teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (1285) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +1864 -1640
  4. teradataml/__init__.py +70 -60
  5. teradataml/_version.py +11 -11
  6. teradataml/analytics/Transformations.py +2995 -2995
  7. teradataml/analytics/__init__.py +81 -83
  8. teradataml/analytics/analytic_function_executor.py +2013 -2010
  9. teradataml/analytics/analytic_query_generator.py +958 -958
  10. teradataml/analytics/byom/H2OPredict.py +514 -514
  11. teradataml/analytics/byom/PMMLPredict.py +437 -437
  12. teradataml/analytics/byom/__init__.py +14 -14
  13. teradataml/analytics/json_parser/__init__.py +130 -130
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
  15. teradataml/analytics/json_parser/json_store.py +191 -191
  16. teradataml/analytics/json_parser/metadata.py +1637 -1637
  17. teradataml/analytics/json_parser/utils.py +804 -803
  18. teradataml/analytics/meta_class.py +196 -196
  19. teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
  21. teradataml/analytics/sqle/__init__.py +97 -110
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
  24. teradataml/analytics/table_operator/__init__.py +10 -10
  25. teradataml/analytics/uaf/__init__.py +63 -63
  26. teradataml/analytics/utils.py +693 -692
  27. teradataml/analytics/valib.py +1603 -1600
  28. teradataml/automl/__init__.py +1628 -0
  29. teradataml/automl/custom_json_utils.py +1270 -0
  30. teradataml/automl/data_preparation.py +993 -0
  31. teradataml/automl/data_transformation.py +727 -0
  32. teradataml/automl/feature_engineering.py +1648 -0
  33. teradataml/automl/feature_exploration.py +547 -0
  34. teradataml/automl/model_evaluation.py +163 -0
  35. teradataml/automl/model_training.py +887 -0
  36. teradataml/catalog/__init__.py +1 -3
  37. teradataml/catalog/byom.py +1759 -1716
  38. teradataml/catalog/function_argument_mapper.py +859 -861
  39. teradataml/catalog/model_cataloging_utils.py +491 -1510
  40. teradataml/clients/pkce_client.py +481 -481
  41. teradataml/common/aed_utils.py +6 -2
  42. teradataml/common/bulk_exposed_utils.py +111 -111
  43. teradataml/common/constants.py +1433 -1441
  44. teradataml/common/deprecations.py +160 -0
  45. teradataml/common/exceptions.py +73 -73
  46. teradataml/common/formula.py +742 -742
  47. teradataml/common/garbagecollector.py +592 -635
  48. teradataml/common/messagecodes.py +422 -431
  49. teradataml/common/messages.py +227 -231
  50. teradataml/common/sqlbundle.py +693 -693
  51. teradataml/common/td_coltype_code_to_tdtype.py +48 -48
  52. teradataml/common/utils.py +2418 -2500
  53. teradataml/common/warnings.py +25 -25
  54. teradataml/common/wrapper_utils.py +1 -110
  55. teradataml/config/dummy_file1.cfg +4 -4
  56. teradataml/config/dummy_file2.cfg +2 -2
  57. teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
  58. teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
  59. teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
  60. teradataml/context/aed_context.py +217 -217
  61. teradataml/context/context.py +1071 -999
  62. teradataml/data/A_loan.csv +19 -19
  63. teradataml/data/BINARY_REALS_LEFT.csv +11 -11
  64. teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
  65. teradataml/data/B_loan.csv +49 -49
  66. teradataml/data/BuoyData2.csv +17 -17
  67. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
  68. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
  69. teradataml/data/Convolve2RealsLeft.csv +5 -5
  70. teradataml/data/Convolve2RealsRight.csv +5 -5
  71. teradataml/data/Convolve2ValidLeft.csv +11 -11
  72. teradataml/data/Convolve2ValidRight.csv +11 -11
  73. teradataml/data/DFFTConv_Real_8_8.csv +65 -65
  74. teradataml/data/Orders1_12mf.csv +24 -24
  75. teradataml/data/Pi_loan.csv +7 -7
  76. teradataml/data/SMOOTHED_DATA.csv +7 -7
  77. teradataml/data/TestDFFT8.csv +9 -9
  78. teradataml/data/TestRiver.csv +109 -109
  79. teradataml/data/Traindata.csv +28 -28
  80. teradataml/data/acf.csv +17 -17
  81. teradataml/data/adaboost_example.json +34 -34
  82. teradataml/data/adaboostpredict_example.json +24 -24
  83. teradataml/data/additional_table.csv +10 -10
  84. teradataml/data/admissions_test.csv +21 -21
  85. teradataml/data/admissions_train.csv +41 -41
  86. teradataml/data/admissions_train_nulls.csv +41 -41
  87. teradataml/data/ageandheight.csv +13 -13
  88. teradataml/data/ageandpressure.csv +31 -31
  89. teradataml/data/antiselect_example.json +36 -36
  90. teradataml/data/antiselect_input.csv +8 -8
  91. teradataml/data/antiselect_input_mixed_case.csv +8 -8
  92. teradataml/data/applicant_external.csv +6 -6
  93. teradataml/data/applicant_reference.csv +6 -6
  94. teradataml/data/arima_example.json +9 -9
  95. teradataml/data/assortedtext_input.csv +8 -8
  96. teradataml/data/attribution_example.json +33 -33
  97. teradataml/data/attribution_sample_table.csv +27 -27
  98. teradataml/data/attribution_sample_table1.csv +6 -6
  99. teradataml/data/attribution_sample_table2.csv +11 -11
  100. teradataml/data/bank_churn.csv +10001 -0
  101. teradataml/data/bank_web_clicks1.csv +42 -42
  102. teradataml/data/bank_web_clicks2.csv +91 -91
  103. teradataml/data/bank_web_url.csv +85 -85
  104. teradataml/data/barrier.csv +2 -2
  105. teradataml/data/barrier_new.csv +3 -3
  106. teradataml/data/betweenness_example.json +13 -13
  107. teradataml/data/bin_breaks.csv +8 -8
  108. teradataml/data/bin_fit_ip.csv +3 -3
  109. teradataml/data/binary_complex_left.csv +11 -11
  110. teradataml/data/binary_complex_right.csv +11 -11
  111. teradataml/data/binary_matrix_complex_left.csv +21 -21
  112. teradataml/data/binary_matrix_complex_right.csv +21 -21
  113. teradataml/data/binary_matrix_real_left.csv +21 -21
  114. teradataml/data/binary_matrix_real_right.csv +21 -21
  115. teradataml/data/blood2ageandweight.csv +26 -26
  116. teradataml/data/bmi.csv +501 -0
  117. teradataml/data/boston.csv +507 -507
  118. teradataml/data/buoydata_mix.csv +11 -11
  119. teradataml/data/burst_data.csv +5 -5
  120. teradataml/data/burst_example.json +20 -20
  121. teradataml/data/byom_example.json +17 -17
  122. teradataml/data/bytes_table.csv +3 -3
  123. teradataml/data/cal_housing_ex_raw.csv +70 -70
  124. teradataml/data/callers.csv +7 -7
  125. teradataml/data/calls.csv +10 -10
  126. teradataml/data/cars_hist.csv +33 -33
  127. teradataml/data/cat_table.csv +24 -24
  128. teradataml/data/ccm_example.json +31 -31
  129. teradataml/data/ccm_input.csv +91 -91
  130. teradataml/data/ccm_input2.csv +13 -13
  131. teradataml/data/ccmexample.csv +101 -101
  132. teradataml/data/ccmprepare_example.json +8 -8
  133. teradataml/data/ccmprepare_input.csv +91 -91
  134. teradataml/data/cfilter_example.json +12 -12
  135. teradataml/data/changepointdetection_example.json +18 -18
  136. teradataml/data/changepointdetectionrt_example.json +8 -8
  137. teradataml/data/chi_sq.csv +2 -2
  138. teradataml/data/churn_data.csv +14 -14
  139. teradataml/data/churn_emission.csv +35 -35
  140. teradataml/data/churn_initial.csv +3 -3
  141. teradataml/data/churn_state_transition.csv +5 -5
  142. teradataml/data/citedges_2.csv +745 -745
  143. teradataml/data/citvertices_2.csv +1210 -1210
  144. teradataml/data/clicks2.csv +16 -16
  145. teradataml/data/clickstream.csv +12 -12
  146. teradataml/data/clickstream1.csv +11 -11
  147. teradataml/data/closeness_example.json +15 -15
  148. teradataml/data/complaints.csv +21 -21
  149. teradataml/data/complaints_mini.csv +3 -3
  150. teradataml/data/complaints_testtoken.csv +224 -224
  151. teradataml/data/complaints_tokens_test.csv +353 -353
  152. teradataml/data/complaints_traintoken.csv +472 -472
  153. teradataml/data/computers_category.csv +1001 -1001
  154. teradataml/data/computers_test1.csv +1252 -1252
  155. teradataml/data/computers_train1.csv +5009 -5009
  156. teradataml/data/computers_train1_clustered.csv +5009 -5009
  157. teradataml/data/confusionmatrix_example.json +9 -9
  158. teradataml/data/conversion_event_table.csv +3 -3
  159. teradataml/data/corr_input.csv +17 -17
  160. teradataml/data/correlation_example.json +11 -11
  161. teradataml/data/coxhazardratio_example.json +39 -39
  162. teradataml/data/coxph_example.json +15 -15
  163. teradataml/data/coxsurvival_example.json +28 -28
  164. teradataml/data/cpt.csv +41 -41
  165. teradataml/data/credit_ex_merged.csv +45 -45
  166. teradataml/data/customer_loyalty.csv +301 -301
  167. teradataml/data/customer_loyalty_newseq.csv +31 -31
  168. teradataml/data/dataframe_example.json +146 -146
  169. teradataml/data/decisionforest_example.json +37 -37
  170. teradataml/data/decisionforestpredict_example.json +38 -38
  171. teradataml/data/decisiontree_example.json +21 -21
  172. teradataml/data/decisiontreepredict_example.json +45 -45
  173. teradataml/data/dfft2_size4_real.csv +17 -17
  174. teradataml/data/dfft2_test_matrix16.csv +17 -17
  175. teradataml/data/dfft2conv_real_4_4.csv +65 -65
  176. teradataml/data/diabetes.csv +443 -443
  177. teradataml/data/diabetes_test.csv +89 -89
  178. teradataml/data/dict_table.csv +5 -5
  179. teradataml/data/docperterm_table.csv +4 -4
  180. teradataml/data/docs/__init__.py +1 -1
  181. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
  182. teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
  183. teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
  184. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
  185. teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
  186. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
  187. teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
  188. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
  189. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
  190. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
  191. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
  192. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
  193. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
  194. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
  195. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
  196. teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
  197. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
  198. teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
  199. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
  200. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
  201. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
  202. teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
  203. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
  204. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
  205. teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
  206. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
  207. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
  208. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
  209. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +132 -132
  210. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +103 -103
  211. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
  212. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +101 -101
  213. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
  214. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
  215. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
  216. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
  217. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
  218. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
  219. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
  220. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
  221. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
  222. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
  223. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
  224. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
  225. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
  226. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
  227. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
  228. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
  229. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
  230. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
  231. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
  232. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
  233. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
  234. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +126 -126
  235. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
  236. teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
  237. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
  238. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
  239. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
  240. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
  241. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
  242. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
  243. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +243 -243
  244. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
  245. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
  246. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
  247. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
  248. teradataml/data/docs/sqle/docs_17_20/FTest.py +160 -160
  249. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
  250. teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
  251. teradataml/data/docs/sqle/docs_17_20/GLM.py +380 -380
  252. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
  253. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
  254. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
  255. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +123 -123
  256. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
  257. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
  258. teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
  259. teradataml/data/docs/sqle/docs_17_20/KMeans.py +204 -204
  260. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
  261. teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
  262. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
  263. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
  264. teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
  265. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
  266. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
  267. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
  268. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +117 -117
  269. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
  270. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
  271. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
  272. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
  273. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +225 -225
  274. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +115 -115
  275. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
  276. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
  277. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
  278. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
  279. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
  280. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
  281. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
  282. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
  283. teradataml/data/docs/sqle/docs_17_20/ROC.py +163 -163
  284. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
  285. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
  286. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
  287. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
  288. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
  289. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
  290. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
  291. teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
  292. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +202 -202
  293. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
  294. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +197 -197
  295. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +110 -109
  296. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
  297. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
  298. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
  299. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
  300. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
  301. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
  302. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
  303. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
  304. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +171 -171
  305. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
  306. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
  307. teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
  308. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
  309. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
  310. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
  311. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
  312. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
  313. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
  314. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
  315. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
  316. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +353 -353
  317. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +275 -275
  318. teradataml/data/docs/sqle/docs_17_20/ZTest.py +155 -155
  319. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
  320. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
  321. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
  322. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
  323. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
  324. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
  325. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
  326. teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
  327. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
  328. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
  329. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
  330. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
  331. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
  332. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
  333. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
  334. teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
  335. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
  336. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
  337. teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
  338. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
  339. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
  340. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
  341. teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
  342. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
  343. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
  344. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
  345. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
  346. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
  347. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
  348. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
  349. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
  350. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
  351. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
  352. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
  353. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
  354. teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
  355. teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
  356. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
  357. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
  358. teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
  359. teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
  360. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
  361. teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
  362. teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
  363. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
  364. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
  365. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
  366. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
  367. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
  368. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
  369. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
  370. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
  371. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
  372. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
  373. teradataml/data/dtw_example.json +17 -17
  374. teradataml/data/dtw_t1.csv +11 -11
  375. teradataml/data/dtw_t2.csv +4 -4
  376. teradataml/data/dwt2d_example.json +15 -15
  377. teradataml/data/dwt_example.json +14 -14
  378. teradataml/data/dwt_filter_dim.csv +5 -5
  379. teradataml/data/emission.csv +9 -9
  380. teradataml/data/emp_table_by_dept.csv +19 -19
  381. teradataml/data/employee_info.csv +4 -4
  382. teradataml/data/employee_table.csv +6 -6
  383. teradataml/data/excluding_event_table.csv +2 -2
  384. teradataml/data/finance_data.csv +6 -6
  385. teradataml/data/finance_data2.csv +61 -61
  386. teradataml/data/finance_data3.csv +93 -93
  387. teradataml/data/fish.csv +160 -0
  388. teradataml/data/fm_blood2ageandweight.csv +26 -26
  389. teradataml/data/fmeasure_example.json +11 -11
  390. teradataml/data/followers_leaders.csv +10 -10
  391. teradataml/data/fpgrowth_example.json +12 -12
  392. teradataml/data/frequentpaths_example.json +29 -29
  393. teradataml/data/friends.csv +9 -9
  394. teradataml/data/fs_input.csv +33 -33
  395. teradataml/data/fs_input1.csv +33 -33
  396. teradataml/data/genData.csv +513 -513
  397. teradataml/data/geodataframe_example.json +39 -39
  398. teradataml/data/glass_types.csv +215 -0
  399. teradataml/data/glm_admissions_model.csv +12 -12
  400. teradataml/data/glm_example.json +29 -29
  401. teradataml/data/glml1l2_example.json +28 -28
  402. teradataml/data/glml1l2predict_example.json +54 -54
  403. teradataml/data/glmpredict_example.json +54 -54
  404. teradataml/data/gq_t1.csv +21 -21
  405. teradataml/data/hconvolve_complex_right.csv +5 -5
  406. teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
  407. teradataml/data/histogram_example.json +11 -11
  408. teradataml/data/hmmdecoder_example.json +78 -78
  409. teradataml/data/hmmevaluator_example.json +24 -24
  410. teradataml/data/hmmsupervised_example.json +10 -10
  411. teradataml/data/hmmunsupervised_example.json +7 -7
  412. teradataml/data/house_values.csv +12 -12
  413. teradataml/data/house_values2.csv +13 -13
  414. teradataml/data/housing_cat.csv +7 -7
  415. teradataml/data/housing_data.csv +9 -9
  416. teradataml/data/housing_test.csv +47 -47
  417. teradataml/data/housing_test_binary.csv +47 -47
  418. teradataml/data/housing_train.csv +493 -493
  419. teradataml/data/housing_train_attribute.csv +4 -4
  420. teradataml/data/housing_train_binary.csv +437 -437
  421. teradataml/data/housing_train_parameter.csv +2 -2
  422. teradataml/data/housing_train_response.csv +493 -493
  423. teradataml/data/ibm_stock.csv +370 -370
  424. teradataml/data/ibm_stock1.csv +370 -370
  425. teradataml/data/identitymatch_example.json +21 -21
  426. teradataml/data/idf_table.csv +4 -4
  427. teradataml/data/impressions.csv +101 -101
  428. teradataml/data/inflation.csv +21 -21
  429. teradataml/data/initial.csv +3 -3
  430. teradataml/data/insect_sprays.csv +12 -12
  431. teradataml/data/insurance.csv +1339 -1339
  432. teradataml/data/interpolator_example.json +12 -12
  433. teradataml/data/iris_altinput.csv +481 -481
  434. teradataml/data/iris_attribute_output.csv +8 -8
  435. teradataml/data/iris_attribute_test.csv +121 -121
  436. teradataml/data/iris_attribute_train.csv +481 -481
  437. teradataml/data/iris_category_expect_predict.csv +31 -31
  438. teradataml/data/iris_data.csv +151 -0
  439. teradataml/data/iris_input.csv +151 -151
  440. teradataml/data/iris_response_train.csv +121 -121
  441. teradataml/data/iris_test.csv +31 -31
  442. teradataml/data/iris_train.csv +121 -121
  443. teradataml/data/join_table1.csv +4 -4
  444. teradataml/data/join_table2.csv +4 -4
  445. teradataml/data/jsons/anly_function_name.json +6 -6
  446. teradataml/data/jsons/byom/dataikupredict.json +147 -147
  447. teradataml/data/jsons/byom/datarobotpredict.json +146 -146
  448. teradataml/data/jsons/byom/h2opredict.json +194 -194
  449. teradataml/data/jsons/byom/onnxpredict.json +186 -186
  450. teradataml/data/jsons/byom/pmmlpredict.json +146 -146
  451. teradataml/data/jsons/paired_functions.json +435 -435
  452. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
  453. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
  454. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
  455. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
  456. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
  457. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
  458. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
  459. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
  460. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
  461. teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
  462. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
  463. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
  464. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
  465. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
  466. teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
  467. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
  468. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
  469. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
  470. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
  471. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
  472. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
  473. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
  474. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
  475. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
  476. teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
  477. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
  478. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
  479. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
  480. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
  481. teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
  482. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
  483. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
  484. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
  485. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
  486. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
  487. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
  488. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
  489. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
  490. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
  491. teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
  492. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
  493. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
  494. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
  495. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
  496. teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
  497. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
  498. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
  499. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
  500. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
  501. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
  502. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
  503. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
  504. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
  505. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
  506. teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
  507. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
  508. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
  509. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
  510. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
  511. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
  512. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
  513. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
  514. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
  515. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
  516. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
  517. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
  518. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
  519. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
  520. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
  521. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
  522. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
  523. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
  524. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
  525. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
  526. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
  527. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
  528. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
  529. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
  530. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
  531. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
  532. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
  533. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
  534. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
  535. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
  536. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
  537. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
  538. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
  539. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
  540. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
  541. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
  542. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
  543. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
  544. teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
  545. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
  546. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
  547. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
  548. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
  549. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
  550. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
  551. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
  552. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
  553. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
  554. teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
  555. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
  556. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
  557. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
  558. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +76 -76
  559. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
  560. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
  561. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
  562. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
  563. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
  564. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
  565. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
  566. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
  567. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
  568. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
  569. teradataml/data/jsons/sqle/17.20/TD_FTest.json +186 -186
  570. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
  571. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
  572. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
  573. teradataml/data/jsons/sqle/17.20/TD_GLM.json +431 -431
  574. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +125 -125
  575. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
  576. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
  577. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +91 -91
  578. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
  579. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
  580. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
  581. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +211 -211
  582. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
  583. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
  584. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
  585. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +101 -101
  586. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
  587. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
  588. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
  589. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
  590. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
  591. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
  592. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
  593. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
  594. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
  595. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
  596. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
  597. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
  598. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
  599. teradataml/data/jsons/sqle/17.20/TD_ROC.json +177 -177
  600. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
  601. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
  602. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
  603. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
  604. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
  605. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
  606. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
  607. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
  608. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +124 -124
  609. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +156 -156
  610. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +70 -70
  611. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
  612. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
  613. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
  614. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
  615. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
  616. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
  617. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
  618. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
  619. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
  620. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
  621. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
  622. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
  623. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
  624. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
  625. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +312 -312
  626. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +182 -182
  627. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +170 -170
  628. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
  629. teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
  630. teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
  631. teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
  632. teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
  633. teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
  634. teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
  635. teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
  636. teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
  637. teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
  638. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
  639. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
  640. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
  641. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
  642. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
  643. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
  644. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
  645. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
  646. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
  647. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
  648. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
  649. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
  650. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
  651. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
  652. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
  653. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
  654. teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
  655. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
  656. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
  657. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
  658. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
  659. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
  660. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
  661. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
  662. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
  663. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
  664. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
  665. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
  666. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
  667. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
  668. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
  669. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
  670. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
  671. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
  672. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
  673. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
  674. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
  675. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
  676. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
  677. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
  678. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
  679. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
  680. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
  681. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
  682. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
  683. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
  684. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
  685. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
  686. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
  687. teradataml/data/kmeans_example.json +17 -17
  688. teradataml/data/kmeans_us_arrests_data.csv +0 -0
  689. teradataml/data/knn_example.json +18 -18
  690. teradataml/data/knnrecommender_example.json +6 -6
  691. teradataml/data/knnrecommenderpredict_example.json +12 -12
  692. teradataml/data/lar_example.json +17 -17
  693. teradataml/data/larpredict_example.json +30 -30
  694. teradataml/data/lc_new_predictors.csv +5 -5
  695. teradataml/data/lc_new_reference.csv +9 -9
  696. teradataml/data/lda_example.json +8 -8
  697. teradataml/data/ldainference_example.json +14 -14
  698. teradataml/data/ldatopicsummary_example.json +8 -8
  699. teradataml/data/levendist_input.csv +13 -13
  700. teradataml/data/levenshteindistance_example.json +10 -10
  701. teradataml/data/linreg_example.json +9 -9
  702. teradataml/data/load_example_data.py +326 -323
  703. teradataml/data/loan_prediction.csv +295 -295
  704. teradataml/data/lungcancer.csv +138 -138
  705. teradataml/data/mappingdata.csv +12 -12
  706. teradataml/data/milk_timeseries.csv +157 -157
  707. teradataml/data/min_max_titanic.csv +4 -4
  708. teradataml/data/minhash_example.json +6 -6
  709. teradataml/data/ml_ratings.csv +7547 -7547
  710. teradataml/data/ml_ratings_10.csv +2445 -2445
  711. teradataml/data/model1_table.csv +5 -5
  712. teradataml/data/model2_table.csv +5 -5
  713. teradataml/data/models/iris_db_glm_model.pmml +56 -56
  714. teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
  715. teradataml/data/modularity_example.json +12 -12
  716. teradataml/data/movavg_example.json +7 -7
  717. teradataml/data/mtx1.csv +7 -7
  718. teradataml/data/mtx2.csv +13 -13
  719. teradataml/data/multi_model_classification.csv +401 -0
  720. teradataml/data/multi_model_regression.csv +401 -0
  721. teradataml/data/mvdfft8.csv +9 -9
  722. teradataml/data/naivebayes_example.json +9 -9
  723. teradataml/data/naivebayespredict_example.json +19 -19
  724. teradataml/data/naivebayestextclassifier2_example.json +6 -6
  725. teradataml/data/naivebayestextclassifier_example.json +8 -8
  726. teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
  727. teradataml/data/name_Find_configure.csv +10 -10
  728. teradataml/data/namedentityfinder_example.json +14 -14
  729. teradataml/data/namedentityfinderevaluator_example.json +10 -10
  730. teradataml/data/namedentityfindertrainer_example.json +6 -6
  731. teradataml/data/nb_iris_input_test.csv +31 -31
  732. teradataml/data/nb_iris_input_train.csv +121 -121
  733. teradataml/data/nbp_iris_model.csv +13 -13
  734. teradataml/data/ner_extractor_text.csv +2 -2
  735. teradataml/data/ner_sports_test2.csv +29 -29
  736. teradataml/data/ner_sports_train.csv +501 -501
  737. teradataml/data/nerevaluator_example.json +5 -5
  738. teradataml/data/nerextractor_example.json +18 -18
  739. teradataml/data/nermem_sports_test.csv +17 -17
  740. teradataml/data/nermem_sports_train.csv +50 -50
  741. teradataml/data/nertrainer_example.json +6 -6
  742. teradataml/data/ngrams_example.json +6 -6
  743. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
  744. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
  745. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
  746. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
  747. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
  748. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
  749. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
  750. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
  751. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
  752. teradataml/data/npath_example.json +23 -23
  753. teradataml/data/ntree_example.json +14 -14
  754. teradataml/data/numeric_strings.csv +4 -4
  755. teradataml/data/numerics.csv +4 -4
  756. teradataml/data/ocean_buoy.csv +17 -17
  757. teradataml/data/ocean_buoy2.csv +17 -17
  758. teradataml/data/ocean_buoys.csv +27 -27
  759. teradataml/data/ocean_buoys2.csv +10 -10
  760. teradataml/data/ocean_buoys_nonpti.csv +28 -28
  761. teradataml/data/ocean_buoys_seq.csv +29 -29
  762. teradataml/data/openml_example.json +63 -0
  763. teradataml/data/optional_event_table.csv +4 -4
  764. teradataml/data/orders1.csv +11 -11
  765. teradataml/data/orders1_12.csv +12 -12
  766. teradataml/data/orders_ex.csv +4 -4
  767. teradataml/data/pack_example.json +8 -8
  768. teradataml/data/package_tracking.csv +19 -19
  769. teradataml/data/package_tracking_pti.csv +18 -18
  770. teradataml/data/pagerank_example.json +13 -13
  771. teradataml/data/paragraphs_input.csv +6 -6
  772. teradataml/data/pathanalyzer_example.json +7 -7
  773. teradataml/data/pathgenerator_example.json +7 -7
  774. teradataml/data/phrases.csv +7 -7
  775. teradataml/data/pivot_example.json +8 -8
  776. teradataml/data/pivot_input.csv +22 -22
  777. teradataml/data/playerRating.csv +31 -31
  778. teradataml/data/postagger_example.json +6 -6
  779. teradataml/data/posttagger_output.csv +44 -44
  780. teradataml/data/production_data.csv +16 -16
  781. teradataml/data/production_data2.csv +7 -7
  782. teradataml/data/randomsample_example.json +31 -31
  783. teradataml/data/randomwalksample_example.json +8 -8
  784. teradataml/data/rank_table.csv +6 -6
  785. teradataml/data/ref_mobile_data.csv +4 -4
  786. teradataml/data/ref_mobile_data_dense.csv +2 -2
  787. teradataml/data/ref_url.csv +17 -17
  788. teradataml/data/restaurant_reviews.csv +7 -7
  789. teradataml/data/river_data.csv +145 -145
  790. teradataml/data/roc_example.json +7 -7
  791. teradataml/data/roc_input.csv +101 -101
  792. teradataml/data/rule_inputs.csv +6 -6
  793. teradataml/data/rule_table.csv +2 -2
  794. teradataml/data/sales.csv +7 -7
  795. teradataml/data/sales_transaction.csv +501 -501
  796. teradataml/data/salesdata.csv +342 -342
  797. teradataml/data/sample_cities.csv +2 -2
  798. teradataml/data/sample_shapes.csv +10 -10
  799. teradataml/data/sample_streets.csv +2 -2
  800. teradataml/data/sampling_example.json +15 -15
  801. teradataml/data/sax_example.json +8 -8
  802. teradataml/data/scale_example.json +23 -23
  803. teradataml/data/scale_housing.csv +11 -11
  804. teradataml/data/scale_housing_test.csv +6 -6
  805. teradataml/data/scale_stat.csv +11 -11
  806. teradataml/data/scalebypartition_example.json +13 -13
  807. teradataml/data/scalemap_example.json +13 -13
  808. teradataml/data/scalesummary_example.json +12 -12
  809. teradataml/data/score_category.csv +101 -101
  810. teradataml/data/score_summary.csv +4 -4
  811. teradataml/data/script_example.json +9 -9
  812. teradataml/data/scripts/deploy_script.py +65 -0
  813. teradataml/data/scripts/mapper.R +20 -0
  814. teradataml/data/scripts/mapper.py +15 -15
  815. teradataml/data/scripts/mapper_replace.py +15 -15
  816. teradataml/data/scripts/sklearn/__init__.py +0 -0
  817. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  818. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  819. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  820. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  821. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  822. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  823. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  824. teradataml/data/seeds.csv +10 -10
  825. teradataml/data/sentenceextractor_example.json +6 -6
  826. teradataml/data/sentiment_extract_input.csv +11 -11
  827. teradataml/data/sentiment_train.csv +16 -16
  828. teradataml/data/sentiment_word.csv +20 -20
  829. teradataml/data/sentiment_word_input.csv +19 -19
  830. teradataml/data/sentimentextractor_example.json +24 -24
  831. teradataml/data/sentimenttrainer_example.json +8 -8
  832. teradataml/data/sequence_table.csv +10 -10
  833. teradataml/data/seriessplitter_example.json +7 -7
  834. teradataml/data/sessionize_example.json +17 -17
  835. teradataml/data/sessionize_table.csv +116 -116
  836. teradataml/data/setop_test1.csv +24 -24
  837. teradataml/data/setop_test2.csv +22 -22
  838. teradataml/data/soc_nw_edges.csv +10 -10
  839. teradataml/data/soc_nw_vertices.csv +7 -7
  840. teradataml/data/souvenir_timeseries.csv +167 -167
  841. teradataml/data/sparse_iris_attribute.csv +5 -5
  842. teradataml/data/sparse_iris_test.csv +121 -121
  843. teradataml/data/sparse_iris_train.csv +601 -601
  844. teradataml/data/star1.csv +6 -6
  845. teradataml/data/state_transition.csv +5 -5
  846. teradataml/data/stock_data.csv +53 -53
  847. teradataml/data/stock_movement.csv +11 -11
  848. teradataml/data/stock_vol.csv +76 -76
  849. teradataml/data/stop_words.csv +8 -8
  850. teradataml/data/store_sales.csv +37 -37
  851. teradataml/data/stringsimilarity_example.json +7 -7
  852. teradataml/data/strsimilarity_input.csv +13 -13
  853. teradataml/data/students.csv +101 -101
  854. teradataml/data/svm_iris_input_test.csv +121 -121
  855. teradataml/data/svm_iris_input_train.csv +481 -481
  856. teradataml/data/svm_iris_model.csv +7 -7
  857. teradataml/data/svmdense_example.json +9 -9
  858. teradataml/data/svmdensepredict_example.json +18 -18
  859. teradataml/data/svmsparse_example.json +7 -7
  860. teradataml/data/svmsparsepredict_example.json +13 -13
  861. teradataml/data/svmsparsesummary_example.json +7 -7
  862. teradataml/data/target_mobile_data.csv +13 -13
  863. teradataml/data/target_mobile_data_dense.csv +5 -5
  864. teradataml/data/templatedata.csv +1201 -1201
  865. teradataml/data/templates/open_source_ml.json +9 -0
  866. teradataml/data/teradataml_example.json +73 -1
  867. teradataml/data/test_classification.csv +101 -0
  868. teradataml/data/test_loan_prediction.csv +53 -53
  869. teradataml/data/test_pacf_12.csv +37 -37
  870. teradataml/data/test_prediction.csv +101 -0
  871. teradataml/data/test_regression.csv +101 -0
  872. teradataml/data/test_river2.csv +109 -109
  873. teradataml/data/text_inputs.csv +6 -6
  874. teradataml/data/textchunker_example.json +7 -7
  875. teradataml/data/textclassifier_example.json +6 -6
  876. teradataml/data/textclassifier_input.csv +7 -7
  877. teradataml/data/textclassifiertrainer_example.json +6 -6
  878. teradataml/data/textmorph_example.json +5 -5
  879. teradataml/data/textparser_example.json +15 -15
  880. teradataml/data/texttagger_example.json +11 -11
  881. teradataml/data/texttokenizer_example.json +6 -6
  882. teradataml/data/texttrainer_input.csv +11 -11
  883. teradataml/data/tf_example.json +6 -6
  884. teradataml/data/tfidf_example.json +13 -13
  885. teradataml/data/tfidf_input1.csv +201 -201
  886. teradataml/data/tfidf_train.csv +6 -6
  887. teradataml/data/time_table1.csv +535 -535
  888. teradataml/data/time_table2.csv +14 -14
  889. teradataml/data/timeseriesdata.csv +1601 -1601
  890. teradataml/data/timeseriesdatasetsd4.csv +105 -105
  891. teradataml/data/titanic.csv +892 -892
  892. teradataml/data/token_table.csv +696 -696
  893. teradataml/data/train_multiclass.csv +101 -0
  894. teradataml/data/train_regression.csv +101 -0
  895. teradataml/data/train_regression_multiple_labels.csv +101 -0
  896. teradataml/data/train_tracking.csv +27 -27
  897. teradataml/data/transformation_table.csv +5 -5
  898. teradataml/data/transformation_table_new.csv +1 -1
  899. teradataml/data/tv_spots.csv +16 -16
  900. teradataml/data/twod_climate_data.csv +117 -117
  901. teradataml/data/uaf_example.json +475 -475
  902. teradataml/data/univariatestatistics_example.json +8 -8
  903. teradataml/data/unpack_example.json +9 -9
  904. teradataml/data/unpivot_example.json +9 -9
  905. teradataml/data/unpivot_input.csv +8 -8
  906. teradataml/data/us_air_pass.csv +36 -36
  907. teradataml/data/us_population.csv +624 -624
  908. teradataml/data/us_states_shapes.csv +52 -52
  909. teradataml/data/varmax_example.json +17 -17
  910. teradataml/data/vectordistance_example.json +25 -25
  911. teradataml/data/ville_climatedata.csv +121 -121
  912. teradataml/data/ville_tempdata.csv +12 -12
  913. teradataml/data/ville_tempdata1.csv +12 -12
  914. teradataml/data/ville_temperature.csv +11 -11
  915. teradataml/data/waveletTable.csv +1605 -1605
  916. teradataml/data/waveletTable2.csv +1605 -1605
  917. teradataml/data/weightedmovavg_example.json +8 -8
  918. teradataml/data/wft_testing.csv +5 -5
  919. teradataml/data/wine_data.csv +1600 -0
  920. teradataml/data/word_embed_input_table1.csv +5 -5
  921. teradataml/data/word_embed_input_table2.csv +4 -4
  922. teradataml/data/word_embed_model.csv +22 -22
  923. teradataml/data/words_input.csv +13 -13
  924. teradataml/data/xconvolve_complex_left.csv +6 -6
  925. teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
  926. teradataml/data/xgboost_example.json +35 -35
  927. teradataml/data/xgboostpredict_example.json +31 -31
  928. teradataml/dataframe/copy_to.py +1764 -1698
  929. teradataml/dataframe/data_transfer.py +2753 -2745
  930. teradataml/dataframe/dataframe.py +17545 -16946
  931. teradataml/dataframe/dataframe_utils.py +1837 -1740
  932. teradataml/dataframe/fastload.py +611 -603
  933. teradataml/dataframe/indexer.py +424 -424
  934. teradataml/dataframe/setop.py +1179 -1166
  935. teradataml/dataframe/sql.py +10090 -6432
  936. teradataml/dataframe/sql_function_parameters.py +439 -388
  937. teradataml/dataframe/sql_functions.py +652 -652
  938. teradataml/dataframe/sql_interfaces.py +220 -220
  939. teradataml/dataframe/vantage_function_types.py +674 -630
  940. teradataml/dataframe/window.py +693 -692
  941. teradataml/dbutils/__init__.py +3 -3
  942. teradataml/dbutils/dbutils.py +1167 -1150
  943. teradataml/dbutils/filemgr.py +267 -267
  944. teradataml/gen_ai/__init__.py +2 -2
  945. teradataml/gen_ai/convAI.py +472 -472
  946. teradataml/geospatial/__init__.py +3 -3
  947. teradataml/geospatial/geodataframe.py +1105 -1094
  948. teradataml/geospatial/geodataframecolumn.py +392 -387
  949. teradataml/geospatial/geometry_types.py +925 -925
  950. teradataml/hyperparameter_tuner/__init__.py +1 -1
  951. teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
  952. teradataml/hyperparameter_tuner/utils.py +281 -187
  953. teradataml/lib/aed_0_1.dll +0 -0
  954. teradataml/lib/libaed_0_1.dylib +0 -0
  955. teradataml/lib/libaed_0_1.so +0 -0
  956. teradataml/libaed_0_1.dylib +0 -0
  957. teradataml/libaed_0_1.so +0 -0
  958. teradataml/opensource/__init__.py +1 -0
  959. teradataml/opensource/sklearn/__init__.py +1 -0
  960. teradataml/opensource/sklearn/_class.py +255 -0
  961. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  962. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  963. teradataml/opensource/sklearn/constants.py +54 -0
  964. teradataml/options/__init__.py +121 -124
  965. teradataml/options/configure.py +337 -336
  966. teradataml/options/display.py +176 -176
  967. teradataml/plot/__init__.py +2 -2
  968. teradataml/plot/axis.py +1388 -1388
  969. teradataml/plot/constants.py +15 -15
  970. teradataml/plot/figure.py +398 -398
  971. teradataml/plot/plot.py +760 -760
  972. teradataml/plot/query_generator.py +83 -83
  973. teradataml/plot/subplot.py +216 -216
  974. teradataml/scriptmgmt/UserEnv.py +3788 -3761
  975. teradataml/scriptmgmt/__init__.py +3 -3
  976. teradataml/scriptmgmt/lls_utils.py +1616 -1604
  977. teradataml/series/series.py +532 -532
  978. teradataml/series/series_utils.py +71 -71
  979. teradataml/table_operators/Apply.py +949 -917
  980. teradataml/table_operators/Script.py +1719 -1982
  981. teradataml/table_operators/TableOperator.py +1207 -1616
  982. teradataml/table_operators/__init__.py +2 -3
  983. teradataml/table_operators/apply_query_generator.py +262 -262
  984. teradataml/table_operators/query_generator.py +507 -507
  985. teradataml/table_operators/table_operator_query_generator.py +460 -460
  986. teradataml/table_operators/table_operator_util.py +631 -639
  987. teradataml/table_operators/templates/dataframe_apply.template +184 -184
  988. teradataml/table_operators/templates/dataframe_map.template +176 -176
  989. teradataml/table_operators/templates/script_executor.template +170 -170
  990. teradataml/utils/dtypes.py +684 -684
  991. teradataml/utils/internal_buffer.py +84 -84
  992. teradataml/utils/print_versions.py +205 -205
  993. teradataml/utils/utils.py +410 -410
  994. teradataml/utils/validators.py +2239 -2115
  995. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +270 -41
  996. teradataml-20.0.0.0.dist-info/RECORD +1038 -0
  997. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +1 -1
  998. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +1 -1
  999. teradataml/analytics/mle/AdaBoost.py +0 -651
  1000. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  1001. teradataml/analytics/mle/Antiselect.py +0 -342
  1002. teradataml/analytics/mle/Arima.py +0 -641
  1003. teradataml/analytics/mle/ArimaPredict.py +0 -477
  1004. teradataml/analytics/mle/Attribution.py +0 -1070
  1005. teradataml/analytics/mle/Betweenness.py +0 -658
  1006. teradataml/analytics/mle/Burst.py +0 -711
  1007. teradataml/analytics/mle/CCM.py +0 -600
  1008. teradataml/analytics/mle/CCMPrepare.py +0 -324
  1009. teradataml/analytics/mle/CFilter.py +0 -460
  1010. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  1011. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  1012. teradataml/analytics/mle/Closeness.py +0 -737
  1013. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  1014. teradataml/analytics/mle/Correlation.py +0 -477
  1015. teradataml/analytics/mle/Correlation2.py +0 -573
  1016. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  1017. teradataml/analytics/mle/CoxPH.py +0 -556
  1018. teradataml/analytics/mle/CoxSurvival.py +0 -478
  1019. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  1020. teradataml/analytics/mle/DTW.py +0 -623
  1021. teradataml/analytics/mle/DWT.py +0 -564
  1022. teradataml/analytics/mle/DWT2D.py +0 -599
  1023. teradataml/analytics/mle/DecisionForest.py +0 -716
  1024. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  1025. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  1026. teradataml/analytics/mle/DecisionTree.py +0 -830
  1027. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  1028. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  1029. teradataml/analytics/mle/FMeasure.py +0 -402
  1030. teradataml/analytics/mle/FPGrowth.py +0 -734
  1031. teradataml/analytics/mle/FrequentPaths.py +0 -695
  1032. teradataml/analytics/mle/GLM.py +0 -558
  1033. teradataml/analytics/mle/GLML1L2.py +0 -547
  1034. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  1035. teradataml/analytics/mle/GLMPredict.py +0 -529
  1036. teradataml/analytics/mle/HMMDecoder.py +0 -945
  1037. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  1038. teradataml/analytics/mle/HMMSupervised.py +0 -521
  1039. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  1040. teradataml/analytics/mle/Histogram.py +0 -561
  1041. teradataml/analytics/mle/IDWT.py +0 -476
  1042. teradataml/analytics/mle/IDWT2D.py +0 -493
  1043. teradataml/analytics/mle/IdentityMatch.py +0 -763
  1044. teradataml/analytics/mle/Interpolator.py +0 -918
  1045. teradataml/analytics/mle/KMeans.py +0 -485
  1046. teradataml/analytics/mle/KNN.py +0 -627
  1047. teradataml/analytics/mle/KNNRecommender.py +0 -488
  1048. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  1049. teradataml/analytics/mle/LAR.py +0 -439
  1050. teradataml/analytics/mle/LARPredict.py +0 -478
  1051. teradataml/analytics/mle/LDA.py +0 -548
  1052. teradataml/analytics/mle/LDAInference.py +0 -492
  1053. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  1054. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  1055. teradataml/analytics/mle/LinReg.py +0 -433
  1056. teradataml/analytics/mle/LinRegPredict.py +0 -438
  1057. teradataml/analytics/mle/MinHash.py +0 -544
  1058. teradataml/analytics/mle/Modularity.py +0 -587
  1059. teradataml/analytics/mle/NEREvaluator.py +0 -410
  1060. teradataml/analytics/mle/NERExtractor.py +0 -595
  1061. teradataml/analytics/mle/NERTrainer.py +0 -458
  1062. teradataml/analytics/mle/NGrams.py +0 -570
  1063. teradataml/analytics/mle/NPath.py +0 -634
  1064. teradataml/analytics/mle/NTree.py +0 -549
  1065. teradataml/analytics/mle/NaiveBayes.py +0 -462
  1066. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  1067. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  1068. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  1069. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  1070. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  1071. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  1072. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  1073. teradataml/analytics/mle/POSTagger.py +0 -417
  1074. teradataml/analytics/mle/Pack.py +0 -411
  1075. teradataml/analytics/mle/PageRank.py +0 -535
  1076. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  1077. teradataml/analytics/mle/PathGenerator.py +0 -367
  1078. teradataml/analytics/mle/PathStart.py +0 -464
  1079. teradataml/analytics/mle/PathSummarizer.py +0 -470
  1080. teradataml/analytics/mle/Pivot.py +0 -471
  1081. teradataml/analytics/mle/ROC.py +0 -425
  1082. teradataml/analytics/mle/RandomSample.py +0 -637
  1083. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  1084. teradataml/analytics/mle/SAX.py +0 -779
  1085. teradataml/analytics/mle/SVMDense.py +0 -677
  1086. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  1087. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  1088. teradataml/analytics/mle/SVMSparse.py +0 -557
  1089. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  1090. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  1091. teradataml/analytics/mle/Sampling.py +0 -549
  1092. teradataml/analytics/mle/Scale.py +0 -565
  1093. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  1094. teradataml/analytics/mle/ScaleMap.py +0 -378
  1095. teradataml/analytics/mle/ScaleSummary.py +0 -320
  1096. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  1097. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  1098. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  1099. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  1100. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  1101. teradataml/analytics/mle/Sessionize.py +0 -475
  1102. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  1103. teradataml/analytics/mle/StringSimilarity.py +0 -425
  1104. teradataml/analytics/mle/TF.py +0 -389
  1105. teradataml/analytics/mle/TFIDF.py +0 -504
  1106. teradataml/analytics/mle/TextChunker.py +0 -414
  1107. teradataml/analytics/mle/TextClassifier.py +0 -399
  1108. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  1109. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  1110. teradataml/analytics/mle/TextMorph.py +0 -494
  1111. teradataml/analytics/mle/TextParser.py +0 -623
  1112. teradataml/analytics/mle/TextTagger.py +0 -530
  1113. teradataml/analytics/mle/TextTokenizer.py +0 -502
  1114. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  1115. teradataml/analytics/mle/Unpack.py +0 -526
  1116. teradataml/analytics/mle/Unpivot.py +0 -438
  1117. teradataml/analytics/mle/VarMax.py +0 -776
  1118. teradataml/analytics/mle/VectorDistance.py +0 -762
  1119. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  1120. teradataml/analytics/mle/XGBoost.py +0 -842
  1121. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  1122. teradataml/analytics/mle/__init__.py +0 -123
  1123. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  1124. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  1125. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  1126. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  1127. teradataml/analytics/mle/json/arima_mle.json +0 -172
  1128. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  1129. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  1130. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  1131. teradataml/analytics/mle/json/burst_mle.json +0 -140
  1132. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  1133. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  1134. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  1135. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  1136. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  1137. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  1138. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  1139. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  1140. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  1141. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  1142. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  1143. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  1144. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  1145. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  1146. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  1147. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  1148. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  1149. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  1150. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  1151. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  1152. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  1153. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  1154. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  1155. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  1156. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  1157. teradataml/analytics/mle/json/glm_mle.json +0 -111
  1158. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  1159. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  1160. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  1161. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  1162. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  1163. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  1164. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  1165. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  1166. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  1167. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  1168. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  1169. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  1170. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  1171. teradataml/analytics/mle/json/knn_mle.json +0 -141
  1172. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  1173. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  1174. teradataml/analytics/mle/json/lar_mle.json +0 -78
  1175. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  1176. teradataml/analytics/mle/json/lda_mle.json +0 -130
  1177. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  1178. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  1179. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  1180. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  1181. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  1182. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  1183. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  1184. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  1185. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  1186. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  1187. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  1188. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  1189. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  1190. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  1191. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  1192. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  1193. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  1194. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  1195. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  1196. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  1197. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  1198. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  1199. teradataml/analytics/mle/json/pack_mle.json +0 -58
  1200. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  1201. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  1202. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  1203. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  1204. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  1205. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  1206. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  1207. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  1208. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  1209. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  1210. teradataml/analytics/mle/json/roc_mle.json +0 -73
  1211. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  1212. teradataml/analytics/mle/json/sax_mle.json +0 -154
  1213. teradataml/analytics/mle/json/scale_mle.json +0 -93
  1214. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  1215. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  1216. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  1217. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  1218. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  1219. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  1220. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  1221. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  1222. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  1223. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  1224. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  1225. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  1226. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  1227. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  1228. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  1229. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  1230. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  1231. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  1232. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  1233. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  1234. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  1235. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  1236. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  1237. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  1238. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  1239. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  1240. teradataml/analytics/mle/json/tf_mle.json +0 -33
  1241. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  1242. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  1243. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  1244. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  1245. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  1246. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  1247. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  1248. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  1249. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  1250. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  1251. teradataml/analytics/sqle/Antiselect.py +0 -321
  1252. teradataml/analytics/sqle/Attribution.py +0 -603
  1253. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  1254. teradataml/analytics/sqle/GLMPredict.py +0 -430
  1255. teradataml/analytics/sqle/MovingAverage.py +0 -543
  1256. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  1257. teradataml/analytics/sqle/NPath.py +0 -632
  1258. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  1259. teradataml/analytics/sqle/Pack.py +0 -388
  1260. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  1261. teradataml/analytics/sqle/Sessionize.py +0 -390
  1262. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  1263. teradataml/analytics/sqle/Unpack.py +0 -503
  1264. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  1265. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  1266. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  1267. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  1268. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  1269. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  1270. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  1271. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  1272. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  1273. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  1274. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  1275. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  1276. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  1277. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  1278. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  1279. teradataml/catalog/model_cataloging.py +0 -980
  1280. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  1281. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  1282. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  1283. teradataml/table_operators/sandbox_container_util.py +0 -643
  1284. teradataml-17.20.0.7.dist-info/RECORD +0 -1280
  1285. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
@@ -1,507 +1,507 @@
1
- #########################################################################
2
- # Unpublished work. #
3
- # Copyright (c) 2020 by Teradata Corporation. All rights reserved. #
4
- # TERADATA CORPORATION CONFIDENTIAL AND TRADE SECRET #
5
- # #
6
- # Primary Owner: Gouri.Patwardhan@teradata.com #
7
- # Secondary Owner: Trupti.Purohit@teradata.com #
8
- # #
9
- # This file implements class for SQL query generation. #
10
- #########################################################################
11
-
12
- import os
13
- from collections import OrderedDict
14
- from teradataml.common.utils import UtilFuncs
15
- from teradataml.context.context import _get_function_mappings
16
- from teradataml.common.messagecodes import MessageCodes
17
- from teradataml.common.messages import Messages
18
- from teradataml.common.exceptions import TeradataMlException
19
- from teradataml.dataframe.dataframe_utils import DataFrameUtils
20
- from teradataml.options.configure import configure
21
-
22
- # Current directory is table_operators folder.
23
- teradataml_folder = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
24
- config_folder = os.path.join(teradataml_folder, "config")
25
-
26
- class QueryGenerator:
27
- """
28
- This class creates a Query object, which can be used to generate
29
- SQL-MR/Analytical query in FFE syntax for Teradata or Table Operator queries for Vantage
30
- """
31
-
32
- def __init__(self, function_name, func_input_arg_sql_names, func_input_table_view_query, func_input_dataframe_type,
33
- func_input_distribution, func_input_partition_by_cols, func_input_order_by_cols,
34
- func_other_arg_sql_names, func_other_args_values, func_other_arg_json_datatypes,
35
- func_output_args_sql_names, func_output_args_values, func_type="FFE",
36
- engine="ENGINE_ML"):
37
-
38
- """
39
- QueryGenerator constructor, to create a table operator object, for
40
- Table Operator query generation.
41
-
42
- PARAMETERS:
43
- function_name:
44
- Required Argument.
45
- Specifies the name of the function.
46
-
47
- func_input_arg_sql_names:
48
- Required Argument.
49
- Specifies the list of input SQL Argument names.
50
-
51
- func_input_table_view_query:
52
- Required Argument.
53
- Specifies the list of input argument values, with
54
- respect to 'func_input_arg_sql_names' which contains
55
- table_name or SQL (Select query).
56
-
57
- func_input_dataframe_type:
58
- Required Argument.
59
- Specifies the list of dataframe types for each input.
60
- Values can be "TABLE" or "QUERY".
61
-
62
- func_input_distribution:
63
- Required Argument.
64
- Specifies the list containing distributions for each
65
- input. Values can be "FACT", "HASH", DIMENSION", "NONE".
66
-
67
- func_input_partition_by cols:
68
- Required Argument.
69
- Specifes the list containing partition columns for
70
- each input, if distribution is FACT or HASH.
71
-
72
- func_input_order_by_cols:
73
- Required Argument.
74
- Specifies the list of values, for each input, to be
75
- used order by clause.
76
-
77
- func_other_arg_sql_names:
78
- Required Argument.
79
- Specifies the list of other function arguments SQL
80
- name.
81
-
82
- func_other_args_values:
83
- Required Argument.
84
- Specifies the list of other function argument values,
85
- with respect to each member in 'func_other_arg_sql_names'.
86
-
87
- func_other_arg_json_datatypes:
88
- Required Argument.
89
- Specifies the list of JSON datatypes for each member in
90
- 'func_other_arg_sql_names'.
91
-
92
- func_output_args_sql_names:
93
- Required Argument.
94
- Specifies the list of output SQL argument names.
95
-
96
- func_output_args_values:
97
- Required Argument.
98
- Specifies the list of output table names for each
99
- output table argument in 'func_output_args_sql_names'.
100
-
101
- func_type:
102
- Required Argument. Fixed value 'FFE'.
103
- Kept for future purpose, to generate different syntaxes.
104
-
105
- engine:
106
- Optional Argument.
107
- Specifies the type of engine.
108
- Default Value : ENGINE_ML
109
- Permitted Values : ENGINE_ML, ENGINE_SQL
110
-
111
- RETURNS:
112
- Table Operator object.
113
-
114
- RAISES:
115
-
116
- EXAMPLES:
117
- aqg_obj = QueryGenerator(self.function_name, self.input_sql_args,
118
- self.input_table_qry, self.input_df_type,
119
- self.input_distribution, self.input_partition_columns,
120
- self.input_order_columns, self.other_sql_args,
121
- self.other_args_val, [], self.output_sql_args,
122
- self.output_args_val, engine="ENGINE_SQL")
123
- """
124
- self._engine = engine
125
- self._function_name = self._get_alias_name_for_function(function_name)
126
- self._func_input_arg_sql_names = func_input_arg_sql_names
127
- self._func_input_table_view_query = func_input_table_view_query
128
- self._func_input_dataframe_type = func_input_dataframe_type
129
- self._func_input_distribution = func_input_distribution
130
- self._func_input_partition_by_cols = func_input_partition_by_cols
131
- self._func_input_order_by_cols = func_input_order_by_cols
132
- self._func_other_arg_sql_names = func_other_arg_sql_names
133
- self._func_other_args_values = func_other_args_values
134
- self._func_other_arg_json_datatypes = func_other_arg_json_datatypes
135
- self._func_output_args_sql_names = func_output_args_sql_names
136
- self._func_output_args_values = func_output_args_values
137
- self._func_output_args_values = func_type
138
- self._SELECT_STMT_FMT = "SELECT * FROM {} as sqlmr"
139
- self._QUERY_SIZE = self._get_string_size(self._SELECT_STMT_FMT) + 20
140
- self._input_arg_clause_lengths = []
141
- self._multi_query_input_nodes = []
142
-
143
-
144
- def _process_for_teradata_keyword(self, keyword):
145
- """
146
- Internal function to process Teradata Reserved keywords.
147
- If keyword is in list of Teradata Reserved keywords, then it'll be quoted in double quotes "keyword".
148
-
149
- PARAMETERS:
150
- keyword - A string to check whether it belongs to Teradata Reserved Keywords or not.
151
-
152
- RETURNS:
153
- A quoted string, if keyword is one of the Teradata Reserved Keyword, else str as is.
154
-
155
- RAISES:
156
-
157
- EXAMPLES:
158
- # Passing non-reserved returns "xyz" as is.
159
- keyword = self.__process_for_teradata_keyword("xyz")
160
- print(keyword)
161
- # Passing reserved str returns double-quoted str, i.e., "\"threshold\"".
162
- keyword = self.__process_for_teradata_keyword("threshold")
163
- print(keyword)
164
-
165
- """
166
- TERADATA_RESERVED_WORDS = ["INPUT", "THRESHOLD", "CHECK", "SUMMARY", "HASH", "METHOD"]
167
- if keyword.upper() in TERADATA_RESERVED_WORDS:
168
- return UtilFuncs._teradata_quote_arg(keyword, "\"", False)
169
- else:
170
- return keyword
171
-
172
- def _generate_query_func_other_arg_sql(self):
173
- """
174
- Private function to generate a SQL clause for other function arguments.
175
- For Example,
176
- Step("False")
177
- Family("BINOMIAL")
178
-
179
- PARAMETERS:
180
-
181
- RETURNS:
182
- SQL string for other function arguments, as shown in example here.
183
-
184
- RAISES:
185
-
186
- EXAMPLES:
187
- _func_other_arg_sql_names = ["Step", "Family"]
188
- _func_other_args_values = ["False", "BINOMIAL"]
189
- other_arg_sql = self._generate_tblop_func_other_arg_sql()
190
- # Output is as shown in example in description.
191
-
192
- """
193
- args_sql_str = ""
194
- for index in range(len(self._func_other_arg_sql_names)):
195
- args_sql_str = "{0}\n\t{1}({2})".format(args_sql_str,
196
- self._process_for_teradata_keyword(
197
- self._func_other_arg_sql_names[index]),
198
- self._func_other_args_values[index])
199
-
200
- self._QUERY_SIZE = self._QUERY_SIZE + self._get_string_size(args_sql_str)
201
- return args_sql_str
202
-
203
- def _generate_tblop_input_arg_sql(self, table_ref, table_ref_type, alias=None):
204
- """
205
- Private function to generate a ON clause for input function arguments.
206
- For Example,
207
- ON table_name AS InputTable
208
- ON (select * from table) AS InputTable
209
-
210
- PARAMETERS:
211
- table_ref - Table name or query, to be used as input.
212
- table_ref_type - Type of data frame.
213
- alias - Alias to be used for input.
214
-
215
- RETURNS:
216
- ON clause SQL string for input function arguments, as shown in example here.
217
-
218
- RAISES:
219
- TODO
220
-
221
- EXAMPLES:
222
- other_arg_sql = self._generate_tblop_input_arg_sql("table_name", "TABLE", "InputTable")
223
- # Output is as shown in example in description.
224
-
225
- """
226
- returnSql = "\n\tON"
227
- if table_ref_type == "TABLE":
228
- returnSql = "{0} {1}".format(returnSql, table_ref)
229
- elif table_ref_type == "QUERY":
230
- returnSql = "{0} ({1})".format(returnSql, table_ref)
231
- else:
232
- #TODO raise # Error
233
- ""
234
-
235
- if alias is not None:
236
- returnSql = "{0} AS {1}".format(returnSql, self._process_for_teradata_keyword(alias))
237
-
238
- return returnSql
239
-
240
- def _generate_tblop_output_arg_sql(self):
241
- """
242
- Private function to generate a SQL clause for output function arguments.
243
- For Example,
244
- OUT TABLE OutputTable("out_table_1")
245
- OUT TABLE CoefficientsTable("out_table_2")
246
-
247
- PARAMETERS:
248
-
249
- RETURNS:
250
- SQL string for output function arguments, as shown in example here.
251
-
252
- RAISES:
253
-
254
- EXAMPLES:
255
- _func_output_args_sql_names = ["OutputTable", "CoefficientsTable"]
256
- _func_output_args_values = ["out_table_1", "out_table_2"]
257
- other_arg_sql = self._generate_tblop_output_arg_sql()
258
- # Output is as shown in example in description.
259
-
260
- """
261
- args_sql_str = ""
262
- for index in range(len(self._func_output_args_sql_names)):
263
- if self._func_output_args_values[index] is not None:
264
- args_sql_str = "{0}\n\tOUT TABLE {1}({2})".format(args_sql_str,
265
- self._process_for_teradata_keyword(
266
- self._func_output_args_sql_names[index]),
267
- self._func_output_args_values[index])
268
-
269
- self._QUERY_SIZE = self._QUERY_SIZE + self._get_string_size(args_sql_str)
270
- return args_sql_str
271
-
272
- def _single_complete_table_ref_clause(self):
273
- """
274
- Private function to generate complete ON clause for input function arguments, including
275
- partition by and order by clause, if any.
276
- For Example,
277
- ON table_name AS InputTable1 Partition By col1 Order By col2
278
- ON (select * from table) AS InputTable2 DIMENSION
279
-
280
- PARAMETERS:
281
-
282
- RETURNS:
283
- Complete input argument clause, SQL string for input function arguments, as shown in example here.
284
-
285
- RAISES:
286
-
287
- EXAMPLES:
288
- _func_input_arg_sql_names = ["InputTable1", "InputTable2"]
289
- _func_input_table_view_query = ["table_name", "select * from table"]
290
- _func_input_dataframe_type = ["TABLE", "QUERY"]
291
- _func_input_distribution = ["FACT", "DIMENSION"]
292
- _func_input_partition_by_cols = ["col1", "NA_character_"]
293
- _func_input_order_by_cols = ["col2", "NA_character_"]
294
- other_arg_sql = self._single_complete_table_ref_clause()
295
- # Output is as shown in example in description.
296
-
297
- """
298
- on_clause_dict = OrderedDict()
299
- args_sql_str = []
300
- # Let's iterate over the input arguments to the analytic functions.
301
- # Gather all the information provided by the wrapper.
302
- for index in range(len(self._func_input_arg_sql_names)):
303
- # Get table reference. This contains following information:
304
- # table name or view name OR
305
- # A list of [view_name, query, node_query_type, node_id] gathered from
306
- # 'aed_exec_query_output' for the input node.
307
- table_ref = self._func_input_table_view_query[index]
308
- # Get the table reference type, which is, either "TABLE" or "QUERY"
309
- table_ref_type = self._func_input_dataframe_type[index]
310
- # Input argument alias
311
- alias = self._func_input_arg_sql_names[index]
312
- # Partition information
313
- distribution = self._func_input_distribution[index]
314
- partition_col = self._func_input_partition_by_cols[index]
315
- # Order clause information
316
- order_col = self._func_input_order_by_cols[index]
317
- # Get the Partition clause for the input argument.
318
- partition_clause = self.__gen_tblop_input_partition_clause(distribution, partition_col)
319
- # Get the Order clause for the input argument.
320
- order_clause = self.__gen_tblop_input_order_clause(order_by_type, order_col, sort_ascending, nulls_first)
321
-
322
- if table_ref_type == "TABLE":
323
- # If table reference type is "TABLE", then let's use the table name in the query.
324
- on_clause = self._generate_tblop_input_arg_sql(table_ref, table_ref_type, alias)
325
- on_clause_str = "{0}{1}{2}".format(on_clause, partition_clause, order_clause)
326
- args_sql_str.append(on_clause_str)
327
- # Update the length of the PARTITION clause.
328
- self._QUERY_SIZE = self._QUERY_SIZE + self._get_string_size(on_clause_str)
329
- else:
330
- # Store the input argument information for the inputs, which will use query as input.
331
- on_clause_dict[index] = {}
332
- on_clause_dict[index]["PARTITION_CLAUSE"] = partition_clause
333
- on_clause_dict[index]["ORDER_CLAUSE"] = order_clause
334
- on_clause_dict[index]["ON_TABLE"] = self._generate_tblop_input_arg_sql(table_ref[0], "TABLE", alias)
335
- on_clause_dict[index]["ON_QRY"] = self._generate_tblop_input_arg_sql(table_ref[1], "QUERY", alias)
336
- on_clause_dict[index]["QRY_TYPE"] = table_ref[2]
337
- on_clause_dict[index]["NODEID"] = table_ref[3]
338
- on_clause_dict[index]["LAZY"] = table_ref[4]
339
- # If input node results in returning multiple queries save that input node
340
- # in '_multi_query_input_nodes' list.
341
- if table_ref[5]:
342
- self._multi_query_input_nodes.append(table_ref[3])
343
-
344
- # Process OrderedDict to generate input argument clause.
345
- for key in on_clause_dict.keys():
346
- if self._QUERY_SIZE + self._get_string_size(on_clause_dict[key]["ON_QRY"]) <= 900000:
347
- on_clause_str = "{0}{1}{2}".format(on_clause_dict[key]["ON_QRY"],
348
- on_clause_dict[key]["PARTITION_CLAUSE"],
349
- on_clause_dict[key]["ORDER_CLAUSE"])
350
- else:
351
- # We are here means query maximum size will be exceeded here.
352
- # So let's add the input node to multi-query input node list, as
353
- # we would like execute this node as well as part of the execution.
354
- # Add it in the list, if we have not done it already.
355
- if on_clause_dict[key]["NODEID"] not in self._multi_query_input_nodes:
356
- self._multi_query_input_nodes.append(on_clause_dict[key]["NODEID"])
357
-
358
- # Use the table name/view name in the on clause.
359
- on_clause_str = "{0}{1}{2}".format(on_clause_dict[key]["ON_TABLE"],
360
- on_clause_dict[key]["PARTITION_CLAUSE"],
361
- on_clause_dict[key]["ORDER_CLAUSE"])
362
-
363
- # Execute input node here, if function is not lazy.
364
- if not on_clause_dict[key]["LAZY"]:
365
- DataFrameUtils._execute_node_return_db_object_name(on_clause_dict[key]["NODEID"])
366
-
367
- args_sql_str.append(on_clause_str)
368
-
369
- # Add the length of the ON clause.
370
- self._QUERY_SIZE = self._QUERY_SIZE + self._get_string_size(on_clause_str)
371
-
372
- return " ".join(args_sql_str)
373
-
374
- def __gen_tblop_input_order_clause(self, order_by_type, column_order, sort_ascending, nulls_first):
375
- """
376
- Private function to generate complete order by clause for input function arguments.
377
- For Example,
378
- Order By col2
379
-
380
- PARAMETERS:
381
- column_order - Column to be used in ORDER BY clause. If this is "NA_character_"
382
- no ORDER BY clause is generated.
383
-
384
- RETURNS:
385
- Order By clause, as shown in example here.
386
-
387
- RAISES:
388
-
389
- EXAMPLES:
390
- other_arg_sql = self._gen_tblop_input_order_clause("col2")
391
- # Output is as shown in example in description.
392
-
393
- """
394
- sort_order = "ASC"
395
- nulls_order = None
396
- if column_order == "NA_character_" or column_order is None:
397
- return ""
398
- if sort_ascending == False:
399
- sort_order = "DESC"
400
-
401
- if nulls_first == True:
402
- nulls_order = "NULLS FIRST"
403
- elif nulls_first == False:
404
- nulls_order = "NULLS LAST"
405
-
406
- if order_by_type == "LOCAL":
407
- args_sql_str = "\n\t LOCAL ORDER BY {0} {1} {2}".format(column_order, sort_order, nulls_order)
408
- else:
409
- args_sql_str = "\n\tORDER BY {0} {1} {2}".format(column_order, sort_order, nulls_order)
410
-
411
- # Get the length of the ORDER clause.
412
- self._QUERY_SIZE = self._QUERY_SIZE + self._get_string_size(args_sql_str)
413
-
414
- return args_sql_str
415
-
416
- def __gen_tblop_input_partition_clause(self, distribution, column):
417
- """
418
- Private function to generate PARTITION BY or DIMENSION clause for input function arguments.
419
- For Example,
420
- Partition By col1
421
- DIMENSION
422
-
423
- PARAMETERS:
424
- distribution - Type of clause to be generated. Values accepted here are: FACT, DIMENSION, NONE
425
- column - Column to be used in PARTITION BY clause, when distribution is "FACT"
426
-
427
- RETURNS:
428
- Partition clause, based on the type of distribution:
429
- When "FACT" - PARTITION BY clause is generated.
430
- When "DIMENSION" - DIMENSION clause is generated.
431
- When "NONE" - No clause is generated, an empty string is returned.
432
-
433
- RAISES:
434
- TODO
435
-
436
- EXAMPLES:
437
- other_arg_sql = self.__gen_tblop_input_partition_clause("FACT", "col1")
438
- # Output is as shown in example in description.
439
-
440
- """
441
- if distribution == "FACT" and column is not None:
442
- args_sql_str = "\n\tPARTITION BY {0}".format(column)
443
- elif distribution == "FACT" and column is None:
444
- args_sql_str = "\n\tPARTITION BY ANY"
445
- elif distribution == "DIMENSION":
446
- args_sql_str = "\n\tDIMENSION"
447
- elif distribution == "HASH" and column is not None:
448
- args_sql_str = "\n\t HASH BY {0}".format(column)
449
- elif distribution == "NONE":
450
- return ""
451
- else:
452
- return ""
453
- # TODO raise error "invalid distribution type"
454
-
455
- # Get the length of the PARTITION clause.
456
- self._QUERY_SIZE = self._QUERY_SIZE + self._get_string_size(args_sql_str)
457
- return args_sql_str
458
-
459
- def _get_alias_name_for_function(self, function_name):
460
- """
461
- Function to return the alias name mapped to the actual
462
- analytic function.
463
-
464
- PARAMETERS:
465
- function_name:
466
- Required Argument.
467
- Specifies the name of the function for which alias
468
- name should be returned.
469
-
470
- RETURNS:
471
- Function alias name for the given function_name.
472
-
473
- RAISES:
474
- TeradataMLException
475
-
476
- EXAMPLES:
477
- aqgObj._get_alias_name_for_function("GLM")
478
- """
479
- # If function is a nos function, then alias name is same as function name or function mapping name.
480
- if "ReadNOS".lower() == function_name.lower():
481
- return configure.read_nos_function_mapping.upper()
482
- elif "WriteNOS".lower() == function_name.lower():
483
- return configure.write_nos_function_mapping.upper()
484
-
485
- engine_name = UtilFuncs._get_engine_name(self._engine)
486
-
487
- # Get function mappings which are already loaded during create_context or set_context.
488
- function_mappings = _get_function_mappings()
489
-
490
- try:
491
- return function_mappings[configure.vantage_version][engine_name][function_name.lower()]
492
- except KeyError as ke:
493
- if str(ke) == "'{}'".format(function_name.lower()):
494
- raise TeradataMlException(Messages.get_message(
495
- MessageCodes.FUNCTION_NOT_SUPPORTED).format(configure.vantage_version),
496
- MessageCodes.FUNCTION_NOT_SUPPORTED) from ke
497
- else:
498
- raise
499
- except TeradataMlException:
500
- raise
501
- except Exception as err:
502
- raise TeradataMlException(Messages.get_message(
503
- MessageCodes.CONFIG_ALIAS_ANLY_FUNC_NOT_FOUND).format(function_name, config_folder),
504
- MessageCodes.CONFIG_ALIAS_ANLY_FUNC_NOT_FOUND) from err
505
-
506
- def _get_string_size(self, string):
507
- return len(string.encode("utf8"))
1
+ #########################################################################
2
+ # Unpublished work. #
3
+ # Copyright (c) 2020 by Teradata Corporation. All rights reserved. #
4
+ # TERADATA CORPORATION CONFIDENTIAL AND TRADE SECRET #
5
+ # #
6
+ # Primary Owner: Gouri.Patwardhan@teradata.com #
7
+ # Secondary Owner: Trupti.Purohit@teradata.com #
8
+ # #
9
+ # This file implements class for SQL query generation. #
10
+ #########################################################################
11
+
12
+ import os
13
+ from collections import OrderedDict
14
+ from teradataml.common.utils import UtilFuncs
15
+ from teradataml.context.context import _get_function_mappings
16
+ from teradataml.common.messagecodes import MessageCodes
17
+ from teradataml.common.messages import Messages
18
+ from teradataml.common.exceptions import TeradataMlException
19
+ from teradataml.dataframe.dataframe_utils import DataFrameUtils
20
+ from teradataml.options.configure import configure
21
+
22
+ # Current directory is table_operators folder.
23
+ teradataml_folder = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
24
+ config_folder = os.path.join(teradataml_folder, "config")
25
+
26
+ class QueryGenerator:
27
+ """
28
+ This class creates a Query object, which can be used to generate
29
+ SQL-MR/Analytical query in FFE syntax for Teradata or Table Operator queries for Vantage
30
+ """
31
+
32
+ def __init__(self, function_name, func_input_arg_sql_names, func_input_table_view_query, func_input_dataframe_type,
33
+ func_input_distribution, func_input_partition_by_cols, func_input_order_by_cols,
34
+ func_other_arg_sql_names, func_other_args_values, func_other_arg_json_datatypes,
35
+ func_output_args_sql_names, func_output_args_values, func_type="FFE",
36
+ engine="ENGINE_ML"):
37
+
38
+ """
39
+ QueryGenerator constructor, to create a table operator object, for
40
+ Table Operator query generation.
41
+
42
+ PARAMETERS:
43
+ function_name:
44
+ Required Argument.
45
+ Specifies the name of the function.
46
+
47
+ func_input_arg_sql_names:
48
+ Required Argument.
49
+ Specifies the list of input SQL Argument names.
50
+
51
+ func_input_table_view_query:
52
+ Required Argument.
53
+ Specifies the list of input argument values, with
54
+ respect to 'func_input_arg_sql_names' which contains
55
+ table_name or SQL (Select query).
56
+
57
+ func_input_dataframe_type:
58
+ Required Argument.
59
+ Specifies the list of dataframe types for each input.
60
+ Values can be "TABLE" or "QUERY".
61
+
62
+ func_input_distribution:
63
+ Required Argument.
64
+ Specifies the list containing distributions for each
65
+ input. Values can be "FACT", "HASH", DIMENSION", "NONE".
66
+
67
+ func_input_partition_by cols:
68
+ Required Argument.
69
+ Specifes the list containing partition columns for
70
+ each input, if distribution is FACT or HASH.
71
+
72
+ func_input_order_by_cols:
73
+ Required Argument.
74
+ Specifies the list of values, for each input, to be
75
+ used order by clause.
76
+
77
+ func_other_arg_sql_names:
78
+ Required Argument.
79
+ Specifies the list of other function arguments SQL
80
+ name.
81
+
82
+ func_other_args_values:
83
+ Required Argument.
84
+ Specifies the list of other function argument values,
85
+ with respect to each member in 'func_other_arg_sql_names'.
86
+
87
+ func_other_arg_json_datatypes:
88
+ Required Argument.
89
+ Specifies the list of JSON datatypes for each member in
90
+ 'func_other_arg_sql_names'.
91
+
92
+ func_output_args_sql_names:
93
+ Required Argument.
94
+ Specifies the list of output SQL argument names.
95
+
96
+ func_output_args_values:
97
+ Required Argument.
98
+ Specifies the list of output table names for each
99
+ output table argument in 'func_output_args_sql_names'.
100
+
101
+ func_type:
102
+ Required Argument. Fixed value 'FFE'.
103
+ Kept for future purpose, to generate different syntaxes.
104
+
105
+ engine:
106
+ Optional Argument.
107
+ Specifies the type of engine.
108
+ Default Value : ENGINE_ML
109
+ Permitted Values : ENGINE_ML, ENGINE_SQL
110
+
111
+ RETURNS:
112
+ Table Operator object.
113
+
114
+ RAISES:
115
+
116
+ EXAMPLES:
117
+ aqg_obj = QueryGenerator(self.function_name, self.input_sql_args,
118
+ self.input_table_qry, self.input_df_type,
119
+ self.input_distribution, self.input_partition_columns,
120
+ self.input_order_columns, self.other_sql_args,
121
+ self.other_args_val, [], self.output_sql_args,
122
+ self.output_args_val, engine="ENGINE_SQL")
123
+ """
124
+ self._engine = engine
125
+ self._function_name = self._get_alias_name_for_function(function_name)
126
+ self._func_input_arg_sql_names = func_input_arg_sql_names
127
+ self._func_input_table_view_query = func_input_table_view_query
128
+ self._func_input_dataframe_type = func_input_dataframe_type
129
+ self._func_input_distribution = func_input_distribution
130
+ self._func_input_partition_by_cols = func_input_partition_by_cols
131
+ self._func_input_order_by_cols = func_input_order_by_cols
132
+ self._func_other_arg_sql_names = func_other_arg_sql_names
133
+ self._func_other_args_values = func_other_args_values
134
+ self._func_other_arg_json_datatypes = func_other_arg_json_datatypes
135
+ self._func_output_args_sql_names = func_output_args_sql_names
136
+ self._func_output_args_values = func_output_args_values
137
+ self._func_output_args_values = func_type
138
+ self._SELECT_STMT_FMT = "SELECT * FROM {} as sqlmr"
139
+ self._QUERY_SIZE = self._get_string_size(self._SELECT_STMT_FMT) + 20
140
+ self._input_arg_clause_lengths = []
141
+ self._multi_query_input_nodes = []
142
+
143
+
144
+ def _process_for_teradata_keyword(self, keyword):
145
+ """
146
+ Internal function to process Teradata Reserved keywords.
147
+ If keyword is in list of Teradata Reserved keywords, then it'll be quoted in double quotes "keyword".
148
+
149
+ PARAMETERS:
150
+ keyword - A string to check whether it belongs to Teradata Reserved Keywords or not.
151
+
152
+ RETURNS:
153
+ A quoted string, if keyword is one of the Teradata Reserved Keyword, else str as is.
154
+
155
+ RAISES:
156
+
157
+ EXAMPLES:
158
+ # Passing non-reserved returns "xyz" as is.
159
+ keyword = self.__process_for_teradata_keyword("xyz")
160
+ print(keyword)
161
+ # Passing reserved str returns double-quoted str, i.e., "\"threshold\"".
162
+ keyword = self.__process_for_teradata_keyword("threshold")
163
+ print(keyword)
164
+
165
+ """
166
+ TERADATA_RESERVED_WORDS = ["INPUT", "THRESHOLD", "CHECK", "SUMMARY", "HASH", "METHOD"]
167
+ if keyword.upper() in TERADATA_RESERVED_WORDS:
168
+ return UtilFuncs._teradata_quote_arg(keyword, "\"", False)
169
+ else:
170
+ return keyword
171
+
172
+ def _generate_query_func_other_arg_sql(self):
173
+ """
174
+ Private function to generate a SQL clause for other function arguments.
175
+ For Example,
176
+ Step("False")
177
+ Family("BINOMIAL")
178
+
179
+ PARAMETERS:
180
+
181
+ RETURNS:
182
+ SQL string for other function arguments, as shown in example here.
183
+
184
+ RAISES:
185
+
186
+ EXAMPLES:
187
+ _func_other_arg_sql_names = ["Step", "Family"]
188
+ _func_other_args_values = ["False", "BINOMIAL"]
189
+ other_arg_sql = self._generate_tblop_func_other_arg_sql()
190
+ # Output is as shown in example in description.
191
+
192
+ """
193
+ args_sql_str = ""
194
+ for index in range(len(self._func_other_arg_sql_names)):
195
+ args_sql_str = "{0}\n\t{1}({2})".format(args_sql_str,
196
+ self._process_for_teradata_keyword(
197
+ self._func_other_arg_sql_names[index]),
198
+ self._func_other_args_values[index])
199
+
200
+ self._QUERY_SIZE = self._QUERY_SIZE + self._get_string_size(args_sql_str)
201
+ return args_sql_str
202
+
203
+ def _generate_tblop_input_arg_sql(self, table_ref, table_ref_type, alias=None):
204
+ """
205
+ Private function to generate a ON clause for input function arguments.
206
+ For Example,
207
+ ON table_name AS InputTable
208
+ ON (select * from table) AS InputTable
209
+
210
+ PARAMETERS:
211
+ table_ref - Table name or query, to be used as input.
212
+ table_ref_type - Type of data frame.
213
+ alias - Alias to be used for input.
214
+
215
+ RETURNS:
216
+ ON clause SQL string for input function arguments, as shown in example here.
217
+
218
+ RAISES:
219
+ TODO
220
+
221
+ EXAMPLES:
222
+ other_arg_sql = self._generate_tblop_input_arg_sql("table_name", "TABLE", "InputTable")
223
+ # Output is as shown in example in description.
224
+
225
+ """
226
+ returnSql = "\n\tON"
227
+ if table_ref_type == "TABLE":
228
+ returnSql = "{0} {1}".format(returnSql, table_ref)
229
+ elif table_ref_type == "QUERY":
230
+ returnSql = "{0} ({1})".format(returnSql, table_ref)
231
+ else:
232
+ #TODO raise # Error
233
+ ""
234
+
235
+ if alias is not None:
236
+ returnSql = "{0} AS {1}".format(returnSql, self._process_for_teradata_keyword(alias))
237
+
238
+ return returnSql
239
+
240
+ def _generate_tblop_output_arg_sql(self):
241
+ """
242
+ Private function to generate a SQL clause for output function arguments.
243
+ For Example,
244
+ OUT TABLE OutputTable("out_table_1")
245
+ OUT TABLE CoefficientsTable("out_table_2")
246
+
247
+ PARAMETERS:
248
+
249
+ RETURNS:
250
+ SQL string for output function arguments, as shown in example here.
251
+
252
+ RAISES:
253
+
254
+ EXAMPLES:
255
+ _func_output_args_sql_names = ["OutputTable", "CoefficientsTable"]
256
+ _func_output_args_values = ["out_table_1", "out_table_2"]
257
+ other_arg_sql = self._generate_tblop_output_arg_sql()
258
+ # Output is as shown in example in description.
259
+
260
+ """
261
+ args_sql_str = ""
262
+ for index in range(len(self._func_output_args_sql_names)):
263
+ if self._func_output_args_values[index] is not None:
264
+ args_sql_str = "{0}\n\tOUT TABLE {1}({2})".format(args_sql_str,
265
+ self._process_for_teradata_keyword(
266
+ self._func_output_args_sql_names[index]),
267
+ self._func_output_args_values[index])
268
+
269
+ self._QUERY_SIZE = self._QUERY_SIZE + self._get_string_size(args_sql_str)
270
+ return args_sql_str
271
+
272
+ def _single_complete_table_ref_clause(self):
273
+ """
274
+ Private function to generate complete ON clause for input function arguments, including
275
+ partition by and order by clause, if any.
276
+ For Example,
277
+ ON table_name AS InputTable1 Partition By col1 Order By col2
278
+ ON (select * from table) AS InputTable2 DIMENSION
279
+
280
+ PARAMETERS:
281
+
282
+ RETURNS:
283
+ Complete input argument clause, SQL string for input function arguments, as shown in example here.
284
+
285
+ RAISES:
286
+
287
+ EXAMPLES:
288
+ _func_input_arg_sql_names = ["InputTable1", "InputTable2"]
289
+ _func_input_table_view_query = ["table_name", "select * from table"]
290
+ _func_input_dataframe_type = ["TABLE", "QUERY"]
291
+ _func_input_distribution = ["FACT", "DIMENSION"]
292
+ _func_input_partition_by_cols = ["col1", "NA_character_"]
293
+ _func_input_order_by_cols = ["col2", "NA_character_"]
294
+ other_arg_sql = self._single_complete_table_ref_clause()
295
+ # Output is as shown in example in description.
296
+
297
+ """
298
+ on_clause_dict = OrderedDict()
299
+ args_sql_str = []
300
+ # Let's iterate over the input arguments to the analytic functions.
301
+ # Gather all the information provided by the wrapper.
302
+ for index in range(len(self._func_input_arg_sql_names)):
303
+ # Get table reference. This contains following information:
304
+ # table name or view name OR
305
+ # A list of [view_name, query, node_query_type, node_id] gathered from
306
+ # 'aed_exec_query_output' for the input node.
307
+ table_ref = self._func_input_table_view_query[index]
308
+ # Get the table reference type, which is, either "TABLE" or "QUERY"
309
+ table_ref_type = self._func_input_dataframe_type[index]
310
+ # Input argument alias
311
+ alias = self._func_input_arg_sql_names[index]
312
+ # Partition information
313
+ distribution = self._func_input_distribution[index]
314
+ partition_col = self._func_input_partition_by_cols[index]
315
+ # Order clause information
316
+ order_col = self._func_input_order_by_cols[index]
317
+ # Get the Partition clause for the input argument.
318
+ partition_clause = self.__gen_tblop_input_partition_clause(distribution, partition_col)
319
+ # Get the Order clause for the input argument.
320
+ order_clause = self.__gen_tblop_input_order_clause(order_by_type, order_col, sort_ascending, nulls_first)
321
+
322
+ if table_ref_type == "TABLE":
323
+ # If table reference type is "TABLE", then let's use the table name in the query.
324
+ on_clause = self._generate_tblop_input_arg_sql(table_ref, table_ref_type, alias)
325
+ on_clause_str = "{0}{1}{2}".format(on_clause, partition_clause, order_clause)
326
+ args_sql_str.append(on_clause_str)
327
+ # Update the length of the PARTITION clause.
328
+ self._QUERY_SIZE = self._QUERY_SIZE + self._get_string_size(on_clause_str)
329
+ else:
330
+ # Store the input argument information for the inputs, which will use query as input.
331
+ on_clause_dict[index] = {}
332
+ on_clause_dict[index]["PARTITION_CLAUSE"] = partition_clause
333
+ on_clause_dict[index]["ORDER_CLAUSE"] = order_clause
334
+ on_clause_dict[index]["ON_TABLE"] = self._generate_tblop_input_arg_sql(table_ref[0], "TABLE", alias)
335
+ on_clause_dict[index]["ON_QRY"] = self._generate_tblop_input_arg_sql(table_ref[1], "QUERY", alias)
336
+ on_clause_dict[index]["QRY_TYPE"] = table_ref[2]
337
+ on_clause_dict[index]["NODEID"] = table_ref[3]
338
+ on_clause_dict[index]["LAZY"] = table_ref[4]
339
+ # If input node results in returning multiple queries save that input node
340
+ # in '_multi_query_input_nodes' list.
341
+ if table_ref[5]:
342
+ self._multi_query_input_nodes.append(table_ref[3])
343
+
344
+ # Process OrderedDict to generate input argument clause.
345
+ for key in on_clause_dict.keys():
346
+ if self._QUERY_SIZE + self._get_string_size(on_clause_dict[key]["ON_QRY"]) <= 900000:
347
+ on_clause_str = "{0}{1}{2}".format(on_clause_dict[key]["ON_QRY"],
348
+ on_clause_dict[key]["PARTITION_CLAUSE"],
349
+ on_clause_dict[key]["ORDER_CLAUSE"])
350
+ else:
351
+ # We are here means query maximum size will be exceeded here.
352
+ # So let's add the input node to multi-query input node list, as
353
+ # we would like execute this node as well as part of the execution.
354
+ # Add it in the list, if we have not done it already.
355
+ if on_clause_dict[key]["NODEID"] not in self._multi_query_input_nodes:
356
+ self._multi_query_input_nodes.append(on_clause_dict[key]["NODEID"])
357
+
358
+ # Use the table name/view name in the on clause.
359
+ on_clause_str = "{0}{1}{2}".format(on_clause_dict[key]["ON_TABLE"],
360
+ on_clause_dict[key]["PARTITION_CLAUSE"],
361
+ on_clause_dict[key]["ORDER_CLAUSE"])
362
+
363
+ # Execute input node here, if function is not lazy.
364
+ if not on_clause_dict[key]["LAZY"]:
365
+ DataFrameUtils._execute_node_return_db_object_name(on_clause_dict[key]["NODEID"])
366
+
367
+ args_sql_str.append(on_clause_str)
368
+
369
+ # Add the length of the ON clause.
370
+ self._QUERY_SIZE = self._QUERY_SIZE + self._get_string_size(on_clause_str)
371
+
372
+ return " ".join(args_sql_str)
373
+
374
+ def __gen_tblop_input_order_clause(self, order_by_type, column_order, sort_ascending, nulls_first):
375
+ """
376
+ Private function to generate complete order by clause for input function arguments.
377
+ For Example,
378
+ Order By col2
379
+
380
+ PARAMETERS:
381
+ column_order - Column to be used in ORDER BY clause. If this is "NA_character_"
382
+ no ORDER BY clause is generated.
383
+
384
+ RETURNS:
385
+ Order By clause, as shown in example here.
386
+
387
+ RAISES:
388
+
389
+ EXAMPLES:
390
+ other_arg_sql = self._gen_tblop_input_order_clause("col2")
391
+ # Output is as shown in example in description.
392
+
393
+ """
394
+ sort_order = "ASC"
395
+ nulls_order = None
396
+ if column_order == "NA_character_" or column_order is None:
397
+ return ""
398
+ if sort_ascending == False:
399
+ sort_order = "DESC"
400
+
401
+ if nulls_first == True:
402
+ nulls_order = "NULLS FIRST"
403
+ elif nulls_first == False:
404
+ nulls_order = "NULLS LAST"
405
+
406
+ if order_by_type == "LOCAL":
407
+ args_sql_str = "\n\t LOCAL ORDER BY {0} {1} {2}".format(column_order, sort_order, nulls_order)
408
+ else:
409
+ args_sql_str = "\n\tORDER BY {0} {1} {2}".format(column_order, sort_order, nulls_order)
410
+
411
+ # Get the length of the ORDER clause.
412
+ self._QUERY_SIZE = self._QUERY_SIZE + self._get_string_size(args_sql_str)
413
+
414
+ return args_sql_str
415
+
416
+ def __gen_tblop_input_partition_clause(self, distribution, column):
417
+ """
418
+ Private function to generate PARTITION BY or DIMENSION clause for input function arguments.
419
+ For Example,
420
+ Partition By col1
421
+ DIMENSION
422
+
423
+ PARAMETERS:
424
+ distribution - Type of clause to be generated. Values accepted here are: FACT, DIMENSION, NONE
425
+ column - Column to be used in PARTITION BY clause, when distribution is "FACT"
426
+
427
+ RETURNS:
428
+ Partition clause, based on the type of distribution:
429
+ When "FACT" - PARTITION BY clause is generated.
430
+ When "DIMENSION" - DIMENSION clause is generated.
431
+ When "NONE" - No clause is generated, an empty string is returned.
432
+
433
+ RAISES:
434
+ TODO
435
+
436
+ EXAMPLES:
437
+ other_arg_sql = self.__gen_tblop_input_partition_clause("FACT", "col1")
438
+ # Output is as shown in example in description.
439
+
440
+ """
441
+ if distribution == "FACT" and column is not None:
442
+ args_sql_str = "\n\tPARTITION BY {0}".format(column)
443
+ elif distribution == "FACT" and column is None:
444
+ args_sql_str = "\n\tPARTITION BY ANY"
445
+ elif distribution == "DIMENSION":
446
+ args_sql_str = "\n\tDIMENSION"
447
+ elif distribution == "HASH" and column is not None:
448
+ args_sql_str = "\n\t HASH BY {0}".format(column)
449
+ elif distribution == "NONE":
450
+ return ""
451
+ else:
452
+ return ""
453
+ # TODO raise error "invalid distribution type"
454
+
455
+ # Get the length of the PARTITION clause.
456
+ self._QUERY_SIZE = self._QUERY_SIZE + self._get_string_size(args_sql_str)
457
+ return args_sql_str
458
+
459
+ def _get_alias_name_for_function(self, function_name):
460
+ """
461
+ Function to return the alias name mapped to the actual
462
+ analytic function.
463
+
464
+ PARAMETERS:
465
+ function_name:
466
+ Required Argument.
467
+ Specifies the name of the function for which alias
468
+ name should be returned.
469
+
470
+ RETURNS:
471
+ Function alias name for the given function_name.
472
+
473
+ RAISES:
474
+ TeradataMLException
475
+
476
+ EXAMPLES:
477
+ aqgObj._get_alias_name_for_function("GLM")
478
+ """
479
+ # If function is a nos function, then alias name is same as function name or function mapping name.
480
+ if "ReadNOS".lower() == function_name.lower():
481
+ return configure.read_nos_function_mapping.upper()
482
+ elif "WriteNOS".lower() == function_name.lower():
483
+ return configure.write_nos_function_mapping.upper()
484
+
485
+ engine_name = UtilFuncs._get_engine_name(self._engine)
486
+
487
+ # Get function mappings which are already loaded during create_context or set_context.
488
+ function_mappings = _get_function_mappings()
489
+
490
+ try:
491
+ return function_mappings[configure.vantage_version][engine_name][function_name.lower()]
492
+ except KeyError as ke:
493
+ if str(ke) == "'{}'".format(function_name.lower()):
494
+ raise TeradataMlException(Messages.get_message(
495
+ MessageCodes.FUNCTION_NOT_SUPPORTED).format(configure.vantage_version),
496
+ MessageCodes.FUNCTION_NOT_SUPPORTED) from ke
497
+ else:
498
+ raise
499
+ except TeradataMlException:
500
+ raise
501
+ except Exception as err:
502
+ raise TeradataMlException(Messages.get_message(
503
+ MessageCodes.CONFIG_ALIAS_ANLY_FUNC_NOT_FOUND).format(function_name, config_folder),
504
+ MessageCodes.CONFIG_ALIAS_ANLY_FUNC_NOT_FOUND) from err
505
+
506
+ def _get_string_size(self, string):
507
+ return len(string.encode("utf8"))