wodNVy_Cik9pbzU7LN_P0,5363
1243
- teradataml/options/configure.py,sha256=-7Wt_Bus2j2Iiv7yWvlDFHNumy1TgGIrWcrdGi8oJXk,18120
1244
- teradataml/options/display.py,sha256=TMBa7JHpj_mRXi6Cf-Q1U5hFbpoY133izMiQSN2QLUM,7786
1245
- teradataml/plot/__init__.py,sha256=ZaBE-7ZS18q9xAfD5Aasqn4lxulYs0HWUOGpzpAXdeo,124
1246
- teradataml/plot/axis.py,sha256=i_Ri1S0eyftut8Q2A8bgCv58bN7XKYZXLbS9sqD53hc,52852
1247
- teradataml/plot/constants.py,sha256=LcV7Vi81ZjwBCvBDSgGXujWQq42VMOlfwtMviAkmTs4,260
1248
- teradataml/plot/figure.py,sha256=wmPsK26PHDPZqJP9XXV6vT1lSE1-N2MDiZfrYnzpPDY,11960
1249
- teradataml/plot/plot.py,sha256=BM2lzX3di9G4NIr706FNjzwVhe09ubVt9zrXcZEGymk,30066
1250
- teradataml/plot/query_generator.py,sha256=Iet4qLJ8vmBc1vYUEaHs2udf-kJLlhSN5NPjTwJpNQE,3469
1251
- teradataml/plot/subplot.py,sha256=gPrezIKpTFZYdsedbCWafAooWsvnWtLOi1oriVVl2KY,10030
1252
- teradataml/scriptmgmt/UserEnv.py,sha256=3BlC55ia5tdiadi9qLJ9KY7I6MP75V_dgON17vaDKqw,171388
1253
- teradataml/scriptmgmt/__init__.py,sha256=AgRKEXo6cPAB3xyXZUQ7VFdh1-Bh3eFE693NtbNhJpw,182
1254
- teradataml/scriptmgmt/lls_utils.py,sha256=ohNGtldim8sXQ0vdEsiCxasLvzRhoT2PlhLSDfA-fPc,67328
1255
- teradataml/series/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1256
- teradataml/series/series.py,sha256=93Pxtqf0gfssdCztTqzA-M-_D_STOutcaVHnWfqEBH8,17192
1257
- teradataml/series/series_utils.py,sha256=jFUiqjo1SVyMLOATcGWEcUr5xns8TraPbbVXHxVVEgI,2610
1258
- teradataml/table_operators/Apply.py,sha256=meTciEFN6qxQzEIkOe0BPAtaZ2K7dhBhc76XFXxWW6w,41895
1259
- teradataml/table_operators/Script.py,sha256=pHrC1jrabuR4JJ5lPjlYZs3f21MdvHkuMetlWUq9QOE,89676
1260
- teradataml/table_operators/TableOperator.py,sha256=lQSYfqthSFCMk0bQ3ZfOL-tQcgqU5V99jCgyDLaawek,74280
1261
- teradataml/table_operators/__init__.py,sha256=uxa0LSpXKXkeFklWkmc6Sz1kFgO3eEcwQsXMxTtGQtg,232
1262
- teradataml/table_operators/apply_query_generator.py,sha256=sLRltT8Ao9J9VJaF9U7zAHgGTBGQDveEGzjKrVipwkQ,11945
1263
- teradataml/table_operators/query_generator.py,sha256=rp5TAsT9q0mDl6KvirM2J52AICxhsSwSdz61QAVPoew,22495
1264
- teradataml/table_operators/sandbox_container_util.py,sha256=SxHY1ozDO4f4TbAd0PAdGLIlfB6BYv7o0N8U2T0Aivs,27432
1265
- teradataml/table_operators/table_operator_query_generator.py,sha256=d6sU3zr12wAeALOoP6Qv7uM16-eIL0kEDu5rrxHj5xY,21880
1266
- teradataml/table_operators/table_operator_util.py,sha256=k3S2dHX4ECchnPIFiRT_kT_4wDmoqerjLeAO6-EdqNw,28095
1267
- teradataml/table_operators/templates/dataframe_apply.template,sha256=WCu3sAfj9p7V9lC1876s1D8FzPoS-9cai7wLUGA-UF0,7870
1268
- teradataml/table_operators/templates/dataframe_map.template,sha256=bj3luoercV1_3IGuP9KmLjGS-P-rH3457v_tkfKw1lU,7507
1269
- teradataml/table_operators/templates/script_executor.template,sha256=WO4Z3nbsB-uTGR1G7y6FbaAZhRy1TMXSirb0HbofrPs,6806
1270
- teradataml/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1271
- teradataml/utils/dtypes.py,sha256=eYhwePHxSkrBCzNHxVUIZg_MocolKb5U5PLgPvw4WEI,25595
1272
- teradataml/utils/internal_buffer.py,sha256=RVJqgJPOCNqIV1C3lIfTNdauEFaIXbTjpmcOeS9WWtk,2001
1273
- teradataml/utils/print_versions.py,sha256=ts8N5JSbsJflmg42NJlik67Ae6SxIJxUk6t4P6GtPBE,6330
1274
- teradataml/utils/utils.py,sha256=WXx5qQxuud_u9kqwyeVdV9PFHDSn46LdCbxwAI6mjJQ,16844
1275
- teradataml/utils/validators.py,sha256=YeDF05ne-uPul7C9kbz4eTzJ2gPUDFmMneqrx89deQ8,85152
1276
- teradataml-17.20.0.7.dist-info/METADATA,sha256=cOeBilTJWCqlA4lw-UasMtcH5nGp-5Uv7yDjw0y8rls,82504
1277
- teradataml-17.20.0.7.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
1278
- teradataml-17.20.0.7.dist-info/top_level.txt,sha256=j0jkK8Hmxb5acGSNrbbEePXSgqTQEItdFZXhyJT7qUM,11
1279
- teradataml-17.20.0.7.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
1280
- teradataml-17.20.0.7.dist-info/RECORD,,