teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +1864 -1640
- teradataml/__init__.py +70 -60
- teradataml/_version.py +11 -11
- teradataml/analytics/Transformations.py +2995 -2995
- teradataml/analytics/__init__.py +81 -83
- teradataml/analytics/analytic_function_executor.py +2013 -2010
- teradataml/analytics/analytic_query_generator.py +958 -958
- teradataml/analytics/byom/H2OPredict.py +514 -514
- teradataml/analytics/byom/PMMLPredict.py +437 -437
- teradataml/analytics/byom/__init__.py +14 -14
- teradataml/analytics/json_parser/__init__.py +130 -130
- teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
- teradataml/analytics/json_parser/json_store.py +191 -191
- teradataml/analytics/json_parser/metadata.py +1637 -1637
- teradataml/analytics/json_parser/utils.py +804 -803
- teradataml/analytics/meta_class.py +196 -196
- teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
- teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
- teradataml/analytics/sqle/__init__.py +97 -110
- teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
- teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
- teradataml/analytics/table_operator/__init__.py +10 -10
- teradataml/analytics/uaf/__init__.py +63 -63
- teradataml/analytics/utils.py +693 -692
- teradataml/analytics/valib.py +1603 -1600
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +1 -3
- teradataml/catalog/byom.py +1759 -1716
- teradataml/catalog/function_argument_mapper.py +859 -861
- teradataml/catalog/model_cataloging_utils.py +491 -1510
- teradataml/clients/pkce_client.py +481 -481
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/bulk_exposed_utils.py +111 -111
- teradataml/common/constants.py +1433 -1441
- teradataml/common/deprecations.py +160 -0
- teradataml/common/exceptions.py +73 -73
- teradataml/common/formula.py +742 -742
- teradataml/common/garbagecollector.py +592 -635
- teradataml/common/messagecodes.py +422 -431
- teradataml/common/messages.py +227 -231
- teradataml/common/sqlbundle.py +693 -693
- teradataml/common/td_coltype_code_to_tdtype.py +48 -48
- teradataml/common/utils.py +2418 -2500
- teradataml/common/warnings.py +25 -25
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/config/dummy_file1.cfg +4 -4
- teradataml/config/dummy_file2.cfg +2 -2
- teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
- teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
- teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
- teradataml/context/aed_context.py +217 -217
- teradataml/context/context.py +1071 -999
- teradataml/data/A_loan.csv +19 -19
- teradataml/data/BINARY_REALS_LEFT.csv +11 -11
- teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
- teradataml/data/B_loan.csv +49 -49
- teradataml/data/BuoyData2.csv +17 -17
- teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
- teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
- teradataml/data/Convolve2RealsLeft.csv +5 -5
- teradataml/data/Convolve2RealsRight.csv +5 -5
- teradataml/data/Convolve2ValidLeft.csv +11 -11
- teradataml/data/Convolve2ValidRight.csv +11 -11
- teradataml/data/DFFTConv_Real_8_8.csv +65 -65
- teradataml/data/Orders1_12mf.csv +24 -24
- teradataml/data/Pi_loan.csv +7 -7
- teradataml/data/SMOOTHED_DATA.csv +7 -7
- teradataml/data/TestDFFT8.csv +9 -9
- teradataml/data/TestRiver.csv +109 -109
- teradataml/data/Traindata.csv +28 -28
- teradataml/data/acf.csv +17 -17
- teradataml/data/adaboost_example.json +34 -34
- teradataml/data/adaboostpredict_example.json +24 -24
- teradataml/data/additional_table.csv +10 -10
- teradataml/data/admissions_test.csv +21 -21
- teradataml/data/admissions_train.csv +41 -41
- teradataml/data/admissions_train_nulls.csv +41 -41
- teradataml/data/ageandheight.csv +13 -13
- teradataml/data/ageandpressure.csv +31 -31
- teradataml/data/antiselect_example.json +36 -36
- teradataml/data/antiselect_input.csv +8 -8
- teradataml/data/antiselect_input_mixed_case.csv +8 -8
- teradataml/data/applicant_external.csv +6 -6
- teradataml/data/applicant_reference.csv +6 -6
- teradataml/data/arima_example.json +9 -9
- teradataml/data/assortedtext_input.csv +8 -8
- teradataml/data/attribution_example.json +33 -33
- teradataml/data/attribution_sample_table.csv +27 -27
- teradataml/data/attribution_sample_table1.csv +6 -6
- teradataml/data/attribution_sample_table2.csv +11 -11
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bank_web_clicks1.csv +42 -42
- teradataml/data/bank_web_clicks2.csv +91 -91
- teradataml/data/bank_web_url.csv +85 -85
- teradataml/data/barrier.csv +2 -2
- teradataml/data/barrier_new.csv +3 -3
- teradataml/data/betweenness_example.json +13 -13
- teradataml/data/bin_breaks.csv +8 -8
- teradataml/data/bin_fit_ip.csv +3 -3
- teradataml/data/binary_complex_left.csv +11 -11
- teradataml/data/binary_complex_right.csv +11 -11
- teradataml/data/binary_matrix_complex_left.csv +21 -21
- teradataml/data/binary_matrix_complex_right.csv +21 -21
- teradataml/data/binary_matrix_real_left.csv +21 -21
- teradataml/data/binary_matrix_real_right.csv +21 -21
- teradataml/data/blood2ageandweight.csv +26 -26
- teradataml/data/bmi.csv +501 -0
- teradataml/data/boston.csv +507 -507
- teradataml/data/buoydata_mix.csv +11 -11
- teradataml/data/burst_data.csv +5 -5
- teradataml/data/burst_example.json +20 -20
- teradataml/data/byom_example.json +17 -17
- teradataml/data/bytes_table.csv +3 -3
- teradataml/data/cal_housing_ex_raw.csv +70 -70
- teradataml/data/callers.csv +7 -7
- teradataml/data/calls.csv +10 -10
- teradataml/data/cars_hist.csv +33 -33
- teradataml/data/cat_table.csv +24 -24
- teradataml/data/ccm_example.json +31 -31
- teradataml/data/ccm_input.csv +91 -91
- teradataml/data/ccm_input2.csv +13 -13
- teradataml/data/ccmexample.csv +101 -101
- teradataml/data/ccmprepare_example.json +8 -8
- teradataml/data/ccmprepare_input.csv +91 -91
- teradataml/data/cfilter_example.json +12 -12
- teradataml/data/changepointdetection_example.json +18 -18
- teradataml/data/changepointdetectionrt_example.json +8 -8
- teradataml/data/chi_sq.csv +2 -2
- teradataml/data/churn_data.csv +14 -14
- teradataml/data/churn_emission.csv +35 -35
- teradataml/data/churn_initial.csv +3 -3
- teradataml/data/churn_state_transition.csv +5 -5
- teradataml/data/citedges_2.csv +745 -745
- teradataml/data/citvertices_2.csv +1210 -1210
- teradataml/data/clicks2.csv +16 -16
- teradataml/data/clickstream.csv +12 -12
- teradataml/data/clickstream1.csv +11 -11
- teradataml/data/closeness_example.json +15 -15
- teradataml/data/complaints.csv +21 -21
- teradataml/data/complaints_mini.csv +3 -3
- teradataml/data/complaints_testtoken.csv +224 -224
- teradataml/data/complaints_tokens_test.csv +353 -353
- teradataml/data/complaints_traintoken.csv +472 -472
- teradataml/data/computers_category.csv +1001 -1001
- teradataml/data/computers_test1.csv +1252 -1252
- teradataml/data/computers_train1.csv +5009 -5009
- teradataml/data/computers_train1_clustered.csv +5009 -5009
- teradataml/data/confusionmatrix_example.json +9 -9
- teradataml/data/conversion_event_table.csv +3 -3
- teradataml/data/corr_input.csv +17 -17
- teradataml/data/correlation_example.json +11 -11
- teradataml/data/coxhazardratio_example.json +39 -39
- teradataml/data/coxph_example.json +15 -15
- teradataml/data/coxsurvival_example.json +28 -28
- teradataml/data/cpt.csv +41 -41
- teradataml/data/credit_ex_merged.csv +45 -45
- teradataml/data/customer_loyalty.csv +301 -301
- teradataml/data/customer_loyalty_newseq.csv +31 -31
- teradataml/data/dataframe_example.json +146 -146
- teradataml/data/decisionforest_example.json +37 -37
- teradataml/data/decisionforestpredict_example.json +38 -38
- teradataml/data/decisiontree_example.json +21 -21
- teradataml/data/decisiontreepredict_example.json +45 -45
- teradataml/data/dfft2_size4_real.csv +17 -17
- teradataml/data/dfft2_test_matrix16.csv +17 -17
- teradataml/data/dfft2conv_real_4_4.csv +65 -65
- teradataml/data/diabetes.csv +443 -443
- teradataml/data/diabetes_test.csv +89 -89
- teradataml/data/dict_table.csv +5 -5
- teradataml/data/docperterm_table.csv +4 -4
- teradataml/data/docs/__init__.py +1 -1
- teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
- teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
- teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
- teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
- teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
- teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
- teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
- teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
- teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
- teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
- teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
- teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
- teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
- teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
- teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
- teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
- teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
- teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
- teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
- teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
- teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
- teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +132 -132
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +103 -103
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +101 -101
- teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
- teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
- teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
- teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
- teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
- teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
- teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
- teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
- teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
- teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
- teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
- teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
- teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
- teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +126 -126
- teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
- teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
- teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
- teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
- teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
- teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +243 -243
- teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
- teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
- teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
- teradataml/data/docs/sqle/docs_17_20/FTest.py +160 -160
- teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
- teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
- teradataml/data/docs/sqle/docs_17_20/GLM.py +380 -380
- teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
- teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +123 -123
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
- teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +204 -204
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
- teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
- teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
- teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
- teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +117 -117
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
- teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
- teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +225 -225
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +115 -115
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
- teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
- teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
- teradataml/data/docs/sqle/docs_17_20/ROC.py +163 -163
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
- teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
- teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
- teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +202 -202
- teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +197 -197
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +110 -109
- teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
- teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
- teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
- teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
- teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +171 -171
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
- teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
- teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
- teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
- teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
- teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
- teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
- teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
- teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +353 -353
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +275 -275
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +155 -155
- teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
- teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
- teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
- teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
- teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
- teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
- teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
- teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
- teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
- teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
- teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
- teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
- teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
- teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
- teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
- teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
- teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
- teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
- teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
- teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
- teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
- teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
- teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
- teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
- teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
- teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
- teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
- teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
- teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
- teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
- teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
- teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
- teradataml/data/dtw_example.json +17 -17
- teradataml/data/dtw_t1.csv +11 -11
- teradataml/data/dtw_t2.csv +4 -4
- teradataml/data/dwt2d_example.json +15 -15
- teradataml/data/dwt_example.json +14 -14
- teradataml/data/dwt_filter_dim.csv +5 -5
- teradataml/data/emission.csv +9 -9
- teradataml/data/emp_table_by_dept.csv +19 -19
- teradataml/data/employee_info.csv +4 -4
- teradataml/data/employee_table.csv +6 -6
- teradataml/data/excluding_event_table.csv +2 -2
- teradataml/data/finance_data.csv +6 -6
- teradataml/data/finance_data2.csv +61 -61
- teradataml/data/finance_data3.csv +93 -93
- teradataml/data/fish.csv +160 -0
- teradataml/data/fm_blood2ageandweight.csv +26 -26
- teradataml/data/fmeasure_example.json +11 -11
- teradataml/data/followers_leaders.csv +10 -10
- teradataml/data/fpgrowth_example.json +12 -12
- teradataml/data/frequentpaths_example.json +29 -29
- teradataml/data/friends.csv +9 -9
- teradataml/data/fs_input.csv +33 -33
- teradataml/data/fs_input1.csv +33 -33
- teradataml/data/genData.csv +513 -513
- teradataml/data/geodataframe_example.json +39 -39
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/glm_admissions_model.csv +12 -12
- teradataml/data/glm_example.json +29 -29
- teradataml/data/glml1l2_example.json +28 -28
- teradataml/data/glml1l2predict_example.json +54 -54
- teradataml/data/glmpredict_example.json +54 -54
- teradataml/data/gq_t1.csv +21 -21
- teradataml/data/hconvolve_complex_right.csv +5 -5
- teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
- teradataml/data/histogram_example.json +11 -11
- teradataml/data/hmmdecoder_example.json +78 -78
- teradataml/data/hmmevaluator_example.json +24 -24
- teradataml/data/hmmsupervised_example.json +10 -10
- teradataml/data/hmmunsupervised_example.json +7 -7
- teradataml/data/house_values.csv +12 -12
- teradataml/data/house_values2.csv +13 -13
- teradataml/data/housing_cat.csv +7 -7
- teradataml/data/housing_data.csv +9 -9
- teradataml/data/housing_test.csv +47 -47
- teradataml/data/housing_test_binary.csv +47 -47
- teradataml/data/housing_train.csv +493 -493
- teradataml/data/housing_train_attribute.csv +4 -4
- teradataml/data/housing_train_binary.csv +437 -437
- teradataml/data/housing_train_parameter.csv +2 -2
- teradataml/data/housing_train_response.csv +493 -493
- teradataml/data/ibm_stock.csv +370 -370
- teradataml/data/ibm_stock1.csv +370 -370
- teradataml/data/identitymatch_example.json +21 -21
- teradataml/data/idf_table.csv +4 -4
- teradataml/data/impressions.csv +101 -101
- teradataml/data/inflation.csv +21 -21
- teradataml/data/initial.csv +3 -3
- teradataml/data/insect_sprays.csv +12 -12
- teradataml/data/insurance.csv +1339 -1339
- teradataml/data/interpolator_example.json +12 -12
- teradataml/data/iris_altinput.csv +481 -481
- teradataml/data/iris_attribute_output.csv +8 -8
- teradataml/data/iris_attribute_test.csv +121 -121
- teradataml/data/iris_attribute_train.csv +481 -481
- teradataml/data/iris_category_expect_predict.csv +31 -31
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/iris_input.csv +151 -151
- teradataml/data/iris_response_train.csv +121 -121
- teradataml/data/iris_test.csv +31 -31
- teradataml/data/iris_train.csv +121 -121
- teradataml/data/join_table1.csv +4 -4
- teradataml/data/join_table2.csv +4 -4
- teradataml/data/jsons/anly_function_name.json +6 -6
- teradataml/data/jsons/byom/dataikupredict.json +147 -147
- teradataml/data/jsons/byom/datarobotpredict.json +146 -146
- teradataml/data/jsons/byom/h2opredict.json +194 -194
- teradataml/data/jsons/byom/onnxpredict.json +186 -186
- teradataml/data/jsons/byom/pmmlpredict.json +146 -146
- teradataml/data/jsons/paired_functions.json +435 -435
- teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
- teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
- teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
- teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
- teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
- teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
- teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
- teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
- teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
- teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
- teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
- teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
- teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
- teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
- teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
- teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
- teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
- teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
- teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
- teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
- teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
- teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
- teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
- teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
- teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
- teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
- teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
- teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
- teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
- teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
- teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
- teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
- teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
- teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
- teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
- teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
- teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
- teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
- teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
- teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +76 -76
- teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
- teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
- teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
- teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
- teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
- teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
- teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
- teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
- teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
- teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +186 -186
- teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
- teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +431 -431
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +125 -125
- teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
- teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +91 -91
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
- teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +211 -211
- teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
- teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +101 -101
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
- teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
- teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +177 -177
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
- teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
- teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +124 -124
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +156 -156
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +70 -70
- teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
- teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
- teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
- teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
- teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
- teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
- teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +312 -312
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +182 -182
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +170 -170
- teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
- teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
- teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
- teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
- teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
- teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
- teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
- teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
- teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
- teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
- teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
- teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
- teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
- teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
- teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
- teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
- teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
- teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
- teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
- teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
- teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
- teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
- teradataml/data/kmeans_example.json +17 -17
- teradataml/data/kmeans_us_arrests_data.csv +0 -0
- teradataml/data/knn_example.json +18 -18
- teradataml/data/knnrecommender_example.json +6 -6
- teradataml/data/knnrecommenderpredict_example.json +12 -12
- teradataml/data/lar_example.json +17 -17
- teradataml/data/larpredict_example.json +30 -30
- teradataml/data/lc_new_predictors.csv +5 -5
- teradataml/data/lc_new_reference.csv +9 -9
- teradataml/data/lda_example.json +8 -8
- teradataml/data/ldainference_example.json +14 -14
- teradataml/data/ldatopicsummary_example.json +8 -8
- teradataml/data/levendist_input.csv +13 -13
- teradataml/data/levenshteindistance_example.json +10 -10
- teradataml/data/linreg_example.json +9 -9
- teradataml/data/load_example_data.py +326 -323
- teradataml/data/loan_prediction.csv +295 -295
- teradataml/data/lungcancer.csv +138 -138
- teradataml/data/mappingdata.csv +12 -12
- teradataml/data/milk_timeseries.csv +157 -157
- teradataml/data/min_max_titanic.csv +4 -4
- teradataml/data/minhash_example.json +6 -6
- teradataml/data/ml_ratings.csv +7547 -7547
- teradataml/data/ml_ratings_10.csv +2445 -2445
- teradataml/data/model1_table.csv +5 -5
- teradataml/data/model2_table.csv +5 -5
- teradataml/data/models/iris_db_glm_model.pmml +56 -56
- teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
- teradataml/data/modularity_example.json +12 -12
- teradataml/data/movavg_example.json +7 -7
- teradataml/data/mtx1.csv +7 -7
- teradataml/data/mtx2.csv +13 -13
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/mvdfft8.csv +9 -9
- teradataml/data/naivebayes_example.json +9 -9
- teradataml/data/naivebayespredict_example.json +19 -19
- teradataml/data/naivebayestextclassifier2_example.json +6 -6
- teradataml/data/naivebayestextclassifier_example.json +8 -8
- teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
- teradataml/data/name_Find_configure.csv +10 -10
- teradataml/data/namedentityfinder_example.json +14 -14
- teradataml/data/namedentityfinderevaluator_example.json +10 -10
- teradataml/data/namedentityfindertrainer_example.json +6 -6
- teradataml/data/nb_iris_input_test.csv +31 -31
- teradataml/data/nb_iris_input_train.csv +121 -121
- teradataml/data/nbp_iris_model.csv +13 -13
- teradataml/data/ner_extractor_text.csv +2 -2
- teradataml/data/ner_sports_test2.csv +29 -29
- teradataml/data/ner_sports_train.csv +501 -501
- teradataml/data/nerevaluator_example.json +5 -5
- teradataml/data/nerextractor_example.json +18 -18
- teradataml/data/nermem_sports_test.csv +17 -17
- teradataml/data/nermem_sports_train.csv +50 -50
- teradataml/data/nertrainer_example.json +6 -6
- teradataml/data/ngrams_example.json +6 -6
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
- teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
- teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
- teradataml/data/npath_example.json +23 -23
- teradataml/data/ntree_example.json +14 -14
- teradataml/data/numeric_strings.csv +4 -4
- teradataml/data/numerics.csv +4 -4
- teradataml/data/ocean_buoy.csv +17 -17
- teradataml/data/ocean_buoy2.csv +17 -17
- teradataml/data/ocean_buoys.csv +27 -27
- teradataml/data/ocean_buoys2.csv +10 -10
- teradataml/data/ocean_buoys_nonpti.csv +28 -28
- teradataml/data/ocean_buoys_seq.csv +29 -29
- teradataml/data/openml_example.json +63 -0
- teradataml/data/optional_event_table.csv +4 -4
- teradataml/data/orders1.csv +11 -11
- teradataml/data/orders1_12.csv +12 -12
- teradataml/data/orders_ex.csv +4 -4
- teradataml/data/pack_example.json +8 -8
- teradataml/data/package_tracking.csv +19 -19
- teradataml/data/package_tracking_pti.csv +18 -18
- teradataml/data/pagerank_example.json +13 -13
- teradataml/data/paragraphs_input.csv +6 -6
- teradataml/data/pathanalyzer_example.json +7 -7
- teradataml/data/pathgenerator_example.json +7 -7
- teradataml/data/phrases.csv +7 -7
- teradataml/data/pivot_example.json +8 -8
- teradataml/data/pivot_input.csv +22 -22
- teradataml/data/playerRating.csv +31 -31
- teradataml/data/postagger_example.json +6 -6
- teradataml/data/posttagger_output.csv +44 -44
- teradataml/data/production_data.csv +16 -16
- teradataml/data/production_data2.csv +7 -7
- teradataml/data/randomsample_example.json +31 -31
- teradataml/data/randomwalksample_example.json +8 -8
- teradataml/data/rank_table.csv +6 -6
- teradataml/data/ref_mobile_data.csv +4 -4
- teradataml/data/ref_mobile_data_dense.csv +2 -2
- teradataml/data/ref_url.csv +17 -17
- teradataml/data/restaurant_reviews.csv +7 -7
- teradataml/data/river_data.csv +145 -145
- teradataml/data/roc_example.json +7 -7
- teradataml/data/roc_input.csv +101 -101
- teradataml/data/rule_inputs.csv +6 -6
- teradataml/data/rule_table.csv +2 -2
- teradataml/data/sales.csv +7 -7
- teradataml/data/sales_transaction.csv +501 -501
- teradataml/data/salesdata.csv +342 -342
- teradataml/data/sample_cities.csv +2 -2
- teradataml/data/sample_shapes.csv +10 -10
- teradataml/data/sample_streets.csv +2 -2
- teradataml/data/sampling_example.json +15 -15
- teradataml/data/sax_example.json +8 -8
- teradataml/data/scale_example.json +23 -23
- teradataml/data/scale_housing.csv +11 -11
- teradataml/data/scale_housing_test.csv +6 -6
- teradataml/data/scale_stat.csv +11 -11
- teradataml/data/scalebypartition_example.json +13 -13
- teradataml/data/scalemap_example.json +13 -13
- teradataml/data/scalesummary_example.json +12 -12
- teradataml/data/score_category.csv +101 -101
- teradataml/data/score_summary.csv +4 -4
- teradataml/data/script_example.json +9 -9
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/mapper.py +15 -15
- teradataml/data/scripts/mapper_replace.py +15 -15
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/seeds.csv +10 -10
- teradataml/data/sentenceextractor_example.json +6 -6
- teradataml/data/sentiment_extract_input.csv +11 -11
- teradataml/data/sentiment_train.csv +16 -16
- teradataml/data/sentiment_word.csv +20 -20
- teradataml/data/sentiment_word_input.csv +19 -19
- teradataml/data/sentimentextractor_example.json +24 -24
- teradataml/data/sentimenttrainer_example.json +8 -8
- teradataml/data/sequence_table.csv +10 -10
- teradataml/data/seriessplitter_example.json +7 -7
- teradataml/data/sessionize_example.json +17 -17
- teradataml/data/sessionize_table.csv +116 -116
- teradataml/data/setop_test1.csv +24 -24
- teradataml/data/setop_test2.csv +22 -22
- teradataml/data/soc_nw_edges.csv +10 -10
- teradataml/data/soc_nw_vertices.csv +7 -7
- teradataml/data/souvenir_timeseries.csv +167 -167
- teradataml/data/sparse_iris_attribute.csv +5 -5
- teradataml/data/sparse_iris_test.csv +121 -121
- teradataml/data/sparse_iris_train.csv +601 -601
- teradataml/data/star1.csv +6 -6
- teradataml/data/state_transition.csv +5 -5
- teradataml/data/stock_data.csv +53 -53
- teradataml/data/stock_movement.csv +11 -11
- teradataml/data/stock_vol.csv +76 -76
- teradataml/data/stop_words.csv +8 -8
- teradataml/data/store_sales.csv +37 -37
- teradataml/data/stringsimilarity_example.json +7 -7
- teradataml/data/strsimilarity_input.csv +13 -13
- teradataml/data/students.csv +101 -101
- teradataml/data/svm_iris_input_test.csv +121 -121
- teradataml/data/svm_iris_input_train.csv +481 -481
- teradataml/data/svm_iris_model.csv +7 -7
- teradataml/data/svmdense_example.json +9 -9
- teradataml/data/svmdensepredict_example.json +18 -18
- teradataml/data/svmsparse_example.json +7 -7
- teradataml/data/svmsparsepredict_example.json +13 -13
- teradataml/data/svmsparsesummary_example.json +7 -7
- teradataml/data/target_mobile_data.csv +13 -13
- teradataml/data/target_mobile_data_dense.csv +5 -5
- teradataml/data/templatedata.csv +1201 -1201
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_loan_prediction.csv +53 -53
- teradataml/data/test_pacf_12.csv +37 -37
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/test_river2.csv +109 -109
- teradataml/data/text_inputs.csv +6 -6
- teradataml/data/textchunker_example.json +7 -7
- teradataml/data/textclassifier_example.json +6 -6
- teradataml/data/textclassifier_input.csv +7 -7
- teradataml/data/textclassifiertrainer_example.json +6 -6
- teradataml/data/textmorph_example.json +5 -5
- teradataml/data/textparser_example.json +15 -15
- teradataml/data/texttagger_example.json +11 -11
- teradataml/data/texttokenizer_example.json +6 -6
- teradataml/data/texttrainer_input.csv +11 -11
- teradataml/data/tf_example.json +6 -6
- teradataml/data/tfidf_example.json +13 -13
- teradataml/data/tfidf_input1.csv +201 -201
- teradataml/data/tfidf_train.csv +6 -6
- teradataml/data/time_table1.csv +535 -535
- teradataml/data/time_table2.csv +14 -14
- teradataml/data/timeseriesdata.csv +1601 -1601
- teradataml/data/timeseriesdatasetsd4.csv +105 -105
- teradataml/data/titanic.csv +892 -892
- teradataml/data/token_table.csv +696 -696
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/train_tracking.csv +27 -27
- teradataml/data/transformation_table.csv +5 -5
- teradataml/data/transformation_table_new.csv +1 -1
- teradataml/data/tv_spots.csv +16 -16
- teradataml/data/twod_climate_data.csv +117 -117
- teradataml/data/uaf_example.json +475 -475
- teradataml/data/univariatestatistics_example.json +8 -8
- teradataml/data/unpack_example.json +9 -9
- teradataml/data/unpivot_example.json +9 -9
- teradataml/data/unpivot_input.csv +8 -8
- teradataml/data/us_air_pass.csv +36 -36
- teradataml/data/us_population.csv +624 -624
- teradataml/data/us_states_shapes.csv +52 -52
- teradataml/data/varmax_example.json +17 -17
- teradataml/data/vectordistance_example.json +25 -25
- teradataml/data/ville_climatedata.csv +121 -121
- teradataml/data/ville_tempdata.csv +12 -12
- teradataml/data/ville_tempdata1.csv +12 -12
- teradataml/data/ville_temperature.csv +11 -11
- teradataml/data/waveletTable.csv +1605 -1605
- teradataml/data/waveletTable2.csv +1605 -1605
- teradataml/data/weightedmovavg_example.json +8 -8
- teradataml/data/wft_testing.csv +5 -5
- teradataml/data/wine_data.csv +1600 -0
- teradataml/data/word_embed_input_table1.csv +5 -5
- teradataml/data/word_embed_input_table2.csv +4 -4
- teradataml/data/word_embed_model.csv +22 -22
- teradataml/data/words_input.csv +13 -13
- teradataml/data/xconvolve_complex_left.csv +6 -6
- teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
- teradataml/data/xgboost_example.json +35 -35
- teradataml/data/xgboostpredict_example.json +31 -31
- teradataml/dataframe/copy_to.py +1764 -1698
- teradataml/dataframe/data_transfer.py +2753 -2745
- teradataml/dataframe/dataframe.py +17545 -16946
- teradataml/dataframe/dataframe_utils.py +1837 -1740
- teradataml/dataframe/fastload.py +611 -603
- teradataml/dataframe/indexer.py +424 -424
- teradataml/dataframe/setop.py +1179 -1166
- teradataml/dataframe/sql.py +10090 -6432
- teradataml/dataframe/sql_function_parameters.py +439 -388
- teradataml/dataframe/sql_functions.py +652 -652
- teradataml/dataframe/sql_interfaces.py +220 -220
- teradataml/dataframe/vantage_function_types.py +674 -630
- teradataml/dataframe/window.py +693 -692
- teradataml/dbutils/__init__.py +3 -3
- teradataml/dbutils/dbutils.py +1167 -1150
- teradataml/dbutils/filemgr.py +267 -267
- teradataml/gen_ai/__init__.py +2 -2
- teradataml/gen_ai/convAI.py +472 -472
- teradataml/geospatial/__init__.py +3 -3
- teradataml/geospatial/geodataframe.py +1105 -1094
- teradataml/geospatial/geodataframecolumn.py +392 -387
- teradataml/geospatial/geometry_types.py +925 -925
- teradataml/hyperparameter_tuner/__init__.py +1 -1
- teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
- teradataml/hyperparameter_tuner/utils.py +281 -187
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +121 -124
- teradataml/options/configure.py +337 -336
- teradataml/options/display.py +176 -176
- teradataml/plot/__init__.py +2 -2
- teradataml/plot/axis.py +1388 -1388
- teradataml/plot/constants.py +15 -15
- teradataml/plot/figure.py +398 -398
- teradataml/plot/plot.py +760 -760
- teradataml/plot/query_generator.py +83 -83
- teradataml/plot/subplot.py +216 -216
- teradataml/scriptmgmt/UserEnv.py +3788 -3761
- teradataml/scriptmgmt/__init__.py +3 -3
- teradataml/scriptmgmt/lls_utils.py +1616 -1604
- teradataml/series/series.py +532 -532
- teradataml/series/series_utils.py +71 -71
- teradataml/table_operators/Apply.py +949 -917
- teradataml/table_operators/Script.py +1719 -1982
- teradataml/table_operators/TableOperator.py +1207 -1616
- teradataml/table_operators/__init__.py +2 -3
- teradataml/table_operators/apply_query_generator.py +262 -262
- teradataml/table_operators/query_generator.py +507 -507
- teradataml/table_operators/table_operator_query_generator.py +460 -460
- teradataml/table_operators/table_operator_util.py +631 -639
- teradataml/table_operators/templates/dataframe_apply.template +184 -184
- teradataml/table_operators/templates/dataframe_map.template +176 -176
- teradataml/table_operators/templates/script_executor.template +170 -170
- teradataml/utils/dtypes.py +684 -684
- teradataml/utils/internal_buffer.py +84 -84
- teradataml/utils/print_versions.py +205 -205
- teradataml/utils/utils.py +410 -410
- teradataml/utils/validators.py +2239 -2115
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +270 -41
- teradataml-20.0.0.0.dist-info/RECORD +1038 -0
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +1 -1
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +1 -1
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- teradataml-17.20.0.7.dist-info/RECORD +0 -1280
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,152 @@
|
|
|
1
|
+
import pickle
|
|
2
|
+
import math
|
|
3
|
+
import sys
|
|
4
|
+
import numpy as np
|
|
5
|
+
|
|
6
|
+
# The below import is needed to convert sparse matrix to dense array as sparse matrices are NOT
|
|
7
|
+
# supported in Vantage.
|
|
8
|
+
# This is in scipy 1.6.x. Might vary based on scipy version.
|
|
9
|
+
from scipy.sparse.csr import csr_matrix
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
DELIMITER = '\t'
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
def get_value(value):
|
|
16
|
+
ret_val = value
|
|
17
|
+
try:
|
|
18
|
+
ret_val = float(value.replace(' ', ''))
|
|
19
|
+
except Exception as ex:
|
|
20
|
+
# If the value can't be converted to float, then it is string.
|
|
21
|
+
pass
|
|
22
|
+
return ret_val
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
def get_values_list(values, ignore_none=True):
|
|
26
|
+
ret_vals = []
|
|
27
|
+
for val in values:
|
|
28
|
+
if val == "" and ignore_none:
|
|
29
|
+
# Empty cell value in the database table.
|
|
30
|
+
continue
|
|
31
|
+
ret_vals.append(get_value(val))
|
|
32
|
+
|
|
33
|
+
return ret_vals
|
|
34
|
+
|
|
35
|
+
def convert_to_type(val, typee):
|
|
36
|
+
if typee == 'int':
|
|
37
|
+
return int(val)
|
|
38
|
+
if typee == 'float':
|
|
39
|
+
return float(val)
|
|
40
|
+
if typee == 'bool':
|
|
41
|
+
return eval(val)
|
|
42
|
+
return str(val)
|
|
43
|
+
|
|
44
|
+
def splitter(strr, delim=",", convert_to="str"):
|
|
45
|
+
"""
|
|
46
|
+
Split the string based on delimiter and convert to the type specified.
|
|
47
|
+
"""
|
|
48
|
+
if strr == "None":
|
|
49
|
+
return []
|
|
50
|
+
return [convert_to_type(i, convert_to) for i in strr.split(delim)]
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
# Arguments to the Script
|
|
54
|
+
if len(sys.argv) < 7:
|
|
55
|
+
# At least 7 arguments command line arguments should be passed to this file.
|
|
56
|
+
# 1: file to be run
|
|
57
|
+
# 2. function name.
|
|
58
|
+
# 3. No of feature columns.
|
|
59
|
+
# 4. Comma separated indices of partition columns.
|
|
60
|
+
# 5. Comma separated types of the partition columns.
|
|
61
|
+
# 6. Model file prefix to generate model file using partition columns.
|
|
62
|
+
# 7. Flag to check the system type. True, means Lake, Enterprise otherwise.
|
|
63
|
+
# 8. OPTIONAL - Arguments in string format like "return_distance True-bool",
|
|
64
|
+
# "n_neighbors 3-int", "radius 3.4-float" etc.
|
|
65
|
+
sys.exit("At least 7 arguments should be passed to this file - file to be run, function name, "\
|
|
66
|
+
"no of feature columns, comma separated indices and types of partition columns, "\
|
|
67
|
+
"model file prefix to generate model file using partition columns, flag to check "\
|
|
68
|
+
"lake or enterprise and optional arguments in string format.")
|
|
69
|
+
|
|
70
|
+
convert_to_int = lambda x: int(x) if x != "None" else None
|
|
71
|
+
|
|
72
|
+
is_lake_system = eval(sys.argv[6])
|
|
73
|
+
if not is_lake_system:
|
|
74
|
+
db = sys.argv[0].split("/")[1]
|
|
75
|
+
func_name = sys.argv[1]
|
|
76
|
+
n_f_cols = convert_to_int(sys.argv[2])
|
|
77
|
+
data_partition_column_types = splitter(sys.argv[4])
|
|
78
|
+
data_partition_column_indices = splitter(sys.argv[3], convert_to="int") # indices are integers.
|
|
79
|
+
model_file_prefix = sys.argv[5]
|
|
80
|
+
# Extract arguments from string.
|
|
81
|
+
arguments = {}
|
|
82
|
+
for i in range(7, len(sys.argv), 2):
|
|
83
|
+
value = sys.argv[i + 1].split("-", 1)
|
|
84
|
+
arguments[sys.argv[i]] = convert_to_type(value[0], value[1])
|
|
85
|
+
|
|
86
|
+
model = None
|
|
87
|
+
data_partition_column_values = []
|
|
88
|
+
|
|
89
|
+
# Data Format:
|
|
90
|
+
# feature1, feature2, ..., featuren, label1, label2, ... labelk, data_partition_column1, ...,
|
|
91
|
+
# data_partition_columnn.
|
|
92
|
+
# label is optional (it is present when label_exists is not "None")
|
|
93
|
+
|
|
94
|
+
# `return_distance` is needed as the result is a tuple of two arrays when it is True.
|
|
95
|
+
return_distance = arguments.get("return_distance", True) # Default value is True.
|
|
96
|
+
|
|
97
|
+
while 1:
|
|
98
|
+
try:
|
|
99
|
+
line = input()
|
|
100
|
+
if line == '': # Exit if user provides blank line
|
|
101
|
+
break
|
|
102
|
+
else:
|
|
103
|
+
values = line.split(DELIMITER)
|
|
104
|
+
if not data_partition_column_values:
|
|
105
|
+
# Partition column values is same for all rows. Hence, only read once.
|
|
106
|
+
for i, val in enumerate(data_partition_column_indices):
|
|
107
|
+
data_partition_column_values.append(
|
|
108
|
+
convert_to_type(values[val], typee=data_partition_column_types[i])
|
|
109
|
+
)
|
|
110
|
+
|
|
111
|
+
# Prepare the corresponding model file name and extract model.
|
|
112
|
+
partition_join = "_".join([str(x) for x in data_partition_column_values])
|
|
113
|
+
# Replace '-' with '_' as '-' because partition_columns can be negative.
|
|
114
|
+
partition_join = partition_join.replace("-", "_")
|
|
115
|
+
|
|
116
|
+
model_file_path = f"{model_file_prefix}_{partition_join}" \
|
|
117
|
+
if is_lake_system else \
|
|
118
|
+
f"./{db}/{model_file_prefix}_{partition_join}"
|
|
119
|
+
|
|
120
|
+
with open(model_file_path, "rb") as fp:
|
|
121
|
+
model = pickle.loads(fp.read())
|
|
122
|
+
|
|
123
|
+
if not model:
|
|
124
|
+
sys.exit("Model file is not installed in Vantage.")
|
|
125
|
+
|
|
126
|
+
f_ = get_values_list(values[:n_f_cols])
|
|
127
|
+
if f_:
|
|
128
|
+
output = getattr(model, func_name)(np.array([f_]), **arguments)
|
|
129
|
+
else:
|
|
130
|
+
output = getattr(model, func_name)(**arguments)
|
|
131
|
+
result_list = f_
|
|
132
|
+
|
|
133
|
+
if func_name in ['kneighbors', 'radius_neighbors']:
|
|
134
|
+
if return_distance:
|
|
135
|
+
result_list += [str(output[0][0].tolist()), str(output[1][0].tolist())]
|
|
136
|
+
else:
|
|
137
|
+
result_list += [str(output[0].tolist())]
|
|
138
|
+
else:
|
|
139
|
+
# cases like 'kneighbors_graph', 'radius_neighbors_graph' and other functions.
|
|
140
|
+
if isinstance(output, csr_matrix):
|
|
141
|
+
# 'kneighbors_graph', 'radius_neighbors_graph' return sparse matrix.
|
|
142
|
+
output = output.toarray()
|
|
143
|
+
result_list += [str(output[0].tolist())]
|
|
144
|
+
|
|
145
|
+
print(*(data_partition_column_values +
|
|
146
|
+
['' if (val is None or (not isinstance(val, str) and
|
|
147
|
+
(math.isnan(val) or math.isinf(val))))
|
|
148
|
+
else val
|
|
149
|
+
for val in result_list]), sep=DELIMITER)
|
|
150
|
+
|
|
151
|
+
except EOFError: # Exit if reached EOF or CTRL-D
|
|
152
|
+
break
|
|
@@ -0,0 +1,128 @@
|
|
|
1
|
+
import pickle
|
|
2
|
+
import math
|
|
3
|
+
import sys
|
|
4
|
+
import numpy as np
|
|
5
|
+
|
|
6
|
+
DELIMITER = '\t'
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
def get_value(value):
|
|
10
|
+
ret_val = value
|
|
11
|
+
try:
|
|
12
|
+
ret_val = float("".join(value.split()))
|
|
13
|
+
except Exception as ex:
|
|
14
|
+
# If the value can't be converted to float, then it is string.
|
|
15
|
+
pass
|
|
16
|
+
return ret_val
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
def get_values_list(values, ignore_none=True):
|
|
20
|
+
ret_vals = []
|
|
21
|
+
for val in values:
|
|
22
|
+
if val == "" and ignore_none:
|
|
23
|
+
# Empty cell value in the database table.
|
|
24
|
+
continue
|
|
25
|
+
ret_vals.append(get_value(val))
|
|
26
|
+
|
|
27
|
+
return ret_vals
|
|
28
|
+
|
|
29
|
+
def convert_to_type(val, typee):
|
|
30
|
+
if typee == 'int':
|
|
31
|
+
return int(val)
|
|
32
|
+
if typee == 'float':
|
|
33
|
+
return float(val)
|
|
34
|
+
if typee == 'bool':
|
|
35
|
+
return bool(val)
|
|
36
|
+
return str(val)
|
|
37
|
+
|
|
38
|
+
def splitter(strr, delim=",", convert_to="str"):
|
|
39
|
+
"""
|
|
40
|
+
Split the string based on delimiter and convert to the type specified.
|
|
41
|
+
"""
|
|
42
|
+
if strr == "None":
|
|
43
|
+
return []
|
|
44
|
+
return [convert_to_type(i, convert_to) for i in strr.split(delim)]
|
|
45
|
+
|
|
46
|
+
# Arguments to the Script
|
|
47
|
+
if len(sys.argv) != 8:
|
|
48
|
+
# 8 command line arguments should be passed to this file.
|
|
49
|
+
# 1: file to be run
|
|
50
|
+
# 2. function name (Eg. score, aic etc)
|
|
51
|
+
# 3. No of feature columns.
|
|
52
|
+
# 4. No of class labels.
|
|
53
|
+
# 5. Comma separated indices of partition columns.
|
|
54
|
+
# 6. Comma separated types of the partition columns.
|
|
55
|
+
# 7. Model file prefix to generated model file using partition columns.
|
|
56
|
+
# 8. Flag to check the system type. True, means Lake, Enterprise otherwise.
|
|
57
|
+
sys.exit("8 arguments should be passed to this file - file to be run, function name, "\
|
|
58
|
+
"no of feature columns, no of class labels, comma separated indices and types of "\
|
|
59
|
+
"partition columns, model file prefix to generate model file using partition "\
|
|
60
|
+
"columns and flag to check lake or enterprise.")
|
|
61
|
+
|
|
62
|
+
is_lake_system = eval(sys.argv[7])
|
|
63
|
+
if not is_lake_system:
|
|
64
|
+
db = sys.argv[0].split("/")[1]
|
|
65
|
+
func_name = sys.argv[1]
|
|
66
|
+
n_f_cols = int(sys.argv[2])
|
|
67
|
+
n_c_labels = int(sys.argv[3])
|
|
68
|
+
data_partition_column_types = splitter(sys.argv[5])
|
|
69
|
+
data_partition_column_indices = splitter(sys.argv[4], convert_to="int") # indices are integers.
|
|
70
|
+
model_file_prefix = sys.argv[6]
|
|
71
|
+
|
|
72
|
+
model = None
|
|
73
|
+
|
|
74
|
+
# Data Format (n_features, k_labels, one data_partition_column):
|
|
75
|
+
# feature1, feature2, ..., featuren, label1, label2, ... labelk, data_partition_column1, ...,
|
|
76
|
+
# data_partition_columnn.
|
|
77
|
+
# labels are optional.
|
|
78
|
+
|
|
79
|
+
data_partition_column_values = []
|
|
80
|
+
|
|
81
|
+
features = []
|
|
82
|
+
labels = []
|
|
83
|
+
while 1:
|
|
84
|
+
try:
|
|
85
|
+
line = input()
|
|
86
|
+
if line == '': # Exit if user provides blank line
|
|
87
|
+
break
|
|
88
|
+
else:
|
|
89
|
+
values = line.split(DELIMITER)
|
|
90
|
+
features.append(get_values_list(values[:n_f_cols]))
|
|
91
|
+
if n_c_labels > 0:
|
|
92
|
+
labels.append(get_values_list(values[n_f_cols:(n_f_cols+n_c_labels)]))
|
|
93
|
+
|
|
94
|
+
if not data_partition_column_values:
|
|
95
|
+
# Partition column values is same for all rows. Hence, only read once.
|
|
96
|
+
for i, val in enumerate(data_partition_column_indices):
|
|
97
|
+
data_partition_column_values.append(
|
|
98
|
+
convert_to_type(values[val], typee=data_partition_column_types[i])
|
|
99
|
+
)
|
|
100
|
+
|
|
101
|
+
# Prepare the corresponding model file name and extract model.
|
|
102
|
+
partition_join = "_".join([str(x) for x in data_partition_column_values])
|
|
103
|
+
# Replace '-' with '_' as '-' because partition_columns can be negative.
|
|
104
|
+
partition_join = partition_join.replace("-", "_")
|
|
105
|
+
|
|
106
|
+
model_file_path = f"{model_file_prefix}_{partition_join}" \
|
|
107
|
+
if is_lake_system else \
|
|
108
|
+
f"./{db}/{model_file_prefix}_{partition_join}"
|
|
109
|
+
|
|
110
|
+
with open(model_file_path, "rb") as fp:
|
|
111
|
+
model = pickle.loads(fp.read())
|
|
112
|
+
|
|
113
|
+
if not model:
|
|
114
|
+
sys.exit("Model file is not installed in Vantage.")
|
|
115
|
+
|
|
116
|
+
except EOFError: # Exit if reached EOF or CTRL-D
|
|
117
|
+
break
|
|
118
|
+
|
|
119
|
+
if len(features) == 0:
|
|
120
|
+
sys.exit(0)
|
|
121
|
+
|
|
122
|
+
if labels:
|
|
123
|
+
val = getattr(model, func_name)(np.array(features), np.array(labels))
|
|
124
|
+
else:
|
|
125
|
+
val = getattr(model, func_name)(np.array(features))
|
|
126
|
+
|
|
127
|
+
result_val = ['' if (val is None or math.isnan(val) or math.isinf(val)) else val]
|
|
128
|
+
print(*(data_partition_column_values + result_val), sep=DELIMITER)
|
|
@@ -0,0 +1,179 @@
|
|
|
1
|
+
import pickle
|
|
2
|
+
import math
|
|
3
|
+
import os
|
|
4
|
+
import sys
|
|
5
|
+
import numpy as np
|
|
6
|
+
|
|
7
|
+
# The below import is needed to convert sparse matrix to dense array as sparse matrices are NOT
|
|
8
|
+
# supported in Vantage.
|
|
9
|
+
# This is in scipy 1.10.0. Might vary based on scipy version.
|
|
10
|
+
from scipy.sparse import csr_matrix
|
|
11
|
+
|
|
12
|
+
DELIMITER = '\t'
|
|
13
|
+
|
|
14
|
+
def get_value(value):
|
|
15
|
+
ret_val = value
|
|
16
|
+
try:
|
|
17
|
+
ret_val = float(value.replace(' ', ''))
|
|
18
|
+
except Exception as ex:
|
|
19
|
+
# If the value can't be converted to float, then it is string.
|
|
20
|
+
pass
|
|
21
|
+
return ret_val
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
def get_values_list(values, ignore_none=True):
|
|
25
|
+
ret_vals = []
|
|
26
|
+
for val in values:
|
|
27
|
+
if val == "" and ignore_none:
|
|
28
|
+
# Empty cell value in the database table.
|
|
29
|
+
continue
|
|
30
|
+
ret_vals.append(get_value(val))
|
|
31
|
+
|
|
32
|
+
return ret_vals
|
|
33
|
+
|
|
34
|
+
def convert_to_type(val, typee):
|
|
35
|
+
if typee == 'int':
|
|
36
|
+
return int(val)
|
|
37
|
+
if typee == 'float':
|
|
38
|
+
return float(val)
|
|
39
|
+
if typee == 'bool':
|
|
40
|
+
return eval(val)
|
|
41
|
+
return str(val)
|
|
42
|
+
|
|
43
|
+
def splitter(strr, delim=",", convert_to="str"):
|
|
44
|
+
"""
|
|
45
|
+
Split the string based on delimiter and convert to the type specified.
|
|
46
|
+
"""
|
|
47
|
+
if strr == "None":
|
|
48
|
+
return []
|
|
49
|
+
return [convert_to_type(i, convert_to) for i in strr.split(delim)]
|
|
50
|
+
|
|
51
|
+
# Process output returned by sklearn function.
|
|
52
|
+
def get_output_data(trans_values, func_name, model_obj, n_c_labels):
|
|
53
|
+
# Converting sparse matrix to dense array as sparse matrices are NOT
|
|
54
|
+
# supported in Vantage.
|
|
55
|
+
module_name = model_obj.__module__.split("._")[0]
|
|
56
|
+
|
|
57
|
+
if isinstance(trans_values, csr_matrix):
|
|
58
|
+
trans_values = trans_values.toarray()
|
|
59
|
+
|
|
60
|
+
if module_name == "sklearn.cross_decomposition" and n_c_labels > 0 and func_name == "transform":
|
|
61
|
+
# For cross_decomposition, output is a tuple of arrays when label columns are provided
|
|
62
|
+
# along with feature columns for transform function. In this case, concatenate the
|
|
63
|
+
# arrays and return the combined values.
|
|
64
|
+
if isinstance(trans_values, tuple):
|
|
65
|
+
return np.concatenate(trans_values, axis=1).tolist()[0]
|
|
66
|
+
|
|
67
|
+
if isinstance(trans_values[0], np.ndarray) \
|
|
68
|
+
or isinstance(trans_values[0], list) \
|
|
69
|
+
or isinstance(trans_values[0], tuple):
|
|
70
|
+
# Here, the value returned by sklearn function is list type.
|
|
71
|
+
opt_list = list(trans_values[0])
|
|
72
|
+
if func_name == "inverse_transform" and type(model_obj).__name__ == "MultiLabelBinarizer":
|
|
73
|
+
# output array "trans_values[0]" may not be of same size. It should be of
|
|
74
|
+
# maximum size of `model.classes_`
|
|
75
|
+
# Append None to last elements.
|
|
76
|
+
if len(opt_list) < len(model_obj.classes_):
|
|
77
|
+
opt_list += [""] * (len(model_obj.classes_) - len(opt_list))
|
|
78
|
+
return opt_list
|
|
79
|
+
return [trans_values[0]]
|
|
80
|
+
|
|
81
|
+
# Arguments to the Script
|
|
82
|
+
if len(sys.argv) != 8:
|
|
83
|
+
# 8 arguments command line arguments should be passed to this file.
|
|
84
|
+
# 1: file to be run
|
|
85
|
+
# 2. function name (Eg. predict, fit etc)
|
|
86
|
+
# 3. No of feature columns.
|
|
87
|
+
# 4. No of class labels.
|
|
88
|
+
# 5. Comma separated indices of partition columns.
|
|
89
|
+
# 6. Comma separated types of the partition columns.
|
|
90
|
+
# 7. Model file prefix to generated model file using partition columns.
|
|
91
|
+
# 8. Flag to check the system type. True, means Lake, Enterprise otherwise.
|
|
92
|
+
sys.exit("8 arguments should be passed to this file - file to be run, function name, "\
|
|
93
|
+
"no of feature columns, no of class labels, comma separated indices and types of "\
|
|
94
|
+
"partition columns, model file prefix to generate model file using partition "\
|
|
95
|
+
"columns and flag to check lake or enterprise.")
|
|
96
|
+
|
|
97
|
+
is_lake_system = eval(sys.argv[7])
|
|
98
|
+
if not is_lake_system:
|
|
99
|
+
db = sys.argv[0].split("/")[1]
|
|
100
|
+
func_name = sys.argv[1]
|
|
101
|
+
n_f_cols = int(sys.argv[2])
|
|
102
|
+
n_c_labels = int(sys.argv[3])
|
|
103
|
+
data_partition_column_types = splitter(sys.argv[5])
|
|
104
|
+
data_partition_column_indices = splitter(sys.argv[4], convert_to="int") # indices are integers.
|
|
105
|
+
model_file_prefix = sys.argv[6]
|
|
106
|
+
|
|
107
|
+
model = None
|
|
108
|
+
data_partition_column_values = []
|
|
109
|
+
|
|
110
|
+
# Data Format:
|
|
111
|
+
# feature1, feature2, ..., featuren, label1, label2, ... labelk, data_partition_column1, ...,
|
|
112
|
+
# data_partition_columnn.
|
|
113
|
+
# label is optional (it is present when label_exists is not "None")
|
|
114
|
+
|
|
115
|
+
while 1:
|
|
116
|
+
try:
|
|
117
|
+
line = input()
|
|
118
|
+
if line == '': # Exit if user provides blank line
|
|
119
|
+
break
|
|
120
|
+
else:
|
|
121
|
+
values = line.split(DELIMITER)
|
|
122
|
+
if not data_partition_column_values:
|
|
123
|
+
# Partition column values is same for all rows. Hence, only read once.
|
|
124
|
+
for i, val in enumerate(data_partition_column_indices):
|
|
125
|
+
data_partition_column_values.append(
|
|
126
|
+
convert_to_type(values[val], typee=data_partition_column_types[i])
|
|
127
|
+
)
|
|
128
|
+
|
|
129
|
+
# Prepare the corresponding model file name and extract model.
|
|
130
|
+
partition_join = "_".join([str(x) for x in data_partition_column_values])
|
|
131
|
+
# Replace '-' with '_' as '-' because partition_columns can be negative.
|
|
132
|
+
partition_join = partition_join.replace("-", "_")
|
|
133
|
+
|
|
134
|
+
model_file_path = f"{model_file_prefix}_{partition_join}" \
|
|
135
|
+
if is_lake_system else \
|
|
136
|
+
f"./{db}/{model_file_prefix}_{partition_join}"
|
|
137
|
+
|
|
138
|
+
with open(model_file_path, "rb") as fp:
|
|
139
|
+
model = pickle.loads(fp.read())
|
|
140
|
+
|
|
141
|
+
if not model:
|
|
142
|
+
sys.exit("Model file is not installed in Vantage.")
|
|
143
|
+
|
|
144
|
+
f_ = get_values_list(values[:n_f_cols])
|
|
145
|
+
if n_c_labels > 0:
|
|
146
|
+
# Labels are present in last column.
|
|
147
|
+
l_ = get_values_list(values[n_f_cols:n_f_cols+n_c_labels])
|
|
148
|
+
# predict() now takes 'y' also for it to return the labels from script. Skipping 'y'
|
|
149
|
+
# in function call. Generally, 'y' is passed to return y along with actual output.
|
|
150
|
+
try:
|
|
151
|
+
# cross_composition functions uses Y for labels.
|
|
152
|
+
# used 'in' in if constion, as model.__module__ is giving
|
|
153
|
+
# 'sklearn.cross_decomposition._pls'.
|
|
154
|
+
if "cross_decomposition" in model.__module__:
|
|
155
|
+
trans_values = getattr(model, func_name)(X=np.array([f_]), Y=np.array([l_]))
|
|
156
|
+
else:
|
|
157
|
+
trans_values = getattr(model, func_name)(X=np.array([f_]), y=np.array([l_]))
|
|
158
|
+
|
|
159
|
+
except TypeError as ex:
|
|
160
|
+
# Function which does not accept 'y' like predict_proba() raises error like
|
|
161
|
+
# "TypeError: predict_proba() takes 2 positional arguments but 3 were given".
|
|
162
|
+
trans_values = getattr(model, func_name)(np.array([f_]))
|
|
163
|
+
else:
|
|
164
|
+
# If class labels do not exist in data, don't read labels, read just features.
|
|
165
|
+
trans_values = getattr(model, func_name)(np.array([f_]))
|
|
166
|
+
|
|
167
|
+
result_list = f_
|
|
168
|
+
if n_c_labels > 0 and func_name in ["predict", "decision_function"]:
|
|
169
|
+
result_list += l_
|
|
170
|
+
result_list += get_output_data(trans_values=trans_values, func_name=func_name,
|
|
171
|
+
model_obj=model, n_c_labels=n_c_labels)
|
|
172
|
+
|
|
173
|
+
print(*(data_partition_column_values +
|
|
174
|
+
['' if (val is None or math.isnan(val) or math.isinf(val))
|
|
175
|
+
else val for val in result_list]),
|
|
176
|
+
sep=DELIMITER)
|
|
177
|
+
|
|
178
|
+
except EOFError: # Exit if reached EOF or CTRL-D
|
|
179
|
+
break
|
teradataml/data/seeds.csv
CHANGED
|
@@ -1,10 +1,10 @@
|
|
|
1
|
-
StoreID,SEQ,Sales
|
|
2
|
-
102,2,2.02e+02
|
|
3
|
-
101,1,2.01e+02
|
|
4
|
-
101,2,2.02e+02
|
|
5
|
-
101,3,2.03e+02
|
|
6
|
-
101,4,2.04e+02
|
|
7
|
-
101,5,2.05e+02
|
|
8
|
-
104,4,2.04e+02
|
|
9
|
-
103,3,2.03e+02
|
|
10
|
-
105,5,2.05e+02
|
|
1
|
+
StoreID,SEQ,Sales
|
|
2
|
+
102,2,2.02e+02
|
|
3
|
+
101,1,2.01e+02
|
|
4
|
+
101,2,2.02e+02
|
|
5
|
+
101,3,2.03e+02
|
|
6
|
+
101,4,2.04e+02
|
|
7
|
+
101,5,2.05e+02
|
|
8
|
+
104,4,2.04e+02
|
|
9
|
+
103,3,2.03e+02
|
|
10
|
+
105,5,2.05e+02
|
|
@@ -1,7 +1,7 @@
|
|
|
1
|
-
{
|
|
2
|
-
"paragraphs_input": {
|
|
3
|
-
"paraid": "integer",
|
|
4
|
-
"paratopic": "varchar(30)",
|
|
5
|
-
"paratext": "varchar(3000)"
|
|
6
|
-
}
|
|
1
|
+
{
|
|
2
|
+
"paragraphs_input": {
|
|
3
|
+
"paraid": "integer",
|
|
4
|
+
"paratopic": "varchar(30)",
|
|
5
|
+
"paratext": "varchar(3000)"
|
|
6
|
+
}
|
|
7
7
|
}
|
|
@@ -1,11 +1,11 @@
|
|
|
1
|
-
"id","product","category","review"
|
|
2
|
-
5,"gps","pos","nice graphs and map route info .i would not run outside again without this unique gadget . great job. big display , good backlight , really watertight , training assistant .i use in trail running and it worked well through out the race"
|
|
3
|
-
9,"television","neg","$3k is way too much money to drop onto a piece of crap .poor customer support . after about 1 and a half years and hardly using the tv , a big yellow pixilated stain appeared. product is very inferior and subject to several lawsuits . i expressed my dissatifaction with the situation as this is a known issue"
|
|
4
|
-
7,"gps","neg","this machine is all screwed up . on my way home from a friends house it told me there is no possible route . i found their website support difficult to navigate . i am is so disapointed and just returned it and now looking for another one"
|
|
5
|
-
6,"gps","neg","most of the complaints i have seen in here are from a lack of rtfm. i have never seen so many mistakes do to what i think has to be none update of data to the system . i wish i could make all the rating stars be empty ."
|
|
6
|
-
3,"camera","pos","this is a nice camera , delivering good quality video images decent photos ."
|
|
7
|
-
10,"camera","neg","i returned my camera to the vendor as i will not tolerate a sub standard product that is a known issue especially from vendor who will not admt that this needs to be removed from the shelf due to failing parts updated . due to the constant need for repair , i would never recommend this product ."
|
|
8
|
-
4,"gps","pos","it is a fine gps . outstanding performance , works great . you can even get incredible coordinate accuracy from streets and trips to compare ."
|
|
9
|
-
1,"camera","pos","we primarily bought this camera for high image quality and excellent video capability without paying the price for a dslr .it has excelled in what we expected of it , and consequently represented excellent value for me .all my friends want my camera for their vacations . i would recommend this camera to anybody .definitely worth the price .plus , when you buy some accessories , it becomes even more powerful "
|
|
10
|
-
8,"camera","neg","i hate my camera , and im stuck with it . this camera sucks so bad , even the dealers on ebay have difficulty selling it. horrible indoors , does not capture fast action, screwy software , no suprise , and screwy audio/video codec that does not work with hardly any app"
|
|
11
|
-
2,"office suite","pos","it is the best office suite i have used to date . it is launched before office 2010 and it is ages ahead of it already . the fact that i could comfortable import xls , doc , ppt and modify them , and then export them back to the doc , xls , ppt is terrific . i needed the compatibility .it is a very intuitive suite and the drag drop functionality is terrific ."
|
|
1
|
+
"id","product","category","review"
|
|
2
|
+
5,"gps","pos","nice graphs and map route info .i would not run outside again without this unique gadget . great job. big display , good backlight , really watertight , training assistant .i use in trail running and it worked well through out the race"
|
|
3
|
+
9,"television","neg","$3k is way too much money to drop onto a piece of crap .poor customer support . after about 1 and a half years and hardly using the tv , a big yellow pixilated stain appeared. product is very inferior and subject to several lawsuits . i expressed my dissatifaction with the situation as this is a known issue"
|
|
4
|
+
7,"gps","neg","this machine is all screwed up . on my way home from a friends house it told me there is no possible route . i found their website support difficult to navigate . i am is so disapointed and just returned it and now looking for another one"
|
|
5
|
+
6,"gps","neg","most of the complaints i have seen in here are from a lack of rtfm. i have never seen so many mistakes do to what i think has to be none update of data to the system . i wish i could make all the rating stars be empty ."
|
|
6
|
+
3,"camera","pos","this is a nice camera , delivering good quality video images decent photos ."
|
|
7
|
+
10,"camera","neg","i returned my camera to the vendor as i will not tolerate a sub standard product that is a known issue especially from vendor who will not admt that this needs to be removed from the shelf due to failing parts updated . due to the constant need for repair , i would never recommend this product ."
|
|
8
|
+
4,"gps","pos","it is a fine gps . outstanding performance , works great . you can even get incredible coordinate accuracy from streets and trips to compare ."
|
|
9
|
+
1,"camera","pos","we primarily bought this camera for high image quality and excellent video capability without paying the price for a dslr .it has excelled in what we expected of it , and consequently represented excellent value for me .all my friends want my camera for their vacations . i would recommend this camera to anybody .definitely worth the price .plus , when you buy some accessories , it becomes even more powerful "
|
|
10
|
+
8,"camera","neg","i hate my camera , and im stuck with it . this camera sucks so bad , even the dealers on ebay have difficulty selling it. horrible indoors , does not capture fast action, screwy software , no suprise , and screwy audio/video codec that does not work with hardly any app"
|
|
11
|
+
2,"office suite","pos","it is the best office suite i have used to date . it is launched before office 2010 and it is ages ahead of it already . the fact that i could comfortable import xls , doc , ppt and modify them , and then export them back to the doc , xls , ppt is terrific . i needed the compatibility .it is a very intuitive suite and the drag drop functionality is terrific ."
|
|
@@ -1,16 +1,16 @@
|
|
|
1
|
-
"id","product","category","review"
|
|
2
|
-
5,"gps","POS","nice graphs and map route info .i would not run outside again without this unique gadget . great job. big display , good backlight , really watertight , training assistant .i use in trail running and it worked well through out the race"
|
|
3
|
-
13,"camera","NEU","i wanted something that is easy to use and had a good quality picture . it has enough zoom and a decent battery . i love the size and ease of use granted , there are some bells and whistles i have to learn , but ill find time to ."
|
|
4
|
-
7,"gps","NEG","this machine is all screwed up . on my way home from a friends house it told me there is no POSsible route . i found their website support difficult to navigate . i am is so disapointed and just returned it and now looking for another one"
|
|
5
|
-
15,"camera","NEU","the color reproduction is not accurate enough to color correct images , but good enough for all other uses . i bought this model mainly because one of my roommates had it"
|
|
6
|
-
3,"camera","POS","this is a nice camera , delivering good quality video images decent photos ."
|
|
7
|
-
11,"camera","NEU","the camera is currently only available at specific small camera shops.so long as i have access to the full range of optical zoom while filming video , i am satisfied . i recently purchased hti camera for an upcoming jamaica trip ."
|
|
8
|
-
12,"television","NEU","so , within 10 days , returned the first buy and picked this one up .with the coupon , a price tag of $999 is sweet .this is my first venture into the lcd market as my other tvs were plasma ."
|
|
9
|
-
14,"backupdrive","NEU","this is presented as a somewhat professional device this the higher price than other devices storing 1tb and i would expect some companies to use as a backup device . i use this drive to back up my macbook pro and use it as a time machine backup ."
|
|
10
|
-
1,"camera","POS","we primarily bought this camera for high image quality and excellent video capability without paying the price for a dslr .it has excelled in what we expected of it , and consequently represented excellent value for me .all my friends want my camera for their vacations . i would recommend this camera to anybody .definitely worth the price .plus , when you buy some accessories , it becomes even more powerful "
|
|
11
|
-
9,"television","NEG","$3k is way too much money to drop onto a piece of crap .poor customer support . after about 1 and a half years and hardly using the tv , a big yellow pixilated stain appeared. product is very inferior and subject to several lawsuits . i expressed my dissatifaction with the situation as this is a known issue"
|
|
12
|
-
4,"gps","POS","it is a fine gps . outstanding performance , works great . you can even get incredible coordinate accuracy from streets and trips to compare ."
|
|
13
|
-
6,"gps","NEG","most of the complaints i have seen in here are from a lack of rtfm. i have never seen so many mistakes do to what i think has to be none update of data to the system . i wish i could make all the rating stars be empty ."
|
|
14
|
-
8,"camera","NEG","i hate my camera , and im stuck with it . this camera sucks so bad , even the dealers on ebay have difficulty selling it. horrible indoors , does not capture fast action, screwy software , no suprise , and screwy audio/video codec that does not work with hardly any app"
|
|
15
|
-
10,"camera","NEG","i returned my camera to the vendor as i will not tolerate a sub standard product that is a known issue especially from vendor who will not admt that this needs to be removed from the shelf due to failing parts updated . due to the constant need for repair , i would never recommend this product ."
|
|
16
|
-
2,"office suite","POS","it is the best office suite i have used to date . it is launched before office 2010 and it is ages ahead of it already . the fact that i could comfortable import xls , doc , ppt and modify them , and then export them back to the doc , xls , ppt is terrific . i needed the compatibility .it is a very intuitive suite and the drag drop functionality is terrific ."
|
|
1
|
+
"id","product","category","review"
|
|
2
|
+
5,"gps","POS","nice graphs and map route info .i would not run outside again without this unique gadget . great job. big display , good backlight , really watertight , training assistant .i use in trail running and it worked well through out the race"
|
|
3
|
+
13,"camera","NEU","i wanted something that is easy to use and had a good quality picture . it has enough zoom and a decent battery . i love the size and ease of use granted , there are some bells and whistles i have to learn , but ill find time to ."
|
|
4
|
+
7,"gps","NEG","this machine is all screwed up . on my way home from a friends house it told me there is no POSsible route . i found their website support difficult to navigate . i am is so disapointed and just returned it and now looking for another one"
|
|
5
|
+
15,"camera","NEU","the color reproduction is not accurate enough to color correct images , but good enough for all other uses . i bought this model mainly because one of my roommates had it"
|
|
6
|
+
3,"camera","POS","this is a nice camera , delivering good quality video images decent photos ."
|
|
7
|
+
11,"camera","NEU","the camera is currently only available at specific small camera shops.so long as i have access to the full range of optical zoom while filming video , i am satisfied . i recently purchased hti camera for an upcoming jamaica trip ."
|
|
8
|
+
12,"television","NEU","so , within 10 days , returned the first buy and picked this one up .with the coupon , a price tag of $999 is sweet .this is my first venture into the lcd market as my other tvs were plasma ."
|
|
9
|
+
14,"backupdrive","NEU","this is presented as a somewhat professional device this the higher price than other devices storing 1tb and i would expect some companies to use as a backup device . i use this drive to back up my macbook pro and use it as a time machine backup ."
|
|
10
|
+
1,"camera","POS","we primarily bought this camera for high image quality and excellent video capability without paying the price for a dslr .it has excelled in what we expected of it , and consequently represented excellent value for me .all my friends want my camera for their vacations . i would recommend this camera to anybody .definitely worth the price .plus , when you buy some accessories , it becomes even more powerful "
|
|
11
|
+
9,"television","NEG","$3k is way too much money to drop onto a piece of crap .poor customer support . after about 1 and a half years and hardly using the tv , a big yellow pixilated stain appeared. product is very inferior and subject to several lawsuits . i expressed my dissatifaction with the situation as this is a known issue"
|
|
12
|
+
4,"gps","POS","it is a fine gps . outstanding performance , works great . you can even get incredible coordinate accuracy from streets and trips to compare ."
|
|
13
|
+
6,"gps","NEG","most of the complaints i have seen in here are from a lack of rtfm. i have never seen so many mistakes do to what i think has to be none update of data to the system . i wish i could make all the rating stars be empty ."
|
|
14
|
+
8,"camera","NEG","i hate my camera , and im stuck with it . this camera sucks so bad , even the dealers on ebay have difficulty selling it. horrible indoors , does not capture fast action, screwy software , no suprise , and screwy audio/video codec that does not work with hardly any app"
|
|
15
|
+
10,"camera","NEG","i returned my camera to the vendor as i will not tolerate a sub standard product that is a known issue especially from vendor who will not admt that this needs to be removed from the shelf due to failing parts updated . due to the constant need for repair , i would never recommend this product ."
|
|
16
|
+
2,"office suite","POS","it is the best office suite i have used to date . it is launched before office 2010 and it is ages ahead of it already . the fact that i could comfortable import xls , doc , ppt and modify them , and then export them back to the doc , xls , ppt is terrific . i needed the compatibility .it is a very intuitive suite and the drag drop functionality is terrific ."
|
|
@@ -1,20 +1,20 @@
|
|
|
1
|
-
"word","opinion"
|
|
2
|
-
"disappointed",-1
|
|
3
|
-
"outstanding",2
|
|
4
|
-
"incredible",2
|
|
5
|
-
"small",0
|
|
6
|
-
"update",0
|
|
7
|
-
"crap",-2
|
|
8
|
-
"big",0
|
|
9
|
-
"difficulty",-1
|
|
10
|
-
"stuck",-1
|
|
11
|
-
"fun",1
|
|
12
|
-
"screwed",2
|
|
13
|
-
"terrrible",-2
|
|
14
|
-
"terrific",2
|
|
15
|
-
"not tolerate",-1
|
|
16
|
-
"constant",0
|
|
17
|
-
"love",1
|
|
18
|
-
"mistake",-1
|
|
19
|
-
"excellent",2
|
|
20
|
-
"nice",1
|
|
1
|
+
"word","opinion"
|
|
2
|
+
"disappointed",-1
|
|
3
|
+
"outstanding",2
|
|
4
|
+
"incredible",2
|
|
5
|
+
"small",0
|
|
6
|
+
"update",0
|
|
7
|
+
"crap",-2
|
|
8
|
+
"big",0
|
|
9
|
+
"difficulty",-1
|
|
10
|
+
"stuck",-1
|
|
11
|
+
"fun",1
|
|
12
|
+
"screwed",2
|
|
13
|
+
"terrrible",-2
|
|
14
|
+
"terrific",2
|
|
15
|
+
"not tolerate",-1
|
|
16
|
+
"constant",0
|
|
17
|
+
"love",1
|
|
18
|
+
"mistake",-1
|
|
19
|
+
"excellent",2
|
|
20
|
+
"nice",1
|
|
@@ -1,20 +1,20 @@
|
|
|
1
|
-
"sentiment_word","polarity_strength"
|
|
2
|
-
'screwed',2
|
|
3
|
-
'excellent',2
|
|
4
|
-
'incredible',2
|
|
5
|
-
'terrific',2
|
|
6
|
-
'outstanding',2
|
|
7
|
-
'fun',1
|
|
8
|
-
'love',1
|
|
9
|
-
'nice',1
|
|
10
|
-
'big',0
|
|
11
|
-
'update',0
|
|
12
|
-
'constant',0
|
|
13
|
-
'small',0
|
|
14
|
-
'mistake',1
|
|
15
|
-
'difficulty',1
|
|
16
|
-
'disappointed',1
|
|
17
|
-
'not tolerate',1
|
|
18
|
-
'stuck',1
|
|
19
|
-
'terrible',2
|
|
1
|
+
"sentiment_word","polarity_strength"
|
|
2
|
+
'screwed',2
|
|
3
|
+
'excellent',2
|
|
4
|
+
'incredible',2
|
|
5
|
+
'terrific',2
|
|
6
|
+
'outstanding',2
|
|
7
|
+
'fun',1
|
|
8
|
+
'love',1
|
|
9
|
+
'nice',1
|
|
10
|
+
'big',0
|
|
11
|
+
'update',0
|
|
12
|
+
'constant',0
|
|
13
|
+
'small',0
|
|
14
|
+
'mistake',1
|
|
15
|
+
'difficulty',1
|
|
16
|
+
'disappointed',1
|
|
17
|
+
'not tolerate',1
|
|
18
|
+
'stuck',1
|
|
19
|
+
'terrible',2
|
|
20
20
|
'crap',2
|