teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +1864 -1640
- teradataml/__init__.py +70 -60
- teradataml/_version.py +11 -11
- teradataml/analytics/Transformations.py +2995 -2995
- teradataml/analytics/__init__.py +81 -83
- teradataml/analytics/analytic_function_executor.py +2013 -2010
- teradataml/analytics/analytic_query_generator.py +958 -958
- teradataml/analytics/byom/H2OPredict.py +514 -514
- teradataml/analytics/byom/PMMLPredict.py +437 -437
- teradataml/analytics/byom/__init__.py +14 -14
- teradataml/analytics/json_parser/__init__.py +130 -130
- teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
- teradataml/analytics/json_parser/json_store.py +191 -191
- teradataml/analytics/json_parser/metadata.py +1637 -1637
- teradataml/analytics/json_parser/utils.py +804 -803
- teradataml/analytics/meta_class.py +196 -196
- teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
- teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
- teradataml/analytics/sqle/__init__.py +97 -110
- teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
- teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
- teradataml/analytics/table_operator/__init__.py +10 -10
- teradataml/analytics/uaf/__init__.py +63 -63
- teradataml/analytics/utils.py +693 -692
- teradataml/analytics/valib.py +1603 -1600
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +1 -3
- teradataml/catalog/byom.py +1759 -1716
- teradataml/catalog/function_argument_mapper.py +859 -861
- teradataml/catalog/model_cataloging_utils.py +491 -1510
- teradataml/clients/pkce_client.py +481 -481
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/bulk_exposed_utils.py +111 -111
- teradataml/common/constants.py +1433 -1441
- teradataml/common/deprecations.py +160 -0
- teradataml/common/exceptions.py +73 -73
- teradataml/common/formula.py +742 -742
- teradataml/common/garbagecollector.py +592 -635
- teradataml/common/messagecodes.py +422 -431
- teradataml/common/messages.py +227 -231
- teradataml/common/sqlbundle.py +693 -693
- teradataml/common/td_coltype_code_to_tdtype.py +48 -48
- teradataml/common/utils.py +2418 -2500
- teradataml/common/warnings.py +25 -25
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/config/dummy_file1.cfg +4 -4
- teradataml/config/dummy_file2.cfg +2 -2
- teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
- teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
- teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
- teradataml/context/aed_context.py +217 -217
- teradataml/context/context.py +1071 -999
- teradataml/data/A_loan.csv +19 -19
- teradataml/data/BINARY_REALS_LEFT.csv +11 -11
- teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
- teradataml/data/B_loan.csv +49 -49
- teradataml/data/BuoyData2.csv +17 -17
- teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
- teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
- teradataml/data/Convolve2RealsLeft.csv +5 -5
- teradataml/data/Convolve2RealsRight.csv +5 -5
- teradataml/data/Convolve2ValidLeft.csv +11 -11
- teradataml/data/Convolve2ValidRight.csv +11 -11
- teradataml/data/DFFTConv_Real_8_8.csv +65 -65
- teradataml/data/Orders1_12mf.csv +24 -24
- teradataml/data/Pi_loan.csv +7 -7
- teradataml/data/SMOOTHED_DATA.csv +7 -7
- teradataml/data/TestDFFT8.csv +9 -9
- teradataml/data/TestRiver.csv +109 -109
- teradataml/data/Traindata.csv +28 -28
- teradataml/data/acf.csv +17 -17
- teradataml/data/adaboost_example.json +34 -34
- teradataml/data/adaboostpredict_example.json +24 -24
- teradataml/data/additional_table.csv +10 -10
- teradataml/data/admissions_test.csv +21 -21
- teradataml/data/admissions_train.csv +41 -41
- teradataml/data/admissions_train_nulls.csv +41 -41
- teradataml/data/ageandheight.csv +13 -13
- teradataml/data/ageandpressure.csv +31 -31
- teradataml/data/antiselect_example.json +36 -36
- teradataml/data/antiselect_input.csv +8 -8
- teradataml/data/antiselect_input_mixed_case.csv +8 -8
- teradataml/data/applicant_external.csv +6 -6
- teradataml/data/applicant_reference.csv +6 -6
- teradataml/data/arima_example.json +9 -9
- teradataml/data/assortedtext_input.csv +8 -8
- teradataml/data/attribution_example.json +33 -33
- teradataml/data/attribution_sample_table.csv +27 -27
- teradataml/data/attribution_sample_table1.csv +6 -6
- teradataml/data/attribution_sample_table2.csv +11 -11
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bank_web_clicks1.csv +42 -42
- teradataml/data/bank_web_clicks2.csv +91 -91
- teradataml/data/bank_web_url.csv +85 -85
- teradataml/data/barrier.csv +2 -2
- teradataml/data/barrier_new.csv +3 -3
- teradataml/data/betweenness_example.json +13 -13
- teradataml/data/bin_breaks.csv +8 -8
- teradataml/data/bin_fit_ip.csv +3 -3
- teradataml/data/binary_complex_left.csv +11 -11
- teradataml/data/binary_complex_right.csv +11 -11
- teradataml/data/binary_matrix_complex_left.csv +21 -21
- teradataml/data/binary_matrix_complex_right.csv +21 -21
- teradataml/data/binary_matrix_real_left.csv +21 -21
- teradataml/data/binary_matrix_real_right.csv +21 -21
- teradataml/data/blood2ageandweight.csv +26 -26
- teradataml/data/bmi.csv +501 -0
- teradataml/data/boston.csv +507 -507
- teradataml/data/buoydata_mix.csv +11 -11
- teradataml/data/burst_data.csv +5 -5
- teradataml/data/burst_example.json +20 -20
- teradataml/data/byom_example.json +17 -17
- teradataml/data/bytes_table.csv +3 -3
- teradataml/data/cal_housing_ex_raw.csv +70 -70
- teradataml/data/callers.csv +7 -7
- teradataml/data/calls.csv +10 -10
- teradataml/data/cars_hist.csv +33 -33
- teradataml/data/cat_table.csv +24 -24
- teradataml/data/ccm_example.json +31 -31
- teradataml/data/ccm_input.csv +91 -91
- teradataml/data/ccm_input2.csv +13 -13
- teradataml/data/ccmexample.csv +101 -101
- teradataml/data/ccmprepare_example.json +8 -8
- teradataml/data/ccmprepare_input.csv +91 -91
- teradataml/data/cfilter_example.json +12 -12
- teradataml/data/changepointdetection_example.json +18 -18
- teradataml/data/changepointdetectionrt_example.json +8 -8
- teradataml/data/chi_sq.csv +2 -2
- teradataml/data/churn_data.csv +14 -14
- teradataml/data/churn_emission.csv +35 -35
- teradataml/data/churn_initial.csv +3 -3
- teradataml/data/churn_state_transition.csv +5 -5
- teradataml/data/citedges_2.csv +745 -745
- teradataml/data/citvertices_2.csv +1210 -1210
- teradataml/data/clicks2.csv +16 -16
- teradataml/data/clickstream.csv +12 -12
- teradataml/data/clickstream1.csv +11 -11
- teradataml/data/closeness_example.json +15 -15
- teradataml/data/complaints.csv +21 -21
- teradataml/data/complaints_mini.csv +3 -3
- teradataml/data/complaints_testtoken.csv +224 -224
- teradataml/data/complaints_tokens_test.csv +353 -353
- teradataml/data/complaints_traintoken.csv +472 -472
- teradataml/data/computers_category.csv +1001 -1001
- teradataml/data/computers_test1.csv +1252 -1252
- teradataml/data/computers_train1.csv +5009 -5009
- teradataml/data/computers_train1_clustered.csv +5009 -5009
- teradataml/data/confusionmatrix_example.json +9 -9
- teradataml/data/conversion_event_table.csv +3 -3
- teradataml/data/corr_input.csv +17 -17
- teradataml/data/correlation_example.json +11 -11
- teradataml/data/coxhazardratio_example.json +39 -39
- teradataml/data/coxph_example.json +15 -15
- teradataml/data/coxsurvival_example.json +28 -28
- teradataml/data/cpt.csv +41 -41
- teradataml/data/credit_ex_merged.csv +45 -45
- teradataml/data/customer_loyalty.csv +301 -301
- teradataml/data/customer_loyalty_newseq.csv +31 -31
- teradataml/data/dataframe_example.json +146 -146
- teradataml/data/decisionforest_example.json +37 -37
- teradataml/data/decisionforestpredict_example.json +38 -38
- teradataml/data/decisiontree_example.json +21 -21
- teradataml/data/decisiontreepredict_example.json +45 -45
- teradataml/data/dfft2_size4_real.csv +17 -17
- teradataml/data/dfft2_test_matrix16.csv +17 -17
- teradataml/data/dfft2conv_real_4_4.csv +65 -65
- teradataml/data/diabetes.csv +443 -443
- teradataml/data/diabetes_test.csv +89 -89
- teradataml/data/dict_table.csv +5 -5
- teradataml/data/docperterm_table.csv +4 -4
- teradataml/data/docs/__init__.py +1 -1
- teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
- teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
- teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
- teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
- teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
- teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
- teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
- teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
- teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
- teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
- teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
- teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
- teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
- teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
- teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
- teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
- teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
- teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
- teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
- teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
- teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
- teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +132 -132
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +103 -103
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +101 -101
- teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
- teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
- teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
- teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
- teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
- teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
- teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
- teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
- teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
- teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
- teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
- teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
- teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
- teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +126 -126
- teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
- teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
- teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
- teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
- teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
- teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +243 -243
- teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
- teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
- teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
- teradataml/data/docs/sqle/docs_17_20/FTest.py +160 -160
- teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
- teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
- teradataml/data/docs/sqle/docs_17_20/GLM.py +380 -380
- teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
- teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +123 -123
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
- teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +204 -204
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
- teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
- teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
- teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
- teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +117 -117
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
- teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
- teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +225 -225
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +115 -115
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
- teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
- teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
- teradataml/data/docs/sqle/docs_17_20/ROC.py +163 -163
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
- teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
- teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
- teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +202 -202
- teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +197 -197
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +110 -109
- teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
- teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
- teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
- teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
- teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +171 -171
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
- teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
- teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
- teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
- teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
- teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
- teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
- teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
- teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +353 -353
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +275 -275
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +155 -155
- teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
- teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
- teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
- teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
- teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
- teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
- teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
- teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
- teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
- teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
- teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
- teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
- teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
- teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
- teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
- teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
- teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
- teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
- teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
- teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
- teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
- teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
- teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
- teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
- teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
- teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
- teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
- teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
- teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
- teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
- teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
- teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
- teradataml/data/dtw_example.json +17 -17
- teradataml/data/dtw_t1.csv +11 -11
- teradataml/data/dtw_t2.csv +4 -4
- teradataml/data/dwt2d_example.json +15 -15
- teradataml/data/dwt_example.json +14 -14
- teradataml/data/dwt_filter_dim.csv +5 -5
- teradataml/data/emission.csv +9 -9
- teradataml/data/emp_table_by_dept.csv +19 -19
- teradataml/data/employee_info.csv +4 -4
- teradataml/data/employee_table.csv +6 -6
- teradataml/data/excluding_event_table.csv +2 -2
- teradataml/data/finance_data.csv +6 -6
- teradataml/data/finance_data2.csv +61 -61
- teradataml/data/finance_data3.csv +93 -93
- teradataml/data/fish.csv +160 -0
- teradataml/data/fm_blood2ageandweight.csv +26 -26
- teradataml/data/fmeasure_example.json +11 -11
- teradataml/data/followers_leaders.csv +10 -10
- teradataml/data/fpgrowth_example.json +12 -12
- teradataml/data/frequentpaths_example.json +29 -29
- teradataml/data/friends.csv +9 -9
- teradataml/data/fs_input.csv +33 -33
- teradataml/data/fs_input1.csv +33 -33
- teradataml/data/genData.csv +513 -513
- teradataml/data/geodataframe_example.json +39 -39
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/glm_admissions_model.csv +12 -12
- teradataml/data/glm_example.json +29 -29
- teradataml/data/glml1l2_example.json +28 -28
- teradataml/data/glml1l2predict_example.json +54 -54
- teradataml/data/glmpredict_example.json +54 -54
- teradataml/data/gq_t1.csv +21 -21
- teradataml/data/hconvolve_complex_right.csv +5 -5
- teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
- teradataml/data/histogram_example.json +11 -11
- teradataml/data/hmmdecoder_example.json +78 -78
- teradataml/data/hmmevaluator_example.json +24 -24
- teradataml/data/hmmsupervised_example.json +10 -10
- teradataml/data/hmmunsupervised_example.json +7 -7
- teradataml/data/house_values.csv +12 -12
- teradataml/data/house_values2.csv +13 -13
- teradataml/data/housing_cat.csv +7 -7
- teradataml/data/housing_data.csv +9 -9
- teradataml/data/housing_test.csv +47 -47
- teradataml/data/housing_test_binary.csv +47 -47
- teradataml/data/housing_train.csv +493 -493
- teradataml/data/housing_train_attribute.csv +4 -4
- teradataml/data/housing_train_binary.csv +437 -437
- teradataml/data/housing_train_parameter.csv +2 -2
- teradataml/data/housing_train_response.csv +493 -493
- teradataml/data/ibm_stock.csv +370 -370
- teradataml/data/ibm_stock1.csv +370 -370
- teradataml/data/identitymatch_example.json +21 -21
- teradataml/data/idf_table.csv +4 -4
- teradataml/data/impressions.csv +101 -101
- teradataml/data/inflation.csv +21 -21
- teradataml/data/initial.csv +3 -3
- teradataml/data/insect_sprays.csv +12 -12
- teradataml/data/insurance.csv +1339 -1339
- teradataml/data/interpolator_example.json +12 -12
- teradataml/data/iris_altinput.csv +481 -481
- teradataml/data/iris_attribute_output.csv +8 -8
- teradataml/data/iris_attribute_test.csv +121 -121
- teradataml/data/iris_attribute_train.csv +481 -481
- teradataml/data/iris_category_expect_predict.csv +31 -31
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/iris_input.csv +151 -151
- teradataml/data/iris_response_train.csv +121 -121
- teradataml/data/iris_test.csv +31 -31
- teradataml/data/iris_train.csv +121 -121
- teradataml/data/join_table1.csv +4 -4
- teradataml/data/join_table2.csv +4 -4
- teradataml/data/jsons/anly_function_name.json +6 -6
- teradataml/data/jsons/byom/dataikupredict.json +147 -147
- teradataml/data/jsons/byom/datarobotpredict.json +146 -146
- teradataml/data/jsons/byom/h2opredict.json +194 -194
- teradataml/data/jsons/byom/onnxpredict.json +186 -186
- teradataml/data/jsons/byom/pmmlpredict.json +146 -146
- teradataml/data/jsons/paired_functions.json +435 -435
- teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
- teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
- teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
- teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
- teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
- teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
- teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
- teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
- teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
- teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
- teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
- teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
- teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
- teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
- teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
- teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
- teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
- teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
- teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
- teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
- teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
- teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
- teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
- teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
- teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
- teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
- teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
- teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
- teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
- teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
- teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
- teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
- teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
- teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
- teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
- teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
- teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
- teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
- teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
- teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +76 -76
- teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
- teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
- teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
- teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
- teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
- teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
- teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
- teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
- teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
- teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +186 -186
- teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
- teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +431 -431
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +125 -125
- teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
- teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +91 -91
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
- teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +211 -211
- teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
- teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +101 -101
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
- teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
- teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +177 -177
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
- teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
- teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +124 -124
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +156 -156
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +70 -70
- teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
- teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
- teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
- teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
- teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
- teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
- teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +312 -312
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +182 -182
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +170 -170
- teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
- teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
- teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
- teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
- teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
- teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
- teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
- teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
- teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
- teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
- teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
- teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
- teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
- teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
- teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
- teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
- teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
- teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
- teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
- teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
- teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
- teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
- teradataml/data/kmeans_example.json +17 -17
- teradataml/data/kmeans_us_arrests_data.csv +0 -0
- teradataml/data/knn_example.json +18 -18
- teradataml/data/knnrecommender_example.json +6 -6
- teradataml/data/knnrecommenderpredict_example.json +12 -12
- teradataml/data/lar_example.json +17 -17
- teradataml/data/larpredict_example.json +30 -30
- teradataml/data/lc_new_predictors.csv +5 -5
- teradataml/data/lc_new_reference.csv +9 -9
- teradataml/data/lda_example.json +8 -8
- teradataml/data/ldainference_example.json +14 -14
- teradataml/data/ldatopicsummary_example.json +8 -8
- teradataml/data/levendist_input.csv +13 -13
- teradataml/data/levenshteindistance_example.json +10 -10
- teradataml/data/linreg_example.json +9 -9
- teradataml/data/load_example_data.py +326 -323
- teradataml/data/loan_prediction.csv +295 -295
- teradataml/data/lungcancer.csv +138 -138
- teradataml/data/mappingdata.csv +12 -12
- teradataml/data/milk_timeseries.csv +157 -157
- teradataml/data/min_max_titanic.csv +4 -4
- teradataml/data/minhash_example.json +6 -6
- teradataml/data/ml_ratings.csv +7547 -7547
- teradataml/data/ml_ratings_10.csv +2445 -2445
- teradataml/data/model1_table.csv +5 -5
- teradataml/data/model2_table.csv +5 -5
- teradataml/data/models/iris_db_glm_model.pmml +56 -56
- teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
- teradataml/data/modularity_example.json +12 -12
- teradataml/data/movavg_example.json +7 -7
- teradataml/data/mtx1.csv +7 -7
- teradataml/data/mtx2.csv +13 -13
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/mvdfft8.csv +9 -9
- teradataml/data/naivebayes_example.json +9 -9
- teradataml/data/naivebayespredict_example.json +19 -19
- teradataml/data/naivebayestextclassifier2_example.json +6 -6
- teradataml/data/naivebayestextclassifier_example.json +8 -8
- teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
- teradataml/data/name_Find_configure.csv +10 -10
- teradataml/data/namedentityfinder_example.json +14 -14
- teradataml/data/namedentityfinderevaluator_example.json +10 -10
- teradataml/data/namedentityfindertrainer_example.json +6 -6
- teradataml/data/nb_iris_input_test.csv +31 -31
- teradataml/data/nb_iris_input_train.csv +121 -121
- teradataml/data/nbp_iris_model.csv +13 -13
- teradataml/data/ner_extractor_text.csv +2 -2
- teradataml/data/ner_sports_test2.csv +29 -29
- teradataml/data/ner_sports_train.csv +501 -501
- teradataml/data/nerevaluator_example.json +5 -5
- teradataml/data/nerextractor_example.json +18 -18
- teradataml/data/nermem_sports_test.csv +17 -17
- teradataml/data/nermem_sports_train.csv +50 -50
- teradataml/data/nertrainer_example.json +6 -6
- teradataml/data/ngrams_example.json +6 -6
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
- teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
- teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
- teradataml/data/npath_example.json +23 -23
- teradataml/data/ntree_example.json +14 -14
- teradataml/data/numeric_strings.csv +4 -4
- teradataml/data/numerics.csv +4 -4
- teradataml/data/ocean_buoy.csv +17 -17
- teradataml/data/ocean_buoy2.csv +17 -17
- teradataml/data/ocean_buoys.csv +27 -27
- teradataml/data/ocean_buoys2.csv +10 -10
- teradataml/data/ocean_buoys_nonpti.csv +28 -28
- teradataml/data/ocean_buoys_seq.csv +29 -29
- teradataml/data/openml_example.json +63 -0
- teradataml/data/optional_event_table.csv +4 -4
- teradataml/data/orders1.csv +11 -11
- teradataml/data/orders1_12.csv +12 -12
- teradataml/data/orders_ex.csv +4 -4
- teradataml/data/pack_example.json +8 -8
- teradataml/data/package_tracking.csv +19 -19
- teradataml/data/package_tracking_pti.csv +18 -18
- teradataml/data/pagerank_example.json +13 -13
- teradataml/data/paragraphs_input.csv +6 -6
- teradataml/data/pathanalyzer_example.json +7 -7
- teradataml/data/pathgenerator_example.json +7 -7
- teradataml/data/phrases.csv +7 -7
- teradataml/data/pivot_example.json +8 -8
- teradataml/data/pivot_input.csv +22 -22
- teradataml/data/playerRating.csv +31 -31
- teradataml/data/postagger_example.json +6 -6
- teradataml/data/posttagger_output.csv +44 -44
- teradataml/data/production_data.csv +16 -16
- teradataml/data/production_data2.csv +7 -7
- teradataml/data/randomsample_example.json +31 -31
- teradataml/data/randomwalksample_example.json +8 -8
- teradataml/data/rank_table.csv +6 -6
- teradataml/data/ref_mobile_data.csv +4 -4
- teradataml/data/ref_mobile_data_dense.csv +2 -2
- teradataml/data/ref_url.csv +17 -17
- teradataml/data/restaurant_reviews.csv +7 -7
- teradataml/data/river_data.csv +145 -145
- teradataml/data/roc_example.json +7 -7
- teradataml/data/roc_input.csv +101 -101
- teradataml/data/rule_inputs.csv +6 -6
- teradataml/data/rule_table.csv +2 -2
- teradataml/data/sales.csv +7 -7
- teradataml/data/sales_transaction.csv +501 -501
- teradataml/data/salesdata.csv +342 -342
- teradataml/data/sample_cities.csv +2 -2
- teradataml/data/sample_shapes.csv +10 -10
- teradataml/data/sample_streets.csv +2 -2
- teradataml/data/sampling_example.json +15 -15
- teradataml/data/sax_example.json +8 -8
- teradataml/data/scale_example.json +23 -23
- teradataml/data/scale_housing.csv +11 -11
- teradataml/data/scale_housing_test.csv +6 -6
- teradataml/data/scale_stat.csv +11 -11
- teradataml/data/scalebypartition_example.json +13 -13
- teradataml/data/scalemap_example.json +13 -13
- teradataml/data/scalesummary_example.json +12 -12
- teradataml/data/score_category.csv +101 -101
- teradataml/data/score_summary.csv +4 -4
- teradataml/data/script_example.json +9 -9
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/mapper.py +15 -15
- teradataml/data/scripts/mapper_replace.py +15 -15
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/seeds.csv +10 -10
- teradataml/data/sentenceextractor_example.json +6 -6
- teradataml/data/sentiment_extract_input.csv +11 -11
- teradataml/data/sentiment_train.csv +16 -16
- teradataml/data/sentiment_word.csv +20 -20
- teradataml/data/sentiment_word_input.csv +19 -19
- teradataml/data/sentimentextractor_example.json +24 -24
- teradataml/data/sentimenttrainer_example.json +8 -8
- teradataml/data/sequence_table.csv +10 -10
- teradataml/data/seriessplitter_example.json +7 -7
- teradataml/data/sessionize_example.json +17 -17
- teradataml/data/sessionize_table.csv +116 -116
- teradataml/data/setop_test1.csv +24 -24
- teradataml/data/setop_test2.csv +22 -22
- teradataml/data/soc_nw_edges.csv +10 -10
- teradataml/data/soc_nw_vertices.csv +7 -7
- teradataml/data/souvenir_timeseries.csv +167 -167
- teradataml/data/sparse_iris_attribute.csv +5 -5
- teradataml/data/sparse_iris_test.csv +121 -121
- teradataml/data/sparse_iris_train.csv +601 -601
- teradataml/data/star1.csv +6 -6
- teradataml/data/state_transition.csv +5 -5
- teradataml/data/stock_data.csv +53 -53
- teradataml/data/stock_movement.csv +11 -11
- teradataml/data/stock_vol.csv +76 -76
- teradataml/data/stop_words.csv +8 -8
- teradataml/data/store_sales.csv +37 -37
- teradataml/data/stringsimilarity_example.json +7 -7
- teradataml/data/strsimilarity_input.csv +13 -13
- teradataml/data/students.csv +101 -101
- teradataml/data/svm_iris_input_test.csv +121 -121
- teradataml/data/svm_iris_input_train.csv +481 -481
- teradataml/data/svm_iris_model.csv +7 -7
- teradataml/data/svmdense_example.json +9 -9
- teradataml/data/svmdensepredict_example.json +18 -18
- teradataml/data/svmsparse_example.json +7 -7
- teradataml/data/svmsparsepredict_example.json +13 -13
- teradataml/data/svmsparsesummary_example.json +7 -7
- teradataml/data/target_mobile_data.csv +13 -13
- teradataml/data/target_mobile_data_dense.csv +5 -5
- teradataml/data/templatedata.csv +1201 -1201
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_loan_prediction.csv +53 -53
- teradataml/data/test_pacf_12.csv +37 -37
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/test_river2.csv +109 -109
- teradataml/data/text_inputs.csv +6 -6
- teradataml/data/textchunker_example.json +7 -7
- teradataml/data/textclassifier_example.json +6 -6
- teradataml/data/textclassifier_input.csv +7 -7
- teradataml/data/textclassifiertrainer_example.json +6 -6
- teradataml/data/textmorph_example.json +5 -5
- teradataml/data/textparser_example.json +15 -15
- teradataml/data/texttagger_example.json +11 -11
- teradataml/data/texttokenizer_example.json +6 -6
- teradataml/data/texttrainer_input.csv +11 -11
- teradataml/data/tf_example.json +6 -6
- teradataml/data/tfidf_example.json +13 -13
- teradataml/data/tfidf_input1.csv +201 -201
- teradataml/data/tfidf_train.csv +6 -6
- teradataml/data/time_table1.csv +535 -535
- teradataml/data/time_table2.csv +14 -14
- teradataml/data/timeseriesdata.csv +1601 -1601
- teradataml/data/timeseriesdatasetsd4.csv +105 -105
- teradataml/data/titanic.csv +892 -892
- teradataml/data/token_table.csv +696 -696
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/train_tracking.csv +27 -27
- teradataml/data/transformation_table.csv +5 -5
- teradataml/data/transformation_table_new.csv +1 -1
- teradataml/data/tv_spots.csv +16 -16
- teradataml/data/twod_climate_data.csv +117 -117
- teradataml/data/uaf_example.json +475 -475
- teradataml/data/univariatestatistics_example.json +8 -8
- teradataml/data/unpack_example.json +9 -9
- teradataml/data/unpivot_example.json +9 -9
- teradataml/data/unpivot_input.csv +8 -8
- teradataml/data/us_air_pass.csv +36 -36
- teradataml/data/us_population.csv +624 -624
- teradataml/data/us_states_shapes.csv +52 -52
- teradataml/data/varmax_example.json +17 -17
- teradataml/data/vectordistance_example.json +25 -25
- teradataml/data/ville_climatedata.csv +121 -121
- teradataml/data/ville_tempdata.csv +12 -12
- teradataml/data/ville_tempdata1.csv +12 -12
- teradataml/data/ville_temperature.csv +11 -11
- teradataml/data/waveletTable.csv +1605 -1605
- teradataml/data/waveletTable2.csv +1605 -1605
- teradataml/data/weightedmovavg_example.json +8 -8
- teradataml/data/wft_testing.csv +5 -5
- teradataml/data/wine_data.csv +1600 -0
- teradataml/data/word_embed_input_table1.csv +5 -5
- teradataml/data/word_embed_input_table2.csv +4 -4
- teradataml/data/word_embed_model.csv +22 -22
- teradataml/data/words_input.csv +13 -13
- teradataml/data/xconvolve_complex_left.csv +6 -6
- teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
- teradataml/data/xgboost_example.json +35 -35
- teradataml/data/xgboostpredict_example.json +31 -31
- teradataml/dataframe/copy_to.py +1764 -1698
- teradataml/dataframe/data_transfer.py +2753 -2745
- teradataml/dataframe/dataframe.py +17545 -16946
- teradataml/dataframe/dataframe_utils.py +1837 -1740
- teradataml/dataframe/fastload.py +611 -603
- teradataml/dataframe/indexer.py +424 -424
- teradataml/dataframe/setop.py +1179 -1166
- teradataml/dataframe/sql.py +10090 -6432
- teradataml/dataframe/sql_function_parameters.py +439 -388
- teradataml/dataframe/sql_functions.py +652 -652
- teradataml/dataframe/sql_interfaces.py +220 -220
- teradataml/dataframe/vantage_function_types.py +674 -630
- teradataml/dataframe/window.py +693 -692
- teradataml/dbutils/__init__.py +3 -3
- teradataml/dbutils/dbutils.py +1167 -1150
- teradataml/dbutils/filemgr.py +267 -267
- teradataml/gen_ai/__init__.py +2 -2
- teradataml/gen_ai/convAI.py +472 -472
- teradataml/geospatial/__init__.py +3 -3
- teradataml/geospatial/geodataframe.py +1105 -1094
- teradataml/geospatial/geodataframecolumn.py +392 -387
- teradataml/geospatial/geometry_types.py +925 -925
- teradataml/hyperparameter_tuner/__init__.py +1 -1
- teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
- teradataml/hyperparameter_tuner/utils.py +281 -187
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +121 -124
- teradataml/options/configure.py +337 -336
- teradataml/options/display.py +176 -176
- teradataml/plot/__init__.py +2 -2
- teradataml/plot/axis.py +1388 -1388
- teradataml/plot/constants.py +15 -15
- teradataml/plot/figure.py +398 -398
- teradataml/plot/plot.py +760 -760
- teradataml/plot/query_generator.py +83 -83
- teradataml/plot/subplot.py +216 -216
- teradataml/scriptmgmt/UserEnv.py +3788 -3761
- teradataml/scriptmgmt/__init__.py +3 -3
- teradataml/scriptmgmt/lls_utils.py +1616 -1604
- teradataml/series/series.py +532 -532
- teradataml/series/series_utils.py +71 -71
- teradataml/table_operators/Apply.py +949 -917
- teradataml/table_operators/Script.py +1719 -1982
- teradataml/table_operators/TableOperator.py +1207 -1616
- teradataml/table_operators/__init__.py +2 -3
- teradataml/table_operators/apply_query_generator.py +262 -262
- teradataml/table_operators/query_generator.py +507 -507
- teradataml/table_operators/table_operator_query_generator.py +460 -460
- teradataml/table_operators/table_operator_util.py +631 -639
- teradataml/table_operators/templates/dataframe_apply.template +184 -184
- teradataml/table_operators/templates/dataframe_map.template +176 -176
- teradataml/table_operators/templates/script_executor.template +170 -170
- teradataml/utils/dtypes.py +684 -684
- teradataml/utils/internal_buffer.py +84 -84
- teradataml/utils/print_versions.py +205 -205
- teradataml/utils/utils.py +410 -410
- teradataml/utils/validators.py +2239 -2115
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +270 -41
- teradataml-20.0.0.0.dist-info/RECORD +1038 -0
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +1 -1
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +1 -1
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- teradataml-17.20.0.7.dist-info/RECORD +0 -1280
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
teradataml/series/series.py
CHANGED
|
@@ -1,532 +1,532 @@
|
|
|
1
|
-
# -*- coding: utf-8 -*-
|
|
2
|
-
"""
|
|
3
|
-
|
|
4
|
-
Unpublished work.
|
|
5
|
-
Copyright (c) 2019 by Teradata Corporation. All rights reserved.
|
|
6
|
-
TERADATA CORPORATION CONFIDENTIAL AND TRADE SECRET
|
|
7
|
-
|
|
8
|
-
Primary Owner: rohit.khurd@teradata.com
|
|
9
|
-
Secondary Owner:
|
|
10
|
-
|
|
11
|
-
This file implements the teradataml Series.
|
|
12
|
-
A teradataml Series maps virtually to a single row or column of tables and views.
|
|
13
|
-
"""
|
|
14
|
-
|
|
15
|
-
import numbers
|
|
16
|
-
import inspect
|
|
17
|
-
import pandas as pd
|
|
18
|
-
|
|
19
|
-
from teradataml.common.aed_utils import AedUtils
|
|
20
|
-
from teradataml.common.constants import AEDConstants
|
|
21
|
-
|
|
22
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
23
|
-
from teradataml.dbutils.dbutils import _execute_query_and_generate_pandas_df
|
|
24
|
-
from teradataml.series.series_utils import SeriesUtils as series_utils
|
|
25
|
-
from teradataml.common.utils import UtilFuncs
|
|
26
|
-
from teradataml.options.display import display
|
|
27
|
-
|
|
28
|
-
import teradataml.context.context as tdmlcntxt
|
|
29
|
-
from teradataml.common.constants import PythonTypes
|
|
30
|
-
|
|
31
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
32
|
-
from teradataml.common.messages import Messages
|
|
33
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
class Series:
|
|
37
|
-
'''
|
|
38
|
-
The teradataml Series object
|
|
39
|
-
'''
|
|
40
|
-
|
|
41
|
-
def __init__(self, axis, nodeid, col, **kw):
|
|
42
|
-
"""
|
|
43
|
-
DESCRIPTION:
|
|
44
|
-
Initialize the Series object.
|
|
45
|
-
Note : Indexes for Series are currently unsupported.
|
|
46
|
-
|
|
47
|
-
PARAMETERS:
|
|
48
|
-
axis:
|
|
49
|
-
Required argument.
|
|
50
|
-
A specific axis to squeeze.
|
|
51
|
-
Default Value: 1 (column).
|
|
52
|
-
|
|
53
|
-
nodeid:
|
|
54
|
-
Required argument.
|
|
55
|
-
nodeid of the underlying teradataml DataFrame or Series object.
|
|
56
|
-
|
|
57
|
-
col:
|
|
58
|
-
Required argument.
|
|
59
|
-
_SQLColumnExpression object from the underlying teradataml DataFrame or Series object.
|
|
60
|
-
|
|
61
|
-
RAISES:
|
|
62
|
-
TeradataMlException (USE_FUNCTION_TO_INSTANTIATE)
|
|
63
|
-
"""
|
|
64
|
-
|
|
65
|
-
# Make sure the initialization happens only using the
|
|
66
|
-
# one of the classmethods - _from_node and _from_dataframe
|
|
67
|
-
if inspect.stack()[1][3] not in ['_from_dataframe', '_from_node']:
|
|
68
|
-
raise TeradataMlException(Messages.get_message(
|
|
69
|
-
MessageCodes.USE_FUNCTION_TO_INSTANTIATE).format('A teradataml Series object',
|
|
70
|
-
'squeeze() from a teradataml.DataFrame instance.'),
|
|
71
|
-
MessageCodes.USE_FUNCTION_TO_INSTANTIATE)
|
|
72
|
-
|
|
73
|
-
# Required arguments
|
|
74
|
-
self._axis = axis
|
|
75
|
-
self._nodeid = nodeid
|
|
76
|
-
self._col = col
|
|
77
|
-
|
|
78
|
-
# Optional arguments
|
|
79
|
-
self._df_orderby = kw.pop('order_by', None)
|
|
80
|
-
self._df_index_label = kw.pop('index_label', None)
|
|
81
|
-
|
|
82
|
-
# Derived attributes
|
|
83
|
-
# Note that this is considering we have only one column,
|
|
84
|
-
# and may change with the implementation of Row-based Series
|
|
85
|
-
self._name = self._col.name
|
|
86
|
-
self._col_type = UtilFuncs._teradata_type_to_python_type(self._col.type)
|
|
87
|
-
|
|
88
|
-
# Underlying table/view name
|
|
89
|
-
self._table_name = None
|
|
90
|
-
|
|
91
|
-
try:
|
|
92
|
-
self._aed_utils = AedUtils()
|
|
93
|
-
self._metaexpr = UtilFuncs._get_metaexpr_using_columns(nodeid,
|
|
94
|
-
zip([self._name],
|
|
95
|
-
[self._col.type]))
|
|
96
|
-
|
|
97
|
-
except TeradataMlException:
|
|
98
|
-
raise
|
|
99
|
-
except Exception as err:
|
|
100
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.SERIES_CREATE_FAIL) + str(err),
|
|
101
|
-
MessageCodes.SERIES_CREATE_FAIL) from err
|
|
102
|
-
|
|
103
|
-
@classmethod
|
|
104
|
-
def _from_node(cls, axis, nodeid, col, df_orderby = None, df_index_label = None):
|
|
105
|
-
"""
|
|
106
|
-
DESCRIPTION:
|
|
107
|
-
Private class method for creating a teradataml Series from a nodeid, and parent metadata.
|
|
108
|
-
|
|
109
|
-
PARAMETERS:
|
|
110
|
-
axis:
|
|
111
|
-
Required Argument.
|
|
112
|
-
The axis of the parent Series object.
|
|
113
|
-
Types : int
|
|
114
|
-
|
|
115
|
-
nodeid:
|
|
116
|
-
Required Argument.
|
|
117
|
-
nodeid of the underlying teradataml Series object.
|
|
118
|
-
Types : str
|
|
119
|
-
|
|
120
|
-
col:
|
|
121
|
-
Required Argument.
|
|
122
|
-
The modified _SQLColumnExpression instance.
|
|
123
|
-
Types : _SQLColumnExpression
|
|
124
|
-
|
|
125
|
-
df_orderby:
|
|
126
|
-
Optional Argument.
|
|
127
|
-
The attribute of the underlying teradataml DataFrame listing the _order_by column/s .
|
|
128
|
-
Types : str
|
|
129
|
-
|
|
130
|
-
df_index_label:
|
|
131
|
-
Optional Argument.
|
|
132
|
-
Column/s used for sorting from the underlying teradataml DataFrame.
|
|
133
|
-
Types : str
|
|
134
|
-
|
|
135
|
-
EXAMPLES:
|
|
136
|
-
from teradataml.series.series import Series
|
|
137
|
-
s = Series._from_node(1, 1234, col)
|
|
138
|
-
s = Series._from_node(1, 1234, col, ['col'], ['col'])
|
|
139
|
-
|
|
140
|
-
RETURNS:
|
|
141
|
-
teradataml Series
|
|
142
|
-
|
|
143
|
-
RAISES:
|
|
144
|
-
None
|
|
145
|
-
|
|
146
|
-
"""
|
|
147
|
-
|
|
148
|
-
series = cls(axis,
|
|
149
|
-
nodeid,
|
|
150
|
-
col,
|
|
151
|
-
order_by = df_orderby,
|
|
152
|
-
index_label = df_index_label)
|
|
153
|
-
|
|
154
|
-
return series
|
|
155
|
-
|
|
156
|
-
@classmethod
|
|
157
|
-
def _from_dataframe(cls, df, axis = 1):
|
|
158
|
-
"""
|
|
159
|
-
DESCRIPTION:
|
|
160
|
-
Private class method for creating a teradataml Series from a teradataml DataFrame.
|
|
161
|
-
|
|
162
|
-
PARAMETERS:
|
|
163
|
-
df:
|
|
164
|
-
Required Argument.
|
|
165
|
-
A teradataml DataFrame instance.
|
|
166
|
-
|
|
167
|
-
axis:
|
|
168
|
-
Optional Argument.
|
|
169
|
-
A specific axis to squeeze.
|
|
170
|
-
Default Value: 1 (column).
|
|
171
|
-
|
|
172
|
-
EXAMPLES:
|
|
173
|
-
from teradataml.series.series import Series
|
|
174
|
-
s = Series._from_dataframe(df)
|
|
175
|
-
s = Series._from_dataframe(df, 1)
|
|
176
|
-
|
|
177
|
-
RETURNS:
|
|
178
|
-
teradataml Series
|
|
179
|
-
|
|
180
|
-
RAISES:
|
|
181
|
-
TeradataMlException (USE_FUNCTION_TO_INSTANTIATE)
|
|
182
|
-
|
|
183
|
-
"""
|
|
184
|
-
|
|
185
|
-
# TODO : Indexes are currently unsupported
|
|
186
|
-
|
|
187
|
-
# Make sure the method is called only from DataFrame.squeeze()
|
|
188
|
-
if inspect.stack()[1][3] not in ['squeeze']:
|
|
189
|
-
raise TeradataMlException(Messages.get_message(
|
|
190
|
-
MessageCodes.USE_FUNCTION_TO_INSTANTIATE).format('A teradataml Series object',
|
|
191
|
-
'squeeze() from a teradataml.DataFrame instance.'),
|
|
192
|
-
MessageCodes.USE_FUNCTION_TO_INSTANTIATE)
|
|
193
|
-
|
|
194
|
-
# axis used in the DataFrame.squeeze()
|
|
195
|
-
series = cls(axis,
|
|
196
|
-
df._nodeid,
|
|
197
|
-
df._metaexpr.c[0],
|
|
198
|
-
order_by = df._orderby,
|
|
199
|
-
index_label = df._index_label)
|
|
200
|
-
|
|
201
|
-
return series
|
|
202
|
-
|
|
203
|
-
def __repr__(self):
|
|
204
|
-
"""
|
|
205
|
-
Returns the string representation for a teradataml Series instance.
|
|
206
|
-
The string contains:
|
|
207
|
-
1. A default index for row numbers.
|
|
208
|
-
2. At most the first max_rows rows of the series as mentioned in the note below.
|
|
209
|
-
3. The name and datatype of the series.
|
|
210
|
-
|
|
211
|
-
NOTES:
|
|
212
|
-
- This makes an explicit call to get rows from the database.
|
|
213
|
-
- To change number of rows to be printed set the max_rows option in options.display.display
|
|
214
|
-
- Default value of max_rows is 10
|
|
215
|
-
|
|
216
|
-
EXAMPLES:
|
|
217
|
-
>>> df
|
|
218
|
-
masters gpa stats programming admitted
|
|
219
|
-
id
|
|
220
|
-
22 yes 3.46 Novice Beginner 0
|
|
221
|
-
36 no 3.00 Advanced Novice 0
|
|
222
|
-
15 yes 4.00 Advanced Advanced 1
|
|
223
|
-
38 yes 2.65 Advanced Beginner 1
|
|
224
|
-
5 no 3.44 Novice Novice 0
|
|
225
|
-
17 no 3.83 Advanced Advanced 1
|
|
226
|
-
34 yes 3.85 Advanced Beginner 0
|
|
227
|
-
13 no 4.00 Advanced Novice 1
|
|
228
|
-
26 yes 3.57 Advanced Advanced 1
|
|
229
|
-
19 yes 1.98 Advanced Advanced 0
|
|
230
|
-
|
|
231
|
-
>>> gpa = df.select(["gpa"]).squeeze()
|
|
232
|
-
>>> gpa
|
|
233
|
-
0 4.00
|
|
234
|
-
1 2.33
|
|
235
|
-
2 3.46
|
|
236
|
-
3 3.83
|
|
237
|
-
4 4.00
|
|
238
|
-
5 2.65
|
|
239
|
-
6 3.57
|
|
240
|
-
7 3.44
|
|
241
|
-
8 3.85
|
|
242
|
-
9 3.95
|
|
243
|
-
Name: gpa, dtype: float64
|
|
244
|
-
"""
|
|
245
|
-
# TODO : Change docstring based on implementation of RowBased Series object
|
|
246
|
-
query = repr(self._metaexpr) + ' FROM ' + self._get_table_name()
|
|
247
|
-
|
|
248
|
-
if self._df_orderby is not None:
|
|
249
|
-
query += ' ORDER BY ' + self._df_orderby
|
|
250
|
-
|
|
251
|
-
pandas_df = _execute_query_and_generate_pandas_df(query).squeeze(self._axis)
|
|
252
|
-
return pandas_df.__repr__()
|
|
253
|
-
|
|
254
|
-
def __get_sort_col(self):
|
|
255
|
-
"""
|
|
256
|
-
Private method to retrieve sort column.
|
|
257
|
-
Return the column and type in _metadata.
|
|
258
|
-
|
|
259
|
-
PARAMETERS:
|
|
260
|
-
None
|
|
261
|
-
|
|
262
|
-
RETURNS:
|
|
263
|
-
A tuple containing the column name and type of the first column in _metadata.
|
|
264
|
-
|
|
265
|
-
RAISE:
|
|
266
|
-
TeradataMlException
|
|
267
|
-
|
|
268
|
-
EXAMPLES:
|
|
269
|
-
sort_col = self.__get_sort_col()
|
|
270
|
-
"""
|
|
271
|
-
unsupported_types = ['BLOB', 'CLOB', 'ARRAY', 'VARRAY']
|
|
272
|
-
|
|
273
|
-
# Since indexes are currently unsupported, use the only column of df as default col for sorting
|
|
274
|
-
col_name = self._name
|
|
275
|
-
col_type = self._col_type
|
|
276
|
-
|
|
277
|
-
if col_type == PythonTypes.PY_NULL_TYPE.value:
|
|
278
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.SERIES_INFO_ERROR),
|
|
279
|
-
MessageCodes.SERIES_INFO_ERROR)
|
|
280
|
-
|
|
281
|
-
sort_col_sqlalchemy_type = self._col.type
|
|
282
|
-
# convert types to string from sqlalchemy type for the columns entered for sort
|
|
283
|
-
sort_col_type = repr(sort_col_sqlalchemy_type).split("(")[0]
|
|
284
|
-
if sort_col_type in unsupported_types:
|
|
285
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.UNSUPPORTED_DATATYPE, sort_col_type,
|
|
286
|
-
"ANY, except following {}".format(unsupported_types)),
|
|
287
|
-
MessageCodes.UNSUPPORTED_DATATYPE)
|
|
288
|
-
|
|
289
|
-
return (col_name, col_type)
|
|
290
|
-
|
|
291
|
-
def head(self, n=display.max_rows):
|
|
292
|
-
"""
|
|
293
|
-
Print the first n rows of the sorted teradataml Series.
|
|
294
|
-
Note: The Series is sorted on the column composing the Series object.
|
|
295
|
-
The column type must support sorting.
|
|
296
|
-
Unsupported types: ['BLOB', 'CLOB', 'ARRAY', 'VARRAY']
|
|
297
|
-
|
|
298
|
-
PARAMETERS:
|
|
299
|
-
n:
|
|
300
|
-
Optional argument.
|
|
301
|
-
Specifies the number of rows to select.
|
|
302
|
-
Default Value: 10.
|
|
303
|
-
Type: int
|
|
304
|
-
|
|
305
|
-
RETURNS:
|
|
306
|
-
teradataml Series
|
|
307
|
-
|
|
308
|
-
RAISES:
|
|
309
|
-
TeradataMlException
|
|
310
|
-
|
|
311
|
-
EXAMPLES:
|
|
312
|
-
>>> load_example_data("dataframe", "admissions_train")
|
|
313
|
-
>>> df = DataFrame("admissions_train")
|
|
314
|
-
>>> df
|
|
315
|
-
masters gpa stats programming admitted
|
|
316
|
-
id
|
|
317
|
-
22 yes 3.46 Novice Beginner 0
|
|
318
|
-
36 no 3.00 Advanced Novice 0
|
|
319
|
-
15 yes 4.00 Advanced Advanced 1
|
|
320
|
-
38 yes 2.65 Advanced Beginner 1
|
|
321
|
-
5 no 3.44 Novice Novice 0
|
|
322
|
-
17 no 3.83 Advanced Advanced 1
|
|
323
|
-
34 yes 3.85 Advanced Beginner 0
|
|
324
|
-
13 no 4.00 Advanced Novice 1
|
|
325
|
-
26 yes 3.57 Advanced Advanced 1
|
|
326
|
-
19 yes 1.98 Advanced Advanced 0
|
|
327
|
-
|
|
328
|
-
>>> gpa = df.select(["gpa"]).squeeze()
|
|
329
|
-
>>> gpa
|
|
330
|
-
0 4.00
|
|
331
|
-
1 2.33
|
|
332
|
-
2 3.46
|
|
333
|
-
3 3.83
|
|
334
|
-
4 4.00
|
|
335
|
-
5 2.65
|
|
336
|
-
6 3.57
|
|
337
|
-
7 3.44
|
|
338
|
-
8 3.85
|
|
339
|
-
9 3.95
|
|
340
|
-
Name: gpa, dtype: float64
|
|
341
|
-
|
|
342
|
-
>>> gpa.head()
|
|
343
|
-
0 2.33
|
|
344
|
-
1 3.00
|
|
345
|
-
2 3.13
|
|
346
|
-
3 3.44
|
|
347
|
-
4 3.46
|
|
348
|
-
5 3.46
|
|
349
|
-
6 3.45
|
|
350
|
-
7 2.65
|
|
351
|
-
8 1.98
|
|
352
|
-
9 1.87
|
|
353
|
-
Name: gpa, dtype: float64
|
|
354
|
-
|
|
355
|
-
>>> gpa.head(15)
|
|
356
|
-
0 2.33
|
|
357
|
-
1 3.00
|
|
358
|
-
2 3.13
|
|
359
|
-
3 3.44
|
|
360
|
-
4 3.46
|
|
361
|
-
5 3.46
|
|
362
|
-
6 3.50
|
|
363
|
-
7 3.50
|
|
364
|
-
8 3.50
|
|
365
|
-
9 3.52
|
|
366
|
-
10 3.55
|
|
367
|
-
11 3.45
|
|
368
|
-
12 2.65
|
|
369
|
-
13 1.98
|
|
370
|
-
14 1.87
|
|
371
|
-
Name: gpa, dtype: float64
|
|
372
|
-
|
|
373
|
-
>>> gpa.head(5)
|
|
374
|
-
0 2.33
|
|
375
|
-
1 3.00
|
|
376
|
-
2 2.65
|
|
377
|
-
3 1.98
|
|
378
|
-
4 1.87
|
|
379
|
-
Name: gpa, dtype: float64
|
|
380
|
-
"""
|
|
381
|
-
|
|
382
|
-
if self._metaexpr is None:
|
|
383
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.SERIES_INFO_ERROR),
|
|
384
|
-
MessageCodes.SERIES_INFO_ERROR)
|
|
385
|
-
try:
|
|
386
|
-
if not isinstance(n, numbers.Integral) or n <= 0:
|
|
387
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_POSITIVE_INT).format("n"), MessageCodes.TDMLDF_POSITIVE_INT)
|
|
388
|
-
|
|
389
|
-
sort_col = self.__get_sort_col()
|
|
390
|
-
|
|
391
|
-
series = series_utils._get_sorted_nrow(self, n, sort_col[0], self._axis, asc=True)
|
|
392
|
-
series._metaexpr._n_rows = n
|
|
393
|
-
return series
|
|
394
|
-
|
|
395
|
-
except TeradataMlException:
|
|
396
|
-
raise
|
|
397
|
-
except Exception as err:
|
|
398
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.SERIES_INFO_ERROR) + str(err),
|
|
399
|
-
MessageCodes.SERIES_INFO_ERROR) from err
|
|
400
|
-
|
|
401
|
-
def unique(self):
|
|
402
|
-
"""
|
|
403
|
-
Return a Series object with unique values.
|
|
404
|
-
|
|
405
|
-
PARAMETERS:
|
|
406
|
-
None
|
|
407
|
-
|
|
408
|
-
RETURNS:
|
|
409
|
-
Series object with unique values.
|
|
410
|
-
|
|
411
|
-
RAISES:
|
|
412
|
-
TeradataMlException
|
|
413
|
-
|
|
414
|
-
EXAMPLES:
|
|
415
|
-
>>> load_example_data("dataframe", "admissions_train")
|
|
416
|
-
>>> df = DataFrame.from_query('select admitted from admissions_train')
|
|
417
|
-
>>> s = df.squeeze(axis = 1)
|
|
418
|
-
>>> s
|
|
419
|
-
0 1
|
|
420
|
-
1 1
|
|
421
|
-
2 0
|
|
422
|
-
3 0
|
|
423
|
-
4 1
|
|
424
|
-
5 0
|
|
425
|
-
6 1
|
|
426
|
-
7 0
|
|
427
|
-
8 0
|
|
428
|
-
9 1
|
|
429
|
-
Name: admitted, dtype: object
|
|
430
|
-
|
|
431
|
-
>>> s.unique()
|
|
432
|
-
0 0
|
|
433
|
-
1 1
|
|
434
|
-
Name: admitted, dtype: object
|
|
435
|
-
"""
|
|
436
|
-
|
|
437
|
-
if self._metaexpr is None:
|
|
438
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.SERIES_INFO_ERROR),
|
|
439
|
-
MessageCodes.SERIES_INFO_ERROR)
|
|
440
|
-
|
|
441
|
-
try:
|
|
442
|
-
kwargs = {}
|
|
443
|
-
kwargs[self._name] = self._col._unique()
|
|
444
|
-
(new_meta, result) = self._metaexpr._assign(drop_columns=True, **kwargs)
|
|
445
|
-
|
|
446
|
-
# join the expressions in result
|
|
447
|
-
assign_expression = ', '.join(list(map(lambda x: x[1], result)))
|
|
448
|
-
new_nodeid = self._aed_utils._aed_assign(self._nodeid,
|
|
449
|
-
assign_expression,
|
|
450
|
-
AEDConstants.AED_ASSIGN_DROP_EXISITING_COLUMNS.value)
|
|
451
|
-
|
|
452
|
-
return Series._from_node(self._axis, new_nodeid, new_meta.c[0], self._df_orderby, self._df_index_label)
|
|
453
|
-
|
|
454
|
-
except TeradataMlException:
|
|
455
|
-
raise
|
|
456
|
-
except Exception as err:
|
|
457
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.SERIES_CREATE_FAIL) + str(err),
|
|
458
|
-
MessageCodes.SERIES_CREATE_FAIL) from err
|
|
459
|
-
|
|
460
|
-
def _get_table_name(self):
|
|
461
|
-
"""
|
|
462
|
-
RETURNS:
|
|
463
|
-
Underlying table_name for Series
|
|
464
|
-
|
|
465
|
-
EXAMPLES:
|
|
466
|
-
>>> gpa._get_table_name()
|
|
467
|
-
'admissions_train'
|
|
468
|
-
"""
|
|
469
|
-
if self._table_name is None:
|
|
470
|
-
self._table_name = df_utils._execute_node_return_db_object_name(self._nodeid)
|
|
471
|
-
|
|
472
|
-
return self._table_name
|
|
473
|
-
|
|
474
|
-
@property
|
|
475
|
-
def name(self):
|
|
476
|
-
"""
|
|
477
|
-
RETURNS:
|
|
478
|
-
The name of the Series
|
|
479
|
-
|
|
480
|
-
EXAMPLES:
|
|
481
|
-
>>> gpa.name
|
|
482
|
-
'gpa'
|
|
483
|
-
"""
|
|
484
|
-
return self._name
|
|
485
|
-
|
|
486
|
-
def __gt__(self, other):
|
|
487
|
-
raise NotImplementedError
|
|
488
|
-
|
|
489
|
-
def __ge__(self, other):
|
|
490
|
-
raise NotImplementedError
|
|
491
|
-
|
|
492
|
-
def __lt__(self, other):
|
|
493
|
-
raise NotImplementedError
|
|
494
|
-
|
|
495
|
-
def __le__(self, other):
|
|
496
|
-
raise NotImplementedError
|
|
497
|
-
|
|
498
|
-
def __and__(self, other):
|
|
499
|
-
raise NotImplementedError
|
|
500
|
-
|
|
501
|
-
def __or__(self, other):
|
|
502
|
-
raise NotImplementedError
|
|
503
|
-
|
|
504
|
-
def __invert__(self):
|
|
505
|
-
raise NotImplementedError
|
|
506
|
-
|
|
507
|
-
def __eq__(self):
|
|
508
|
-
raise NotImplementedError
|
|
509
|
-
|
|
510
|
-
def __ne__(self):
|
|
511
|
-
raise NotImplementedError
|
|
512
|
-
|
|
513
|
-
def __xor__(self):
|
|
514
|
-
raise NotImplementedError
|
|
515
|
-
|
|
516
|
-
def __add__(self):
|
|
517
|
-
raise NotImplementedError
|
|
518
|
-
|
|
519
|
-
def __mul__(self):
|
|
520
|
-
raise NotImplementedError
|
|
521
|
-
|
|
522
|
-
def __sub__(self):
|
|
523
|
-
raise NotImplementedError
|
|
524
|
-
|
|
525
|
-
def __truediv__(self):
|
|
526
|
-
raise NotImplementedError
|
|
527
|
-
|
|
528
|
-
def __floordiv__(self):
|
|
529
|
-
raise NotImplementedError
|
|
530
|
-
|
|
531
|
-
def __mod__(self):
|
|
532
|
-
raise NotImplementedError
|
|
1
|
+
# -*- coding: utf-8 -*-
|
|
2
|
+
"""
|
|
3
|
+
|
|
4
|
+
Unpublished work.
|
|
5
|
+
Copyright (c) 2019 by Teradata Corporation. All rights reserved.
|
|
6
|
+
TERADATA CORPORATION CONFIDENTIAL AND TRADE SECRET
|
|
7
|
+
|
|
8
|
+
Primary Owner: rohit.khurd@teradata.com
|
|
9
|
+
Secondary Owner:
|
|
10
|
+
|
|
11
|
+
This file implements the teradataml Series.
|
|
12
|
+
A teradataml Series maps virtually to a single row or column of tables and views.
|
|
13
|
+
"""
|
|
14
|
+
|
|
15
|
+
import numbers
|
|
16
|
+
import inspect
|
|
17
|
+
import pandas as pd
|
|
18
|
+
|
|
19
|
+
from teradataml.common.aed_utils import AedUtils
|
|
20
|
+
from teradataml.common.constants import AEDConstants
|
|
21
|
+
|
|
22
|
+
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
23
|
+
from teradataml.dbutils.dbutils import _execute_query_and_generate_pandas_df
|
|
24
|
+
from teradataml.series.series_utils import SeriesUtils as series_utils
|
|
25
|
+
from teradataml.common.utils import UtilFuncs
|
|
26
|
+
from teradataml.options.display import display
|
|
27
|
+
|
|
28
|
+
import teradataml.context.context as tdmlcntxt
|
|
29
|
+
from teradataml.common.constants import PythonTypes
|
|
30
|
+
|
|
31
|
+
from teradataml.common.exceptions import TeradataMlException
|
|
32
|
+
from teradataml.common.messages import Messages
|
|
33
|
+
from teradataml.common.messagecodes import MessageCodes
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
class Series:
|
|
37
|
+
'''
|
|
38
|
+
The teradataml Series object
|
|
39
|
+
'''
|
|
40
|
+
|
|
41
|
+
def __init__(self, axis, nodeid, col, **kw):
|
|
42
|
+
"""
|
|
43
|
+
DESCRIPTION:
|
|
44
|
+
Initialize the Series object.
|
|
45
|
+
Note : Indexes for Series are currently unsupported.
|
|
46
|
+
|
|
47
|
+
PARAMETERS:
|
|
48
|
+
axis:
|
|
49
|
+
Required argument.
|
|
50
|
+
A specific axis to squeeze.
|
|
51
|
+
Default Value: 1 (column).
|
|
52
|
+
|
|
53
|
+
nodeid:
|
|
54
|
+
Required argument.
|
|
55
|
+
nodeid of the underlying teradataml DataFrame or Series object.
|
|
56
|
+
|
|
57
|
+
col:
|
|
58
|
+
Required argument.
|
|
59
|
+
_SQLColumnExpression object from the underlying teradataml DataFrame or Series object.
|
|
60
|
+
|
|
61
|
+
RAISES:
|
|
62
|
+
TeradataMlException (USE_FUNCTION_TO_INSTANTIATE)
|
|
63
|
+
"""
|
|
64
|
+
|
|
65
|
+
# Make sure the initialization happens only using the
|
|
66
|
+
# one of the classmethods - _from_node and _from_dataframe
|
|
67
|
+
if inspect.stack()[1][3] not in ['_from_dataframe', '_from_node']:
|
|
68
|
+
raise TeradataMlException(Messages.get_message(
|
|
69
|
+
MessageCodes.USE_FUNCTION_TO_INSTANTIATE).format('A teradataml Series object',
|
|
70
|
+
'squeeze() from a teradataml.DataFrame instance.'),
|
|
71
|
+
MessageCodes.USE_FUNCTION_TO_INSTANTIATE)
|
|
72
|
+
|
|
73
|
+
# Required arguments
|
|
74
|
+
self._axis = axis
|
|
75
|
+
self._nodeid = nodeid
|
|
76
|
+
self._col = col
|
|
77
|
+
|
|
78
|
+
# Optional arguments
|
|
79
|
+
self._df_orderby = kw.pop('order_by', None)
|
|
80
|
+
self._df_index_label = kw.pop('index_label', None)
|
|
81
|
+
|
|
82
|
+
# Derived attributes
|
|
83
|
+
# Note that this is considering we have only one column,
|
|
84
|
+
# and may change with the implementation of Row-based Series
|
|
85
|
+
self._name = self._col.name
|
|
86
|
+
self._col_type = UtilFuncs._teradata_type_to_python_type(self._col.type)
|
|
87
|
+
|
|
88
|
+
# Underlying table/view name
|
|
89
|
+
self._table_name = None
|
|
90
|
+
|
|
91
|
+
try:
|
|
92
|
+
self._aed_utils = AedUtils()
|
|
93
|
+
self._metaexpr = UtilFuncs._get_metaexpr_using_columns(nodeid,
|
|
94
|
+
zip([self._name],
|
|
95
|
+
[self._col.type]))
|
|
96
|
+
|
|
97
|
+
except TeradataMlException:
|
|
98
|
+
raise
|
|
99
|
+
except Exception as err:
|
|
100
|
+
raise TeradataMlException(Messages.get_message(MessageCodes.SERIES_CREATE_FAIL) + str(err),
|
|
101
|
+
MessageCodes.SERIES_CREATE_FAIL) from err
|
|
102
|
+
|
|
103
|
+
@classmethod
|
|
104
|
+
def _from_node(cls, axis, nodeid, col, df_orderby = None, df_index_label = None):
|
|
105
|
+
"""
|
|
106
|
+
DESCRIPTION:
|
|
107
|
+
Private class method for creating a teradataml Series from a nodeid, and parent metadata.
|
|
108
|
+
|
|
109
|
+
PARAMETERS:
|
|
110
|
+
axis:
|
|
111
|
+
Required Argument.
|
|
112
|
+
The axis of the parent Series object.
|
|
113
|
+
Types : int
|
|
114
|
+
|
|
115
|
+
nodeid:
|
|
116
|
+
Required Argument.
|
|
117
|
+
nodeid of the underlying teradataml Series object.
|
|
118
|
+
Types : str
|
|
119
|
+
|
|
120
|
+
col:
|
|
121
|
+
Required Argument.
|
|
122
|
+
The modified _SQLColumnExpression instance.
|
|
123
|
+
Types : _SQLColumnExpression
|
|
124
|
+
|
|
125
|
+
df_orderby:
|
|
126
|
+
Optional Argument.
|
|
127
|
+
The attribute of the underlying teradataml DataFrame listing the _order_by column/s .
|
|
128
|
+
Types : str
|
|
129
|
+
|
|
130
|
+
df_index_label:
|
|
131
|
+
Optional Argument.
|
|
132
|
+
Column/s used for sorting from the underlying teradataml DataFrame.
|
|
133
|
+
Types : str
|
|
134
|
+
|
|
135
|
+
EXAMPLES:
|
|
136
|
+
from teradataml.series.series import Series
|
|
137
|
+
s = Series._from_node(1, 1234, col)
|
|
138
|
+
s = Series._from_node(1, 1234, col, ['col'], ['col'])
|
|
139
|
+
|
|
140
|
+
RETURNS:
|
|
141
|
+
teradataml Series
|
|
142
|
+
|
|
143
|
+
RAISES:
|
|
144
|
+
None
|
|
145
|
+
|
|
146
|
+
"""
|
|
147
|
+
|
|
148
|
+
series = cls(axis,
|
|
149
|
+
nodeid,
|
|
150
|
+
col,
|
|
151
|
+
order_by = df_orderby,
|
|
152
|
+
index_label = df_index_label)
|
|
153
|
+
|
|
154
|
+
return series
|
|
155
|
+
|
|
156
|
+
@classmethod
|
|
157
|
+
def _from_dataframe(cls, df, axis = 1):
|
|
158
|
+
"""
|
|
159
|
+
DESCRIPTION:
|
|
160
|
+
Private class method for creating a teradataml Series from a teradataml DataFrame.
|
|
161
|
+
|
|
162
|
+
PARAMETERS:
|
|
163
|
+
df:
|
|
164
|
+
Required Argument.
|
|
165
|
+
A teradataml DataFrame instance.
|
|
166
|
+
|
|
167
|
+
axis:
|
|
168
|
+
Optional Argument.
|
|
169
|
+
A specific axis to squeeze.
|
|
170
|
+
Default Value: 1 (column).
|
|
171
|
+
|
|
172
|
+
EXAMPLES:
|
|
173
|
+
from teradataml.series.series import Series
|
|
174
|
+
s = Series._from_dataframe(df)
|
|
175
|
+
s = Series._from_dataframe(df, 1)
|
|
176
|
+
|
|
177
|
+
RETURNS:
|
|
178
|
+
teradataml Series
|
|
179
|
+
|
|
180
|
+
RAISES:
|
|
181
|
+
TeradataMlException (USE_FUNCTION_TO_INSTANTIATE)
|
|
182
|
+
|
|
183
|
+
"""
|
|
184
|
+
|
|
185
|
+
# TODO : Indexes are currently unsupported
|
|
186
|
+
|
|
187
|
+
# Make sure the method is called only from DataFrame.squeeze()
|
|
188
|
+
if inspect.stack()[1][3] not in ['squeeze']:
|
|
189
|
+
raise TeradataMlException(Messages.get_message(
|
|
190
|
+
MessageCodes.USE_FUNCTION_TO_INSTANTIATE).format('A teradataml Series object',
|
|
191
|
+
'squeeze() from a teradataml.DataFrame instance.'),
|
|
192
|
+
MessageCodes.USE_FUNCTION_TO_INSTANTIATE)
|
|
193
|
+
|
|
194
|
+
# axis used in the DataFrame.squeeze()
|
|
195
|
+
series = cls(axis,
|
|
196
|
+
df._nodeid,
|
|
197
|
+
df._metaexpr.c[0],
|
|
198
|
+
order_by = df._orderby,
|
|
199
|
+
index_label = df._index_label)
|
|
200
|
+
|
|
201
|
+
return series
|
|
202
|
+
|
|
203
|
+
def __repr__(self):
|
|
204
|
+
"""
|
|
205
|
+
Returns the string representation for a teradataml Series instance.
|
|
206
|
+
The string contains:
|
|
207
|
+
1. A default index for row numbers.
|
|
208
|
+
2. At most the first max_rows rows of the series as mentioned in the note below.
|
|
209
|
+
3. The name and datatype of the series.
|
|
210
|
+
|
|
211
|
+
NOTES:
|
|
212
|
+
- This makes an explicit call to get rows from the database.
|
|
213
|
+
- To change number of rows to be printed set the max_rows option in options.display.display
|
|
214
|
+
- Default value of max_rows is 10
|
|
215
|
+
|
|
216
|
+
EXAMPLES:
|
|
217
|
+
>>> df
|
|
218
|
+
masters gpa stats programming admitted
|
|
219
|
+
id
|
|
220
|
+
22 yes 3.46 Novice Beginner 0
|
|
221
|
+
36 no 3.00 Advanced Novice 0
|
|
222
|
+
15 yes 4.00 Advanced Advanced 1
|
|
223
|
+
38 yes 2.65 Advanced Beginner 1
|
|
224
|
+
5 no 3.44 Novice Novice 0
|
|
225
|
+
17 no 3.83 Advanced Advanced 1
|
|
226
|
+
34 yes 3.85 Advanced Beginner 0
|
|
227
|
+
13 no 4.00 Advanced Novice 1
|
|
228
|
+
26 yes 3.57 Advanced Advanced 1
|
|
229
|
+
19 yes 1.98 Advanced Advanced 0
|
|
230
|
+
|
|
231
|
+
>>> gpa = df.select(["gpa"]).squeeze()
|
|
232
|
+
>>> gpa
|
|
233
|
+
0 4.00
|
|
234
|
+
1 2.33
|
|
235
|
+
2 3.46
|
|
236
|
+
3 3.83
|
|
237
|
+
4 4.00
|
|
238
|
+
5 2.65
|
|
239
|
+
6 3.57
|
|
240
|
+
7 3.44
|
|
241
|
+
8 3.85
|
|
242
|
+
9 3.95
|
|
243
|
+
Name: gpa, dtype: float64
|
|
244
|
+
"""
|
|
245
|
+
# TODO : Change docstring based on implementation of RowBased Series object
|
|
246
|
+
query = repr(self._metaexpr) + ' FROM ' + self._get_table_name()
|
|
247
|
+
|
|
248
|
+
if self._df_orderby is not None:
|
|
249
|
+
query += ' ORDER BY ' + self._df_orderby
|
|
250
|
+
|
|
251
|
+
pandas_df = _execute_query_and_generate_pandas_df(query).squeeze(self._axis)
|
|
252
|
+
return pandas_df.__repr__()
|
|
253
|
+
|
|
254
|
+
def __get_sort_col(self):
|
|
255
|
+
"""
|
|
256
|
+
Private method to retrieve sort column.
|
|
257
|
+
Return the column and type in _metadata.
|
|
258
|
+
|
|
259
|
+
PARAMETERS:
|
|
260
|
+
None
|
|
261
|
+
|
|
262
|
+
RETURNS:
|
|
263
|
+
A tuple containing the column name and type of the first column in _metadata.
|
|
264
|
+
|
|
265
|
+
RAISE:
|
|
266
|
+
TeradataMlException
|
|
267
|
+
|
|
268
|
+
EXAMPLES:
|
|
269
|
+
sort_col = self.__get_sort_col()
|
|
270
|
+
"""
|
|
271
|
+
unsupported_types = ['BLOB', 'CLOB', 'ARRAY', 'VARRAY']
|
|
272
|
+
|
|
273
|
+
# Since indexes are currently unsupported, use the only column of df as default col for sorting
|
|
274
|
+
col_name = self._name
|
|
275
|
+
col_type = self._col_type
|
|
276
|
+
|
|
277
|
+
if col_type == PythonTypes.PY_NULL_TYPE.value:
|
|
278
|
+
raise TeradataMlException(Messages.get_message(MessageCodes.SERIES_INFO_ERROR),
|
|
279
|
+
MessageCodes.SERIES_INFO_ERROR)
|
|
280
|
+
|
|
281
|
+
sort_col_sqlalchemy_type = self._col.type
|
|
282
|
+
# convert types to string from sqlalchemy type for the columns entered for sort
|
|
283
|
+
sort_col_type = repr(sort_col_sqlalchemy_type).split("(")[0]
|
|
284
|
+
if sort_col_type in unsupported_types:
|
|
285
|
+
raise TeradataMlException(Messages.get_message(MessageCodes.UNSUPPORTED_DATATYPE, sort_col_type,
|
|
286
|
+
"ANY, except following {}".format(unsupported_types)),
|
|
287
|
+
MessageCodes.UNSUPPORTED_DATATYPE)
|
|
288
|
+
|
|
289
|
+
return (col_name, col_type)
|
|
290
|
+
|
|
291
|
+
def head(self, n=display.max_rows):
|
|
292
|
+
"""
|
|
293
|
+
Print the first n rows of the sorted teradataml Series.
|
|
294
|
+
Note: The Series is sorted on the column composing the Series object.
|
|
295
|
+
The column type must support sorting.
|
|
296
|
+
Unsupported types: ['BLOB', 'CLOB', 'ARRAY', 'VARRAY']
|
|
297
|
+
|
|
298
|
+
PARAMETERS:
|
|
299
|
+
n:
|
|
300
|
+
Optional argument.
|
|
301
|
+
Specifies the number of rows to select.
|
|
302
|
+
Default Value: 10.
|
|
303
|
+
Type: int
|
|
304
|
+
|
|
305
|
+
RETURNS:
|
|
306
|
+
teradataml Series
|
|
307
|
+
|
|
308
|
+
RAISES:
|
|
309
|
+
TeradataMlException
|
|
310
|
+
|
|
311
|
+
EXAMPLES:
|
|
312
|
+
>>> load_example_data("dataframe", "admissions_train")
|
|
313
|
+
>>> df = DataFrame("admissions_train")
|
|
314
|
+
>>> df
|
|
315
|
+
masters gpa stats programming admitted
|
|
316
|
+
id
|
|
317
|
+
22 yes 3.46 Novice Beginner 0
|
|
318
|
+
36 no 3.00 Advanced Novice 0
|
|
319
|
+
15 yes 4.00 Advanced Advanced 1
|
|
320
|
+
38 yes 2.65 Advanced Beginner 1
|
|
321
|
+
5 no 3.44 Novice Novice 0
|
|
322
|
+
17 no 3.83 Advanced Advanced 1
|
|
323
|
+
34 yes 3.85 Advanced Beginner 0
|
|
324
|
+
13 no 4.00 Advanced Novice 1
|
|
325
|
+
26 yes 3.57 Advanced Advanced 1
|
|
326
|
+
19 yes 1.98 Advanced Advanced 0
|
|
327
|
+
|
|
328
|
+
>>> gpa = df.select(["gpa"]).squeeze()
|
|
329
|
+
>>> gpa
|
|
330
|
+
0 4.00
|
|
331
|
+
1 2.33
|
|
332
|
+
2 3.46
|
|
333
|
+
3 3.83
|
|
334
|
+
4 4.00
|
|
335
|
+
5 2.65
|
|
336
|
+
6 3.57
|
|
337
|
+
7 3.44
|
|
338
|
+
8 3.85
|
|
339
|
+
9 3.95
|
|
340
|
+
Name: gpa, dtype: float64
|
|
341
|
+
|
|
342
|
+
>>> gpa.head()
|
|
343
|
+
0 2.33
|
|
344
|
+
1 3.00
|
|
345
|
+
2 3.13
|
|
346
|
+
3 3.44
|
|
347
|
+
4 3.46
|
|
348
|
+
5 3.46
|
|
349
|
+
6 3.45
|
|
350
|
+
7 2.65
|
|
351
|
+
8 1.98
|
|
352
|
+
9 1.87
|
|
353
|
+
Name: gpa, dtype: float64
|
|
354
|
+
|
|
355
|
+
>>> gpa.head(15)
|
|
356
|
+
0 2.33
|
|
357
|
+
1 3.00
|
|
358
|
+
2 3.13
|
|
359
|
+
3 3.44
|
|
360
|
+
4 3.46
|
|
361
|
+
5 3.46
|
|
362
|
+
6 3.50
|
|
363
|
+
7 3.50
|
|
364
|
+
8 3.50
|
|
365
|
+
9 3.52
|
|
366
|
+
10 3.55
|
|
367
|
+
11 3.45
|
|
368
|
+
12 2.65
|
|
369
|
+
13 1.98
|
|
370
|
+
14 1.87
|
|
371
|
+
Name: gpa, dtype: float64
|
|
372
|
+
|
|
373
|
+
>>> gpa.head(5)
|
|
374
|
+
0 2.33
|
|
375
|
+
1 3.00
|
|
376
|
+
2 2.65
|
|
377
|
+
3 1.98
|
|
378
|
+
4 1.87
|
|
379
|
+
Name: gpa, dtype: float64
|
|
380
|
+
"""
|
|
381
|
+
|
|
382
|
+
if self._metaexpr is None:
|
|
383
|
+
raise TeradataMlException(Messages.get_message(MessageCodes.SERIES_INFO_ERROR),
|
|
384
|
+
MessageCodes.SERIES_INFO_ERROR)
|
|
385
|
+
try:
|
|
386
|
+
if not isinstance(n, numbers.Integral) or n <= 0:
|
|
387
|
+
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_POSITIVE_INT).format("n"), MessageCodes.TDMLDF_POSITIVE_INT)
|
|
388
|
+
|
|
389
|
+
sort_col = self.__get_sort_col()
|
|
390
|
+
|
|
391
|
+
series = series_utils._get_sorted_nrow(self, n, sort_col[0], self._axis, asc=True)
|
|
392
|
+
series._metaexpr._n_rows = n
|
|
393
|
+
return series
|
|
394
|
+
|
|
395
|
+
except TeradataMlException:
|
|
396
|
+
raise
|
|
397
|
+
except Exception as err:
|
|
398
|
+
raise TeradataMlException(Messages.get_message(MessageCodes.SERIES_INFO_ERROR) + str(err),
|
|
399
|
+
MessageCodes.SERIES_INFO_ERROR) from err
|
|
400
|
+
|
|
401
|
+
def unique(self):
|
|
402
|
+
"""
|
|
403
|
+
Return a Series object with unique values.
|
|
404
|
+
|
|
405
|
+
PARAMETERS:
|
|
406
|
+
None
|
|
407
|
+
|
|
408
|
+
RETURNS:
|
|
409
|
+
Series object with unique values.
|
|
410
|
+
|
|
411
|
+
RAISES:
|
|
412
|
+
TeradataMlException
|
|
413
|
+
|
|
414
|
+
EXAMPLES:
|
|
415
|
+
>>> load_example_data("dataframe", "admissions_train")
|
|
416
|
+
>>> df = DataFrame.from_query('select admitted from admissions_train')
|
|
417
|
+
>>> s = df.squeeze(axis = 1)
|
|
418
|
+
>>> s
|
|
419
|
+
0 1
|
|
420
|
+
1 1
|
|
421
|
+
2 0
|
|
422
|
+
3 0
|
|
423
|
+
4 1
|
|
424
|
+
5 0
|
|
425
|
+
6 1
|
|
426
|
+
7 0
|
|
427
|
+
8 0
|
|
428
|
+
9 1
|
|
429
|
+
Name: admitted, dtype: object
|
|
430
|
+
|
|
431
|
+
>>> s.unique()
|
|
432
|
+
0 0
|
|
433
|
+
1 1
|
|
434
|
+
Name: admitted, dtype: object
|
|
435
|
+
"""
|
|
436
|
+
|
|
437
|
+
if self._metaexpr is None:
|
|
438
|
+
raise TeradataMlException(Messages.get_message(MessageCodes.SERIES_INFO_ERROR),
|
|
439
|
+
MessageCodes.SERIES_INFO_ERROR)
|
|
440
|
+
|
|
441
|
+
try:
|
|
442
|
+
kwargs = {}
|
|
443
|
+
kwargs[self._name] = self._col._unique()
|
|
444
|
+
(new_meta, result) = self._metaexpr._assign(drop_columns=True, **kwargs)
|
|
445
|
+
|
|
446
|
+
# join the expressions in result
|
|
447
|
+
assign_expression = ', '.join(list(map(lambda x: x[1], result)))
|
|
448
|
+
new_nodeid = self._aed_utils._aed_assign(self._nodeid,
|
|
449
|
+
assign_expression,
|
|
450
|
+
AEDConstants.AED_ASSIGN_DROP_EXISITING_COLUMNS.value)
|
|
451
|
+
|
|
452
|
+
return Series._from_node(self._axis, new_nodeid, new_meta.c[0], self._df_orderby, self._df_index_label)
|
|
453
|
+
|
|
454
|
+
except TeradataMlException:
|
|
455
|
+
raise
|
|
456
|
+
except Exception as err:
|
|
457
|
+
raise TeradataMlException(Messages.get_message(MessageCodes.SERIES_CREATE_FAIL) + str(err),
|
|
458
|
+
MessageCodes.SERIES_CREATE_FAIL) from err
|
|
459
|
+
|
|
460
|
+
def _get_table_name(self):
|
|
461
|
+
"""
|
|
462
|
+
RETURNS:
|
|
463
|
+
Underlying table_name for Series
|
|
464
|
+
|
|
465
|
+
EXAMPLES:
|
|
466
|
+
>>> gpa._get_table_name()
|
|
467
|
+
'admissions_train'
|
|
468
|
+
"""
|
|
469
|
+
if self._table_name is None:
|
|
470
|
+
self._table_name = df_utils._execute_node_return_db_object_name(self._nodeid)
|
|
471
|
+
|
|
472
|
+
return self._table_name
|
|
473
|
+
|
|
474
|
+
@property
|
|
475
|
+
def name(self):
|
|
476
|
+
"""
|
|
477
|
+
RETURNS:
|
|
478
|
+
The name of the Series
|
|
479
|
+
|
|
480
|
+
EXAMPLES:
|
|
481
|
+
>>> gpa.name
|
|
482
|
+
'gpa'
|
|
483
|
+
"""
|
|
484
|
+
return self._name
|
|
485
|
+
|
|
486
|
+
def __gt__(self, other):
|
|
487
|
+
raise NotImplementedError
|
|
488
|
+
|
|
489
|
+
def __ge__(self, other):
|
|
490
|
+
raise NotImplementedError
|
|
491
|
+
|
|
492
|
+
def __lt__(self, other):
|
|
493
|
+
raise NotImplementedError
|
|
494
|
+
|
|
495
|
+
def __le__(self, other):
|
|
496
|
+
raise NotImplementedError
|
|
497
|
+
|
|
498
|
+
def __and__(self, other):
|
|
499
|
+
raise NotImplementedError
|
|
500
|
+
|
|
501
|
+
def __or__(self, other):
|
|
502
|
+
raise NotImplementedError
|
|
503
|
+
|
|
504
|
+
def __invert__(self):
|
|
505
|
+
raise NotImplementedError
|
|
506
|
+
|
|
507
|
+
def __eq__(self):
|
|
508
|
+
raise NotImplementedError
|
|
509
|
+
|
|
510
|
+
def __ne__(self):
|
|
511
|
+
raise NotImplementedError
|
|
512
|
+
|
|
513
|
+
def __xor__(self):
|
|
514
|
+
raise NotImplementedError
|
|
515
|
+
|
|
516
|
+
def __add__(self):
|
|
517
|
+
raise NotImplementedError
|
|
518
|
+
|
|
519
|
+
def __mul__(self):
|
|
520
|
+
raise NotImplementedError
|
|
521
|
+
|
|
522
|
+
def __sub__(self):
|
|
523
|
+
raise NotImplementedError
|
|
524
|
+
|
|
525
|
+
def __truediv__(self):
|
|
526
|
+
raise NotImplementedError
|
|
527
|
+
|
|
528
|
+
def __floordiv__(self):
|
|
529
|
+
raise NotImplementedError
|
|
530
|
+
|
|
531
|
+
def __mod__(self):
|
|
532
|
+
raise NotImplementedError
|