teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (1285) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +1864 -1640
  4. teradataml/__init__.py +70 -60
  5. teradataml/_version.py +11 -11
  6. teradataml/analytics/Transformations.py +2995 -2995
  7. teradataml/analytics/__init__.py +81 -83
  8. teradataml/analytics/analytic_function_executor.py +2013 -2010
  9. teradataml/analytics/analytic_query_generator.py +958 -958
  10. teradataml/analytics/byom/H2OPredict.py +514 -514
  11. teradataml/analytics/byom/PMMLPredict.py +437 -437
  12. teradataml/analytics/byom/__init__.py +14 -14
  13. teradataml/analytics/json_parser/__init__.py +130 -130
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
  15. teradataml/analytics/json_parser/json_store.py +191 -191
  16. teradataml/analytics/json_parser/metadata.py +1637 -1637
  17. teradataml/analytics/json_parser/utils.py +804 -803
  18. teradataml/analytics/meta_class.py +196 -196
  19. teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
  21. teradataml/analytics/sqle/__init__.py +97 -110
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
  24. teradataml/analytics/table_operator/__init__.py +10 -10
  25. teradataml/analytics/uaf/__init__.py +63 -63
  26. teradataml/analytics/utils.py +693 -692
  27. teradataml/analytics/valib.py +1603 -1600
  28. teradataml/automl/__init__.py +1628 -0
  29. teradataml/automl/custom_json_utils.py +1270 -0
  30. teradataml/automl/data_preparation.py +993 -0
  31. teradataml/automl/data_transformation.py +727 -0
  32. teradataml/automl/feature_engineering.py +1648 -0
  33. teradataml/automl/feature_exploration.py +547 -0
  34. teradataml/automl/model_evaluation.py +163 -0
  35. teradataml/automl/model_training.py +887 -0
  36. teradataml/catalog/__init__.py +1 -3
  37. teradataml/catalog/byom.py +1759 -1716
  38. teradataml/catalog/function_argument_mapper.py +859 -861
  39. teradataml/catalog/model_cataloging_utils.py +491 -1510
  40. teradataml/clients/pkce_client.py +481 -481
  41. teradataml/common/aed_utils.py +6 -2
  42. teradataml/common/bulk_exposed_utils.py +111 -111
  43. teradataml/common/constants.py +1433 -1441
  44. teradataml/common/deprecations.py +160 -0
  45. teradataml/common/exceptions.py +73 -73
  46. teradataml/common/formula.py +742 -742
  47. teradataml/common/garbagecollector.py +592 -635
  48. teradataml/common/messagecodes.py +422 -431
  49. teradataml/common/messages.py +227 -231
  50. teradataml/common/sqlbundle.py +693 -693
  51. teradataml/common/td_coltype_code_to_tdtype.py +48 -48
  52. teradataml/common/utils.py +2418 -2500
  53. teradataml/common/warnings.py +25 -25
  54. teradataml/common/wrapper_utils.py +1 -110
  55. teradataml/config/dummy_file1.cfg +4 -4
  56. teradataml/config/dummy_file2.cfg +2 -2
  57. teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
  58. teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
  59. teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
  60. teradataml/context/aed_context.py +217 -217
  61. teradataml/context/context.py +1071 -999
  62. teradataml/data/A_loan.csv +19 -19
  63. teradataml/data/BINARY_REALS_LEFT.csv +11 -11
  64. teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
  65. teradataml/data/B_loan.csv +49 -49
  66. teradataml/data/BuoyData2.csv +17 -17
  67. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
  68. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
  69. teradataml/data/Convolve2RealsLeft.csv +5 -5
  70. teradataml/data/Convolve2RealsRight.csv +5 -5
  71. teradataml/data/Convolve2ValidLeft.csv +11 -11
  72. teradataml/data/Convolve2ValidRight.csv +11 -11
  73. teradataml/data/DFFTConv_Real_8_8.csv +65 -65
  74. teradataml/data/Orders1_12mf.csv +24 -24
  75. teradataml/data/Pi_loan.csv +7 -7
  76. teradataml/data/SMOOTHED_DATA.csv +7 -7
  77. teradataml/data/TestDFFT8.csv +9 -9
  78. teradataml/data/TestRiver.csv +109 -109
  79. teradataml/data/Traindata.csv +28 -28
  80. teradataml/data/acf.csv +17 -17
  81. teradataml/data/adaboost_example.json +34 -34
  82. teradataml/data/adaboostpredict_example.json +24 -24
  83. teradataml/data/additional_table.csv +10 -10
  84. teradataml/data/admissions_test.csv +21 -21
  85. teradataml/data/admissions_train.csv +41 -41
  86. teradataml/data/admissions_train_nulls.csv +41 -41
  87. teradataml/data/ageandheight.csv +13 -13
  88. teradataml/data/ageandpressure.csv +31 -31
  89. teradataml/data/antiselect_example.json +36 -36
  90. teradataml/data/antiselect_input.csv +8 -8
  91. teradataml/data/antiselect_input_mixed_case.csv +8 -8
  92. teradataml/data/applicant_external.csv +6 -6
  93. teradataml/data/applicant_reference.csv +6 -6
  94. teradataml/data/arima_example.json +9 -9
  95. teradataml/data/assortedtext_input.csv +8 -8
  96. teradataml/data/attribution_example.json +33 -33
  97. teradataml/data/attribution_sample_table.csv +27 -27
  98. teradataml/data/attribution_sample_table1.csv +6 -6
  99. teradataml/data/attribution_sample_table2.csv +11 -11
  100. teradataml/data/bank_churn.csv +10001 -0
  101. teradataml/data/bank_web_clicks1.csv +42 -42
  102. teradataml/data/bank_web_clicks2.csv +91 -91
  103. teradataml/data/bank_web_url.csv +85 -85
  104. teradataml/data/barrier.csv +2 -2
  105. teradataml/data/barrier_new.csv +3 -3
  106. teradataml/data/betweenness_example.json +13 -13
  107. teradataml/data/bin_breaks.csv +8 -8
  108. teradataml/data/bin_fit_ip.csv +3 -3
  109. teradataml/data/binary_complex_left.csv +11 -11
  110. teradataml/data/binary_complex_right.csv +11 -11
  111. teradataml/data/binary_matrix_complex_left.csv +21 -21
  112. teradataml/data/binary_matrix_complex_right.csv +21 -21
  113. teradataml/data/binary_matrix_real_left.csv +21 -21
  114. teradataml/data/binary_matrix_real_right.csv +21 -21
  115. teradataml/data/blood2ageandweight.csv +26 -26
  116. teradataml/data/bmi.csv +501 -0
  117. teradataml/data/boston.csv +507 -507
  118. teradataml/data/buoydata_mix.csv +11 -11
  119. teradataml/data/burst_data.csv +5 -5
  120. teradataml/data/burst_example.json +20 -20
  121. teradataml/data/byom_example.json +17 -17
  122. teradataml/data/bytes_table.csv +3 -3
  123. teradataml/data/cal_housing_ex_raw.csv +70 -70
  124. teradataml/data/callers.csv +7 -7
  125. teradataml/data/calls.csv +10 -10
  126. teradataml/data/cars_hist.csv +33 -33
  127. teradataml/data/cat_table.csv +24 -24
  128. teradataml/data/ccm_example.json +31 -31
  129. teradataml/data/ccm_input.csv +91 -91
  130. teradataml/data/ccm_input2.csv +13 -13
  131. teradataml/data/ccmexample.csv +101 -101
  132. teradataml/data/ccmprepare_example.json +8 -8
  133. teradataml/data/ccmprepare_input.csv +91 -91
  134. teradataml/data/cfilter_example.json +12 -12
  135. teradataml/data/changepointdetection_example.json +18 -18
  136. teradataml/data/changepointdetectionrt_example.json +8 -8
  137. teradataml/data/chi_sq.csv +2 -2
  138. teradataml/data/churn_data.csv +14 -14
  139. teradataml/data/churn_emission.csv +35 -35
  140. teradataml/data/churn_initial.csv +3 -3
  141. teradataml/data/churn_state_transition.csv +5 -5
  142. teradataml/data/citedges_2.csv +745 -745
  143. teradataml/data/citvertices_2.csv +1210 -1210
  144. teradataml/data/clicks2.csv +16 -16
  145. teradataml/data/clickstream.csv +12 -12
  146. teradataml/data/clickstream1.csv +11 -11
  147. teradataml/data/closeness_example.json +15 -15
  148. teradataml/data/complaints.csv +21 -21
  149. teradataml/data/complaints_mini.csv +3 -3
  150. teradataml/data/complaints_testtoken.csv +224 -224
  151. teradataml/data/complaints_tokens_test.csv +353 -353
  152. teradataml/data/complaints_traintoken.csv +472 -472
  153. teradataml/data/computers_category.csv +1001 -1001
  154. teradataml/data/computers_test1.csv +1252 -1252
  155. teradataml/data/computers_train1.csv +5009 -5009
  156. teradataml/data/computers_train1_clustered.csv +5009 -5009
  157. teradataml/data/confusionmatrix_example.json +9 -9
  158. teradataml/data/conversion_event_table.csv +3 -3
  159. teradataml/data/corr_input.csv +17 -17
  160. teradataml/data/correlation_example.json +11 -11
  161. teradataml/data/coxhazardratio_example.json +39 -39
  162. teradataml/data/coxph_example.json +15 -15
  163. teradataml/data/coxsurvival_example.json +28 -28
  164. teradataml/data/cpt.csv +41 -41
  165. teradataml/data/credit_ex_merged.csv +45 -45
  166. teradataml/data/customer_loyalty.csv +301 -301
  167. teradataml/data/customer_loyalty_newseq.csv +31 -31
  168. teradataml/data/dataframe_example.json +146 -146
  169. teradataml/data/decisionforest_example.json +37 -37
  170. teradataml/data/decisionforestpredict_example.json +38 -38
  171. teradataml/data/decisiontree_example.json +21 -21
  172. teradataml/data/decisiontreepredict_example.json +45 -45
  173. teradataml/data/dfft2_size4_real.csv +17 -17
  174. teradataml/data/dfft2_test_matrix16.csv +17 -17
  175. teradataml/data/dfft2conv_real_4_4.csv +65 -65
  176. teradataml/data/diabetes.csv +443 -443
  177. teradataml/data/diabetes_test.csv +89 -89
  178. teradataml/data/dict_table.csv +5 -5
  179. teradataml/data/docperterm_table.csv +4 -4
  180. teradataml/data/docs/__init__.py +1 -1
  181. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
  182. teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
  183. teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
  184. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
  185. teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
  186. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
  187. teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
  188. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
  189. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
  190. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
  191. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
  192. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
  193. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
  194. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
  195. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
  196. teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
  197. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
  198. teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
  199. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
  200. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
  201. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
  202. teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
  203. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
  204. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
  205. teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
  206. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
  207. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
  208. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
  209. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +132 -132
  210. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +103 -103
  211. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
  212. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +101 -101
  213. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
  214. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
  215. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
  216. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
  217. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
  218. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
  219. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
  220. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
  221. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
  222. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
  223. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
  224. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
  225. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
  226. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
  227. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
  228. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
  229. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
  230. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
  231. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
  232. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
  233. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
  234. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +126 -126
  235. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
  236. teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
  237. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
  238. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
  239. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
  240. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
  241. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
  242. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
  243. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +243 -243
  244. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
  245. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
  246. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
  247. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
  248. teradataml/data/docs/sqle/docs_17_20/FTest.py +160 -160
  249. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
  250. teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
  251. teradataml/data/docs/sqle/docs_17_20/GLM.py +380 -380
  252. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
  253. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
  254. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
  255. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +123 -123
  256. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
  257. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
  258. teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
  259. teradataml/data/docs/sqle/docs_17_20/KMeans.py +204 -204
  260. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
  261. teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
  262. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
  263. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
  264. teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
  265. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
  266. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
  267. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
  268. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +117 -117
  269. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
  270. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
  271. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
  272. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
  273. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +225 -225
  274. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +115 -115
  275. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
  276. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
  277. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
  278. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
  279. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
  280. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
  281. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
  282. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
  283. teradataml/data/docs/sqle/docs_17_20/ROC.py +163 -163
  284. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
  285. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
  286. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
  287. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
  288. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
  289. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
  290. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
  291. teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
  292. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +202 -202
  293. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
  294. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +197 -197
  295. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +110 -109
  296. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
  297. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
  298. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
  299. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
  300. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
  301. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
  302. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
  303. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
  304. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +171 -171
  305. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
  306. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
  307. teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
  308. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
  309. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
  310. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
  311. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
  312. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
  313. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
  314. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
  315. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
  316. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +353 -353
  317. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +275 -275
  318. teradataml/data/docs/sqle/docs_17_20/ZTest.py +155 -155
  319. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
  320. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
  321. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
  322. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
  323. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
  324. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
  325. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
  326. teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
  327. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
  328. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
  329. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
  330. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
  331. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
  332. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
  333. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
  334. teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
  335. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
  336. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
  337. teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
  338. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
  339. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
  340. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
  341. teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
  342. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
  343. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
  344. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
  345. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
  346. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
  347. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
  348. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
  349. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
  350. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
  351. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
  352. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
  353. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
  354. teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
  355. teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
  356. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
  357. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
  358. teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
  359. teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
  360. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
  361. teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
  362. teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
  363. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
  364. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
  365. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
  366. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
  367. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
  368. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
  369. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
  370. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
  371. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
  372. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
  373. teradataml/data/dtw_example.json +17 -17
  374. teradataml/data/dtw_t1.csv +11 -11
  375. teradataml/data/dtw_t2.csv +4 -4
  376. teradataml/data/dwt2d_example.json +15 -15
  377. teradataml/data/dwt_example.json +14 -14
  378. teradataml/data/dwt_filter_dim.csv +5 -5
  379. teradataml/data/emission.csv +9 -9
  380. teradataml/data/emp_table_by_dept.csv +19 -19
  381. teradataml/data/employee_info.csv +4 -4
  382. teradataml/data/employee_table.csv +6 -6
  383. teradataml/data/excluding_event_table.csv +2 -2
  384. teradataml/data/finance_data.csv +6 -6
  385. teradataml/data/finance_data2.csv +61 -61
  386. teradataml/data/finance_data3.csv +93 -93
  387. teradataml/data/fish.csv +160 -0
  388. teradataml/data/fm_blood2ageandweight.csv +26 -26
  389. teradataml/data/fmeasure_example.json +11 -11
  390. teradataml/data/followers_leaders.csv +10 -10
  391. teradataml/data/fpgrowth_example.json +12 -12
  392. teradataml/data/frequentpaths_example.json +29 -29
  393. teradataml/data/friends.csv +9 -9
  394. teradataml/data/fs_input.csv +33 -33
  395. teradataml/data/fs_input1.csv +33 -33
  396. teradataml/data/genData.csv +513 -513
  397. teradataml/data/geodataframe_example.json +39 -39
  398. teradataml/data/glass_types.csv +215 -0
  399. teradataml/data/glm_admissions_model.csv +12 -12
  400. teradataml/data/glm_example.json +29 -29
  401. teradataml/data/glml1l2_example.json +28 -28
  402. teradataml/data/glml1l2predict_example.json +54 -54
  403. teradataml/data/glmpredict_example.json +54 -54
  404. teradataml/data/gq_t1.csv +21 -21
  405. teradataml/data/hconvolve_complex_right.csv +5 -5
  406. teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
  407. teradataml/data/histogram_example.json +11 -11
  408. teradataml/data/hmmdecoder_example.json +78 -78
  409. teradataml/data/hmmevaluator_example.json +24 -24
  410. teradataml/data/hmmsupervised_example.json +10 -10
  411. teradataml/data/hmmunsupervised_example.json +7 -7
  412. teradataml/data/house_values.csv +12 -12
  413. teradataml/data/house_values2.csv +13 -13
  414. teradataml/data/housing_cat.csv +7 -7
  415. teradataml/data/housing_data.csv +9 -9
  416. teradataml/data/housing_test.csv +47 -47
  417. teradataml/data/housing_test_binary.csv +47 -47
  418. teradataml/data/housing_train.csv +493 -493
  419. teradataml/data/housing_train_attribute.csv +4 -4
  420. teradataml/data/housing_train_binary.csv +437 -437
  421. teradataml/data/housing_train_parameter.csv +2 -2
  422. teradataml/data/housing_train_response.csv +493 -493
  423. teradataml/data/ibm_stock.csv +370 -370
  424. teradataml/data/ibm_stock1.csv +370 -370
  425. teradataml/data/identitymatch_example.json +21 -21
  426. teradataml/data/idf_table.csv +4 -4
  427. teradataml/data/impressions.csv +101 -101
  428. teradataml/data/inflation.csv +21 -21
  429. teradataml/data/initial.csv +3 -3
  430. teradataml/data/insect_sprays.csv +12 -12
  431. teradataml/data/insurance.csv +1339 -1339
  432. teradataml/data/interpolator_example.json +12 -12
  433. teradataml/data/iris_altinput.csv +481 -481
  434. teradataml/data/iris_attribute_output.csv +8 -8
  435. teradataml/data/iris_attribute_test.csv +121 -121
  436. teradataml/data/iris_attribute_train.csv +481 -481
  437. teradataml/data/iris_category_expect_predict.csv +31 -31
  438. teradataml/data/iris_data.csv +151 -0
  439. teradataml/data/iris_input.csv +151 -151
  440. teradataml/data/iris_response_train.csv +121 -121
  441. teradataml/data/iris_test.csv +31 -31
  442. teradataml/data/iris_train.csv +121 -121
  443. teradataml/data/join_table1.csv +4 -4
  444. teradataml/data/join_table2.csv +4 -4
  445. teradataml/data/jsons/anly_function_name.json +6 -6
  446. teradataml/data/jsons/byom/dataikupredict.json +147 -147
  447. teradataml/data/jsons/byom/datarobotpredict.json +146 -146
  448. teradataml/data/jsons/byom/h2opredict.json +194 -194
  449. teradataml/data/jsons/byom/onnxpredict.json +186 -186
  450. teradataml/data/jsons/byom/pmmlpredict.json +146 -146
  451. teradataml/data/jsons/paired_functions.json +435 -435
  452. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
  453. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
  454. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
  455. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
  456. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
  457. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
  458. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
  459. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
  460. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
  461. teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
  462. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
  463. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
  464. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
  465. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
  466. teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
  467. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
  468. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
  469. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
  470. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
  471. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
  472. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
  473. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
  474. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
  475. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
  476. teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
  477. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
  478. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
  479. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
  480. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
  481. teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
  482. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
  483. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
  484. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
  485. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
  486. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
  487. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
  488. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
  489. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
  490. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
  491. teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
  492. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
  493. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
  494. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
  495. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
  496. teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
  497. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
  498. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
  499. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
  500. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
  501. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
  502. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
  503. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
  504. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
  505. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
  506. teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
  507. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
  508. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
  509. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
  510. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
  511. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
  512. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
  513. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
  514. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
  515. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
  516. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
  517. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
  518. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
  519. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
  520. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
  521. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
  522. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
  523. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
  524. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
  525. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
  526. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
  527. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
  528. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
  529. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
  530. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
  531. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
  532. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
  533. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
  534. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
  535. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
  536. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
  537. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
  538. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
  539. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
  540. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
  541. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
  542. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
  543. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
  544. teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
  545. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
  546. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
  547. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
  548. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
  549. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
  550. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
  551. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
  552. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
  553. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
  554. teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
  555. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
  556. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
  557. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
  558. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +76 -76
  559. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
  560. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
  561. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
  562. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
  563. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
  564. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
  565. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
  566. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
  567. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
  568. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
  569. teradataml/data/jsons/sqle/17.20/TD_FTest.json +186 -186
  570. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
  571. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
  572. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
  573. teradataml/data/jsons/sqle/17.20/TD_GLM.json +431 -431
  574. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +125 -125
  575. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
  576. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
  577. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +91 -91
  578. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
  579. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
  580. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
  581. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +211 -211
  582. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
  583. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
  584. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
  585. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +101 -101
  586. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
  587. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
  588. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
  589. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
  590. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
  591. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
  592. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
  593. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
  594. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
  595. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
  596. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
  597. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
  598. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
  599. teradataml/data/jsons/sqle/17.20/TD_ROC.json +177 -177
  600. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
  601. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
  602. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
  603. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
  604. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
  605. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
  606. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
  607. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
  608. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +124 -124
  609. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +156 -156
  610. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +70 -70
  611. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
  612. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
  613. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
  614. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
  615. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
  616. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
  617. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
  618. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
  619. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
  620. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
  621. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
  622. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
  623. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
  624. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
  625. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +312 -312
  626. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +182 -182
  627. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +170 -170
  628. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
  629. teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
  630. teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
  631. teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
  632. teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
  633. teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
  634. teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
  635. teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
  636. teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
  637. teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
  638. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
  639. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
  640. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
  641. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
  642. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
  643. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
  644. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
  645. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
  646. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
  647. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
  648. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
  649. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
  650. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
  651. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
  652. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
  653. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
  654. teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
  655. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
  656. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
  657. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
  658. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
  659. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
  660. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
  661. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
  662. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
  663. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
  664. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
  665. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
  666. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
  667. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
  668. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
  669. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
  670. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
  671. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
  672. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
  673. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
  674. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
  675. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
  676. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
  677. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
  678. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
  679. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
  680. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
  681. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
  682. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
  683. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
  684. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
  685. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
  686. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
  687. teradataml/data/kmeans_example.json +17 -17
  688. teradataml/data/kmeans_us_arrests_data.csv +0 -0
  689. teradataml/data/knn_example.json +18 -18
  690. teradataml/data/knnrecommender_example.json +6 -6
  691. teradataml/data/knnrecommenderpredict_example.json +12 -12
  692. teradataml/data/lar_example.json +17 -17
  693. teradataml/data/larpredict_example.json +30 -30
  694. teradataml/data/lc_new_predictors.csv +5 -5
  695. teradataml/data/lc_new_reference.csv +9 -9
  696. teradataml/data/lda_example.json +8 -8
  697. teradataml/data/ldainference_example.json +14 -14
  698. teradataml/data/ldatopicsummary_example.json +8 -8
  699. teradataml/data/levendist_input.csv +13 -13
  700. teradataml/data/levenshteindistance_example.json +10 -10
  701. teradataml/data/linreg_example.json +9 -9
  702. teradataml/data/load_example_data.py +326 -323
  703. teradataml/data/loan_prediction.csv +295 -295
  704. teradataml/data/lungcancer.csv +138 -138
  705. teradataml/data/mappingdata.csv +12 -12
  706. teradataml/data/milk_timeseries.csv +157 -157
  707. teradataml/data/min_max_titanic.csv +4 -4
  708. teradataml/data/minhash_example.json +6 -6
  709. teradataml/data/ml_ratings.csv +7547 -7547
  710. teradataml/data/ml_ratings_10.csv +2445 -2445
  711. teradataml/data/model1_table.csv +5 -5
  712. teradataml/data/model2_table.csv +5 -5
  713. teradataml/data/models/iris_db_glm_model.pmml +56 -56
  714. teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
  715. teradataml/data/modularity_example.json +12 -12
  716. teradataml/data/movavg_example.json +7 -7
  717. teradataml/data/mtx1.csv +7 -7
  718. teradataml/data/mtx2.csv +13 -13
  719. teradataml/data/multi_model_classification.csv +401 -0
  720. teradataml/data/multi_model_regression.csv +401 -0
  721. teradataml/data/mvdfft8.csv +9 -9
  722. teradataml/data/naivebayes_example.json +9 -9
  723. teradataml/data/naivebayespredict_example.json +19 -19
  724. teradataml/data/naivebayestextclassifier2_example.json +6 -6
  725. teradataml/data/naivebayestextclassifier_example.json +8 -8
  726. teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
  727. teradataml/data/name_Find_configure.csv +10 -10
  728. teradataml/data/namedentityfinder_example.json +14 -14
  729. teradataml/data/namedentityfinderevaluator_example.json +10 -10
  730. teradataml/data/namedentityfindertrainer_example.json +6 -6
  731. teradataml/data/nb_iris_input_test.csv +31 -31
  732. teradataml/data/nb_iris_input_train.csv +121 -121
  733. teradataml/data/nbp_iris_model.csv +13 -13
  734. teradataml/data/ner_extractor_text.csv +2 -2
  735. teradataml/data/ner_sports_test2.csv +29 -29
  736. teradataml/data/ner_sports_train.csv +501 -501
  737. teradataml/data/nerevaluator_example.json +5 -5
  738. teradataml/data/nerextractor_example.json +18 -18
  739. teradataml/data/nermem_sports_test.csv +17 -17
  740. teradataml/data/nermem_sports_train.csv +50 -50
  741. teradataml/data/nertrainer_example.json +6 -6
  742. teradataml/data/ngrams_example.json +6 -6
  743. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
  744. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
  745. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
  746. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
  747. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
  748. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
  749. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
  750. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
  751. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
  752. teradataml/data/npath_example.json +23 -23
  753. teradataml/data/ntree_example.json +14 -14
  754. teradataml/data/numeric_strings.csv +4 -4
  755. teradataml/data/numerics.csv +4 -4
  756. teradataml/data/ocean_buoy.csv +17 -17
  757. teradataml/data/ocean_buoy2.csv +17 -17
  758. teradataml/data/ocean_buoys.csv +27 -27
  759. teradataml/data/ocean_buoys2.csv +10 -10
  760. teradataml/data/ocean_buoys_nonpti.csv +28 -28
  761. teradataml/data/ocean_buoys_seq.csv +29 -29
  762. teradataml/data/openml_example.json +63 -0
  763. teradataml/data/optional_event_table.csv +4 -4
  764. teradataml/data/orders1.csv +11 -11
  765. teradataml/data/orders1_12.csv +12 -12
  766. teradataml/data/orders_ex.csv +4 -4
  767. teradataml/data/pack_example.json +8 -8
  768. teradataml/data/package_tracking.csv +19 -19
  769. teradataml/data/package_tracking_pti.csv +18 -18
  770. teradataml/data/pagerank_example.json +13 -13
  771. teradataml/data/paragraphs_input.csv +6 -6
  772. teradataml/data/pathanalyzer_example.json +7 -7
  773. teradataml/data/pathgenerator_example.json +7 -7
  774. teradataml/data/phrases.csv +7 -7
  775. teradataml/data/pivot_example.json +8 -8
  776. teradataml/data/pivot_input.csv +22 -22
  777. teradataml/data/playerRating.csv +31 -31
  778. teradataml/data/postagger_example.json +6 -6
  779. teradataml/data/posttagger_output.csv +44 -44
  780. teradataml/data/production_data.csv +16 -16
  781. teradataml/data/production_data2.csv +7 -7
  782. teradataml/data/randomsample_example.json +31 -31
  783. teradataml/data/randomwalksample_example.json +8 -8
  784. teradataml/data/rank_table.csv +6 -6
  785. teradataml/data/ref_mobile_data.csv +4 -4
  786. teradataml/data/ref_mobile_data_dense.csv +2 -2
  787. teradataml/data/ref_url.csv +17 -17
  788. teradataml/data/restaurant_reviews.csv +7 -7
  789. teradataml/data/river_data.csv +145 -145
  790. teradataml/data/roc_example.json +7 -7
  791. teradataml/data/roc_input.csv +101 -101
  792. teradataml/data/rule_inputs.csv +6 -6
  793. teradataml/data/rule_table.csv +2 -2
  794. teradataml/data/sales.csv +7 -7
  795. teradataml/data/sales_transaction.csv +501 -501
  796. teradataml/data/salesdata.csv +342 -342
  797. teradataml/data/sample_cities.csv +2 -2
  798. teradataml/data/sample_shapes.csv +10 -10
  799. teradataml/data/sample_streets.csv +2 -2
  800. teradataml/data/sampling_example.json +15 -15
  801. teradataml/data/sax_example.json +8 -8
  802. teradataml/data/scale_example.json +23 -23
  803. teradataml/data/scale_housing.csv +11 -11
  804. teradataml/data/scale_housing_test.csv +6 -6
  805. teradataml/data/scale_stat.csv +11 -11
  806. teradataml/data/scalebypartition_example.json +13 -13
  807. teradataml/data/scalemap_example.json +13 -13
  808. teradataml/data/scalesummary_example.json +12 -12
  809. teradataml/data/score_category.csv +101 -101
  810. teradataml/data/score_summary.csv +4 -4
  811. teradataml/data/script_example.json +9 -9
  812. teradataml/data/scripts/deploy_script.py +65 -0
  813. teradataml/data/scripts/mapper.R +20 -0
  814. teradataml/data/scripts/mapper.py +15 -15
  815. teradataml/data/scripts/mapper_replace.py +15 -15
  816. teradataml/data/scripts/sklearn/__init__.py +0 -0
  817. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  818. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  819. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  820. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  821. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  822. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  823. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  824. teradataml/data/seeds.csv +10 -10
  825. teradataml/data/sentenceextractor_example.json +6 -6
  826. teradataml/data/sentiment_extract_input.csv +11 -11
  827. teradataml/data/sentiment_train.csv +16 -16
  828. teradataml/data/sentiment_word.csv +20 -20
  829. teradataml/data/sentiment_word_input.csv +19 -19
  830. teradataml/data/sentimentextractor_example.json +24 -24
  831. teradataml/data/sentimenttrainer_example.json +8 -8
  832. teradataml/data/sequence_table.csv +10 -10
  833. teradataml/data/seriessplitter_example.json +7 -7
  834. teradataml/data/sessionize_example.json +17 -17
  835. teradataml/data/sessionize_table.csv +116 -116
  836. teradataml/data/setop_test1.csv +24 -24
  837. teradataml/data/setop_test2.csv +22 -22
  838. teradataml/data/soc_nw_edges.csv +10 -10
  839. teradataml/data/soc_nw_vertices.csv +7 -7
  840. teradataml/data/souvenir_timeseries.csv +167 -167
  841. teradataml/data/sparse_iris_attribute.csv +5 -5
  842. teradataml/data/sparse_iris_test.csv +121 -121
  843. teradataml/data/sparse_iris_train.csv +601 -601
  844. teradataml/data/star1.csv +6 -6
  845. teradataml/data/state_transition.csv +5 -5
  846. teradataml/data/stock_data.csv +53 -53
  847. teradataml/data/stock_movement.csv +11 -11
  848. teradataml/data/stock_vol.csv +76 -76
  849. teradataml/data/stop_words.csv +8 -8
  850. teradataml/data/store_sales.csv +37 -37
  851. teradataml/data/stringsimilarity_example.json +7 -7
  852. teradataml/data/strsimilarity_input.csv +13 -13
  853. teradataml/data/students.csv +101 -101
  854. teradataml/data/svm_iris_input_test.csv +121 -121
  855. teradataml/data/svm_iris_input_train.csv +481 -481
  856. teradataml/data/svm_iris_model.csv +7 -7
  857. teradataml/data/svmdense_example.json +9 -9
  858. teradataml/data/svmdensepredict_example.json +18 -18
  859. teradataml/data/svmsparse_example.json +7 -7
  860. teradataml/data/svmsparsepredict_example.json +13 -13
  861. teradataml/data/svmsparsesummary_example.json +7 -7
  862. teradataml/data/target_mobile_data.csv +13 -13
  863. teradataml/data/target_mobile_data_dense.csv +5 -5
  864. teradataml/data/templatedata.csv +1201 -1201
  865. teradataml/data/templates/open_source_ml.json +9 -0
  866. teradataml/data/teradataml_example.json +73 -1
  867. teradataml/data/test_classification.csv +101 -0
  868. teradataml/data/test_loan_prediction.csv +53 -53
  869. teradataml/data/test_pacf_12.csv +37 -37
  870. teradataml/data/test_prediction.csv +101 -0
  871. teradataml/data/test_regression.csv +101 -0
  872. teradataml/data/test_river2.csv +109 -109
  873. teradataml/data/text_inputs.csv +6 -6
  874. teradataml/data/textchunker_example.json +7 -7
  875. teradataml/data/textclassifier_example.json +6 -6
  876. teradataml/data/textclassifier_input.csv +7 -7
  877. teradataml/data/textclassifiertrainer_example.json +6 -6
  878. teradataml/data/textmorph_example.json +5 -5
  879. teradataml/data/textparser_example.json +15 -15
  880. teradataml/data/texttagger_example.json +11 -11
  881. teradataml/data/texttokenizer_example.json +6 -6
  882. teradataml/data/texttrainer_input.csv +11 -11
  883. teradataml/data/tf_example.json +6 -6
  884. teradataml/data/tfidf_example.json +13 -13
  885. teradataml/data/tfidf_input1.csv +201 -201
  886. teradataml/data/tfidf_train.csv +6 -6
  887. teradataml/data/time_table1.csv +535 -535
  888. teradataml/data/time_table2.csv +14 -14
  889. teradataml/data/timeseriesdata.csv +1601 -1601
  890. teradataml/data/timeseriesdatasetsd4.csv +105 -105
  891. teradataml/data/titanic.csv +892 -892
  892. teradataml/data/token_table.csv +696 -696
  893. teradataml/data/train_multiclass.csv +101 -0
  894. teradataml/data/train_regression.csv +101 -0
  895. teradataml/data/train_regression_multiple_labels.csv +101 -0
  896. teradataml/data/train_tracking.csv +27 -27
  897. teradataml/data/transformation_table.csv +5 -5
  898. teradataml/data/transformation_table_new.csv +1 -1
  899. teradataml/data/tv_spots.csv +16 -16
  900. teradataml/data/twod_climate_data.csv +117 -117
  901. teradataml/data/uaf_example.json +475 -475
  902. teradataml/data/univariatestatistics_example.json +8 -8
  903. teradataml/data/unpack_example.json +9 -9
  904. teradataml/data/unpivot_example.json +9 -9
  905. teradataml/data/unpivot_input.csv +8 -8
  906. teradataml/data/us_air_pass.csv +36 -36
  907. teradataml/data/us_population.csv +624 -624
  908. teradataml/data/us_states_shapes.csv +52 -52
  909. teradataml/data/varmax_example.json +17 -17
  910. teradataml/data/vectordistance_example.json +25 -25
  911. teradataml/data/ville_climatedata.csv +121 -121
  912. teradataml/data/ville_tempdata.csv +12 -12
  913. teradataml/data/ville_tempdata1.csv +12 -12
  914. teradataml/data/ville_temperature.csv +11 -11
  915. teradataml/data/waveletTable.csv +1605 -1605
  916. teradataml/data/waveletTable2.csv +1605 -1605
  917. teradataml/data/weightedmovavg_example.json +8 -8
  918. teradataml/data/wft_testing.csv +5 -5
  919. teradataml/data/wine_data.csv +1600 -0
  920. teradataml/data/word_embed_input_table1.csv +5 -5
  921. teradataml/data/word_embed_input_table2.csv +4 -4
  922. teradataml/data/word_embed_model.csv +22 -22
  923. teradataml/data/words_input.csv +13 -13
  924. teradataml/data/xconvolve_complex_left.csv +6 -6
  925. teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
  926. teradataml/data/xgboost_example.json +35 -35
  927. teradataml/data/xgboostpredict_example.json +31 -31
  928. teradataml/dataframe/copy_to.py +1764 -1698
  929. teradataml/dataframe/data_transfer.py +2753 -2745
  930. teradataml/dataframe/dataframe.py +17545 -16946
  931. teradataml/dataframe/dataframe_utils.py +1837 -1740
  932. teradataml/dataframe/fastload.py +611 -603
  933. teradataml/dataframe/indexer.py +424 -424
  934. teradataml/dataframe/setop.py +1179 -1166
  935. teradataml/dataframe/sql.py +10090 -6432
  936. teradataml/dataframe/sql_function_parameters.py +439 -388
  937. teradataml/dataframe/sql_functions.py +652 -652
  938. teradataml/dataframe/sql_interfaces.py +220 -220
  939. teradataml/dataframe/vantage_function_types.py +674 -630
  940. teradataml/dataframe/window.py +693 -692
  941. teradataml/dbutils/__init__.py +3 -3
  942. teradataml/dbutils/dbutils.py +1167 -1150
  943. teradataml/dbutils/filemgr.py +267 -267
  944. teradataml/gen_ai/__init__.py +2 -2
  945. teradataml/gen_ai/convAI.py +472 -472
  946. teradataml/geospatial/__init__.py +3 -3
  947. teradataml/geospatial/geodataframe.py +1105 -1094
  948. teradataml/geospatial/geodataframecolumn.py +392 -387
  949. teradataml/geospatial/geometry_types.py +925 -925
  950. teradataml/hyperparameter_tuner/__init__.py +1 -1
  951. teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
  952. teradataml/hyperparameter_tuner/utils.py +281 -187
  953. teradataml/lib/aed_0_1.dll +0 -0
  954. teradataml/lib/libaed_0_1.dylib +0 -0
  955. teradataml/lib/libaed_0_1.so +0 -0
  956. teradataml/libaed_0_1.dylib +0 -0
  957. teradataml/libaed_0_1.so +0 -0
  958. teradataml/opensource/__init__.py +1 -0
  959. teradataml/opensource/sklearn/__init__.py +1 -0
  960. teradataml/opensource/sklearn/_class.py +255 -0
  961. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  962. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  963. teradataml/opensource/sklearn/constants.py +54 -0
  964. teradataml/options/__init__.py +121 -124
  965. teradataml/options/configure.py +337 -336
  966. teradataml/options/display.py +176 -176
  967. teradataml/plot/__init__.py +2 -2
  968. teradataml/plot/axis.py +1388 -1388
  969. teradataml/plot/constants.py +15 -15
  970. teradataml/plot/figure.py +398 -398
  971. teradataml/plot/plot.py +760 -760
  972. teradataml/plot/query_generator.py +83 -83
  973. teradataml/plot/subplot.py +216 -216
  974. teradataml/scriptmgmt/UserEnv.py +3788 -3761
  975. teradataml/scriptmgmt/__init__.py +3 -3
  976. teradataml/scriptmgmt/lls_utils.py +1616 -1604
  977. teradataml/series/series.py +532 -532
  978. teradataml/series/series_utils.py +71 -71
  979. teradataml/table_operators/Apply.py +949 -917
  980. teradataml/table_operators/Script.py +1719 -1982
  981. teradataml/table_operators/TableOperator.py +1207 -1616
  982. teradataml/table_operators/__init__.py +2 -3
  983. teradataml/table_operators/apply_query_generator.py +262 -262
  984. teradataml/table_operators/query_generator.py +507 -507
  985. teradataml/table_operators/table_operator_query_generator.py +460 -460
  986. teradataml/table_operators/table_operator_util.py +631 -639
  987. teradataml/table_operators/templates/dataframe_apply.template +184 -184
  988. teradataml/table_operators/templates/dataframe_map.template +176 -176
  989. teradataml/table_operators/templates/script_executor.template +170 -170
  990. teradataml/utils/dtypes.py +684 -684
  991. teradataml/utils/internal_buffer.py +84 -84
  992. teradataml/utils/print_versions.py +205 -205
  993. teradataml/utils/utils.py +410 -410
  994. teradataml/utils/validators.py +2239 -2115
  995. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +270 -41
  996. teradataml-20.0.0.0.dist-info/RECORD +1038 -0
  997. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +1 -1
  998. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +1 -1
  999. teradataml/analytics/mle/AdaBoost.py +0 -651
  1000. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  1001. teradataml/analytics/mle/Antiselect.py +0 -342
  1002. teradataml/analytics/mle/Arima.py +0 -641
  1003. teradataml/analytics/mle/ArimaPredict.py +0 -477
  1004. teradataml/analytics/mle/Attribution.py +0 -1070
  1005. teradataml/analytics/mle/Betweenness.py +0 -658
  1006. teradataml/analytics/mle/Burst.py +0 -711
  1007. teradataml/analytics/mle/CCM.py +0 -600
  1008. teradataml/analytics/mle/CCMPrepare.py +0 -324
  1009. teradataml/analytics/mle/CFilter.py +0 -460
  1010. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  1011. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  1012. teradataml/analytics/mle/Closeness.py +0 -737
  1013. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  1014. teradataml/analytics/mle/Correlation.py +0 -477
  1015. teradataml/analytics/mle/Correlation2.py +0 -573
  1016. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  1017. teradataml/analytics/mle/CoxPH.py +0 -556
  1018. teradataml/analytics/mle/CoxSurvival.py +0 -478
  1019. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  1020. teradataml/analytics/mle/DTW.py +0 -623
  1021. teradataml/analytics/mle/DWT.py +0 -564
  1022. teradataml/analytics/mle/DWT2D.py +0 -599
  1023. teradataml/analytics/mle/DecisionForest.py +0 -716
  1024. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  1025. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  1026. teradataml/analytics/mle/DecisionTree.py +0 -830
  1027. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  1028. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  1029. teradataml/analytics/mle/FMeasure.py +0 -402
  1030. teradataml/analytics/mle/FPGrowth.py +0 -734
  1031. teradataml/analytics/mle/FrequentPaths.py +0 -695
  1032. teradataml/analytics/mle/GLM.py +0 -558
  1033. teradataml/analytics/mle/GLML1L2.py +0 -547
  1034. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  1035. teradataml/analytics/mle/GLMPredict.py +0 -529
  1036. teradataml/analytics/mle/HMMDecoder.py +0 -945
  1037. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  1038. teradataml/analytics/mle/HMMSupervised.py +0 -521
  1039. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  1040. teradataml/analytics/mle/Histogram.py +0 -561
  1041. teradataml/analytics/mle/IDWT.py +0 -476
  1042. teradataml/analytics/mle/IDWT2D.py +0 -493
  1043. teradataml/analytics/mle/IdentityMatch.py +0 -763
  1044. teradataml/analytics/mle/Interpolator.py +0 -918
  1045. teradataml/analytics/mle/KMeans.py +0 -485
  1046. teradataml/analytics/mle/KNN.py +0 -627
  1047. teradataml/analytics/mle/KNNRecommender.py +0 -488
  1048. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  1049. teradataml/analytics/mle/LAR.py +0 -439
  1050. teradataml/analytics/mle/LARPredict.py +0 -478
  1051. teradataml/analytics/mle/LDA.py +0 -548
  1052. teradataml/analytics/mle/LDAInference.py +0 -492
  1053. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  1054. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  1055. teradataml/analytics/mle/LinReg.py +0 -433
  1056. teradataml/analytics/mle/LinRegPredict.py +0 -438
  1057. teradataml/analytics/mle/MinHash.py +0 -544
  1058. teradataml/analytics/mle/Modularity.py +0 -587
  1059. teradataml/analytics/mle/NEREvaluator.py +0 -410
  1060. teradataml/analytics/mle/NERExtractor.py +0 -595
  1061. teradataml/analytics/mle/NERTrainer.py +0 -458
  1062. teradataml/analytics/mle/NGrams.py +0 -570
  1063. teradataml/analytics/mle/NPath.py +0 -634
  1064. teradataml/analytics/mle/NTree.py +0 -549
  1065. teradataml/analytics/mle/NaiveBayes.py +0 -462
  1066. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  1067. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  1068. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  1069. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  1070. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  1071. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  1072. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  1073. teradataml/analytics/mle/POSTagger.py +0 -417
  1074. teradataml/analytics/mle/Pack.py +0 -411
  1075. teradataml/analytics/mle/PageRank.py +0 -535
  1076. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  1077. teradataml/analytics/mle/PathGenerator.py +0 -367
  1078. teradataml/analytics/mle/PathStart.py +0 -464
  1079. teradataml/analytics/mle/PathSummarizer.py +0 -470
  1080. teradataml/analytics/mle/Pivot.py +0 -471
  1081. teradataml/analytics/mle/ROC.py +0 -425
  1082. teradataml/analytics/mle/RandomSample.py +0 -637
  1083. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  1084. teradataml/analytics/mle/SAX.py +0 -779
  1085. teradataml/analytics/mle/SVMDense.py +0 -677
  1086. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  1087. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  1088. teradataml/analytics/mle/SVMSparse.py +0 -557
  1089. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  1090. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  1091. teradataml/analytics/mle/Sampling.py +0 -549
  1092. teradataml/analytics/mle/Scale.py +0 -565
  1093. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  1094. teradataml/analytics/mle/ScaleMap.py +0 -378
  1095. teradataml/analytics/mle/ScaleSummary.py +0 -320
  1096. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  1097. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  1098. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  1099. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  1100. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  1101. teradataml/analytics/mle/Sessionize.py +0 -475
  1102. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  1103. teradataml/analytics/mle/StringSimilarity.py +0 -425
  1104. teradataml/analytics/mle/TF.py +0 -389
  1105. teradataml/analytics/mle/TFIDF.py +0 -504
  1106. teradataml/analytics/mle/TextChunker.py +0 -414
  1107. teradataml/analytics/mle/TextClassifier.py +0 -399
  1108. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  1109. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  1110. teradataml/analytics/mle/TextMorph.py +0 -494
  1111. teradataml/analytics/mle/TextParser.py +0 -623
  1112. teradataml/analytics/mle/TextTagger.py +0 -530
  1113. teradataml/analytics/mle/TextTokenizer.py +0 -502
  1114. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  1115. teradataml/analytics/mle/Unpack.py +0 -526
  1116. teradataml/analytics/mle/Unpivot.py +0 -438
  1117. teradataml/analytics/mle/VarMax.py +0 -776
  1118. teradataml/analytics/mle/VectorDistance.py +0 -762
  1119. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  1120. teradataml/analytics/mle/XGBoost.py +0 -842
  1121. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  1122. teradataml/analytics/mle/__init__.py +0 -123
  1123. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  1124. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  1125. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  1126. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  1127. teradataml/analytics/mle/json/arima_mle.json +0 -172
  1128. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  1129. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  1130. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  1131. teradataml/analytics/mle/json/burst_mle.json +0 -140
  1132. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  1133. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  1134. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  1135. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  1136. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  1137. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  1138. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  1139. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  1140. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  1141. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  1142. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  1143. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  1144. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  1145. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  1146. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  1147. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  1148. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  1149. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  1150. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  1151. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  1152. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  1153. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  1154. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  1155. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  1156. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  1157. teradataml/analytics/mle/json/glm_mle.json +0 -111
  1158. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  1159. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  1160. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  1161. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  1162. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  1163. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  1164. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  1165. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  1166. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  1167. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  1168. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  1169. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  1170. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  1171. teradataml/analytics/mle/json/knn_mle.json +0 -141
  1172. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  1173. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  1174. teradataml/analytics/mle/json/lar_mle.json +0 -78
  1175. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  1176. teradataml/analytics/mle/json/lda_mle.json +0 -130
  1177. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  1178. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  1179. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  1180. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  1181. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  1182. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  1183. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  1184. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  1185. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  1186. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  1187. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  1188. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  1189. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  1190. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  1191. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  1192. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  1193. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  1194. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  1195. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  1196. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  1197. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  1198. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  1199. teradataml/analytics/mle/json/pack_mle.json +0 -58
  1200. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  1201. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  1202. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  1203. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  1204. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  1205. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  1206. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  1207. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  1208. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  1209. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  1210. teradataml/analytics/mle/json/roc_mle.json +0 -73
  1211. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  1212. teradataml/analytics/mle/json/sax_mle.json +0 -154
  1213. teradataml/analytics/mle/json/scale_mle.json +0 -93
  1214. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  1215. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  1216. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  1217. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  1218. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  1219. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  1220. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  1221. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  1222. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  1223. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  1224. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  1225. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  1226. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  1227. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  1228. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  1229. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  1230. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  1231. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  1232. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  1233. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  1234. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  1235. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  1236. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  1237. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  1238. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  1239. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  1240. teradataml/analytics/mle/json/tf_mle.json +0 -33
  1241. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  1242. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  1243. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  1244. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  1245. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  1246. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  1247. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  1248. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  1249. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  1250. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  1251. teradataml/analytics/sqle/Antiselect.py +0 -321
  1252. teradataml/analytics/sqle/Attribution.py +0 -603
  1253. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  1254. teradataml/analytics/sqle/GLMPredict.py +0 -430
  1255. teradataml/analytics/sqle/MovingAverage.py +0 -543
  1256. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  1257. teradataml/analytics/sqle/NPath.py +0 -632
  1258. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  1259. teradataml/analytics/sqle/Pack.py +0 -388
  1260. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  1261. teradataml/analytics/sqle/Sessionize.py +0 -390
  1262. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  1263. teradataml/analytics/sqle/Unpack.py +0 -503
  1264. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  1265. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  1266. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  1267. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  1268. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  1269. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  1270. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  1271. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  1272. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  1273. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  1274. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  1275. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  1276. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  1277. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  1278. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  1279. teradataml/catalog/model_cataloging.py +0 -980
  1280. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  1281. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  1282. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  1283. teradataml/table_operators/sandbox_container_util.py +0 -643
  1284. teradataml-17.20.0.7.dist-info/RECORD +0 -1280
  1285. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
@@ -1,1339 +1,1339 @@
1
- age,sex,bmi,children,smoker,region,charges
2
- 19,female,27.9,0,yes,southwest,16884.924
3
- 18,male,33.77,1,no,southeast,1725.5523
4
- 28,male,33,3,no,southeast,4449.462
5
- 33,male,22.705,0,no,northwest,21984.47061
6
- 32,male,28.88,0,no,northwest,3866.8552
7
- 31,female,25.74,0,no,southeast,3756.6216
8
- 46,female,33.44,1,no,southeast,8240.5896
9
- 37,female,27.74,3,no,northwest,7281.5056
10
- 37,male,29.83,2,no,northeast,6406.4107
11
- 60,female,25.84,0,no,northwest,28923.13692
12
- 25,male,26.22,0,no,northeast,2721.3208
13
- 62,female,26.29,0,yes,southeast,27808.7251
14
- 23,male,34.4,0,no,southwest,1826.843
15
- 56,female,39.82,0,no,southeast,11090.7178
16
- 27,male,42.13,0,yes,southeast,39611.7577
17
- 19,male,24.6,1,no,southwest,1837.237
18
- 52,female,30.78,1,no,northeast,10797.3362
19
- 23,male,23.845,0,no,northeast,2395.17155
20
- 56,male,40.3,0,no,southwest,10602.385
21
- 30,male,35.3,0,yes,southwest,36837.467
22
- 60,female,36.005,0,no,northeast,13228.84695
23
- 30,female,32.4,1,no,southwest,4149.736
24
- 18,male,34.1,0,no,southeast,1137.011
25
- 34,female,31.92,1,yes,northeast,37701.8768
26
- 37,male,28.025,2,no,northwest,6203.90175
27
- 59,female,27.72,3,no,southeast,14001.1338
28
- 63,female,23.085,0,no,northeast,14451.83515
29
- 55,female,32.775,2,no,northwest,12268.63225
30
- 23,male,17.385,1,no,northwest,2775.19215
31
- 31,male,36.3,2,yes,southwest,38711
32
- 22,male,35.6,0,yes,southwest,35585.576
33
- 18,female,26.315,0,no,northeast,2198.18985
34
- 19,female,28.6,5,no,southwest,4687.797
35
- 63,male,28.31,0,no,northwest,13770.0979
36
- 28,male,36.4,1,yes,southwest,51194.55914
37
- 19,male,20.425,0,no,northwest,1625.43375
38
- 62,female,32.965,3,no,northwest,15612.19335
39
- 26,male,20.8,0,no,southwest,2302.3
40
- 35,male,36.67,1,yes,northeast,39774.2763
41
- 60,male,39.9,0,yes,southwest,48173.361
42
- 24,female,26.6,0,no,northeast,3046.062
43
- 31,female,36.63,2,no,southeast,4949.7587
44
- 41,male,21.78,1,no,southeast,6272.4772
45
- 37,female,30.8,2,no,southeast,6313.759
46
- 38,male,37.05,1,no,northeast,6079.6715
47
- 55,male,37.3,0,no,southwest,20630.28351
48
- 18,female,38.665,2,no,northeast,3393.35635
49
- 28,female,34.77,0,no,northwest,3556.9223
50
- 60,female,24.53,0,no,southeast,12629.8967
51
- 36,male,35.2,1,yes,southeast,38709.176
52
- 18,female,35.625,0,no,northeast,2211.13075
53
- 21,female,33.63,2,no,northwest,3579.8287
54
- 48,male,28,1,yes,southwest,23568.272
55
- 36,male,34.43,0,yes,southeast,37742.5757
56
- 40,female,28.69,3,no,northwest,8059.6791
57
- 58,male,36.955,2,yes,northwest,47496.49445
58
- 58,female,31.825,2,no,northeast,13607.36875
59
- 18,male,31.68,2,yes,southeast,34303.1672
60
- 53,female,22.88,1,yes,southeast,23244.7902
61
- 34,female,37.335,2,no,northwest,5989.52365
62
- 43,male,27.36,3,no,northeast,8606.2174
63
- 25,male,33.66,4,no,southeast,4504.6624
64
- 64,male,24.7,1,no,northwest,30166.61817
65
- 28,female,25.935,1,no,northwest,4133.64165
66
- 20,female,22.42,0,yes,northwest,14711.7438
67
- 19,female,28.9,0,no,southwest,1743.214
68
- 61,female,39.1,2,no,southwest,14235.072
69
- 40,male,26.315,1,no,northwest,6389.37785
70
- 40,female,36.19,0,no,southeast,5920.1041
71
- 28,male,23.98,3,yes,southeast,17663.1442
72
- 27,female,24.75,0,yes,southeast,16577.7795
73
- 31,male,28.5,5,no,northeast,6799.458
74
- 53,female,28.1,3,no,southwest,11741.726
75
- 58,male,32.01,1,no,southeast,11946.6259
76
- 44,male,27.4,2,no,southwest,7726.854
77
- 57,male,34.01,0,no,northwest,11356.6609
78
- 29,female,29.59,1,no,southeast,3947.4131
79
- 21,male,35.53,0,no,southeast,1532.4697
80
- 22,female,39.805,0,no,northeast,2755.02095
81
- 41,female,32.965,0,no,northwest,6571.02435
82
- 31,male,26.885,1,no,northeast,4441.21315
83
- 45,female,38.285,0,no,northeast,7935.29115
84
- 22,male,37.62,1,yes,southeast,37165.1638
85
- 48,female,41.23,4,no,northwest,11033.6617
86
- 37,female,34.8,2,yes,southwest,39836.519
87
- 45,male,22.895,2,yes,northwest,21098.55405
88
- 57,female,31.16,0,yes,northwest,43578.9394
89
- 56,female,27.2,0,no,southwest,11073.176
90
- 46,female,27.74,0,no,northwest,8026.6666
91
- 55,female,26.98,0,no,northwest,11082.5772
92
- 21,female,39.49,0,no,southeast,2026.9741
93
- 53,female,24.795,1,no,northwest,10942.13205
94
- 59,male,29.83,3,yes,northeast,30184.9367
95
- 35,male,34.77,2,no,northwest,5729.0053
96
- 64,female,31.3,2,yes,southwest,47291.055
97
- 28,female,37.62,1,no,southeast,3766.8838
98
- 54,female,30.8,3,no,southwest,12105.32
99
- 55,male,38.28,0,no,southeast,10226.2842
100
- 56,male,19.95,0,yes,northeast,22412.6485
101
- 38,male,19.3,0,yes,southwest,15820.699
102
- 41,female,31.6,0,no,southwest,6186.127
103
- 30,male,25.46,0,no,northeast,3645.0894
104
- 18,female,30.115,0,no,northeast,21344.8467
105
- 61,female,29.92,3,yes,southeast,30942.1918
106
- 34,female,27.5,1,no,southwest,5003.853
107
- 20,male,28.025,1,yes,northwest,17560.37975
108
- 19,female,28.4,1,no,southwest,2331.519
109
- 26,male,30.875,2,no,northwest,3877.30425
110
- 29,male,27.94,0,no,southeast,2867.1196
111
- 63,male,35.09,0,yes,southeast,47055.5321
112
- 54,male,33.63,1,no,northwest,10825.2537
113
- 55,female,29.7,2,no,southwest,11881.358
114
- 37,male,30.8,0,no,southwest,4646.759
115
- 21,female,35.72,0,no,northwest,2404.7338
116
- 52,male,32.205,3,no,northeast,11488.31695
117
- 60,male,28.595,0,no,northeast,30259.99556
118
- 58,male,49.06,0,no,southeast,11381.3254
119
- 29,female,27.94,1,yes,southeast,19107.7796
120
- 49,female,27.17,0,no,southeast,8601.3293
121
- 37,female,23.37,2,no,northwest,6686.4313
122
- 44,male,37.1,2,no,southwest,7740.337
123
- 18,male,23.75,0,no,northeast,1705.6245
124
- 20,female,28.975,0,no,northwest,2257.47525
125
- 44,male,31.35,1,yes,northeast,39556.4945
126
- 47,female,33.915,3,no,northwest,10115.00885
127
- 26,female,28.785,0,no,northeast,3385.39915
128
- 19,female,28.3,0,yes,southwest,17081.08
129
- 52,female,37.4,0,no,southwest,9634.538
130
- 32,female,17.765,2,yes,northwest,32734.1863
131
- 38,male,34.7,2,no,southwest,6082.405
132
- 59,female,26.505,0,no,northeast,12815.44495
133
- 61,female,22.04,0,no,northeast,13616.3586
134
- 53,female,35.9,2,no,southwest,11163.568
135
- 19,male,25.555,0,no,northwest,1632.56445
136
- 20,female,28.785,0,no,northeast,2457.21115
137
- 22,female,28.05,0,no,southeast,2155.6815
138
- 19,male,34.1,0,no,southwest,1261.442
139
- 22,male,25.175,0,no,northwest,2045.68525
140
- 54,female,31.9,3,no,southeast,27322.73386
141
- 22,female,36,0,no,southwest,2166.732
142
- 34,male,22.42,2,no,northeast,27375.90478
143
- 26,male,32.49,1,no,northeast,3490.5491
144
- 34,male,25.3,2,yes,southeast,18972.495
145
- 29,male,29.735,2,no,northwest,18157.876
146
- 30,male,28.69,3,yes,northwest,20745.9891
147
- 29,female,38.83,3,no,southeast,5138.2567
148
- 46,male,30.495,3,yes,northwest,40720.55105
149
- 51,female,37.73,1,no,southeast,9877.6077
150
- 53,female,37.43,1,no,northwest,10959.6947
151
- 19,male,28.4,1,no,southwest,1842.519
152
- 35,male,24.13,1,no,northwest,5125.2157
153
- 48,male,29.7,0,no,southeast,7789.635
154
- 32,female,37.145,3,no,northeast,6334.34355
155
- 42,female,23.37,0,yes,northeast,19964.7463
156
- 40,female,25.46,1,no,northeast,7077.1894
157
- 44,male,39.52,0,no,northwest,6948.7008
158
- 48,male,24.42,0,yes,southeast,21223.6758
159
- 18,male,25.175,0,yes,northeast,15518.18025
160
- 30,male,35.53,0,yes,southeast,36950.2567
161
- 50,female,27.83,3,no,southeast,19749.38338
162
- 42,female,26.6,0,yes,northwest,21348.706
163
- 18,female,36.85,0,yes,southeast,36149.4835
164
- 54,male,39.6,1,no,southwest,10450.552
165
- 32,female,29.8,2,no,southwest,5152.134
166
- 37,male,29.64,0,no,northwest,5028.1466
167
- 47,male,28.215,4,no,northeast,10407.08585
168
- 20,female,37,5,no,southwest,4830.63
169
- 32,female,33.155,3,no,northwest,6128.79745
170
- 19,female,31.825,1,no,northwest,2719.27975
171
- 27,male,18.905,3,no,northeast,4827.90495
172
- 63,male,41.47,0,no,southeast,13405.3903
173
- 49,male,30.3,0,no,southwest,8116.68
174
- 18,male,15.96,0,no,northeast,1694.7964
175
- 35,female,34.8,1,no,southwest,5246.047
176
- 24,female,33.345,0,no,northwest,2855.43755
177
- 63,female,37.7,0,yes,southwest,48824.45
178
- 38,male,27.835,2,no,northwest,6455.86265
179
- 54,male,29.2,1,no,southwest,10436.096
180
- 46,female,28.9,2,no,southwest,8823.279
181
- 41,female,33.155,3,no,northeast,8538.28845
182
- 58,male,28.595,0,no,northwest,11735.87905
183
- 18,female,38.28,0,no,southeast,1631.8212
184
- 22,male,19.95,3,no,northeast,4005.4225
185
- 44,female,26.41,0,no,northwest,7419.4779
186
- 44,male,30.69,2,no,southeast,7731.4271
187
- 36,male,41.895,3,yes,northeast,43753.33705
188
- 26,female,29.92,2,no,southeast,3981.9768
189
- 30,female,30.9,3,no,southwest,5325.651
190
- 41,female,32.2,1,no,southwest,6775.961
191
- 29,female,32.11,2,no,northwest,4922.9159
192
- 61,male,31.57,0,no,southeast,12557.6053
193
- 36,female,26.2,0,no,southwest,4883.866
194
- 25,male,25.74,0,no,southeast,2137.6536
195
- 56,female,26.6,1,no,northwest,12044.342
196
- 18,male,34.43,0,no,southeast,1137.4697
197
- 19,male,30.59,0,no,northwest,1639.5631
198
- 39,female,32.8,0,no,southwest,5649.715
199
- 45,female,28.6,2,no,southeast,8516.829
200
- 51,female,18.05,0,no,northwest,9644.2525
201
- 64,female,39.33,0,no,northeast,14901.5167
202
- 19,female,32.11,0,no,northwest,2130.6759
203
- 48,female,32.23,1,no,southeast,8871.1517
204
- 60,female,24.035,0,no,northwest,13012.20865
205
- 27,female,36.08,0,yes,southeast,37133.8982
206
- 46,male,22.3,0,no,southwest,7147.105
207
- 28,female,28.88,1,no,northeast,4337.7352
208
- 59,male,26.4,0,no,southeast,11743.299
209
- 35,male,27.74,2,yes,northeast,20984.0936
210
- 63,female,31.8,0,no,southwest,13880.949
211
- 40,male,41.23,1,no,northeast,6610.1097
212
- 20,male,33,1,no,southwest,1980.07
213
- 40,male,30.875,4,no,northwest,8162.71625
214
- 24,male,28.5,2,no,northwest,3537.703
215
- 34,female,26.73,1,no,southeast,5002.7827
216
- 45,female,30.9,2,no,southwest,8520.026
217
- 41,female,37.1,2,no,southwest,7371.772
218
- 53,female,26.6,0,no,northwest,10355.641
219
- 27,male,23.1,0,no,southeast,2483.736
220
- 26,female,29.92,1,no,southeast,3392.9768
221
- 24,female,23.21,0,no,southeast,25081.76784
222
- 34,female,33.7,1,no,southwest,5012.471
223
- 53,female,33.25,0,no,northeast,10564.8845
224
- 32,male,30.8,3,no,southwest,5253.524
225
- 19,male,34.8,0,yes,southwest,34779.615
226
- 42,male,24.64,0,yes,southeast,19515.5416
227
- 55,male,33.88,3,no,southeast,11987.1682
228
- 28,male,38.06,0,no,southeast,2689.4954
229
- 58,female,41.91,0,no,southeast,24227.33724
230
- 41,female,31.635,1,no,northeast,7358.17565
231
- 47,male,25.46,2,no,northeast,9225.2564
232
- 42,female,36.195,1,no,northwest,7443.64305
233
- 59,female,27.83,3,no,southeast,14001.2867
234
- 19,female,17.8,0,no,southwest,1727.785
235
- 59,male,27.5,1,no,southwest,12333.828
236
- 39,male,24.51,2,no,northwest,6710.1919
237
- 40,female,22.22,2,yes,southeast,19444.2658
238
- 18,female,26.73,0,no,southeast,1615.7667
239
- 31,male,38.39,2,no,southeast,4463.2051
240
- 19,male,29.07,0,yes,northwest,17352.6803
241
- 44,male,38.06,1,no,southeast,7152.6714
242
- 23,female,36.67,2,yes,northeast,38511.6283
243
- 33,female,22.135,1,no,northeast,5354.07465
244
- 55,female,26.8,1,no,southwest,35160.13457
245
- 40,male,35.3,3,no,southwest,7196.867
246
- 63,female,27.74,0,yes,northeast,29523.1656
247
- 54,male,30.02,0,no,northwest,24476.47851
248
- 60,female,38.06,0,no,southeast,12648.7034
249
- 24,male,35.86,0,no,southeast,1986.9334
250
- 19,male,20.9,1,no,southwest,1832.094
251
- 29,male,28.975,1,no,northeast,4040.55825
252
- 18,male,17.29,2,yes,northeast,12829.4551
253
- 63,female,32.2,2,yes,southwest,47305.305
254
- 54,male,34.21,2,yes,southeast,44260.7499
255
- 27,male,30.3,3,no,southwest,4260.744
256
- 50,male,31.825,0,yes,northeast,41097.16175
257
- 55,female,25.365,3,no,northeast,13047.33235
258
- 56,male,33.63,0,yes,northwest,43921.1837
259
- 38,female,40.15,0,no,southeast,5400.9805
260
- 51,male,24.415,4,no,northwest,11520.09985
261
- 19,male,31.92,0,yes,northwest,33750.2918
262
- 58,female,25.2,0,no,southwest,11837.16
263
- 20,female,26.84,1,yes,southeast,17085.2676
264
- 52,male,24.32,3,yes,northeast,24869.8368
265
- 19,male,36.955,0,yes,northwest,36219.40545
266
- 53,female,38.06,3,no,southeast,20462.99766
267
- 46,male,42.35,3,yes,southeast,46151.1245
268
- 40,male,19.8,1,yes,southeast,17179.522
269
- 59,female,32.395,3,no,northeast,14590.63205
270
- 45,male,30.2,1,no,southwest,7441.053
271
- 49,male,25.84,1,no,northeast,9282.4806
272
- 18,male,29.37,1,no,southeast,1719.4363
273
- 50,male,34.2,2,yes,southwest,42856.838
274
- 41,male,37.05,2,no,northwest,7265.7025
275
- 50,male,27.455,1,no,northeast,9617.66245
276
- 25,male,27.55,0,no,northwest,2523.1695
277
- 47,female,26.6,2,no,northeast,9715.841
278
- 19,male,20.615,2,no,northwest,2803.69785
279
- 22,female,24.3,0,no,southwest,2150.469
280
- 59,male,31.79,2,no,southeast,12928.7911
281
- 51,female,21.56,1,no,southeast,9855.1314
282
- 40,female,28.12,1,yes,northeast,22331.5668
283
- 54,male,40.565,3,yes,northeast,48549.17835
284
- 30,male,27.645,1,no,northeast,4237.12655
285
- 55,female,32.395,1,no,northeast,11879.10405
286
- 52,female,31.2,0,no,southwest,9625.92
287
- 46,male,26.62,1,no,southeast,7742.1098
288
- 46,female,48.07,2,no,northeast,9432.9253
289
- 63,female,26.22,0,no,northwest,14256.1928
290
- 59,female,36.765,1,yes,northeast,47896.79135
291
- 52,male,26.4,3,no,southeast,25992.82104
292
- 28,female,33.4,0,no,southwest,3172.018
293
- 29,male,29.64,1,no,northeast,20277.80751
294
- 25,male,45.54,2,yes,southeast,42112.2356
295
- 22,female,28.82,0,no,southeast,2156.7518
296
- 25,male,26.8,3,no,southwest,3906.127
297
- 18,male,22.99,0,no,northeast,1704.5681
298
- 19,male,27.7,0,yes,southwest,16297.846
299
- 47,male,25.41,1,yes,southeast,21978.6769
300
- 31,male,34.39,3,yes,northwest,38746.3551
301
- 48,female,28.88,1,no,northwest,9249.4952
302
- 36,male,27.55,3,no,northeast,6746.7425
303
- 53,female,22.61,3,yes,northeast,24873.3849
304
- 56,female,37.51,2,no,southeast,12265.5069
305
- 28,female,33,2,no,southeast,4349.462
306
- 57,female,38,2,no,southwest,12646.207
307
- 29,male,33.345,2,no,northwest,19442.3535
308
- 28,female,27.5,2,no,southwest,20177.67113
309
- 30,female,33.33,1,no,southeast,4151.0287
310
- 58,male,34.865,0,no,northeast,11944.59435
311
- 41,female,33.06,2,no,northwest,7749.1564
312
- 50,male,26.6,0,no,southwest,8444.474
313
- 19,female,24.7,0,no,southwest,1737.376
314
- 43,male,35.97,3,yes,southeast,42124.5153
315
- 49,male,35.86,0,no,southeast,8124.4084
316
- 27,female,31.4,0,yes,southwest,34838.873
317
- 52,male,33.25,0,no,northeast,9722.7695
318
- 50,male,32.205,0,no,northwest,8835.26495
319
- 54,male,32.775,0,no,northeast,10435.06525
320
- 44,female,27.645,0,no,northwest,7421.19455
321
- 32,male,37.335,1,no,northeast,4667.60765
322
- 34,male,25.27,1,no,northwest,4894.7533
323
- 26,female,29.64,4,no,northeast,24671.66334
324
- 34,male,30.8,0,yes,southwest,35491.64
325
- 57,male,40.945,0,no,northeast,11566.30055
326
- 29,male,27.2,0,no,southwest,2866.091
327
- 40,male,34.105,1,no,northeast,6600.20595
328
- 27,female,23.21,1,no,southeast,3561.8889
329
- 45,male,36.48,2,yes,northwest,42760.5022
330
- 64,female,33.8,1,yes,southwest,47928.03
331
- 52,male,36.7,0,no,southwest,9144.565
332
- 61,female,36.385,1,yes,northeast,48517.56315
333
- 52,male,27.36,0,yes,northwest,24393.6224
334
- 61,female,31.16,0,no,northwest,13429.0354
335
- 56,female,28.785,0,no,northeast,11658.37915
336
- 43,female,35.72,2,no,northeast,19144.57652
337
- 64,male,34.5,0,no,southwest,13822.803
338
- 60,male,25.74,0,no,southeast,12142.5786
339
- 62,male,27.55,1,no,northwest,13937.6665
340
- 50,male,32.3,1,yes,northeast,41919.097
341
- 46,female,27.72,1,no,southeast,8232.6388
342
- 24,female,27.6,0,no,southwest,18955.22017
343
- 62,male,30.02,0,no,northwest,13352.0998
344
- 60,female,27.55,0,no,northeast,13217.0945
345
- 63,male,36.765,0,no,northeast,13981.85035
346
- 49,female,41.47,4,no,southeast,10977.2063
347
- 34,female,29.26,3,no,southeast,6184.2994
348
- 33,male,35.75,2,no,southeast,4889.9995
349
- 46,male,33.345,1,no,northeast,8334.45755
350
- 36,female,29.92,1,no,southeast,5478.0368
351
- 19,male,27.835,0,no,northwest,1635.73365
352
- 57,female,23.18,0,no,northwest,11830.6072
353
- 50,female,25.6,0,no,southwest,8932.084
354
- 30,female,27.7,0,no,southwest,3554.203
355
- 33,male,35.245,0,no,northeast,12404.8791
356
- 18,female,38.28,0,no,southeast,14133.03775
357
- 46,male,27.6,0,no,southwest,24603.04837
358
- 46,male,43.89,3,no,southeast,8944.1151
359
- 47,male,29.83,3,no,northwest,9620.3307
360
- 23,male,41.91,0,no,southeast,1837.2819
361
- 18,female,20.79,0,no,southeast,1607.5101
362
- 48,female,32.3,2,no,northeast,10043.249
363
- 35,male,30.5,1,no,southwest,4751.07
364
- 19,female,21.7,0,yes,southwest,13844.506
365
- 21,female,26.4,1,no,southwest,2597.779
366
- 21,female,21.89,2,no,southeast,3180.5101
367
- 49,female,30.78,1,no,northeast,9778.3472
368
- 56,female,32.3,3,no,northeast,13430.265
369
- 42,female,24.985,2,no,northwest,8017.06115
370
- 44,male,32.015,2,no,northwest,8116.26885
371
- 18,male,30.4,3,no,northeast,3481.868
372
- 61,female,21.09,0,no,northwest,13415.0381
373
- 57,female,22.23,0,no,northeast,12029.2867
374
- 42,female,33.155,1,no,northeast,7639.41745
375
- 26,male,32.9,2,yes,southwest,36085.219
376
- 20,male,33.33,0,no,southeast,1391.5287
377
- 23,female,28.31,0,yes,northwest,18033.9679
378
- 39,female,24.89,3,yes,northeast,21659.9301
379
- 24,male,40.15,0,yes,southeast,38126.2465
380
- 64,female,30.115,3,no,northwest,16455.70785
381
- 62,male,31.46,1,no,southeast,27000.98473
382
- 27,female,17.955,2,yes,northeast,15006.57945
383
- 55,male,30.685,0,yes,northeast,42303.69215
384
- 55,male,33,0,no,southeast,20781.48892
385
- 35,female,43.34,2,no,southeast,5846.9176
386
- 44,male,22.135,2,no,northeast,8302.53565
387
- 19,male,34.4,0,no,southwest,1261.859
388
- 58,female,39.05,0,no,southeast,11856.4115
389
- 50,male,25.365,2,no,northwest,30284.64294
390
- 26,female,22.61,0,no,northwest,3176.8159
391
- 24,female,30.21,3,no,northwest,4618.0799
392
- 48,male,35.625,4,no,northeast,10736.87075
393
- 19,female,37.43,0,no,northwest,2138.0707
394
- 48,male,31.445,1,no,northeast,8964.06055
395
- 49,male,31.35,1,no,northeast,9290.1395
396
- 46,female,32.3,2,no,northeast,9411.005
397
- 46,male,19.855,0,no,northwest,7526.70645
398
- 43,female,34.4,3,no,southwest,8522.003
399
- 21,male,31.02,0,no,southeast,16586.49771
400
- 64,male,25.6,2,no,southwest,14988.432
401
- 18,female,38.17,0,no,southeast,1631.6683
402
- 51,female,20.6,0,no,southwest,9264.797
403
- 47,male,47.52,1,no,southeast,8083.9198
404
- 64,female,32.965,0,no,northwest,14692.66935
405
- 49,male,32.3,3,no,northwest,10269.46
406
- 31,male,20.4,0,no,southwest,3260.199
407
- 52,female,38.38,2,no,northeast,11396.9002
408
- 33,female,24.31,0,no,southeast,4185.0979
409
- 47,female,23.6,1,no,southwest,8539.671
410
- 38,male,21.12,3,no,southeast,6652.5288
411
- 32,male,30.03,1,no,southeast,4074.4537
412
- 19,male,17.48,0,no,northwest,1621.3402
413
- 44,female,20.235,1,yes,northeast,19594.80965
414
- 26,female,17.195,2,yes,northeast,14455.64405
415
- 25,male,23.9,5,no,southwest,5080.096
416
- 19,female,35.15,0,no,northwest,2134.9015
417
- 43,female,35.64,1,no,southeast,7345.7266
418
- 52,male,34.1,0,no,southeast,9140.951
419
- 36,female,22.6,2,yes,southwest,18608.262
420
- 64,male,39.16,1,no,southeast,14418.2804
421
- 63,female,26.98,0,yes,northwest,28950.4692
422
- 64,male,33.88,0,yes,southeast,46889.2612
423
- 61,male,35.86,0,yes,southeast,46599.1084
424
- 40,male,32.775,1,yes,northeast,39125.33225
425
- 25,male,30.59,0,no,northeast,2727.3951
426
- 48,male,30.2,2,no,southwest,8968.33
427
- 45,male,24.31,5,no,southeast,9788.8659
428
- 38,female,27.265,1,no,northeast,6555.07035
429
- 18,female,29.165,0,no,northeast,7323.734819
430
- 21,female,16.815,1,no,northeast,3167.45585
431
- 27,female,30.4,3,no,northwest,18804.7524
432
- 19,male,33.1,0,no,southwest,23082.95533
433
- 29,female,20.235,2,no,northwest,4906.40965
434
- 42,male,26.9,0,no,southwest,5969.723
435
- 60,female,30.5,0,no,southwest,12638.195
436
- 31,male,28.595,1,no,northwest,4243.59005
437
- 60,male,33.11,3,no,southeast,13919.8229
438
- 22,male,31.73,0,no,northeast,2254.7967
439
- 35,male,28.9,3,no,southwest,5926.846
440
- 52,female,46.75,5,no,southeast,12592.5345
441
- 26,male,29.45,0,no,northeast,2897.3235
442
- 31,female,32.68,1,no,northwest,4738.2682
443
- 33,female,33.5,0,yes,southwest,37079.372
444
- 18,male,43.01,0,no,southeast,1149.3959
445
- 59,female,36.52,1,no,southeast,28287.89766
446
- 56,male,26.695,1,yes,northwest,26109.32905
447
- 45,female,33.1,0,no,southwest,7345.084
448
- 60,male,29.64,0,no,northeast,12730.9996
449
- 56,female,25.65,0,no,northwest,11454.0215
450
- 40,female,29.6,0,no,southwest,5910.944
451
- 35,male,38.6,1,no,southwest,4762.329
452
- 39,male,29.6,4,no,southwest,7512.267
453
- 30,male,24.13,1,no,northwest,4032.2407
454
- 24,male,23.4,0,no,southwest,1969.614
455
- 20,male,29.735,0,no,northwest,1769.53165
456
- 32,male,46.53,2,no,southeast,4686.3887
457
- 59,male,37.4,0,no,southwest,21797.0004
458
- 55,female,30.14,2,no,southeast,11881.9696
459
- 57,female,30.495,0,no,northwest,11840.77505
460
- 56,male,39.6,0,no,southwest,10601.412
461
- 40,female,33,3,no,southeast,7682.67
462
- 49,female,36.63,3,no,southeast,10381.4787
463
- 42,male,30,0,yes,southwest,22144.032
464
- 62,female,38.095,2,no,northeast,15230.32405
465
- 56,male,25.935,0,no,northeast,11165.41765
466
- 19,male,25.175,0,no,northwest,1632.03625
467
- 30,female,28.38,1,yes,southeast,19521.9682
468
- 60,female,28.7,1,no,southwest,13224.693
469
- 56,female,33.82,2,no,northwest,12643.3778
470
- 28,female,24.32,1,no,northeast,23288.9284
471
- 18,female,24.09,1,no,southeast,2201.0971
472
- 27,male,32.67,0,no,southeast,2497.0383
473
- 18,female,30.115,0,no,northeast,2203.47185
474
- 19,female,29.8,0,no,southwest,1744.465
475
- 47,female,33.345,0,no,northeast,20878.78443
476
- 54,male,25.1,3,yes,southwest,25382.297
477
- 61,male,28.31,1,yes,northwest,28868.6639
478
- 24,male,28.5,0,yes,northeast,35147.52848
479
- 25,male,35.625,0,no,northwest,2534.39375
480
- 21,male,36.85,0,no,southeast,1534.3045
481
- 23,male,32.56,0,no,southeast,1824.2854
482
- 63,male,41.325,3,no,northwest,15555.18875
483
- 49,male,37.51,2,no,southeast,9304.7019
484
- 18,female,31.35,0,no,southeast,1622.1885
485
- 51,female,39.5,1,no,southwest,9880.068
486
- 48,male,34.3,3,no,southwest,9563.029
487
- 31,female,31.065,0,no,northeast,4347.02335
488
- 54,female,21.47,3,no,northwest,12475.3513
489
- 19,male,28.7,0,no,southwest,1253.936
490
- 44,female,38.06,0,yes,southeast,48885.13561
491
- 53,male,31.16,1,no,northwest,10461.9794
492
- 19,female,32.9,0,no,southwest,1748.774
493
- 61,female,25.08,0,no,southeast,24513.09126
494
- 18,female,25.08,0,no,northeast,2196.4732
495
- 61,male,43.4,0,no,southwest,12574.049
496
- 21,male,25.7,4,yes,southwest,17942.106
497
- 20,male,27.93,0,no,northeast,1967.0227
498
- 31,female,23.6,2,no,southwest,4931.647
499
- 45,male,28.7,2,no,southwest,8027.968
500
- 44,female,23.98,2,no,southeast,8211.1002
501
- 62,female,39.2,0,no,southwest,13470.86
502
- 29,male,34.4,0,yes,southwest,36197.699
503
- 43,male,26.03,0,no,northeast,6837.3687
504
- 51,male,23.21,1,yes,southeast,22218.1149
505
- 19,male,30.25,0,yes,southeast,32548.3405
506
- 38,female,28.93,1,no,southeast,5974.3847
507
- 37,male,30.875,3,no,northwest,6796.86325
508
- 22,male,31.35,1,no,northwest,2643.2685
509
- 21,male,23.75,2,no,northwest,3077.0955
510
- 24,female,25.27,0,no,northeast,3044.2133
511
- 57,female,28.7,0,no,southwest,11455.28
512
- 56,male,32.11,1,no,northeast,11763.0009
513
- 27,male,33.66,0,no,southeast,2498.4144
514
- 51,male,22.42,0,no,northeast,9361.3268
515
- 19,male,30.4,0,no,southwest,1256.299
516
- 39,male,28.3,1,yes,southwest,21082.16
517
- 58,male,35.7,0,no,southwest,11362.755
518
- 20,male,35.31,1,no,southeast,27724.28875
519
- 45,male,30.495,2,no,northwest,8413.46305
520
- 35,female,31,1,no,southwest,5240.765
521
- 31,male,30.875,0,no,northeast,3857.75925
522
- 50,female,27.36,0,no,northeast,25656.57526
523
- 32,female,44.22,0,no,southeast,3994.1778
524
- 51,female,33.915,0,no,northeast,9866.30485
525
- 38,female,37.73,0,no,southeast,5397.6167
526
- 42,male,26.07,1,yes,southeast,38245.59327
527
- 18,female,33.88,0,no,southeast,11482.63485
528
- 19,female,30.59,2,no,northwest,24059.68019
529
- 51,female,25.8,1,no,southwest,9861.025
530
- 46,male,39.425,1,no,northeast,8342.90875
531
- 18,male,25.46,0,no,northeast,1708.0014
532
- 57,male,42.13,1,yes,southeast,48675.5177
533
- 62,female,31.73,0,no,northeast,14043.4767
534
- 59,male,29.7,2,no,southeast,12925.886
535
- 37,male,36.19,0,no,southeast,19214.70553
536
- 64,male,40.48,0,no,southeast,13831.1152
537
- 38,male,28.025,1,no,northeast,6067.12675
538
- 33,female,38.9,3,no,southwest,5972.378
539
- 46,female,30.2,2,no,southwest,8825.086
540
- 46,female,28.05,1,no,southeast,8233.0975
541
- 53,male,31.35,0,no,southeast,27346.04207
542
- 34,female,38,3,no,southwest,6196.448
543
- 20,female,31.79,2,no,southeast,3056.3881
544
- 63,female,36.3,0,no,southeast,13887.204
545
- 54,female,47.41,0,yes,southeast,63770.42801
546
- 54,male,30.21,0,no,northwest,10231.4999
547
- 49,male,25.84,2,yes,northwest,23807.2406
548
- 28,male,35.435,0,no,northeast,3268.84665
549
- 54,female,46.7,2,no,southwest,11538.421
550
- 25,female,28.595,0,no,northeast,3213.62205
551
- 43,female,46.2,0,yes,southeast,45863.205
552
- 63,male,30.8,0,no,southwest,13390.559
553
- 32,female,28.93,0,no,southeast,3972.9247
554
- 62,male,21.4,0,no,southwest,12957.118
555
- 52,female,31.73,2,no,northwest,11187.6567
556
- 25,female,41.325,0,no,northeast,17878.90068
557
- 28,male,23.8,2,no,southwest,3847.674
558
- 46,male,33.44,1,no,northeast,8334.5896
559
- 34,male,34.21,0,no,southeast,3935.1799
560
- 35,female,34.105,3,yes,northwest,39983.42595
561
- 19,male,35.53,0,no,northwest,1646.4297
562
- 46,female,19.95,2,no,northwest,9193.8385
563
- 54,female,32.68,0,no,northeast,10923.9332
564
- 27,male,30.5,0,no,southwest,2494.022
565
- 50,male,44.77,1,no,southeast,9058.7303
566
- 18,female,32.12,2,no,southeast,2801.2588
567
- 19,female,30.495,0,no,northwest,2128.43105
568
- 38,female,40.565,1,no,northwest,6373.55735
569
- 41,male,30.59,2,no,northwest,7256.7231
570
- 49,female,31.9,5,no,southwest,11552.904
571
- 48,male,40.565,2,yes,northwest,45702.02235
572
- 31,female,29.1,0,no,southwest,3761.292
573
- 18,female,37.29,1,no,southeast,2219.4451
574
- 30,female,43.12,2,no,southeast,4753.6368
575
- 62,female,36.86,1,no,northeast,31620.00106
576
- 57,female,34.295,2,no,northeast,13224.05705
577
- 58,female,27.17,0,no,northwest,12222.8983
578
- 22,male,26.84,0,no,southeast,1664.9996
579
- 31,female,38.095,1,yes,northeast,58571.07448
580
- 52,male,30.2,1,no,southwest,9724.53
581
- 25,female,23.465,0,no,northeast,3206.49135
582
- 59,male,25.46,1,no,northeast,12913.9924
583
- 19,male,30.59,0,no,northwest,1639.5631
584
- 39,male,45.43,2,no,southeast,6356.2707
585
- 32,female,23.65,1,no,southeast,17626.23951
586
- 19,male,20.7,0,no,southwest,1242.816
587
- 33,female,28.27,1,no,southeast,4779.6023
588
- 21,male,20.235,3,no,northeast,3861.20965
589
- 34,female,30.21,1,yes,northwest,43943.8761
590
- 61,female,35.91,0,no,northeast,13635.6379
591
- 38,female,30.69,1,no,southeast,5976.8311
592
- 58,female,29,0,no,southwest,11842.442
593
- 47,male,19.57,1,no,northwest,8428.0693
594
- 20,male,31.13,2,no,southeast,2566.4707
595
- 21,female,21.85,1,yes,northeast,15359.1045
596
- 41,male,40.26,0,no,southeast,5709.1644
597
- 46,female,33.725,1,no,northeast,8823.98575
598
- 42,female,29.48,2,no,southeast,7640.3092
599
- 34,female,33.25,1,no,northeast,5594.8455
600
- 43,male,32.6,2,no,southwest,7441.501
601
- 52,female,37.525,2,no,northwest,33471.97189
602
- 18,female,39.16,0,no,southeast,1633.0444
603
- 51,male,31.635,0,no,northwest,9174.13565
604
- 56,female,25.3,0,no,southwest,11070.535
605
- 64,female,39.05,3,no,southeast,16085.1275
606
- 19,female,28.31,0,yes,northwest,17468.9839
607
- 51,female,34.1,0,no,southeast,9283.562
608
- 27,female,25.175,0,no,northeast,3558.62025
609
- 59,female,23.655,0,yes,northwest,25678.77845
610
- 28,male,26.98,2,no,northeast,4435.0942
611
- 30,male,37.8,2,yes,southwest,39241.442
612
- 47,female,29.37,1,no,southeast,8547.6913
613
- 38,female,34.8,2,no,southwest,6571.544
614
- 18,female,33.155,0,no,northeast,2207.69745
615
- 34,female,19,3,no,northeast,6753.038
616
- 20,female,33,0,no,southeast,1880.07
617
- 47,female,36.63,1,yes,southeast,42969.8527
618
- 56,female,28.595,0,no,northeast,11658.11505
619
- 49,male,25.6,2,yes,southwest,23306.547
620
- 19,female,33.11,0,yes,southeast,34439.8559
621
- 55,female,37.1,0,no,southwest,10713.644
622
- 30,male,31.4,1,no,southwest,3659.346
623
- 37,male,34.1,4,yes,southwest,40182.246
624
- 49,female,21.3,1,no,southwest,9182.17
625
- 18,male,33.535,0,yes,northeast,34617.84065
626
- 59,male,28.785,0,no,northwest,12129.61415
627
- 29,female,26.03,0,no,northwest,3736.4647
628
- 36,male,28.88,3,no,northeast,6748.5912
629
- 33,male,42.46,1,no,southeast,11326.71487
630
- 58,male,38,0,no,southwest,11365.952
631
- 44,female,38.95,0,yes,northwest,42983.4585
632
- 53,male,36.1,1,no,southwest,10085.846
633
- 24,male,29.3,0,no,southwest,1977.815
634
- 29,female,35.53,0,no,southeast,3366.6697
635
- 40,male,22.705,2,no,northeast,7173.35995
636
- 51,male,39.7,1,no,southwest,9391.346
637
- 64,male,38.19,0,no,northeast,14410.9321
638
- 19,female,24.51,1,no,northwest,2709.1119
639
- 35,female,38.095,2,no,northeast,24915.04626
640
- 39,male,26.41,0,yes,northeast,20149.3229
641
- 56,male,33.66,4,no,southeast,12949.1554
642
- 33,male,42.4,5,no,southwest,6666.243
643
- 42,male,28.31,3,yes,northwest,32787.45859
644
- 61,male,33.915,0,no,northeast,13143.86485
645
- 23,female,34.96,3,no,northwest,4466.6214
646
- 43,male,35.31,2,no,southeast,18806.14547
647
- 48,male,30.78,3,no,northeast,10141.1362
648
- 39,male,26.22,1,no,northwest,6123.5688
649
- 40,female,23.37,3,no,northeast,8252.2843
650
- 18,male,28.5,0,no,northeast,1712.227
651
- 58,female,32.965,0,no,northeast,12430.95335
652
- 49,female,42.68,2,no,southeast,9800.8882
653
- 53,female,39.6,1,no,southeast,10579.711
654
- 48,female,31.13,0,no,southeast,8280.6227
655
- 45,female,36.3,2,no,southeast,8527.532
656
- 59,female,35.2,0,no,southeast,12244.531
657
- 52,female,25.3,2,yes,southeast,24667.419
658
- 26,female,42.4,1,no,southwest,3410.324
659
- 27,male,33.155,2,no,northwest,4058.71245
660
- 48,female,35.91,1,no,northeast,26392.26029
661
- 57,female,28.785,4,no,northeast,14394.39815
662
- 37,male,46.53,3,no,southeast,6435.6237
663
- 57,female,23.98,1,no,southeast,22192.43711
664
- 32,female,31.54,1,no,northeast,5148.5526
665
- 18,male,33.66,0,no,southeast,1136.3994
666
- 64,female,22.99,0,yes,southeast,27037.9141
667
- 43,male,38.06,2,yes,southeast,42560.4304
668
- 49,male,28.7,1,no,southwest,8703.456
669
- 40,female,32.775,2,yes,northwest,40003.33225
670
- 62,male,32.015,0,yes,northeast,45710.20785
671
- 40,female,29.81,1,no,southeast,6500.2359
672
- 30,male,31.57,3,no,southeast,4837.5823
673
- 29,female,31.16,0,no,northeast,3943.5954
674
- 36,male,29.7,0,no,southeast,4399.731
675
- 41,female,31.02,0,no,southeast,6185.3208
676
- 44,female,43.89,2,yes,southeast,46200.9851
677
- 45,male,21.375,0,no,northwest,7222.78625
678
- 55,female,40.81,3,no,southeast,12485.8009
679
- 60,male,31.35,3,yes,northwest,46130.5265
680
- 56,male,36.1,3,no,southwest,12363.547
681
- 49,female,23.18,2,no,northwest,10156.7832
682
- 21,female,17.4,1,no,southwest,2585.269
683
- 19,male,20.3,0,no,southwest,1242.26
684
- 39,male,35.3,2,yes,southwest,40103.89
685
- 53,male,24.32,0,no,northwest,9863.4718
686
- 33,female,18.5,1,no,southwest,4766.022
687
- 53,male,26.41,2,no,northeast,11244.3769
688
- 42,male,26.125,2,no,northeast,7729.64575
689
- 40,male,41.69,0,no,southeast,5438.7491
690
- 47,female,24.1,1,no,southwest,26236.57997
691
- 27,male,31.13,1,yes,southeast,34806.4677
692
- 21,male,27.36,0,no,northeast,2104.1134
693
- 47,male,36.2,1,no,southwest,8068.185
694
- 20,male,32.395,1,no,northwest,2362.22905
695
- 24,male,23.655,0,no,northwest,2352.96845
696
- 27,female,34.8,1,no,southwest,3577.999
697
- 26,female,40.185,0,no,northwest,3201.24515
698
- 53,female,32.3,2,no,northeast,29186.48236
699
- 41,male,35.75,1,yes,southeast,40273.6455
700
- 56,male,33.725,0,no,northwest,10976.24575
701
- 23,female,39.27,2,no,southeast,3500.6123
702
- 21,female,34.87,0,no,southeast,2020.5523
703
- 50,female,44.745,0,no,northeast,9541.69555
704
- 53,male,41.47,0,no,southeast,9504.3103
705
- 34,female,26.41,1,no,northwest,5385.3379
706
- 47,female,29.545,1,no,northwest,8930.93455
707
- 33,female,32.9,2,no,southwest,5375.038
708
- 51,female,38.06,0,yes,southeast,44400.4064
709
- 49,male,28.69,3,no,northwest,10264.4421
710
- 31,female,30.495,3,no,northeast,6113.23105
711
- 36,female,27.74,0,no,northeast,5469.0066
712
- 18,male,35.2,1,no,southeast,1727.54
713
- 50,female,23.54,2,no,southeast,10107.2206
714
- 43,female,30.685,2,no,northwest,8310.83915
715
- 20,male,40.47,0,no,northeast,1984.4533
716
- 24,female,22.6,0,no,southwest,2457.502
717
- 60,male,28.9,0,no,southwest,12146.971
718
- 49,female,22.61,1,no,northwest,9566.9909
719
- 60,male,24.32,1,no,northwest,13112.6048
720
- 51,female,36.67,2,no,northwest,10848.1343
721
- 58,female,33.44,0,no,northwest,12231.6136
722
- 51,female,40.66,0,no,northeast,9875.6804
723
- 53,male,36.6,3,no,southwest,11264.541
724
- 62,male,37.4,0,no,southwest,12979.358
725
- 19,male,35.4,0,no,southwest,1263.249
726
- 50,female,27.075,1,no,northeast,10106.13425
727
- 30,female,39.05,3,yes,southeast,40932.4295
728
- 41,male,28.405,1,no,northwest,6664.68595
729
- 29,female,21.755,1,yes,northeast,16657.71745
730
- 18,female,40.28,0,no,northeast,2217.6012
731
- 41,female,36.08,1,no,southeast,6781.3542
732
- 35,male,24.42,3,yes,southeast,19361.9988
733
- 53,male,21.4,1,no,southwest,10065.413
734
- 24,female,30.1,3,no,southwest,4234.927
735
- 48,female,27.265,1,no,northeast,9447.25035
736
- 59,female,32.1,3,no,southwest,14007.222
737
- 49,female,34.77,1,no,northwest,9583.8933
738
- 37,female,38.39,0,yes,southeast,40419.0191
739
- 26,male,23.7,2,no,southwest,3484.331
740
- 23,male,31.73,3,yes,northeast,36189.1017
741
- 29,male,35.5,2,yes,southwest,44585.45587
742
- 45,male,24.035,2,no,northeast,8604.48365
743
- 27,male,29.15,0,yes,southeast,18246.4955
744
- 53,male,34.105,0,yes,northeast,43254.41795
745
- 31,female,26.62,0,no,southeast,3757.8448
746
- 50,male,26.41,0,no,northwest,8827.2099
747
- 50,female,30.115,1,no,northwest,9910.35985
748
- 34,male,27,2,no,southwest,11737.84884
749
- 19,male,21.755,0,no,northwest,1627.28245
750
- 47,female,36,1,no,southwest,8556.907
751
- 28,male,30.875,0,no,northwest,3062.50825
752
- 37,female,26.4,0,yes,southeast,19539.243
753
- 21,male,28.975,0,no,northwest,1906.35825
754
- 64,male,37.905,0,no,northwest,14210.53595
755
- 58,female,22.77,0,no,southeast,11833.7823
756
- 24,male,33.63,4,no,northeast,17128.42608
757
- 31,male,27.645,2,no,northeast,5031.26955
758
- 39,female,22.8,3,no,northeast,7985.815
759
- 47,female,27.83,0,yes,southeast,23065.4207
760
- 30,male,37.43,3,no,northeast,5428.7277
761
- 18,male,38.17,0,yes,southeast,36307.7983
762
- 22,female,34.58,2,no,northeast,3925.7582
763
- 23,male,35.2,1,no,southwest,2416.955
764
- 33,male,27.1,1,yes,southwest,19040.876
765
- 27,male,26.03,0,no,northeast,3070.8087
766
- 45,female,25.175,2,no,northeast,9095.06825
767
- 57,female,31.825,0,no,northwest,11842.62375
768
- 47,male,32.3,1,no,southwest,8062.764
769
- 42,female,29,1,no,southwest,7050.642
770
- 64,female,39.7,0,no,southwest,14319.031
771
- 38,female,19.475,2,no,northwest,6933.24225
772
- 61,male,36.1,3,no,southwest,27941.28758
773
- 53,female,26.7,2,no,southwest,11150.78
774
- 44,female,36.48,0,no,northeast,12797.20962
775
- 19,female,28.88,0,yes,northwest,17748.5062
776
- 41,male,34.2,2,no,northwest,7261.741
777
- 51,male,33.33,3,no,southeast,10560.4917
778
- 40,male,32.3,2,no,northwest,6986.697
779
- 45,male,39.805,0,no,northeast,7448.40395
780
- 35,male,34.32,3,no,southeast,5934.3798
781
- 53,male,28.88,0,no,northwest,9869.8102
782
- 30,male,24.4,3,yes,southwest,18259.216
783
- 18,male,41.14,0,no,southeast,1146.7966
784
- 51,male,35.97,1,no,southeast,9386.1613
785
- 50,female,27.6,1,yes,southwest,24520.264
786
- 31,female,29.26,1,no,southeast,4350.5144
787
- 35,female,27.7,3,no,southwest,6414.178
788
- 60,male,36.955,0,no,northeast,12741.16745
789
- 21,male,36.86,0,no,northwest,1917.3184
790
- 29,male,22.515,3,no,northeast,5209.57885
791
- 62,female,29.92,0,no,southeast,13457.9608
792
- 39,female,41.8,0,no,southeast,5662.225
793
- 19,male,27.6,0,no,southwest,1252.407
794
- 22,female,23.18,0,no,northeast,2731.9122
795
- 53,male,20.9,0,yes,southeast,21195.818
796
- 39,female,31.92,2,no,northwest,7209.4918
797
- 27,male,28.5,0,yes,northwest,18310.742
798
- 30,male,44.22,2,no,southeast,4266.1658
799
- 30,female,22.895,1,no,northeast,4719.52405
800
- 58,female,33.1,0,no,southwest,11848.141
801
- 33,male,24.795,0,yes,northeast,17904.52705
802
- 42,female,26.18,1,no,southeast,7046.7222
803
- 64,female,35.97,0,no,southeast,14313.8463
804
- 21,male,22.3,1,no,southwest,2103.08
805
- 18,female,42.24,0,yes,southeast,38792.6856
806
- 23,male,26.51,0,no,southeast,1815.8759
807
- 45,female,35.815,0,no,northwest,7731.85785
808
- 40,female,41.42,1,no,northwest,28476.73499
809
- 19,female,36.575,0,no,northwest,2136.88225
810
- 18,male,30.14,0,no,southeast,1131.5066
811
- 25,male,25.84,1,no,northeast,3309.7926
812
- 46,female,30.8,3,no,southwest,9414.92
813
- 33,female,42.94,3,no,northwest,6360.9936
814
- 54,male,21.01,2,no,southeast,11013.7119
815
- 28,male,22.515,2,no,northeast,4428.88785
816
- 36,male,34.43,2,no,southeast,5584.3057
817
- 20,female,31.46,0,no,southeast,1877.9294
818
- 24,female,24.225,0,no,northwest,2842.76075
819
- 23,male,37.1,3,no,southwest,3597.596
820
- 47,female,26.125,1,yes,northeast,23401.30575
821
- 33,female,35.53,0,yes,northwest,55135.40209
822
- 45,male,33.7,1,no,southwest,7445.918
823
- 26,male,17.67,0,no,northwest,2680.9493
824
- 18,female,31.13,0,no,southeast,1621.8827
825
- 44,female,29.81,2,no,southeast,8219.2039
826
- 60,male,24.32,0,no,northwest,12523.6048
827
- 64,female,31.825,2,no,northeast,16069.08475
828
- 56,male,31.79,2,yes,southeast,43813.8661
829
- 36,male,28.025,1,yes,northeast,20773.62775
830
- 41,male,30.78,3,yes,northeast,39597.4072
831
- 39,male,21.85,1,no,northwest,6117.4945
832
- 63,male,33.1,0,no,southwest,13393.756
833
- 36,female,25.84,0,no,northwest,5266.3656
834
- 28,female,23.845,2,no,northwest,4719.73655
835
- 58,male,34.39,0,no,northwest,11743.9341
836
- 36,male,33.82,1,no,northwest,5377.4578
837
- 42,male,35.97,2,no,southeast,7160.3303
838
- 36,male,31.5,0,no,southwest,4402.233
839
- 56,female,28.31,0,no,northeast,11657.7189
840
- 35,female,23.465,2,no,northeast,6402.29135
841
- 59,female,31.35,0,no,northwest,12622.1795
842
- 21,male,31.1,0,no,southwest,1526.312
843
- 59,male,24.7,0,no,northeast,12323.936
844
- 23,female,32.78,2,yes,southeast,36021.0112
845
- 57,female,29.81,0,yes,southeast,27533.9129
846
- 53,male,30.495,0,no,northeast,10072.05505
847
- 60,female,32.45,0,yes,southeast,45008.9555
848
- 51,female,34.2,1,no,southwest,9872.701
849
- 23,male,50.38,1,no,southeast,2438.0552
850
- 27,female,24.1,0,no,southwest,2974.126
851
- 55,male,32.775,0,no,northwest,10601.63225
852
- 37,female,30.78,0,yes,northeast,37270.1512
853
- 61,male,32.3,2,no,northwest,14119.62
854
- 46,female,35.53,0,yes,northeast,42111.6647
855
- 53,female,23.75,2,no,northeast,11729.6795
856
- 49,female,23.845,3,yes,northeast,24106.91255
857
- 20,female,29.6,0,no,southwest,1875.344
858
- 48,female,33.11,0,yes,southeast,40974.1649
859
- 25,male,24.13,0,yes,northwest,15817.9857
860
- 25,female,32.23,1,no,southeast,18218.16139
861
- 57,male,28.1,0,no,southwest,10965.446
862
- 37,female,47.6,2,yes,southwest,46113.511
863
- 38,female,28,3,no,southwest,7151.092
864
- 55,female,33.535,2,no,northwest,12269.68865
865
- 36,female,19.855,0,no,northeast,5458.04645
866
- 51,male,25.4,0,no,southwest,8782.469
867
- 40,male,29.9,2,no,southwest,6600.361
868
- 18,male,37.29,0,no,southeast,1141.4451
869
- 57,male,43.7,1,no,southwest,11576.13
870
- 61,male,23.655,0,no,northeast,13129.60345
871
- 25,female,24.3,3,no,southwest,4391.652
872
- 50,male,36.2,0,no,southwest,8457.818
873
- 26,female,29.48,1,no,southeast,3392.3652
874
- 42,male,24.86,0,no,southeast,5966.8874
875
- 43,male,30.1,1,no,southwest,6849.026
876
- 44,male,21.85,3,no,northeast,8891.1395
877
- 23,female,28.12,0,no,northwest,2690.1138
878
- 49,female,27.1,1,no,southwest,26140.3603
879
- 33,male,33.44,5,no,southeast,6653.7886
880
- 41,male,28.8,1,no,southwest,6282.235
881
- 37,female,29.5,2,no,southwest,6311.952
882
- 22,male,34.8,3,no,southwest,3443.064
883
- 23,male,27.36,1,no,northwest,2789.0574
884
- 21,female,22.135,0,no,northeast,2585.85065
885
- 51,female,37.05,3,yes,northeast,46255.1125
886
- 25,male,26.695,4,no,northwest,4877.98105
887
- 32,male,28.93,1,yes,southeast,19719.6947
888
- 57,male,28.975,0,yes,northeast,27218.43725
889
- 36,female,30.02,0,no,northwest,5272.1758
890
- 22,male,39.5,0,no,southwest,1682.597
891
- 57,male,33.63,1,no,northwest,11945.1327
892
- 64,female,26.885,0,yes,northwest,29330.98315
893
- 36,female,29.04,4,no,southeast,7243.8136
894
- 54,male,24.035,0,no,northeast,10422.91665
895
- 47,male,38.94,2,yes,southeast,44202.6536
896
- 62,male,32.11,0,no,northeast,13555.0049
897
- 61,female,44,0,no,southwest,13063.883
898
- 43,female,20.045,2,yes,northeast,19798.05455
899
- 19,male,25.555,1,no,northwest,2221.56445
900
- 18,female,40.26,0,no,southeast,1634.5734
901
- 19,female,22.515,0,no,northwest,2117.33885
902
- 49,male,22.515,0,no,northeast,8688.85885
903
- 60,male,40.92,0,yes,southeast,48673.5588
904
- 26,male,27.265,3,no,northeast,4661.28635
905
- 49,male,36.85,0,no,southeast,8125.7845
906
- 60,female,35.1,0,no,southwest,12644.589
907
- 26,female,29.355,2,no,northeast,4564.19145
908
- 27,male,32.585,3,no,northeast,4846.92015
909
- 44,female,32.34,1,no,southeast,7633.7206
910
- 63,male,39.8,3,no,southwest,15170.069
911
- 32,female,24.6,0,yes,southwest,17496.306
912
- 22,male,28.31,1,no,northwest,2639.0429
913
- 18,male,31.73,0,yes,northeast,33732.6867
914
- 59,female,26.695,3,no,northwest,14382.70905
915
- 44,female,27.5,1,no,southwest,7626.993
916
- 33,male,24.605,2,no,northwest,5257.50795
917
- 24,female,33.99,0,no,southeast,2473.3341
918
- 43,female,26.885,0,yes,northwest,21774.32215
919
- 45,male,22.895,0,yes,northeast,35069.37452
920
- 61,female,28.2,0,no,southwest,13041.921
921
- 35,female,34.21,1,no,southeast,5245.2269
922
- 62,female,25,0,no,southwest,13451.122
923
- 62,female,33.2,0,no,southwest,13462.52
924
- 38,male,31,1,no,southwest,5488.262
925
- 34,male,35.815,0,no,northwest,4320.41085
926
- 43,male,23.2,0,no,southwest,6250.435
927
- 50,male,32.11,2,no,northeast,25333.33284
928
- 19,female,23.4,2,no,southwest,2913.569
929
- 57,female,20.1,1,no,southwest,12032.326
930
- 62,female,39.16,0,no,southeast,13470.8044
931
- 41,male,34.21,1,no,southeast,6289.7549
932
- 26,male,46.53,1,no,southeast,2927.0647
933
- 39,female,32.5,1,no,southwest,6238.298
934
- 46,male,25.8,5,no,southwest,10096.97
935
- 45,female,35.3,0,no,southwest,7348.142
936
- 32,male,37.18,2,no,southeast,4673.3922
937
- 59,female,27.5,0,no,southwest,12233.828
938
- 44,male,29.735,2,no,northeast,32108.66282
939
- 39,female,24.225,5,no,northwest,8965.79575
940
- 18,male,26.18,2,no,southeast,2304.0022
941
- 53,male,29.48,0,no,southeast,9487.6442
942
- 18,male,23.21,0,no,southeast,1121.8739
943
- 50,female,46.09,1,no,southeast,9549.5651
944
- 18,female,40.185,0,no,northeast,2217.46915
945
- 19,male,22.61,0,no,northwest,1628.4709
946
- 62,male,39.93,0,no,southeast,12982.8747
947
- 56,female,35.8,1,no,southwest,11674.13
948
- 42,male,35.8,2,no,southwest,7160.094
949
- 37,male,34.2,1,yes,northeast,39047.285
950
- 42,male,31.255,0,no,northwest,6358.77645
951
- 25,male,29.7,3,yes,southwest,19933.458
952
- 57,male,18.335,0,no,northeast,11534.87265
953
- 51,male,42.9,2,yes,southeast,47462.894
954
- 30,female,28.405,1,no,northwest,4527.18295
955
- 44,male,30.2,2,yes,southwest,38998.546
956
- 34,male,27.835,1,yes,northwest,20009.63365
957
- 31,male,39.49,1,no,southeast,3875.7341
958
- 54,male,30.8,1,yes,southeast,41999.52
959
- 24,male,26.79,1,no,northwest,12609.88702
960
- 43,male,34.96,1,yes,northeast,41034.2214
961
- 48,male,36.67,1,no,northwest,28468.91901
962
- 19,female,39.615,1,no,northwest,2730.10785
963
- 29,female,25.9,0,no,southwest,3353.284
964
- 63,female,35.2,1,no,southeast,14474.675
965
- 46,male,24.795,3,no,northeast,9500.57305
966
- 52,male,36.765,2,no,northwest,26467.09737
967
- 35,male,27.1,1,no,southwest,4746.344
968
- 51,male,24.795,2,yes,northwest,23967.38305
969
- 44,male,25.365,1,no,northwest,7518.02535
970
- 21,male,25.745,2,no,northeast,3279.86855
971
- 39,female,34.32,5,no,southeast,8596.8278
972
- 50,female,28.16,3,no,southeast,10702.6424
973
- 34,female,23.56,0,no,northeast,4992.3764
974
- 22,female,20.235,0,no,northwest,2527.81865
975
- 19,female,40.5,0,no,southwest,1759.338
976
- 26,male,35.42,0,no,southeast,2322.6218
977
- 29,male,22.895,0,yes,northeast,16138.76205
978
- 48,male,40.15,0,no,southeast,7804.1605
979
- 26,male,29.15,1,no,southeast,2902.9065
980
- 45,female,39.995,3,no,northeast,9704.66805
981
- 36,female,29.92,0,no,southeast,4889.0368
982
- 54,male,25.46,1,no,northeast,25517.11363
983
- 34,male,21.375,0,no,northeast,4500.33925
984
- 31,male,25.9,3,yes,southwest,19199.944
985
- 27,female,30.59,1,no,northeast,16796.41194
986
- 20,male,30.115,5,no,northeast,4915.05985
987
- 44,female,25.8,1,no,southwest,7624.63
988
- 43,male,30.115,3,no,northwest,8410.04685
989
- 45,female,27.645,1,no,northwest,28340.18885
990
- 34,male,34.675,0,no,northeast,4518.82625
991
- 24,female,20.52,0,yes,northeast,14571.8908
992
- 26,female,19.8,1,no,southwest,3378.91
993
- 38,female,27.835,2,no,northeast,7144.86265
994
- 50,female,31.6,2,no,southwest,10118.424
995
- 38,male,28.27,1,no,southeast,5484.4673
996
- 27,female,20.045,3,yes,northwest,16420.49455
997
- 39,female,23.275,3,no,northeast,7986.47525
998
- 39,female,34.1,3,no,southwest,7418.522
999
- 63,female,36.85,0,no,southeast,13887.9685
1000
- 33,female,36.29,3,no,northeast,6551.7501
1001
- 36,female,26.885,0,no,northwest,5267.81815
1002
- 30,male,22.99,2,yes,northwest,17361.7661
1003
- 24,male,32.7,0,yes,southwest,34472.841
1004
- 24,male,25.8,0,no,southwest,1972.95
1005
- 48,male,29.6,0,no,southwest,21232.18226
1006
- 47,male,19.19,1,no,northeast,8627.5411
1007
- 29,male,31.73,2,no,northwest,4433.3877
1008
- 28,male,29.26,2,no,northeast,4438.2634
1009
- 47,male,28.215,3,yes,northwest,24915.22085
1010
- 25,male,24.985,2,no,northeast,23241.47453
1011
- 51,male,27.74,1,no,northeast,9957.7216
1012
- 48,female,22.8,0,no,southwest,8269.044
1013
- 43,male,20.13,2,yes,southeast,18767.7377
1014
- 61,female,33.33,4,no,southeast,36580.28216
1015
- 48,male,32.3,1,no,northwest,8765.249
1016
- 38,female,27.6,0,no,southwest,5383.536
1017
- 59,male,25.46,0,no,northwest,12124.9924
1018
- 19,female,24.605,1,no,northwest,2709.24395
1019
- 26,female,34.2,2,no,southwest,3987.926
1020
- 54,female,35.815,3,no,northwest,12495.29085
1021
- 21,female,32.68,2,no,northwest,26018.95052
1022
- 51,male,37,0,no,southwest,8798.593
1023
- 22,female,31.02,3,yes,southeast,35595.5898
1024
- 47,male,36.08,1,yes,southeast,42211.1382
1025
- 18,male,23.32,1,no,southeast,1711.0268
1026
- 47,female,45.32,1,no,southeast,8569.8618
1027
- 21,female,34.6,0,no,southwest,2020.177
1028
- 19,male,26.03,1,yes,northwest,16450.8947
1029
- 23,male,18.715,0,no,northwest,21595.38229
1030
- 54,male,31.6,0,no,southwest,9850.432
1031
- 37,female,17.29,2,no,northeast,6877.9801
1032
- 46,female,23.655,1,yes,northwest,21677.28345
1033
- 55,female,35.2,0,yes,southeast,44423.803
1034
- 30,female,27.93,0,no,northeast,4137.5227
1035
- 18,male,21.565,0,yes,northeast,13747.87235
1036
- 61,male,38.38,0,no,northwest,12950.0712
1037
- 54,female,23,3,no,southwest,12094.478
1038
- 22,male,37.07,2,yes,southeast,37484.4493
1039
- 45,female,30.495,1,yes,northwest,39725.51805
1040
- 22,male,28.88,0,no,northeast,2250.8352
1041
- 19,male,27.265,2,no,northwest,22493.65964
1042
- 35,female,28.025,0,yes,northwest,20234.85475
1043
- 18,male,23.085,0,no,northeast,1704.70015
1044
- 20,male,30.685,0,yes,northeast,33475.81715
1045
- 28,female,25.8,0,no,southwest,3161.454
1046
- 55,male,35.245,1,no,northeast,11394.06555
1047
- 43,female,24.7,2,yes,northwest,21880.82
1048
- 43,female,25.08,0,no,northeast,7325.0482
1049
- 22,male,52.58,1,yes,southeast,44501.3982
1050
- 25,female,22.515,1,no,northwest,3594.17085
1051
- 49,male,30.9,0,yes,southwest,39727.614
1052
- 44,female,36.955,1,no,northwest,8023.13545
1053
- 64,male,26.41,0,no,northeast,14394.5579
1054
- 49,male,29.83,1,no,northeast,9288.0267
1055
- 47,male,29.8,3,yes,southwest,25309.489
1056
- 27,female,21.47,0,no,northwest,3353.4703
1057
- 55,male,27.645,0,no,northwest,10594.50155
1058
- 48,female,28.9,0,no,southwest,8277.523
1059
- 45,female,31.79,0,no,southeast,17929.30337
1060
- 24,female,39.49,0,no,southeast,2480.9791
1061
- 32,male,33.82,1,no,northwest,4462.7218
1062
- 24,male,32.01,0,no,southeast,1981.5819
1063
- 57,male,27.94,1,no,southeast,11554.2236
1064
- 59,male,41.14,1,yes,southeast,48970.2476
1065
- 36,male,28.595,3,no,northwest,6548.19505
1066
- 29,female,25.6,4,no,southwest,5708.867
1067
- 42,female,25.3,1,no,southwest,7045.499
1068
- 48,male,37.29,2,no,southeast,8978.1851
1069
- 39,male,42.655,0,no,northeast,5757.41345
1070
- 63,male,21.66,1,no,northwest,14349.8544
1071
- 54,female,31.9,1,no,southeast,10928.849
1072
- 37,male,37.07,1,yes,southeast,39871.7043
1073
- 63,male,31.445,0,no,northeast,13974.45555
1074
- 21,male,31.255,0,no,northwest,1909.52745
1075
- 54,female,28.88,2,no,northeast,12096.6512
1076
- 60,female,18.335,0,no,northeast,13204.28565
1077
- 32,female,29.59,1,no,southeast,4562.8421
1078
- 47,female,32,1,no,southwest,8551.347
1079
- 21,male,26.03,0,no,northeast,2102.2647
1080
- 28,male,31.68,0,yes,southeast,34672.1472
1081
- 63,male,33.66,3,no,southeast,15161.5344
1082
- 18,male,21.78,2,no,southeast,11884.04858
1083
- 32,male,27.835,1,no,northwest,4454.40265
1084
- 38,male,19.95,1,no,northwest,5855.9025
1085
- 32,male,31.5,1,no,southwest,4076.497
1086
- 62,female,30.495,2,no,northwest,15019.76005
1087
- 39,female,18.3,5,yes,southwest,19023.26
1088
- 55,male,28.975,0,no,northeast,10796.35025
1089
- 57,male,31.54,0,no,northwest,11353.2276
1090
- 52,male,47.74,1,no,southeast,9748.9106
1091
- 56,male,22.1,0,no,southwest,10577.087
1092
- 47,male,36.19,0,yes,southeast,41676.0811
1093
- 55,female,29.83,0,no,northeast,11286.5387
1094
- 23,male,32.7,3,no,southwest,3591.48
1095
- 22,female,30.4,0,yes,northwest,33907.548
1096
- 50,female,33.7,4,no,southwest,11299.343
1097
- 18,female,31.35,4,no,northeast,4561.1885
1098
- 51,female,34.96,2,yes,northeast,44641.1974
1099
- 22,male,33.77,0,no,southeast,1674.6323
1100
- 52,female,30.875,0,no,northeast,23045.56616
1101
- 25,female,33.99,1,no,southeast,3227.1211
1102
- 33,female,19.095,2,yes,northeast,16776.30405
1103
- 53,male,28.6,3,no,southwest,11253.421
1104
- 29,male,38.94,1,no,southeast,3471.4096
1105
- 58,male,36.08,0,no,southeast,11363.2832
1106
- 37,male,29.8,0,no,southwest,20420.60465
1107
- 54,female,31.24,0,no,southeast,10338.9316
1108
- 49,female,29.925,0,no,northwest,8988.15875
1109
- 50,female,26.22,2,no,northwest,10493.9458
1110
- 26,male,30,1,no,southwest,2904.088
1111
- 45,male,20.35,3,no,southeast,8605.3615
1112
- 54,female,32.3,1,no,northeast,11512.405
1113
- 38,male,38.39,3,yes,southeast,41949.2441
1114
- 48,female,25.85,3,yes,southeast,24180.9335
1115
- 28,female,26.315,3,no,northwest,5312.16985
1116
- 23,male,24.51,0,no,northeast,2396.0959
1117
- 55,male,32.67,1,no,southeast,10807.4863
1118
- 41,male,29.64,5,no,northeast,9222.4026
1119
- 25,male,33.33,2,yes,southeast,36124.5737
1120
- 33,male,35.75,1,yes,southeast,38282.7495
1121
- 30,female,19.95,3,no,northwest,5693.4305
1122
- 23,female,31.4,0,yes,southwest,34166.273
1123
- 46,male,38.17,2,no,southeast,8347.1643
1124
- 53,female,36.86,3,yes,northwest,46661.4424
1125
- 27,female,32.395,1,no,northeast,18903.49141
1126
- 23,female,42.75,1,yes,northeast,40904.1995
1127
- 63,female,25.08,0,no,northwest,14254.6082
1128
- 55,male,29.9,0,no,southwest,10214.636
1129
- 35,female,35.86,2,no,southeast,5836.5204
1130
- 34,male,32.8,1,no,southwest,14358.36437
1131
- 19,female,18.6,0,no,southwest,1728.897
1132
- 39,female,23.87,5,no,southeast,8582.3023
1133
- 27,male,45.9,2,no,southwest,3693.428
1134
- 57,male,40.28,0,no,northeast,20709.02034
1135
- 52,female,18.335,0,no,northwest,9991.03765
1136
- 28,male,33.82,0,no,northwest,19673.33573
1137
- 50,female,28.12,3,no,northwest,11085.5868
1138
- 44,female,25,1,no,southwest,7623.518
1139
- 26,female,22.23,0,no,northwest,3176.2877
1140
- 33,male,30.25,0,no,southeast,3704.3545
1141
- 19,female,32.49,0,yes,northwest,36898.73308
1142
- 50,male,37.07,1,no,southeast,9048.0273
1143
- 41,female,32.6,3,no,southwest,7954.517
1144
- 52,female,24.86,0,no,southeast,27117.99378
1145
- 39,male,32.34,2,no,southeast,6338.0756
1146
- 50,male,32.3,2,no,southwest,9630.397
1147
- 52,male,32.775,3,no,northwest,11289.10925
1148
- 60,male,32.8,0,yes,southwest,52590.82939
1149
- 20,female,31.92,0,no,northwest,2261.5688
1150
- 55,male,21.5,1,no,southwest,10791.96
1151
- 42,male,34.1,0,no,southwest,5979.731
1152
- 18,female,30.305,0,no,northeast,2203.73595
1153
- 58,female,36.48,0,no,northwest,12235.8392
1154
- 43,female,32.56,3,yes,southeast,40941.2854
1155
- 35,female,35.815,1,no,northwest,5630.45785
1156
- 48,female,27.93,4,no,northwest,11015.1747
1157
- 36,female,22.135,3,no,northeast,7228.21565
1158
- 19,male,44.88,0,yes,southeast,39722.7462
1159
- 23,female,23.18,2,no,northwest,14426.07385
1160
- 20,female,30.59,0,no,northeast,2459.7201
1161
- 32,female,41.1,0,no,southwest,3989.841
1162
- 43,female,34.58,1,no,northwest,7727.2532
1163
- 34,male,42.13,2,no,southeast,5124.1887
1164
- 30,male,38.83,1,no,southeast,18963.17192
1165
- 18,female,28.215,0,no,northeast,2200.83085
1166
- 41,female,28.31,1,no,northwest,7153.5539
1167
- 35,female,26.125,0,no,northeast,5227.98875
1168
- 57,male,40.37,0,no,southeast,10982.5013
1169
- 29,female,24.6,2,no,southwest,4529.477
1170
- 32,male,35.2,2,no,southwest,4670.64
1171
- 37,female,34.105,1,no,northwest,6112.35295
1172
- 18,male,27.36,1,yes,northeast,17178.6824
1173
- 43,female,26.7,2,yes,southwest,22478.6
1174
- 56,female,41.91,0,no,southeast,11093.6229
1175
- 38,male,29.26,2,no,northwest,6457.8434
1176
- 29,male,32.11,2,no,northwest,4433.9159
1177
- 22,female,27.1,0,no,southwest,2154.361
1178
- 52,female,24.13,1,yes,northwest,23887.6627
1179
- 40,female,27.4,1,no,southwest,6496.886
1180
- 23,female,34.865,0,no,northeast,2899.48935
1181
- 31,male,29.81,0,yes,southeast,19350.3689
1182
- 42,female,41.325,1,no,northeast,7650.77375
1183
- 24,female,29.925,0,no,northwest,2850.68375
1184
- 25,female,30.3,0,no,southwest,2632.992
1185
- 48,female,27.36,1,no,northeast,9447.3824
1186
- 23,female,28.49,1,yes,southeast,18328.2381
1187
- 45,male,23.56,2,no,northeast,8603.8234
1188
- 20,male,35.625,3,yes,northwest,37465.34375
1189
- 62,female,32.68,0,no,northwest,13844.7972
1190
- 43,female,25.27,1,yes,northeast,21771.3423
1191
- 23,female,28,0,no,southwest,13126.67745
1192
- 31,female,32.775,2,no,northwest,5327.40025
1193
- 41,female,21.755,1,no,northeast,13725.47184
1194
- 58,female,32.395,1,no,northeast,13019.16105
1195
- 48,female,36.575,0,no,northwest,8671.19125
1196
- 31,female,21.755,0,no,northwest,4134.08245
1197
- 19,female,27.93,3,no,northwest,18838.70366
1198
- 19,female,30.02,0,yes,northwest,33307.5508
1199
- 41,male,33.55,0,no,southeast,5699.8375
1200
- 40,male,29.355,1,no,northwest,6393.60345
1201
- 31,female,25.8,2,no,southwest,4934.705
1202
- 37,male,24.32,2,no,northwest,6198.7518
1203
- 46,male,40.375,2,no,northwest,8733.22925
1204
- 22,male,32.11,0,no,northwest,2055.3249
1205
- 51,male,32.3,1,no,northeast,9964.06
1206
- 18,female,27.28,3,yes,southeast,18223.4512
1207
- 35,male,17.86,1,no,northwest,5116.5004
1208
- 59,female,34.8,2,no,southwest,36910.60803
1209
- 36,male,33.4,2,yes,southwest,38415.474
1210
- 37,female,25.555,1,yes,northeast,20296.86345
1211
- 59,male,37.1,1,no,southwest,12347.172
1212
- 36,male,30.875,1,no,northwest,5373.36425
1213
- 39,male,34.1,2,no,southeast,23563.01618
1214
- 18,male,21.47,0,no,northeast,1702.4553
1215
- 52,female,33.3,2,no,southwest,10806.839
1216
- 27,female,31.255,1,no,northwest,3956.07145
1217
- 18,male,39.14,0,no,northeast,12890.05765
1218
- 40,male,25.08,0,no,southeast,5415.6612
1219
- 29,male,37.29,2,no,southeast,4058.1161
1220
- 46,female,34.6,1,yes,southwest,41661.602
1221
- 38,female,30.21,3,no,northwest,7537.1639
1222
- 30,female,21.945,1,no,northeast,4718.20355
1223
- 40,male,24.97,2,no,southeast,6593.5083
1224
- 50,male,25.3,0,no,southeast,8442.667
1225
- 20,female,24.42,0,yes,southeast,26125.67477
1226
- 41,male,23.94,1,no,northeast,6858.4796
1227
- 33,female,39.82,1,no,southeast,4795.6568
1228
- 38,male,16.815,2,no,northeast,6640.54485
1229
- 42,male,37.18,2,no,southeast,7162.0122
1230
- 56,male,34.43,0,no,southeast,10594.2257
1231
- 58,male,30.305,0,no,northeast,11938.25595
1232
- 52,male,34.485,3,yes,northwest,60021.39897
1233
- 20,female,21.8,0,yes,southwest,20167.33603
1234
- 54,female,24.605,3,no,northwest,12479.70895
1235
- 58,male,23.3,0,no,southwest,11345.519
1236
- 45,female,27.83,2,no,southeast,8515.7587
1237
- 26,male,31.065,0,no,northwest,2699.56835
1238
- 63,female,21.66,0,no,northeast,14449.8544
1239
- 58,female,28.215,0,no,northwest,12224.35085
1240
- 37,male,22.705,3,no,northeast,6985.50695
1241
- 25,female,42.13,1,no,southeast,3238.4357
1242
- 52,male,41.8,2,yes,southeast,47269.854
1243
- 64,male,36.96,2,yes,southeast,49577.6624
1244
- 22,female,21.28,3,no,northwest,4296.2712
1245
- 28,female,33.11,0,no,southeast,3171.6149
1246
- 18,male,33.33,0,no,southeast,1135.9407
1247
- 28,male,24.3,5,no,southwest,5615.369
1248
- 45,female,25.7,3,no,southwest,9101.798
1249
- 33,male,29.4,4,no,southwest,6059.173
1250
- 18,female,39.82,0,no,southeast,1633.9618
1251
- 32,male,33.63,1,yes,northeast,37607.5277
1252
- 24,male,29.83,0,yes,northeast,18648.4217
1253
- 19,male,19.8,0,no,southwest,1241.565
1254
- 20,male,27.3,0,yes,southwest,16232.847
1255
- 40,female,29.3,4,no,southwest,15828.82173
1256
- 34,female,27.72,0,no,southeast,4415.1588
1257
- 42,female,37.9,0,no,southwest,6474.013
1258
- 51,female,36.385,3,no,northwest,11436.73815
1259
- 54,female,27.645,1,no,northwest,11305.93455
1260
- 55,male,37.715,3,no,northwest,30063.58055
1261
- 52,female,23.18,0,no,northeast,10197.7722
1262
- 32,female,20.52,0,no,northeast,4544.2348
1263
- 28,male,37.1,1,no,southwest,3277.161
1264
- 41,female,28.05,1,no,southeast,6770.1925
1265
- 43,female,29.9,1,no,southwest,7337.748
1266
- 49,female,33.345,2,no,northeast,10370.91255
1267
- 64,male,23.76,0,yes,southeast,26926.5144
1268
- 55,female,30.5,0,no,southwest,10704.47
1269
- 24,male,31.065,0,yes,northeast,34254.05335
1270
- 20,female,33.3,0,no,southwest,1880.487
1271
- 45,male,27.5,3,no,southwest,8615.3
1272
- 26,male,33.915,1,no,northwest,3292.52985
1273
- 25,female,34.485,0,no,northwest,3021.80915
1274
- 43,male,25.52,5,no,southeast,14478.33015
1275
- 35,male,27.61,1,no,southeast,4747.0529
1276
- 26,male,27.06,0,yes,southeast,17043.3414
1277
- 57,male,23.7,0,no,southwest,10959.33
1278
- 22,female,30.4,0,no,northeast,2741.948
1279
- 32,female,29.735,0,no,northwest,4357.04365
1280
- 39,male,29.925,1,yes,northeast,22462.04375
1281
- 25,female,26.79,2,no,northwest,4189.1131
1282
- 48,female,33.33,0,no,southeast,8283.6807
1283
- 47,female,27.645,2,yes,northwest,24535.69855
1284
- 18,female,21.66,0,yes,northeast,14283.4594
1285
- 18,male,30.03,1,no,southeast,1720.3537
1286
- 61,male,36.3,1,yes,southwest,47403.88
1287
- 47,female,24.32,0,no,northeast,8534.6718
1288
- 28,female,17.29,0,no,northeast,3732.6251
1289
- 36,female,25.9,1,no,southwest,5472.449
1290
- 20,male,39.4,2,yes,southwest,38344.566
1291
- 44,male,34.32,1,no,southeast,7147.4728
1292
- 38,female,19.95,2,no,northeast,7133.9025
1293
- 19,male,34.9,0,yes,southwest,34828.654
1294
- 21,male,23.21,0,no,southeast,1515.3449
1295
- 46,male,25.745,3,no,northwest,9301.89355
1296
- 58,male,25.175,0,no,northeast,11931.12525
1297
- 20,male,22,1,no,southwest,1964.78
1298
- 18,male,26.125,0,no,northeast,1708.92575
1299
- 28,female,26.51,2,no,southeast,4340.4409
1300
- 33,male,27.455,2,no,northwest,5261.46945
1301
- 19,female,25.745,1,no,northwest,2710.82855
1302
- 45,male,30.36,0,yes,southeast,62592.87309
1303
- 62,male,30.875,3,yes,northwest,46718.16325
1304
- 25,female,20.8,1,no,southwest,3208.787
1305
- 43,male,27.8,0,yes,southwest,37829.7242
1306
- 42,male,24.605,2,yes,northeast,21259.37795
1307
- 24,female,27.72,0,no,southeast,2464.6188
1308
- 29,female,21.85,0,yes,northeast,16115.3045
1309
- 32,male,28.12,4,yes,northwest,21472.4788
1310
- 25,female,30.2,0,yes,southwest,33900.653
1311
- 41,male,32.2,2,no,southwest,6875.961
1312
- 42,male,26.315,1,no,northwest,6940.90985
1313
- 33,female,26.695,0,no,northwest,4571.41305
1314
- 34,male,42.9,1,no,southwest,4536.259
1315
- 19,female,34.7,2,yes,southwest,36397.576
1316
- 30,female,23.655,3,yes,northwest,18765.87545
1317
- 18,male,28.31,1,no,northeast,11272.33139
1318
- 19,female,20.6,0,no,southwest,1731.677
1319
- 18,male,53.13,0,no,southeast,1163.4627
1320
- 35,male,39.71,4,no,northeast,19496.71917
1321
- 39,female,26.315,2,no,northwest,7201.70085
1322
- 31,male,31.065,3,no,northwest,5425.02335
1323
- 62,male,26.695,0,yes,northeast,28101.33305
1324
- 62,male,38.83,0,no,southeast,12981.3457
1325
- 42,female,40.37,2,yes,southeast,43896.3763
1326
- 31,male,25.935,1,no,northwest,4239.89265
1327
- 61,male,33.535,0,no,northeast,13143.33665
1328
- 42,female,32.87,0,no,northeast,7050.0213
1329
- 51,male,30.03,1,no,southeast,9377.9047
1330
- 23,female,24.225,2,no,northeast,22395.74424
1331
- 52,male,38.6,2,no,southwest,10325.206
1332
- 57,female,25.74,2,no,southeast,12629.1656
1333
- 23,female,33.4,0,no,southwest,10795.93733
1334
- 52,female,44.7,3,no,southwest,11411.685
1335
- 50,male,30.97,3,no,northwest,10600.5483
1336
- 18,female,31.92,0,no,northeast,2205.9808
1337
- 18,female,36.85,0,no,southeast,1629.8335
1338
- 21,female,25.8,0,no,southwest,2007.945
1339
- 61,female,29.07,0,yes,northwest,29141.3603
1
+ age,sex,bmi,children,smoker,region,charges
2
+ 19,female,27.9,0,yes,southwest,16884.924
3
+ 18,male,33.77,1,no,southeast,1725.5523
4
+ 28,male,33,3,no,southeast,4449.462
5
+ 33,male,22.705,0,no,northwest,21984.47061
6
+ 32,male,28.88,0,no,northwest,3866.8552
7
+ 31,female,25.74,0,no,southeast,3756.6216
8
+ 46,female,33.44,1,no,southeast,8240.5896
9
+ 37,female,27.74,3,no,northwest,7281.5056
10
+ 37,male,29.83,2,no,northeast,6406.4107
11
+ 60,female,25.84,0,no,northwest,28923.13692
12
+ 25,male,26.22,0,no,northeast,2721.3208
13
+ 62,female,26.29,0,yes,southeast,27808.7251
14
+ 23,male,34.4,0,no,southwest,1826.843
15
+ 56,female,39.82,0,no,southeast,11090.7178
16
+ 27,male,42.13,0,yes,southeast,39611.7577
17
+ 19,male,24.6,1,no,southwest,1837.237
18
+ 52,female,30.78,1,no,northeast,10797.3362
19
+ 23,male,23.845,0,no,northeast,2395.17155
20
+ 56,male,40.3,0,no,southwest,10602.385
21
+ 30,male,35.3,0,yes,southwest,36837.467
22
+ 60,female,36.005,0,no,northeast,13228.84695
23
+ 30,female,32.4,1,no,southwest,4149.736
24
+ 18,male,34.1,0,no,southeast,1137.011
25
+ 34,female,31.92,1,yes,northeast,37701.8768
26
+ 37,male,28.025,2,no,northwest,6203.90175
27
+ 59,female,27.72,3,no,southeast,14001.1338
28
+ 63,female,23.085,0,no,northeast,14451.83515
29
+ 55,female,32.775,2,no,northwest,12268.63225
30
+ 23,male,17.385,1,no,northwest,2775.19215
31
+ 31,male,36.3,2,yes,southwest,38711
32
+ 22,male,35.6,0,yes,southwest,35585.576
33
+ 18,female,26.315,0,no,northeast,2198.18985
34
+ 19,female,28.6,5,no,southwest,4687.797
35
+ 63,male,28.31,0,no,northwest,13770.0979
36
+ 28,male,36.4,1,yes,southwest,51194.55914
37
+ 19,male,20.425,0,no,northwest,1625.43375
38
+ 62,female,32.965,3,no,northwest,15612.19335
39
+ 26,male,20.8,0,no,southwest,2302.3
40
+ 35,male,36.67,1,yes,northeast,39774.2763
41
+ 60,male,39.9,0,yes,southwest,48173.361
42
+ 24,female,26.6,0,no,northeast,3046.062
43
+ 31,female,36.63,2,no,southeast,4949.7587
44
+ 41,male,21.78,1,no,southeast,6272.4772
45
+ 37,female,30.8,2,no,southeast,6313.759
46
+ 38,male,37.05,1,no,northeast,6079.6715
47
+ 55,male,37.3,0,no,southwest,20630.28351
48
+ 18,female,38.665,2,no,northeast,3393.35635
49
+ 28,female,34.77,0,no,northwest,3556.9223
50
+ 60,female,24.53,0,no,southeast,12629.8967
51
+ 36,male,35.2,1,yes,southeast,38709.176
52
+ 18,female,35.625,0,no,northeast,2211.13075
53
+ 21,female,33.63,2,no,northwest,3579.8287
54
+ 48,male,28,1,yes,southwest,23568.272
55
+ 36,male,34.43,0,yes,southeast,37742.5757
56
+ 40,female,28.69,3,no,northwest,8059.6791
57
+ 58,male,36.955,2,yes,northwest,47496.49445
58
+ 58,female,31.825,2,no,northeast,13607.36875
59
+ 18,male,31.68,2,yes,southeast,34303.1672
60
+ 53,female,22.88,1,yes,southeast,23244.7902
61
+ 34,female,37.335,2,no,northwest,5989.52365
62
+ 43,male,27.36,3,no,northeast,8606.2174
63
+ 25,male,33.66,4,no,southeast,4504.6624
64
+ 64,male,24.7,1,no,northwest,30166.61817
65
+ 28,female,25.935,1,no,northwest,4133.64165
66
+ 20,female,22.42,0,yes,northwest,14711.7438
67
+ 19,female,28.9,0,no,southwest,1743.214
68
+ 61,female,39.1,2,no,southwest,14235.072
69
+ 40,male,26.315,1,no,northwest,6389.37785
70
+ 40,female,36.19,0,no,southeast,5920.1041
71
+ 28,male,23.98,3,yes,southeast,17663.1442
72
+ 27,female,24.75,0,yes,southeast,16577.7795
73
+ 31,male,28.5,5,no,northeast,6799.458
74
+ 53,female,28.1,3,no,southwest,11741.726
75
+ 58,male,32.01,1,no,southeast,11946.6259
76
+ 44,male,27.4,2,no,southwest,7726.854
77
+ 57,male,34.01,0,no,northwest,11356.6609
78
+ 29,female,29.59,1,no,southeast,3947.4131
79
+ 21,male,35.53,0,no,southeast,1532.4697
80
+ 22,female,39.805,0,no,northeast,2755.02095
81
+ 41,female,32.965,0,no,northwest,6571.02435
82
+ 31,male,26.885,1,no,northeast,4441.21315
83
+ 45,female,38.285,0,no,northeast,7935.29115
84
+ 22,male,37.62,1,yes,southeast,37165.1638
85
+ 48,female,41.23,4,no,northwest,11033.6617
86
+ 37,female,34.8,2,yes,southwest,39836.519
87
+ 45,male,22.895,2,yes,northwest,21098.55405
88
+ 57,female,31.16,0,yes,northwest,43578.9394
89
+ 56,female,27.2,0,no,southwest,11073.176
90
+ 46,female,27.74,0,no,northwest,8026.6666
91
+ 55,female,26.98,0,no,northwest,11082.5772
92
+ 21,female,39.49,0,no,southeast,2026.9741
93
+ 53,female,24.795,1,no,northwest,10942.13205
94
+ 59,male,29.83,3,yes,northeast,30184.9367
95
+ 35,male,34.77,2,no,northwest,5729.0053
96
+ 64,female,31.3,2,yes,southwest,47291.055
97
+ 28,female,37.62,1,no,southeast,3766.8838
98
+ 54,female,30.8,3,no,southwest,12105.32
99
+ 55,male,38.28,0,no,southeast,10226.2842
100
+ 56,male,19.95,0,yes,northeast,22412.6485
101
+ 38,male,19.3,0,yes,southwest,15820.699
102
+ 41,female,31.6,0,no,southwest,6186.127
103
+ 30,male,25.46,0,no,northeast,3645.0894
104
+ 18,female,30.115,0,no,northeast,21344.8467
105
+ 61,female,29.92,3,yes,southeast,30942.1918
106
+ 34,female,27.5,1,no,southwest,5003.853
107
+ 20,male,28.025,1,yes,northwest,17560.37975
108
+ 19,female,28.4,1,no,southwest,2331.519
109
+ 26,male,30.875,2,no,northwest,3877.30425
110
+ 29,male,27.94,0,no,southeast,2867.1196
111
+ 63,male,35.09,0,yes,southeast,47055.5321
112
+ 54,male,33.63,1,no,northwest,10825.2537
113
+ 55,female,29.7,2,no,southwest,11881.358
114
+ 37,male,30.8,0,no,southwest,4646.759
115
+ 21,female,35.72,0,no,northwest,2404.7338
116
+ 52,male,32.205,3,no,northeast,11488.31695
117
+ 60,male,28.595,0,no,northeast,30259.99556
118
+ 58,male,49.06,0,no,southeast,11381.3254
119
+ 29,female,27.94,1,yes,southeast,19107.7796
120
+ 49,female,27.17,0,no,southeast,8601.3293
121
+ 37,female,23.37,2,no,northwest,6686.4313
122
+ 44,male,37.1,2,no,southwest,7740.337
123
+ 18,male,23.75,0,no,northeast,1705.6245
124
+ 20,female,28.975,0,no,northwest,2257.47525
125
+ 44,male,31.35,1,yes,northeast,39556.4945
126
+ 47,female,33.915,3,no,northwest,10115.00885
127
+ 26,female,28.785,0,no,northeast,3385.39915
128
+ 19,female,28.3,0,yes,southwest,17081.08
129
+ 52,female,37.4,0,no,southwest,9634.538
130
+ 32,female,17.765,2,yes,northwest,32734.1863
131
+ 38,male,34.7,2,no,southwest,6082.405
132
+ 59,female,26.505,0,no,northeast,12815.44495
133
+ 61,female,22.04,0,no,northeast,13616.3586
134
+ 53,female,35.9,2,no,southwest,11163.568
135
+ 19,male,25.555,0,no,northwest,1632.56445
136
+ 20,female,28.785,0,no,northeast,2457.21115
137
+ 22,female,28.05,0,no,southeast,2155.6815
138
+ 19,male,34.1,0,no,southwest,1261.442
139
+ 22,male,25.175,0,no,northwest,2045.68525
140
+ 54,female,31.9,3,no,southeast,27322.73386
141
+ 22,female,36,0,no,southwest,2166.732
142
+ 34,male,22.42,2,no,northeast,27375.90478
143
+ 26,male,32.49,1,no,northeast,3490.5491
144
+ 34,male,25.3,2,yes,southeast,18972.495
145
+ 29,male,29.735,2,no,northwest,18157.876
146
+ 30,male,28.69,3,yes,northwest,20745.9891
147
+ 29,female,38.83,3,no,southeast,5138.2567
148
+ 46,male,30.495,3,yes,northwest,40720.55105
149
+ 51,female,37.73,1,no,southeast,9877.6077
150
+ 53,female,37.43,1,no,northwest,10959.6947
151
+ 19,male,28.4,1,no,southwest,1842.519
152
+ 35,male,24.13,1,no,northwest,5125.2157
153
+ 48,male,29.7,0,no,southeast,7789.635
154
+ 32,female,37.145,3,no,northeast,6334.34355
155
+ 42,female,23.37,0,yes,northeast,19964.7463
156
+ 40,female,25.46,1,no,northeast,7077.1894
157
+ 44,male,39.52,0,no,northwest,6948.7008
158
+ 48,male,24.42,0,yes,southeast,21223.6758
159
+ 18,male,25.175,0,yes,northeast,15518.18025
160
+ 30,male,35.53,0,yes,southeast,36950.2567
161
+ 50,female,27.83,3,no,southeast,19749.38338
162
+ 42,female,26.6,0,yes,northwest,21348.706
163
+ 18,female,36.85,0,yes,southeast,36149.4835
164
+ 54,male,39.6,1,no,southwest,10450.552
165
+ 32,female,29.8,2,no,southwest,5152.134
166
+ 37,male,29.64,0,no,northwest,5028.1466
167
+ 47,male,28.215,4,no,northeast,10407.08585
168
+ 20,female,37,5,no,southwest,4830.63
169
+ 32,female,33.155,3,no,northwest,6128.79745
170
+ 19,female,31.825,1,no,northwest,2719.27975
171
+ 27,male,18.905,3,no,northeast,4827.90495
172
+ 63,male,41.47,0,no,southeast,13405.3903
173
+ 49,male,30.3,0,no,southwest,8116.68
174
+ 18,male,15.96,0,no,northeast,1694.7964
175
+ 35,female,34.8,1,no,southwest,5246.047
176
+ 24,female,33.345,0,no,northwest,2855.43755
177
+ 63,female,37.7,0,yes,southwest,48824.45
178
+ 38,male,27.835,2,no,northwest,6455.86265
179
+ 54,male,29.2,1,no,southwest,10436.096
180
+ 46,female,28.9,2,no,southwest,8823.279
181
+ 41,female,33.155,3,no,northeast,8538.28845
182
+ 58,male,28.595,0,no,northwest,11735.87905
183
+ 18,female,38.28,0,no,southeast,1631.8212
184
+ 22,male,19.95,3,no,northeast,4005.4225
185
+ 44,female,26.41,0,no,northwest,7419.4779
186
+ 44,male,30.69,2,no,southeast,7731.4271
187
+ 36,male,41.895,3,yes,northeast,43753.33705
188
+ 26,female,29.92,2,no,southeast,3981.9768
189
+ 30,female,30.9,3,no,southwest,5325.651
190
+ 41,female,32.2,1,no,southwest,6775.961
191
+ 29,female,32.11,2,no,northwest,4922.9159
192
+ 61,male,31.57,0,no,southeast,12557.6053
193
+ 36,female,26.2,0,no,southwest,4883.866
194
+ 25,male,25.74,0,no,southeast,2137.6536
195
+ 56,female,26.6,1,no,northwest,12044.342
196
+ 18,male,34.43,0,no,southeast,1137.4697
197
+ 19,male,30.59,0,no,northwest,1639.5631
198
+ 39,female,32.8,0,no,southwest,5649.715
199
+ 45,female,28.6,2,no,southeast,8516.829
200
+ 51,female,18.05,0,no,northwest,9644.2525
201
+ 64,female,39.33,0,no,northeast,14901.5167
202
+ 19,female,32.11,0,no,northwest,2130.6759
203
+ 48,female,32.23,1,no,southeast,8871.1517
204
+ 60,female,24.035,0,no,northwest,13012.20865
205
+ 27,female,36.08,0,yes,southeast,37133.8982
206
+ 46,male,22.3,0,no,southwest,7147.105
207
+ 28,female,28.88,1,no,northeast,4337.7352
208
+ 59,male,26.4,0,no,southeast,11743.299
209
+ 35,male,27.74,2,yes,northeast,20984.0936
210
+ 63,female,31.8,0,no,southwest,13880.949
211
+ 40,male,41.23,1,no,northeast,6610.1097
212
+ 20,male,33,1,no,southwest,1980.07
213
+ 40,male,30.875,4,no,northwest,8162.71625
214
+ 24,male,28.5,2,no,northwest,3537.703
215
+ 34,female,26.73,1,no,southeast,5002.7827
216
+ 45,female,30.9,2,no,southwest,8520.026
217
+ 41,female,37.1,2,no,southwest,7371.772
218
+ 53,female,26.6,0,no,northwest,10355.641
219
+ 27,male,23.1,0,no,southeast,2483.736
220
+ 26,female,29.92,1,no,southeast,3392.9768
221
+ 24,female,23.21,0,no,southeast,25081.76784
222
+ 34,female,33.7,1,no,southwest,5012.471
223
+ 53,female,33.25,0,no,northeast,10564.8845
224
+ 32,male,30.8,3,no,southwest,5253.524
225
+ 19,male,34.8,0,yes,southwest,34779.615
226
+ 42,male,24.64,0,yes,southeast,19515.5416
227
+ 55,male,33.88,3,no,southeast,11987.1682
228
+ 28,male,38.06,0,no,southeast,2689.4954
229
+ 58,female,41.91,0,no,southeast,24227.33724
230
+ 41,female,31.635,1,no,northeast,7358.17565
231
+ 47,male,25.46,2,no,northeast,9225.2564
232
+ 42,female,36.195,1,no,northwest,7443.64305
233
+ 59,female,27.83,3,no,southeast,14001.2867
234
+ 19,female,17.8,0,no,southwest,1727.785
235
+ 59,male,27.5,1,no,southwest,12333.828
236
+ 39,male,24.51,2,no,northwest,6710.1919
237
+ 40,female,22.22,2,yes,southeast,19444.2658
238
+ 18,female,26.73,0,no,southeast,1615.7667
239
+ 31,male,38.39,2,no,southeast,4463.2051
240
+ 19,male,29.07,0,yes,northwest,17352.6803
241
+ 44,male,38.06,1,no,southeast,7152.6714
242
+ 23,female,36.67,2,yes,northeast,38511.6283
243
+ 33,female,22.135,1,no,northeast,5354.07465
244
+ 55,female,26.8,1,no,southwest,35160.13457
245
+ 40,male,35.3,3,no,southwest,7196.867
246
+ 63,female,27.74,0,yes,northeast,29523.1656
247
+ 54,male,30.02,0,no,northwest,24476.47851
248
+ 60,female,38.06,0,no,southeast,12648.7034
249
+ 24,male,35.86,0,no,southeast,1986.9334
250
+ 19,male,20.9,1,no,southwest,1832.094
251
+ 29,male,28.975,1,no,northeast,4040.55825
252
+ 18,male,17.29,2,yes,northeast,12829.4551
253
+ 63,female,32.2,2,yes,southwest,47305.305
254
+ 54,male,34.21,2,yes,southeast,44260.7499
255
+ 27,male,30.3,3,no,southwest,4260.744
256
+ 50,male,31.825,0,yes,northeast,41097.16175
257
+ 55,female,25.365,3,no,northeast,13047.33235
258
+ 56,male,33.63,0,yes,northwest,43921.1837
259
+ 38,female,40.15,0,no,southeast,5400.9805
260
+ 51,male,24.415,4,no,northwest,11520.09985
261
+ 19,male,31.92,0,yes,northwest,33750.2918
262
+ 58,female,25.2,0,no,southwest,11837.16
263
+ 20,female,26.84,1,yes,southeast,17085.2676
264
+ 52,male,24.32,3,yes,northeast,24869.8368
265
+ 19,male,36.955,0,yes,northwest,36219.40545
266
+ 53,female,38.06,3,no,southeast,20462.99766
267
+ 46,male,42.35,3,yes,southeast,46151.1245
268
+ 40,male,19.8,1,yes,southeast,17179.522
269
+ 59,female,32.395,3,no,northeast,14590.63205
270
+ 45,male,30.2,1,no,southwest,7441.053
271
+ 49,male,25.84,1,no,northeast,9282.4806
272
+ 18,male,29.37,1,no,southeast,1719.4363
273
+ 50,male,34.2,2,yes,southwest,42856.838
274
+ 41,male,37.05,2,no,northwest,7265.7025
275
+ 50,male,27.455,1,no,northeast,9617.66245
276
+ 25,male,27.55,0,no,northwest,2523.1695
277
+ 47,female,26.6,2,no,northeast,9715.841
278
+ 19,male,20.615,2,no,northwest,2803.69785
279
+ 22,female,24.3,0,no,southwest,2150.469
280
+ 59,male,31.79,2,no,southeast,12928.7911
281
+ 51,female,21.56,1,no,southeast,9855.1314
282
+ 40,female,28.12,1,yes,northeast,22331.5668
283
+ 54,male,40.565,3,yes,northeast,48549.17835
284
+ 30,male,27.645,1,no,northeast,4237.12655
285
+ 55,female,32.395,1,no,northeast,11879.10405
286
+ 52,female,31.2,0,no,southwest,9625.92
287
+ 46,male,26.62,1,no,southeast,7742.1098
288
+ 46,female,48.07,2,no,northeast,9432.9253
289
+ 63,female,26.22,0,no,northwest,14256.1928
290
+ 59,female,36.765,1,yes,northeast,47896.79135
291
+ 52,male,26.4,3,no,southeast,25992.82104
292
+ 28,female,33.4,0,no,southwest,3172.018
293
+ 29,male,29.64,1,no,northeast,20277.80751
294
+ 25,male,45.54,2,yes,southeast,42112.2356
295
+ 22,female,28.82,0,no,southeast,2156.7518
296
+ 25,male,26.8,3,no,southwest,3906.127
297
+ 18,male,22.99,0,no,northeast,1704.5681
298
+ 19,male,27.7,0,yes,southwest,16297.846
299
+ 47,male,25.41,1,yes,southeast,21978.6769
300
+ 31,male,34.39,3,yes,northwest,38746.3551
301
+ 48,female,28.88,1,no,northwest,9249.4952
302
+ 36,male,27.55,3,no,northeast,6746.7425
303
+ 53,female,22.61,3,yes,northeast,24873.3849
304
+ 56,female,37.51,2,no,southeast,12265.5069
305
+ 28,female,33,2,no,southeast,4349.462
306
+ 57,female,38,2,no,southwest,12646.207
307
+ 29,male,33.345,2,no,northwest,19442.3535
308
+ 28,female,27.5,2,no,southwest,20177.67113
309
+ 30,female,33.33,1,no,southeast,4151.0287
310
+ 58,male,34.865,0,no,northeast,11944.59435
311
+ 41,female,33.06,2,no,northwest,7749.1564
312
+ 50,male,26.6,0,no,southwest,8444.474
313
+ 19,female,24.7,0,no,southwest,1737.376
314
+ 43,male,35.97,3,yes,southeast,42124.5153
315
+ 49,male,35.86,0,no,southeast,8124.4084
316
+ 27,female,31.4,0,yes,southwest,34838.873
317
+ 52,male,33.25,0,no,northeast,9722.7695
318
+ 50,male,32.205,0,no,northwest,8835.26495
319
+ 54,male,32.775,0,no,northeast,10435.06525
320
+ 44,female,27.645,0,no,northwest,7421.19455
321
+ 32,male,37.335,1,no,northeast,4667.60765
322
+ 34,male,25.27,1,no,northwest,4894.7533
323
+ 26,female,29.64,4,no,northeast,24671.66334
324
+ 34,male,30.8,0,yes,southwest,35491.64
325
+ 57,male,40.945,0,no,northeast,11566.30055
326
+ 29,male,27.2,0,no,southwest,2866.091
327
+ 40,male,34.105,1,no,northeast,6600.20595
328
+ 27,female,23.21,1,no,southeast,3561.8889
329
+ 45,male,36.48,2,yes,northwest,42760.5022
330
+ 64,female,33.8,1,yes,southwest,47928.03
331
+ 52,male,36.7,0,no,southwest,9144.565
332
+ 61,female,36.385,1,yes,northeast,48517.56315
333
+ 52,male,27.36,0,yes,northwest,24393.6224
334
+ 61,female,31.16,0,no,northwest,13429.0354
335
+ 56,female,28.785,0,no,northeast,11658.37915
336
+ 43,female,35.72,2,no,northeast,19144.57652
337
+ 64,male,34.5,0,no,southwest,13822.803
338
+ 60,male,25.74,0,no,southeast,12142.5786
339
+ 62,male,27.55,1,no,northwest,13937.6665
340
+ 50,male,32.3,1,yes,northeast,41919.097
341
+ 46,female,27.72,1,no,southeast,8232.6388
342
+ 24,female,27.6,0,no,southwest,18955.22017
343
+ 62,male,30.02,0,no,northwest,13352.0998
344
+ 60,female,27.55,0,no,northeast,13217.0945
345
+ 63,male,36.765,0,no,northeast,13981.85035
346
+ 49,female,41.47,4,no,southeast,10977.2063
347
+ 34,female,29.26,3,no,southeast,6184.2994
348
+ 33,male,35.75,2,no,southeast,4889.9995
349
+ 46,male,33.345,1,no,northeast,8334.45755
350
+ 36,female,29.92,1,no,southeast,5478.0368
351
+ 19,male,27.835,0,no,northwest,1635.73365
352
+ 57,female,23.18,0,no,northwest,11830.6072
353
+ 50,female,25.6,0,no,southwest,8932.084
354
+ 30,female,27.7,0,no,southwest,3554.203
355
+ 33,male,35.245,0,no,northeast,12404.8791
356
+ 18,female,38.28,0,no,southeast,14133.03775
357
+ 46,male,27.6,0,no,southwest,24603.04837
358
+ 46,male,43.89,3,no,southeast,8944.1151
359
+ 47,male,29.83,3,no,northwest,9620.3307
360
+ 23,male,41.91,0,no,southeast,1837.2819
361
+ 18,female,20.79,0,no,southeast,1607.5101
362
+ 48,female,32.3,2,no,northeast,10043.249
363
+ 35,male,30.5,1,no,southwest,4751.07
364
+ 19,female,21.7,0,yes,southwest,13844.506
365
+ 21,female,26.4,1,no,southwest,2597.779
366
+ 21,female,21.89,2,no,southeast,3180.5101
367
+ 49,female,30.78,1,no,northeast,9778.3472
368
+ 56,female,32.3,3,no,northeast,13430.265
369
+ 42,female,24.985,2,no,northwest,8017.06115
370
+ 44,male,32.015,2,no,northwest,8116.26885
371
+ 18,male,30.4,3,no,northeast,3481.868
372
+ 61,female,21.09,0,no,northwest,13415.0381
373
+ 57,female,22.23,0,no,northeast,12029.2867
374
+ 42,female,33.155,1,no,northeast,7639.41745
375
+ 26,male,32.9,2,yes,southwest,36085.219
376
+ 20,male,33.33,0,no,southeast,1391.5287
377
+ 23,female,28.31,0,yes,northwest,18033.9679
378
+ 39,female,24.89,3,yes,northeast,21659.9301
379
+ 24,male,40.15,0,yes,southeast,38126.2465
380
+ 64,female,30.115,3,no,northwest,16455.70785
381
+ 62,male,31.46,1,no,southeast,27000.98473
382
+ 27,female,17.955,2,yes,northeast,15006.57945
383
+ 55,male,30.685,0,yes,northeast,42303.69215
384
+ 55,male,33,0,no,southeast,20781.48892
385
+ 35,female,43.34,2,no,southeast,5846.9176
386
+ 44,male,22.135,2,no,northeast,8302.53565
387
+ 19,male,34.4,0,no,southwest,1261.859
388
+ 58,female,39.05,0,no,southeast,11856.4115
389
+ 50,male,25.365,2,no,northwest,30284.64294
390
+ 26,female,22.61,0,no,northwest,3176.8159
391
+ 24,female,30.21,3,no,northwest,4618.0799
392
+ 48,male,35.625,4,no,northeast,10736.87075
393
+ 19,female,37.43,0,no,northwest,2138.0707
394
+ 48,male,31.445,1,no,northeast,8964.06055
395
+ 49,male,31.35,1,no,northeast,9290.1395
396
+ 46,female,32.3,2,no,northeast,9411.005
397
+ 46,male,19.855,0,no,northwest,7526.70645
398
+ 43,female,34.4,3,no,southwest,8522.003
399
+ 21,male,31.02,0,no,southeast,16586.49771
400
+ 64,male,25.6,2,no,southwest,14988.432
401
+ 18,female,38.17,0,no,southeast,1631.6683
402
+ 51,female,20.6,0,no,southwest,9264.797
403
+ 47,male,47.52,1,no,southeast,8083.9198
404
+ 64,female,32.965,0,no,northwest,14692.66935
405
+ 49,male,32.3,3,no,northwest,10269.46
406
+ 31,male,20.4,0,no,southwest,3260.199
407
+ 52,female,38.38,2,no,northeast,11396.9002
408
+ 33,female,24.31,0,no,southeast,4185.0979
409
+ 47,female,23.6,1,no,southwest,8539.671
410
+ 38,male,21.12,3,no,southeast,6652.5288
411
+ 32,male,30.03,1,no,southeast,4074.4537
412
+ 19,male,17.48,0,no,northwest,1621.3402
413
+ 44,female,20.235,1,yes,northeast,19594.80965
414
+ 26,female,17.195,2,yes,northeast,14455.64405
415
+ 25,male,23.9,5,no,southwest,5080.096
416
+ 19,female,35.15,0,no,northwest,2134.9015
417
+ 43,female,35.64,1,no,southeast,7345.7266
418
+ 52,male,34.1,0,no,southeast,9140.951
419
+ 36,female,22.6,2,yes,southwest,18608.262
420
+ 64,male,39.16,1,no,southeast,14418.2804
421
+ 63,female,26.98,0,yes,northwest,28950.4692
422
+ 64,male,33.88,0,yes,southeast,46889.2612
423
+ 61,male,35.86,0,yes,southeast,46599.1084
424
+ 40,male,32.775,1,yes,northeast,39125.33225
425
+ 25,male,30.59,0,no,northeast,2727.3951
426
+ 48,male,30.2,2,no,southwest,8968.33
427
+ 45,male,24.31,5,no,southeast,9788.8659
428
+ 38,female,27.265,1,no,northeast,6555.07035
429
+ 18,female,29.165,0,no,northeast,7323.734819
430
+ 21,female,16.815,1,no,northeast,3167.45585
431
+ 27,female,30.4,3,no,northwest,18804.7524
432
+ 19,male,33.1,0,no,southwest,23082.95533
433
+ 29,female,20.235,2,no,northwest,4906.40965
434
+ 42,male,26.9,0,no,southwest,5969.723
435
+ 60,female,30.5,0,no,southwest,12638.195
436
+ 31,male,28.595,1,no,northwest,4243.59005
437
+ 60,male,33.11,3,no,southeast,13919.8229
438
+ 22,male,31.73,0,no,northeast,2254.7967
439
+ 35,male,28.9,3,no,southwest,5926.846
440
+ 52,female,46.75,5,no,southeast,12592.5345
441
+ 26,male,29.45,0,no,northeast,2897.3235
442
+ 31,female,32.68,1,no,northwest,4738.2682
443
+ 33,female,33.5,0,yes,southwest,37079.372
444
+ 18,male,43.01,0,no,southeast,1149.3959
445
+ 59,female,36.52,1,no,southeast,28287.89766
446
+ 56,male,26.695,1,yes,northwest,26109.32905
447
+ 45,female,33.1,0,no,southwest,7345.084
448
+ 60,male,29.64,0,no,northeast,12730.9996
449
+ 56,female,25.65,0,no,northwest,11454.0215
450
+ 40,female,29.6,0,no,southwest,5910.944
451
+ 35,male,38.6,1,no,southwest,4762.329
452
+ 39,male,29.6,4,no,southwest,7512.267
453
+ 30,male,24.13,1,no,northwest,4032.2407
454
+ 24,male,23.4,0,no,southwest,1969.614
455
+ 20,male,29.735,0,no,northwest,1769.53165
456
+ 32,male,46.53,2,no,southeast,4686.3887
457
+ 59,male,37.4,0,no,southwest,21797.0004
458
+ 55,female,30.14,2,no,southeast,11881.9696
459
+ 57,female,30.495,0,no,northwest,11840.77505
460
+ 56,male,39.6,0,no,southwest,10601.412
461
+ 40,female,33,3,no,southeast,7682.67
462
+ 49,female,36.63,3,no,southeast,10381.4787
463
+ 42,male,30,0,yes,southwest,22144.032
464
+ 62,female,38.095,2,no,northeast,15230.32405
465
+ 56,male,25.935,0,no,northeast,11165.41765
466
+ 19,male,25.175,0,no,northwest,1632.03625
467
+ 30,female,28.38,1,yes,southeast,19521.9682
468
+ 60,female,28.7,1,no,southwest,13224.693
469
+ 56,female,33.82,2,no,northwest,12643.3778
470
+ 28,female,24.32,1,no,northeast,23288.9284
471
+ 18,female,24.09,1,no,southeast,2201.0971
472
+ 27,male,32.67,0,no,southeast,2497.0383
473
+ 18,female,30.115,0,no,northeast,2203.47185
474
+ 19,female,29.8,0,no,southwest,1744.465
475
+ 47,female,33.345,0,no,northeast,20878.78443
476
+ 54,male,25.1,3,yes,southwest,25382.297
477
+ 61,male,28.31,1,yes,northwest,28868.6639
478
+ 24,male,28.5,0,yes,northeast,35147.52848
479
+ 25,male,35.625,0,no,northwest,2534.39375
480
+ 21,male,36.85,0,no,southeast,1534.3045
481
+ 23,male,32.56,0,no,southeast,1824.2854
482
+ 63,male,41.325,3,no,northwest,15555.18875
483
+ 49,male,37.51,2,no,southeast,9304.7019
484
+ 18,female,31.35,0,no,southeast,1622.1885
485
+ 51,female,39.5,1,no,southwest,9880.068
486
+ 48,male,34.3,3,no,southwest,9563.029
487
+ 31,female,31.065,0,no,northeast,4347.02335
488
+ 54,female,21.47,3,no,northwest,12475.3513
489
+ 19,male,28.7,0,no,southwest,1253.936
490
+ 44,female,38.06,0,yes,southeast,48885.13561
491
+ 53,male,31.16,1,no,northwest,10461.9794
492
+ 19,female,32.9,0,no,southwest,1748.774
493
+ 61,female,25.08,0,no,southeast,24513.09126
494
+ 18,female,25.08,0,no,northeast,2196.4732
495
+ 61,male,43.4,0,no,southwest,12574.049
496
+ 21,male,25.7,4,yes,southwest,17942.106
497
+ 20,male,27.93,0,no,northeast,1967.0227
498
+ 31,female,23.6,2,no,southwest,4931.647
499
+ 45,male,28.7,2,no,southwest,8027.968
500
+ 44,female,23.98,2,no,southeast,8211.1002
501
+ 62,female,39.2,0,no,southwest,13470.86
502
+ 29,male,34.4,0,yes,southwest,36197.699
503
+ 43,male,26.03,0,no,northeast,6837.3687
504
+ 51,male,23.21,1,yes,southeast,22218.1149
505
+ 19,male,30.25,0,yes,southeast,32548.3405
506
+ 38,female,28.93,1,no,southeast,5974.3847
507
+ 37,male,30.875,3,no,northwest,6796.86325
508
+ 22,male,31.35,1,no,northwest,2643.2685
509
+ 21,male,23.75,2,no,northwest,3077.0955
510
+ 24,female,25.27,0,no,northeast,3044.2133
511
+ 57,female,28.7,0,no,southwest,11455.28
512
+ 56,male,32.11,1,no,northeast,11763.0009
513
+ 27,male,33.66,0,no,southeast,2498.4144
514
+ 51,male,22.42,0,no,northeast,9361.3268
515
+ 19,male,30.4,0,no,southwest,1256.299
516
+ 39,male,28.3,1,yes,southwest,21082.16
517
+ 58,male,35.7,0,no,southwest,11362.755
518
+ 20,male,35.31,1,no,southeast,27724.28875
519
+ 45,male,30.495,2,no,northwest,8413.46305
520
+ 35,female,31,1,no,southwest,5240.765
521
+ 31,male,30.875,0,no,northeast,3857.75925
522
+ 50,female,27.36,0,no,northeast,25656.57526
523
+ 32,female,44.22,0,no,southeast,3994.1778
524
+ 51,female,33.915,0,no,northeast,9866.30485
525
+ 38,female,37.73,0,no,southeast,5397.6167
526
+ 42,male,26.07,1,yes,southeast,38245.59327
527
+ 18,female,33.88,0,no,southeast,11482.63485
528
+ 19,female,30.59,2,no,northwest,24059.68019
529
+ 51,female,25.8,1,no,southwest,9861.025
530
+ 46,male,39.425,1,no,northeast,8342.90875
531
+ 18,male,25.46,0,no,northeast,1708.0014
532
+ 57,male,42.13,1,yes,southeast,48675.5177
533
+ 62,female,31.73,0,no,northeast,14043.4767
534
+ 59,male,29.7,2,no,southeast,12925.886
535
+ 37,male,36.19,0,no,southeast,19214.70553
536
+ 64,male,40.48,0,no,southeast,13831.1152
537
+ 38,male,28.025,1,no,northeast,6067.12675
538
+ 33,female,38.9,3,no,southwest,5972.378
539
+ 46,female,30.2,2,no,southwest,8825.086
540
+ 46,female,28.05,1,no,southeast,8233.0975
541
+ 53,male,31.35,0,no,southeast,27346.04207
542
+ 34,female,38,3,no,southwest,6196.448
543
+ 20,female,31.79,2,no,southeast,3056.3881
544
+ 63,female,36.3,0,no,southeast,13887.204
545
+ 54,female,47.41,0,yes,southeast,63770.42801
546
+ 54,male,30.21,0,no,northwest,10231.4999
547
+ 49,male,25.84,2,yes,northwest,23807.2406
548
+ 28,male,35.435,0,no,northeast,3268.84665
549
+ 54,female,46.7,2,no,southwest,11538.421
550
+ 25,female,28.595,0,no,northeast,3213.62205
551
+ 43,female,46.2,0,yes,southeast,45863.205
552
+ 63,male,30.8,0,no,southwest,13390.559
553
+ 32,female,28.93,0,no,southeast,3972.9247
554
+ 62,male,21.4,0,no,southwest,12957.118
555
+ 52,female,31.73,2,no,northwest,11187.6567
556
+ 25,female,41.325,0,no,northeast,17878.90068
557
+ 28,male,23.8,2,no,southwest,3847.674
558
+ 46,male,33.44,1,no,northeast,8334.5896
559
+ 34,male,34.21,0,no,southeast,3935.1799
560
+ 35,female,34.105,3,yes,northwest,39983.42595
561
+ 19,male,35.53,0,no,northwest,1646.4297
562
+ 46,female,19.95,2,no,northwest,9193.8385
563
+ 54,female,32.68,0,no,northeast,10923.9332
564
+ 27,male,30.5,0,no,southwest,2494.022
565
+ 50,male,44.77,1,no,southeast,9058.7303
566
+ 18,female,32.12,2,no,southeast,2801.2588
567
+ 19,female,30.495,0,no,northwest,2128.43105
568
+ 38,female,40.565,1,no,northwest,6373.55735
569
+ 41,male,30.59,2,no,northwest,7256.7231
570
+ 49,female,31.9,5,no,southwest,11552.904
571
+ 48,male,40.565,2,yes,northwest,45702.02235
572
+ 31,female,29.1,0,no,southwest,3761.292
573
+ 18,female,37.29,1,no,southeast,2219.4451
574
+ 30,female,43.12,2,no,southeast,4753.6368
575
+ 62,female,36.86,1,no,northeast,31620.00106
576
+ 57,female,34.295,2,no,northeast,13224.05705
577
+ 58,female,27.17,0,no,northwest,12222.8983
578
+ 22,male,26.84,0,no,southeast,1664.9996
579
+ 31,female,38.095,1,yes,northeast,58571.07448
580
+ 52,male,30.2,1,no,southwest,9724.53
581
+ 25,female,23.465,0,no,northeast,3206.49135
582
+ 59,male,25.46,1,no,northeast,12913.9924
583
+ 19,male,30.59,0,no,northwest,1639.5631
584
+ 39,male,45.43,2,no,southeast,6356.2707
585
+ 32,female,23.65,1,no,southeast,17626.23951
586
+ 19,male,20.7,0,no,southwest,1242.816
587
+ 33,female,28.27,1,no,southeast,4779.6023
588
+ 21,male,20.235,3,no,northeast,3861.20965
589
+ 34,female,30.21,1,yes,northwest,43943.8761
590
+ 61,female,35.91,0,no,northeast,13635.6379
591
+ 38,female,30.69,1,no,southeast,5976.8311
592
+ 58,female,29,0,no,southwest,11842.442
593
+ 47,male,19.57,1,no,northwest,8428.0693
594
+ 20,male,31.13,2,no,southeast,2566.4707
595
+ 21,female,21.85,1,yes,northeast,15359.1045
596
+ 41,male,40.26,0,no,southeast,5709.1644
597
+ 46,female,33.725,1,no,northeast,8823.98575
598
+ 42,female,29.48,2,no,southeast,7640.3092
599
+ 34,female,33.25,1,no,northeast,5594.8455
600
+ 43,male,32.6,2,no,southwest,7441.501
601
+ 52,female,37.525,2,no,northwest,33471.97189
602
+ 18,female,39.16,0,no,southeast,1633.0444
603
+ 51,male,31.635,0,no,northwest,9174.13565
604
+ 56,female,25.3,0,no,southwest,11070.535
605
+ 64,female,39.05,3,no,southeast,16085.1275
606
+ 19,female,28.31,0,yes,northwest,17468.9839
607
+ 51,female,34.1,0,no,southeast,9283.562
608
+ 27,female,25.175,0,no,northeast,3558.62025
609
+ 59,female,23.655,0,yes,northwest,25678.77845
610
+ 28,male,26.98,2,no,northeast,4435.0942
611
+ 30,male,37.8,2,yes,southwest,39241.442
612
+ 47,female,29.37,1,no,southeast,8547.6913
613
+ 38,female,34.8,2,no,southwest,6571.544
614
+ 18,female,33.155,0,no,northeast,2207.69745
615
+ 34,female,19,3,no,northeast,6753.038
616
+ 20,female,33,0,no,southeast,1880.07
617
+ 47,female,36.63,1,yes,southeast,42969.8527
618
+ 56,female,28.595,0,no,northeast,11658.11505
619
+ 49,male,25.6,2,yes,southwest,23306.547
620
+ 19,female,33.11,0,yes,southeast,34439.8559
621
+ 55,female,37.1,0,no,southwest,10713.644
622
+ 30,male,31.4,1,no,southwest,3659.346
623
+ 37,male,34.1,4,yes,southwest,40182.246
624
+ 49,female,21.3,1,no,southwest,9182.17
625
+ 18,male,33.535,0,yes,northeast,34617.84065
626
+ 59,male,28.785,0,no,northwest,12129.61415
627
+ 29,female,26.03,0,no,northwest,3736.4647
628
+ 36,male,28.88,3,no,northeast,6748.5912
629
+ 33,male,42.46,1,no,southeast,11326.71487
630
+ 58,male,38,0,no,southwest,11365.952
631
+ 44,female,38.95,0,yes,northwest,42983.4585
632
+ 53,male,36.1,1,no,southwest,10085.846
633
+ 24,male,29.3,0,no,southwest,1977.815
634
+ 29,female,35.53,0,no,southeast,3366.6697
635
+ 40,male,22.705,2,no,northeast,7173.35995
636
+ 51,male,39.7,1,no,southwest,9391.346
637
+ 64,male,38.19,0,no,northeast,14410.9321
638
+ 19,female,24.51,1,no,northwest,2709.1119
639
+ 35,female,38.095,2,no,northeast,24915.04626
640
+ 39,male,26.41,0,yes,northeast,20149.3229
641
+ 56,male,33.66,4,no,southeast,12949.1554
642
+ 33,male,42.4,5,no,southwest,6666.243
643
+ 42,male,28.31,3,yes,northwest,32787.45859
644
+ 61,male,33.915,0,no,northeast,13143.86485
645
+ 23,female,34.96,3,no,northwest,4466.6214
646
+ 43,male,35.31,2,no,southeast,18806.14547
647
+ 48,male,30.78,3,no,northeast,10141.1362
648
+ 39,male,26.22,1,no,northwest,6123.5688
649
+ 40,female,23.37,3,no,northeast,8252.2843
650
+ 18,male,28.5,0,no,northeast,1712.227
651
+ 58,female,32.965,0,no,northeast,12430.95335
652
+ 49,female,42.68,2,no,southeast,9800.8882
653
+ 53,female,39.6,1,no,southeast,10579.711
654
+ 48,female,31.13,0,no,southeast,8280.6227
655
+ 45,female,36.3,2,no,southeast,8527.532
656
+ 59,female,35.2,0,no,southeast,12244.531
657
+ 52,female,25.3,2,yes,southeast,24667.419
658
+ 26,female,42.4,1,no,southwest,3410.324
659
+ 27,male,33.155,2,no,northwest,4058.71245
660
+ 48,female,35.91,1,no,northeast,26392.26029
661
+ 57,female,28.785,4,no,northeast,14394.39815
662
+ 37,male,46.53,3,no,southeast,6435.6237
663
+ 57,female,23.98,1,no,southeast,22192.43711
664
+ 32,female,31.54,1,no,northeast,5148.5526
665
+ 18,male,33.66,0,no,southeast,1136.3994
666
+ 64,female,22.99,0,yes,southeast,27037.9141
667
+ 43,male,38.06,2,yes,southeast,42560.4304
668
+ 49,male,28.7,1,no,southwest,8703.456
669
+ 40,female,32.775,2,yes,northwest,40003.33225
670
+ 62,male,32.015,0,yes,northeast,45710.20785
671
+ 40,female,29.81,1,no,southeast,6500.2359
672
+ 30,male,31.57,3,no,southeast,4837.5823
673
+ 29,female,31.16,0,no,northeast,3943.5954
674
+ 36,male,29.7,0,no,southeast,4399.731
675
+ 41,female,31.02,0,no,southeast,6185.3208
676
+ 44,female,43.89,2,yes,southeast,46200.9851
677
+ 45,male,21.375,0,no,northwest,7222.78625
678
+ 55,female,40.81,3,no,southeast,12485.8009
679
+ 60,male,31.35,3,yes,northwest,46130.5265
680
+ 56,male,36.1,3,no,southwest,12363.547
681
+ 49,female,23.18,2,no,northwest,10156.7832
682
+ 21,female,17.4,1,no,southwest,2585.269
683
+ 19,male,20.3,0,no,southwest,1242.26
684
+ 39,male,35.3,2,yes,southwest,40103.89
685
+ 53,male,24.32,0,no,northwest,9863.4718
686
+ 33,female,18.5,1,no,southwest,4766.022
687
+ 53,male,26.41,2,no,northeast,11244.3769
688
+ 42,male,26.125,2,no,northeast,7729.64575
689
+ 40,male,41.69,0,no,southeast,5438.7491
690
+ 47,female,24.1,1,no,southwest,26236.57997
691
+ 27,male,31.13,1,yes,southeast,34806.4677
692
+ 21,male,27.36,0,no,northeast,2104.1134
693
+ 47,male,36.2,1,no,southwest,8068.185
694
+ 20,male,32.395,1,no,northwest,2362.22905
695
+ 24,male,23.655,0,no,northwest,2352.96845
696
+ 27,female,34.8,1,no,southwest,3577.999
697
+ 26,female,40.185,0,no,northwest,3201.24515
698
+ 53,female,32.3,2,no,northeast,29186.48236
699
+ 41,male,35.75,1,yes,southeast,40273.6455
700
+ 56,male,33.725,0,no,northwest,10976.24575
701
+ 23,female,39.27,2,no,southeast,3500.6123
702
+ 21,female,34.87,0,no,southeast,2020.5523
703
+ 50,female,44.745,0,no,northeast,9541.69555
704
+ 53,male,41.47,0,no,southeast,9504.3103
705
+ 34,female,26.41,1,no,northwest,5385.3379
706
+ 47,female,29.545,1,no,northwest,8930.93455
707
+ 33,female,32.9,2,no,southwest,5375.038
708
+ 51,female,38.06,0,yes,southeast,44400.4064
709
+ 49,male,28.69,3,no,northwest,10264.4421
710
+ 31,female,30.495,3,no,northeast,6113.23105
711
+ 36,female,27.74,0,no,northeast,5469.0066
712
+ 18,male,35.2,1,no,southeast,1727.54
713
+ 50,female,23.54,2,no,southeast,10107.2206
714
+ 43,female,30.685,2,no,northwest,8310.83915
715
+ 20,male,40.47,0,no,northeast,1984.4533
716
+ 24,female,22.6,0,no,southwest,2457.502
717
+ 60,male,28.9,0,no,southwest,12146.971
718
+ 49,female,22.61,1,no,northwest,9566.9909
719
+ 60,male,24.32,1,no,northwest,13112.6048
720
+ 51,female,36.67,2,no,northwest,10848.1343
721
+ 58,female,33.44,0,no,northwest,12231.6136
722
+ 51,female,40.66,0,no,northeast,9875.6804
723
+ 53,male,36.6,3,no,southwest,11264.541
724
+ 62,male,37.4,0,no,southwest,12979.358
725
+ 19,male,35.4,0,no,southwest,1263.249
726
+ 50,female,27.075,1,no,northeast,10106.13425
727
+ 30,female,39.05,3,yes,southeast,40932.4295
728
+ 41,male,28.405,1,no,northwest,6664.68595
729
+ 29,female,21.755,1,yes,northeast,16657.71745
730
+ 18,female,40.28,0,no,northeast,2217.6012
731
+ 41,female,36.08,1,no,southeast,6781.3542
732
+ 35,male,24.42,3,yes,southeast,19361.9988
733
+ 53,male,21.4,1,no,southwest,10065.413
734
+ 24,female,30.1,3,no,southwest,4234.927
735
+ 48,female,27.265,1,no,northeast,9447.25035
736
+ 59,female,32.1,3,no,southwest,14007.222
737
+ 49,female,34.77,1,no,northwest,9583.8933
738
+ 37,female,38.39,0,yes,southeast,40419.0191
739
+ 26,male,23.7,2,no,southwest,3484.331
740
+ 23,male,31.73,3,yes,northeast,36189.1017
741
+ 29,male,35.5,2,yes,southwest,44585.45587
742
+ 45,male,24.035,2,no,northeast,8604.48365
743
+ 27,male,29.15,0,yes,southeast,18246.4955
744
+ 53,male,34.105,0,yes,northeast,43254.41795
745
+ 31,female,26.62,0,no,southeast,3757.8448
746
+ 50,male,26.41,0,no,northwest,8827.2099
747
+ 50,female,30.115,1,no,northwest,9910.35985
748
+ 34,male,27,2,no,southwest,11737.84884
749
+ 19,male,21.755,0,no,northwest,1627.28245
750
+ 47,female,36,1,no,southwest,8556.907
751
+ 28,male,30.875,0,no,northwest,3062.50825
752
+ 37,female,26.4,0,yes,southeast,19539.243
753
+ 21,male,28.975,0,no,northwest,1906.35825
754
+ 64,male,37.905,0,no,northwest,14210.53595
755
+ 58,female,22.77,0,no,southeast,11833.7823
756
+ 24,male,33.63,4,no,northeast,17128.42608
757
+ 31,male,27.645,2,no,northeast,5031.26955
758
+ 39,female,22.8,3,no,northeast,7985.815
759
+ 47,female,27.83,0,yes,southeast,23065.4207
760
+ 30,male,37.43,3,no,northeast,5428.7277
761
+ 18,male,38.17,0,yes,southeast,36307.7983
762
+ 22,female,34.58,2,no,northeast,3925.7582
763
+ 23,male,35.2,1,no,southwest,2416.955
764
+ 33,male,27.1,1,yes,southwest,19040.876
765
+ 27,male,26.03,0,no,northeast,3070.8087
766
+ 45,female,25.175,2,no,northeast,9095.06825
767
+ 57,female,31.825,0,no,northwest,11842.62375
768
+ 47,male,32.3,1,no,southwest,8062.764
769
+ 42,female,29,1,no,southwest,7050.642
770
+ 64,female,39.7,0,no,southwest,14319.031
771
+ 38,female,19.475,2,no,northwest,6933.24225
772
+ 61,male,36.1,3,no,southwest,27941.28758
773
+ 53,female,26.7,2,no,southwest,11150.78
774
+ 44,female,36.48,0,no,northeast,12797.20962
775
+ 19,female,28.88,0,yes,northwest,17748.5062
776
+ 41,male,34.2,2,no,northwest,7261.741
777
+ 51,male,33.33,3,no,southeast,10560.4917
778
+ 40,male,32.3,2,no,northwest,6986.697
779
+ 45,male,39.805,0,no,northeast,7448.40395
780
+ 35,male,34.32,3,no,southeast,5934.3798
781
+ 53,male,28.88,0,no,northwest,9869.8102
782
+ 30,male,24.4,3,yes,southwest,18259.216
783
+ 18,male,41.14,0,no,southeast,1146.7966
784
+ 51,male,35.97,1,no,southeast,9386.1613
785
+ 50,female,27.6,1,yes,southwest,24520.264
786
+ 31,female,29.26,1,no,southeast,4350.5144
787
+ 35,female,27.7,3,no,southwest,6414.178
788
+ 60,male,36.955,0,no,northeast,12741.16745
789
+ 21,male,36.86,0,no,northwest,1917.3184
790
+ 29,male,22.515,3,no,northeast,5209.57885
791
+ 62,female,29.92,0,no,southeast,13457.9608
792
+ 39,female,41.8,0,no,southeast,5662.225
793
+ 19,male,27.6,0,no,southwest,1252.407
794
+ 22,female,23.18,0,no,northeast,2731.9122
795
+ 53,male,20.9,0,yes,southeast,21195.818
796
+ 39,female,31.92,2,no,northwest,7209.4918
797
+ 27,male,28.5,0,yes,northwest,18310.742
798
+ 30,male,44.22,2,no,southeast,4266.1658
799
+ 30,female,22.895,1,no,northeast,4719.52405
800
+ 58,female,33.1,0,no,southwest,11848.141
801
+ 33,male,24.795,0,yes,northeast,17904.52705
802
+ 42,female,26.18,1,no,southeast,7046.7222
803
+ 64,female,35.97,0,no,southeast,14313.8463
804
+ 21,male,22.3,1,no,southwest,2103.08
805
+ 18,female,42.24,0,yes,southeast,38792.6856
806
+ 23,male,26.51,0,no,southeast,1815.8759
807
+ 45,female,35.815,0,no,northwest,7731.85785
808
+ 40,female,41.42,1,no,northwest,28476.73499
809
+ 19,female,36.575,0,no,northwest,2136.88225
810
+ 18,male,30.14,0,no,southeast,1131.5066
811
+ 25,male,25.84,1,no,northeast,3309.7926
812
+ 46,female,30.8,3,no,southwest,9414.92
813
+ 33,female,42.94,3,no,northwest,6360.9936
814
+ 54,male,21.01,2,no,southeast,11013.7119
815
+ 28,male,22.515,2,no,northeast,4428.88785
816
+ 36,male,34.43,2,no,southeast,5584.3057
817
+ 20,female,31.46,0,no,southeast,1877.9294
818
+ 24,female,24.225,0,no,northwest,2842.76075
819
+ 23,male,37.1,3,no,southwest,3597.596
820
+ 47,female,26.125,1,yes,northeast,23401.30575
821
+ 33,female,35.53,0,yes,northwest,55135.40209
822
+ 45,male,33.7,1,no,southwest,7445.918
823
+ 26,male,17.67,0,no,northwest,2680.9493
824
+ 18,female,31.13,0,no,southeast,1621.8827
825
+ 44,female,29.81,2,no,southeast,8219.2039
826
+ 60,male,24.32,0,no,northwest,12523.6048
827
+ 64,female,31.825,2,no,northeast,16069.08475
828
+ 56,male,31.79,2,yes,southeast,43813.8661
829
+ 36,male,28.025,1,yes,northeast,20773.62775
830
+ 41,male,30.78,3,yes,northeast,39597.4072
831
+ 39,male,21.85,1,no,northwest,6117.4945
832
+ 63,male,33.1,0,no,southwest,13393.756
833
+ 36,female,25.84,0,no,northwest,5266.3656
834
+ 28,female,23.845,2,no,northwest,4719.73655
835
+ 58,male,34.39,0,no,northwest,11743.9341
836
+ 36,male,33.82,1,no,northwest,5377.4578
837
+ 42,male,35.97,2,no,southeast,7160.3303
838
+ 36,male,31.5,0,no,southwest,4402.233
839
+ 56,female,28.31,0,no,northeast,11657.7189
840
+ 35,female,23.465,2,no,northeast,6402.29135
841
+ 59,female,31.35,0,no,northwest,12622.1795
842
+ 21,male,31.1,0,no,southwest,1526.312
843
+ 59,male,24.7,0,no,northeast,12323.936
844
+ 23,female,32.78,2,yes,southeast,36021.0112
845
+ 57,female,29.81,0,yes,southeast,27533.9129
846
+ 53,male,30.495,0,no,northeast,10072.05505
847
+ 60,female,32.45,0,yes,southeast,45008.9555
848
+ 51,female,34.2,1,no,southwest,9872.701
849
+ 23,male,50.38,1,no,southeast,2438.0552
850
+ 27,female,24.1,0,no,southwest,2974.126
851
+ 55,male,32.775,0,no,northwest,10601.63225
852
+ 37,female,30.78,0,yes,northeast,37270.1512
853
+ 61,male,32.3,2,no,northwest,14119.62
854
+ 46,female,35.53,0,yes,northeast,42111.6647
855
+ 53,female,23.75,2,no,northeast,11729.6795
856
+ 49,female,23.845,3,yes,northeast,24106.91255
857
+ 20,female,29.6,0,no,southwest,1875.344
858
+ 48,female,33.11,0,yes,southeast,40974.1649
859
+ 25,male,24.13,0,yes,northwest,15817.9857
860
+ 25,female,32.23,1,no,southeast,18218.16139
861
+ 57,male,28.1,0,no,southwest,10965.446
862
+ 37,female,47.6,2,yes,southwest,46113.511
863
+ 38,female,28,3,no,southwest,7151.092
864
+ 55,female,33.535,2,no,northwest,12269.68865
865
+ 36,female,19.855,0,no,northeast,5458.04645
866
+ 51,male,25.4,0,no,southwest,8782.469
867
+ 40,male,29.9,2,no,southwest,6600.361
868
+ 18,male,37.29,0,no,southeast,1141.4451
869
+ 57,male,43.7,1,no,southwest,11576.13
870
+ 61,male,23.655,0,no,northeast,13129.60345
871
+ 25,female,24.3,3,no,southwest,4391.652
872
+ 50,male,36.2,0,no,southwest,8457.818
873
+ 26,female,29.48,1,no,southeast,3392.3652
874
+ 42,male,24.86,0,no,southeast,5966.8874
875
+ 43,male,30.1,1,no,southwest,6849.026
876
+ 44,male,21.85,3,no,northeast,8891.1395
877
+ 23,female,28.12,0,no,northwest,2690.1138
878
+ 49,female,27.1,1,no,southwest,26140.3603
879
+ 33,male,33.44,5,no,southeast,6653.7886
880
+ 41,male,28.8,1,no,southwest,6282.235
881
+ 37,female,29.5,2,no,southwest,6311.952
882
+ 22,male,34.8,3,no,southwest,3443.064
883
+ 23,male,27.36,1,no,northwest,2789.0574
884
+ 21,female,22.135,0,no,northeast,2585.85065
885
+ 51,female,37.05,3,yes,northeast,46255.1125
886
+ 25,male,26.695,4,no,northwest,4877.98105
887
+ 32,male,28.93,1,yes,southeast,19719.6947
888
+ 57,male,28.975,0,yes,northeast,27218.43725
889
+ 36,female,30.02,0,no,northwest,5272.1758
890
+ 22,male,39.5,0,no,southwest,1682.597
891
+ 57,male,33.63,1,no,northwest,11945.1327
892
+ 64,female,26.885,0,yes,northwest,29330.98315
893
+ 36,female,29.04,4,no,southeast,7243.8136
894
+ 54,male,24.035,0,no,northeast,10422.91665
895
+ 47,male,38.94,2,yes,southeast,44202.6536
896
+ 62,male,32.11,0,no,northeast,13555.0049
897
+ 61,female,44,0,no,southwest,13063.883
898
+ 43,female,20.045,2,yes,northeast,19798.05455
899
+ 19,male,25.555,1,no,northwest,2221.56445
900
+ 18,female,40.26,0,no,southeast,1634.5734
901
+ 19,female,22.515,0,no,northwest,2117.33885
902
+ 49,male,22.515,0,no,northeast,8688.85885
903
+ 60,male,40.92,0,yes,southeast,48673.5588
904
+ 26,male,27.265,3,no,northeast,4661.28635
905
+ 49,male,36.85,0,no,southeast,8125.7845
906
+ 60,female,35.1,0,no,southwest,12644.589
907
+ 26,female,29.355,2,no,northeast,4564.19145
908
+ 27,male,32.585,3,no,northeast,4846.92015
909
+ 44,female,32.34,1,no,southeast,7633.7206
910
+ 63,male,39.8,3,no,southwest,15170.069
911
+ 32,female,24.6,0,yes,southwest,17496.306
912
+ 22,male,28.31,1,no,northwest,2639.0429
913
+ 18,male,31.73,0,yes,northeast,33732.6867
914
+ 59,female,26.695,3,no,northwest,14382.70905
915
+ 44,female,27.5,1,no,southwest,7626.993
916
+ 33,male,24.605,2,no,northwest,5257.50795
917
+ 24,female,33.99,0,no,southeast,2473.3341
918
+ 43,female,26.885,0,yes,northwest,21774.32215
919
+ 45,male,22.895,0,yes,northeast,35069.37452
920
+ 61,female,28.2,0,no,southwest,13041.921
921
+ 35,female,34.21,1,no,southeast,5245.2269
922
+ 62,female,25,0,no,southwest,13451.122
923
+ 62,female,33.2,0,no,southwest,13462.52
924
+ 38,male,31,1,no,southwest,5488.262
925
+ 34,male,35.815,0,no,northwest,4320.41085
926
+ 43,male,23.2,0,no,southwest,6250.435
927
+ 50,male,32.11,2,no,northeast,25333.33284
928
+ 19,female,23.4,2,no,southwest,2913.569
929
+ 57,female,20.1,1,no,southwest,12032.326
930
+ 62,female,39.16,0,no,southeast,13470.8044
931
+ 41,male,34.21,1,no,southeast,6289.7549
932
+ 26,male,46.53,1,no,southeast,2927.0647
933
+ 39,female,32.5,1,no,southwest,6238.298
934
+ 46,male,25.8,5,no,southwest,10096.97
935
+ 45,female,35.3,0,no,southwest,7348.142
936
+ 32,male,37.18,2,no,southeast,4673.3922
937
+ 59,female,27.5,0,no,southwest,12233.828
938
+ 44,male,29.735,2,no,northeast,32108.66282
939
+ 39,female,24.225,5,no,northwest,8965.79575
940
+ 18,male,26.18,2,no,southeast,2304.0022
941
+ 53,male,29.48,0,no,southeast,9487.6442
942
+ 18,male,23.21,0,no,southeast,1121.8739
943
+ 50,female,46.09,1,no,southeast,9549.5651
944
+ 18,female,40.185,0,no,northeast,2217.46915
945
+ 19,male,22.61,0,no,northwest,1628.4709
946
+ 62,male,39.93,0,no,southeast,12982.8747
947
+ 56,female,35.8,1,no,southwest,11674.13
948
+ 42,male,35.8,2,no,southwest,7160.094
949
+ 37,male,34.2,1,yes,northeast,39047.285
950
+ 42,male,31.255,0,no,northwest,6358.77645
951
+ 25,male,29.7,3,yes,southwest,19933.458
952
+ 57,male,18.335,0,no,northeast,11534.87265
953
+ 51,male,42.9,2,yes,southeast,47462.894
954
+ 30,female,28.405,1,no,northwest,4527.18295
955
+ 44,male,30.2,2,yes,southwest,38998.546
956
+ 34,male,27.835,1,yes,northwest,20009.63365
957
+ 31,male,39.49,1,no,southeast,3875.7341
958
+ 54,male,30.8,1,yes,southeast,41999.52
959
+ 24,male,26.79,1,no,northwest,12609.88702
960
+ 43,male,34.96,1,yes,northeast,41034.2214
961
+ 48,male,36.67,1,no,northwest,28468.91901
962
+ 19,female,39.615,1,no,northwest,2730.10785
963
+ 29,female,25.9,0,no,southwest,3353.284
964
+ 63,female,35.2,1,no,southeast,14474.675
965
+ 46,male,24.795,3,no,northeast,9500.57305
966
+ 52,male,36.765,2,no,northwest,26467.09737
967
+ 35,male,27.1,1,no,southwest,4746.344
968
+ 51,male,24.795,2,yes,northwest,23967.38305
969
+ 44,male,25.365,1,no,northwest,7518.02535
970
+ 21,male,25.745,2,no,northeast,3279.86855
971
+ 39,female,34.32,5,no,southeast,8596.8278
972
+ 50,female,28.16,3,no,southeast,10702.6424
973
+ 34,female,23.56,0,no,northeast,4992.3764
974
+ 22,female,20.235,0,no,northwest,2527.81865
975
+ 19,female,40.5,0,no,southwest,1759.338
976
+ 26,male,35.42,0,no,southeast,2322.6218
977
+ 29,male,22.895,0,yes,northeast,16138.76205
978
+ 48,male,40.15,0,no,southeast,7804.1605
979
+ 26,male,29.15,1,no,southeast,2902.9065
980
+ 45,female,39.995,3,no,northeast,9704.66805
981
+ 36,female,29.92,0,no,southeast,4889.0368
982
+ 54,male,25.46,1,no,northeast,25517.11363
983
+ 34,male,21.375,0,no,northeast,4500.33925
984
+ 31,male,25.9,3,yes,southwest,19199.944
985
+ 27,female,30.59,1,no,northeast,16796.41194
986
+ 20,male,30.115,5,no,northeast,4915.05985
987
+ 44,female,25.8,1,no,southwest,7624.63
988
+ 43,male,30.115,3,no,northwest,8410.04685
989
+ 45,female,27.645,1,no,northwest,28340.18885
990
+ 34,male,34.675,0,no,northeast,4518.82625
991
+ 24,female,20.52,0,yes,northeast,14571.8908
992
+ 26,female,19.8,1,no,southwest,3378.91
993
+ 38,female,27.835,2,no,northeast,7144.86265
994
+ 50,female,31.6,2,no,southwest,10118.424
995
+ 38,male,28.27,1,no,southeast,5484.4673
996
+ 27,female,20.045,3,yes,northwest,16420.49455
997
+ 39,female,23.275,3,no,northeast,7986.47525
998
+ 39,female,34.1,3,no,southwest,7418.522
999
+ 63,female,36.85,0,no,southeast,13887.9685
1000
+ 33,female,36.29,3,no,northeast,6551.7501
1001
+ 36,female,26.885,0,no,northwest,5267.81815
1002
+ 30,male,22.99,2,yes,northwest,17361.7661
1003
+ 24,male,32.7,0,yes,southwest,34472.841
1004
+ 24,male,25.8,0,no,southwest,1972.95
1005
+ 48,male,29.6,0,no,southwest,21232.18226
1006
+ 47,male,19.19,1,no,northeast,8627.5411
1007
+ 29,male,31.73,2,no,northwest,4433.3877
1008
+ 28,male,29.26,2,no,northeast,4438.2634
1009
+ 47,male,28.215,3,yes,northwest,24915.22085
1010
+ 25,male,24.985,2,no,northeast,23241.47453
1011
+ 51,male,27.74,1,no,northeast,9957.7216
1012
+ 48,female,22.8,0,no,southwest,8269.044
1013
+ 43,male,20.13,2,yes,southeast,18767.7377
1014
+ 61,female,33.33,4,no,southeast,36580.28216
1015
+ 48,male,32.3,1,no,northwest,8765.249
1016
+ 38,female,27.6,0,no,southwest,5383.536
1017
+ 59,male,25.46,0,no,northwest,12124.9924
1018
+ 19,female,24.605,1,no,northwest,2709.24395
1019
+ 26,female,34.2,2,no,southwest,3987.926
1020
+ 54,female,35.815,3,no,northwest,12495.29085
1021
+ 21,female,32.68,2,no,northwest,26018.95052
1022
+ 51,male,37,0,no,southwest,8798.593
1023
+ 22,female,31.02,3,yes,southeast,35595.5898
1024
+ 47,male,36.08,1,yes,southeast,42211.1382
1025
+ 18,male,23.32,1,no,southeast,1711.0268
1026
+ 47,female,45.32,1,no,southeast,8569.8618
1027
+ 21,female,34.6,0,no,southwest,2020.177
1028
+ 19,male,26.03,1,yes,northwest,16450.8947
1029
+ 23,male,18.715,0,no,northwest,21595.38229
1030
+ 54,male,31.6,0,no,southwest,9850.432
1031
+ 37,female,17.29,2,no,northeast,6877.9801
1032
+ 46,female,23.655,1,yes,northwest,21677.28345
1033
+ 55,female,35.2,0,yes,southeast,44423.803
1034
+ 30,female,27.93,0,no,northeast,4137.5227
1035
+ 18,male,21.565,0,yes,northeast,13747.87235
1036
+ 61,male,38.38,0,no,northwest,12950.0712
1037
+ 54,female,23,3,no,southwest,12094.478
1038
+ 22,male,37.07,2,yes,southeast,37484.4493
1039
+ 45,female,30.495,1,yes,northwest,39725.51805
1040
+ 22,male,28.88,0,no,northeast,2250.8352
1041
+ 19,male,27.265,2,no,northwest,22493.65964
1042
+ 35,female,28.025,0,yes,northwest,20234.85475
1043
+ 18,male,23.085,0,no,northeast,1704.70015
1044
+ 20,male,30.685,0,yes,northeast,33475.81715
1045
+ 28,female,25.8,0,no,southwest,3161.454
1046
+ 55,male,35.245,1,no,northeast,11394.06555
1047
+ 43,female,24.7,2,yes,northwest,21880.82
1048
+ 43,female,25.08,0,no,northeast,7325.0482
1049
+ 22,male,52.58,1,yes,southeast,44501.3982
1050
+ 25,female,22.515,1,no,northwest,3594.17085
1051
+ 49,male,30.9,0,yes,southwest,39727.614
1052
+ 44,female,36.955,1,no,northwest,8023.13545
1053
+ 64,male,26.41,0,no,northeast,14394.5579
1054
+ 49,male,29.83,1,no,northeast,9288.0267
1055
+ 47,male,29.8,3,yes,southwest,25309.489
1056
+ 27,female,21.47,0,no,northwest,3353.4703
1057
+ 55,male,27.645,0,no,northwest,10594.50155
1058
+ 48,female,28.9,0,no,southwest,8277.523
1059
+ 45,female,31.79,0,no,southeast,17929.30337
1060
+ 24,female,39.49,0,no,southeast,2480.9791
1061
+ 32,male,33.82,1,no,northwest,4462.7218
1062
+ 24,male,32.01,0,no,southeast,1981.5819
1063
+ 57,male,27.94,1,no,southeast,11554.2236
1064
+ 59,male,41.14,1,yes,southeast,48970.2476
1065
+ 36,male,28.595,3,no,northwest,6548.19505
1066
+ 29,female,25.6,4,no,southwest,5708.867
1067
+ 42,female,25.3,1,no,southwest,7045.499
1068
+ 48,male,37.29,2,no,southeast,8978.1851
1069
+ 39,male,42.655,0,no,northeast,5757.41345
1070
+ 63,male,21.66,1,no,northwest,14349.8544
1071
+ 54,female,31.9,1,no,southeast,10928.849
1072
+ 37,male,37.07,1,yes,southeast,39871.7043
1073
+ 63,male,31.445,0,no,northeast,13974.45555
1074
+ 21,male,31.255,0,no,northwest,1909.52745
1075
+ 54,female,28.88,2,no,northeast,12096.6512
1076
+ 60,female,18.335,0,no,northeast,13204.28565
1077
+ 32,female,29.59,1,no,southeast,4562.8421
1078
+ 47,female,32,1,no,southwest,8551.347
1079
+ 21,male,26.03,0,no,northeast,2102.2647
1080
+ 28,male,31.68,0,yes,southeast,34672.1472
1081
+ 63,male,33.66,3,no,southeast,15161.5344
1082
+ 18,male,21.78,2,no,southeast,11884.04858
1083
+ 32,male,27.835,1,no,northwest,4454.40265
1084
+ 38,male,19.95,1,no,northwest,5855.9025
1085
+ 32,male,31.5,1,no,southwest,4076.497
1086
+ 62,female,30.495,2,no,northwest,15019.76005
1087
+ 39,female,18.3,5,yes,southwest,19023.26
1088
+ 55,male,28.975,0,no,northeast,10796.35025
1089
+ 57,male,31.54,0,no,northwest,11353.2276
1090
+ 52,male,47.74,1,no,southeast,9748.9106
1091
+ 56,male,22.1,0,no,southwest,10577.087
1092
+ 47,male,36.19,0,yes,southeast,41676.0811
1093
+ 55,female,29.83,0,no,northeast,11286.5387
1094
+ 23,male,32.7,3,no,southwest,3591.48
1095
+ 22,female,30.4,0,yes,northwest,33907.548
1096
+ 50,female,33.7,4,no,southwest,11299.343
1097
+ 18,female,31.35,4,no,northeast,4561.1885
1098
+ 51,female,34.96,2,yes,northeast,44641.1974
1099
+ 22,male,33.77,0,no,southeast,1674.6323
1100
+ 52,female,30.875,0,no,northeast,23045.56616
1101
+ 25,female,33.99,1,no,southeast,3227.1211
1102
+ 33,female,19.095,2,yes,northeast,16776.30405
1103
+ 53,male,28.6,3,no,southwest,11253.421
1104
+ 29,male,38.94,1,no,southeast,3471.4096
1105
+ 58,male,36.08,0,no,southeast,11363.2832
1106
+ 37,male,29.8,0,no,southwest,20420.60465
1107
+ 54,female,31.24,0,no,southeast,10338.9316
1108
+ 49,female,29.925,0,no,northwest,8988.15875
1109
+ 50,female,26.22,2,no,northwest,10493.9458
1110
+ 26,male,30,1,no,southwest,2904.088
1111
+ 45,male,20.35,3,no,southeast,8605.3615
1112
+ 54,female,32.3,1,no,northeast,11512.405
1113
+ 38,male,38.39,3,yes,southeast,41949.2441
1114
+ 48,female,25.85,3,yes,southeast,24180.9335
1115
+ 28,female,26.315,3,no,northwest,5312.16985
1116
+ 23,male,24.51,0,no,northeast,2396.0959
1117
+ 55,male,32.67,1,no,southeast,10807.4863
1118
+ 41,male,29.64,5,no,northeast,9222.4026
1119
+ 25,male,33.33,2,yes,southeast,36124.5737
1120
+ 33,male,35.75,1,yes,southeast,38282.7495
1121
+ 30,female,19.95,3,no,northwest,5693.4305
1122
+ 23,female,31.4,0,yes,southwest,34166.273
1123
+ 46,male,38.17,2,no,southeast,8347.1643
1124
+ 53,female,36.86,3,yes,northwest,46661.4424
1125
+ 27,female,32.395,1,no,northeast,18903.49141
1126
+ 23,female,42.75,1,yes,northeast,40904.1995
1127
+ 63,female,25.08,0,no,northwest,14254.6082
1128
+ 55,male,29.9,0,no,southwest,10214.636
1129
+ 35,female,35.86,2,no,southeast,5836.5204
1130
+ 34,male,32.8,1,no,southwest,14358.36437
1131
+ 19,female,18.6,0,no,southwest,1728.897
1132
+ 39,female,23.87,5,no,southeast,8582.3023
1133
+ 27,male,45.9,2,no,southwest,3693.428
1134
+ 57,male,40.28,0,no,northeast,20709.02034
1135
+ 52,female,18.335,0,no,northwest,9991.03765
1136
+ 28,male,33.82,0,no,northwest,19673.33573
1137
+ 50,female,28.12,3,no,northwest,11085.5868
1138
+ 44,female,25,1,no,southwest,7623.518
1139
+ 26,female,22.23,0,no,northwest,3176.2877
1140
+ 33,male,30.25,0,no,southeast,3704.3545
1141
+ 19,female,32.49,0,yes,northwest,36898.73308
1142
+ 50,male,37.07,1,no,southeast,9048.0273
1143
+ 41,female,32.6,3,no,southwest,7954.517
1144
+ 52,female,24.86,0,no,southeast,27117.99378
1145
+ 39,male,32.34,2,no,southeast,6338.0756
1146
+ 50,male,32.3,2,no,southwest,9630.397
1147
+ 52,male,32.775,3,no,northwest,11289.10925
1148
+ 60,male,32.8,0,yes,southwest,52590.82939
1149
+ 20,female,31.92,0,no,northwest,2261.5688
1150
+ 55,male,21.5,1,no,southwest,10791.96
1151
+ 42,male,34.1,0,no,southwest,5979.731
1152
+ 18,female,30.305,0,no,northeast,2203.73595
1153
+ 58,female,36.48,0,no,northwest,12235.8392
1154
+ 43,female,32.56,3,yes,southeast,40941.2854
1155
+ 35,female,35.815,1,no,northwest,5630.45785
1156
+ 48,female,27.93,4,no,northwest,11015.1747
1157
+ 36,female,22.135,3,no,northeast,7228.21565
1158
+ 19,male,44.88,0,yes,southeast,39722.7462
1159
+ 23,female,23.18,2,no,northwest,14426.07385
1160
+ 20,female,30.59,0,no,northeast,2459.7201
1161
+ 32,female,41.1,0,no,southwest,3989.841
1162
+ 43,female,34.58,1,no,northwest,7727.2532
1163
+ 34,male,42.13,2,no,southeast,5124.1887
1164
+ 30,male,38.83,1,no,southeast,18963.17192
1165
+ 18,female,28.215,0,no,northeast,2200.83085
1166
+ 41,female,28.31,1,no,northwest,7153.5539
1167
+ 35,female,26.125,0,no,northeast,5227.98875
1168
+ 57,male,40.37,0,no,southeast,10982.5013
1169
+ 29,female,24.6,2,no,southwest,4529.477
1170
+ 32,male,35.2,2,no,southwest,4670.64
1171
+ 37,female,34.105,1,no,northwest,6112.35295
1172
+ 18,male,27.36,1,yes,northeast,17178.6824
1173
+ 43,female,26.7,2,yes,southwest,22478.6
1174
+ 56,female,41.91,0,no,southeast,11093.6229
1175
+ 38,male,29.26,2,no,northwest,6457.8434
1176
+ 29,male,32.11,2,no,northwest,4433.9159
1177
+ 22,female,27.1,0,no,southwest,2154.361
1178
+ 52,female,24.13,1,yes,northwest,23887.6627
1179
+ 40,female,27.4,1,no,southwest,6496.886
1180
+ 23,female,34.865,0,no,northeast,2899.48935
1181
+ 31,male,29.81,0,yes,southeast,19350.3689
1182
+ 42,female,41.325,1,no,northeast,7650.77375
1183
+ 24,female,29.925,0,no,northwest,2850.68375
1184
+ 25,female,30.3,0,no,southwest,2632.992
1185
+ 48,female,27.36,1,no,northeast,9447.3824
1186
+ 23,female,28.49,1,yes,southeast,18328.2381
1187
+ 45,male,23.56,2,no,northeast,8603.8234
1188
+ 20,male,35.625,3,yes,northwest,37465.34375
1189
+ 62,female,32.68,0,no,northwest,13844.7972
1190
+ 43,female,25.27,1,yes,northeast,21771.3423
1191
+ 23,female,28,0,no,southwest,13126.67745
1192
+ 31,female,32.775,2,no,northwest,5327.40025
1193
+ 41,female,21.755,1,no,northeast,13725.47184
1194
+ 58,female,32.395,1,no,northeast,13019.16105
1195
+ 48,female,36.575,0,no,northwest,8671.19125
1196
+ 31,female,21.755,0,no,northwest,4134.08245
1197
+ 19,female,27.93,3,no,northwest,18838.70366
1198
+ 19,female,30.02,0,yes,northwest,33307.5508
1199
+ 41,male,33.55,0,no,southeast,5699.8375
1200
+ 40,male,29.355,1,no,northwest,6393.60345
1201
+ 31,female,25.8,2,no,southwest,4934.705
1202
+ 37,male,24.32,2,no,northwest,6198.7518
1203
+ 46,male,40.375,2,no,northwest,8733.22925
1204
+ 22,male,32.11,0,no,northwest,2055.3249
1205
+ 51,male,32.3,1,no,northeast,9964.06
1206
+ 18,female,27.28,3,yes,southeast,18223.4512
1207
+ 35,male,17.86,1,no,northwest,5116.5004
1208
+ 59,female,34.8,2,no,southwest,36910.60803
1209
+ 36,male,33.4,2,yes,southwest,38415.474
1210
+ 37,female,25.555,1,yes,northeast,20296.86345
1211
+ 59,male,37.1,1,no,southwest,12347.172
1212
+ 36,male,30.875,1,no,northwest,5373.36425
1213
+ 39,male,34.1,2,no,southeast,23563.01618
1214
+ 18,male,21.47,0,no,northeast,1702.4553
1215
+ 52,female,33.3,2,no,southwest,10806.839
1216
+ 27,female,31.255,1,no,northwest,3956.07145
1217
+ 18,male,39.14,0,no,northeast,12890.05765
1218
+ 40,male,25.08,0,no,southeast,5415.6612
1219
+ 29,male,37.29,2,no,southeast,4058.1161
1220
+ 46,female,34.6,1,yes,southwest,41661.602
1221
+ 38,female,30.21,3,no,northwest,7537.1639
1222
+ 30,female,21.945,1,no,northeast,4718.20355
1223
+ 40,male,24.97,2,no,southeast,6593.5083
1224
+ 50,male,25.3,0,no,southeast,8442.667
1225
+ 20,female,24.42,0,yes,southeast,26125.67477
1226
+ 41,male,23.94,1,no,northeast,6858.4796
1227
+ 33,female,39.82,1,no,southeast,4795.6568
1228
+ 38,male,16.815,2,no,northeast,6640.54485
1229
+ 42,male,37.18,2,no,southeast,7162.0122
1230
+ 56,male,34.43,0,no,southeast,10594.2257
1231
+ 58,male,30.305,0,no,northeast,11938.25595
1232
+ 52,male,34.485,3,yes,northwest,60021.39897
1233
+ 20,female,21.8,0,yes,southwest,20167.33603
1234
+ 54,female,24.605,3,no,northwest,12479.70895
1235
+ 58,male,23.3,0,no,southwest,11345.519
1236
+ 45,female,27.83,2,no,southeast,8515.7587
1237
+ 26,male,31.065,0,no,northwest,2699.56835
1238
+ 63,female,21.66,0,no,northeast,14449.8544
1239
+ 58,female,28.215,0,no,northwest,12224.35085
1240
+ 37,male,22.705,3,no,northeast,6985.50695
1241
+ 25,female,42.13,1,no,southeast,3238.4357
1242
+ 52,male,41.8,2,yes,southeast,47269.854
1243
+ 64,male,36.96,2,yes,southeast,49577.6624
1244
+ 22,female,21.28,3,no,northwest,4296.2712
1245
+ 28,female,33.11,0,no,southeast,3171.6149
1246
+ 18,male,33.33,0,no,southeast,1135.9407
1247
+ 28,male,24.3,5,no,southwest,5615.369
1248
+ 45,female,25.7,3,no,southwest,9101.798
1249
+ 33,male,29.4,4,no,southwest,6059.173
1250
+ 18,female,39.82,0,no,southeast,1633.9618
1251
+ 32,male,33.63,1,yes,northeast,37607.5277
1252
+ 24,male,29.83,0,yes,northeast,18648.4217
1253
+ 19,male,19.8,0,no,southwest,1241.565
1254
+ 20,male,27.3,0,yes,southwest,16232.847
1255
+ 40,female,29.3,4,no,southwest,15828.82173
1256
+ 34,female,27.72,0,no,southeast,4415.1588
1257
+ 42,female,37.9,0,no,southwest,6474.013
1258
+ 51,female,36.385,3,no,northwest,11436.73815
1259
+ 54,female,27.645,1,no,northwest,11305.93455
1260
+ 55,male,37.715,3,no,northwest,30063.58055
1261
+ 52,female,23.18,0,no,northeast,10197.7722
1262
+ 32,female,20.52,0,no,northeast,4544.2348
1263
+ 28,male,37.1,1,no,southwest,3277.161
1264
+ 41,female,28.05,1,no,southeast,6770.1925
1265
+ 43,female,29.9,1,no,southwest,7337.748
1266
+ 49,female,33.345,2,no,northeast,10370.91255
1267
+ 64,male,23.76,0,yes,southeast,26926.5144
1268
+ 55,female,30.5,0,no,southwest,10704.47
1269
+ 24,male,31.065,0,yes,northeast,34254.05335
1270
+ 20,female,33.3,0,no,southwest,1880.487
1271
+ 45,male,27.5,3,no,southwest,8615.3
1272
+ 26,male,33.915,1,no,northwest,3292.52985
1273
+ 25,female,34.485,0,no,northwest,3021.80915
1274
+ 43,male,25.52,5,no,southeast,14478.33015
1275
+ 35,male,27.61,1,no,southeast,4747.0529
1276
+ 26,male,27.06,0,yes,southeast,17043.3414
1277
+ 57,male,23.7,0,no,southwest,10959.33
1278
+ 22,female,30.4,0,no,northeast,2741.948
1279
+ 32,female,29.735,0,no,northwest,4357.04365
1280
+ 39,male,29.925,1,yes,northeast,22462.04375
1281
+ 25,female,26.79,2,no,northwest,4189.1131
1282
+ 48,female,33.33,0,no,southeast,8283.6807
1283
+ 47,female,27.645,2,yes,northwest,24535.69855
1284
+ 18,female,21.66,0,yes,northeast,14283.4594
1285
+ 18,male,30.03,1,no,southeast,1720.3537
1286
+ 61,male,36.3,1,yes,southwest,47403.88
1287
+ 47,female,24.32,0,no,northeast,8534.6718
1288
+ 28,female,17.29,0,no,northeast,3732.6251
1289
+ 36,female,25.9,1,no,southwest,5472.449
1290
+ 20,male,39.4,2,yes,southwest,38344.566
1291
+ 44,male,34.32,1,no,southeast,7147.4728
1292
+ 38,female,19.95,2,no,northeast,7133.9025
1293
+ 19,male,34.9,0,yes,southwest,34828.654
1294
+ 21,male,23.21,0,no,southeast,1515.3449
1295
+ 46,male,25.745,3,no,northwest,9301.89355
1296
+ 58,male,25.175,0,no,northeast,11931.12525
1297
+ 20,male,22,1,no,southwest,1964.78
1298
+ 18,male,26.125,0,no,northeast,1708.92575
1299
+ 28,female,26.51,2,no,southeast,4340.4409
1300
+ 33,male,27.455,2,no,northwest,5261.46945
1301
+ 19,female,25.745,1,no,northwest,2710.82855
1302
+ 45,male,30.36,0,yes,southeast,62592.87309
1303
+ 62,male,30.875,3,yes,northwest,46718.16325
1304
+ 25,female,20.8,1,no,southwest,3208.787
1305
+ 43,male,27.8,0,yes,southwest,37829.7242
1306
+ 42,male,24.605,2,yes,northeast,21259.37795
1307
+ 24,female,27.72,0,no,southeast,2464.6188
1308
+ 29,female,21.85,0,yes,northeast,16115.3045
1309
+ 32,male,28.12,4,yes,northwest,21472.4788
1310
+ 25,female,30.2,0,yes,southwest,33900.653
1311
+ 41,male,32.2,2,no,southwest,6875.961
1312
+ 42,male,26.315,1,no,northwest,6940.90985
1313
+ 33,female,26.695,0,no,northwest,4571.41305
1314
+ 34,male,42.9,1,no,southwest,4536.259
1315
+ 19,female,34.7,2,yes,southwest,36397.576
1316
+ 30,female,23.655,3,yes,northwest,18765.87545
1317
+ 18,male,28.31,1,no,northeast,11272.33139
1318
+ 19,female,20.6,0,no,southwest,1731.677
1319
+ 18,male,53.13,0,no,southeast,1163.4627
1320
+ 35,male,39.71,4,no,northeast,19496.71917
1321
+ 39,female,26.315,2,no,northwest,7201.70085
1322
+ 31,male,31.065,3,no,northwest,5425.02335
1323
+ 62,male,26.695,0,yes,northeast,28101.33305
1324
+ 62,male,38.83,0,no,southeast,12981.3457
1325
+ 42,female,40.37,2,yes,southeast,43896.3763
1326
+ 31,male,25.935,1,no,northwest,4239.89265
1327
+ 61,male,33.535,0,no,northeast,13143.33665
1328
+ 42,female,32.87,0,no,northeast,7050.0213
1329
+ 51,male,30.03,1,no,southeast,9377.9047
1330
+ 23,female,24.225,2,no,northeast,22395.74424
1331
+ 52,male,38.6,2,no,southwest,10325.206
1332
+ 57,female,25.74,2,no,southeast,12629.1656
1333
+ 23,female,33.4,0,no,southwest,10795.93733
1334
+ 52,female,44.7,3,no,southwest,11411.685
1335
+ 50,male,30.97,3,no,northwest,10600.5483
1336
+ 18,female,31.92,0,no,northeast,2205.9808
1337
+ 18,female,36.85,0,no,southeast,1629.8335
1338
+ 21,female,25.8,0,no,southwest,2007.945
1339
+ 61,female,29.07,0,yes,northwest,29141.3603