teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (1285) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +1864 -1640
  4. teradataml/__init__.py +70 -60
  5. teradataml/_version.py +11 -11
  6. teradataml/analytics/Transformations.py +2995 -2995
  7. teradataml/analytics/__init__.py +81 -83
  8. teradataml/analytics/analytic_function_executor.py +2013 -2010
  9. teradataml/analytics/analytic_query_generator.py +958 -958
  10. teradataml/analytics/byom/H2OPredict.py +514 -514
  11. teradataml/analytics/byom/PMMLPredict.py +437 -437
  12. teradataml/analytics/byom/__init__.py +14 -14
  13. teradataml/analytics/json_parser/__init__.py +130 -130
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
  15. teradataml/analytics/json_parser/json_store.py +191 -191
  16. teradataml/analytics/json_parser/metadata.py +1637 -1637
  17. teradataml/analytics/json_parser/utils.py +804 -803
  18. teradataml/analytics/meta_class.py +196 -196
  19. teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
  21. teradataml/analytics/sqle/__init__.py +97 -110
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
  24. teradataml/analytics/table_operator/__init__.py +10 -10
  25. teradataml/analytics/uaf/__init__.py +63 -63
  26. teradataml/analytics/utils.py +693 -692
  27. teradataml/analytics/valib.py +1603 -1600
  28. teradataml/automl/__init__.py +1628 -0
  29. teradataml/automl/custom_json_utils.py +1270 -0
  30. teradataml/automl/data_preparation.py +993 -0
  31. teradataml/automl/data_transformation.py +727 -0
  32. teradataml/automl/feature_engineering.py +1648 -0
  33. teradataml/automl/feature_exploration.py +547 -0
  34. teradataml/automl/model_evaluation.py +163 -0
  35. teradataml/automl/model_training.py +887 -0
  36. teradataml/catalog/__init__.py +1 -3
  37. teradataml/catalog/byom.py +1759 -1716
  38. teradataml/catalog/function_argument_mapper.py +859 -861
  39. teradataml/catalog/model_cataloging_utils.py +491 -1510
  40. teradataml/clients/pkce_client.py +481 -481
  41. teradataml/common/aed_utils.py +6 -2
  42. teradataml/common/bulk_exposed_utils.py +111 -111
  43. teradataml/common/constants.py +1433 -1441
  44. teradataml/common/deprecations.py +160 -0
  45. teradataml/common/exceptions.py +73 -73
  46. teradataml/common/formula.py +742 -742
  47. teradataml/common/garbagecollector.py +592 -635
  48. teradataml/common/messagecodes.py +422 -431
  49. teradataml/common/messages.py +227 -231
  50. teradataml/common/sqlbundle.py +693 -693
  51. teradataml/common/td_coltype_code_to_tdtype.py +48 -48
  52. teradataml/common/utils.py +2418 -2500
  53. teradataml/common/warnings.py +25 -25
  54. teradataml/common/wrapper_utils.py +1 -110
  55. teradataml/config/dummy_file1.cfg +4 -4
  56. teradataml/config/dummy_file2.cfg +2 -2
  57. teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
  58. teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
  59. teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
  60. teradataml/context/aed_context.py +217 -217
  61. teradataml/context/context.py +1071 -999
  62. teradataml/data/A_loan.csv +19 -19
  63. teradataml/data/BINARY_REALS_LEFT.csv +11 -11
  64. teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
  65. teradataml/data/B_loan.csv +49 -49
  66. teradataml/data/BuoyData2.csv +17 -17
  67. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
  68. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
  69. teradataml/data/Convolve2RealsLeft.csv +5 -5
  70. teradataml/data/Convolve2RealsRight.csv +5 -5
  71. teradataml/data/Convolve2ValidLeft.csv +11 -11
  72. teradataml/data/Convolve2ValidRight.csv +11 -11
  73. teradataml/data/DFFTConv_Real_8_8.csv +65 -65
  74. teradataml/data/Orders1_12mf.csv +24 -24
  75. teradataml/data/Pi_loan.csv +7 -7
  76. teradataml/data/SMOOTHED_DATA.csv +7 -7
  77. teradataml/data/TestDFFT8.csv +9 -9
  78. teradataml/data/TestRiver.csv +109 -109
  79. teradataml/data/Traindata.csv +28 -28
  80. teradataml/data/acf.csv +17 -17
  81. teradataml/data/adaboost_example.json +34 -34
  82. teradataml/data/adaboostpredict_example.json +24 -24
  83. teradataml/data/additional_table.csv +10 -10
  84. teradataml/data/admissions_test.csv +21 -21
  85. teradataml/data/admissions_train.csv +41 -41
  86. teradataml/data/admissions_train_nulls.csv +41 -41
  87. teradataml/data/ageandheight.csv +13 -13
  88. teradataml/data/ageandpressure.csv +31 -31
  89. teradataml/data/antiselect_example.json +36 -36
  90. teradataml/data/antiselect_input.csv +8 -8
  91. teradataml/data/antiselect_input_mixed_case.csv +8 -8
  92. teradataml/data/applicant_external.csv +6 -6
  93. teradataml/data/applicant_reference.csv +6 -6
  94. teradataml/data/arima_example.json +9 -9
  95. teradataml/data/assortedtext_input.csv +8 -8
  96. teradataml/data/attribution_example.json +33 -33
  97. teradataml/data/attribution_sample_table.csv +27 -27
  98. teradataml/data/attribution_sample_table1.csv +6 -6
  99. teradataml/data/attribution_sample_table2.csv +11 -11
  100. teradataml/data/bank_churn.csv +10001 -0
  101. teradataml/data/bank_web_clicks1.csv +42 -42
  102. teradataml/data/bank_web_clicks2.csv +91 -91
  103. teradataml/data/bank_web_url.csv +85 -85
  104. teradataml/data/barrier.csv +2 -2
  105. teradataml/data/barrier_new.csv +3 -3
  106. teradataml/data/betweenness_example.json +13 -13
  107. teradataml/data/bin_breaks.csv +8 -8
  108. teradataml/data/bin_fit_ip.csv +3 -3
  109. teradataml/data/binary_complex_left.csv +11 -11
  110. teradataml/data/binary_complex_right.csv +11 -11
  111. teradataml/data/binary_matrix_complex_left.csv +21 -21
  112. teradataml/data/binary_matrix_complex_right.csv +21 -21
  113. teradataml/data/binary_matrix_real_left.csv +21 -21
  114. teradataml/data/binary_matrix_real_right.csv +21 -21
  115. teradataml/data/blood2ageandweight.csv +26 -26
  116. teradataml/data/bmi.csv +501 -0
  117. teradataml/data/boston.csv +507 -507
  118. teradataml/data/buoydata_mix.csv +11 -11
  119. teradataml/data/burst_data.csv +5 -5
  120. teradataml/data/burst_example.json +20 -20
  121. teradataml/data/byom_example.json +17 -17
  122. teradataml/data/bytes_table.csv +3 -3
  123. teradataml/data/cal_housing_ex_raw.csv +70 -70
  124. teradataml/data/callers.csv +7 -7
  125. teradataml/data/calls.csv +10 -10
  126. teradataml/data/cars_hist.csv +33 -33
  127. teradataml/data/cat_table.csv +24 -24
  128. teradataml/data/ccm_example.json +31 -31
  129. teradataml/data/ccm_input.csv +91 -91
  130. teradataml/data/ccm_input2.csv +13 -13
  131. teradataml/data/ccmexample.csv +101 -101
  132. teradataml/data/ccmprepare_example.json +8 -8
  133. teradataml/data/ccmprepare_input.csv +91 -91
  134. teradataml/data/cfilter_example.json +12 -12
  135. teradataml/data/changepointdetection_example.json +18 -18
  136. teradataml/data/changepointdetectionrt_example.json +8 -8
  137. teradataml/data/chi_sq.csv +2 -2
  138. teradataml/data/churn_data.csv +14 -14
  139. teradataml/data/churn_emission.csv +35 -35
  140. teradataml/data/churn_initial.csv +3 -3
  141. teradataml/data/churn_state_transition.csv +5 -5
  142. teradataml/data/citedges_2.csv +745 -745
  143. teradataml/data/citvertices_2.csv +1210 -1210
  144. teradataml/data/clicks2.csv +16 -16
  145. teradataml/data/clickstream.csv +12 -12
  146. teradataml/data/clickstream1.csv +11 -11
  147. teradataml/data/closeness_example.json +15 -15
  148. teradataml/data/complaints.csv +21 -21
  149. teradataml/data/complaints_mini.csv +3 -3
  150. teradataml/data/complaints_testtoken.csv +224 -224
  151. teradataml/data/complaints_tokens_test.csv +353 -353
  152. teradataml/data/complaints_traintoken.csv +472 -472
  153. teradataml/data/computers_category.csv +1001 -1001
  154. teradataml/data/computers_test1.csv +1252 -1252
  155. teradataml/data/computers_train1.csv +5009 -5009
  156. teradataml/data/computers_train1_clustered.csv +5009 -5009
  157. teradataml/data/confusionmatrix_example.json +9 -9
  158. teradataml/data/conversion_event_table.csv +3 -3
  159. teradataml/data/corr_input.csv +17 -17
  160. teradataml/data/correlation_example.json +11 -11
  161. teradataml/data/coxhazardratio_example.json +39 -39
  162. teradataml/data/coxph_example.json +15 -15
  163. teradataml/data/coxsurvival_example.json +28 -28
  164. teradataml/data/cpt.csv +41 -41
  165. teradataml/data/credit_ex_merged.csv +45 -45
  166. teradataml/data/customer_loyalty.csv +301 -301
  167. teradataml/data/customer_loyalty_newseq.csv +31 -31
  168. teradataml/data/dataframe_example.json +146 -146
  169. teradataml/data/decisionforest_example.json +37 -37
  170. teradataml/data/decisionforestpredict_example.json +38 -38
  171. teradataml/data/decisiontree_example.json +21 -21
  172. teradataml/data/decisiontreepredict_example.json +45 -45
  173. teradataml/data/dfft2_size4_real.csv +17 -17
  174. teradataml/data/dfft2_test_matrix16.csv +17 -17
  175. teradataml/data/dfft2conv_real_4_4.csv +65 -65
  176. teradataml/data/diabetes.csv +443 -443
  177. teradataml/data/diabetes_test.csv +89 -89
  178. teradataml/data/dict_table.csv +5 -5
  179. teradataml/data/docperterm_table.csv +4 -4
  180. teradataml/data/docs/__init__.py +1 -1
  181. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
  182. teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
  183. teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
  184. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
  185. teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
  186. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
  187. teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
  188. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
  189. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
  190. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
  191. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
  192. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
  193. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
  194. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
  195. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
  196. teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
  197. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
  198. teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
  199. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
  200. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
  201. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
  202. teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
  203. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
  204. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
  205. teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
  206. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
  207. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
  208. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
  209. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +132 -132
  210. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +103 -103
  211. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
  212. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +101 -101
  213. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
  214. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
  215. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
  216. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
  217. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
  218. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
  219. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
  220. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
  221. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
  222. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
  223. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
  224. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
  225. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
  226. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
  227. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
  228. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
  229. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
  230. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
  231. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
  232. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
  233. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
  234. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +126 -126
  235. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
  236. teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
  237. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
  238. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
  239. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
  240. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
  241. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
  242. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
  243. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +243 -243
  244. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
  245. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
  246. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
  247. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
  248. teradataml/data/docs/sqle/docs_17_20/FTest.py +160 -160
  249. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
  250. teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
  251. teradataml/data/docs/sqle/docs_17_20/GLM.py +380 -380
  252. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
  253. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
  254. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
  255. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +123 -123
  256. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
  257. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
  258. teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
  259. teradataml/data/docs/sqle/docs_17_20/KMeans.py +204 -204
  260. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
  261. teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
  262. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
  263. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
  264. teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
  265. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
  266. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
  267. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
  268. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +117 -117
  269. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
  270. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
  271. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
  272. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
  273. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +225 -225
  274. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +115 -115
  275. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
  276. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
  277. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
  278. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
  279. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
  280. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
  281. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
  282. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
  283. teradataml/data/docs/sqle/docs_17_20/ROC.py +163 -163
  284. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
  285. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
  286. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
  287. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
  288. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
  289. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
  290. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
  291. teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
  292. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +202 -202
  293. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
  294. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +197 -197
  295. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +110 -109
  296. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
  297. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
  298. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
  299. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
  300. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
  301. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
  302. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
  303. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
  304. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +171 -171
  305. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
  306. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
  307. teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
  308. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
  309. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
  310. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
  311. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
  312. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
  313. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
  314. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
  315. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
  316. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +353 -353
  317. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +275 -275
  318. teradataml/data/docs/sqle/docs_17_20/ZTest.py +155 -155
  319. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
  320. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
  321. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
  322. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
  323. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
  324. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
  325. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
  326. teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
  327. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
  328. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
  329. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
  330. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
  331. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
  332. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
  333. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
  334. teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
  335. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
  336. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
  337. teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
  338. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
  339. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
  340. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
  341. teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
  342. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
  343. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
  344. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
  345. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
  346. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
  347. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
  348. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
  349. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
  350. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
  351. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
  352. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
  353. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
  354. teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
  355. teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
  356. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
  357. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
  358. teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
  359. teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
  360. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
  361. teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
  362. teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
  363. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
  364. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
  365. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
  366. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
  367. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
  368. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
  369. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
  370. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
  371. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
  372. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
  373. teradataml/data/dtw_example.json +17 -17
  374. teradataml/data/dtw_t1.csv +11 -11
  375. teradataml/data/dtw_t2.csv +4 -4
  376. teradataml/data/dwt2d_example.json +15 -15
  377. teradataml/data/dwt_example.json +14 -14
  378. teradataml/data/dwt_filter_dim.csv +5 -5
  379. teradataml/data/emission.csv +9 -9
  380. teradataml/data/emp_table_by_dept.csv +19 -19
  381. teradataml/data/employee_info.csv +4 -4
  382. teradataml/data/employee_table.csv +6 -6
  383. teradataml/data/excluding_event_table.csv +2 -2
  384. teradataml/data/finance_data.csv +6 -6
  385. teradataml/data/finance_data2.csv +61 -61
  386. teradataml/data/finance_data3.csv +93 -93
  387. teradataml/data/fish.csv +160 -0
  388. teradataml/data/fm_blood2ageandweight.csv +26 -26
  389. teradataml/data/fmeasure_example.json +11 -11
  390. teradataml/data/followers_leaders.csv +10 -10
  391. teradataml/data/fpgrowth_example.json +12 -12
  392. teradataml/data/frequentpaths_example.json +29 -29
  393. teradataml/data/friends.csv +9 -9
  394. teradataml/data/fs_input.csv +33 -33
  395. teradataml/data/fs_input1.csv +33 -33
  396. teradataml/data/genData.csv +513 -513
  397. teradataml/data/geodataframe_example.json +39 -39
  398. teradataml/data/glass_types.csv +215 -0
  399. teradataml/data/glm_admissions_model.csv +12 -12
  400. teradataml/data/glm_example.json +29 -29
  401. teradataml/data/glml1l2_example.json +28 -28
  402. teradataml/data/glml1l2predict_example.json +54 -54
  403. teradataml/data/glmpredict_example.json +54 -54
  404. teradataml/data/gq_t1.csv +21 -21
  405. teradataml/data/hconvolve_complex_right.csv +5 -5
  406. teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
  407. teradataml/data/histogram_example.json +11 -11
  408. teradataml/data/hmmdecoder_example.json +78 -78
  409. teradataml/data/hmmevaluator_example.json +24 -24
  410. teradataml/data/hmmsupervised_example.json +10 -10
  411. teradataml/data/hmmunsupervised_example.json +7 -7
  412. teradataml/data/house_values.csv +12 -12
  413. teradataml/data/house_values2.csv +13 -13
  414. teradataml/data/housing_cat.csv +7 -7
  415. teradataml/data/housing_data.csv +9 -9
  416. teradataml/data/housing_test.csv +47 -47
  417. teradataml/data/housing_test_binary.csv +47 -47
  418. teradataml/data/housing_train.csv +493 -493
  419. teradataml/data/housing_train_attribute.csv +4 -4
  420. teradataml/data/housing_train_binary.csv +437 -437
  421. teradataml/data/housing_train_parameter.csv +2 -2
  422. teradataml/data/housing_train_response.csv +493 -493
  423. teradataml/data/ibm_stock.csv +370 -370
  424. teradataml/data/ibm_stock1.csv +370 -370
  425. teradataml/data/identitymatch_example.json +21 -21
  426. teradataml/data/idf_table.csv +4 -4
  427. teradataml/data/impressions.csv +101 -101
  428. teradataml/data/inflation.csv +21 -21
  429. teradataml/data/initial.csv +3 -3
  430. teradataml/data/insect_sprays.csv +12 -12
  431. teradataml/data/insurance.csv +1339 -1339
  432. teradataml/data/interpolator_example.json +12 -12
  433. teradataml/data/iris_altinput.csv +481 -481
  434. teradataml/data/iris_attribute_output.csv +8 -8
  435. teradataml/data/iris_attribute_test.csv +121 -121
  436. teradataml/data/iris_attribute_train.csv +481 -481
  437. teradataml/data/iris_category_expect_predict.csv +31 -31
  438. teradataml/data/iris_data.csv +151 -0
  439. teradataml/data/iris_input.csv +151 -151
  440. teradataml/data/iris_response_train.csv +121 -121
  441. teradataml/data/iris_test.csv +31 -31
  442. teradataml/data/iris_train.csv +121 -121
  443. teradataml/data/join_table1.csv +4 -4
  444. teradataml/data/join_table2.csv +4 -4
  445. teradataml/data/jsons/anly_function_name.json +6 -6
  446. teradataml/data/jsons/byom/dataikupredict.json +147 -147
  447. teradataml/data/jsons/byom/datarobotpredict.json +146 -146
  448. teradataml/data/jsons/byom/h2opredict.json +194 -194
  449. teradataml/data/jsons/byom/onnxpredict.json +186 -186
  450. teradataml/data/jsons/byom/pmmlpredict.json +146 -146
  451. teradataml/data/jsons/paired_functions.json +435 -435
  452. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
  453. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
  454. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
  455. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
  456. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
  457. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
  458. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
  459. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
  460. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
  461. teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
  462. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
  463. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
  464. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
  465. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
  466. teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
  467. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
  468. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
  469. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
  470. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
  471. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
  472. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
  473. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
  474. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
  475. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
  476. teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
  477. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
  478. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
  479. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
  480. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
  481. teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
  482. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
  483. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
  484. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
  485. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
  486. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
  487. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
  488. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
  489. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
  490. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
  491. teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
  492. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
  493. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
  494. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
  495. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
  496. teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
  497. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
  498. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
  499. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
  500. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
  501. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
  502. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
  503. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
  504. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
  505. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
  506. teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
  507. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
  508. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
  509. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
  510. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
  511. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
  512. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
  513. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
  514. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
  515. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
  516. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
  517. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
  518. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
  519. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
  520. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
  521. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
  522. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
  523. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
  524. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
  525. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
  526. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
  527. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
  528. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
  529. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
  530. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
  531. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
  532. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
  533. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
  534. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
  535. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
  536. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
  537. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
  538. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
  539. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
  540. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
  541. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
  542. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
  543. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
  544. teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
  545. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
  546. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
  547. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
  548. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
  549. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
  550. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
  551. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
  552. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
  553. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
  554. teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
  555. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
  556. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
  557. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
  558. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +76 -76
  559. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
  560. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
  561. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
  562. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
  563. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
  564. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
  565. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
  566. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
  567. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
  568. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
  569. teradataml/data/jsons/sqle/17.20/TD_FTest.json +186 -186
  570. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
  571. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
  572. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
  573. teradataml/data/jsons/sqle/17.20/TD_GLM.json +431 -431
  574. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +125 -125
  575. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
  576. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
  577. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +91 -91
  578. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
  579. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
  580. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
  581. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +211 -211
  582. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
  583. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
  584. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
  585. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +101 -101
  586. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
  587. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
  588. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
  589. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
  590. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
  591. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
  592. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
  593. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
  594. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
  595. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
  596. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
  597. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
  598. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
  599. teradataml/data/jsons/sqle/17.20/TD_ROC.json +177 -177
  600. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
  601. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
  602. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
  603. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
  604. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
  605. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
  606. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
  607. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
  608. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +124 -124
  609. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +156 -156
  610. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +70 -70
  611. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
  612. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
  613. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
  614. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
  615. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
  616. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
  617. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
  618. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
  619. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
  620. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
  621. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
  622. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
  623. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
  624. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
  625. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +312 -312
  626. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +182 -182
  627. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +170 -170
  628. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
  629. teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
  630. teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
  631. teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
  632. teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
  633. teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
  634. teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
  635. teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
  636. teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
  637. teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
  638. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
  639. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
  640. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
  641. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
  642. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
  643. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
  644. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
  645. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
  646. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
  647. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
  648. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
  649. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
  650. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
  651. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
  652. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
  653. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
  654. teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
  655. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
  656. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
  657. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
  658. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
  659. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
  660. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
  661. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
  662. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
  663. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
  664. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
  665. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
  666. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
  667. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
  668. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
  669. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
  670. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
  671. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
  672. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
  673. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
  674. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
  675. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
  676. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
  677. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
  678. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
  679. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
  680. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
  681. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
  682. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
  683. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
  684. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
  685. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
  686. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
  687. teradataml/data/kmeans_example.json +17 -17
  688. teradataml/data/kmeans_us_arrests_data.csv +0 -0
  689. teradataml/data/knn_example.json +18 -18
  690. teradataml/data/knnrecommender_example.json +6 -6
  691. teradataml/data/knnrecommenderpredict_example.json +12 -12
  692. teradataml/data/lar_example.json +17 -17
  693. teradataml/data/larpredict_example.json +30 -30
  694. teradataml/data/lc_new_predictors.csv +5 -5
  695. teradataml/data/lc_new_reference.csv +9 -9
  696. teradataml/data/lda_example.json +8 -8
  697. teradataml/data/ldainference_example.json +14 -14
  698. teradataml/data/ldatopicsummary_example.json +8 -8
  699. teradataml/data/levendist_input.csv +13 -13
  700. teradataml/data/levenshteindistance_example.json +10 -10
  701. teradataml/data/linreg_example.json +9 -9
  702. teradataml/data/load_example_data.py +326 -323
  703. teradataml/data/loan_prediction.csv +295 -295
  704. teradataml/data/lungcancer.csv +138 -138
  705. teradataml/data/mappingdata.csv +12 -12
  706. teradataml/data/milk_timeseries.csv +157 -157
  707. teradataml/data/min_max_titanic.csv +4 -4
  708. teradataml/data/minhash_example.json +6 -6
  709. teradataml/data/ml_ratings.csv +7547 -7547
  710. teradataml/data/ml_ratings_10.csv +2445 -2445
  711. teradataml/data/model1_table.csv +5 -5
  712. teradataml/data/model2_table.csv +5 -5
  713. teradataml/data/models/iris_db_glm_model.pmml +56 -56
  714. teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
  715. teradataml/data/modularity_example.json +12 -12
  716. teradataml/data/movavg_example.json +7 -7
  717. teradataml/data/mtx1.csv +7 -7
  718. teradataml/data/mtx2.csv +13 -13
  719. teradataml/data/multi_model_classification.csv +401 -0
  720. teradataml/data/multi_model_regression.csv +401 -0
  721. teradataml/data/mvdfft8.csv +9 -9
  722. teradataml/data/naivebayes_example.json +9 -9
  723. teradataml/data/naivebayespredict_example.json +19 -19
  724. teradataml/data/naivebayestextclassifier2_example.json +6 -6
  725. teradataml/data/naivebayestextclassifier_example.json +8 -8
  726. teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
  727. teradataml/data/name_Find_configure.csv +10 -10
  728. teradataml/data/namedentityfinder_example.json +14 -14
  729. teradataml/data/namedentityfinderevaluator_example.json +10 -10
  730. teradataml/data/namedentityfindertrainer_example.json +6 -6
  731. teradataml/data/nb_iris_input_test.csv +31 -31
  732. teradataml/data/nb_iris_input_train.csv +121 -121
  733. teradataml/data/nbp_iris_model.csv +13 -13
  734. teradataml/data/ner_extractor_text.csv +2 -2
  735. teradataml/data/ner_sports_test2.csv +29 -29
  736. teradataml/data/ner_sports_train.csv +501 -501
  737. teradataml/data/nerevaluator_example.json +5 -5
  738. teradataml/data/nerextractor_example.json +18 -18
  739. teradataml/data/nermem_sports_test.csv +17 -17
  740. teradataml/data/nermem_sports_train.csv +50 -50
  741. teradataml/data/nertrainer_example.json +6 -6
  742. teradataml/data/ngrams_example.json +6 -6
  743. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
  744. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
  745. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
  746. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
  747. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
  748. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
  749. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
  750. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
  751. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
  752. teradataml/data/npath_example.json +23 -23
  753. teradataml/data/ntree_example.json +14 -14
  754. teradataml/data/numeric_strings.csv +4 -4
  755. teradataml/data/numerics.csv +4 -4
  756. teradataml/data/ocean_buoy.csv +17 -17
  757. teradataml/data/ocean_buoy2.csv +17 -17
  758. teradataml/data/ocean_buoys.csv +27 -27
  759. teradataml/data/ocean_buoys2.csv +10 -10
  760. teradataml/data/ocean_buoys_nonpti.csv +28 -28
  761. teradataml/data/ocean_buoys_seq.csv +29 -29
  762. teradataml/data/openml_example.json +63 -0
  763. teradataml/data/optional_event_table.csv +4 -4
  764. teradataml/data/orders1.csv +11 -11
  765. teradataml/data/orders1_12.csv +12 -12
  766. teradataml/data/orders_ex.csv +4 -4
  767. teradataml/data/pack_example.json +8 -8
  768. teradataml/data/package_tracking.csv +19 -19
  769. teradataml/data/package_tracking_pti.csv +18 -18
  770. teradataml/data/pagerank_example.json +13 -13
  771. teradataml/data/paragraphs_input.csv +6 -6
  772. teradataml/data/pathanalyzer_example.json +7 -7
  773. teradataml/data/pathgenerator_example.json +7 -7
  774. teradataml/data/phrases.csv +7 -7
  775. teradataml/data/pivot_example.json +8 -8
  776. teradataml/data/pivot_input.csv +22 -22
  777. teradataml/data/playerRating.csv +31 -31
  778. teradataml/data/postagger_example.json +6 -6
  779. teradataml/data/posttagger_output.csv +44 -44
  780. teradataml/data/production_data.csv +16 -16
  781. teradataml/data/production_data2.csv +7 -7
  782. teradataml/data/randomsample_example.json +31 -31
  783. teradataml/data/randomwalksample_example.json +8 -8
  784. teradataml/data/rank_table.csv +6 -6
  785. teradataml/data/ref_mobile_data.csv +4 -4
  786. teradataml/data/ref_mobile_data_dense.csv +2 -2
  787. teradataml/data/ref_url.csv +17 -17
  788. teradataml/data/restaurant_reviews.csv +7 -7
  789. teradataml/data/river_data.csv +145 -145
  790. teradataml/data/roc_example.json +7 -7
  791. teradataml/data/roc_input.csv +101 -101
  792. teradataml/data/rule_inputs.csv +6 -6
  793. teradataml/data/rule_table.csv +2 -2
  794. teradataml/data/sales.csv +7 -7
  795. teradataml/data/sales_transaction.csv +501 -501
  796. teradataml/data/salesdata.csv +342 -342
  797. teradataml/data/sample_cities.csv +2 -2
  798. teradataml/data/sample_shapes.csv +10 -10
  799. teradataml/data/sample_streets.csv +2 -2
  800. teradataml/data/sampling_example.json +15 -15
  801. teradataml/data/sax_example.json +8 -8
  802. teradataml/data/scale_example.json +23 -23
  803. teradataml/data/scale_housing.csv +11 -11
  804. teradataml/data/scale_housing_test.csv +6 -6
  805. teradataml/data/scale_stat.csv +11 -11
  806. teradataml/data/scalebypartition_example.json +13 -13
  807. teradataml/data/scalemap_example.json +13 -13
  808. teradataml/data/scalesummary_example.json +12 -12
  809. teradataml/data/score_category.csv +101 -101
  810. teradataml/data/score_summary.csv +4 -4
  811. teradataml/data/script_example.json +9 -9
  812. teradataml/data/scripts/deploy_script.py +65 -0
  813. teradataml/data/scripts/mapper.R +20 -0
  814. teradataml/data/scripts/mapper.py +15 -15
  815. teradataml/data/scripts/mapper_replace.py +15 -15
  816. teradataml/data/scripts/sklearn/__init__.py +0 -0
  817. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  818. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  819. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  820. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  821. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  822. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  823. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  824. teradataml/data/seeds.csv +10 -10
  825. teradataml/data/sentenceextractor_example.json +6 -6
  826. teradataml/data/sentiment_extract_input.csv +11 -11
  827. teradataml/data/sentiment_train.csv +16 -16
  828. teradataml/data/sentiment_word.csv +20 -20
  829. teradataml/data/sentiment_word_input.csv +19 -19
  830. teradataml/data/sentimentextractor_example.json +24 -24
  831. teradataml/data/sentimenttrainer_example.json +8 -8
  832. teradataml/data/sequence_table.csv +10 -10
  833. teradataml/data/seriessplitter_example.json +7 -7
  834. teradataml/data/sessionize_example.json +17 -17
  835. teradataml/data/sessionize_table.csv +116 -116
  836. teradataml/data/setop_test1.csv +24 -24
  837. teradataml/data/setop_test2.csv +22 -22
  838. teradataml/data/soc_nw_edges.csv +10 -10
  839. teradataml/data/soc_nw_vertices.csv +7 -7
  840. teradataml/data/souvenir_timeseries.csv +167 -167
  841. teradataml/data/sparse_iris_attribute.csv +5 -5
  842. teradataml/data/sparse_iris_test.csv +121 -121
  843. teradataml/data/sparse_iris_train.csv +601 -601
  844. teradataml/data/star1.csv +6 -6
  845. teradataml/data/state_transition.csv +5 -5
  846. teradataml/data/stock_data.csv +53 -53
  847. teradataml/data/stock_movement.csv +11 -11
  848. teradataml/data/stock_vol.csv +76 -76
  849. teradataml/data/stop_words.csv +8 -8
  850. teradataml/data/store_sales.csv +37 -37
  851. teradataml/data/stringsimilarity_example.json +7 -7
  852. teradataml/data/strsimilarity_input.csv +13 -13
  853. teradataml/data/students.csv +101 -101
  854. teradataml/data/svm_iris_input_test.csv +121 -121
  855. teradataml/data/svm_iris_input_train.csv +481 -481
  856. teradataml/data/svm_iris_model.csv +7 -7
  857. teradataml/data/svmdense_example.json +9 -9
  858. teradataml/data/svmdensepredict_example.json +18 -18
  859. teradataml/data/svmsparse_example.json +7 -7
  860. teradataml/data/svmsparsepredict_example.json +13 -13
  861. teradataml/data/svmsparsesummary_example.json +7 -7
  862. teradataml/data/target_mobile_data.csv +13 -13
  863. teradataml/data/target_mobile_data_dense.csv +5 -5
  864. teradataml/data/templatedata.csv +1201 -1201
  865. teradataml/data/templates/open_source_ml.json +9 -0
  866. teradataml/data/teradataml_example.json +73 -1
  867. teradataml/data/test_classification.csv +101 -0
  868. teradataml/data/test_loan_prediction.csv +53 -53
  869. teradataml/data/test_pacf_12.csv +37 -37
  870. teradataml/data/test_prediction.csv +101 -0
  871. teradataml/data/test_regression.csv +101 -0
  872. teradataml/data/test_river2.csv +109 -109
  873. teradataml/data/text_inputs.csv +6 -6
  874. teradataml/data/textchunker_example.json +7 -7
  875. teradataml/data/textclassifier_example.json +6 -6
  876. teradataml/data/textclassifier_input.csv +7 -7
  877. teradataml/data/textclassifiertrainer_example.json +6 -6
  878. teradataml/data/textmorph_example.json +5 -5
  879. teradataml/data/textparser_example.json +15 -15
  880. teradataml/data/texttagger_example.json +11 -11
  881. teradataml/data/texttokenizer_example.json +6 -6
  882. teradataml/data/texttrainer_input.csv +11 -11
  883. teradataml/data/tf_example.json +6 -6
  884. teradataml/data/tfidf_example.json +13 -13
  885. teradataml/data/tfidf_input1.csv +201 -201
  886. teradataml/data/tfidf_train.csv +6 -6
  887. teradataml/data/time_table1.csv +535 -535
  888. teradataml/data/time_table2.csv +14 -14
  889. teradataml/data/timeseriesdata.csv +1601 -1601
  890. teradataml/data/timeseriesdatasetsd4.csv +105 -105
  891. teradataml/data/titanic.csv +892 -892
  892. teradataml/data/token_table.csv +696 -696
  893. teradataml/data/train_multiclass.csv +101 -0
  894. teradataml/data/train_regression.csv +101 -0
  895. teradataml/data/train_regression_multiple_labels.csv +101 -0
  896. teradataml/data/train_tracking.csv +27 -27
  897. teradataml/data/transformation_table.csv +5 -5
  898. teradataml/data/transformation_table_new.csv +1 -1
  899. teradataml/data/tv_spots.csv +16 -16
  900. teradataml/data/twod_climate_data.csv +117 -117
  901. teradataml/data/uaf_example.json +475 -475
  902. teradataml/data/univariatestatistics_example.json +8 -8
  903. teradataml/data/unpack_example.json +9 -9
  904. teradataml/data/unpivot_example.json +9 -9
  905. teradataml/data/unpivot_input.csv +8 -8
  906. teradataml/data/us_air_pass.csv +36 -36
  907. teradataml/data/us_population.csv +624 -624
  908. teradataml/data/us_states_shapes.csv +52 -52
  909. teradataml/data/varmax_example.json +17 -17
  910. teradataml/data/vectordistance_example.json +25 -25
  911. teradataml/data/ville_climatedata.csv +121 -121
  912. teradataml/data/ville_tempdata.csv +12 -12
  913. teradataml/data/ville_tempdata1.csv +12 -12
  914. teradataml/data/ville_temperature.csv +11 -11
  915. teradataml/data/waveletTable.csv +1605 -1605
  916. teradataml/data/waveletTable2.csv +1605 -1605
  917. teradataml/data/weightedmovavg_example.json +8 -8
  918. teradataml/data/wft_testing.csv +5 -5
  919. teradataml/data/wine_data.csv +1600 -0
  920. teradataml/data/word_embed_input_table1.csv +5 -5
  921. teradataml/data/word_embed_input_table2.csv +4 -4
  922. teradataml/data/word_embed_model.csv +22 -22
  923. teradataml/data/words_input.csv +13 -13
  924. teradataml/data/xconvolve_complex_left.csv +6 -6
  925. teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
  926. teradataml/data/xgboost_example.json +35 -35
  927. teradataml/data/xgboostpredict_example.json +31 -31
  928. teradataml/dataframe/copy_to.py +1764 -1698
  929. teradataml/dataframe/data_transfer.py +2753 -2745
  930. teradataml/dataframe/dataframe.py +17545 -16946
  931. teradataml/dataframe/dataframe_utils.py +1837 -1740
  932. teradataml/dataframe/fastload.py +611 -603
  933. teradataml/dataframe/indexer.py +424 -424
  934. teradataml/dataframe/setop.py +1179 -1166
  935. teradataml/dataframe/sql.py +10090 -6432
  936. teradataml/dataframe/sql_function_parameters.py +439 -388
  937. teradataml/dataframe/sql_functions.py +652 -652
  938. teradataml/dataframe/sql_interfaces.py +220 -220
  939. teradataml/dataframe/vantage_function_types.py +674 -630
  940. teradataml/dataframe/window.py +693 -692
  941. teradataml/dbutils/__init__.py +3 -3
  942. teradataml/dbutils/dbutils.py +1167 -1150
  943. teradataml/dbutils/filemgr.py +267 -267
  944. teradataml/gen_ai/__init__.py +2 -2
  945. teradataml/gen_ai/convAI.py +472 -472
  946. teradataml/geospatial/__init__.py +3 -3
  947. teradataml/geospatial/geodataframe.py +1105 -1094
  948. teradataml/geospatial/geodataframecolumn.py +392 -387
  949. teradataml/geospatial/geometry_types.py +925 -925
  950. teradataml/hyperparameter_tuner/__init__.py +1 -1
  951. teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
  952. teradataml/hyperparameter_tuner/utils.py +281 -187
  953. teradataml/lib/aed_0_1.dll +0 -0
  954. teradataml/lib/libaed_0_1.dylib +0 -0
  955. teradataml/lib/libaed_0_1.so +0 -0
  956. teradataml/libaed_0_1.dylib +0 -0
  957. teradataml/libaed_0_1.so +0 -0
  958. teradataml/opensource/__init__.py +1 -0
  959. teradataml/opensource/sklearn/__init__.py +1 -0
  960. teradataml/opensource/sklearn/_class.py +255 -0
  961. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  962. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  963. teradataml/opensource/sklearn/constants.py +54 -0
  964. teradataml/options/__init__.py +121 -124
  965. teradataml/options/configure.py +337 -336
  966. teradataml/options/display.py +176 -176
  967. teradataml/plot/__init__.py +2 -2
  968. teradataml/plot/axis.py +1388 -1388
  969. teradataml/plot/constants.py +15 -15
  970. teradataml/plot/figure.py +398 -398
  971. teradataml/plot/plot.py +760 -760
  972. teradataml/plot/query_generator.py +83 -83
  973. teradataml/plot/subplot.py +216 -216
  974. teradataml/scriptmgmt/UserEnv.py +3788 -3761
  975. teradataml/scriptmgmt/__init__.py +3 -3
  976. teradataml/scriptmgmt/lls_utils.py +1616 -1604
  977. teradataml/series/series.py +532 -532
  978. teradataml/series/series_utils.py +71 -71
  979. teradataml/table_operators/Apply.py +949 -917
  980. teradataml/table_operators/Script.py +1719 -1982
  981. teradataml/table_operators/TableOperator.py +1207 -1616
  982. teradataml/table_operators/__init__.py +2 -3
  983. teradataml/table_operators/apply_query_generator.py +262 -262
  984. teradataml/table_operators/query_generator.py +507 -507
  985. teradataml/table_operators/table_operator_query_generator.py +460 -460
  986. teradataml/table_operators/table_operator_util.py +631 -639
  987. teradataml/table_operators/templates/dataframe_apply.template +184 -184
  988. teradataml/table_operators/templates/dataframe_map.template +176 -176
  989. teradataml/table_operators/templates/script_executor.template +170 -170
  990. teradataml/utils/dtypes.py +684 -684
  991. teradataml/utils/internal_buffer.py +84 -84
  992. teradataml/utils/print_versions.py +205 -205
  993. teradataml/utils/utils.py +410 -410
  994. teradataml/utils/validators.py +2239 -2115
  995. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +270 -41
  996. teradataml-20.0.0.0.dist-info/RECORD +1038 -0
  997. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +1 -1
  998. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +1 -1
  999. teradataml/analytics/mle/AdaBoost.py +0 -651
  1000. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  1001. teradataml/analytics/mle/Antiselect.py +0 -342
  1002. teradataml/analytics/mle/Arima.py +0 -641
  1003. teradataml/analytics/mle/ArimaPredict.py +0 -477
  1004. teradataml/analytics/mle/Attribution.py +0 -1070
  1005. teradataml/analytics/mle/Betweenness.py +0 -658
  1006. teradataml/analytics/mle/Burst.py +0 -711
  1007. teradataml/analytics/mle/CCM.py +0 -600
  1008. teradataml/analytics/mle/CCMPrepare.py +0 -324
  1009. teradataml/analytics/mle/CFilter.py +0 -460
  1010. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  1011. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  1012. teradataml/analytics/mle/Closeness.py +0 -737
  1013. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  1014. teradataml/analytics/mle/Correlation.py +0 -477
  1015. teradataml/analytics/mle/Correlation2.py +0 -573
  1016. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  1017. teradataml/analytics/mle/CoxPH.py +0 -556
  1018. teradataml/analytics/mle/CoxSurvival.py +0 -478
  1019. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  1020. teradataml/analytics/mle/DTW.py +0 -623
  1021. teradataml/analytics/mle/DWT.py +0 -564
  1022. teradataml/analytics/mle/DWT2D.py +0 -599
  1023. teradataml/analytics/mle/DecisionForest.py +0 -716
  1024. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  1025. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  1026. teradataml/analytics/mle/DecisionTree.py +0 -830
  1027. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  1028. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  1029. teradataml/analytics/mle/FMeasure.py +0 -402
  1030. teradataml/analytics/mle/FPGrowth.py +0 -734
  1031. teradataml/analytics/mle/FrequentPaths.py +0 -695
  1032. teradataml/analytics/mle/GLM.py +0 -558
  1033. teradataml/analytics/mle/GLML1L2.py +0 -547
  1034. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  1035. teradataml/analytics/mle/GLMPredict.py +0 -529
  1036. teradataml/analytics/mle/HMMDecoder.py +0 -945
  1037. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  1038. teradataml/analytics/mle/HMMSupervised.py +0 -521
  1039. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  1040. teradataml/analytics/mle/Histogram.py +0 -561
  1041. teradataml/analytics/mle/IDWT.py +0 -476
  1042. teradataml/analytics/mle/IDWT2D.py +0 -493
  1043. teradataml/analytics/mle/IdentityMatch.py +0 -763
  1044. teradataml/analytics/mle/Interpolator.py +0 -918
  1045. teradataml/analytics/mle/KMeans.py +0 -485
  1046. teradataml/analytics/mle/KNN.py +0 -627
  1047. teradataml/analytics/mle/KNNRecommender.py +0 -488
  1048. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  1049. teradataml/analytics/mle/LAR.py +0 -439
  1050. teradataml/analytics/mle/LARPredict.py +0 -478
  1051. teradataml/analytics/mle/LDA.py +0 -548
  1052. teradataml/analytics/mle/LDAInference.py +0 -492
  1053. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  1054. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  1055. teradataml/analytics/mle/LinReg.py +0 -433
  1056. teradataml/analytics/mle/LinRegPredict.py +0 -438
  1057. teradataml/analytics/mle/MinHash.py +0 -544
  1058. teradataml/analytics/mle/Modularity.py +0 -587
  1059. teradataml/analytics/mle/NEREvaluator.py +0 -410
  1060. teradataml/analytics/mle/NERExtractor.py +0 -595
  1061. teradataml/analytics/mle/NERTrainer.py +0 -458
  1062. teradataml/analytics/mle/NGrams.py +0 -570
  1063. teradataml/analytics/mle/NPath.py +0 -634
  1064. teradataml/analytics/mle/NTree.py +0 -549
  1065. teradataml/analytics/mle/NaiveBayes.py +0 -462
  1066. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  1067. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  1068. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  1069. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  1070. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  1071. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  1072. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  1073. teradataml/analytics/mle/POSTagger.py +0 -417
  1074. teradataml/analytics/mle/Pack.py +0 -411
  1075. teradataml/analytics/mle/PageRank.py +0 -535
  1076. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  1077. teradataml/analytics/mle/PathGenerator.py +0 -367
  1078. teradataml/analytics/mle/PathStart.py +0 -464
  1079. teradataml/analytics/mle/PathSummarizer.py +0 -470
  1080. teradataml/analytics/mle/Pivot.py +0 -471
  1081. teradataml/analytics/mle/ROC.py +0 -425
  1082. teradataml/analytics/mle/RandomSample.py +0 -637
  1083. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  1084. teradataml/analytics/mle/SAX.py +0 -779
  1085. teradataml/analytics/mle/SVMDense.py +0 -677
  1086. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  1087. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  1088. teradataml/analytics/mle/SVMSparse.py +0 -557
  1089. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  1090. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  1091. teradataml/analytics/mle/Sampling.py +0 -549
  1092. teradataml/analytics/mle/Scale.py +0 -565
  1093. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  1094. teradataml/analytics/mle/ScaleMap.py +0 -378
  1095. teradataml/analytics/mle/ScaleSummary.py +0 -320
  1096. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  1097. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  1098. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  1099. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  1100. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  1101. teradataml/analytics/mle/Sessionize.py +0 -475
  1102. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  1103. teradataml/analytics/mle/StringSimilarity.py +0 -425
  1104. teradataml/analytics/mle/TF.py +0 -389
  1105. teradataml/analytics/mle/TFIDF.py +0 -504
  1106. teradataml/analytics/mle/TextChunker.py +0 -414
  1107. teradataml/analytics/mle/TextClassifier.py +0 -399
  1108. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  1109. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  1110. teradataml/analytics/mle/TextMorph.py +0 -494
  1111. teradataml/analytics/mle/TextParser.py +0 -623
  1112. teradataml/analytics/mle/TextTagger.py +0 -530
  1113. teradataml/analytics/mle/TextTokenizer.py +0 -502
  1114. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  1115. teradataml/analytics/mle/Unpack.py +0 -526
  1116. teradataml/analytics/mle/Unpivot.py +0 -438
  1117. teradataml/analytics/mle/VarMax.py +0 -776
  1118. teradataml/analytics/mle/VectorDistance.py +0 -762
  1119. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  1120. teradataml/analytics/mle/XGBoost.py +0 -842
  1121. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  1122. teradataml/analytics/mle/__init__.py +0 -123
  1123. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  1124. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  1125. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  1126. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  1127. teradataml/analytics/mle/json/arima_mle.json +0 -172
  1128. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  1129. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  1130. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  1131. teradataml/analytics/mle/json/burst_mle.json +0 -140
  1132. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  1133. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  1134. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  1135. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  1136. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  1137. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  1138. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  1139. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  1140. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  1141. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  1142. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  1143. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  1144. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  1145. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  1146. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  1147. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  1148. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  1149. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  1150. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  1151. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  1152. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  1153. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  1154. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  1155. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  1156. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  1157. teradataml/analytics/mle/json/glm_mle.json +0 -111
  1158. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  1159. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  1160. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  1161. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  1162. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  1163. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  1164. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  1165. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  1166. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  1167. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  1168. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  1169. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  1170. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  1171. teradataml/analytics/mle/json/knn_mle.json +0 -141
  1172. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  1173. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  1174. teradataml/analytics/mle/json/lar_mle.json +0 -78
  1175. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  1176. teradataml/analytics/mle/json/lda_mle.json +0 -130
  1177. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  1178. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  1179. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  1180. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  1181. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  1182. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  1183. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  1184. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  1185. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  1186. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  1187. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  1188. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  1189. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  1190. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  1191. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  1192. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  1193. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  1194. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  1195. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  1196. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  1197. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  1198. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  1199. teradataml/analytics/mle/json/pack_mle.json +0 -58
  1200. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  1201. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  1202. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  1203. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  1204. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  1205. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  1206. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  1207. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  1208. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  1209. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  1210. teradataml/analytics/mle/json/roc_mle.json +0 -73
  1211. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  1212. teradataml/analytics/mle/json/sax_mle.json +0 -154
  1213. teradataml/analytics/mle/json/scale_mle.json +0 -93
  1214. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  1215. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  1216. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  1217. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  1218. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  1219. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  1220. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  1221. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  1222. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  1223. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  1224. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  1225. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  1226. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  1227. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  1228. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  1229. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  1230. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  1231. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  1232. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  1233. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  1234. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  1235. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  1236. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  1237. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  1238. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  1239. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  1240. teradataml/analytics/mle/json/tf_mle.json +0 -33
  1241. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  1242. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  1243. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  1244. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  1245. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  1246. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  1247. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  1248. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  1249. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  1250. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  1251. teradataml/analytics/sqle/Antiselect.py +0 -321
  1252. teradataml/analytics/sqle/Attribution.py +0 -603
  1253. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  1254. teradataml/analytics/sqle/GLMPredict.py +0 -430
  1255. teradataml/analytics/sqle/MovingAverage.py +0 -543
  1256. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  1257. teradataml/analytics/sqle/NPath.py +0 -632
  1258. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  1259. teradataml/analytics/sqle/Pack.py +0 -388
  1260. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  1261. teradataml/analytics/sqle/Sessionize.py +0 -390
  1262. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  1263. teradataml/analytics/sqle/Unpack.py +0 -503
  1264. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  1265. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  1266. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  1267. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  1268. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  1269. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  1270. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  1271. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  1272. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  1273. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  1274. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  1275. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  1276. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  1277. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  1278. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  1279. teradataml/catalog/model_cataloging.py +0 -980
  1280. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  1281. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  1282. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  1283. teradataml/table_operators/sandbox_container_util.py +0 -643
  1284. teradataml-17.20.0.7.dist-info/RECORD +0 -1280
  1285. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
@@ -1,1600 +1,1603 @@
1
- """
2
- Unpublished work.
3
- Copyright (c) 2020 by Teradata Corporation. All rights reserved.
4
- TERADATA CORPORATION CONFIDENTIAL AND TRADE SECRET
5
-
6
- Primary Owner: PankajVinod.Purandare@teradata.com
7
- Secondary Owner: Adithya.Avvaru@teradata.com
8
-
9
- This file implements the core framework that allows user to execute any Vantage Analytics
10
- Library (VALIB) Function.
11
- """
12
- import time
13
- import uuid
14
- from math import floor
15
- from teradataml.common import messages
16
- from teradataml.common.constants import TeradataConstants, ValibConstants as VC
17
- from teradataml.common.exceptions import TeradataMlException
18
- from teradataml.common.garbagecollector import GarbageCollector
19
- from teradataml.common.messages import Messages, MessageCodes
20
- from teradataml.common.utils import UtilFuncs
21
- from teradataml.context.context import get_context, _get_current_databasename
22
- from teradataml.options.configure import configure
23
- from teradataml.dataframe.dataframe import DataFrame, in_schema
24
- from teradataml.utils.validators import _Validators
25
- from teradataml.analytics.Transformations import Binning, Derive, OneHotEncoder, FillNa, \
26
- LabelEncoder, MinMaxScalar, Retain, Sigmoid, ZScore
27
-
28
- class _VALIB():
29
- """ An internal class for executing VALIB analytic functions. """
30
-
31
- def __init__(self, *c, **kwargs):
32
- """ Constructor for VALIB function execution. """
33
- # Vantage SQL name of the VALIB function.
34
- self.__sql_func_name = ""
35
- # teradataml name of the VALIB function.
36
- self.__tdml_valib_name = ""
37
- self.__func_arg_sql_syntax_eles = []
38
- self.__func_other_arg_sql_names = []
39
- self.__func_other_args = []
40
- self.result = None
41
- self.__generated_sql = None
42
- self.__multioutput_attr_map = {}
43
- self.__multioutput_attr_map.update(VC.TERADATAML_VALIB_MULTIOUTPUT_ATTR_MAP.value)
44
- self.__output_arg_map = {}
45
- self.__output_arg_map.update(VC.VALIB_FUNCTION_OUTPUT_ARGUMENT_MAP.value)
46
-
47
- @property
48
- def _tdml_valib_name(self):
49
- """
50
- DESCRIPTION:
51
- Function to return VAL function name.
52
-
53
- RETURNS:
54
- str
55
-
56
- RAISES:
57
- None
58
-
59
- EXAMPLES:
60
- valib.LinReg._tdml_valib_name
61
- """
62
- return self.__tdml_valib_name
63
-
64
- def __getattr__(self, item):
65
- """
66
- DESCRIPTION:
67
- Returns an attribute of the _VALIB class.
68
-
69
- PARAMETERS:
70
- item:
71
- Required Argument.
72
- Specifes the name of the attribute.
73
-
74
- RETURNS:
75
- An object of _VALIB class.
76
-
77
- RAISES:
78
- None.
79
-
80
- EXAMPLES:
81
- valib.ValibFunctionName
82
- """
83
- return self.__get_valib_instance(item)
84
-
85
- def __call__(self, **kwargs):
86
- """
87
- DESCRIPTION:
88
- Function makes the instance of this class callable.
89
-
90
- PARAMETERS:
91
- kwargs:
92
- Keyword arguments for the callable function.
93
-
94
- RETURNS:
95
- Returns a callable of object of _VALIB class.
96
-
97
- RAISES:
98
- None.
99
-
100
- EXAMPLES:
101
- valib.ValibFunctionName()
102
- """
103
- # Input arguments passed to a function.
104
- # Use the same as the data members for the dynamic class.
105
- self.__dyn_cls_data_members = kwargs
106
- return self._execute_valib_function(**kwargs)
107
-
108
- def __get_valib_instance(self, item):
109
- """
110
- DESCRIPTION:
111
- Function creates and returns an instance of valib class for the function
112
- name assigning the SQL function name and teradataml function name attributes.
113
- PARAMETERS:
114
- item:
115
- Required Argument.
116
- Specifies the name of the attribute/function.
117
- Types: str
118
-
119
- RETURNS:
120
- An object of _VALIB class.
121
-
122
- RAISES:
123
- None.
124
-
125
- EXAMPLES:
126
- valib.__get_valib_instance("<function_name>")
127
- """
128
- valib_f = _VALIB()
129
- valib_f.__tdml_valib_name = item
130
-
131
- # Overwriting the multioutput attribute mapper with evaluator map if tdml function name
132
- # is present in the constant TERDATAML_EVALUATOR_OUTPUT_ATTR_MAP.
133
- evaluator_map = VC.TERDATAML_EVALUATOR_OUTPUT_ATTR_MAP.value
134
- if item in evaluator_map:
135
- valib_f.__multioutput_attr_map = {}
136
- valib_f.__multioutput_attr_map.update(evaluator_map)
137
-
138
- try:
139
- valib_f.__sql_func_name = VC.TERADATAML_VALIB_SQL_FUNCTION_NAME_MAP.value[item].upper()
140
- except:
141
- valib_f.__sql_func_name = item.upper()
142
- return valib_f
143
-
144
- def __create_dynamic_valib_class(self):
145
- """
146
- DESCRIPTION:
147
- Function dynamically creates a class of VALIB function type.
148
-
149
- PARAMETERS:
150
- None
151
-
152
- RETURNS:
153
- An object of dynamic class of VALIB function name.
154
-
155
- RAISES:
156
- None.
157
-
158
- EXAMPLE:
159
- self.__create_dynamic_valib_class()
160
- """
161
-
162
- # Constructor for the dynamic class.
163
- def constructor(self):
164
- """ Constructor for dynamic class """
165
- # Do Nothing...
166
- pass
167
- self.__dyn_cls_data_members["__init__"] = constructor
168
-
169
- # __repr__ method for dynamic class.
170
- def print_result(self):
171
- """ Function to be used for representation of VALIB function type object. """
172
- repr_string = ""
173
- for key in self._valib_results:
174
- repr_string = "{}\n############ {} Output ############".format(repr_string, key)
175
- repr_string = "{}\n\n{}\n\n".format(repr_string, getattr(self, key))
176
- return repr_string
177
- self.__dyn_cls_data_members["__repr__"] = print_result
178
-
179
- query = (self.__query, self.__generated_sql)
180
- # Print the underlying SQL stored procedure call or generated SQL.
181
- def show_query(self, query_type="sp"):
182
- """
183
- Function to return the underlying SQL query.
184
- """
185
- _Validators._validate_permitted_values(arg=query_type,
186
- permitted_values=["sp", "sql", "both"],
187
- arg_name="query_type")
188
- if query_type.lower() == "sp":
189
- return query[0]
190
- elif query_type.lower() == "sql":
191
- return query[1]
192
- return query
193
-
194
- self.__dyn_cls_data_members["show_query"] = show_query
195
-
196
- # To list attributes using dict()
197
- self.__dyn_cls_data_members["__dict__"] = self.__dyn_cls_data_members
198
-
199
- # Dynamic class creation with VALIB function name.
200
- valib_class = type(self.__tdml_valib_name, (object,), self.__dyn_cls_data_members)
201
-
202
- return valib_class()
203
-
204
- def __create_output_dataframes(self, out_var):
205
- """
206
- DESCRIPTION:
207
- Internal function to create output DataFrame, set the index labels to
208
- None and add the same to the result list.
209
- Function makes sure that all these created variables are added to the
210
- dynamic class as data members.
211
-
212
- PARAMETERS:
213
- out_var:
214
- Required Argument.
215
- Specifies the name of the output DataFrame.
216
- Types: str
217
-
218
- RETURNS:
219
- None.
220
-
221
- RAISES:
222
- None.
223
-
224
- EXAMPLES:
225
- self.__create_output_dataframes("result")
226
- """
227
- self.__dyn_cls_data_members[out_var] = DataFrame(
228
- in_schema(self.__db_name, self.__dyn_cls_data_members[out_var]))
229
- self.__dyn_cls_data_members[out_var]._index_label = None
230
- self.__dyn_cls_data_members[out_var]._index_query_required = False
231
- self.__dyn_cls_data_members[VC.OUTPUT_DATAFRAME_RESULTS.value].append(out_var)
232
-
233
- def __generate_execute_sp_query(self):
234
- """
235
- DESCRIPTION:
236
- Function generates a stored procedure call corresponding to the function
237
- and execute the same.
238
-
239
- PARAMETERS:
240
- None.
241
-
242
- RETURNS:
243
- Console output of query, if any, otherwise None.
244
-
245
- RAISES:
246
- TeradataMlException
247
-
248
- EXAMPLES:
249
- self.__generate_execute_sp_query()
250
- """
251
- # Generate and execute SQL VALIB SP call.
252
- if configure.val_install_location is None:
253
- message = Messages.get_message(MessageCodes.UNKNOWN_INSTALL_LOCATION,
254
- "Vantage analytic functions",
255
- "option 'configure.val_install_location'")
256
- raise TeradataMlException(message, MessageCodes.MISSING_ARGS)
257
-
258
- query_string = "call {0}.td_analyze('{1}', '{2};');"
259
- self.__query = query_string.format(configure.val_install_location, self.__sql_func_name,
260
- ";".join(self.__func_arg_sql_syntax_eles))
261
-
262
- return UtilFuncs._execute_query(self.__query, expect_none_result=True)
263
-
264
- def __generate_valib_sql_argument_syntax(self, arg, arg_name):
265
- """
266
- DESCRIPTION:
267
- Function to generate the VALIB SQL function argument syntax.
268
-
269
- PARAMETERS:
270
- arg:
271
- Required Argument.
272
- Specifies an argument value to be used in VALIB function call.
273
- Types: Any object that can be converted to a string.
274
-
275
- arg_name:
276
- Required Argument.
277
- Specifies a SQL argument name to be used in VALIB function call.
278
- Types: String
279
-
280
- RETURNS:
281
- None
282
-
283
- RAISES:
284
- None
285
-
286
- EXAMPLES:
287
- self.__generate_valib_sql_argument_syntax(argument, "argument_name")
288
- """
289
- arg = UtilFuncs._teradata_collapse_arglist(arg, "")
290
- self.__func_arg_sql_syntax_eles.append("{}={}".format(arg_name, arg))
291
-
292
- def __extract_db_tbl_name(self, table_name, arg_name, extract_table=True, remove_quotes=False):
293
- """
294
- DESCRIPTION:
295
- Function processes the table name argument to extract database or table from it.
296
-
297
- PARAMETERS:
298
- table_name:
299
- Required Argument.
300
- Specifies the fully-qualified table name.
301
- Types: String
302
-
303
- arg_name:
304
- Required Argument.
305
- Specifies a SQL argument name to be used in VALIB function call.
306
- Types: String
307
-
308
- extract_table:
309
- Optional Argument.
310
- Specifies whether to extract a table name or database name from
311
- "table_name". When set to 'True', table name is extracted otherwise
312
- database name is extracted.
313
- Default Value: True
314
- Types: bool
315
-
316
- remove_quotes:
317
- Optional Argument.
318
- Specifies whether to remove quotes from the extracted string or not.
319
- When set to 'True', double quotes will be removed from the extracted
320
- name.
321
- Default Value: False
322
- Types: bool
323
-
324
- RETURNS:
325
- Extracted name.
326
-
327
- RAISES:
328
- None.
329
-
330
- EXAMPLES:
331
- # Extract the table name and remove quotes.
332
- self.__extract_db_tbl_name(self, table_name, arg_name, remove_quotes=True)
333
-
334
- # Extract the database name.
335
- self.__extract_db_tbl_name(self, table_name, arg_name, extract_table=False)
336
- """
337
- # Extract table name or db name from the 'table_name'
338
- if extract_table:
339
- name = UtilFuncs._extract_table_name(table_name)
340
- else:
341
- name = UtilFuncs._extract_db_name(table_name)
342
-
343
- # Remove quotes.
344
- if remove_quotes:
345
- name = name.replace("\"", "")
346
-
347
- # Generate VALIB function argument call syntax.
348
- self.__generate_valib_sql_argument_syntax(name, arg_name)
349
-
350
- return name
351
-
352
- def __get_temp_table_name(self):
353
- """
354
- DESCRIPTION:
355
- Generate and get the table name for the outputs.
356
-
357
- PARAMETERS:
358
- None.
359
-
360
- RETURNS:
361
- None.
362
-
363
- RAISES:
364
- None.
365
-
366
- EXAMPLES:
367
- self.__get_temp_table_name()
368
- """
369
- prefix = "valib_{}".format(self.__tdml_valib_name.lower())
370
- return UtilFuncs._generate_temp_table_name(prefix=prefix, use_default_database=True,
371
- gc_on_quit=True, quote=False,
372
- table_type=TeradataConstants.TERADATA_TABLE)
373
-
374
- def __process_dyn_cls_output_member(self, arg_name, out_tablename, out_var=None):
375
- """
376
- DESCRIPTION:
377
- Function to process output table name argument. As part of processing it does:
378
- * Generates the SQL clause for argument name.
379
- * Adds a data member to the dynamic class dictionary, with the name same as
380
- exposed name of the output DataFrame.
381
-
382
- PARAMETERS:
383
- arg_name:
384
- Required Argument.
385
- Specifies the output table SQL argument name.
386
- Types: str
387
-
388
- out_tablename:
389
- Required Argument.
390
- Specifies the output table name.
391
- Types: str
392
-
393
- out_var:
394
- Optional Argument.
395
- Specifies the output DataFrame name to use.
396
- If this is None, then value for this is extracted from
397
- 'TERADATAML_VALIB_MULTIOUTPUT_ATTR_MAP'.
398
- Types: str
399
-
400
- RETURNS:
401
- None.
402
-
403
- RAISES:
404
- None.
405
-
406
- EXAMPLES:
407
- self.__process_dyn_cls_output_member("outputtablename", out_tablename,
408
- ValibConstants.DEFAULT_OUTPUT_VAR.value)
409
- """
410
- if out_var is None:
411
- # If output variable name is None, then extract it from the MAP.
412
- # This output variable corresponds to the output DataFrame name of the function.
413
- func_name = self.__get_output_attr_map_func_name()
414
- out_var = self.__multioutput_attr_map[func_name][arg_name]
415
-
416
- # Add the output DataFrame name, to the dictionary of dynamic class.
417
- # At start we will just add the corresponding table name as it's value.
418
- self.__dyn_cls_data_members[out_var] = self.__extract_db_tbl_name(table_name=out_tablename,
419
- arg_name=arg_name)
420
-
421
- def __get_table_name_with_extension(self, table_name, extension):
422
- """
423
- DESCRIPTION:
424
- Internal function to create a table name using the extension and add it to Garbage
425
- Collector.
426
-
427
- PARAMETERS:
428
- table_name:
429
- Required Argument.
430
- Specifies the table name for which extension is to be suffixed.
431
- Types: str
432
-
433
- extension:
434
- Required Argument.
435
- Specifies the suffix string that is to be added at the end of the table name.
436
- Types: str
437
-
438
- RETURNS:
439
- The new table name.
440
-
441
- EXAMPLE:
442
- self.__get_table_name_with_extension(table_name="<table_name>", extension="_rpt")
443
- """
444
- # Add extension to the table name.
445
- generated_table_name = "{}{}".format(table_name, extension)
446
-
447
- # Register new output table to the GC.
448
- gc_tabname = "\"{}\".\"{}\"".format(self.__db_name, generated_table_name)
449
- GarbageCollector._add_to_garbagecollector(gc_tabname, TeradataConstants.TERADATA_TABLE)
450
-
451
- return generated_table_name
452
-
453
- def __get_output_attr_map_func_name(self):
454
- """
455
- DESCRIPTION:
456
- Function to get either teradataml function name or SQL function name from
457
- "__multioutput_attr_map" based on whether the function is evaluator function or not.
458
-
459
- PARAMETERS:
460
- None.
461
-
462
- RETURNS:
463
- Either teradataml function name or SQL function name.
464
-
465
- RAISES:
466
- None.
467
-
468
- EXAMPLES:
469
- self.__get_output_attr_map_func_name()
470
- """
471
- # __multioutput_attr_map can have either SQL function name or tdml function name.
472
- # If the function is evaluator function, then __multioutput_attr_map contains the
473
- # dictionary of tdml function name to dictionary of output tables. Otherwise, it
474
- # contains the dictionary of SQL function name to dictionary of output tables.
475
- func_name = self.__sql_func_name
476
- if self.__tdml_valib_name in self.__multioutput_attr_map:
477
- func_name = self.__tdml_valib_name
478
- return func_name
479
-
480
- def __process_func_outputs(self, query_exec_output):
481
- """
482
- DESCRIPTION:
483
- Internal function to process the output tables generated by a stored procedure
484
- call. Function creates the required output DataFrames from the tables and a
485
- result list.
486
-
487
- PARAMETERS:
488
- query_exec_output:
489
- Required Argument.
490
- Specifies the output captured by the UtilFuncs._execute_query() API.
491
- If no output is generated None should be passed.
492
- Types: tuple
493
-
494
- RETURNS:
495
- None.
496
-
497
- RAISES:
498
- None.
499
-
500
- EXAMPLES:
501
- exec_out = self.__generate_execute_sp_query()
502
- self.__process_func_outputs(query_exec_output=exec_out)
503
- """
504
- self.__dyn_cls_data_members[VC.OUTPUT_DATAFRAME_RESULTS.value] = []
505
-
506
- func_name = self.__get_output_attr_map_func_name()
507
-
508
- # Processing gensql/gensqlonly output.
509
- # Checking if user has passed gen_sql or gen_sql_only as an argument and is true.
510
- # If gen_sql_only is true, don't process the output and return.
511
- gen_sql_only = self.__dyn_cls_data_members.get("gen_sql_only", False)
512
- if gen_sql_only:
513
- self.__generated_sql = query_exec_output[0][0][0]
514
- self.__dyn_cls_data_members[VC.DEFAULT_OUTPUT_VAR.value] = None
515
- return
516
- elif self.__dyn_cls_data_members.get("gen_sql", False):
517
- self.__generated_sql = query_exec_output[0][0][0]
518
-
519
- if func_name in self.__multioutput_attr_map:
520
- # Process each output and get it ready for dynamic class creation.
521
- valib_output_mapper = self.__multioutput_attr_map[func_name]
522
- for key in valib_output_mapper:
523
- out_var = valib_output_mapper[key]
524
- self.__create_output_dataframes(out_var=out_var)
525
- elif VC.DEFAULT_OUTPUT_VAR.value in self.__dyn_cls_data_members:
526
- # Process functions that generate only one output.
527
- self.__create_output_dataframes(out_var=VC.DEFAULT_OUTPUT_VAR.value)
528
- else:
529
- # Function which will not produce any output table, but will return result set.
530
- # "result_set" will contain the actual result data in a list of list format.
531
- self.__dyn_cls_data_members["result_set"] = query_exec_output[0]
532
- # "result_columns" will contain the list of column names of the result data.
533
- self.__dyn_cls_data_members["result_columns"] = query_exec_output[1]
534
- # TODO - Add support for EXP's does not producing any output tables. Future Purpose.
535
-
536
- def __process_output_extensions(self, output_table_name, output_extensions):
537
- """
538
- DESCRIPTION:
539
- Function to process extended outputs of the function.
540
- Extended outputs are the output tables generated by SQL function, using
541
- the existing output table name and adding some extensions to it.
542
- For example,
543
- Linear function takes one argument for producing the output tables, but
544
- it's ends up creating multiple output tables.
545
- This is how it created these tables.
546
- * Creates a coefficients and statistics table by using the name passed to
547
- "outputtablename" argument.
548
- * Creates a statistical measures table using the name passed to
549
- "outputtablename" argument and appending "_rpt" to it.
550
- * Creates a XML reports table using the name passed to "outputtablename"
551
- argument and appending "_txt" to it.
552
-
553
- PARAMETERS:
554
- output_table_name:
555
- Required Argument.
556
- Specifies the output table name to use the extensions with to produce new
557
- output table names.
558
- Types: str
559
-
560
- output_extensions:
561
- Required Argument.
562
- Specifies a mapper with output table extensions as keys and output dataframe name
563
- as value.
564
- Types: dict
565
-
566
- RETURNS:
567
- None.
568
-
569
- RAISES:
570
- None.
571
-
572
- EXAMPLES:
573
- self.__process_output_extensions("output_table_name",
574
- {"_rpt": "output_df_name1",
575
- "_txt": "output_df_name1"})
576
- """
577
-
578
- # Now let's process the output extensions and respective output DataFrames.
579
- for extension in output_extensions:
580
- new_table_name = self.__get_table_name_with_extension(table_name=output_table_name,
581
- extension=extension)
582
-
583
- # Get the teradataml output variable name corresponding to the extension.
584
- func_name = self.__get_output_attr_map_func_name()
585
- out_var = self.__multioutput_attr_map[func_name][extension]
586
-
587
- # Add the table name to the dynamic class as it's data member.
588
- self.__dyn_cls_data_members[out_var] = new_table_name
589
-
590
- def __process_output_argument(self):
591
- """
592
- DESCRIPTION:
593
- Function to process output argument(s) of a VALIB function.
594
-
595
- PARAMETERS:
596
- None.
597
-
598
- RETURNS:
599
- None.
600
-
601
- RAISES:
602
- None.
603
-
604
- EXAMPLES:
605
- self.__process_output_argument()
606
- """
607
-
608
- #
609
- # Note:
610
- # So far all the functions we have seen, only one output database argument is present
611
- # in SQL functions. In case in future, a function with more output database arguments
612
- # are added, we will need to modify this function, especially the below piece and treat
613
- # database arguments as we are processing the output table name arguments.
614
- #
615
- # Default SQL argument name for the output database argument.
616
- database_arg_name = "outputdatabase"
617
- if self.__sql_func_name in self.__output_arg_map:
618
- # Extract output database argument name for the function and use the same.
619
- database_arg_name = self.__output_arg_map[self.__sql_func_name]["db"]
620
-
621
- out_tablename = self.__get_temp_table_name()
622
- self.__db_name = self.__extract_db_tbl_name(table_name=out_tablename,
623
- arg_name=database_arg_name,
624
- extract_table=False)
625
-
626
- #
627
- # Note:
628
- # So far all the functions visited, we observed following characteristics about
629
- # processing the output tables by SQL function.
630
- # 1. Function produces only one table, with argument name as "outputtablename",
631
- # which is our default case.
632
- # 2. Function produces only one table, with argument name different than
633
- # "outputtablename". In such case, we use 'VALIB_FUNCTION_OUTPUT_ARGUMENT_MAP'
634
- # to extract the SQL argument name for specifying the output table.
635
- # 3. Function produces multiple output tables with multiple output table arguments.
636
- # In such case, we use 'VALIB_FUNCTION_OUTPUT_ARGUMENT_MAP' to extract the SQL
637
- # argument names for specifying the output tables.
638
- # 4. Function produces multiple output tables with just one output table argument.
639
- # In such cases, SQL uses the specified table name to create one of the output
640
- # table and other output tables are created based on the pre-defined extensions
641
- # which are appended to the specified table name and using the same.
642
- #
643
- # Now that we have processed the output database name argument, we will now process the
644
- # output table name argument(s).
645
- if self.__sql_func_name in self.__output_arg_map:
646
- # Extract the function output argument map.
647
- func_output_argument_map = self.__output_arg_map[self.__sql_func_name]
648
-
649
- # Extract output table argument name(s) for the function and use the same.
650
- table_arg_names = func_output_argument_map["tbls"]
651
-
652
- if not isinstance(table_arg_names, list):
653
- # This is a block to process functions producing multiple outputs with
654
- # 1. One output table argument.
655
- # 2. Use the same argument to produce other argument with some extension to it.
656
- #
657
- # Extract the table name from the generated name and add it to SQL syntax.
658
- table_name = self.__extract_db_tbl_name(table_name=out_tablename,
659
- arg_name=table_arg_names)
660
-
661
- # Process all mandatory output extensions, irrespective of whether the function
662
- # is scoring or evaluator or any other function.
663
- if "mandatory_output_extensions" in func_output_argument_map:
664
- mandatory_extensions = func_output_argument_map["mandatory_output_extensions"]
665
- self.__process_output_extensions(table_name, mandatory_extensions)
666
-
667
- if "evaluator_output_extensions" in func_output_argument_map:
668
- # We process either the table in "table_arg_names" or
669
- # "evaluator_output_extensions" based on whether the function is evaluator
670
- # function or not.
671
- #
672
- # If the function is:
673
- # 1. evaluator function, process extensions as mentioned in evaluator based
674
- # output extensions.
675
- # 2. NOT evaluator function (scoring or any other function):
676
- # a. with an entry in TERADATAML_VALIB_MULTIOUTPUT_ATTR_MAP,
677
- # process table in the variable "table_arg_names".
678
- # b. without an entry in TERADATAML_VALIB_MULTIOUTPUT_ATTR_MAP,
679
- # process table as "result".
680
- if self.__tdml_valib_name in self.__multioutput_attr_map:
681
- evaluator_extensions = \
682
- func_output_argument_map["evaluator_output_extensions"]
683
- self.__process_output_extensions(table_name, evaluator_extensions)
684
-
685
- elif self.__sql_func_name in self.__multioutput_attr_map:
686
- out_var = \
687
- self.__multioutput_attr_map[self.__sql_func_name][table_arg_names]
688
- self.__dyn_cls_data_members[out_var] = table_name
689
-
690
- else:
691
- out_var = VC.DEFAULT_OUTPUT_VAR.value
692
- self.__dyn_cls_data_members[out_var] = table_name
693
-
694
- else:
695
- # If function produces only one output table, but uses different argument name.
696
- func_name = self.__get_output_attr_map_func_name()
697
- out_var = self.__multioutput_attr_map[func_name][table_arg_names]
698
- self.__dyn_cls_data_members[out_var] = table_name
699
- else:
700
- # Function produces multiple outputs.
701
- for arg_name in table_arg_names:
702
- # Generate a table name for each output and add the name to the dictionary
703
- # for further processing and dynamic class creation.
704
- out_tablename = self.__get_temp_table_name()
705
- self.__process_dyn_cls_output_member(arg_name, out_tablename)
706
- else:
707
- # Let's use the default output table name argument "outputtablename".
708
- self.__process_dyn_cls_output_member("outputtablename", out_tablename,
709
- VC.DEFAULT_OUTPUT_VAR.value)
710
-
711
- def __process_input_argument(self, df, database_arg_name, table_arg_name):
712
- """
713
- DESCRIPTION:
714
- Function to process input argument(s).
715
-
716
- PARAMETERS:
717
- df:
718
- Required Argument.
719
- Specifies the input teradataml DataFrame.
720
- Types: teradataml DataFrame
721
-
722
- database_arg_name:
723
- Required Argument.
724
- Specifies the name of the database argument.
725
- Types: String
726
-
727
- table_arg_name:
728
- Required Argument.
729
- Specifies the name of the table argument.
730
- Types: String
731
-
732
- RETURNS:
733
- None.
734
-
735
- RAISES:
736
- None.
737
-
738
- EXAMPLES:
739
- self.__process_input_argument(df, "db", "table")
740
- """
741
- # Assuming that df._table_name always contains FQDN.
742
- db_name = UtilFuncs()._get_db_name_from_dataframe(df)
743
-
744
- self.__generate_valib_sql_argument_syntax(db_name, database_arg_name)
745
- self.__extract_db_tbl_name(df._table_name, table_arg_name, remove_quotes=True)
746
-
747
- def __process_other_arguments(self, **kwargs):
748
- """
749
- DESCRIPTION:
750
- Function to process other arguments.
751
-
752
- PARAMETERS:
753
- kwargs:
754
- Specifies the keyword arguments passed to a function.
755
-
756
- RETURNS:
757
- None.
758
-
759
- RAISES:
760
- None.
761
-
762
- EXAMPLES:
763
- self.__process_other_arguments(arg1="string", arg2="db", arg3=2)
764
- """
765
- # Argument name dictionary.
766
- function_arguments = VC.TERADATAML_VALIB_FUNCTION_ARGUMENT_MAP.value
767
- try:
768
- func_arg_mapper = function_arguments[self.__sql_func_name]
769
- except:
770
- func_arg_mapper = None
771
-
772
- # Input argument name mapper extracted from VALIB_FUNCTION_MULTIINPUT_ARGUMENT_MAP.
773
- input_arguments = VC.VALIB_FUNCTION_MULTIINPUT_ARGUMENT_MAP.value
774
- try:
775
- func_input_arg_mapper = input_arguments[self.__sql_func_name]
776
- input_handling_required = True
777
- except:
778
- func_input_arg_mapper = None
779
- input_handling_required = False
780
-
781
- for arg in kwargs:
782
- arg_notin_arg_mapper = func_arg_mapper is not None and arg not in func_arg_mapper
783
- # Raise error if incorrect argument is passed.
784
- error_msg = "{0}() got an unexpected keyword argument '{1}'".\
785
- format(self.__tdml_valib_name, arg)
786
- if input_handling_required:
787
- if arg_notin_arg_mapper and arg not in func_input_arg_mapper:
788
- raise TypeError(error_msg)
789
- else:
790
- if arg_notin_arg_mapper:
791
- raise TypeError(error_msg)
792
-
793
- # Arguments to ignore and the once which will not be processed.
794
- if arg.lower() in VC.IGNORE_ARGUMENTS.value:
795
- if arg.lower() == "outputstyle":
796
- # If user has passed an argument "outputstyle", then we will ignore
797
- # user value and then create a table as final outcome.
798
- self.__generate_valib_sql_argument_syntax("table", "outputstyle")
799
-
800
- # Other arguments mentioned in 'ValibConstants.IGNORE_ARGUMENTS' will be ignored.
801
- continue
802
-
803
- # Pop each argument from kwargs.
804
- arg_value = kwargs.get(arg)
805
-
806
- if input_handling_required and arg in func_input_arg_mapper:
807
- # Argument provided is an input argument.
808
- # Let's get the names of the database and table arguments for this arg.
809
- self.__process_input_argument(df=arg_value,
810
- database_arg_name=
811
- func_input_arg_mapper[arg]["database_arg"],
812
- table_arg_name=
813
- func_input_arg_mapper[arg]["table_arg"])
814
- else:
815
- # Get the SQL argument name.
816
- arg_name = func_arg_mapper[arg] if isinstance(func_arg_mapper, dict) else arg
817
- self.__generate_valib_sql_argument_syntax(arg_value, arg_name)
818
-
819
- def __process_val_transformations(self, transformations, tf_tdml_arg, tf_sql_arg, data,
820
- data_arg="data"):
821
- """
822
- DESCRIPTION:
823
- Internal function to process the transformation(s) and generate the SQL
824
- argument syntax for the argument.
825
-
826
- PARAMETERS:
827
- transformations:
828
- Required Argument.
829
- Specifies the transformation(s) to be used for variable transformation.
830
- Types: FillNa
831
-
832
- tf_tdml_arg:
833
- Required Argument.
834
- Specifies the name of the argument that accepts transformation(s)
835
- to be used for variable transformation.
836
- Types: str
837
-
838
- tf_sql_arg:
839
- Required Argument.
840
- Specifies the SQL argument name used for the transformation(s).
841
- Types: str
842
-
843
- data:
844
- Required Argument.
845
- Specifies the input teradataml DataFrame used for Variable Transformation.
846
- Types: teradataml DataFrame
847
-
848
- data_arg:
849
- Optional Argument.
850
- Specifies the name of the input data argument.
851
- Default Value: "data"
852
- Types: string
853
-
854
- RETURNS:
855
- None
856
-
857
- RAISES:
858
- ValueError
859
-
860
- EXAMPLES:
861
- self.__process_val_transformations(fillna, "fillna", "nullreplacement", data)
862
- """
863
- # A list to contains SQL syntax of each transformation.
864
- tf_syntax_elements = []
865
-
866
- for tf in UtilFuncs._as_list(transformations):
867
- # Validates the existence of the columns used for transformation
868
- # in the input data.
869
- if tf.columns is not None:
870
- _Validators._validate_dataframe_has_argument_columns(
871
- UtilFuncs._as_list(tf.columns), "columns in {}".format(tf_tdml_arg), data,
872
- data_arg)
873
- tf_syntax_elements.append(tf._val_sql_syntax())
874
-
875
- # Add an entry for transformation in SQL argument syntax.
876
- self.__generate_valib_sql_argument_syntax(arg="".join(tf_syntax_elements),
877
- arg_name=tf_sql_arg)
878
-
879
- def _execute_valib_function(self,
880
- skip_data_arg_processing=False,
881
- skip_output_arg_processing=False,
882
- skip_other_arg_processing=False,
883
- skip_func_output_processing=False,
884
- skip_dyn_cls_processing=False,
885
- **kwargs):
886
- """
887
- DESCRIPTION:
888
- Function processes arguments and executes the VALIB function.
889
-
890
- PARAMETERS:
891
- skip_data_arg_processing:
892
- Optional Argument.
893
- Specifies whether to skip data argument processing or not.
894
- Default is to process the data argument.
895
- When set to True, caller should make sure to process "data" argument and
896
- pass SQL argument and values as part of kwargs to this function.
897
- Default Value: False
898
- Types: bool
899
-
900
- skip_output_arg_processing:
901
- Optional Argument.
902
- Specifies whether to skip output argument processing or not.
903
- Default is to process the output arguments.
904
- When set to True, caller should make sure to process all output arguments and
905
- pass equivalent SQL argument and values as part of kwargs to this function.
906
- Default Value: False
907
- Types: bool
908
-
909
- skip_other_arg_processing:
910
- Optional Argument.
911
- Specifies whether to skip other argument processing or not.
912
- Default is to process the other arguments, i.e., kwargs.
913
- When set to True, caller should make sure to process all other arguments are
914
- processed internally by the function.
915
- Default Value: False
916
- Types: bool
917
-
918
- skip_func_output_processing:
919
- Optional Argument.
920
- Specifies whether to skip function output processing or not.
921
- Default is to process the same.
922
- When set to True, caller should make sure to process function output
923
- arguments. Generally, when this argument is set to True, one must also
924
- set "skip_dyn_cls_processing" to True.
925
- Default Value: False
926
- Types: bool
927
-
928
- skip_dyn_cls_processing:
929
- Optional Argument.
930
- Specifies whether to skip dynamic class processing or not.
931
- Default is to process the dynamic class, where it creates a dynamic
932
- class and an instance of the same and returns the same.
933
- When set to True, caller should make sure to process dynamic class and
934
- return an instance of the same.
935
- arguments.
936
- Default Value: False
937
- Types: bool
938
-
939
- kwargs:
940
- Specifies the keyword arguments passed to a function.
941
-
942
- RETURNS:
943
- None.
944
-
945
- RAISES:
946
- TeradataMlException, TypeError
947
-
948
- EXAMPLES:
949
- self._execute_valib_function(arg1="string", arg2="db", arg3=2)
950
- """
951
- if not skip_data_arg_processing:
952
- # Process data argument.
953
- try:
954
- data = kwargs.pop("data")
955
- if not isinstance(data, DataFrame):
956
- raise TypeError(Messages.get_message(MessageCodes.UNSUPPORTED_DATATYPE,
957
- ["data"], ["teradataml DataFrame"]))
958
- self.__process_input_argument(data, "database", "tablename")
959
- except KeyError:
960
- # Raise TeradataMlException.
961
- error_msg = Messages.get_message(MessageCodes.MISSING_ARGS, ["data"])
962
- raise TeradataMlException(error_msg, MessageCodes.MISSING_ARGS)
963
-
964
- if not skip_output_arg_processing:
965
- # Process output arguments.
966
- self.__process_output_argument()
967
-
968
- if not skip_other_arg_processing:
969
- # Process other arguments.
970
- self.__process_other_arguments(**kwargs)
971
-
972
- # If the function is evaluator function, add SQL argument "scoringmethod=evaluate".
973
- if self.__tdml_valib_name in self.__multioutput_attr_map:
974
- scoring_method_values = VC.SCORING_METHOD_ARG_VALUE.value
975
- score_method = "non-default"
976
- if kwargs.get("gen_sql_only", False):
977
- score_method = "default"
978
- self.__generate_valib_sql_argument_syntax(scoring_method_values[score_method],
979
- VC.SCORING_METHOD_ARG_NAME.value)
980
-
981
- # Generate the query.
982
- exec_out = self.__generate_execute_sp_query()
983
-
984
- if not skip_func_output_processing:
985
- # Process the function output DataFrames.
986
- self.__process_func_outputs(query_exec_output=exec_out)
987
-
988
- if not skip_dyn_cls_processing:
989
- # Generate the dynamic class and create a object of the
990
- # same and return the same.
991
- return self.__create_dynamic_valib_class()
992
-
993
- def Association(self, data, group_column, item_column, **kwargs):
994
- """
995
- Please refer to Teradata Python Function Reference guide for Documentation.
996
- Reference guide can be found at: https://docs.teradata.com
997
- """
998
- # Add required arguments, i.e., positional arguments to kwargs for
999
- # further processing.
1000
- kwargs["data"] = data
1001
- kwargs["group_column"] = group_column
1002
- kwargs["item_column"] = item_column
1003
-
1004
- # Get a new instance of _VALIB() class for function execution.
1005
- valib_inst = self.__get_valib_instance("Association")
1006
-
1007
- # Add all arguments to dynamic class as data members.
1008
- valib_inst.__dyn_cls_data_members = {}
1009
- valib_inst.__dyn_cls_data_members.update(kwargs)
1010
-
1011
- # Get the value of "combinations", "no_support_results", "process_type"
1012
- # parameters from kwargs.
1013
- # These three parameters decide the number of output table generated.
1014
- combinations = kwargs.get("combinations", 11)
1015
- no_support_results = kwargs.get("no_support_results", True)
1016
- process_type = kwargs.get("process_type", "all")
1017
- support_result_prefix = kwargs.pop("support_result_prefix", "ml__valib_association")
1018
-
1019
- # Support table information based on the combinations.
1020
- # This dict contains a list of names of the support output tables those will
1021
- # be generated for a specific combination.
1022
- combinations_support_tables = {
1023
- 11: ["_0_TO_1_SUPPORT", "_1_TO_1_SUPPORT"],
1024
- 12: ["_0_TO_1_SUPPORT", "_1_TO_1_SUPPORT", "_2_TO_1_SUPPORT"],
1025
- 13: ["_0_TO_1_SUPPORT", "_2_TO_1_SUPPORT", "_3_TO_1_SUPPORT"],
1026
- 14: ["_0_TO_1_SUPPORT", "_3_TO_1_SUPPORT", "_4_TO_1_SUPPORT"],
1027
- 21: ["_0_TO_1_SUPPORT", "_1_TO_1_SUPPORT", "_2_TO_1_SUPPORT"],
1028
- 22: ["_0_TO_1_SUPPORT", "_1_TO_1_SUPPORT", "_2_TO_2_SUPPORT"],
1029
- 23: ["_0_TO_1_SUPPORT", "_1_TO_1_SUPPORT", "_2_TO_1_SUPPORT", "_3_TO_2_SUPPORT"],
1030
- 31: ["_0_TO_1_SUPPORT", "_2_TO_1_SUPPORT", "_3_TO_1_SUPPORT"],
1031
- 32: ["_0_TO_1_SUPPORT", "_1_TO_1_SUPPORT", "_2_TO_1_SUPPORT", "_3_TO_2_SUPPORT"],
1032
- 41: ["_0_TO_1_SUPPORT", "_3_TO_1_SUPPORT", "_4_TO_1_SUPPORT"],
1033
- }
1034
-
1035
- # This dict contains name of the support output table mapped to its corresponding
1036
- # exposed output teradataml DataFrame name.
1037
- support_result_names = {
1038
- "_0_TO_1_SUPPORT": "support_result_01",
1039
- "_1_TO_1_SUPPORT": "support_result_11",
1040
- "_2_TO_1_SUPPORT": "support_result_21",
1041
- "_3_TO_1_SUPPORT": "support_result_31",
1042
- "_4_TO_1_SUPPORT": "support_result_41",
1043
- "_2_TO_2_SUPPORT": "support_result_22",
1044
- "_3_TO_2_SUPPORT": "support_result_32",
1045
- }
1046
-
1047
- # Association rules produces various outputs. It generates:
1048
- # 1. Support Tables
1049
- # 2. Affinity Tables.
1050
-
1051
- # Support tables are generated when one of the following conditions occur:
1052
- # 1. When "process_type" is 'support'. Then only two tables are generated as follows:
1053
- # a. <support_result_prefix>_1_ITEM_SUPPORT
1054
- # b. <support_result_prefix>_group_count
1055
- # 2. When "no_support_results" is set to False.
1056
- # a. Multiple support table are generated based on the values passed
1057
- # to "combinations".
1058
- # b. A GROUP COUNT support table is also generated.
1059
-
1060
- # Here are some details on how and what outputs are generated:
1061
- # 1. When "process_type" is 'support', then:
1062
- # a. No affinity tables are generated.
1063
- # b. Only two support tables are generated, which are named as:
1064
- # i. <support_result_prefix>_1_ITEM_SUPPORT
1065
- # ii. <support_result_prefix>_group_count
1066
- # 2. When "no_support_results" is set to False.
1067
- # a. Affinity tables are generated.
1068
- # b. Multiple support table are generated, along with GROUP COUNT table.
1069
- # 3. When "no_support_results" is set to True.
1070
- # a. Only affinity tables are generated.
1071
- # b. No support tables are generated.
1072
-
1073
- # Affinity tables are generated based on the values passed to "combinations"
1074
- # parameter. Number of outputs generated is equal to the number of values passed
1075
- # to "combinations".
1076
- # Here are some cases to understand about this processing:
1077
- # 1. If "combinations" parameter is not passed, i.e., is None, then only
1078
- # one output table is generated.
1079
- # 2. If only one value is passed to "combinations" parameter, then only
1080
- # one output table is generated.
1081
- # 3. If only one value is passed in a list to "combinations" parameter,
1082
- # then only one output table is generated.
1083
- # 4. If list with multiple values is passed to "combinations" parameter,
1084
- # then number of output tables generated is equal to length of the list.
1085
- # 5. If empty list is passed to "combinations" parameter, then SQL will
1086
- # take care of throwing appropriate exceptions.
1087
-
1088
- # Let's add the entry for the function in multi-output attribute mapper
1089
- # as function produces multiple outputs.
1090
- valib_inst.__multioutput_attr_map[valib_inst.__sql_func_name] = {}
1091
-
1092
- # To process output table parameters:
1093
- # 1. Let's generate the output database name parameter first.
1094
- # 2. Then generate the output table parameter.
1095
- # 3. Once the arguments and it's values are generated, call
1096
- # _execute_valib_function() and make sure to skip the
1097
- # output argument processing only.
1098
-
1099
- # Let's first get the temp table name to be used for creating output
1100
- # tables. Extract the database name and table name which will be used
1101
- # as follows:
1102
- # 1. Database name will be passed to SQL argument 'outputdatabase'.
1103
- # 2. Table name extracted will be used to generate the values for
1104
- # SQL argument 'outputtablename'.
1105
- out_tablename = valib_inst.__get_temp_table_name()
1106
-
1107
- # Add an entry for "outputdatabase" in SQL argument syntax.
1108
- valib_inst.__db_name = valib_inst.__extract_db_tbl_name(table_name=out_tablename,
1109
- arg_name="outputdatabase",
1110
- extract_table=False,
1111
- remove_quotes=True)
1112
-
1113
- __table_name = UtilFuncs._extract_table_name(out_tablename).replace("\"", "")
1114
-
1115
- # Let's start processing the output table argument.
1116
- # A list containing the output table name argument values.
1117
- output_table_names = []
1118
-
1119
- # For Association we will create two new variables to store the output DataFrame
1120
- # attribute names for support tables and affinity tables.
1121
- #
1122
- # This is done specifically for Association function as output attribute names
1123
- # will vary based on the input values for "combinations" parameter. Thus, it will
1124
- # help user to know the names of the output DataFrame attributes generated for
1125
- # a specific function call.
1126
- sup_table_attrs = "support_outputs"
1127
- aff_table_attrs = "affinity_outputs"
1128
- valib_inst.__dyn_cls_data_members[sup_table_attrs] = []
1129
- valib_inst.__dyn_cls_data_members[aff_table_attrs] = []
1130
-
1131
- # Before we proceed here is a common function which will be used for
1132
- # processing support tables.
1133
- def process_support_tables(out_var, support_table_name):
1134
- """ Internal function to process support tables. """
1135
- valib_inst.__dyn_cls_data_members[out_var] = support_table_name
1136
- valib_inst.__multioutput_attr_map[valib_inst.__sql_func_name][out_var] = out_var
1137
- if out_var not in valib_inst.__dyn_cls_data_members[sup_table_attrs]:
1138
- valib_inst.__dyn_cls_data_members[sup_table_attrs].append(out_var)
1139
- GarbageCollector._add_to_garbagecollector(support_table_name,
1140
- TeradataConstants.TERADATA_TABLE)
1141
-
1142
- # GROUP_COUNT support table will be generated, when "process_type" is 'support'
1143
- # or "no_support_results" is set to False.
1144
- # Add the entry for the table in the output mappers.
1145
- if process_type.lower() == "support" or not no_support_results:
1146
- # Output attribute name of the group count table is "group_count".
1147
- out_var = "group_count"
1148
- grp_cnt_table_name = "{}_group_count".format(support_result_prefix)
1149
- process_support_tables(out_var=out_var, support_table_name=grp_cnt_table_name)
1150
-
1151
- # Let's process the other support tables and affinity tables.
1152
- if process_type.lower() == "support":
1153
- # We are here that means only 1 item support table along with group count
1154
- # support table is generated. Group count table entry is already added.
1155
- # Output attribute name of the 1 item support table is "support_1_item".
1156
- out_var = "support_1_item"
1157
- sup_tbl_name = "{}_1_ITEM_SUPPORT".format(support_result_prefix)
1158
- process_support_tables(out_var=out_var, support_table_name=sup_tbl_name)
1159
-
1160
- # Value for output table does not matter when "process_type" is 'support'.
1161
- # No affinity tables are generated.
1162
- output_table_names.append(__table_name)
1163
- else:
1164
- # Affinity tables and other support tables are generated only when "process_type"
1165
- # is not equal to 'support'.
1166
-
1167
- # Process the affinity tables.
1168
- for combination in UtilFuncs._as_list(combinations):
1169
- # Generate the new output table name.
1170
- extension = "_{}".format(combination)
1171
- out_var = "{}{}".format(VC.DEFAULT_OUTPUT_VAR.value, extension)
1172
- new_tbl_name = valib_inst.__get_table_name_with_extension(table_name=__table_name,
1173
- extension=extension)
1174
-
1175
- # Add an entry for affinity output in mappers, which will produce the
1176
- # output DataFrames.
1177
- valib_inst.__dyn_cls_data_members[out_var] = new_tbl_name
1178
- valib_inst.__multioutput_attr_map[valib_inst.__sql_func_name][out_var] = out_var
1179
- valib_inst.__dyn_cls_data_members[aff_table_attrs].append(out_var)
1180
-
1181
- # Add the name of the output affinity table, which will be used as value
1182
- # for the "outputtablename" argument.
1183
- output_table_names.append(new_tbl_name)
1184
-
1185
- if not no_support_results:
1186
- # Other support tables are also generated and are not dropped in the end
1187
- # by Vantage, hence we will create output DataFrames for each one of those.
1188
- # Let's process all those support tables.
1189
- # 'combinations_support_tables' contains a name of list of support
1190
- # output tables those will be generated for a specific combination.
1191
- for sup_postfix in combinations_support_tables[combination]:
1192
- sup_out_var = support_result_names[sup_postfix]
1193
- sup_tbl_name = "{}{}".format(support_result_prefix, sup_postfix)
1194
- process_support_tables(out_var=sup_out_var, support_table_name=sup_tbl_name)
1195
-
1196
- # Add an entry for "outputtablename" in SQL argument syntax.
1197
- valib_inst.__generate_valib_sql_argument_syntax(arg=output_table_names,
1198
- arg_name="outputtablename")
1199
-
1200
- # Execute the function, skip output argument and output dataframe processing.
1201
- return valib_inst._execute_valib_function(skip_output_arg_processing=True,
1202
- support_result_prefix=support_result_prefix,
1203
- **kwargs)
1204
-
1205
- def KMeans(self, data, columns, centers, **kwargs):
1206
- """
1207
- Please refer to Teradata Python Function Reference guide for Documentation.
1208
- Reference guide can be found at: https://docs.teradata.com
1209
- """
1210
- # Add the required arguments to kwargs for further processing.
1211
- kwargs["data"] = data
1212
- kwargs["columns"] = columns
1213
- kwargs["centers"] = centers
1214
-
1215
- # Get a new instance of _VALIB() class for function execution.
1216
- new_valib_obj = self.__get_valib_instance("KMeans")
1217
-
1218
- # Add all arguments to dynamic class as data members.
1219
- new_valib_obj.__dyn_cls_data_members = {}
1220
- new_valib_obj.__dyn_cls_data_members.update(kwargs)
1221
-
1222
- centroids_data = kwargs.pop("centroids_data", None)
1223
-
1224
- # If there is no "centroids_data", do normal processing.
1225
- if centroids_data is None:
1226
- return new_valib_obj._execute_valib_function(**kwargs)
1227
-
1228
- # If "centroids_data" is provided, special handling for output argument is needed.
1229
- if not isinstance(centroids_data, DataFrame):
1230
- raise TypeError(Messages.get_message(MessageCodes.UNSUPPORTED_DATATYPE,
1231
- ["centroids_data"], ["teradataml DataFrame"]))
1232
-
1233
- # The following things has to be handled:
1234
- # 1. The table in "centroids_data" is updated with new centroids and the same table
1235
- # is the result (new output) table.
1236
- # Extract database name and add it to Valib SQL argument syntax.
1237
- new_valib_obj.__db_name = new_valib_obj.__extract_db_tbl_name(
1238
- table_name=centroids_data._table_name,
1239
- arg_name="outputdatabase",
1240
- extract_table=False,
1241
- remove_quotes=True)
1242
-
1243
- # Extract table name and add it to Valib SQL argument syntax.
1244
- table_name = new_valib_obj.__extract_db_tbl_name(table_name=centroids_data._table_name,
1245
- arg_name="outputtablename",
1246
- extract_table=True,
1247
- remove_quotes=True)
1248
-
1249
- # Since output argument processing will be skipped, table name is added in dynamic
1250
- # class data member "result", which will be replaced with DataFrame while processing
1251
- # function outputs in the function _execute_valib_function.
1252
- new_valib_obj.__dyn_cls_data_members[VC.DEFAULT_OUTPUT_VAR.value] = table_name
1253
-
1254
- # 2. Execute the valib function call based on the arguments along with newly added
1255
- # the SQL argument 'continuation=true' and process output and other arguments
1256
- # related information.
1257
- return new_valib_obj._execute_valib_function(skip_output_arg_processing=True,
1258
- continuation=True,
1259
- **kwargs)
1260
-
1261
- def DecisionTreePredict(self, data, model, **kwargs):
1262
- """
1263
- Please refer to Teradata Python Function Reference guide for Documentation.
1264
- Reference guide can be found at: https://docs.teradata.com
1265
- """
1266
- # Add the required arguments to kwargs for further processing.
1267
- kwargs["data"] = data
1268
- kwargs["model"] = model
1269
-
1270
- # Get a new instance of _VALIB() class for function execution.
1271
- new_valib_obj = self.__get_valib_instance("DecisionTreePredict")
1272
-
1273
- # Add all arguments to dynamic class as data members.
1274
- new_valib_obj.__dyn_cls_data_members = {}
1275
- new_valib_obj.__dyn_cls_data_members.update(kwargs)
1276
-
1277
- return new_valib_obj._execute_valib_function(profile=True, **kwargs)
1278
-
1279
- def DecisionTreeEvaluator(self, data, model, **kwargs):
1280
- """
1281
- Please refer to Teradata Python Function Reference guide for Documentation.
1282
- Reference guide can be found at: https://docs.teradata.com
1283
- """
1284
- # Add the required arguments to kwargs for further processing.
1285
- kwargs["data"] = data
1286
- kwargs["model"] = model
1287
-
1288
- # Get a new instance of _VALIB() class for function execution.
1289
- new_valib_obj = self.__get_valib_instance("DecisionTreeEvaluator")
1290
-
1291
- # Add all arguments to dynamic class as data members.
1292
- new_valib_obj.__dyn_cls_data_members = {}
1293
- new_valib_obj.__dyn_cls_data_members.update(kwargs)
1294
-
1295
- return new_valib_obj._execute_valib_function(profile=True, **kwargs)
1296
-
1297
- def __validate_overlap_arguments(self, data_val, data_arg, columns_val, columns_arg,
1298
- is_optional = True):
1299
- """
1300
- DESCRIPTION:
1301
- Internal function to validate pair of data{i} and columns{i} arguments.
1302
-
1303
- PARAMETERS:
1304
- data_val:
1305
- Required Argument.
1306
- Specifies the teradataml Dataframe containing input data.
1307
- Types: teradataml Dataframe
1308
-
1309
- data_arg:
1310
- Required Argument.
1311
- Specifies the argument name for the teradataml DataFrame specified in the
1312
- argument "data_val".
1313
- Types: str
1314
-
1315
- columns_val:
1316
- Required Argument.
1317
- Specifies the list of column(s) present in the DataFrame "data_val".
1318
- Types: str OR list of strings (str)
1319
-
1320
- columns_arg:
1321
- Required Argument.
1322
- Specifies the argument name for the columns specified in the
1323
- argument "columns_val".
1324
- Types: str
1325
-
1326
- is_optional:
1327
- Optional Argument.
1328
- Specifies whether the values in arguments "data_val" and "columns_val" are
1329
- optional in Overlap() function.
1330
- If True, the values in these arguments should be validated as optional arguments
1331
- in Overlap() function. Otherwise, these values are considered as required
1332
- arguments.
1333
- Default Value: True
1334
- Types: bool
1335
-
1336
- RETURNS:
1337
- None.
1338
-
1339
- EXAMPLES:
1340
- valib.__validate_overlap_arguments(data_val=data, data_arg="data",
1341
- columns_val=columns, columns_arg="columns",
1342
- is_optional=False)
1343
- """
1344
- # Create argument information matrix to do parameter checking.
1345
- __arg_info_matrix = []
1346
- __arg_info_matrix.append([data_arg, data_val, is_optional, (DataFrame)])
1347
- __arg_info_matrix.append([columns_arg, columns_val, is_optional, (str, list), True])
1348
-
1349
- _Validators._validate_function_arguments(arg_list=__arg_info_matrix)
1350
-
1351
- _Validators._validate_dataframe_has_argument_columns(data=data_val,
1352
- data_arg=data_arg,
1353
- columns=columns_val,
1354
- column_arg=columns_arg,
1355
- is_partition_arg=False)
1356
-
1357
- # TODO- Delete LogRegPredict function definition if Jira TDAF-7867 is resolved.
1358
- def LogRegPredict(self, **kwargs):
1359
- """
1360
- Please refer to Teradata Python Function Reference guide for Documentation.
1361
- Reference guide can be found at: https://docs.teradata.com
1362
- """
1363
-
1364
- # Get a new instance of _VALIB() class for function execution.
1365
- valib_inst = self.__get_valib_instance("LogRegPredict")
1366
-
1367
- # Add all arguments to dynamic class as data members.
1368
- valib_inst.__dyn_cls_data_members = {}
1369
- valib_inst.__dyn_cls_data_members.update(kwargs)
1370
-
1371
- # Setting scoringmethod to "score" if gen_sql_only is True.
1372
- gen_sql_only = kwargs.get("gen_sql_only", False)
1373
- if gen_sql_only:
1374
- valib_inst.__generate_valib_sql_argument_syntax(arg="score",
1375
- arg_name="scoringmethod")
1376
-
1377
- return valib_inst._execute_valib_function(**kwargs)
1378
-
1379
- def Overlap(self, data1, columns1, **kwargs):
1380
- """
1381
- Please refer to Teradata Python Function Reference guide for Documentation.
1382
- Reference guide can be found at: https://docs.teradata.com
1383
- """
1384
- # Validate the required arguments - data1 and columns1.
1385
- # Other arguments are validated as and when they are being processed.
1386
- self.__validate_overlap_arguments(data_val=data1, data_arg="data1",
1387
- columns_val=columns1, columns_arg="columns1",
1388
- is_optional=False)
1389
-
1390
- kwargs["data1"] = data1
1391
- kwargs["columns1"] = columns1
1392
-
1393
- # Each columns argument can take string or list of strings.
1394
- # Ensure all columns related arguments to be list of one or more strings.
1395
- columns1 = UtilFuncs._as_list(columns1)
1396
-
1397
- valib_inst = self.__get_valib_instance("Overlap")
1398
-
1399
- # Add all arguments to dynamic class as data members.
1400
- valib_inst.__dyn_cls_data_members = {}
1401
- valib_inst.__dyn_cls_data_members.update(kwargs)
1402
-
1403
- parse_kwargs = True
1404
- ind = 1
1405
- database_names = []
1406
- table_names = []
1407
- column_names_df = []
1408
-
1409
- """
1410
- The argument names are data1, data2, ..., dataN and columns1, columns2, ... columnsN
1411
- corresponding to each data arguments.
1412
- Note:
1413
- 1. The number of data arguments should be same as that of columns related arguments.
1414
- 2. The number of columns in each of the columns related arguments (including
1415
- "columns1" argument) should be same.
1416
- """
1417
- while parse_kwargs:
1418
- data_arg_name = "data{}".format(str(ind))
1419
- data_arg_value = kwargs.pop(data_arg_name, None)
1420
- if data_arg_value is None:
1421
- parse_kwargs = False
1422
- else:
1423
- columns_arg_name = "columns{}".format(str(ind))
1424
- columns_arg_value = kwargs.pop(columns_arg_name, None)
1425
-
1426
- # Raise error if dataN is present and columnsN is not present.
1427
- if columns_arg_value is None:
1428
- err_ = Messages.get_message(MessageCodes.DEPENDENT_ARG_MISSING,
1429
- columns_arg_name, data_arg_name)
1430
- raise TeradataMlException(err_, MessageCodes.DEPENDENT_ARG_MISSING)
1431
-
1432
- self.__validate_overlap_arguments(data_val=data_arg_value,
1433
- data_arg=data_arg_name,
1434
- columns_val=columns_arg_value,
1435
- columns_arg=columns_arg_name)
1436
-
1437
- # Each columns argument can take string or list of strings.
1438
- # Ensure all columns related arguments to be list of one or more strings.
1439
- columns_arg_value = UtilFuncs._as_list(columns_arg_value)
1440
-
1441
- if len(columns_arg_value) != len(columns1):
1442
- err_ = Messages.get_message(MessageCodes.INVALID_LENGTH_ARGS,
1443
- "'columns1', 'columns2', ..., 'columnsN'")
1444
- raise TeradataMlException(err_ ,MessageCodes.INVALID_LENGTH_ARGS)
1445
-
1446
- # If all the validations are done,
1447
- # 1. extract database names
1448
- # 2. extract table names
1449
- # 3. generate SQL syntax for 'columns' argument.
1450
- database_names.append(UtilFuncs()._get_db_name_from_dataframe(data_arg_value))
1451
- __table_name = UtilFuncs._extract_table_name(data_arg_value._table_name).\
1452
- replace("\"", "")
1453
- table_names.append(__table_name)
1454
- column_names_df.append("{" + ",".join(columns_arg_value) + "}")
1455
-
1456
- ind = ind + 1
1457
-
1458
- # gensqlonly implementation.
1459
- gen_sql_only = kwargs.pop("gen_sql_only", False)
1460
- if gen_sql_only:
1461
- valib_inst.__generate_valib_sql_argument_syntax(arg=str(gen_sql_only),
1462
- arg_name="gensqlonly")
1463
-
1464
- # Raise error if there are additional arguments.
1465
- if len(kwargs) != 0:
1466
- err_ = "The keyword arguments for Overlap() should have data1, data2, ..., dataN " \
1467
- "and corresponding columns1, columns2, ..., columnsN. " \
1468
- "Found additional arguments {}."
1469
- raise TypeError(err_.format(list(kwargs.keys())))
1470
-
1471
- # Generate SQL syntax for SQL arguments database, tablename and columns.
1472
- valib_inst.__generate_valib_sql_argument_syntax(arg=",".join(database_names),
1473
- arg_name="database")
1474
- valib_inst.__generate_valib_sql_argument_syntax(arg=",".join(table_names),
1475
- arg_name="tablename")
1476
- valib_inst.__generate_valib_sql_argument_syntax(arg=",".join(column_names_df),
1477
- arg_name="columns")
1478
-
1479
- return valib_inst._execute_valib_function(skip_data_arg_processing=True,
1480
- skip_other_arg_processing=True)
1481
-
1482
- def Transform(self, data, bins=None, derive=None, one_hot_encode=None, fillna=None,
1483
- label_encode=None, rescale=None, retain=None, sigmoid=None, zscore=None,
1484
- **kwargs):
1485
- """
1486
- Please refer to Teradata Python Function Reference guide for Documentation.
1487
- Reference guide can be found at: https://docs.teradata.com
1488
- """
1489
- # Argument Validations
1490
- # Note:
1491
- # Commented code is kept for future purpose. Once all commented code is updated
1492
- # note will be removed as well.
1493
- arg_info_matrix = []
1494
- arg_info_matrix.append(["data", data, False, (DataFrame)])
1495
- arg_info_matrix.append(["bins", bins, True, (Binning, list)])
1496
- arg_info_matrix.append(["derive", derive, True, (Derive, list)])
1497
- arg_info_matrix.append(["one_hot_encode", one_hot_encode, True, (OneHotEncoder, list)])
1498
- arg_info_matrix.append(["fillna", fillna, True, (FillNa, list)])
1499
- arg_info_matrix.append(["rescale", rescale, True, (MinMaxScalar, list)])
1500
- arg_info_matrix.append(["label_encode", label_encode, True, (LabelEncoder, list)])
1501
- arg_info_matrix.append(["retain", retain, True, (Retain, list)])
1502
- arg_info_matrix.append(["sigmoid", sigmoid, True, (Sigmoid, list)])
1503
- arg_info_matrix.append(["zscore", zscore, True, (ZScore, list)])
1504
-
1505
- # Argument validations.
1506
- _Validators._validate_function_arguments(arg_info_matrix)
1507
-
1508
- # Add "data" to kwargs for further processing.
1509
- kwargs["data"] = data
1510
-
1511
- # Get a new instance of _VALIB() class for function execution.
1512
- valib_inst = self.__get_valib_instance("Transform")
1513
-
1514
- # Add all arguments to dynamic class as data members.
1515
- valib_inst.__dyn_cls_data_members = {}
1516
- valib_inst.__dyn_cls_data_members.update(kwargs)
1517
- valib_inst.__dyn_cls_data_members["bins"] = bins
1518
- valib_inst.__dyn_cls_data_members["derive"] = derive
1519
- valib_inst.__dyn_cls_data_members["one_hot_encode"] = one_hot_encode
1520
- valib_inst.__dyn_cls_data_members["fillna"] = fillna
1521
- valib_inst.__dyn_cls_data_members["label_encode"] = label_encode
1522
- valib_inst.__dyn_cls_data_members["rescale"] = rescale
1523
- valib_inst.__dyn_cls_data_members["retain"] = retain
1524
- valib_inst.__dyn_cls_data_members["sigmoid"] = sigmoid
1525
- valib_inst.__dyn_cls_data_members["zscore"] = zscore
1526
-
1527
- # Add "outputstyle" argument to generate output table.
1528
- valib_inst.__generate_valib_sql_argument_syntax(arg="table", arg_name="outputstyle")
1529
-
1530
- # Bin Coding Transformation
1531
- if bins is not None:
1532
- valib_inst.__process_val_transformations(bins, "bins", "bincode", data)
1533
-
1534
- # Derive Transformation
1535
- if derive is not None:
1536
- valib_inst.__process_val_transformations(derive, "derive", "derive", data)
1537
-
1538
- # OneHotEncoder Transformation
1539
- if one_hot_encode is not None:
1540
- valib_inst.__process_val_transformations(one_hot_encode, "one_hot_encode", "designcode", data)
1541
-
1542
- # Null Replacement Transformation
1543
- if fillna is not None:
1544
- valib_inst.__process_val_transformations(fillna, "fillna", "nullreplacement", data)
1545
-
1546
- # LabelEncoder Transformation
1547
- if label_encode is not None:
1548
- valib_inst.__process_val_transformations(label_encode, "label_encode", "recode", data)
1549
-
1550
- # MinMaxScalar Transformation
1551
- if rescale is not None:
1552
- valib_inst.__process_val_transformations(rescale, "rescale", "rescale", data)
1553
-
1554
- # Retain Transformation
1555
- if retain is not None:
1556
- valib_inst.__process_val_transformations(retain, "retain", "retain", data)
1557
-
1558
- # Sigmoid Transformation
1559
- if sigmoid is not None:
1560
- valib_inst.__process_val_transformations(sigmoid, "sigmoid", "sigmoid", data)
1561
-
1562
- # ZScore Transformation
1563
- if zscore is not None:
1564
- valib_inst.__process_val_transformations(zscore, "zscore", "zscore", data)
1565
-
1566
- # Execute the function, just do not process the output dataframes
1567
- # and dynamic class creation for the function.
1568
- return valib_inst._execute_valib_function(**kwargs)
1569
-
1570
- def XmlToHtmlReport(self, data, analysis_type, **kwargs):
1571
- """
1572
- Please refer to Teradata Python Function Reference guide for Documentation.
1573
- Reference guide can be found at: https://docs.teradata.com
1574
- """
1575
- # Add the required arguments to kwargs for further processing.
1576
- kwargs["data"] = data
1577
- kwargs["analysis_type"] = analysis_type
1578
- # Dict that maps teradataml Class name to SQL name.
1579
- tdml_classname_to_sql_name = {"DecisionTree": "decisiontree",
1580
- "DecisionTreeEvaluator": "decisiontreescore",
1581
- "PCA": "factor",
1582
- "PCAEvaluator": "factorscore",
1583
- "LinReg": "linear",
1584
- "LogReg": "logistic",
1585
- "LogRegEvaluator": "logisticscore"}
1586
-
1587
- if analysis_type in tdml_classname_to_sql_name:
1588
- kwargs["analysis_type"] = tdml_classname_to_sql_name[analysis_type]
1589
-
1590
- # Get a new instance of _VALIB() class for function execution.
1591
- new_valib_obj = self.__get_valib_instance("XmlToHtmlReport")
1592
-
1593
- # Add all arguments to dynamic class as data members.
1594
- new_valib_obj.__dyn_cls_data_members = {}
1595
- new_valib_obj.__dyn_cls_data_members.update(kwargs)
1596
-
1597
- return new_valib_obj._execute_valib_function(**kwargs)
1598
-
1599
- # Define an object of type _VALIB, that will allow user to execute any VALIB function.
1600
- valib = _VALIB()
1
+ """
2
+ Unpublished work.
3
+ Copyright (c) 2020 by Teradata Corporation. All rights reserved.
4
+ TERADATA CORPORATION CONFIDENTIAL AND TRADE SECRET
5
+
6
+ Primary Owner: PankajVinod.Purandare@teradata.com
7
+ Secondary Owner: Adithya.Avvaru@teradata.com
8
+
9
+ This file implements the core framework that allows user to execute any Vantage Analytics
10
+ Library (VALIB) Function.
11
+ """
12
+ import time
13
+ import uuid
14
+ from math import floor
15
+
16
+ from teradatasqlalchemy.telemetry.queryband import collect_queryband
17
+ from teradataml.common import messages
18
+ from teradataml.common.constants import TeradataConstants, ValibConstants as VC
19
+ from teradataml.common.exceptions import TeradataMlException
20
+ from teradataml.common.garbagecollector import GarbageCollector
21
+ from teradataml.common.messages import Messages, MessageCodes
22
+ from teradataml.common.utils import UtilFuncs
23
+ from teradataml.context.context import get_context, _get_current_databasename
24
+ from teradataml.options.configure import configure
25
+ from teradataml.dataframe.dataframe import DataFrame, in_schema
26
+ from teradataml.utils.validators import _Validators
27
+ from teradataml.analytics.Transformations import Binning, Derive, OneHotEncoder, FillNa, \
28
+ LabelEncoder, MinMaxScalar, Retain, Sigmoid, ZScore
29
+
30
+ class _VALIB():
31
+ """ An internal class for executing VALIB analytic functions. """
32
+
33
+ def __init__(self, *c, **kwargs):
34
+ """ Constructor for VALIB function execution. """
35
+ # Vantage SQL name of the VALIB function.
36
+ self.__sql_func_name = ""
37
+ # teradataml name of the VALIB function.
38
+ self.__tdml_valib_name = ""
39
+ self.__func_arg_sql_syntax_eles = []
40
+ self.__func_other_arg_sql_names = []
41
+ self.__func_other_args = []
42
+ self.result = None
43
+ self.__generated_sql = None
44
+ self.__multioutput_attr_map = {}
45
+ self.__multioutput_attr_map.update(VC.TERADATAML_VALIB_MULTIOUTPUT_ATTR_MAP.value)
46
+ self.__output_arg_map = {}
47
+ self.__output_arg_map.update(VC.VALIB_FUNCTION_OUTPUT_ARGUMENT_MAP.value)
48
+
49
+ @property
50
+ def _tdml_valib_name(self):
51
+ """
52
+ DESCRIPTION:
53
+ Function to return VAL function name.
54
+
55
+ RETURNS:
56
+ str
57
+
58
+ RAISES:
59
+ None
60
+
61
+ EXAMPLES:
62
+ valib.LinReg._tdml_valib_name
63
+ """
64
+ return self.__tdml_valib_name
65
+
66
+ def __getattr__(self, item):
67
+ """
68
+ DESCRIPTION:
69
+ Returns an attribute of the _VALIB class.
70
+
71
+ PARAMETERS:
72
+ item:
73
+ Required Argument.
74
+ Specifes the name of the attribute.
75
+
76
+ RETURNS:
77
+ An object of _VALIB class.
78
+
79
+ RAISES:
80
+ None.
81
+
82
+ EXAMPLES:
83
+ valib.ValibFunctionName
84
+ """
85
+ return self.__get_valib_instance(item)
86
+
87
+ def __call__(self, **kwargs):
88
+ """
89
+ DESCRIPTION:
90
+ Function makes the instance of this class callable.
91
+
92
+ PARAMETERS:
93
+ kwargs:
94
+ Keyword arguments for the callable function.
95
+
96
+ RETURNS:
97
+ Returns a callable of object of _VALIB class.
98
+
99
+ RAISES:
100
+ None.
101
+
102
+ EXAMPLES:
103
+ valib.ValibFunctionName()
104
+ """
105
+ # Input arguments passed to a function.
106
+ # Use the same as the data members for the dynamic class.
107
+ self.__dyn_cls_data_members = kwargs
108
+ return self._execute_valib_function(**kwargs)
109
+
110
+ def __get_valib_instance(self, item):
111
+ """
112
+ DESCRIPTION:
113
+ Function creates and returns an instance of valib class for the function
114
+ name assigning the SQL function name and teradataml function name attributes.
115
+ PARAMETERS:
116
+ item:
117
+ Required Argument.
118
+ Specifies the name of the attribute/function.
119
+ Types: str
120
+
121
+ RETURNS:
122
+ An object of _VALIB class.
123
+
124
+ RAISES:
125
+ None.
126
+
127
+ EXAMPLES:
128
+ valib.__get_valib_instance("<function_name>")
129
+ """
130
+ valib_f = _VALIB()
131
+ valib_f.__tdml_valib_name = item
132
+
133
+ # Overwriting the multioutput attribute mapper with evaluator map if tdml function name
134
+ # is present in the constant TERDATAML_EVALUATOR_OUTPUT_ATTR_MAP.
135
+ evaluator_map = VC.TERDATAML_EVALUATOR_OUTPUT_ATTR_MAP.value
136
+ if item in evaluator_map:
137
+ valib_f.__multioutput_attr_map = {}
138
+ valib_f.__multioutput_attr_map.update(evaluator_map)
139
+
140
+ try:
141
+ valib_f.__sql_func_name = VC.TERADATAML_VALIB_SQL_FUNCTION_NAME_MAP.value[item].upper()
142
+ except:
143
+ valib_f.__sql_func_name = item.upper()
144
+ return valib_f
145
+
146
+ def __create_dynamic_valib_class(self):
147
+ """
148
+ DESCRIPTION:
149
+ Function dynamically creates a class of VALIB function type.
150
+
151
+ PARAMETERS:
152
+ None
153
+
154
+ RETURNS:
155
+ An object of dynamic class of VALIB function name.
156
+
157
+ RAISES:
158
+ None.
159
+
160
+ EXAMPLE:
161
+ self.__create_dynamic_valib_class()
162
+ """
163
+
164
+ # Constructor for the dynamic class.
165
+ def constructor(self):
166
+ """ Constructor for dynamic class """
167
+ # Do Nothing...
168
+ pass
169
+ self.__dyn_cls_data_members["__init__"] = constructor
170
+
171
+ # __repr__ method for dynamic class.
172
+ def print_result(self):
173
+ """ Function to be used for representation of VALIB function type object. """
174
+ repr_string = ""
175
+ for key in self._valib_results:
176
+ repr_string = "{}\n############ {} Output ############".format(repr_string, key)
177
+ repr_string = "{}\n\n{}\n\n".format(repr_string, getattr(self, key))
178
+ return repr_string
179
+ self.__dyn_cls_data_members["__repr__"] = print_result
180
+
181
+ query = (self.__query, self.__generated_sql)
182
+ # Print the underlying SQL stored procedure call or generated SQL.
183
+ def show_query(self, query_type="sp"):
184
+ """
185
+ Function to return the underlying SQL query.
186
+ """
187
+ _Validators._validate_permitted_values(arg=query_type,
188
+ permitted_values=["sp", "sql", "both"],
189
+ arg_name="query_type")
190
+ if query_type.lower() == "sp":
191
+ return query[0]
192
+ elif query_type.lower() == "sql":
193
+ return query[1]
194
+ return query
195
+
196
+ self.__dyn_cls_data_members["show_query"] = show_query
197
+
198
+ # To list attributes using dict()
199
+ self.__dyn_cls_data_members["__dict__"] = self.__dyn_cls_data_members
200
+
201
+ # Dynamic class creation with VALIB function name.
202
+ valib_class = type(self.__tdml_valib_name, (object,), self.__dyn_cls_data_members)
203
+
204
+ return valib_class()
205
+
206
+ def __create_output_dataframes(self, out_var):
207
+ """
208
+ DESCRIPTION:
209
+ Internal function to create output DataFrame, set the index labels to
210
+ None and add the same to the result list.
211
+ Function makes sure that all these created variables are added to the
212
+ dynamic class as data members.
213
+
214
+ PARAMETERS:
215
+ out_var:
216
+ Required Argument.
217
+ Specifies the name of the output DataFrame.
218
+ Types: str
219
+
220
+ RETURNS:
221
+ None.
222
+
223
+ RAISES:
224
+ None.
225
+
226
+ EXAMPLES:
227
+ self.__create_output_dataframes("result")
228
+ """
229
+ self.__dyn_cls_data_members[out_var] = DataFrame(
230
+ in_schema(self.__db_name, self.__dyn_cls_data_members[out_var]))
231
+ self.__dyn_cls_data_members[out_var]._index_label = None
232
+ self.__dyn_cls_data_members[out_var]._index_query_required = False
233
+ self.__dyn_cls_data_members[VC.OUTPUT_DATAFRAME_RESULTS.value].append(out_var)
234
+
235
+ @collect_queryband(attr="_VALIB__sql_func_name")
236
+ def __generate_execute_sp_query(self):
237
+ """
238
+ DESCRIPTION:
239
+ Function generates a stored procedure call corresponding to the function
240
+ and execute the same.
241
+
242
+ PARAMETERS:
243
+ None.
244
+
245
+ RETURNS:
246
+ Console output of query, if any, otherwise None.
247
+
248
+ RAISES:
249
+ TeradataMlException
250
+
251
+ EXAMPLES:
252
+ self.__generate_execute_sp_query()
253
+ """
254
+ # Generate and execute SQL VALIB SP call.
255
+ if configure.val_install_location is None:
256
+ message = Messages.get_message(MessageCodes.UNKNOWN_INSTALL_LOCATION,
257
+ "Vantage analytic functions",
258
+ "option 'configure.val_install_location'")
259
+ raise TeradataMlException(message, MessageCodes.MISSING_ARGS)
260
+
261
+ query_string = "call {0}.td_analyze('{1}', '{2};');"
262
+ self.__query = query_string.format(configure.val_install_location, self.__sql_func_name,
263
+ ";".join(self.__func_arg_sql_syntax_eles))
264
+
265
+ return UtilFuncs._execute_query(self.__query, expect_none_result=True)
266
+
267
+ def __generate_valib_sql_argument_syntax(self, arg, arg_name):
268
+ """
269
+ DESCRIPTION:
270
+ Function to generate the VALIB SQL function argument syntax.
271
+
272
+ PARAMETERS:
273
+ arg:
274
+ Required Argument.
275
+ Specifies an argument value to be used in VALIB function call.
276
+ Types: Any object that can be converted to a string.
277
+
278
+ arg_name:
279
+ Required Argument.
280
+ Specifies a SQL argument name to be used in VALIB function call.
281
+ Types: String
282
+
283
+ RETURNS:
284
+ None
285
+
286
+ RAISES:
287
+ None
288
+
289
+ EXAMPLES:
290
+ self.__generate_valib_sql_argument_syntax(argument, "argument_name")
291
+ """
292
+ arg = UtilFuncs._teradata_collapse_arglist(arg, "")
293
+ self.__func_arg_sql_syntax_eles.append("{}={}".format(arg_name, arg))
294
+
295
+ def __extract_db_tbl_name(self, table_name, arg_name, extract_table=True, remove_quotes=False):
296
+ """
297
+ DESCRIPTION:
298
+ Function processes the table name argument to extract database or table from it.
299
+
300
+ PARAMETERS:
301
+ table_name:
302
+ Required Argument.
303
+ Specifies the fully-qualified table name.
304
+ Types: String
305
+
306
+ arg_name:
307
+ Required Argument.
308
+ Specifies a SQL argument name to be used in VALIB function call.
309
+ Types: String
310
+
311
+ extract_table:
312
+ Optional Argument.
313
+ Specifies whether to extract a table name or database name from
314
+ "table_name". When set to 'True', table name is extracted otherwise
315
+ database name is extracted.
316
+ Default Value: True
317
+ Types: bool
318
+
319
+ remove_quotes:
320
+ Optional Argument.
321
+ Specifies whether to remove quotes from the extracted string or not.
322
+ When set to 'True', double quotes will be removed from the extracted
323
+ name.
324
+ Default Value: False
325
+ Types: bool
326
+
327
+ RETURNS:
328
+ Extracted name.
329
+
330
+ RAISES:
331
+ None.
332
+
333
+ EXAMPLES:
334
+ # Extract the table name and remove quotes.
335
+ self.__extract_db_tbl_name(self, table_name, arg_name, remove_quotes=True)
336
+
337
+ # Extract the database name.
338
+ self.__extract_db_tbl_name(self, table_name, arg_name, extract_table=False)
339
+ """
340
+ # Extract table name or db name from the 'table_name'
341
+ if extract_table:
342
+ name = UtilFuncs._extract_table_name(table_name)
343
+ else:
344
+ name = UtilFuncs._extract_db_name(table_name)
345
+
346
+ # Remove quotes.
347
+ if remove_quotes:
348
+ name = name.replace("\"", "")
349
+
350
+ # Generate VALIB function argument call syntax.
351
+ self.__generate_valib_sql_argument_syntax(name, arg_name)
352
+
353
+ return name
354
+
355
+ def __get_temp_table_name(self):
356
+ """
357
+ DESCRIPTION:
358
+ Generate and get the table name for the outputs.
359
+
360
+ PARAMETERS:
361
+ None.
362
+
363
+ RETURNS:
364
+ None.
365
+
366
+ RAISES:
367
+ None.
368
+
369
+ EXAMPLES:
370
+ self.__get_temp_table_name()
371
+ """
372
+ prefix = "valib_{}".format(self.__tdml_valib_name.lower())
373
+ return UtilFuncs._generate_temp_table_name(prefix=prefix, use_default_database=True,
374
+ gc_on_quit=True, quote=False,
375
+ table_type=TeradataConstants.TERADATA_TABLE)
376
+
377
+ def __process_dyn_cls_output_member(self, arg_name, out_tablename, out_var=None):
378
+ """
379
+ DESCRIPTION:
380
+ Function to process output table name argument. As part of processing it does:
381
+ * Generates the SQL clause for argument name.
382
+ * Adds a data member to the dynamic class dictionary, with the name same as
383
+ exposed name of the output DataFrame.
384
+
385
+ PARAMETERS:
386
+ arg_name:
387
+ Required Argument.
388
+ Specifies the output table SQL argument name.
389
+ Types: str
390
+
391
+ out_tablename:
392
+ Required Argument.
393
+ Specifies the output table name.
394
+ Types: str
395
+
396
+ out_var:
397
+ Optional Argument.
398
+ Specifies the output DataFrame name to use.
399
+ If this is None, then value for this is extracted from
400
+ 'TERADATAML_VALIB_MULTIOUTPUT_ATTR_MAP'.
401
+ Types: str
402
+
403
+ RETURNS:
404
+ None.
405
+
406
+ RAISES:
407
+ None.
408
+
409
+ EXAMPLES:
410
+ self.__process_dyn_cls_output_member("outputtablename", out_tablename,
411
+ ValibConstants.DEFAULT_OUTPUT_VAR.value)
412
+ """
413
+ if out_var is None:
414
+ # If output variable name is None, then extract it from the MAP.
415
+ # This output variable corresponds to the output DataFrame name of the function.
416
+ func_name = self.__get_output_attr_map_func_name()
417
+ out_var = self.__multioutput_attr_map[func_name][arg_name]
418
+
419
+ # Add the output DataFrame name, to the dictionary of dynamic class.
420
+ # At start we will just add the corresponding table name as it's value.
421
+ self.__dyn_cls_data_members[out_var] = self.__extract_db_tbl_name(table_name=out_tablename,
422
+ arg_name=arg_name)
423
+
424
+ def __get_table_name_with_extension(self, table_name, extension):
425
+ """
426
+ DESCRIPTION:
427
+ Internal function to create a table name using the extension and add it to Garbage
428
+ Collector.
429
+
430
+ PARAMETERS:
431
+ table_name:
432
+ Required Argument.
433
+ Specifies the table name for which extension is to be suffixed.
434
+ Types: str
435
+
436
+ extension:
437
+ Required Argument.
438
+ Specifies the suffix string that is to be added at the end of the table name.
439
+ Types: str
440
+
441
+ RETURNS:
442
+ The new table name.
443
+
444
+ EXAMPLE:
445
+ self.__get_table_name_with_extension(table_name="<table_name>", extension="_rpt")
446
+ """
447
+ # Add extension to the table name.
448
+ generated_table_name = "{}{}".format(table_name, extension)
449
+
450
+ # Register new output table to the GC.
451
+ gc_tabname = "\"{}\".\"{}\"".format(self.__db_name, generated_table_name)
452
+ GarbageCollector._add_to_garbagecollector(gc_tabname, TeradataConstants.TERADATA_TABLE)
453
+
454
+ return generated_table_name
455
+
456
+ def __get_output_attr_map_func_name(self):
457
+ """
458
+ DESCRIPTION:
459
+ Function to get either teradataml function name or SQL function name from
460
+ "__multioutput_attr_map" based on whether the function is evaluator function or not.
461
+
462
+ PARAMETERS:
463
+ None.
464
+
465
+ RETURNS:
466
+ Either teradataml function name or SQL function name.
467
+
468
+ RAISES:
469
+ None.
470
+
471
+ EXAMPLES:
472
+ self.__get_output_attr_map_func_name()
473
+ """
474
+ # __multioutput_attr_map can have either SQL function name or tdml function name.
475
+ # If the function is evaluator function, then __multioutput_attr_map contains the
476
+ # dictionary of tdml function name to dictionary of output tables. Otherwise, it
477
+ # contains the dictionary of SQL function name to dictionary of output tables.
478
+ func_name = self.__sql_func_name
479
+ if self.__tdml_valib_name in self.__multioutput_attr_map:
480
+ func_name = self.__tdml_valib_name
481
+ return func_name
482
+
483
+ def __process_func_outputs(self, query_exec_output):
484
+ """
485
+ DESCRIPTION:
486
+ Internal function to process the output tables generated by a stored procedure
487
+ call. Function creates the required output DataFrames from the tables and a
488
+ result list.
489
+
490
+ PARAMETERS:
491
+ query_exec_output:
492
+ Required Argument.
493
+ Specifies the output captured by the UtilFuncs._execute_query() API.
494
+ If no output is generated None should be passed.
495
+ Types: tuple
496
+
497
+ RETURNS:
498
+ None.
499
+
500
+ RAISES:
501
+ None.
502
+
503
+ EXAMPLES:
504
+ exec_out = self.__generate_execute_sp_query()
505
+ self.__process_func_outputs(query_exec_output=exec_out)
506
+ """
507
+ self.__dyn_cls_data_members[VC.OUTPUT_DATAFRAME_RESULTS.value] = []
508
+
509
+ func_name = self.__get_output_attr_map_func_name()
510
+
511
+ # Processing gensql/gensqlonly output.
512
+ # Checking if user has passed gen_sql or gen_sql_only as an argument and is true.
513
+ # If gen_sql_only is true, don't process the output and return.
514
+ gen_sql_only = self.__dyn_cls_data_members.get("gen_sql_only", False)
515
+ if gen_sql_only:
516
+ self.__generated_sql = query_exec_output[0][0][0]
517
+ self.__dyn_cls_data_members[VC.DEFAULT_OUTPUT_VAR.value] = None
518
+ return
519
+ elif self.__dyn_cls_data_members.get("gen_sql", False):
520
+ self.__generated_sql = query_exec_output[0][0][0]
521
+
522
+ if func_name in self.__multioutput_attr_map:
523
+ # Process each output and get it ready for dynamic class creation.
524
+ valib_output_mapper = self.__multioutput_attr_map[func_name]
525
+ for key in valib_output_mapper:
526
+ out_var = valib_output_mapper[key]
527
+ self.__create_output_dataframes(out_var=out_var)
528
+ elif VC.DEFAULT_OUTPUT_VAR.value in self.__dyn_cls_data_members:
529
+ # Process functions that generate only one output.
530
+ self.__create_output_dataframes(out_var=VC.DEFAULT_OUTPUT_VAR.value)
531
+ else:
532
+ # Function which will not produce any output table, but will return result set.
533
+ # "result_set" will contain the actual result data in a list of list format.
534
+ self.__dyn_cls_data_members["result_set"] = query_exec_output[0]
535
+ # "result_columns" will contain the list of column names of the result data.
536
+ self.__dyn_cls_data_members["result_columns"] = query_exec_output[1]
537
+ # TODO - Add support for EXP's does not producing any output tables. Future Purpose.
538
+
539
+ def __process_output_extensions(self, output_table_name, output_extensions):
540
+ """
541
+ DESCRIPTION:
542
+ Function to process extended outputs of the function.
543
+ Extended outputs are the output tables generated by SQL function, using
544
+ the existing output table name and adding some extensions to it.
545
+ For example,
546
+ Linear function takes one argument for producing the output tables, but
547
+ it's ends up creating multiple output tables.
548
+ This is how it created these tables.
549
+ * Creates a coefficients and statistics table by using the name passed to
550
+ "outputtablename" argument.
551
+ * Creates a statistical measures table using the name passed to
552
+ "outputtablename" argument and appending "_rpt" to it.
553
+ * Creates a XML reports table using the name passed to "outputtablename"
554
+ argument and appending "_txt" to it.
555
+
556
+ PARAMETERS:
557
+ output_table_name:
558
+ Required Argument.
559
+ Specifies the output table name to use the extensions with to produce new
560
+ output table names.
561
+ Types: str
562
+
563
+ output_extensions:
564
+ Required Argument.
565
+ Specifies a mapper with output table extensions as keys and output dataframe name
566
+ as value.
567
+ Types: dict
568
+
569
+ RETURNS:
570
+ None.
571
+
572
+ RAISES:
573
+ None.
574
+
575
+ EXAMPLES:
576
+ self.__process_output_extensions("output_table_name",
577
+ {"_rpt": "output_df_name1",
578
+ "_txt": "output_df_name1"})
579
+ """
580
+
581
+ # Now let's process the output extensions and respective output DataFrames.
582
+ for extension in output_extensions:
583
+ new_table_name = self.__get_table_name_with_extension(table_name=output_table_name,
584
+ extension=extension)
585
+
586
+ # Get the teradataml output variable name corresponding to the extension.
587
+ func_name = self.__get_output_attr_map_func_name()
588
+ out_var = self.__multioutput_attr_map[func_name][extension]
589
+
590
+ # Add the table name to the dynamic class as it's data member.
591
+ self.__dyn_cls_data_members[out_var] = new_table_name
592
+
593
+ def __process_output_argument(self):
594
+ """
595
+ DESCRIPTION:
596
+ Function to process output argument(s) of a VALIB function.
597
+
598
+ PARAMETERS:
599
+ None.
600
+
601
+ RETURNS:
602
+ None.
603
+
604
+ RAISES:
605
+ None.
606
+
607
+ EXAMPLES:
608
+ self.__process_output_argument()
609
+ """
610
+
611
+ #
612
+ # Note:
613
+ # So far all the functions we have seen, only one output database argument is present
614
+ # in SQL functions. In case in future, a function with more output database arguments
615
+ # are added, we will need to modify this function, especially the below piece and treat
616
+ # database arguments as we are processing the output table name arguments.
617
+ #
618
+ # Default SQL argument name for the output database argument.
619
+ database_arg_name = "outputdatabase"
620
+ if self.__sql_func_name in self.__output_arg_map:
621
+ # Extract output database argument name for the function and use the same.
622
+ database_arg_name = self.__output_arg_map[self.__sql_func_name]["db"]
623
+
624
+ out_tablename = self.__get_temp_table_name()
625
+ self.__db_name = self.__extract_db_tbl_name(table_name=out_tablename,
626
+ arg_name=database_arg_name,
627
+ extract_table=False)
628
+
629
+ #
630
+ # Note:
631
+ # So far all the functions visited, we observed following characteristics about
632
+ # processing the output tables by SQL function.
633
+ # 1. Function produces only one table, with argument name as "outputtablename",
634
+ # which is our default case.
635
+ # 2. Function produces only one table, with argument name different than
636
+ # "outputtablename". In such case, we use 'VALIB_FUNCTION_OUTPUT_ARGUMENT_MAP'
637
+ # to extract the SQL argument name for specifying the output table.
638
+ # 3. Function produces multiple output tables with multiple output table arguments.
639
+ # In such case, we use 'VALIB_FUNCTION_OUTPUT_ARGUMENT_MAP' to extract the SQL
640
+ # argument names for specifying the output tables.
641
+ # 4. Function produces multiple output tables with just one output table argument.
642
+ # In such cases, SQL uses the specified table name to create one of the output
643
+ # table and other output tables are created based on the pre-defined extensions
644
+ # which are appended to the specified table name and using the same.
645
+ #
646
+ # Now that we have processed the output database name argument, we will now process the
647
+ # output table name argument(s).
648
+ if self.__sql_func_name in self.__output_arg_map:
649
+ # Extract the function output argument map.
650
+ func_output_argument_map = self.__output_arg_map[self.__sql_func_name]
651
+
652
+ # Extract output table argument name(s) for the function and use the same.
653
+ table_arg_names = func_output_argument_map["tbls"]
654
+
655
+ if not isinstance(table_arg_names, list):
656
+ # This is a block to process functions producing multiple outputs with
657
+ # 1. One output table argument.
658
+ # 2. Use the same argument to produce other argument with some extension to it.
659
+ #
660
+ # Extract the table name from the generated name and add it to SQL syntax.
661
+ table_name = self.__extract_db_tbl_name(table_name=out_tablename,
662
+ arg_name=table_arg_names)
663
+
664
+ # Process all mandatory output extensions, irrespective of whether the function
665
+ # is scoring or evaluator or any other function.
666
+ if "mandatory_output_extensions" in func_output_argument_map:
667
+ mandatory_extensions = func_output_argument_map["mandatory_output_extensions"]
668
+ self.__process_output_extensions(table_name, mandatory_extensions)
669
+
670
+ if "evaluator_output_extensions" in func_output_argument_map:
671
+ # We process either the table in "table_arg_names" or
672
+ # "evaluator_output_extensions" based on whether the function is evaluator
673
+ # function or not.
674
+ #
675
+ # If the function is:
676
+ # 1. evaluator function, process extensions as mentioned in evaluator based
677
+ # output extensions.
678
+ # 2. NOT evaluator function (scoring or any other function):
679
+ # a. with an entry in TERADATAML_VALIB_MULTIOUTPUT_ATTR_MAP,
680
+ # process table in the variable "table_arg_names".
681
+ # b. without an entry in TERADATAML_VALIB_MULTIOUTPUT_ATTR_MAP,
682
+ # process table as "result".
683
+ if self.__tdml_valib_name in self.__multioutput_attr_map:
684
+ evaluator_extensions = \
685
+ func_output_argument_map["evaluator_output_extensions"]
686
+ self.__process_output_extensions(table_name, evaluator_extensions)
687
+
688
+ elif self.__sql_func_name in self.__multioutput_attr_map:
689
+ out_var = \
690
+ self.__multioutput_attr_map[self.__sql_func_name][table_arg_names]
691
+ self.__dyn_cls_data_members[out_var] = table_name
692
+
693
+ else:
694
+ out_var = VC.DEFAULT_OUTPUT_VAR.value
695
+ self.__dyn_cls_data_members[out_var] = table_name
696
+
697
+ else:
698
+ # If function produces only one output table, but uses different argument name.
699
+ func_name = self.__get_output_attr_map_func_name()
700
+ out_var = self.__multioutput_attr_map[func_name][table_arg_names]
701
+ self.__dyn_cls_data_members[out_var] = table_name
702
+ else:
703
+ # Function produces multiple outputs.
704
+ for arg_name in table_arg_names:
705
+ # Generate a table name for each output and add the name to the dictionary
706
+ # for further processing and dynamic class creation.
707
+ out_tablename = self.__get_temp_table_name()
708
+ self.__process_dyn_cls_output_member(arg_name, out_tablename)
709
+ else:
710
+ # Let's use the default output table name argument "outputtablename".
711
+ self.__process_dyn_cls_output_member("outputtablename", out_tablename,
712
+ VC.DEFAULT_OUTPUT_VAR.value)
713
+
714
+ def __process_input_argument(self, df, database_arg_name, table_arg_name):
715
+ """
716
+ DESCRIPTION:
717
+ Function to process input argument(s).
718
+
719
+ PARAMETERS:
720
+ df:
721
+ Required Argument.
722
+ Specifies the input teradataml DataFrame.
723
+ Types: teradataml DataFrame
724
+
725
+ database_arg_name:
726
+ Required Argument.
727
+ Specifies the name of the database argument.
728
+ Types: String
729
+
730
+ table_arg_name:
731
+ Required Argument.
732
+ Specifies the name of the table argument.
733
+ Types: String
734
+
735
+ RETURNS:
736
+ None.
737
+
738
+ RAISES:
739
+ None.
740
+
741
+ EXAMPLES:
742
+ self.__process_input_argument(df, "db", "table")
743
+ """
744
+ # Assuming that df._table_name always contains FQDN.
745
+ db_name = UtilFuncs()._get_db_name_from_dataframe(df)
746
+
747
+ self.__generate_valib_sql_argument_syntax(db_name, database_arg_name)
748
+ self.__extract_db_tbl_name(df._table_name, table_arg_name, remove_quotes=True)
749
+
750
+ def __process_other_arguments(self, **kwargs):
751
+ """
752
+ DESCRIPTION:
753
+ Function to process other arguments.
754
+
755
+ PARAMETERS:
756
+ kwargs:
757
+ Specifies the keyword arguments passed to a function.
758
+
759
+ RETURNS:
760
+ None.
761
+
762
+ RAISES:
763
+ None.
764
+
765
+ EXAMPLES:
766
+ self.__process_other_arguments(arg1="string", arg2="db", arg3=2)
767
+ """
768
+ # Argument name dictionary.
769
+ function_arguments = VC.TERADATAML_VALIB_FUNCTION_ARGUMENT_MAP.value
770
+ try:
771
+ func_arg_mapper = function_arguments[self.__sql_func_name]
772
+ except:
773
+ func_arg_mapper = None
774
+
775
+ # Input argument name mapper extracted from VALIB_FUNCTION_MULTIINPUT_ARGUMENT_MAP.
776
+ input_arguments = VC.VALIB_FUNCTION_MULTIINPUT_ARGUMENT_MAP.value
777
+ try:
778
+ func_input_arg_mapper = input_arguments[self.__sql_func_name]
779
+ input_handling_required = True
780
+ except:
781
+ func_input_arg_mapper = None
782
+ input_handling_required = False
783
+
784
+ for arg in kwargs:
785
+ arg_notin_arg_mapper = func_arg_mapper is not None and arg not in func_arg_mapper
786
+ # Raise error if incorrect argument is passed.
787
+ error_msg = "{0}() got an unexpected keyword argument '{1}'".\
788
+ format(self.__tdml_valib_name, arg)
789
+ if input_handling_required:
790
+ if arg_notin_arg_mapper and arg not in func_input_arg_mapper:
791
+ raise TypeError(error_msg)
792
+ else:
793
+ if arg_notin_arg_mapper:
794
+ raise TypeError(error_msg)
795
+
796
+ # Arguments to ignore and the once which will not be processed.
797
+ if arg.lower() in VC.IGNORE_ARGUMENTS.value:
798
+ if arg.lower() == "outputstyle":
799
+ # If user has passed an argument "outputstyle", then we will ignore
800
+ # user value and then create a table as final outcome.
801
+ self.__generate_valib_sql_argument_syntax("table", "outputstyle")
802
+
803
+ # Other arguments mentioned in 'ValibConstants.IGNORE_ARGUMENTS' will be ignored.
804
+ continue
805
+
806
+ # Pop each argument from kwargs.
807
+ arg_value = kwargs.get(arg)
808
+
809
+ if input_handling_required and arg in func_input_arg_mapper:
810
+ # Argument provided is an input argument.
811
+ # Let's get the names of the database and table arguments for this arg.
812
+ self.__process_input_argument(df=arg_value,
813
+ database_arg_name=
814
+ func_input_arg_mapper[arg]["database_arg"],
815
+ table_arg_name=
816
+ func_input_arg_mapper[arg]["table_arg"])
817
+ else:
818
+ # Get the SQL argument name.
819
+ arg_name = func_arg_mapper[arg] if isinstance(func_arg_mapper, dict) else arg
820
+ self.__generate_valib_sql_argument_syntax(arg_value, arg_name)
821
+
822
+ def __process_val_transformations(self, transformations, tf_tdml_arg, tf_sql_arg, data,
823
+ data_arg="data"):
824
+ """
825
+ DESCRIPTION:
826
+ Internal function to process the transformation(s) and generate the SQL
827
+ argument syntax for the argument.
828
+
829
+ PARAMETERS:
830
+ transformations:
831
+ Required Argument.
832
+ Specifies the transformation(s) to be used for variable transformation.
833
+ Types: FillNa
834
+
835
+ tf_tdml_arg:
836
+ Required Argument.
837
+ Specifies the name of the argument that accepts transformation(s)
838
+ to be used for variable transformation.
839
+ Types: str
840
+
841
+ tf_sql_arg:
842
+ Required Argument.
843
+ Specifies the SQL argument name used for the transformation(s).
844
+ Types: str
845
+
846
+ data:
847
+ Required Argument.
848
+ Specifies the input teradataml DataFrame used for Variable Transformation.
849
+ Types: teradataml DataFrame
850
+
851
+ data_arg:
852
+ Optional Argument.
853
+ Specifies the name of the input data argument.
854
+ Default Value: "data"
855
+ Types: string
856
+
857
+ RETURNS:
858
+ None
859
+
860
+ RAISES:
861
+ ValueError
862
+
863
+ EXAMPLES:
864
+ self.__process_val_transformations(fillna, "fillna", "nullreplacement", data)
865
+ """
866
+ # A list to contains SQL syntax of each transformation.
867
+ tf_syntax_elements = []
868
+
869
+ for tf in UtilFuncs._as_list(transformations):
870
+ # Validates the existence of the columns used for transformation
871
+ # in the input data.
872
+ if tf.columns is not None:
873
+ _Validators._validate_dataframe_has_argument_columns(
874
+ UtilFuncs._as_list(tf.columns), "columns in {}".format(tf_tdml_arg), data,
875
+ data_arg)
876
+ tf_syntax_elements.append(tf._val_sql_syntax())
877
+
878
+ # Add an entry for transformation in SQL argument syntax.
879
+ self.__generate_valib_sql_argument_syntax(arg="".join(tf_syntax_elements),
880
+ arg_name=tf_sql_arg)
881
+
882
+ def _execute_valib_function(self,
883
+ skip_data_arg_processing=False,
884
+ skip_output_arg_processing=False,
885
+ skip_other_arg_processing=False,
886
+ skip_func_output_processing=False,
887
+ skip_dyn_cls_processing=False,
888
+ **kwargs):
889
+ """
890
+ DESCRIPTION:
891
+ Function processes arguments and executes the VALIB function.
892
+
893
+ PARAMETERS:
894
+ skip_data_arg_processing:
895
+ Optional Argument.
896
+ Specifies whether to skip data argument processing or not.
897
+ Default is to process the data argument.
898
+ When set to True, caller should make sure to process "data" argument and
899
+ pass SQL argument and values as part of kwargs to this function.
900
+ Default Value: False
901
+ Types: bool
902
+
903
+ skip_output_arg_processing:
904
+ Optional Argument.
905
+ Specifies whether to skip output argument processing or not.
906
+ Default is to process the output arguments.
907
+ When set to True, caller should make sure to process all output arguments and
908
+ pass equivalent SQL argument and values as part of kwargs to this function.
909
+ Default Value: False
910
+ Types: bool
911
+
912
+ skip_other_arg_processing:
913
+ Optional Argument.
914
+ Specifies whether to skip other argument processing or not.
915
+ Default is to process the other arguments, i.e., kwargs.
916
+ When set to True, caller should make sure to process all other arguments are
917
+ processed internally by the function.
918
+ Default Value: False
919
+ Types: bool
920
+
921
+ skip_func_output_processing:
922
+ Optional Argument.
923
+ Specifies whether to skip function output processing or not.
924
+ Default is to process the same.
925
+ When set to True, caller should make sure to process function output
926
+ arguments. Generally, when this argument is set to True, one must also
927
+ set "skip_dyn_cls_processing" to True.
928
+ Default Value: False
929
+ Types: bool
930
+
931
+ skip_dyn_cls_processing:
932
+ Optional Argument.
933
+ Specifies whether to skip dynamic class processing or not.
934
+ Default is to process the dynamic class, where it creates a dynamic
935
+ class and an instance of the same and returns the same.
936
+ When set to True, caller should make sure to process dynamic class and
937
+ return an instance of the same.
938
+ arguments.
939
+ Default Value: False
940
+ Types: bool
941
+
942
+ kwargs:
943
+ Specifies the keyword arguments passed to a function.
944
+
945
+ RETURNS:
946
+ None.
947
+
948
+ RAISES:
949
+ TeradataMlException, TypeError
950
+
951
+ EXAMPLES:
952
+ self._execute_valib_function(arg1="string", arg2="db", arg3=2)
953
+ """
954
+ if not skip_data_arg_processing:
955
+ # Process data argument.
956
+ try:
957
+ data = kwargs.pop("data")
958
+ if not isinstance(data, DataFrame):
959
+ raise TypeError(Messages.get_message(MessageCodes.UNSUPPORTED_DATATYPE,
960
+ ["data"], ["teradataml DataFrame"]))
961
+ self.__process_input_argument(data, "database", "tablename")
962
+ except KeyError:
963
+ # Raise TeradataMlException.
964
+ error_msg = Messages.get_message(MessageCodes.MISSING_ARGS, ["data"])
965
+ raise TeradataMlException(error_msg, MessageCodes.MISSING_ARGS)
966
+
967
+ if not skip_output_arg_processing:
968
+ # Process output arguments.
969
+ self.__process_output_argument()
970
+
971
+ if not skip_other_arg_processing:
972
+ # Process other arguments.
973
+ self.__process_other_arguments(**kwargs)
974
+
975
+ # If the function is evaluator function, add SQL argument "scoringmethod=evaluate".
976
+ if self.__tdml_valib_name in self.__multioutput_attr_map:
977
+ scoring_method_values = VC.SCORING_METHOD_ARG_VALUE.value
978
+ score_method = "non-default"
979
+ if kwargs.get("gen_sql_only", False):
980
+ score_method = "default"
981
+ self.__generate_valib_sql_argument_syntax(scoring_method_values[score_method],
982
+ VC.SCORING_METHOD_ARG_NAME.value)
983
+
984
+ # Generate the query.
985
+ exec_out = self.__generate_execute_sp_query()
986
+
987
+ if not skip_func_output_processing:
988
+ # Process the function output DataFrames.
989
+ self.__process_func_outputs(query_exec_output=exec_out)
990
+
991
+ if not skip_dyn_cls_processing:
992
+ # Generate the dynamic class and create a object of the
993
+ # same and return the same.
994
+ return self.__create_dynamic_valib_class()
995
+
996
+ def Association(self, data, group_column, item_column, **kwargs):
997
+ """
998
+ Please refer to Teradata Python Function Reference guide for Documentation.
999
+ Reference guide can be found at: https://docs.teradata.com
1000
+ """
1001
+ # Add required arguments, i.e., positional arguments to kwargs for
1002
+ # further processing.
1003
+ kwargs["data"] = data
1004
+ kwargs["group_column"] = group_column
1005
+ kwargs["item_column"] = item_column
1006
+
1007
+ # Get a new instance of _VALIB() class for function execution.
1008
+ valib_inst = self.__get_valib_instance("Association")
1009
+
1010
+ # Add all arguments to dynamic class as data members.
1011
+ valib_inst.__dyn_cls_data_members = {}
1012
+ valib_inst.__dyn_cls_data_members.update(kwargs)
1013
+
1014
+ # Get the value of "combinations", "no_support_results", "process_type"
1015
+ # parameters from kwargs.
1016
+ # These three parameters decide the number of output table generated.
1017
+ combinations = kwargs.get("combinations", 11)
1018
+ no_support_results = kwargs.get("no_support_results", True)
1019
+ process_type = kwargs.get("process_type", "all")
1020
+ support_result_prefix = kwargs.pop("support_result_prefix", "ml__valib_association")
1021
+
1022
+ # Support table information based on the combinations.
1023
+ # This dict contains a list of names of the support output tables those will
1024
+ # be generated for a specific combination.
1025
+ combinations_support_tables = {
1026
+ 11: ["_0_TO_1_SUPPORT", "_1_TO_1_SUPPORT"],
1027
+ 12: ["_0_TO_1_SUPPORT", "_1_TO_1_SUPPORT", "_2_TO_1_SUPPORT"],
1028
+ 13: ["_0_TO_1_SUPPORT", "_2_TO_1_SUPPORT", "_3_TO_1_SUPPORT"],
1029
+ 14: ["_0_TO_1_SUPPORT", "_3_TO_1_SUPPORT", "_4_TO_1_SUPPORT"],
1030
+ 21: ["_0_TO_1_SUPPORT", "_1_TO_1_SUPPORT", "_2_TO_1_SUPPORT"],
1031
+ 22: ["_0_TO_1_SUPPORT", "_1_TO_1_SUPPORT", "_2_TO_2_SUPPORT"],
1032
+ 23: ["_0_TO_1_SUPPORT", "_1_TO_1_SUPPORT", "_2_TO_1_SUPPORT", "_3_TO_2_SUPPORT"],
1033
+ 31: ["_0_TO_1_SUPPORT", "_2_TO_1_SUPPORT", "_3_TO_1_SUPPORT"],
1034
+ 32: ["_0_TO_1_SUPPORT", "_1_TO_1_SUPPORT", "_2_TO_1_SUPPORT", "_3_TO_2_SUPPORT"],
1035
+ 41: ["_0_TO_1_SUPPORT", "_3_TO_1_SUPPORT", "_4_TO_1_SUPPORT"],
1036
+ }
1037
+
1038
+ # This dict contains name of the support output table mapped to its corresponding
1039
+ # exposed output teradataml DataFrame name.
1040
+ support_result_names = {
1041
+ "_0_TO_1_SUPPORT": "support_result_01",
1042
+ "_1_TO_1_SUPPORT": "support_result_11",
1043
+ "_2_TO_1_SUPPORT": "support_result_21",
1044
+ "_3_TO_1_SUPPORT": "support_result_31",
1045
+ "_4_TO_1_SUPPORT": "support_result_41",
1046
+ "_2_TO_2_SUPPORT": "support_result_22",
1047
+ "_3_TO_2_SUPPORT": "support_result_32",
1048
+ }
1049
+
1050
+ # Association rules produces various outputs. It generates:
1051
+ # 1. Support Tables
1052
+ # 2. Affinity Tables.
1053
+
1054
+ # Support tables are generated when one of the following conditions occur:
1055
+ # 1. When "process_type" is 'support'. Then only two tables are generated as follows:
1056
+ # a. <support_result_prefix>_1_ITEM_SUPPORT
1057
+ # b. <support_result_prefix>_group_count
1058
+ # 2. When "no_support_results" is set to False.
1059
+ # a. Multiple support table are generated based on the values passed
1060
+ # to "combinations".
1061
+ # b. A GROUP COUNT support table is also generated.
1062
+
1063
+ # Here are some details on how and what outputs are generated:
1064
+ # 1. When "process_type" is 'support', then:
1065
+ # a. No affinity tables are generated.
1066
+ # b. Only two support tables are generated, which are named as:
1067
+ # i. <support_result_prefix>_1_ITEM_SUPPORT
1068
+ # ii. <support_result_prefix>_group_count
1069
+ # 2. When "no_support_results" is set to False.
1070
+ # a. Affinity tables are generated.
1071
+ # b. Multiple support table are generated, along with GROUP COUNT table.
1072
+ # 3. When "no_support_results" is set to True.
1073
+ # a. Only affinity tables are generated.
1074
+ # b. No support tables are generated.
1075
+
1076
+ # Affinity tables are generated based on the values passed to "combinations"
1077
+ # parameter. Number of outputs generated is equal to the number of values passed
1078
+ # to "combinations".
1079
+ # Here are some cases to understand about this processing:
1080
+ # 1. If "combinations" parameter is not passed, i.e., is None, then only
1081
+ # one output table is generated.
1082
+ # 2. If only one value is passed to "combinations" parameter, then only
1083
+ # one output table is generated.
1084
+ # 3. If only one value is passed in a list to "combinations" parameter,
1085
+ # then only one output table is generated.
1086
+ # 4. If list with multiple values is passed to "combinations" parameter,
1087
+ # then number of output tables generated is equal to length of the list.
1088
+ # 5. If empty list is passed to "combinations" parameter, then SQL will
1089
+ # take care of throwing appropriate exceptions.
1090
+
1091
+ # Let's add the entry for the function in multi-output attribute mapper
1092
+ # as function produces multiple outputs.
1093
+ valib_inst.__multioutput_attr_map[valib_inst.__sql_func_name] = {}
1094
+
1095
+ # To process output table parameters:
1096
+ # 1. Let's generate the output database name parameter first.
1097
+ # 2. Then generate the output table parameter.
1098
+ # 3. Once the arguments and it's values are generated, call
1099
+ # _execute_valib_function() and make sure to skip the
1100
+ # output argument processing only.
1101
+
1102
+ # Let's first get the temp table name to be used for creating output
1103
+ # tables. Extract the database name and table name which will be used
1104
+ # as follows:
1105
+ # 1. Database name will be passed to SQL argument 'outputdatabase'.
1106
+ # 2. Table name extracted will be used to generate the values for
1107
+ # SQL argument 'outputtablename'.
1108
+ out_tablename = valib_inst.__get_temp_table_name()
1109
+
1110
+ # Add an entry for "outputdatabase" in SQL argument syntax.
1111
+ valib_inst.__db_name = valib_inst.__extract_db_tbl_name(table_name=out_tablename,
1112
+ arg_name="outputdatabase",
1113
+ extract_table=False,
1114
+ remove_quotes=True)
1115
+
1116
+ __table_name = UtilFuncs._extract_table_name(out_tablename).replace("\"", "")
1117
+
1118
+ # Let's start processing the output table argument.
1119
+ # A list containing the output table name argument values.
1120
+ output_table_names = []
1121
+
1122
+ # For Association we will create two new variables to store the output DataFrame
1123
+ # attribute names for support tables and affinity tables.
1124
+ #
1125
+ # This is done specifically for Association function as output attribute names
1126
+ # will vary based on the input values for "combinations" parameter. Thus, it will
1127
+ # help user to know the names of the output DataFrame attributes generated for
1128
+ # a specific function call.
1129
+ sup_table_attrs = "support_outputs"
1130
+ aff_table_attrs = "affinity_outputs"
1131
+ valib_inst.__dyn_cls_data_members[sup_table_attrs] = []
1132
+ valib_inst.__dyn_cls_data_members[aff_table_attrs] = []
1133
+
1134
+ # Before we proceed here is a common function which will be used for
1135
+ # processing support tables.
1136
+ def process_support_tables(out_var, support_table_name):
1137
+ """ Internal function to process support tables. """
1138
+ valib_inst.__dyn_cls_data_members[out_var] = support_table_name
1139
+ valib_inst.__multioutput_attr_map[valib_inst.__sql_func_name][out_var] = out_var
1140
+ if out_var not in valib_inst.__dyn_cls_data_members[sup_table_attrs]:
1141
+ valib_inst.__dyn_cls_data_members[sup_table_attrs].append(out_var)
1142
+ GarbageCollector._add_to_garbagecollector(support_table_name,
1143
+ TeradataConstants.TERADATA_TABLE)
1144
+
1145
+ # GROUP_COUNT support table will be generated, when "process_type" is 'support'
1146
+ # or "no_support_results" is set to False.
1147
+ # Add the entry for the table in the output mappers.
1148
+ if process_type.lower() == "support" or not no_support_results:
1149
+ # Output attribute name of the group count table is "group_count".
1150
+ out_var = "group_count"
1151
+ grp_cnt_table_name = "{}_group_count".format(support_result_prefix)
1152
+ process_support_tables(out_var=out_var, support_table_name=grp_cnt_table_name)
1153
+
1154
+ # Let's process the other support tables and affinity tables.
1155
+ if process_type.lower() == "support":
1156
+ # We are here that means only 1 item support table along with group count
1157
+ # support table is generated. Group count table entry is already added.
1158
+ # Output attribute name of the 1 item support table is "support_1_item".
1159
+ out_var = "support_1_item"
1160
+ sup_tbl_name = "{}_1_ITEM_SUPPORT".format(support_result_prefix)
1161
+ process_support_tables(out_var=out_var, support_table_name=sup_tbl_name)
1162
+
1163
+ # Value for output table does not matter when "process_type" is 'support'.
1164
+ # No affinity tables are generated.
1165
+ output_table_names.append(__table_name)
1166
+ else:
1167
+ # Affinity tables and other support tables are generated only when "process_type"
1168
+ # is not equal to 'support'.
1169
+
1170
+ # Process the affinity tables.
1171
+ for combination in UtilFuncs._as_list(combinations):
1172
+ # Generate the new output table name.
1173
+ extension = "_{}".format(combination)
1174
+ out_var = "{}{}".format(VC.DEFAULT_OUTPUT_VAR.value, extension)
1175
+ new_tbl_name = valib_inst.__get_table_name_with_extension(table_name=__table_name,
1176
+ extension=extension)
1177
+
1178
+ # Add an entry for affinity output in mappers, which will produce the
1179
+ # output DataFrames.
1180
+ valib_inst.__dyn_cls_data_members[out_var] = new_tbl_name
1181
+ valib_inst.__multioutput_attr_map[valib_inst.__sql_func_name][out_var] = out_var
1182
+ valib_inst.__dyn_cls_data_members[aff_table_attrs].append(out_var)
1183
+
1184
+ # Add the name of the output affinity table, which will be used as value
1185
+ # for the "outputtablename" argument.
1186
+ output_table_names.append(new_tbl_name)
1187
+
1188
+ if not no_support_results:
1189
+ # Other support tables are also generated and are not dropped in the end
1190
+ # by Vantage, hence we will create output DataFrames for each one of those.
1191
+ # Let's process all those support tables.
1192
+ # 'combinations_support_tables' contains a name of list of support
1193
+ # output tables those will be generated for a specific combination.
1194
+ for sup_postfix in combinations_support_tables[combination]:
1195
+ sup_out_var = support_result_names[sup_postfix]
1196
+ sup_tbl_name = "{}{}".format(support_result_prefix, sup_postfix)
1197
+ process_support_tables(out_var=sup_out_var, support_table_name=sup_tbl_name)
1198
+
1199
+ # Add an entry for "outputtablename" in SQL argument syntax.
1200
+ valib_inst.__generate_valib_sql_argument_syntax(arg=output_table_names,
1201
+ arg_name="outputtablename")
1202
+
1203
+ # Execute the function, skip output argument and output dataframe processing.
1204
+ return valib_inst._execute_valib_function(skip_output_arg_processing=True,
1205
+ support_result_prefix=support_result_prefix,
1206
+ **kwargs)
1207
+
1208
+ def KMeans(self, data, columns, centers, **kwargs):
1209
+ """
1210
+ Please refer to Teradata Python Function Reference guide for Documentation.
1211
+ Reference guide can be found at: https://docs.teradata.com
1212
+ """
1213
+ # Add the required arguments to kwargs for further processing.
1214
+ kwargs["data"] = data
1215
+ kwargs["columns"] = columns
1216
+ kwargs["centers"] = centers
1217
+
1218
+ # Get a new instance of _VALIB() class for function execution.
1219
+ new_valib_obj = self.__get_valib_instance("KMeans")
1220
+
1221
+ # Add all arguments to dynamic class as data members.
1222
+ new_valib_obj.__dyn_cls_data_members = {}
1223
+ new_valib_obj.__dyn_cls_data_members.update(kwargs)
1224
+
1225
+ centroids_data = kwargs.pop("centroids_data", None)
1226
+
1227
+ # If there is no "centroids_data", do normal processing.
1228
+ if centroids_data is None:
1229
+ return new_valib_obj._execute_valib_function(**kwargs)
1230
+
1231
+ # If "centroids_data" is provided, special handling for output argument is needed.
1232
+ if not isinstance(centroids_data, DataFrame):
1233
+ raise TypeError(Messages.get_message(MessageCodes.UNSUPPORTED_DATATYPE,
1234
+ ["centroids_data"], ["teradataml DataFrame"]))
1235
+
1236
+ # The following things has to be handled:
1237
+ # 1. The table in "centroids_data" is updated with new centroids and the same table
1238
+ # is the result (new output) table.
1239
+ # Extract database name and add it to Valib SQL argument syntax.
1240
+ new_valib_obj.__db_name = new_valib_obj.__extract_db_tbl_name(
1241
+ table_name=centroids_data._table_name,
1242
+ arg_name="outputdatabase",
1243
+ extract_table=False,
1244
+ remove_quotes=True)
1245
+
1246
+ # Extract table name and add it to Valib SQL argument syntax.
1247
+ table_name = new_valib_obj.__extract_db_tbl_name(table_name=centroids_data._table_name,
1248
+ arg_name="outputtablename",
1249
+ extract_table=True,
1250
+ remove_quotes=True)
1251
+
1252
+ # Since output argument processing will be skipped, table name is added in dynamic
1253
+ # class data member "result", which will be replaced with DataFrame while processing
1254
+ # function outputs in the function _execute_valib_function.
1255
+ new_valib_obj.__dyn_cls_data_members[VC.DEFAULT_OUTPUT_VAR.value] = table_name
1256
+
1257
+ # 2. Execute the valib function call based on the arguments along with newly added
1258
+ # the SQL argument 'continuation=true' and process output and other arguments
1259
+ # related information.
1260
+ return new_valib_obj._execute_valib_function(skip_output_arg_processing=True,
1261
+ continuation=True,
1262
+ **kwargs)
1263
+
1264
+ def DecisionTreePredict(self, data, model, **kwargs):
1265
+ """
1266
+ Please refer to Teradata Python Function Reference guide for Documentation.
1267
+ Reference guide can be found at: https://docs.teradata.com
1268
+ """
1269
+ # Add the required arguments to kwargs for further processing.
1270
+ kwargs["data"] = data
1271
+ kwargs["model"] = model
1272
+
1273
+ # Get a new instance of _VALIB() class for function execution.
1274
+ new_valib_obj = self.__get_valib_instance("DecisionTreePredict")
1275
+
1276
+ # Add all arguments to dynamic class as data members.
1277
+ new_valib_obj.__dyn_cls_data_members = {}
1278
+ new_valib_obj.__dyn_cls_data_members.update(kwargs)
1279
+
1280
+ return new_valib_obj._execute_valib_function(profile=True, **kwargs)
1281
+
1282
+ def DecisionTreeEvaluator(self, data, model, **kwargs):
1283
+ """
1284
+ Please refer to Teradata Python Function Reference guide for Documentation.
1285
+ Reference guide can be found at: https://docs.teradata.com
1286
+ """
1287
+ # Add the required arguments to kwargs for further processing.
1288
+ kwargs["data"] = data
1289
+ kwargs["model"] = model
1290
+
1291
+ # Get a new instance of _VALIB() class for function execution.
1292
+ new_valib_obj = self.__get_valib_instance("DecisionTreeEvaluator")
1293
+
1294
+ # Add all arguments to dynamic class as data members.
1295
+ new_valib_obj.__dyn_cls_data_members = {}
1296
+ new_valib_obj.__dyn_cls_data_members.update(kwargs)
1297
+
1298
+ return new_valib_obj._execute_valib_function(profile=True, **kwargs)
1299
+
1300
+ def __validate_overlap_arguments(self, data_val, data_arg, columns_val, columns_arg,
1301
+ is_optional = True):
1302
+ """
1303
+ DESCRIPTION:
1304
+ Internal function to validate pair of data{i} and columns{i} arguments.
1305
+
1306
+ PARAMETERS:
1307
+ data_val:
1308
+ Required Argument.
1309
+ Specifies the teradataml Dataframe containing input data.
1310
+ Types: teradataml Dataframe
1311
+
1312
+ data_arg:
1313
+ Required Argument.
1314
+ Specifies the argument name for the teradataml DataFrame specified in the
1315
+ argument "data_val".
1316
+ Types: str
1317
+
1318
+ columns_val:
1319
+ Required Argument.
1320
+ Specifies the list of column(s) present in the DataFrame "data_val".
1321
+ Types: str OR list of strings (str)
1322
+
1323
+ columns_arg:
1324
+ Required Argument.
1325
+ Specifies the argument name for the columns specified in the
1326
+ argument "columns_val".
1327
+ Types: str
1328
+
1329
+ is_optional:
1330
+ Optional Argument.
1331
+ Specifies whether the values in arguments "data_val" and "columns_val" are
1332
+ optional in Overlap() function.
1333
+ If True, the values in these arguments should be validated as optional arguments
1334
+ in Overlap() function. Otherwise, these values are considered as required
1335
+ arguments.
1336
+ Default Value: True
1337
+ Types: bool
1338
+
1339
+ RETURNS:
1340
+ None.
1341
+
1342
+ EXAMPLES:
1343
+ valib.__validate_overlap_arguments(data_val=data, data_arg="data",
1344
+ columns_val=columns, columns_arg="columns",
1345
+ is_optional=False)
1346
+ """
1347
+ # Create argument information matrix to do parameter checking.
1348
+ __arg_info_matrix = []
1349
+ __arg_info_matrix.append([data_arg, data_val, is_optional, (DataFrame)])
1350
+ __arg_info_matrix.append([columns_arg, columns_val, is_optional, (str, list), True])
1351
+
1352
+ _Validators._validate_function_arguments(arg_list=__arg_info_matrix)
1353
+
1354
+ _Validators._validate_dataframe_has_argument_columns(data=data_val,
1355
+ data_arg=data_arg,
1356
+ columns=columns_val,
1357
+ column_arg=columns_arg,
1358
+ is_partition_arg=False)
1359
+
1360
+ # TODO- Delete LogRegPredict function definition if Jira TDAF-7867 is resolved.
1361
+ def LogRegPredict(self, **kwargs):
1362
+ """
1363
+ Please refer to Teradata Python Function Reference guide for Documentation.
1364
+ Reference guide can be found at: https://docs.teradata.com
1365
+ """
1366
+
1367
+ # Get a new instance of _VALIB() class for function execution.
1368
+ valib_inst = self.__get_valib_instance("LogRegPredict")
1369
+
1370
+ # Add all arguments to dynamic class as data members.
1371
+ valib_inst.__dyn_cls_data_members = {}
1372
+ valib_inst.__dyn_cls_data_members.update(kwargs)
1373
+
1374
+ # Setting scoringmethod to "score" if gen_sql_only is True.
1375
+ gen_sql_only = kwargs.get("gen_sql_only", False)
1376
+ if gen_sql_only:
1377
+ valib_inst.__generate_valib_sql_argument_syntax(arg="score",
1378
+ arg_name="scoringmethod")
1379
+
1380
+ return valib_inst._execute_valib_function(**kwargs)
1381
+
1382
+ def Overlap(self, data1, columns1, **kwargs):
1383
+ """
1384
+ Please refer to Teradata Python Function Reference guide for Documentation.
1385
+ Reference guide can be found at: https://docs.teradata.com
1386
+ """
1387
+ # Validate the required arguments - data1 and columns1.
1388
+ # Other arguments are validated as and when they are being processed.
1389
+ self.__validate_overlap_arguments(data_val=data1, data_arg="data1",
1390
+ columns_val=columns1, columns_arg="columns1",
1391
+ is_optional=False)
1392
+
1393
+ kwargs["data1"] = data1
1394
+ kwargs["columns1"] = columns1
1395
+
1396
+ # Each columns argument can take string or list of strings.
1397
+ # Ensure all columns related arguments to be list of one or more strings.
1398
+ columns1 = UtilFuncs._as_list(columns1)
1399
+
1400
+ valib_inst = self.__get_valib_instance("Overlap")
1401
+
1402
+ # Add all arguments to dynamic class as data members.
1403
+ valib_inst.__dyn_cls_data_members = {}
1404
+ valib_inst.__dyn_cls_data_members.update(kwargs)
1405
+
1406
+ parse_kwargs = True
1407
+ ind = 1
1408
+ database_names = []
1409
+ table_names = []
1410
+ column_names_df = []
1411
+
1412
+ """
1413
+ The argument names are data1, data2, ..., dataN and columns1, columns2, ... columnsN
1414
+ corresponding to each data arguments.
1415
+ Note:
1416
+ 1. The number of data arguments should be same as that of columns related arguments.
1417
+ 2. The number of columns in each of the columns related arguments (including
1418
+ "columns1" argument) should be same.
1419
+ """
1420
+ while parse_kwargs:
1421
+ data_arg_name = "data{}".format(str(ind))
1422
+ data_arg_value = kwargs.pop(data_arg_name, None)
1423
+ if data_arg_value is None:
1424
+ parse_kwargs = False
1425
+ else:
1426
+ columns_arg_name = "columns{}".format(str(ind))
1427
+ columns_arg_value = kwargs.pop(columns_arg_name, None)
1428
+
1429
+ # Raise error if dataN is present and columnsN is not present.
1430
+ if columns_arg_value is None:
1431
+ err_ = Messages.get_message(MessageCodes.DEPENDENT_ARG_MISSING,
1432
+ columns_arg_name, data_arg_name)
1433
+ raise TeradataMlException(err_, MessageCodes.DEPENDENT_ARG_MISSING)
1434
+
1435
+ self.__validate_overlap_arguments(data_val=data_arg_value,
1436
+ data_arg=data_arg_name,
1437
+ columns_val=columns_arg_value,
1438
+ columns_arg=columns_arg_name)
1439
+
1440
+ # Each columns argument can take string or list of strings.
1441
+ # Ensure all columns related arguments to be list of one or more strings.
1442
+ columns_arg_value = UtilFuncs._as_list(columns_arg_value)
1443
+
1444
+ if len(columns_arg_value) != len(columns1):
1445
+ err_ = Messages.get_message(MessageCodes.INVALID_LENGTH_ARGS,
1446
+ "'columns1', 'columns2', ..., 'columnsN'")
1447
+ raise TeradataMlException(err_ ,MessageCodes.INVALID_LENGTH_ARGS)
1448
+
1449
+ # If all the validations are done,
1450
+ # 1. extract database names
1451
+ # 2. extract table names
1452
+ # 3. generate SQL syntax for 'columns' argument.
1453
+ database_names.append(UtilFuncs()._get_db_name_from_dataframe(data_arg_value))
1454
+ __table_name = UtilFuncs._extract_table_name(data_arg_value._table_name).\
1455
+ replace("\"", "")
1456
+ table_names.append(__table_name)
1457
+ column_names_df.append("{" + ",".join(columns_arg_value) + "}")
1458
+
1459
+ ind = ind + 1
1460
+
1461
+ # gensqlonly implementation.
1462
+ gen_sql_only = kwargs.pop("gen_sql_only", False)
1463
+ if gen_sql_only:
1464
+ valib_inst.__generate_valib_sql_argument_syntax(arg=str(gen_sql_only),
1465
+ arg_name="gensqlonly")
1466
+
1467
+ # Raise error if there are additional arguments.
1468
+ if len(kwargs) != 0:
1469
+ err_ = "The keyword arguments for Overlap() should have data1, data2, ..., dataN " \
1470
+ "and corresponding columns1, columns2, ..., columnsN. " \
1471
+ "Found additional arguments {}."
1472
+ raise TypeError(err_.format(list(kwargs.keys())))
1473
+
1474
+ # Generate SQL syntax for SQL arguments database, tablename and columns.
1475
+ valib_inst.__generate_valib_sql_argument_syntax(arg=",".join(database_names),
1476
+ arg_name="database")
1477
+ valib_inst.__generate_valib_sql_argument_syntax(arg=",".join(table_names),
1478
+ arg_name="tablename")
1479
+ valib_inst.__generate_valib_sql_argument_syntax(arg=",".join(column_names_df),
1480
+ arg_name="columns")
1481
+
1482
+ return valib_inst._execute_valib_function(skip_data_arg_processing=True,
1483
+ skip_other_arg_processing=True)
1484
+
1485
+ def Transform(self, data, bins=None, derive=None, one_hot_encode=None, fillna=None,
1486
+ label_encode=None, rescale=None, retain=None, sigmoid=None, zscore=None,
1487
+ **kwargs):
1488
+ """
1489
+ Please refer to Teradata Python Function Reference guide for Documentation.
1490
+ Reference guide can be found at: https://docs.teradata.com
1491
+ """
1492
+ # Argument Validations
1493
+ # Note:
1494
+ # Commented code is kept for future purpose. Once all commented code is updated
1495
+ # note will be removed as well.
1496
+ arg_info_matrix = []
1497
+ arg_info_matrix.append(["data", data, False, (DataFrame)])
1498
+ arg_info_matrix.append(["bins", bins, True, (Binning, list)])
1499
+ arg_info_matrix.append(["derive", derive, True, (Derive, list)])
1500
+ arg_info_matrix.append(["one_hot_encode", one_hot_encode, True, (OneHotEncoder, list)])
1501
+ arg_info_matrix.append(["fillna", fillna, True, (FillNa, list)])
1502
+ arg_info_matrix.append(["rescale", rescale, True, (MinMaxScalar, list)])
1503
+ arg_info_matrix.append(["label_encode", label_encode, True, (LabelEncoder, list)])
1504
+ arg_info_matrix.append(["retain", retain, True, (Retain, list)])
1505
+ arg_info_matrix.append(["sigmoid", sigmoid, True, (Sigmoid, list)])
1506
+ arg_info_matrix.append(["zscore", zscore, True, (ZScore, list)])
1507
+
1508
+ # Argument validations.
1509
+ _Validators._validate_function_arguments(arg_info_matrix)
1510
+
1511
+ # Add "data" to kwargs for further processing.
1512
+ kwargs["data"] = data
1513
+
1514
+ # Get a new instance of _VALIB() class for function execution.
1515
+ valib_inst = self.__get_valib_instance("Transform")
1516
+
1517
+ # Add all arguments to dynamic class as data members.
1518
+ valib_inst.__dyn_cls_data_members = {}
1519
+ valib_inst.__dyn_cls_data_members.update(kwargs)
1520
+ valib_inst.__dyn_cls_data_members["bins"] = bins
1521
+ valib_inst.__dyn_cls_data_members["derive"] = derive
1522
+ valib_inst.__dyn_cls_data_members["one_hot_encode"] = one_hot_encode
1523
+ valib_inst.__dyn_cls_data_members["fillna"] = fillna
1524
+ valib_inst.__dyn_cls_data_members["label_encode"] = label_encode
1525
+ valib_inst.__dyn_cls_data_members["rescale"] = rescale
1526
+ valib_inst.__dyn_cls_data_members["retain"] = retain
1527
+ valib_inst.__dyn_cls_data_members["sigmoid"] = sigmoid
1528
+ valib_inst.__dyn_cls_data_members["zscore"] = zscore
1529
+
1530
+ # Add "outputstyle" argument to generate output table.
1531
+ valib_inst.__generate_valib_sql_argument_syntax(arg="table", arg_name="outputstyle")
1532
+
1533
+ # Bin Coding Transformation
1534
+ if bins is not None:
1535
+ valib_inst.__process_val_transformations(bins, "bins", "bincode", data)
1536
+
1537
+ # Derive Transformation
1538
+ if derive is not None:
1539
+ valib_inst.__process_val_transformations(derive, "derive", "derive", data)
1540
+
1541
+ # OneHotEncoder Transformation
1542
+ if one_hot_encode is not None:
1543
+ valib_inst.__process_val_transformations(one_hot_encode, "one_hot_encode", "designcode", data)
1544
+
1545
+ # Null Replacement Transformation
1546
+ if fillna is not None:
1547
+ valib_inst.__process_val_transformations(fillna, "fillna", "nullreplacement", data)
1548
+
1549
+ # LabelEncoder Transformation
1550
+ if label_encode is not None:
1551
+ valib_inst.__process_val_transformations(label_encode, "label_encode", "recode", data)
1552
+
1553
+ # MinMaxScalar Transformation
1554
+ if rescale is not None:
1555
+ valib_inst.__process_val_transformations(rescale, "rescale", "rescale", data)
1556
+
1557
+ # Retain Transformation
1558
+ if retain is not None:
1559
+ valib_inst.__process_val_transformations(retain, "retain", "retain", data)
1560
+
1561
+ # Sigmoid Transformation
1562
+ if sigmoid is not None:
1563
+ valib_inst.__process_val_transformations(sigmoid, "sigmoid", "sigmoid", data)
1564
+
1565
+ # ZScore Transformation
1566
+ if zscore is not None:
1567
+ valib_inst.__process_val_transformations(zscore, "zscore", "zscore", data)
1568
+
1569
+ # Execute the function, just do not process the output dataframes
1570
+ # and dynamic class creation for the function.
1571
+ return valib_inst._execute_valib_function(**kwargs)
1572
+
1573
+ def XmlToHtmlReport(self, data, analysis_type, **kwargs):
1574
+ """
1575
+ Please refer to Teradata Python Function Reference guide for Documentation.
1576
+ Reference guide can be found at: https://docs.teradata.com
1577
+ """
1578
+ # Add the required arguments to kwargs for further processing.
1579
+ kwargs["data"] = data
1580
+ kwargs["analysis_type"] = analysis_type
1581
+ # Dict that maps teradataml Class name to SQL name.
1582
+ tdml_classname_to_sql_name = {"DecisionTree": "decisiontree",
1583
+ "DecisionTreeEvaluator": "decisiontreescore",
1584
+ "PCA": "factor",
1585
+ "PCAEvaluator": "factorscore",
1586
+ "LinReg": "linear",
1587
+ "LogReg": "logistic",
1588
+ "LogRegEvaluator": "logisticscore"}
1589
+
1590
+ if analysis_type in tdml_classname_to_sql_name:
1591
+ kwargs["analysis_type"] = tdml_classname_to_sql_name[analysis_type]
1592
+
1593
+ # Get a new instance of _VALIB() class for function execution.
1594
+ new_valib_obj = self.__get_valib_instance("XmlToHtmlReport")
1595
+
1596
+ # Add all arguments to dynamic class as data members.
1597
+ new_valib_obj.__dyn_cls_data_members = {}
1598
+ new_valib_obj.__dyn_cls_data_members.update(kwargs)
1599
+
1600
+ return new_valib_obj._execute_valib_function(**kwargs)
1601
+
1602
+ # Define an object of type _VALIB, that will allow user to execute any VALIB function.
1603
+ valib = _VALIB()