teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +1864 -1640
- teradataml/__init__.py +70 -60
- teradataml/_version.py +11 -11
- teradataml/analytics/Transformations.py +2995 -2995
- teradataml/analytics/__init__.py +81 -83
- teradataml/analytics/analytic_function_executor.py +2013 -2010
- teradataml/analytics/analytic_query_generator.py +958 -958
- teradataml/analytics/byom/H2OPredict.py +514 -514
- teradataml/analytics/byom/PMMLPredict.py +437 -437
- teradataml/analytics/byom/__init__.py +14 -14
- teradataml/analytics/json_parser/__init__.py +130 -130
- teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
- teradataml/analytics/json_parser/json_store.py +191 -191
- teradataml/analytics/json_parser/metadata.py +1637 -1637
- teradataml/analytics/json_parser/utils.py +804 -803
- teradataml/analytics/meta_class.py +196 -196
- teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
- teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
- teradataml/analytics/sqle/__init__.py +97 -110
- teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
- teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
- teradataml/analytics/table_operator/__init__.py +10 -10
- teradataml/analytics/uaf/__init__.py +63 -63
- teradataml/analytics/utils.py +693 -692
- teradataml/analytics/valib.py +1603 -1600
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +1 -3
- teradataml/catalog/byom.py +1759 -1716
- teradataml/catalog/function_argument_mapper.py +859 -861
- teradataml/catalog/model_cataloging_utils.py +491 -1510
- teradataml/clients/pkce_client.py +481 -481
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/bulk_exposed_utils.py +111 -111
- teradataml/common/constants.py +1433 -1441
- teradataml/common/deprecations.py +160 -0
- teradataml/common/exceptions.py +73 -73
- teradataml/common/formula.py +742 -742
- teradataml/common/garbagecollector.py +592 -635
- teradataml/common/messagecodes.py +422 -431
- teradataml/common/messages.py +227 -231
- teradataml/common/sqlbundle.py +693 -693
- teradataml/common/td_coltype_code_to_tdtype.py +48 -48
- teradataml/common/utils.py +2418 -2500
- teradataml/common/warnings.py +25 -25
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/config/dummy_file1.cfg +4 -4
- teradataml/config/dummy_file2.cfg +2 -2
- teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
- teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
- teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
- teradataml/context/aed_context.py +217 -217
- teradataml/context/context.py +1071 -999
- teradataml/data/A_loan.csv +19 -19
- teradataml/data/BINARY_REALS_LEFT.csv +11 -11
- teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
- teradataml/data/B_loan.csv +49 -49
- teradataml/data/BuoyData2.csv +17 -17
- teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
- teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
- teradataml/data/Convolve2RealsLeft.csv +5 -5
- teradataml/data/Convolve2RealsRight.csv +5 -5
- teradataml/data/Convolve2ValidLeft.csv +11 -11
- teradataml/data/Convolve2ValidRight.csv +11 -11
- teradataml/data/DFFTConv_Real_8_8.csv +65 -65
- teradataml/data/Orders1_12mf.csv +24 -24
- teradataml/data/Pi_loan.csv +7 -7
- teradataml/data/SMOOTHED_DATA.csv +7 -7
- teradataml/data/TestDFFT8.csv +9 -9
- teradataml/data/TestRiver.csv +109 -109
- teradataml/data/Traindata.csv +28 -28
- teradataml/data/acf.csv +17 -17
- teradataml/data/adaboost_example.json +34 -34
- teradataml/data/adaboostpredict_example.json +24 -24
- teradataml/data/additional_table.csv +10 -10
- teradataml/data/admissions_test.csv +21 -21
- teradataml/data/admissions_train.csv +41 -41
- teradataml/data/admissions_train_nulls.csv +41 -41
- teradataml/data/ageandheight.csv +13 -13
- teradataml/data/ageandpressure.csv +31 -31
- teradataml/data/antiselect_example.json +36 -36
- teradataml/data/antiselect_input.csv +8 -8
- teradataml/data/antiselect_input_mixed_case.csv +8 -8
- teradataml/data/applicant_external.csv +6 -6
- teradataml/data/applicant_reference.csv +6 -6
- teradataml/data/arima_example.json +9 -9
- teradataml/data/assortedtext_input.csv +8 -8
- teradataml/data/attribution_example.json +33 -33
- teradataml/data/attribution_sample_table.csv +27 -27
- teradataml/data/attribution_sample_table1.csv +6 -6
- teradataml/data/attribution_sample_table2.csv +11 -11
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bank_web_clicks1.csv +42 -42
- teradataml/data/bank_web_clicks2.csv +91 -91
- teradataml/data/bank_web_url.csv +85 -85
- teradataml/data/barrier.csv +2 -2
- teradataml/data/barrier_new.csv +3 -3
- teradataml/data/betweenness_example.json +13 -13
- teradataml/data/bin_breaks.csv +8 -8
- teradataml/data/bin_fit_ip.csv +3 -3
- teradataml/data/binary_complex_left.csv +11 -11
- teradataml/data/binary_complex_right.csv +11 -11
- teradataml/data/binary_matrix_complex_left.csv +21 -21
- teradataml/data/binary_matrix_complex_right.csv +21 -21
- teradataml/data/binary_matrix_real_left.csv +21 -21
- teradataml/data/binary_matrix_real_right.csv +21 -21
- teradataml/data/blood2ageandweight.csv +26 -26
- teradataml/data/bmi.csv +501 -0
- teradataml/data/boston.csv +507 -507
- teradataml/data/buoydata_mix.csv +11 -11
- teradataml/data/burst_data.csv +5 -5
- teradataml/data/burst_example.json +20 -20
- teradataml/data/byom_example.json +17 -17
- teradataml/data/bytes_table.csv +3 -3
- teradataml/data/cal_housing_ex_raw.csv +70 -70
- teradataml/data/callers.csv +7 -7
- teradataml/data/calls.csv +10 -10
- teradataml/data/cars_hist.csv +33 -33
- teradataml/data/cat_table.csv +24 -24
- teradataml/data/ccm_example.json +31 -31
- teradataml/data/ccm_input.csv +91 -91
- teradataml/data/ccm_input2.csv +13 -13
- teradataml/data/ccmexample.csv +101 -101
- teradataml/data/ccmprepare_example.json +8 -8
- teradataml/data/ccmprepare_input.csv +91 -91
- teradataml/data/cfilter_example.json +12 -12
- teradataml/data/changepointdetection_example.json +18 -18
- teradataml/data/changepointdetectionrt_example.json +8 -8
- teradataml/data/chi_sq.csv +2 -2
- teradataml/data/churn_data.csv +14 -14
- teradataml/data/churn_emission.csv +35 -35
- teradataml/data/churn_initial.csv +3 -3
- teradataml/data/churn_state_transition.csv +5 -5
- teradataml/data/citedges_2.csv +745 -745
- teradataml/data/citvertices_2.csv +1210 -1210
- teradataml/data/clicks2.csv +16 -16
- teradataml/data/clickstream.csv +12 -12
- teradataml/data/clickstream1.csv +11 -11
- teradataml/data/closeness_example.json +15 -15
- teradataml/data/complaints.csv +21 -21
- teradataml/data/complaints_mini.csv +3 -3
- teradataml/data/complaints_testtoken.csv +224 -224
- teradataml/data/complaints_tokens_test.csv +353 -353
- teradataml/data/complaints_traintoken.csv +472 -472
- teradataml/data/computers_category.csv +1001 -1001
- teradataml/data/computers_test1.csv +1252 -1252
- teradataml/data/computers_train1.csv +5009 -5009
- teradataml/data/computers_train1_clustered.csv +5009 -5009
- teradataml/data/confusionmatrix_example.json +9 -9
- teradataml/data/conversion_event_table.csv +3 -3
- teradataml/data/corr_input.csv +17 -17
- teradataml/data/correlation_example.json +11 -11
- teradataml/data/coxhazardratio_example.json +39 -39
- teradataml/data/coxph_example.json +15 -15
- teradataml/data/coxsurvival_example.json +28 -28
- teradataml/data/cpt.csv +41 -41
- teradataml/data/credit_ex_merged.csv +45 -45
- teradataml/data/customer_loyalty.csv +301 -301
- teradataml/data/customer_loyalty_newseq.csv +31 -31
- teradataml/data/dataframe_example.json +146 -146
- teradataml/data/decisionforest_example.json +37 -37
- teradataml/data/decisionforestpredict_example.json +38 -38
- teradataml/data/decisiontree_example.json +21 -21
- teradataml/data/decisiontreepredict_example.json +45 -45
- teradataml/data/dfft2_size4_real.csv +17 -17
- teradataml/data/dfft2_test_matrix16.csv +17 -17
- teradataml/data/dfft2conv_real_4_4.csv +65 -65
- teradataml/data/diabetes.csv +443 -443
- teradataml/data/diabetes_test.csv +89 -89
- teradataml/data/dict_table.csv +5 -5
- teradataml/data/docperterm_table.csv +4 -4
- teradataml/data/docs/__init__.py +1 -1
- teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
- teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
- teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
- teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
- teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
- teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
- teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
- teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
- teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
- teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
- teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
- teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
- teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
- teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
- teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
- teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
- teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
- teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
- teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
- teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
- teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
- teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +132 -132
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +103 -103
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +101 -101
- teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
- teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
- teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
- teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
- teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
- teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
- teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
- teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
- teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
- teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
- teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
- teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
- teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
- teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +126 -126
- teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
- teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
- teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
- teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
- teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
- teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +243 -243
- teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
- teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
- teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
- teradataml/data/docs/sqle/docs_17_20/FTest.py +160 -160
- teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
- teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
- teradataml/data/docs/sqle/docs_17_20/GLM.py +380 -380
- teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
- teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +123 -123
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
- teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +204 -204
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
- teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
- teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
- teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
- teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +117 -117
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
- teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
- teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +225 -225
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +115 -115
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
- teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
- teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
- teradataml/data/docs/sqle/docs_17_20/ROC.py +163 -163
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
- teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
- teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
- teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +202 -202
- teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +197 -197
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +110 -109
- teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
- teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
- teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
- teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
- teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +171 -171
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
- teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
- teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
- teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
- teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
- teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
- teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
- teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
- teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +353 -353
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +275 -275
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +155 -155
- teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
- teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
- teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
- teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
- teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
- teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
- teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
- teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
- teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
- teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
- teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
- teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
- teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
- teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
- teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
- teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
- teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
- teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
- teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
- teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
- teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
- teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
- teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
- teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
- teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
- teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
- teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
- teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
- teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
- teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
- teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
- teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
- teradataml/data/dtw_example.json +17 -17
- teradataml/data/dtw_t1.csv +11 -11
- teradataml/data/dtw_t2.csv +4 -4
- teradataml/data/dwt2d_example.json +15 -15
- teradataml/data/dwt_example.json +14 -14
- teradataml/data/dwt_filter_dim.csv +5 -5
- teradataml/data/emission.csv +9 -9
- teradataml/data/emp_table_by_dept.csv +19 -19
- teradataml/data/employee_info.csv +4 -4
- teradataml/data/employee_table.csv +6 -6
- teradataml/data/excluding_event_table.csv +2 -2
- teradataml/data/finance_data.csv +6 -6
- teradataml/data/finance_data2.csv +61 -61
- teradataml/data/finance_data3.csv +93 -93
- teradataml/data/fish.csv +160 -0
- teradataml/data/fm_blood2ageandweight.csv +26 -26
- teradataml/data/fmeasure_example.json +11 -11
- teradataml/data/followers_leaders.csv +10 -10
- teradataml/data/fpgrowth_example.json +12 -12
- teradataml/data/frequentpaths_example.json +29 -29
- teradataml/data/friends.csv +9 -9
- teradataml/data/fs_input.csv +33 -33
- teradataml/data/fs_input1.csv +33 -33
- teradataml/data/genData.csv +513 -513
- teradataml/data/geodataframe_example.json +39 -39
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/glm_admissions_model.csv +12 -12
- teradataml/data/glm_example.json +29 -29
- teradataml/data/glml1l2_example.json +28 -28
- teradataml/data/glml1l2predict_example.json +54 -54
- teradataml/data/glmpredict_example.json +54 -54
- teradataml/data/gq_t1.csv +21 -21
- teradataml/data/hconvolve_complex_right.csv +5 -5
- teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
- teradataml/data/histogram_example.json +11 -11
- teradataml/data/hmmdecoder_example.json +78 -78
- teradataml/data/hmmevaluator_example.json +24 -24
- teradataml/data/hmmsupervised_example.json +10 -10
- teradataml/data/hmmunsupervised_example.json +7 -7
- teradataml/data/house_values.csv +12 -12
- teradataml/data/house_values2.csv +13 -13
- teradataml/data/housing_cat.csv +7 -7
- teradataml/data/housing_data.csv +9 -9
- teradataml/data/housing_test.csv +47 -47
- teradataml/data/housing_test_binary.csv +47 -47
- teradataml/data/housing_train.csv +493 -493
- teradataml/data/housing_train_attribute.csv +4 -4
- teradataml/data/housing_train_binary.csv +437 -437
- teradataml/data/housing_train_parameter.csv +2 -2
- teradataml/data/housing_train_response.csv +493 -493
- teradataml/data/ibm_stock.csv +370 -370
- teradataml/data/ibm_stock1.csv +370 -370
- teradataml/data/identitymatch_example.json +21 -21
- teradataml/data/idf_table.csv +4 -4
- teradataml/data/impressions.csv +101 -101
- teradataml/data/inflation.csv +21 -21
- teradataml/data/initial.csv +3 -3
- teradataml/data/insect_sprays.csv +12 -12
- teradataml/data/insurance.csv +1339 -1339
- teradataml/data/interpolator_example.json +12 -12
- teradataml/data/iris_altinput.csv +481 -481
- teradataml/data/iris_attribute_output.csv +8 -8
- teradataml/data/iris_attribute_test.csv +121 -121
- teradataml/data/iris_attribute_train.csv +481 -481
- teradataml/data/iris_category_expect_predict.csv +31 -31
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/iris_input.csv +151 -151
- teradataml/data/iris_response_train.csv +121 -121
- teradataml/data/iris_test.csv +31 -31
- teradataml/data/iris_train.csv +121 -121
- teradataml/data/join_table1.csv +4 -4
- teradataml/data/join_table2.csv +4 -4
- teradataml/data/jsons/anly_function_name.json +6 -6
- teradataml/data/jsons/byom/dataikupredict.json +147 -147
- teradataml/data/jsons/byom/datarobotpredict.json +146 -146
- teradataml/data/jsons/byom/h2opredict.json +194 -194
- teradataml/data/jsons/byom/onnxpredict.json +186 -186
- teradataml/data/jsons/byom/pmmlpredict.json +146 -146
- teradataml/data/jsons/paired_functions.json +435 -435
- teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
- teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
- teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
- teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
- teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
- teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
- teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
- teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
- teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
- teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
- teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
- teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
- teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
- teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
- teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
- teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
- teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
- teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
- teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
- teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
- teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
- teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
- teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
- teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
- teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
- teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
- teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
- teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
- teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
- teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
- teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
- teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
- teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
- teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
- teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
- teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
- teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
- teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
- teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
- teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +76 -76
- teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
- teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
- teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
- teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
- teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
- teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
- teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
- teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
- teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
- teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +186 -186
- teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
- teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +431 -431
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +125 -125
- teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
- teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +91 -91
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
- teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +211 -211
- teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
- teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +101 -101
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
- teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
- teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +177 -177
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
- teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
- teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +124 -124
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +156 -156
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +70 -70
- teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
- teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
- teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
- teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
- teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
- teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
- teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +312 -312
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +182 -182
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +170 -170
- teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
- teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
- teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
- teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
- teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
- teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
- teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
- teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
- teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
- teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
- teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
- teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
- teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
- teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
- teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
- teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
- teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
- teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
- teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
- teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
- teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
- teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
- teradataml/data/kmeans_example.json +17 -17
- teradataml/data/kmeans_us_arrests_data.csv +0 -0
- teradataml/data/knn_example.json +18 -18
- teradataml/data/knnrecommender_example.json +6 -6
- teradataml/data/knnrecommenderpredict_example.json +12 -12
- teradataml/data/lar_example.json +17 -17
- teradataml/data/larpredict_example.json +30 -30
- teradataml/data/lc_new_predictors.csv +5 -5
- teradataml/data/lc_new_reference.csv +9 -9
- teradataml/data/lda_example.json +8 -8
- teradataml/data/ldainference_example.json +14 -14
- teradataml/data/ldatopicsummary_example.json +8 -8
- teradataml/data/levendist_input.csv +13 -13
- teradataml/data/levenshteindistance_example.json +10 -10
- teradataml/data/linreg_example.json +9 -9
- teradataml/data/load_example_data.py +326 -323
- teradataml/data/loan_prediction.csv +295 -295
- teradataml/data/lungcancer.csv +138 -138
- teradataml/data/mappingdata.csv +12 -12
- teradataml/data/milk_timeseries.csv +157 -157
- teradataml/data/min_max_titanic.csv +4 -4
- teradataml/data/minhash_example.json +6 -6
- teradataml/data/ml_ratings.csv +7547 -7547
- teradataml/data/ml_ratings_10.csv +2445 -2445
- teradataml/data/model1_table.csv +5 -5
- teradataml/data/model2_table.csv +5 -5
- teradataml/data/models/iris_db_glm_model.pmml +56 -56
- teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
- teradataml/data/modularity_example.json +12 -12
- teradataml/data/movavg_example.json +7 -7
- teradataml/data/mtx1.csv +7 -7
- teradataml/data/mtx2.csv +13 -13
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/mvdfft8.csv +9 -9
- teradataml/data/naivebayes_example.json +9 -9
- teradataml/data/naivebayespredict_example.json +19 -19
- teradataml/data/naivebayestextclassifier2_example.json +6 -6
- teradataml/data/naivebayestextclassifier_example.json +8 -8
- teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
- teradataml/data/name_Find_configure.csv +10 -10
- teradataml/data/namedentityfinder_example.json +14 -14
- teradataml/data/namedentityfinderevaluator_example.json +10 -10
- teradataml/data/namedentityfindertrainer_example.json +6 -6
- teradataml/data/nb_iris_input_test.csv +31 -31
- teradataml/data/nb_iris_input_train.csv +121 -121
- teradataml/data/nbp_iris_model.csv +13 -13
- teradataml/data/ner_extractor_text.csv +2 -2
- teradataml/data/ner_sports_test2.csv +29 -29
- teradataml/data/ner_sports_train.csv +501 -501
- teradataml/data/nerevaluator_example.json +5 -5
- teradataml/data/nerextractor_example.json +18 -18
- teradataml/data/nermem_sports_test.csv +17 -17
- teradataml/data/nermem_sports_train.csv +50 -50
- teradataml/data/nertrainer_example.json +6 -6
- teradataml/data/ngrams_example.json +6 -6
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
- teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
- teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
- teradataml/data/npath_example.json +23 -23
- teradataml/data/ntree_example.json +14 -14
- teradataml/data/numeric_strings.csv +4 -4
- teradataml/data/numerics.csv +4 -4
- teradataml/data/ocean_buoy.csv +17 -17
- teradataml/data/ocean_buoy2.csv +17 -17
- teradataml/data/ocean_buoys.csv +27 -27
- teradataml/data/ocean_buoys2.csv +10 -10
- teradataml/data/ocean_buoys_nonpti.csv +28 -28
- teradataml/data/ocean_buoys_seq.csv +29 -29
- teradataml/data/openml_example.json +63 -0
- teradataml/data/optional_event_table.csv +4 -4
- teradataml/data/orders1.csv +11 -11
- teradataml/data/orders1_12.csv +12 -12
- teradataml/data/orders_ex.csv +4 -4
- teradataml/data/pack_example.json +8 -8
- teradataml/data/package_tracking.csv +19 -19
- teradataml/data/package_tracking_pti.csv +18 -18
- teradataml/data/pagerank_example.json +13 -13
- teradataml/data/paragraphs_input.csv +6 -6
- teradataml/data/pathanalyzer_example.json +7 -7
- teradataml/data/pathgenerator_example.json +7 -7
- teradataml/data/phrases.csv +7 -7
- teradataml/data/pivot_example.json +8 -8
- teradataml/data/pivot_input.csv +22 -22
- teradataml/data/playerRating.csv +31 -31
- teradataml/data/postagger_example.json +6 -6
- teradataml/data/posttagger_output.csv +44 -44
- teradataml/data/production_data.csv +16 -16
- teradataml/data/production_data2.csv +7 -7
- teradataml/data/randomsample_example.json +31 -31
- teradataml/data/randomwalksample_example.json +8 -8
- teradataml/data/rank_table.csv +6 -6
- teradataml/data/ref_mobile_data.csv +4 -4
- teradataml/data/ref_mobile_data_dense.csv +2 -2
- teradataml/data/ref_url.csv +17 -17
- teradataml/data/restaurant_reviews.csv +7 -7
- teradataml/data/river_data.csv +145 -145
- teradataml/data/roc_example.json +7 -7
- teradataml/data/roc_input.csv +101 -101
- teradataml/data/rule_inputs.csv +6 -6
- teradataml/data/rule_table.csv +2 -2
- teradataml/data/sales.csv +7 -7
- teradataml/data/sales_transaction.csv +501 -501
- teradataml/data/salesdata.csv +342 -342
- teradataml/data/sample_cities.csv +2 -2
- teradataml/data/sample_shapes.csv +10 -10
- teradataml/data/sample_streets.csv +2 -2
- teradataml/data/sampling_example.json +15 -15
- teradataml/data/sax_example.json +8 -8
- teradataml/data/scale_example.json +23 -23
- teradataml/data/scale_housing.csv +11 -11
- teradataml/data/scale_housing_test.csv +6 -6
- teradataml/data/scale_stat.csv +11 -11
- teradataml/data/scalebypartition_example.json +13 -13
- teradataml/data/scalemap_example.json +13 -13
- teradataml/data/scalesummary_example.json +12 -12
- teradataml/data/score_category.csv +101 -101
- teradataml/data/score_summary.csv +4 -4
- teradataml/data/script_example.json +9 -9
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/mapper.py +15 -15
- teradataml/data/scripts/mapper_replace.py +15 -15
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/seeds.csv +10 -10
- teradataml/data/sentenceextractor_example.json +6 -6
- teradataml/data/sentiment_extract_input.csv +11 -11
- teradataml/data/sentiment_train.csv +16 -16
- teradataml/data/sentiment_word.csv +20 -20
- teradataml/data/sentiment_word_input.csv +19 -19
- teradataml/data/sentimentextractor_example.json +24 -24
- teradataml/data/sentimenttrainer_example.json +8 -8
- teradataml/data/sequence_table.csv +10 -10
- teradataml/data/seriessplitter_example.json +7 -7
- teradataml/data/sessionize_example.json +17 -17
- teradataml/data/sessionize_table.csv +116 -116
- teradataml/data/setop_test1.csv +24 -24
- teradataml/data/setop_test2.csv +22 -22
- teradataml/data/soc_nw_edges.csv +10 -10
- teradataml/data/soc_nw_vertices.csv +7 -7
- teradataml/data/souvenir_timeseries.csv +167 -167
- teradataml/data/sparse_iris_attribute.csv +5 -5
- teradataml/data/sparse_iris_test.csv +121 -121
- teradataml/data/sparse_iris_train.csv +601 -601
- teradataml/data/star1.csv +6 -6
- teradataml/data/state_transition.csv +5 -5
- teradataml/data/stock_data.csv +53 -53
- teradataml/data/stock_movement.csv +11 -11
- teradataml/data/stock_vol.csv +76 -76
- teradataml/data/stop_words.csv +8 -8
- teradataml/data/store_sales.csv +37 -37
- teradataml/data/stringsimilarity_example.json +7 -7
- teradataml/data/strsimilarity_input.csv +13 -13
- teradataml/data/students.csv +101 -101
- teradataml/data/svm_iris_input_test.csv +121 -121
- teradataml/data/svm_iris_input_train.csv +481 -481
- teradataml/data/svm_iris_model.csv +7 -7
- teradataml/data/svmdense_example.json +9 -9
- teradataml/data/svmdensepredict_example.json +18 -18
- teradataml/data/svmsparse_example.json +7 -7
- teradataml/data/svmsparsepredict_example.json +13 -13
- teradataml/data/svmsparsesummary_example.json +7 -7
- teradataml/data/target_mobile_data.csv +13 -13
- teradataml/data/target_mobile_data_dense.csv +5 -5
- teradataml/data/templatedata.csv +1201 -1201
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_loan_prediction.csv +53 -53
- teradataml/data/test_pacf_12.csv +37 -37
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/test_river2.csv +109 -109
- teradataml/data/text_inputs.csv +6 -6
- teradataml/data/textchunker_example.json +7 -7
- teradataml/data/textclassifier_example.json +6 -6
- teradataml/data/textclassifier_input.csv +7 -7
- teradataml/data/textclassifiertrainer_example.json +6 -6
- teradataml/data/textmorph_example.json +5 -5
- teradataml/data/textparser_example.json +15 -15
- teradataml/data/texttagger_example.json +11 -11
- teradataml/data/texttokenizer_example.json +6 -6
- teradataml/data/texttrainer_input.csv +11 -11
- teradataml/data/tf_example.json +6 -6
- teradataml/data/tfidf_example.json +13 -13
- teradataml/data/tfidf_input1.csv +201 -201
- teradataml/data/tfidf_train.csv +6 -6
- teradataml/data/time_table1.csv +535 -535
- teradataml/data/time_table2.csv +14 -14
- teradataml/data/timeseriesdata.csv +1601 -1601
- teradataml/data/timeseriesdatasetsd4.csv +105 -105
- teradataml/data/titanic.csv +892 -892
- teradataml/data/token_table.csv +696 -696
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/train_tracking.csv +27 -27
- teradataml/data/transformation_table.csv +5 -5
- teradataml/data/transformation_table_new.csv +1 -1
- teradataml/data/tv_spots.csv +16 -16
- teradataml/data/twod_climate_data.csv +117 -117
- teradataml/data/uaf_example.json +475 -475
- teradataml/data/univariatestatistics_example.json +8 -8
- teradataml/data/unpack_example.json +9 -9
- teradataml/data/unpivot_example.json +9 -9
- teradataml/data/unpivot_input.csv +8 -8
- teradataml/data/us_air_pass.csv +36 -36
- teradataml/data/us_population.csv +624 -624
- teradataml/data/us_states_shapes.csv +52 -52
- teradataml/data/varmax_example.json +17 -17
- teradataml/data/vectordistance_example.json +25 -25
- teradataml/data/ville_climatedata.csv +121 -121
- teradataml/data/ville_tempdata.csv +12 -12
- teradataml/data/ville_tempdata1.csv +12 -12
- teradataml/data/ville_temperature.csv +11 -11
- teradataml/data/waveletTable.csv +1605 -1605
- teradataml/data/waveletTable2.csv +1605 -1605
- teradataml/data/weightedmovavg_example.json +8 -8
- teradataml/data/wft_testing.csv +5 -5
- teradataml/data/wine_data.csv +1600 -0
- teradataml/data/word_embed_input_table1.csv +5 -5
- teradataml/data/word_embed_input_table2.csv +4 -4
- teradataml/data/word_embed_model.csv +22 -22
- teradataml/data/words_input.csv +13 -13
- teradataml/data/xconvolve_complex_left.csv +6 -6
- teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
- teradataml/data/xgboost_example.json +35 -35
- teradataml/data/xgboostpredict_example.json +31 -31
- teradataml/dataframe/copy_to.py +1764 -1698
- teradataml/dataframe/data_transfer.py +2753 -2745
- teradataml/dataframe/dataframe.py +17545 -16946
- teradataml/dataframe/dataframe_utils.py +1837 -1740
- teradataml/dataframe/fastload.py +611 -603
- teradataml/dataframe/indexer.py +424 -424
- teradataml/dataframe/setop.py +1179 -1166
- teradataml/dataframe/sql.py +10090 -6432
- teradataml/dataframe/sql_function_parameters.py +439 -388
- teradataml/dataframe/sql_functions.py +652 -652
- teradataml/dataframe/sql_interfaces.py +220 -220
- teradataml/dataframe/vantage_function_types.py +674 -630
- teradataml/dataframe/window.py +693 -692
- teradataml/dbutils/__init__.py +3 -3
- teradataml/dbutils/dbutils.py +1167 -1150
- teradataml/dbutils/filemgr.py +267 -267
- teradataml/gen_ai/__init__.py +2 -2
- teradataml/gen_ai/convAI.py +472 -472
- teradataml/geospatial/__init__.py +3 -3
- teradataml/geospatial/geodataframe.py +1105 -1094
- teradataml/geospatial/geodataframecolumn.py +392 -387
- teradataml/geospatial/geometry_types.py +925 -925
- teradataml/hyperparameter_tuner/__init__.py +1 -1
- teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
- teradataml/hyperparameter_tuner/utils.py +281 -187
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +121 -124
- teradataml/options/configure.py +337 -336
- teradataml/options/display.py +176 -176
- teradataml/plot/__init__.py +2 -2
- teradataml/plot/axis.py +1388 -1388
- teradataml/plot/constants.py +15 -15
- teradataml/plot/figure.py +398 -398
- teradataml/plot/plot.py +760 -760
- teradataml/plot/query_generator.py +83 -83
- teradataml/plot/subplot.py +216 -216
- teradataml/scriptmgmt/UserEnv.py +3788 -3761
- teradataml/scriptmgmt/__init__.py +3 -3
- teradataml/scriptmgmt/lls_utils.py +1616 -1604
- teradataml/series/series.py +532 -532
- teradataml/series/series_utils.py +71 -71
- teradataml/table_operators/Apply.py +949 -917
- teradataml/table_operators/Script.py +1719 -1982
- teradataml/table_operators/TableOperator.py +1207 -1616
- teradataml/table_operators/__init__.py +2 -3
- teradataml/table_operators/apply_query_generator.py +262 -262
- teradataml/table_operators/query_generator.py +507 -507
- teradataml/table_operators/table_operator_query_generator.py +460 -460
- teradataml/table_operators/table_operator_util.py +631 -639
- teradataml/table_operators/templates/dataframe_apply.template +184 -184
- teradataml/table_operators/templates/dataframe_map.template +176 -176
- teradataml/table_operators/templates/script_executor.template +170 -170
- teradataml/utils/dtypes.py +684 -684
- teradataml/utils/internal_buffer.py +84 -84
- teradataml/utils/print_versions.py +205 -205
- teradataml/utils/utils.py +410 -410
- teradataml/utils/validators.py +2239 -2115
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +270 -41
- teradataml-20.0.0.0.dist-info/RECORD +1038 -0
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +1 -1
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +1 -1
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- teradataml-17.20.0.7.dist-info/RECORD +0 -1280
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
|
@@ -1,1210 +1,1210 @@
|
|
|
1
|
-
"id"
|
|
2
|
-
2141
|
|
3
|
-
3283
|
|
4
|
-
4221
|
|
5
|
-
3018
|
|
6
|
-
1060
|
|
7
|
-
4017
|
|
8
|
-
1264
|
|
9
|
-
1203
|
|
10
|
-
3201
|
|
11
|
-
2202
|
|
12
|
-
3140
|
|
13
|
-
3079
|
|
14
|
-
1121
|
|
15
|
-
4139
|
|
16
|
-
4078
|
|
17
|
-
3262
|
|
18
|
-
3058
|
|
19
|
-
2059
|
|
20
|
-
1325
|
|
21
|
-
1182
|
|
22
|
-
3323
|
|
23
|
-
2242
|
|
24
|
-
2263
|
|
25
|
-
4200
|
|
26
|
-
4057
|
|
27
|
-
3241
|
|
28
|
-
2120
|
|
29
|
-
1243
|
|
30
|
-
3180
|
|
31
|
-
1161
|
|
32
|
-
4261
|
|
33
|
-
3119
|
|
34
|
-
1100
|
|
35
|
-
2099
|
|
36
|
-
2181
|
|
37
|
-
1304
|
|
38
|
-
1222
|
|
39
|
-
3098
|
|
40
|
-
1039
|
|
41
|
-
2038
|
|
42
|
-
1283
|
|
43
|
-
1140
|
|
44
|
-
4118
|
|
45
|
-
4179
|
|
46
|
-
4097
|
|
47
|
-
3281
|
|
48
|
-
2303
|
|
49
|
-
4240
|
|
50
|
-
2017
|
|
51
|
-
1201
|
|
52
|
-
3037
|
|
53
|
-
2160
|
|
54
|
-
2282
|
|
55
|
-
3138
|
|
56
|
-
3302
|
|
57
|
-
1018
|
|
58
|
-
3220
|
|
59
|
-
1058
|
|
60
|
-
4036
|
|
61
|
-
2078
|
|
62
|
-
4219
|
|
63
|
-
1323
|
|
64
|
-
2221
|
|
65
|
-
3016
|
|
66
|
-
2139
|
|
67
|
-
4137
|
|
68
|
-
3159
|
|
69
|
-
4015
|
|
70
|
-
2261
|
|
71
|
-
2057
|
|
72
|
-
1079
|
|
73
|
-
2200
|
|
74
|
-
4259
|
|
75
|
-
1180
|
|
76
|
-
3077
|
|
77
|
-
3260
|
|
78
|
-
2179
|
|
79
|
-
4198
|
|
80
|
-
1262
|
|
81
|
-
3056
|
|
82
|
-
3178
|
|
83
|
-
3239
|
|
84
|
-
3199
|
|
85
|
-
3321
|
|
86
|
-
1098
|
|
87
|
-
4177
|
|
88
|
-
1119
|
|
89
|
-
1241
|
|
90
|
-
2036
|
|
91
|
-
2097
|
|
92
|
-
2118
|
|
93
|
-
4055
|
|
94
|
-
2301
|
|
95
|
-
1220
|
|
96
|
-
3117
|
|
97
|
-
2240
|
|
98
|
-
3035
|
|
99
|
-
4034
|
|
100
|
-
1037
|
|
101
|
-
1159
|
|
102
|
-
1077
|
|
103
|
-
2219
|
|
104
|
-
1302
|
|
105
|
-
3300
|
|
106
|
-
4095
|
|
107
|
-
2076
|
|
108
|
-
4116
|
|
109
|
-
3096
|
|
110
|
-
3218
|
|
111
|
-
3279
|
|
112
|
-
4238
|
|
113
|
-
1016
|
|
114
|
-
1138
|
|
115
|
-
2259
|
|
116
|
-
2158
|
|
117
|
-
1281
|
|
118
|
-
3075
|
|
119
|
-
3258
|
|
120
|
-
3157
|
|
121
|
-
4156
|
|
122
|
-
1260
|
|
123
|
-
1178
|
|
124
|
-
2015
|
|
125
|
-
1199
|
|
126
|
-
4074
|
|
127
|
-
3319
|
|
128
|
-
2280
|
|
129
|
-
4217
|
|
130
|
-
1117
|
|
131
|
-
3115
|
|
132
|
-
4013
|
|
133
|
-
2137
|
|
134
|
-
4135
|
|
135
|
-
1035
|
|
136
|
-
2198
|
|
137
|
-
3136
|
|
138
|
-
4257
|
|
139
|
-
3176
|
|
140
|
-
3197
|
|
141
|
-
1056
|
|
142
|
-
1300
|
|
143
|
-
4175
|
|
144
|
-
3054
|
|
145
|
-
1321
|
|
146
|
-
4114
|
|
147
|
-
2095
|
|
148
|
-
1239
|
|
149
|
-
2055
|
|
150
|
-
2034
|
|
151
|
-
3298
|
|
152
|
-
2238
|
|
153
|
-
4196
|
|
154
|
-
2299
|
|
155
|
-
1218
|
|
156
|
-
1096
|
|
157
|
-
2116
|
|
158
|
-
1157
|
|
159
|
-
4032
|
|
160
|
-
3237
|
|
161
|
-
2177
|
|
162
|
-
2156
|
|
163
|
-
1075
|
|
164
|
-
4236
|
|
165
|
-
4053
|
|
166
|
-
2013
|
|
167
|
-
2074
|
|
168
|
-
3094
|
|
169
|
-
3033
|
|
170
|
-
3216
|
|
171
|
-
4215
|
|
172
|
-
1014
|
|
173
|
-
2217
|
|
174
|
-
4154
|
|
175
|
-
2135
|
|
176
|
-
1279
|
|
177
|
-
2278
|
|
178
|
-
3195
|
|
179
|
-
4072
|
|
180
|
-
3155
|
|
181
|
-
3012
|
|
182
|
-
1115
|
|
183
|
-
2257
|
|
184
|
-
4093
|
|
185
|
-
3277
|
|
186
|
-
3256
|
|
187
|
-
1176
|
|
188
|
-
1136
|
|
189
|
-
1197
|
|
190
|
-
3052
|
|
191
|
-
4194
|
|
192
|
-
4011
|
|
193
|
-
3073
|
|
194
|
-
3113
|
|
195
|
-
2114
|
|
196
|
-
1054
|
|
197
|
-
1258
|
|
198
|
-
4112
|
|
199
|
-
3031
|
|
200
|
-
1319
|
|
201
|
-
3134
|
|
202
|
-
2032
|
|
203
|
-
3296
|
|
204
|
-
4133
|
|
205
|
-
3317
|
|
206
|
-
2297
|
|
207
|
-
1216
|
|
208
|
-
2053
|
|
209
|
-
1237
|
|
210
|
-
3235
|
|
211
|
-
3010
|
|
212
|
-
2175
|
|
213
|
-
4255
|
|
214
|
-
1155
|
|
215
|
-
3275
|
|
216
|
-
4051
|
|
217
|
-
1033
|
|
218
|
-
1277
|
|
219
|
-
1195
|
|
220
|
-
2236
|
|
221
|
-
1298
|
|
222
|
-
2011
|
|
223
|
-
4213
|
|
224
|
-
1094
|
|
225
|
-
3174
|
|
226
|
-
4152
|
|
227
|
-
1256
|
|
228
|
-
3092
|
|
229
|
-
4173
|
|
230
|
-
2072
|
|
231
|
-
1052
|
|
232
|
-
4091
|
|
233
|
-
2093
|
|
234
|
-
4009
|
|
235
|
-
3193
|
|
236
|
-
2276
|
|
237
|
-
4234
|
|
238
|
-
2194
|
|
239
|
-
4192
|
|
240
|
-
3214
|
|
241
|
-
2154
|
|
242
|
-
1113
|
|
243
|
-
2112
|
|
244
|
-
1134
|
|
245
|
-
4030
|
|
246
|
-
4131
|
|
247
|
-
3050
|
|
248
|
-
3132
|
|
249
|
-
2215
|
|
250
|
-
2051
|
|
251
|
-
1235
|
|
252
|
-
1317
|
|
253
|
-
1073
|
|
254
|
-
2234
|
|
255
|
-
4049
|
|
256
|
-
3254
|
|
257
|
-
2133
|
|
258
|
-
3233
|
|
259
|
-
2091
|
|
260
|
-
1174
|
|
261
|
-
3071
|
|
262
|
-
1153
|
|
263
|
-
3294
|
|
264
|
-
2173
|
|
265
|
-
4070
|
|
266
|
-
3090
|
|
267
|
-
4232
|
|
268
|
-
1031
|
|
269
|
-
2255
|
|
270
|
-
1275
|
|
271
|
-
2152
|
|
272
|
-
3172
|
|
273
|
-
3315
|
|
274
|
-
1132
|
|
275
|
-
4089
|
|
276
|
-
1092
|
|
277
|
-
3111
|
|
278
|
-
4150
|
|
279
|
-
2009
|
|
280
|
-
4110
|
|
281
|
-
1296
|
|
282
|
-
3273
|
|
283
|
-
2274
|
|
284
|
-
4171
|
|
285
|
-
2295
|
|
286
|
-
1193
|
|
287
|
-
3008
|
|
288
|
-
4028
|
|
289
|
-
3029
|
|
290
|
-
3130
|
|
291
|
-
2131
|
|
292
|
-
2213
|
|
293
|
-
1214
|
|
294
|
-
1315
|
|
295
|
-
1050
|
|
296
|
-
3212
|
|
297
|
-
1010
|
|
298
|
-
4129
|
|
299
|
-
4190
|
|
300
|
-
2070
|
|
301
|
-
3151
|
|
302
|
-
2049
|
|
303
|
-
3048
|
|
304
|
-
3069
|
|
305
|
-
1071
|
|
306
|
-
1172
|
|
307
|
-
3313
|
|
308
|
-
4068
|
|
309
|
-
4211
|
|
310
|
-
2028
|
|
311
|
-
1233
|
|
312
|
-
2253
|
|
313
|
-
4007
|
|
314
|
-
3231
|
|
315
|
-
3170
|
|
316
|
-
3252
|
|
317
|
-
1254
|
|
318
|
-
4169
|
|
319
|
-
1090
|
|
320
|
-
3109
|
|
321
|
-
2192
|
|
322
|
-
2089
|
|
323
|
-
1212
|
|
324
|
-
1029
|
|
325
|
-
3191
|
|
326
|
-
4026
|
|
327
|
-
4230
|
|
328
|
-
1294
|
|
329
|
-
1111
|
|
330
|
-
2211
|
|
331
|
-
2150
|
|
332
|
-
2293
|
|
333
|
-
2110
|
|
334
|
-
2068
|
|
335
|
-
1273
|
|
336
|
-
1151
|
|
337
|
-
4251
|
|
338
|
-
3271
|
|
339
|
-
4087
|
|
340
|
-
3292
|
|
341
|
-
2171
|
|
342
|
-
2251
|
|
343
|
-
1130
|
|
344
|
-
3149
|
|
345
|
-
4047
|
|
346
|
-
3250
|
|
347
|
-
3006
|
|
348
|
-
1069
|
|
349
|
-
2232
|
|
350
|
-
1170
|
|
351
|
-
4209
|
|
352
|
-
1334
|
|
353
|
-
4108
|
|
354
|
-
3107
|
|
355
|
-
2129
|
|
356
|
-
3210
|
|
357
|
-
3027
|
|
358
|
-
1027
|
|
359
|
-
4270
|
|
360
|
-
4148
|
|
361
|
-
3088
|
|
362
|
-
1292
|
|
363
|
-
4127
|
|
364
|
-
1191
|
|
365
|
-
1008
|
|
366
|
-
1149
|
|
367
|
-
3046
|
|
368
|
-
4005
|
|
369
|
-
2007
|
|
370
|
-
4167
|
|
371
|
-
3311
|
|
372
|
-
2190
|
|
373
|
-
2272
|
|
374
|
-
2087
|
|
375
|
-
1231
|
|
376
|
-
4066
|
|
377
|
-
3067
|
|
378
|
-
3290
|
|
379
|
-
4249
|
|
380
|
-
1109
|
|
381
|
-
1252
|
|
382
|
-
1210
|
|
383
|
-
2169
|
|
384
|
-
2047
|
|
385
|
-
3128
|
|
386
|
-
4024
|
|
387
|
-
3168
|
|
388
|
-
4188
|
|
389
|
-
1048
|
|
390
|
-
1067
|
|
391
|
-
2026
|
|
392
|
-
2108
|
|
393
|
-
1313
|
|
394
|
-
1332
|
|
395
|
-
3025
|
|
396
|
-
4106
|
|
397
|
-
3189
|
|
398
|
-
4146
|
|
399
|
-
3086
|
|
400
|
-
2291
|
|
401
|
-
4045
|
|
402
|
-
2066
|
|
403
|
-
1271
|
|
404
|
-
1006
|
|
405
|
-
1088
|
|
406
|
-
4207
|
|
407
|
-
3208
|
|
408
|
-
3147
|
|
409
|
-
3229
|
|
410
|
-
4064
|
|
411
|
-
2127
|
|
412
|
-
3004
|
|
413
|
-
4228
|
|
414
|
-
2249
|
|
415
|
-
3065
|
|
416
|
-
3269
|
|
417
|
-
2148
|
|
418
|
-
3248
|
|
419
|
-
1250
|
|
420
|
-
1189
|
|
421
|
-
2209
|
|
422
|
-
1168
|
|
423
|
-
4268
|
|
424
|
-
4003
|
|
425
|
-
4085
|
|
426
|
-
4186
|
|
427
|
-
1107
|
|
428
|
-
1046
|
|
429
|
-
2270
|
|
430
|
-
2106
|
|
431
|
-
4247
|
|
432
|
-
1311
|
|
433
|
-
1128
|
|
434
|
-
3105
|
|
435
|
-
2167
|
|
436
|
-
3187
|
|
437
|
-
2188
|
|
438
|
-
3023
|
|
439
|
-
1290
|
|
440
|
-
3309
|
|
441
|
-
3126
|
|
442
|
-
3288
|
|
443
|
-
4104
|
|
444
|
-
1229
|
|
445
|
-
4125
|
|
446
|
-
1208
|
|
447
|
-
2024
|
|
448
|
-
4043
|
|
449
|
-
2045
|
|
450
|
-
3145
|
|
451
|
-
2289
|
|
452
|
-
2228
|
|
453
|
-
3044
|
|
454
|
-
1330
|
|
455
|
-
2146
|
|
456
|
-
1086
|
|
457
|
-
1025
|
|
458
|
-
2064
|
|
459
|
-
2207
|
|
460
|
-
3227
|
|
461
|
-
3166
|
|
462
|
-
3002
|
|
463
|
-
4144
|
|
464
|
-
1147
|
|
465
|
-
4226
|
|
466
|
-
3267
|
|
467
|
-
3063
|
|
468
|
-
4165
|
|
469
|
-
3084
|
|
470
|
-
1187
|
|
471
|
-
1248
|
|
472
|
-
2085
|
|
473
|
-
1004
|
|
474
|
-
4205
|
|
475
|
-
2186
|
|
476
|
-
4083
|
|
477
|
-
4022
|
|
478
|
-
3328
|
|
479
|
-
1105
|
|
480
|
-
2003
|
|
481
|
-
1269
|
|
482
|
-
1044
|
|
483
|
-
3042
|
|
484
|
-
2268
|
|
485
|
-
1065
|
|
486
|
-
3185
|
|
487
|
-
4245
|
|
488
|
-
2125
|
|
489
|
-
3206
|
|
490
|
-
4184
|
|
491
|
-
3103
|
|
492
|
-
3124
|
|
493
|
-
1126
|
|
494
|
-
2104
|
|
495
|
-
1288
|
|
496
|
-
4123
|
|
497
|
-
4001
|
|
498
|
-
1227
|
|
499
|
-
3225
|
|
500
|
-
2043
|
|
501
|
-
4266
|
|
502
|
-
4041
|
|
503
|
-
1145
|
|
504
|
-
3307
|
|
505
|
-
4062
|
|
506
|
-
2226
|
|
507
|
-
1002
|
|
508
|
-
1023
|
|
509
|
-
1309
|
|
510
|
-
2083
|
|
511
|
-
1267
|
|
512
|
-
1084
|
|
513
|
-
2247
|
|
514
|
-
3286
|
|
515
|
-
2205
|
|
516
|
-
3021
|
|
517
|
-
3246
|
|
518
|
-
4224
|
|
519
|
-
2001
|
|
520
|
-
1206
|
|
521
|
-
1166
|
|
522
|
-
2144
|
|
523
|
-
3061
|
|
524
|
-
4020
|
|
525
|
-
2165
|
|
526
|
-
4081
|
|
527
|
-
4264
|
|
528
|
-
3204
|
|
529
|
-
4102
|
|
530
|
-
2266
|
|
531
|
-
2184
|
|
532
|
-
1124
|
|
533
|
-
2022
|
|
534
|
-
1185
|
|
535
|
-
2041
|
|
536
|
-
3265
|
|
537
|
-
2287
|
|
538
|
-
2123
|
|
539
|
-
3101
|
|
540
|
-
4203
|
|
541
|
-
4163
|
|
542
|
-
3326
|
|
543
|
-
1286
|
|
544
|
-
1246
|
|
545
|
-
3082
|
|
546
|
-
1042
|
|
547
|
-
2224
|
|
548
|
-
4060
|
|
549
|
-
3143
|
|
550
|
-
4182
|
|
551
|
-
3223
|
|
552
|
-
2245
|
|
553
|
-
1063
|
|
554
|
-
3040
|
|
555
|
-
2081
|
|
556
|
-
4121
|
|
557
|
-
2062
|
|
558
|
-
3305
|
|
559
|
-
3080
|
|
560
|
-
1164
|
|
561
|
-
3122
|
|
562
|
-
1225
|
|
563
|
-
1326
|
|
564
|
-
2102
|
|
565
|
-
1307
|
|
566
|
-
3162
|
|
567
|
-
1122
|
|
568
|
-
4243
|
|
569
|
-
3183
|
|
570
|
-
1082
|
|
571
|
-
3263
|
|
572
|
-
2285
|
|
573
|
-
1103
|
|
574
|
-
1204
|
|
575
|
-
4262
|
|
576
|
-
4161
|
|
577
|
-
3244
|
|
578
|
-
4222
|
|
579
|
-
2182
|
|
580
|
-
3019
|
|
581
|
-
2163
|
|
582
|
-
2142
|
|
583
|
-
3120
|
|
584
|
-
3284
|
|
585
|
-
1021
|
|
586
|
-
1265
|
|
587
|
-
1040
|
|
588
|
-
3141
|
|
589
|
-
4039
|
|
590
|
-
4079
|
|
591
|
-
1305
|
|
592
|
-
1061
|
|
593
|
-
4100
|
|
594
|
-
4201
|
|
595
|
-
4119
|
|
596
|
-
3202
|
|
597
|
-
1143
|
|
598
|
-
2121
|
|
599
|
-
1162
|
|
600
|
-
2060
|
|
601
|
-
4018
|
|
602
|
-
2304
|
|
603
|
-
4037
|
|
604
|
-
3059
|
|
605
|
-
2203
|
|
606
|
-
3038
|
|
607
|
-
2222
|
|
608
|
-
3324
|
|
609
|
-
2264
|
|
610
|
-
3303
|
|
611
|
-
4159
|
|
612
|
-
1244
|
|
613
|
-
4140
|
|
614
|
-
1223
|
|
615
|
-
2079
|
|
616
|
-
4058
|
|
617
|
-
1183
|
|
618
|
-
4241
|
|
619
|
-
3078
|
|
620
|
-
1101
|
|
621
|
-
2243
|
|
622
|
-
2161
|
|
623
|
-
4016
|
|
624
|
-
3242
|
|
625
|
-
3181
|
|
626
|
-
3160
|
|
627
|
-
2201
|
|
628
|
-
2100
|
|
629
|
-
2039
|
|
630
|
-
2018
|
|
631
|
-
3118
|
|
632
|
-
4098
|
|
633
|
-
4180
|
|
634
|
-
3017
|
|
635
|
-
1038
|
|
636
|
-
2283
|
|
637
|
-
3099
|
|
638
|
-
1263
|
|
639
|
-
1303
|
|
640
|
-
1141
|
|
641
|
-
1019
|
|
642
|
-
1059
|
|
643
|
-
2241
|
|
644
|
-
3282
|
|
645
|
-
1284
|
|
646
|
-
3200
|
|
647
|
-
3240
|
|
648
|
-
1202
|
|
649
|
-
1080
|
|
650
|
-
4199
|
|
651
|
-
1160
|
|
652
|
-
4220
|
|
653
|
-
3221
|
|
654
|
-
2119
|
|
655
|
-
3097
|
|
656
|
-
2140
|
|
657
|
-
3139
|
|
658
|
-
3057
|
|
659
|
-
1017
|
|
660
|
-
4138
|
|
661
|
-
4077
|
|
662
|
-
3322
|
|
663
|
-
4035
|
|
664
|
-
2058
|
|
665
|
-
1324
|
|
666
|
-
1242
|
|
667
|
-
3158
|
|
668
|
-
2180
|
|
669
|
-
2262
|
|
670
|
-
4260
|
|
671
|
-
3280
|
|
672
|
-
3179
|
|
673
|
-
1120
|
|
674
|
-
4056
|
|
675
|
-
1200
|
|
676
|
-
4178
|
|
677
|
-
3261
|
|
678
|
-
1099
|
|
679
|
-
4014
|
|
680
|
-
2098
|
|
681
|
-
1181
|
|
682
|
-
4239
|
|
683
|
-
2199
|
|
684
|
-
3036
|
|
685
|
-
2037
|
|
686
|
-
2159
|
|
687
|
-
1057
|
|
688
|
-
1221
|
|
689
|
-
2302
|
|
690
|
-
4096
|
|
691
|
-
1322
|
|
692
|
-
1078
|
|
693
|
-
3301
|
|
694
|
-
2016
|
|
695
|
-
2260
|
|
696
|
-
3219
|
|
697
|
-
2220
|
|
698
|
-
2281
|
|
699
|
-
2056
|
|
700
|
-
1139
|
|
701
|
-
4157
|
|
702
|
-
3015
|
|
703
|
-
4197
|
|
704
|
-
4218
|
|
705
|
-
2077
|
|
706
|
-
2138
|
|
707
|
-
3116
|
|
708
|
-
3076
|
|
709
|
-
3137
|
|
710
|
-
4136
|
|
711
|
-
4054
|
|
712
|
-
1261
|
|
713
|
-
3198
|
|
714
|
-
3055
|
|
715
|
-
2239
|
|
716
|
-
4075
|
|
717
|
-
1118
|
|
718
|
-
3320
|
|
719
|
-
2096
|
|
720
|
-
3259
|
|
721
|
-
2117
|
|
722
|
-
1240
|
|
723
|
-
1015
|
|
724
|
-
1179
|
|
725
|
-
1301
|
|
726
|
-
2178
|
|
727
|
-
3156
|
|
728
|
-
4258
|
|
729
|
-
3238
|
|
730
|
-
3177
|
|
731
|
-
3278
|
|
732
|
-
4115
|
|
733
|
-
1158
|
|
734
|
-
1097
|
|
735
|
-
4012
|
|
736
|
-
2035
|
|
737
|
-
3299
|
|
738
|
-
3034
|
|
739
|
-
3135
|
|
740
|
-
2300
|
|
741
|
-
4033
|
|
742
|
-
4237
|
|
743
|
-
1055
|
|
744
|
-
4176
|
|
745
|
-
2218
|
|
746
|
-
3095
|
|
747
|
-
1320
|
|
748
|
-
1219
|
|
749
|
-
1076
|
|
750
|
-
1280
|
|
751
|
-
1177
|
|
752
|
-
2157
|
|
753
|
-
4094
|
|
754
|
-
3217
|
|
755
|
-
3318
|
|
756
|
-
2075
|
|
757
|
-
2014
|
|
758
|
-
1137
|
|
759
|
-
1034
|
|
760
|
-
4216
|
|
761
|
-
2279
|
|
762
|
-
2136
|
|
763
|
-
4052
|
|
764
|
-
3196
|
|
765
|
-
4155
|
|
766
|
-
1259
|
|
767
|
-
2237
|
|
768
|
-
3257
|
|
769
|
-
3013
|
|
770
|
-
2197
|
|
771
|
-
3175
|
|
772
|
-
2115
|
|
773
|
-
1198
|
|
774
|
-
3053
|
|
775
|
-
4174
|
|
776
|
-
1299
|
|
777
|
-
4073
|
|
778
|
-
4256
|
|
779
|
-
4031
|
|
780
|
-
4113
|
|
781
|
-
2258
|
|
782
|
-
2176
|
|
783
|
-
2277
|
|
784
|
-
1156
|
|
785
|
-
2054
|
|
786
|
-
2033
|
|
787
|
-
2073
|
|
788
|
-
3032
|
|
789
|
-
4195
|
|
790
|
-
2298
|
|
791
|
-
4214
|
|
792
|
-
3297
|
|
793
|
-
1238
|
|
794
|
-
3093
|
|
795
|
-
2134
|
|
796
|
-
4235
|
|
797
|
-
3114
|
|
798
|
-
1278
|
|
799
|
-
3133
|
|
800
|
-
2155
|
|
801
|
-
1095
|
|
802
|
-
2216
|
|
803
|
-
1053
|
|
804
|
-
1013
|
|
805
|
-
3236
|
|
806
|
-
3215
|
|
807
|
-
4071
|
|
808
|
-
2012
|
|
809
|
-
2094
|
|
810
|
-
3072
|
|
811
|
-
2256
|
|
812
|
-
4153
|
|
813
|
-
3154
|
|
814
|
-
1257
|
|
815
|
-
1032
|
|
816
|
-
1196
|
|
817
|
-
1074
|
|
818
|
-
1318
|
|
819
|
-
3173
|
|
820
|
-
4010
|
|
821
|
-
4092
|
|
822
|
-
1114
|
|
823
|
-
1093
|
|
824
|
-
2195
|
|
825
|
-
1135
|
|
826
|
-
3255
|
|
827
|
-
2296
|
|
828
|
-
2052
|
|
829
|
-
3011
|
|
830
|
-
2174
|
|
831
|
-
3030
|
|
832
|
-
4193
|
|
833
|
-
3276
|
|
834
|
-
3112
|
|
835
|
-
3295
|
|
836
|
-
2113
|
|
837
|
-
3194
|
|
838
|
-
1297
|
|
839
|
-
1215
|
|
840
|
-
3051
|
|
841
|
-
4132
|
|
842
|
-
4111
|
|
843
|
-
4029
|
|
844
|
-
3234
|
|
845
|
-
1175
|
|
846
|
-
1154
|
|
847
|
-
3152
|
|
848
|
-
4233
|
|
849
|
-
3316
|
|
850
|
-
2214
|
|
851
|
-
1072
|
|
852
|
-
2153
|
|
853
|
-
1236
|
|
854
|
-
4151
|
|
855
|
-
4090
|
|
856
|
-
3091
|
|
857
|
-
4050
|
|
858
|
-
2071
|
|
859
|
-
1255
|
|
860
|
-
1011
|
|
861
|
-
2235
|
|
862
|
-
3070
|
|
863
|
-
4069
|
|
864
|
-
1276
|
|
865
|
-
2031
|
|
866
|
-
4008
|
|
867
|
-
2254
|
|
868
|
-
1133
|
|
869
|
-
4172
|
|
870
|
-
2193
|
|
871
|
-
1112
|
|
872
|
-
3009
|
|
873
|
-
2092
|
|
874
|
-
3110
|
|
875
|
-
4191
|
|
876
|
-
3274
|
|
877
|
-
2275
|
|
878
|
-
1030
|
|
879
|
-
2111
|
|
880
|
-
1194
|
|
881
|
-
3213
|
|
882
|
-
1295
|
|
883
|
-
4252
|
|
884
|
-
3131
|
|
885
|
-
4212
|
|
886
|
-
2233
|
|
887
|
-
3171
|
|
888
|
-
1316
|
|
889
|
-
2132
|
|
890
|
-
3232
|
|
891
|
-
4109
|
|
892
|
-
4130
|
|
893
|
-
1051
|
|
894
|
-
1152
|
|
895
|
-
2294
|
|
896
|
-
2050
|
|
897
|
-
3192
|
|
898
|
-
3089
|
|
899
|
-
2151
|
|
900
|
-
3049
|
|
901
|
-
3253
|
|
902
|
-
1009
|
|
903
|
-
3150
|
|
904
|
-
3314
|
|
905
|
-
1173
|
|
906
|
-
4027
|
|
907
|
-
1070
|
|
908
|
-
1234
|
|
909
|
-
4048
|
|
910
|
-
1335
|
|
911
|
-
2008
|
|
912
|
-
2172
|
|
913
|
-
2029
|
|
914
|
-
3272
|
|
915
|
-
3211
|
|
916
|
-
4170
|
|
917
|
-
3028
|
|
918
|
-
1192
|
|
919
|
-
3007
|
|
920
|
-
2090
|
|
921
|
-
3293
|
|
922
|
-
4006
|
|
923
|
-
4067
|
|
924
|
-
4231
|
|
925
|
-
1213
|
|
926
|
-
4271
|
|
927
|
-
3190
|
|
928
|
-
1274
|
|
929
|
-
4088
|
|
930
|
-
2191
|
|
931
|
-
1110
|
|
932
|
-
2212
|
|
933
|
-
2273
|
|
934
|
-
1049
|
|
935
|
-
3047
|
|
936
|
-
1131
|
|
937
|
-
4149
|
|
938
|
-
1314
|
|
939
|
-
1232
|
|
940
|
-
2130
|
|
941
|
-
2069
|
|
942
|
-
2252
|
|
943
|
-
1089
|
|
944
|
-
3129
|
|
945
|
-
4210
|
|
946
|
-
4128
|
|
947
|
-
4107
|
|
948
|
-
3251
|
|
949
|
-
3068
|
|
950
|
-
2048
|
|
951
|
-
2027
|
|
952
|
-
1171
|
|
953
|
-
1253
|
|
954
|
-
4189
|
|
955
|
-
2292
|
|
956
|
-
3312
|
|
957
|
-
2109
|
|
958
|
-
3108
|
|
959
|
-
4229
|
|
960
|
-
2170
|
|
961
|
-
4250
|
|
962
|
-
4046
|
|
963
|
-
1272
|
|
964
|
-
1028
|
|
965
|
-
3169
|
|
966
|
-
2231
|
|
967
|
-
4086
|
|
968
|
-
1293
|
|
969
|
-
3230
|
|
970
|
-
2088
|
|
971
|
-
2006
|
|
972
|
-
4168
|
|
973
|
-
1150
|
|
974
|
-
3087
|
|
975
|
-
2271
|
|
976
|
-
3026
|
|
977
|
-
3291
|
|
978
|
-
1007
|
|
979
|
-
2128
|
|
980
|
-
1211
|
|
981
|
-
2149
|
|
982
|
-
3148
|
|
983
|
-
4269
|
|
984
|
-
4025
|
|
985
|
-
1068
|
|
986
|
-
1333
|
|
987
|
-
2189
|
|
988
|
-
2210
|
|
989
|
-
3209
|
|
990
|
-
3270
|
|
991
|
-
3188
|
|
992
|
-
4208
|
|
993
|
-
1129
|
|
994
|
-
4004
|
|
995
|
-
1108
|
|
996
|
-
1251
|
|
997
|
-
4147
|
|
998
|
-
3127
|
|
999
|
-
4126
|
|
1000
|
-
2250
|
|
1001
|
-
3005
|
|
1002
|
-
1047
|
|
1003
|
-
3045
|
|
1004
|
-
3249
|
|
1005
|
-
1190
|
|
1006
|
-
1312
|
|
1007
|
-
1087
|
|
1008
|
-
2107
|
|
1009
|
-
3066
|
|
1010
|
-
1169
|
|
1011
|
-
3228
|
|
1012
|
-
4248
|
|
1013
|
-
4065
|
|
1014
|
-
3310
|
|
1015
|
-
1148
|
|
1016
|
-
2168
|
|
1017
|
-
2046
|
|
1018
|
-
1026
|
|
1019
|
-
3085
|
|
1020
|
-
3106
|
|
1021
|
-
1230
|
|
1022
|
-
4044
|
|
1023
|
-
1270
|
|
1024
|
-
3024
|
|
1025
|
-
1291
|
|
1026
|
-
2229
|
|
1027
|
-
4084
|
|
1028
|
-
3289
|
|
1029
|
-
4105
|
|
1030
|
-
3167
|
|
1031
|
-
2004
|
|
1032
|
-
1005
|
|
1033
|
-
2025
|
|
1034
|
-
4166
|
|
1035
|
-
3207
|
|
1036
|
-
3146
|
|
1037
|
-
2290
|
|
1038
|
-
1209
|
|
1039
|
-
1127
|
|
1040
|
-
1066
|
|
1041
|
-
2086
|
|
1042
|
-
4023
|
|
1043
|
-
4145
|
|
1044
|
-
1331
|
|
1045
|
-
4227
|
|
1046
|
-
2208
|
|
1047
|
-
4124
|
|
1048
|
-
1188
|
|
1049
|
-
2147
|
|
1050
|
-
2269
|
|
1051
|
-
2044
|
|
1052
|
-
3064
|
|
1053
|
-
3003
|
|
1054
|
-
2065
|
|
1055
|
-
4246
|
|
1056
|
-
4002
|
|
1057
|
-
3268
|
|
1058
|
-
4206
|
|
1059
|
-
2166
|
|
1060
|
-
3329
|
|
1061
|
-
4267
|
|
1062
|
-
2126
|
|
1063
|
-
2023
|
|
1064
|
-
1249
|
|
1065
|
-
2187
|
|
1066
|
-
3125
|
|
1067
|
-
2288
|
|
1068
|
-
4185
|
|
1069
|
-
3186
|
|
1070
|
-
1045
|
|
1071
|
-
3226
|
|
1072
|
-
2105
|
|
1073
|
-
1106
|
|
1074
|
-
4063
|
|
1075
|
-
2206
|
|
1076
|
-
3104
|
|
1077
|
-
3247
|
|
1078
|
-
1310
|
|
1079
|
-
3205
|
|
1080
|
-
4042
|
|
1081
|
-
1167
|
|
1082
|
-
2248
|
|
1083
|
-
1125
|
|
1084
|
-
1289
|
|
1085
|
-
3043
|
|
1086
|
-
1024
|
|
1087
|
-
2063
|
|
1088
|
-
2227
|
|
1089
|
-
3308
|
|
1090
|
-
3165
|
|
1091
|
-
3062
|
|
1092
|
-
4225
|
|
1093
|
-
4103
|
|
1094
|
-
1085
|
|
1095
|
-
1104
|
|
1096
|
-
2145
|
|
1097
|
-
1146
|
|
1098
|
-
3022
|
|
1099
|
-
4122
|
|
1100
|
-
2267
|
|
1101
|
-
4164
|
|
1102
|
-
3287
|
|
1103
|
-
3245
|
|
1104
|
-
3001
|
|
1105
|
-
2084
|
|
1106
|
-
1207
|
|
1107
|
-
1165
|
|
1108
|
-
3266
|
|
1109
|
-
3083
|
|
1110
|
-
4021
|
|
1111
|
-
4244
|
|
1112
|
-
1186
|
|
1113
|
-
1003
|
|
1114
|
-
3144
|
|
1115
|
-
3102
|
|
1116
|
-
2185
|
|
1117
|
-
1268
|
|
1118
|
-
1064
|
|
1119
|
-
1022
|
|
1120
|
-
3123
|
|
1121
|
-
2002
|
|
1122
|
-
4082
|
|
1123
|
-
1287
|
|
1124
|
-
1043
|
|
1125
|
-
4143
|
|
1126
|
-
1329
|
|
1127
|
-
4101
|
|
1128
|
-
3184
|
|
1129
|
-
4204
|
|
1130
|
-
3327
|
|
1131
|
-
2021
|
|
1132
|
-
3041
|
|
1133
|
-
2124
|
|
1134
|
-
1247
|
|
1135
|
-
4162
|
|
1136
|
-
3306
|
|
1137
|
-
4265
|
|
1138
|
-
4061
|
|
1139
|
-
4019
|
|
1140
|
-
1226
|
|
1141
|
-
1308
|
|
1142
|
-
2246
|
|
1143
|
-
1327
|
|
1144
|
-
4040
|
|
1145
|
-
2042
|
|
1146
|
-
4183
|
|
1147
|
-
4141
|
|
1148
|
-
1083
|
|
1149
|
-
2164
|
|
1150
|
-
2103
|
|
1151
|
-
2061
|
|
1152
|
-
2082
|
|
1153
|
-
3224
|
|
1154
|
-
3163
|
|
1155
|
-
2183
|
|
1156
|
-
4223
|
|
1157
|
-
3020
|
|
1158
|
-
2286
|
|
1159
|
-
3243
|
|
1160
|
-
3081
|
|
1161
|
-
3285
|
|
1162
|
-
2143
|
|
1163
|
-
1163
|
|
1164
|
-
1001
|
|
1165
|
-
1205
|
|
1166
|
-
3142
|
|
1167
|
-
4181
|
|
1168
|
-
1266
|
|
1169
|
-
2204
|
|
1170
|
-
1062
|
|
1171
|
-
3100
|
|
1172
|
-
4080
|
|
1173
|
-
1123
|
|
1174
|
-
3203
|
|
1175
|
-
3222
|
|
1176
|
-
2265
|
|
1177
|
-
3264
|
|
1178
|
-
3325
|
|
1179
|
-
1142
|
|
1180
|
-
2122
|
|
1181
|
-
1184
|
|
1182
|
-
1041
|
|
1183
|
-
4263
|
|
1184
|
-
4202
|
|
1185
|
-
4059
|
|
1186
|
-
1306
|
|
1187
|
-
3060
|
|
1188
|
-
2244
|
|
1189
|
-
2305
|
|
1190
|
-
1245
|
|
1191
|
-
3182
|
|
1192
|
-
3304
|
|
1193
|
-
3121
|
|
1194
|
-
1102
|
|
1195
|
-
2162
|
|
1196
|
-
4120
|
|
1197
|
-
3039
|
|
1198
|
-
2223
|
|
1199
|
-
2040
|
|
1200
|
-
1224
|
|
1201
|
-
3161
|
|
1202
|
-
2101
|
|
1203
|
-
4038
|
|
1204
|
-
4242
|
|
1205
|
-
1081
|
|
1206
|
-
1020
|
|
1207
|
-
2284
|
|
1208
|
-
1285
|
|
1209
|
-
4160
|
|
1210
|
-
2080
|
|
1
|
+
"id"
|
|
2
|
+
2141
|
|
3
|
+
3283
|
|
4
|
+
4221
|
|
5
|
+
3018
|
|
6
|
+
1060
|
|
7
|
+
4017
|
|
8
|
+
1264
|
|
9
|
+
1203
|
|
10
|
+
3201
|
|
11
|
+
2202
|
|
12
|
+
3140
|
|
13
|
+
3079
|
|
14
|
+
1121
|
|
15
|
+
4139
|
|
16
|
+
4078
|
|
17
|
+
3262
|
|
18
|
+
3058
|
|
19
|
+
2059
|
|
20
|
+
1325
|
|
21
|
+
1182
|
|
22
|
+
3323
|
|
23
|
+
2242
|
|
24
|
+
2263
|
|
25
|
+
4200
|
|
26
|
+
4057
|
|
27
|
+
3241
|
|
28
|
+
2120
|
|
29
|
+
1243
|
|
30
|
+
3180
|
|
31
|
+
1161
|
|
32
|
+
4261
|
|
33
|
+
3119
|
|
34
|
+
1100
|
|
35
|
+
2099
|
|
36
|
+
2181
|
|
37
|
+
1304
|
|
38
|
+
1222
|
|
39
|
+
3098
|
|
40
|
+
1039
|
|
41
|
+
2038
|
|
42
|
+
1283
|
|
43
|
+
1140
|
|
44
|
+
4118
|
|
45
|
+
4179
|
|
46
|
+
4097
|
|
47
|
+
3281
|
|
48
|
+
2303
|
|
49
|
+
4240
|
|
50
|
+
2017
|
|
51
|
+
1201
|
|
52
|
+
3037
|
|
53
|
+
2160
|
|
54
|
+
2282
|
|
55
|
+
3138
|
|
56
|
+
3302
|
|
57
|
+
1018
|
|
58
|
+
3220
|
|
59
|
+
1058
|
|
60
|
+
4036
|
|
61
|
+
2078
|
|
62
|
+
4219
|
|
63
|
+
1323
|
|
64
|
+
2221
|
|
65
|
+
3016
|
|
66
|
+
2139
|
|
67
|
+
4137
|
|
68
|
+
3159
|
|
69
|
+
4015
|
|
70
|
+
2261
|
|
71
|
+
2057
|
|
72
|
+
1079
|
|
73
|
+
2200
|
|
74
|
+
4259
|
|
75
|
+
1180
|
|
76
|
+
3077
|
|
77
|
+
3260
|
|
78
|
+
2179
|
|
79
|
+
4198
|
|
80
|
+
1262
|
|
81
|
+
3056
|
|
82
|
+
3178
|
|
83
|
+
3239
|
|
84
|
+
3199
|
|
85
|
+
3321
|
|
86
|
+
1098
|
|
87
|
+
4177
|
|
88
|
+
1119
|
|
89
|
+
1241
|
|
90
|
+
2036
|
|
91
|
+
2097
|
|
92
|
+
2118
|
|
93
|
+
4055
|
|
94
|
+
2301
|
|
95
|
+
1220
|
|
96
|
+
3117
|
|
97
|
+
2240
|
|
98
|
+
3035
|
|
99
|
+
4034
|
|
100
|
+
1037
|
|
101
|
+
1159
|
|
102
|
+
1077
|
|
103
|
+
2219
|
|
104
|
+
1302
|
|
105
|
+
3300
|
|
106
|
+
4095
|
|
107
|
+
2076
|
|
108
|
+
4116
|
|
109
|
+
3096
|
|
110
|
+
3218
|
|
111
|
+
3279
|
|
112
|
+
4238
|
|
113
|
+
1016
|
|
114
|
+
1138
|
|
115
|
+
2259
|
|
116
|
+
2158
|
|
117
|
+
1281
|
|
118
|
+
3075
|
|
119
|
+
3258
|
|
120
|
+
3157
|
|
121
|
+
4156
|
|
122
|
+
1260
|
|
123
|
+
1178
|
|
124
|
+
2015
|
|
125
|
+
1199
|
|
126
|
+
4074
|
|
127
|
+
3319
|
|
128
|
+
2280
|
|
129
|
+
4217
|
|
130
|
+
1117
|
|
131
|
+
3115
|
|
132
|
+
4013
|
|
133
|
+
2137
|
|
134
|
+
4135
|
|
135
|
+
1035
|
|
136
|
+
2198
|
|
137
|
+
3136
|
|
138
|
+
4257
|
|
139
|
+
3176
|
|
140
|
+
3197
|
|
141
|
+
1056
|
|
142
|
+
1300
|
|
143
|
+
4175
|
|
144
|
+
3054
|
|
145
|
+
1321
|
|
146
|
+
4114
|
|
147
|
+
2095
|
|
148
|
+
1239
|
|
149
|
+
2055
|
|
150
|
+
2034
|
|
151
|
+
3298
|
|
152
|
+
2238
|
|
153
|
+
4196
|
|
154
|
+
2299
|
|
155
|
+
1218
|
|
156
|
+
1096
|
|
157
|
+
2116
|
|
158
|
+
1157
|
|
159
|
+
4032
|
|
160
|
+
3237
|
|
161
|
+
2177
|
|
162
|
+
2156
|
|
163
|
+
1075
|
|
164
|
+
4236
|
|
165
|
+
4053
|
|
166
|
+
2013
|
|
167
|
+
2074
|
|
168
|
+
3094
|
|
169
|
+
3033
|
|
170
|
+
3216
|
|
171
|
+
4215
|
|
172
|
+
1014
|
|
173
|
+
2217
|
|
174
|
+
4154
|
|
175
|
+
2135
|
|
176
|
+
1279
|
|
177
|
+
2278
|
|
178
|
+
3195
|
|
179
|
+
4072
|
|
180
|
+
3155
|
|
181
|
+
3012
|
|
182
|
+
1115
|
|
183
|
+
2257
|
|
184
|
+
4093
|
|
185
|
+
3277
|
|
186
|
+
3256
|
|
187
|
+
1176
|
|
188
|
+
1136
|
|
189
|
+
1197
|
|
190
|
+
3052
|
|
191
|
+
4194
|
|
192
|
+
4011
|
|
193
|
+
3073
|
|
194
|
+
3113
|
|
195
|
+
2114
|
|
196
|
+
1054
|
|
197
|
+
1258
|
|
198
|
+
4112
|
|
199
|
+
3031
|
|
200
|
+
1319
|
|
201
|
+
3134
|
|
202
|
+
2032
|
|
203
|
+
3296
|
|
204
|
+
4133
|
|
205
|
+
3317
|
|
206
|
+
2297
|
|
207
|
+
1216
|
|
208
|
+
2053
|
|
209
|
+
1237
|
|
210
|
+
3235
|
|
211
|
+
3010
|
|
212
|
+
2175
|
|
213
|
+
4255
|
|
214
|
+
1155
|
|
215
|
+
3275
|
|
216
|
+
4051
|
|
217
|
+
1033
|
|
218
|
+
1277
|
|
219
|
+
1195
|
|
220
|
+
2236
|
|
221
|
+
1298
|
|
222
|
+
2011
|
|
223
|
+
4213
|
|
224
|
+
1094
|
|
225
|
+
3174
|
|
226
|
+
4152
|
|
227
|
+
1256
|
|
228
|
+
3092
|
|
229
|
+
4173
|
|
230
|
+
2072
|
|
231
|
+
1052
|
|
232
|
+
4091
|
|
233
|
+
2093
|
|
234
|
+
4009
|
|
235
|
+
3193
|
|
236
|
+
2276
|
|
237
|
+
4234
|
|
238
|
+
2194
|
|
239
|
+
4192
|
|
240
|
+
3214
|
|
241
|
+
2154
|
|
242
|
+
1113
|
|
243
|
+
2112
|
|
244
|
+
1134
|
|
245
|
+
4030
|
|
246
|
+
4131
|
|
247
|
+
3050
|
|
248
|
+
3132
|
|
249
|
+
2215
|
|
250
|
+
2051
|
|
251
|
+
1235
|
|
252
|
+
1317
|
|
253
|
+
1073
|
|
254
|
+
2234
|
|
255
|
+
4049
|
|
256
|
+
3254
|
|
257
|
+
2133
|
|
258
|
+
3233
|
|
259
|
+
2091
|
|
260
|
+
1174
|
|
261
|
+
3071
|
|
262
|
+
1153
|
|
263
|
+
3294
|
|
264
|
+
2173
|
|
265
|
+
4070
|
|
266
|
+
3090
|
|
267
|
+
4232
|
|
268
|
+
1031
|
|
269
|
+
2255
|
|
270
|
+
1275
|
|
271
|
+
2152
|
|
272
|
+
3172
|
|
273
|
+
3315
|
|
274
|
+
1132
|
|
275
|
+
4089
|
|
276
|
+
1092
|
|
277
|
+
3111
|
|
278
|
+
4150
|
|
279
|
+
2009
|
|
280
|
+
4110
|
|
281
|
+
1296
|
|
282
|
+
3273
|
|
283
|
+
2274
|
|
284
|
+
4171
|
|
285
|
+
2295
|
|
286
|
+
1193
|
|
287
|
+
3008
|
|
288
|
+
4028
|
|
289
|
+
3029
|
|
290
|
+
3130
|
|
291
|
+
2131
|
|
292
|
+
2213
|
|
293
|
+
1214
|
|
294
|
+
1315
|
|
295
|
+
1050
|
|
296
|
+
3212
|
|
297
|
+
1010
|
|
298
|
+
4129
|
|
299
|
+
4190
|
|
300
|
+
2070
|
|
301
|
+
3151
|
|
302
|
+
2049
|
|
303
|
+
3048
|
|
304
|
+
3069
|
|
305
|
+
1071
|
|
306
|
+
1172
|
|
307
|
+
3313
|
|
308
|
+
4068
|
|
309
|
+
4211
|
|
310
|
+
2028
|
|
311
|
+
1233
|
|
312
|
+
2253
|
|
313
|
+
4007
|
|
314
|
+
3231
|
|
315
|
+
3170
|
|
316
|
+
3252
|
|
317
|
+
1254
|
|
318
|
+
4169
|
|
319
|
+
1090
|
|
320
|
+
3109
|
|
321
|
+
2192
|
|
322
|
+
2089
|
|
323
|
+
1212
|
|
324
|
+
1029
|
|
325
|
+
3191
|
|
326
|
+
4026
|
|
327
|
+
4230
|
|
328
|
+
1294
|
|
329
|
+
1111
|
|
330
|
+
2211
|
|
331
|
+
2150
|
|
332
|
+
2293
|
|
333
|
+
2110
|
|
334
|
+
2068
|
|
335
|
+
1273
|
|
336
|
+
1151
|
|
337
|
+
4251
|
|
338
|
+
3271
|
|
339
|
+
4087
|
|
340
|
+
3292
|
|
341
|
+
2171
|
|
342
|
+
2251
|
|
343
|
+
1130
|
|
344
|
+
3149
|
|
345
|
+
4047
|
|
346
|
+
3250
|
|
347
|
+
3006
|
|
348
|
+
1069
|
|
349
|
+
2232
|
|
350
|
+
1170
|
|
351
|
+
4209
|
|
352
|
+
1334
|
|
353
|
+
4108
|
|
354
|
+
3107
|
|
355
|
+
2129
|
|
356
|
+
3210
|
|
357
|
+
3027
|
|
358
|
+
1027
|
|
359
|
+
4270
|
|
360
|
+
4148
|
|
361
|
+
3088
|
|
362
|
+
1292
|
|
363
|
+
4127
|
|
364
|
+
1191
|
|
365
|
+
1008
|
|
366
|
+
1149
|
|
367
|
+
3046
|
|
368
|
+
4005
|
|
369
|
+
2007
|
|
370
|
+
4167
|
|
371
|
+
3311
|
|
372
|
+
2190
|
|
373
|
+
2272
|
|
374
|
+
2087
|
|
375
|
+
1231
|
|
376
|
+
4066
|
|
377
|
+
3067
|
|
378
|
+
3290
|
|
379
|
+
4249
|
|
380
|
+
1109
|
|
381
|
+
1252
|
|
382
|
+
1210
|
|
383
|
+
2169
|
|
384
|
+
2047
|
|
385
|
+
3128
|
|
386
|
+
4024
|
|
387
|
+
3168
|
|
388
|
+
4188
|
|
389
|
+
1048
|
|
390
|
+
1067
|
|
391
|
+
2026
|
|
392
|
+
2108
|
|
393
|
+
1313
|
|
394
|
+
1332
|
|
395
|
+
3025
|
|
396
|
+
4106
|
|
397
|
+
3189
|
|
398
|
+
4146
|
|
399
|
+
3086
|
|
400
|
+
2291
|
|
401
|
+
4045
|
|
402
|
+
2066
|
|
403
|
+
1271
|
|
404
|
+
1006
|
|
405
|
+
1088
|
|
406
|
+
4207
|
|
407
|
+
3208
|
|
408
|
+
3147
|
|
409
|
+
3229
|
|
410
|
+
4064
|
|
411
|
+
2127
|
|
412
|
+
3004
|
|
413
|
+
4228
|
|
414
|
+
2249
|
|
415
|
+
3065
|
|
416
|
+
3269
|
|
417
|
+
2148
|
|
418
|
+
3248
|
|
419
|
+
1250
|
|
420
|
+
1189
|
|
421
|
+
2209
|
|
422
|
+
1168
|
|
423
|
+
4268
|
|
424
|
+
4003
|
|
425
|
+
4085
|
|
426
|
+
4186
|
|
427
|
+
1107
|
|
428
|
+
1046
|
|
429
|
+
2270
|
|
430
|
+
2106
|
|
431
|
+
4247
|
|
432
|
+
1311
|
|
433
|
+
1128
|
|
434
|
+
3105
|
|
435
|
+
2167
|
|
436
|
+
3187
|
|
437
|
+
2188
|
|
438
|
+
3023
|
|
439
|
+
1290
|
|
440
|
+
3309
|
|
441
|
+
3126
|
|
442
|
+
3288
|
|
443
|
+
4104
|
|
444
|
+
1229
|
|
445
|
+
4125
|
|
446
|
+
1208
|
|
447
|
+
2024
|
|
448
|
+
4043
|
|
449
|
+
2045
|
|
450
|
+
3145
|
|
451
|
+
2289
|
|
452
|
+
2228
|
|
453
|
+
3044
|
|
454
|
+
1330
|
|
455
|
+
2146
|
|
456
|
+
1086
|
|
457
|
+
1025
|
|
458
|
+
2064
|
|
459
|
+
2207
|
|
460
|
+
3227
|
|
461
|
+
3166
|
|
462
|
+
3002
|
|
463
|
+
4144
|
|
464
|
+
1147
|
|
465
|
+
4226
|
|
466
|
+
3267
|
|
467
|
+
3063
|
|
468
|
+
4165
|
|
469
|
+
3084
|
|
470
|
+
1187
|
|
471
|
+
1248
|
|
472
|
+
2085
|
|
473
|
+
1004
|
|
474
|
+
4205
|
|
475
|
+
2186
|
|
476
|
+
4083
|
|
477
|
+
4022
|
|
478
|
+
3328
|
|
479
|
+
1105
|
|
480
|
+
2003
|
|
481
|
+
1269
|
|
482
|
+
1044
|
|
483
|
+
3042
|
|
484
|
+
2268
|
|
485
|
+
1065
|
|
486
|
+
3185
|
|
487
|
+
4245
|
|
488
|
+
2125
|
|
489
|
+
3206
|
|
490
|
+
4184
|
|
491
|
+
3103
|
|
492
|
+
3124
|
|
493
|
+
1126
|
|
494
|
+
2104
|
|
495
|
+
1288
|
|
496
|
+
4123
|
|
497
|
+
4001
|
|
498
|
+
1227
|
|
499
|
+
3225
|
|
500
|
+
2043
|
|
501
|
+
4266
|
|
502
|
+
4041
|
|
503
|
+
1145
|
|
504
|
+
3307
|
|
505
|
+
4062
|
|
506
|
+
2226
|
|
507
|
+
1002
|
|
508
|
+
1023
|
|
509
|
+
1309
|
|
510
|
+
2083
|
|
511
|
+
1267
|
|
512
|
+
1084
|
|
513
|
+
2247
|
|
514
|
+
3286
|
|
515
|
+
2205
|
|
516
|
+
3021
|
|
517
|
+
3246
|
|
518
|
+
4224
|
|
519
|
+
2001
|
|
520
|
+
1206
|
|
521
|
+
1166
|
|
522
|
+
2144
|
|
523
|
+
3061
|
|
524
|
+
4020
|
|
525
|
+
2165
|
|
526
|
+
4081
|
|
527
|
+
4264
|
|
528
|
+
3204
|
|
529
|
+
4102
|
|
530
|
+
2266
|
|
531
|
+
2184
|
|
532
|
+
1124
|
|
533
|
+
2022
|
|
534
|
+
1185
|
|
535
|
+
2041
|
|
536
|
+
3265
|
|
537
|
+
2287
|
|
538
|
+
2123
|
|
539
|
+
3101
|
|
540
|
+
4203
|
|
541
|
+
4163
|
|
542
|
+
3326
|
|
543
|
+
1286
|
|
544
|
+
1246
|
|
545
|
+
3082
|
|
546
|
+
1042
|
|
547
|
+
2224
|
|
548
|
+
4060
|
|
549
|
+
3143
|
|
550
|
+
4182
|
|
551
|
+
3223
|
|
552
|
+
2245
|
|
553
|
+
1063
|
|
554
|
+
3040
|
|
555
|
+
2081
|
|
556
|
+
4121
|
|
557
|
+
2062
|
|
558
|
+
3305
|
|
559
|
+
3080
|
|
560
|
+
1164
|
|
561
|
+
3122
|
|
562
|
+
1225
|
|
563
|
+
1326
|
|
564
|
+
2102
|
|
565
|
+
1307
|
|
566
|
+
3162
|
|
567
|
+
1122
|
|
568
|
+
4243
|
|
569
|
+
3183
|
|
570
|
+
1082
|
|
571
|
+
3263
|
|
572
|
+
2285
|
|
573
|
+
1103
|
|
574
|
+
1204
|
|
575
|
+
4262
|
|
576
|
+
4161
|
|
577
|
+
3244
|
|
578
|
+
4222
|
|
579
|
+
2182
|
|
580
|
+
3019
|
|
581
|
+
2163
|
|
582
|
+
2142
|
|
583
|
+
3120
|
|
584
|
+
3284
|
|
585
|
+
1021
|
|
586
|
+
1265
|
|
587
|
+
1040
|
|
588
|
+
3141
|
|
589
|
+
4039
|
|
590
|
+
4079
|
|
591
|
+
1305
|
|
592
|
+
1061
|
|
593
|
+
4100
|
|
594
|
+
4201
|
|
595
|
+
4119
|
|
596
|
+
3202
|
|
597
|
+
1143
|
|
598
|
+
2121
|
|
599
|
+
1162
|
|
600
|
+
2060
|
|
601
|
+
4018
|
|
602
|
+
2304
|
|
603
|
+
4037
|
|
604
|
+
3059
|
|
605
|
+
2203
|
|
606
|
+
3038
|
|
607
|
+
2222
|
|
608
|
+
3324
|
|
609
|
+
2264
|
|
610
|
+
3303
|
|
611
|
+
4159
|
|
612
|
+
1244
|
|
613
|
+
4140
|
|
614
|
+
1223
|
|
615
|
+
2079
|
|
616
|
+
4058
|
|
617
|
+
1183
|
|
618
|
+
4241
|
|
619
|
+
3078
|
|
620
|
+
1101
|
|
621
|
+
2243
|
|
622
|
+
2161
|
|
623
|
+
4016
|
|
624
|
+
3242
|
|
625
|
+
3181
|
|
626
|
+
3160
|
|
627
|
+
2201
|
|
628
|
+
2100
|
|
629
|
+
2039
|
|
630
|
+
2018
|
|
631
|
+
3118
|
|
632
|
+
4098
|
|
633
|
+
4180
|
|
634
|
+
3017
|
|
635
|
+
1038
|
|
636
|
+
2283
|
|
637
|
+
3099
|
|
638
|
+
1263
|
|
639
|
+
1303
|
|
640
|
+
1141
|
|
641
|
+
1019
|
|
642
|
+
1059
|
|
643
|
+
2241
|
|
644
|
+
3282
|
|
645
|
+
1284
|
|
646
|
+
3200
|
|
647
|
+
3240
|
|
648
|
+
1202
|
|
649
|
+
1080
|
|
650
|
+
4199
|
|
651
|
+
1160
|
|
652
|
+
4220
|
|
653
|
+
3221
|
|
654
|
+
2119
|
|
655
|
+
3097
|
|
656
|
+
2140
|
|
657
|
+
3139
|
|
658
|
+
3057
|
|
659
|
+
1017
|
|
660
|
+
4138
|
|
661
|
+
4077
|
|
662
|
+
3322
|
|
663
|
+
4035
|
|
664
|
+
2058
|
|
665
|
+
1324
|
|
666
|
+
1242
|
|
667
|
+
3158
|
|
668
|
+
2180
|
|
669
|
+
2262
|
|
670
|
+
4260
|
|
671
|
+
3280
|
|
672
|
+
3179
|
|
673
|
+
1120
|
|
674
|
+
4056
|
|
675
|
+
1200
|
|
676
|
+
4178
|
|
677
|
+
3261
|
|
678
|
+
1099
|
|
679
|
+
4014
|
|
680
|
+
2098
|
|
681
|
+
1181
|
|
682
|
+
4239
|
|
683
|
+
2199
|
|
684
|
+
3036
|
|
685
|
+
2037
|
|
686
|
+
2159
|
|
687
|
+
1057
|
|
688
|
+
1221
|
|
689
|
+
2302
|
|
690
|
+
4096
|
|
691
|
+
1322
|
|
692
|
+
1078
|
|
693
|
+
3301
|
|
694
|
+
2016
|
|
695
|
+
2260
|
|
696
|
+
3219
|
|
697
|
+
2220
|
|
698
|
+
2281
|
|
699
|
+
2056
|
|
700
|
+
1139
|
|
701
|
+
4157
|
|
702
|
+
3015
|
|
703
|
+
4197
|
|
704
|
+
4218
|
|
705
|
+
2077
|
|
706
|
+
2138
|
|
707
|
+
3116
|
|
708
|
+
3076
|
|
709
|
+
3137
|
|
710
|
+
4136
|
|
711
|
+
4054
|
|
712
|
+
1261
|
|
713
|
+
3198
|
|
714
|
+
3055
|
|
715
|
+
2239
|
|
716
|
+
4075
|
|
717
|
+
1118
|
|
718
|
+
3320
|
|
719
|
+
2096
|
|
720
|
+
3259
|
|
721
|
+
2117
|
|
722
|
+
1240
|
|
723
|
+
1015
|
|
724
|
+
1179
|
|
725
|
+
1301
|
|
726
|
+
2178
|
|
727
|
+
3156
|
|
728
|
+
4258
|
|
729
|
+
3238
|
|
730
|
+
3177
|
|
731
|
+
3278
|
|
732
|
+
4115
|
|
733
|
+
1158
|
|
734
|
+
1097
|
|
735
|
+
4012
|
|
736
|
+
2035
|
|
737
|
+
3299
|
|
738
|
+
3034
|
|
739
|
+
3135
|
|
740
|
+
2300
|
|
741
|
+
4033
|
|
742
|
+
4237
|
|
743
|
+
1055
|
|
744
|
+
4176
|
|
745
|
+
2218
|
|
746
|
+
3095
|
|
747
|
+
1320
|
|
748
|
+
1219
|
|
749
|
+
1076
|
|
750
|
+
1280
|
|
751
|
+
1177
|
|
752
|
+
2157
|
|
753
|
+
4094
|
|
754
|
+
3217
|
|
755
|
+
3318
|
|
756
|
+
2075
|
|
757
|
+
2014
|
|
758
|
+
1137
|
|
759
|
+
1034
|
|
760
|
+
4216
|
|
761
|
+
2279
|
|
762
|
+
2136
|
|
763
|
+
4052
|
|
764
|
+
3196
|
|
765
|
+
4155
|
|
766
|
+
1259
|
|
767
|
+
2237
|
|
768
|
+
3257
|
|
769
|
+
3013
|
|
770
|
+
2197
|
|
771
|
+
3175
|
|
772
|
+
2115
|
|
773
|
+
1198
|
|
774
|
+
3053
|
|
775
|
+
4174
|
|
776
|
+
1299
|
|
777
|
+
4073
|
|
778
|
+
4256
|
|
779
|
+
4031
|
|
780
|
+
4113
|
|
781
|
+
2258
|
|
782
|
+
2176
|
|
783
|
+
2277
|
|
784
|
+
1156
|
|
785
|
+
2054
|
|
786
|
+
2033
|
|
787
|
+
2073
|
|
788
|
+
3032
|
|
789
|
+
4195
|
|
790
|
+
2298
|
|
791
|
+
4214
|
|
792
|
+
3297
|
|
793
|
+
1238
|
|
794
|
+
3093
|
|
795
|
+
2134
|
|
796
|
+
4235
|
|
797
|
+
3114
|
|
798
|
+
1278
|
|
799
|
+
3133
|
|
800
|
+
2155
|
|
801
|
+
1095
|
|
802
|
+
2216
|
|
803
|
+
1053
|
|
804
|
+
1013
|
|
805
|
+
3236
|
|
806
|
+
3215
|
|
807
|
+
4071
|
|
808
|
+
2012
|
|
809
|
+
2094
|
|
810
|
+
3072
|
|
811
|
+
2256
|
|
812
|
+
4153
|
|
813
|
+
3154
|
|
814
|
+
1257
|
|
815
|
+
1032
|
|
816
|
+
1196
|
|
817
|
+
1074
|
|
818
|
+
1318
|
|
819
|
+
3173
|
|
820
|
+
4010
|
|
821
|
+
4092
|
|
822
|
+
1114
|
|
823
|
+
1093
|
|
824
|
+
2195
|
|
825
|
+
1135
|
|
826
|
+
3255
|
|
827
|
+
2296
|
|
828
|
+
2052
|
|
829
|
+
3011
|
|
830
|
+
2174
|
|
831
|
+
3030
|
|
832
|
+
4193
|
|
833
|
+
3276
|
|
834
|
+
3112
|
|
835
|
+
3295
|
|
836
|
+
2113
|
|
837
|
+
3194
|
|
838
|
+
1297
|
|
839
|
+
1215
|
|
840
|
+
3051
|
|
841
|
+
4132
|
|
842
|
+
4111
|
|
843
|
+
4029
|
|
844
|
+
3234
|
|
845
|
+
1175
|
|
846
|
+
1154
|
|
847
|
+
3152
|
|
848
|
+
4233
|
|
849
|
+
3316
|
|
850
|
+
2214
|
|
851
|
+
1072
|
|
852
|
+
2153
|
|
853
|
+
1236
|
|
854
|
+
4151
|
|
855
|
+
4090
|
|
856
|
+
3091
|
|
857
|
+
4050
|
|
858
|
+
2071
|
|
859
|
+
1255
|
|
860
|
+
1011
|
|
861
|
+
2235
|
|
862
|
+
3070
|
|
863
|
+
4069
|
|
864
|
+
1276
|
|
865
|
+
2031
|
|
866
|
+
4008
|
|
867
|
+
2254
|
|
868
|
+
1133
|
|
869
|
+
4172
|
|
870
|
+
2193
|
|
871
|
+
1112
|
|
872
|
+
3009
|
|
873
|
+
2092
|
|
874
|
+
3110
|
|
875
|
+
4191
|
|
876
|
+
3274
|
|
877
|
+
2275
|
|
878
|
+
1030
|
|
879
|
+
2111
|
|
880
|
+
1194
|
|
881
|
+
3213
|
|
882
|
+
1295
|
|
883
|
+
4252
|
|
884
|
+
3131
|
|
885
|
+
4212
|
|
886
|
+
2233
|
|
887
|
+
3171
|
|
888
|
+
1316
|
|
889
|
+
2132
|
|
890
|
+
3232
|
|
891
|
+
4109
|
|
892
|
+
4130
|
|
893
|
+
1051
|
|
894
|
+
1152
|
|
895
|
+
2294
|
|
896
|
+
2050
|
|
897
|
+
3192
|
|
898
|
+
3089
|
|
899
|
+
2151
|
|
900
|
+
3049
|
|
901
|
+
3253
|
|
902
|
+
1009
|
|
903
|
+
3150
|
|
904
|
+
3314
|
|
905
|
+
1173
|
|
906
|
+
4027
|
|
907
|
+
1070
|
|
908
|
+
1234
|
|
909
|
+
4048
|
|
910
|
+
1335
|
|
911
|
+
2008
|
|
912
|
+
2172
|
|
913
|
+
2029
|
|
914
|
+
3272
|
|
915
|
+
3211
|
|
916
|
+
4170
|
|
917
|
+
3028
|
|
918
|
+
1192
|
|
919
|
+
3007
|
|
920
|
+
2090
|
|
921
|
+
3293
|
|
922
|
+
4006
|
|
923
|
+
4067
|
|
924
|
+
4231
|
|
925
|
+
1213
|
|
926
|
+
4271
|
|
927
|
+
3190
|
|
928
|
+
1274
|
|
929
|
+
4088
|
|
930
|
+
2191
|
|
931
|
+
1110
|
|
932
|
+
2212
|
|
933
|
+
2273
|
|
934
|
+
1049
|
|
935
|
+
3047
|
|
936
|
+
1131
|
|
937
|
+
4149
|
|
938
|
+
1314
|
|
939
|
+
1232
|
|
940
|
+
2130
|
|
941
|
+
2069
|
|
942
|
+
2252
|
|
943
|
+
1089
|
|
944
|
+
3129
|
|
945
|
+
4210
|
|
946
|
+
4128
|
|
947
|
+
4107
|
|
948
|
+
3251
|
|
949
|
+
3068
|
|
950
|
+
2048
|
|
951
|
+
2027
|
|
952
|
+
1171
|
|
953
|
+
1253
|
|
954
|
+
4189
|
|
955
|
+
2292
|
|
956
|
+
3312
|
|
957
|
+
2109
|
|
958
|
+
3108
|
|
959
|
+
4229
|
|
960
|
+
2170
|
|
961
|
+
4250
|
|
962
|
+
4046
|
|
963
|
+
1272
|
|
964
|
+
1028
|
|
965
|
+
3169
|
|
966
|
+
2231
|
|
967
|
+
4086
|
|
968
|
+
1293
|
|
969
|
+
3230
|
|
970
|
+
2088
|
|
971
|
+
2006
|
|
972
|
+
4168
|
|
973
|
+
1150
|
|
974
|
+
3087
|
|
975
|
+
2271
|
|
976
|
+
3026
|
|
977
|
+
3291
|
|
978
|
+
1007
|
|
979
|
+
2128
|
|
980
|
+
1211
|
|
981
|
+
2149
|
|
982
|
+
3148
|
|
983
|
+
4269
|
|
984
|
+
4025
|
|
985
|
+
1068
|
|
986
|
+
1333
|
|
987
|
+
2189
|
|
988
|
+
2210
|
|
989
|
+
3209
|
|
990
|
+
3270
|
|
991
|
+
3188
|
|
992
|
+
4208
|
|
993
|
+
1129
|
|
994
|
+
4004
|
|
995
|
+
1108
|
|
996
|
+
1251
|
|
997
|
+
4147
|
|
998
|
+
3127
|
|
999
|
+
4126
|
|
1000
|
+
2250
|
|
1001
|
+
3005
|
|
1002
|
+
1047
|
|
1003
|
+
3045
|
|
1004
|
+
3249
|
|
1005
|
+
1190
|
|
1006
|
+
1312
|
|
1007
|
+
1087
|
|
1008
|
+
2107
|
|
1009
|
+
3066
|
|
1010
|
+
1169
|
|
1011
|
+
3228
|
|
1012
|
+
4248
|
|
1013
|
+
4065
|
|
1014
|
+
3310
|
|
1015
|
+
1148
|
|
1016
|
+
2168
|
|
1017
|
+
2046
|
|
1018
|
+
1026
|
|
1019
|
+
3085
|
|
1020
|
+
3106
|
|
1021
|
+
1230
|
|
1022
|
+
4044
|
|
1023
|
+
1270
|
|
1024
|
+
3024
|
|
1025
|
+
1291
|
|
1026
|
+
2229
|
|
1027
|
+
4084
|
|
1028
|
+
3289
|
|
1029
|
+
4105
|
|
1030
|
+
3167
|
|
1031
|
+
2004
|
|
1032
|
+
1005
|
|
1033
|
+
2025
|
|
1034
|
+
4166
|
|
1035
|
+
3207
|
|
1036
|
+
3146
|
|
1037
|
+
2290
|
|
1038
|
+
1209
|
|
1039
|
+
1127
|
|
1040
|
+
1066
|
|
1041
|
+
2086
|
|
1042
|
+
4023
|
|
1043
|
+
4145
|
|
1044
|
+
1331
|
|
1045
|
+
4227
|
|
1046
|
+
2208
|
|
1047
|
+
4124
|
|
1048
|
+
1188
|
|
1049
|
+
2147
|
|
1050
|
+
2269
|
|
1051
|
+
2044
|
|
1052
|
+
3064
|
|
1053
|
+
3003
|
|
1054
|
+
2065
|
|
1055
|
+
4246
|
|
1056
|
+
4002
|
|
1057
|
+
3268
|
|
1058
|
+
4206
|
|
1059
|
+
2166
|
|
1060
|
+
3329
|
|
1061
|
+
4267
|
|
1062
|
+
2126
|
|
1063
|
+
2023
|
|
1064
|
+
1249
|
|
1065
|
+
2187
|
|
1066
|
+
3125
|
|
1067
|
+
2288
|
|
1068
|
+
4185
|
|
1069
|
+
3186
|
|
1070
|
+
1045
|
|
1071
|
+
3226
|
|
1072
|
+
2105
|
|
1073
|
+
1106
|
|
1074
|
+
4063
|
|
1075
|
+
2206
|
|
1076
|
+
3104
|
|
1077
|
+
3247
|
|
1078
|
+
1310
|
|
1079
|
+
3205
|
|
1080
|
+
4042
|
|
1081
|
+
1167
|
|
1082
|
+
2248
|
|
1083
|
+
1125
|
|
1084
|
+
1289
|
|
1085
|
+
3043
|
|
1086
|
+
1024
|
|
1087
|
+
2063
|
|
1088
|
+
2227
|
|
1089
|
+
3308
|
|
1090
|
+
3165
|
|
1091
|
+
3062
|
|
1092
|
+
4225
|
|
1093
|
+
4103
|
|
1094
|
+
1085
|
|
1095
|
+
1104
|
|
1096
|
+
2145
|
|
1097
|
+
1146
|
|
1098
|
+
3022
|
|
1099
|
+
4122
|
|
1100
|
+
2267
|
|
1101
|
+
4164
|
|
1102
|
+
3287
|
|
1103
|
+
3245
|
|
1104
|
+
3001
|
|
1105
|
+
2084
|
|
1106
|
+
1207
|
|
1107
|
+
1165
|
|
1108
|
+
3266
|
|
1109
|
+
3083
|
|
1110
|
+
4021
|
|
1111
|
+
4244
|
|
1112
|
+
1186
|
|
1113
|
+
1003
|
|
1114
|
+
3144
|
|
1115
|
+
3102
|
|
1116
|
+
2185
|
|
1117
|
+
1268
|
|
1118
|
+
1064
|
|
1119
|
+
1022
|
|
1120
|
+
3123
|
|
1121
|
+
2002
|
|
1122
|
+
4082
|
|
1123
|
+
1287
|
|
1124
|
+
1043
|
|
1125
|
+
4143
|
|
1126
|
+
1329
|
|
1127
|
+
4101
|
|
1128
|
+
3184
|
|
1129
|
+
4204
|
|
1130
|
+
3327
|
|
1131
|
+
2021
|
|
1132
|
+
3041
|
|
1133
|
+
2124
|
|
1134
|
+
1247
|
|
1135
|
+
4162
|
|
1136
|
+
3306
|
|
1137
|
+
4265
|
|
1138
|
+
4061
|
|
1139
|
+
4019
|
|
1140
|
+
1226
|
|
1141
|
+
1308
|
|
1142
|
+
2246
|
|
1143
|
+
1327
|
|
1144
|
+
4040
|
|
1145
|
+
2042
|
|
1146
|
+
4183
|
|
1147
|
+
4141
|
|
1148
|
+
1083
|
|
1149
|
+
2164
|
|
1150
|
+
2103
|
|
1151
|
+
2061
|
|
1152
|
+
2082
|
|
1153
|
+
3224
|
|
1154
|
+
3163
|
|
1155
|
+
2183
|
|
1156
|
+
4223
|
|
1157
|
+
3020
|
|
1158
|
+
2286
|
|
1159
|
+
3243
|
|
1160
|
+
3081
|
|
1161
|
+
3285
|
|
1162
|
+
2143
|
|
1163
|
+
1163
|
|
1164
|
+
1001
|
|
1165
|
+
1205
|
|
1166
|
+
3142
|
|
1167
|
+
4181
|
|
1168
|
+
1266
|
|
1169
|
+
2204
|
|
1170
|
+
1062
|
|
1171
|
+
3100
|
|
1172
|
+
4080
|
|
1173
|
+
1123
|
|
1174
|
+
3203
|
|
1175
|
+
3222
|
|
1176
|
+
2265
|
|
1177
|
+
3264
|
|
1178
|
+
3325
|
|
1179
|
+
1142
|
|
1180
|
+
2122
|
|
1181
|
+
1184
|
|
1182
|
+
1041
|
|
1183
|
+
4263
|
|
1184
|
+
4202
|
|
1185
|
+
4059
|
|
1186
|
+
1306
|
|
1187
|
+
3060
|
|
1188
|
+
2244
|
|
1189
|
+
2305
|
|
1190
|
+
1245
|
|
1191
|
+
3182
|
|
1192
|
+
3304
|
|
1193
|
+
3121
|
|
1194
|
+
1102
|
|
1195
|
+
2162
|
|
1196
|
+
4120
|
|
1197
|
+
3039
|
|
1198
|
+
2223
|
|
1199
|
+
2040
|
|
1200
|
+
1224
|
|
1201
|
+
3161
|
|
1202
|
+
2101
|
|
1203
|
+
4038
|
|
1204
|
+
4242
|
|
1205
|
+
1081
|
|
1206
|
+
1020
|
|
1207
|
+
2284
|
|
1208
|
+
1285
|
|
1209
|
+
4160
|
|
1210
|
+
2080
|