teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (1285) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +1864 -1640
  4. teradataml/__init__.py +70 -60
  5. teradataml/_version.py +11 -11
  6. teradataml/analytics/Transformations.py +2995 -2995
  7. teradataml/analytics/__init__.py +81 -83
  8. teradataml/analytics/analytic_function_executor.py +2013 -2010
  9. teradataml/analytics/analytic_query_generator.py +958 -958
  10. teradataml/analytics/byom/H2OPredict.py +514 -514
  11. teradataml/analytics/byom/PMMLPredict.py +437 -437
  12. teradataml/analytics/byom/__init__.py +14 -14
  13. teradataml/analytics/json_parser/__init__.py +130 -130
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
  15. teradataml/analytics/json_parser/json_store.py +191 -191
  16. teradataml/analytics/json_parser/metadata.py +1637 -1637
  17. teradataml/analytics/json_parser/utils.py +804 -803
  18. teradataml/analytics/meta_class.py +196 -196
  19. teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
  21. teradataml/analytics/sqle/__init__.py +97 -110
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
  24. teradataml/analytics/table_operator/__init__.py +10 -10
  25. teradataml/analytics/uaf/__init__.py +63 -63
  26. teradataml/analytics/utils.py +693 -692
  27. teradataml/analytics/valib.py +1603 -1600
  28. teradataml/automl/__init__.py +1628 -0
  29. teradataml/automl/custom_json_utils.py +1270 -0
  30. teradataml/automl/data_preparation.py +993 -0
  31. teradataml/automl/data_transformation.py +727 -0
  32. teradataml/automl/feature_engineering.py +1648 -0
  33. teradataml/automl/feature_exploration.py +547 -0
  34. teradataml/automl/model_evaluation.py +163 -0
  35. teradataml/automl/model_training.py +887 -0
  36. teradataml/catalog/__init__.py +1 -3
  37. teradataml/catalog/byom.py +1759 -1716
  38. teradataml/catalog/function_argument_mapper.py +859 -861
  39. teradataml/catalog/model_cataloging_utils.py +491 -1510
  40. teradataml/clients/pkce_client.py +481 -481
  41. teradataml/common/aed_utils.py +6 -2
  42. teradataml/common/bulk_exposed_utils.py +111 -111
  43. teradataml/common/constants.py +1433 -1441
  44. teradataml/common/deprecations.py +160 -0
  45. teradataml/common/exceptions.py +73 -73
  46. teradataml/common/formula.py +742 -742
  47. teradataml/common/garbagecollector.py +592 -635
  48. teradataml/common/messagecodes.py +422 -431
  49. teradataml/common/messages.py +227 -231
  50. teradataml/common/sqlbundle.py +693 -693
  51. teradataml/common/td_coltype_code_to_tdtype.py +48 -48
  52. teradataml/common/utils.py +2418 -2500
  53. teradataml/common/warnings.py +25 -25
  54. teradataml/common/wrapper_utils.py +1 -110
  55. teradataml/config/dummy_file1.cfg +4 -4
  56. teradataml/config/dummy_file2.cfg +2 -2
  57. teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
  58. teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
  59. teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
  60. teradataml/context/aed_context.py +217 -217
  61. teradataml/context/context.py +1071 -999
  62. teradataml/data/A_loan.csv +19 -19
  63. teradataml/data/BINARY_REALS_LEFT.csv +11 -11
  64. teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
  65. teradataml/data/B_loan.csv +49 -49
  66. teradataml/data/BuoyData2.csv +17 -17
  67. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
  68. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
  69. teradataml/data/Convolve2RealsLeft.csv +5 -5
  70. teradataml/data/Convolve2RealsRight.csv +5 -5
  71. teradataml/data/Convolve2ValidLeft.csv +11 -11
  72. teradataml/data/Convolve2ValidRight.csv +11 -11
  73. teradataml/data/DFFTConv_Real_8_8.csv +65 -65
  74. teradataml/data/Orders1_12mf.csv +24 -24
  75. teradataml/data/Pi_loan.csv +7 -7
  76. teradataml/data/SMOOTHED_DATA.csv +7 -7
  77. teradataml/data/TestDFFT8.csv +9 -9
  78. teradataml/data/TestRiver.csv +109 -109
  79. teradataml/data/Traindata.csv +28 -28
  80. teradataml/data/acf.csv +17 -17
  81. teradataml/data/adaboost_example.json +34 -34
  82. teradataml/data/adaboostpredict_example.json +24 -24
  83. teradataml/data/additional_table.csv +10 -10
  84. teradataml/data/admissions_test.csv +21 -21
  85. teradataml/data/admissions_train.csv +41 -41
  86. teradataml/data/admissions_train_nulls.csv +41 -41
  87. teradataml/data/ageandheight.csv +13 -13
  88. teradataml/data/ageandpressure.csv +31 -31
  89. teradataml/data/antiselect_example.json +36 -36
  90. teradataml/data/antiselect_input.csv +8 -8
  91. teradataml/data/antiselect_input_mixed_case.csv +8 -8
  92. teradataml/data/applicant_external.csv +6 -6
  93. teradataml/data/applicant_reference.csv +6 -6
  94. teradataml/data/arima_example.json +9 -9
  95. teradataml/data/assortedtext_input.csv +8 -8
  96. teradataml/data/attribution_example.json +33 -33
  97. teradataml/data/attribution_sample_table.csv +27 -27
  98. teradataml/data/attribution_sample_table1.csv +6 -6
  99. teradataml/data/attribution_sample_table2.csv +11 -11
  100. teradataml/data/bank_churn.csv +10001 -0
  101. teradataml/data/bank_web_clicks1.csv +42 -42
  102. teradataml/data/bank_web_clicks2.csv +91 -91
  103. teradataml/data/bank_web_url.csv +85 -85
  104. teradataml/data/barrier.csv +2 -2
  105. teradataml/data/barrier_new.csv +3 -3
  106. teradataml/data/betweenness_example.json +13 -13
  107. teradataml/data/bin_breaks.csv +8 -8
  108. teradataml/data/bin_fit_ip.csv +3 -3
  109. teradataml/data/binary_complex_left.csv +11 -11
  110. teradataml/data/binary_complex_right.csv +11 -11
  111. teradataml/data/binary_matrix_complex_left.csv +21 -21
  112. teradataml/data/binary_matrix_complex_right.csv +21 -21
  113. teradataml/data/binary_matrix_real_left.csv +21 -21
  114. teradataml/data/binary_matrix_real_right.csv +21 -21
  115. teradataml/data/blood2ageandweight.csv +26 -26
  116. teradataml/data/bmi.csv +501 -0
  117. teradataml/data/boston.csv +507 -507
  118. teradataml/data/buoydata_mix.csv +11 -11
  119. teradataml/data/burst_data.csv +5 -5
  120. teradataml/data/burst_example.json +20 -20
  121. teradataml/data/byom_example.json +17 -17
  122. teradataml/data/bytes_table.csv +3 -3
  123. teradataml/data/cal_housing_ex_raw.csv +70 -70
  124. teradataml/data/callers.csv +7 -7
  125. teradataml/data/calls.csv +10 -10
  126. teradataml/data/cars_hist.csv +33 -33
  127. teradataml/data/cat_table.csv +24 -24
  128. teradataml/data/ccm_example.json +31 -31
  129. teradataml/data/ccm_input.csv +91 -91
  130. teradataml/data/ccm_input2.csv +13 -13
  131. teradataml/data/ccmexample.csv +101 -101
  132. teradataml/data/ccmprepare_example.json +8 -8
  133. teradataml/data/ccmprepare_input.csv +91 -91
  134. teradataml/data/cfilter_example.json +12 -12
  135. teradataml/data/changepointdetection_example.json +18 -18
  136. teradataml/data/changepointdetectionrt_example.json +8 -8
  137. teradataml/data/chi_sq.csv +2 -2
  138. teradataml/data/churn_data.csv +14 -14
  139. teradataml/data/churn_emission.csv +35 -35
  140. teradataml/data/churn_initial.csv +3 -3
  141. teradataml/data/churn_state_transition.csv +5 -5
  142. teradataml/data/citedges_2.csv +745 -745
  143. teradataml/data/citvertices_2.csv +1210 -1210
  144. teradataml/data/clicks2.csv +16 -16
  145. teradataml/data/clickstream.csv +12 -12
  146. teradataml/data/clickstream1.csv +11 -11
  147. teradataml/data/closeness_example.json +15 -15
  148. teradataml/data/complaints.csv +21 -21
  149. teradataml/data/complaints_mini.csv +3 -3
  150. teradataml/data/complaints_testtoken.csv +224 -224
  151. teradataml/data/complaints_tokens_test.csv +353 -353
  152. teradataml/data/complaints_traintoken.csv +472 -472
  153. teradataml/data/computers_category.csv +1001 -1001
  154. teradataml/data/computers_test1.csv +1252 -1252
  155. teradataml/data/computers_train1.csv +5009 -5009
  156. teradataml/data/computers_train1_clustered.csv +5009 -5009
  157. teradataml/data/confusionmatrix_example.json +9 -9
  158. teradataml/data/conversion_event_table.csv +3 -3
  159. teradataml/data/corr_input.csv +17 -17
  160. teradataml/data/correlation_example.json +11 -11
  161. teradataml/data/coxhazardratio_example.json +39 -39
  162. teradataml/data/coxph_example.json +15 -15
  163. teradataml/data/coxsurvival_example.json +28 -28
  164. teradataml/data/cpt.csv +41 -41
  165. teradataml/data/credit_ex_merged.csv +45 -45
  166. teradataml/data/customer_loyalty.csv +301 -301
  167. teradataml/data/customer_loyalty_newseq.csv +31 -31
  168. teradataml/data/dataframe_example.json +146 -146
  169. teradataml/data/decisionforest_example.json +37 -37
  170. teradataml/data/decisionforestpredict_example.json +38 -38
  171. teradataml/data/decisiontree_example.json +21 -21
  172. teradataml/data/decisiontreepredict_example.json +45 -45
  173. teradataml/data/dfft2_size4_real.csv +17 -17
  174. teradataml/data/dfft2_test_matrix16.csv +17 -17
  175. teradataml/data/dfft2conv_real_4_4.csv +65 -65
  176. teradataml/data/diabetes.csv +443 -443
  177. teradataml/data/diabetes_test.csv +89 -89
  178. teradataml/data/dict_table.csv +5 -5
  179. teradataml/data/docperterm_table.csv +4 -4
  180. teradataml/data/docs/__init__.py +1 -1
  181. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
  182. teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
  183. teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
  184. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
  185. teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
  186. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
  187. teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
  188. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
  189. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
  190. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
  191. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
  192. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
  193. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
  194. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
  195. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
  196. teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
  197. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
  198. teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
  199. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
  200. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
  201. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
  202. teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
  203. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
  204. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
  205. teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
  206. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
  207. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
  208. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
  209. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +132 -132
  210. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +103 -103
  211. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
  212. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +101 -101
  213. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
  214. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
  215. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
  216. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
  217. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
  218. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
  219. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
  220. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
  221. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
  222. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
  223. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
  224. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
  225. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
  226. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
  227. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
  228. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
  229. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
  230. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
  231. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
  232. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
  233. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
  234. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +126 -126
  235. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
  236. teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
  237. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
  238. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
  239. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
  240. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
  241. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
  242. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
  243. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +243 -243
  244. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
  245. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
  246. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
  247. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
  248. teradataml/data/docs/sqle/docs_17_20/FTest.py +160 -160
  249. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
  250. teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
  251. teradataml/data/docs/sqle/docs_17_20/GLM.py +380 -380
  252. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
  253. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
  254. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
  255. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +123 -123
  256. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
  257. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
  258. teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
  259. teradataml/data/docs/sqle/docs_17_20/KMeans.py +204 -204
  260. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
  261. teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
  262. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
  263. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
  264. teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
  265. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
  266. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
  267. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
  268. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +117 -117
  269. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
  270. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
  271. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
  272. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
  273. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +225 -225
  274. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +115 -115
  275. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
  276. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
  277. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
  278. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
  279. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
  280. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
  281. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
  282. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
  283. teradataml/data/docs/sqle/docs_17_20/ROC.py +163 -163
  284. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
  285. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
  286. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
  287. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
  288. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
  289. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
  290. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
  291. teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
  292. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +202 -202
  293. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
  294. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +197 -197
  295. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +110 -109
  296. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
  297. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
  298. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
  299. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
  300. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
  301. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
  302. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
  303. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
  304. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +171 -171
  305. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
  306. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
  307. teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
  308. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
  309. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
  310. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
  311. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
  312. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
  313. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
  314. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
  315. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
  316. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +353 -353
  317. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +275 -275
  318. teradataml/data/docs/sqle/docs_17_20/ZTest.py +155 -155
  319. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
  320. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
  321. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
  322. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
  323. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
  324. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
  325. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
  326. teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
  327. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
  328. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
  329. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
  330. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
  331. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
  332. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
  333. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
  334. teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
  335. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
  336. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
  337. teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
  338. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
  339. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
  340. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
  341. teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
  342. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
  343. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
  344. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
  345. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
  346. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
  347. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
  348. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
  349. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
  350. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
  351. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
  352. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
  353. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
  354. teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
  355. teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
  356. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
  357. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
  358. teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
  359. teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
  360. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
  361. teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
  362. teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
  363. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
  364. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
  365. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
  366. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
  367. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
  368. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
  369. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
  370. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
  371. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
  372. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
  373. teradataml/data/dtw_example.json +17 -17
  374. teradataml/data/dtw_t1.csv +11 -11
  375. teradataml/data/dtw_t2.csv +4 -4
  376. teradataml/data/dwt2d_example.json +15 -15
  377. teradataml/data/dwt_example.json +14 -14
  378. teradataml/data/dwt_filter_dim.csv +5 -5
  379. teradataml/data/emission.csv +9 -9
  380. teradataml/data/emp_table_by_dept.csv +19 -19
  381. teradataml/data/employee_info.csv +4 -4
  382. teradataml/data/employee_table.csv +6 -6
  383. teradataml/data/excluding_event_table.csv +2 -2
  384. teradataml/data/finance_data.csv +6 -6
  385. teradataml/data/finance_data2.csv +61 -61
  386. teradataml/data/finance_data3.csv +93 -93
  387. teradataml/data/fish.csv +160 -0
  388. teradataml/data/fm_blood2ageandweight.csv +26 -26
  389. teradataml/data/fmeasure_example.json +11 -11
  390. teradataml/data/followers_leaders.csv +10 -10
  391. teradataml/data/fpgrowth_example.json +12 -12
  392. teradataml/data/frequentpaths_example.json +29 -29
  393. teradataml/data/friends.csv +9 -9
  394. teradataml/data/fs_input.csv +33 -33
  395. teradataml/data/fs_input1.csv +33 -33
  396. teradataml/data/genData.csv +513 -513
  397. teradataml/data/geodataframe_example.json +39 -39
  398. teradataml/data/glass_types.csv +215 -0
  399. teradataml/data/glm_admissions_model.csv +12 -12
  400. teradataml/data/glm_example.json +29 -29
  401. teradataml/data/glml1l2_example.json +28 -28
  402. teradataml/data/glml1l2predict_example.json +54 -54
  403. teradataml/data/glmpredict_example.json +54 -54
  404. teradataml/data/gq_t1.csv +21 -21
  405. teradataml/data/hconvolve_complex_right.csv +5 -5
  406. teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
  407. teradataml/data/histogram_example.json +11 -11
  408. teradataml/data/hmmdecoder_example.json +78 -78
  409. teradataml/data/hmmevaluator_example.json +24 -24
  410. teradataml/data/hmmsupervised_example.json +10 -10
  411. teradataml/data/hmmunsupervised_example.json +7 -7
  412. teradataml/data/house_values.csv +12 -12
  413. teradataml/data/house_values2.csv +13 -13
  414. teradataml/data/housing_cat.csv +7 -7
  415. teradataml/data/housing_data.csv +9 -9
  416. teradataml/data/housing_test.csv +47 -47
  417. teradataml/data/housing_test_binary.csv +47 -47
  418. teradataml/data/housing_train.csv +493 -493
  419. teradataml/data/housing_train_attribute.csv +4 -4
  420. teradataml/data/housing_train_binary.csv +437 -437
  421. teradataml/data/housing_train_parameter.csv +2 -2
  422. teradataml/data/housing_train_response.csv +493 -493
  423. teradataml/data/ibm_stock.csv +370 -370
  424. teradataml/data/ibm_stock1.csv +370 -370
  425. teradataml/data/identitymatch_example.json +21 -21
  426. teradataml/data/idf_table.csv +4 -4
  427. teradataml/data/impressions.csv +101 -101
  428. teradataml/data/inflation.csv +21 -21
  429. teradataml/data/initial.csv +3 -3
  430. teradataml/data/insect_sprays.csv +12 -12
  431. teradataml/data/insurance.csv +1339 -1339
  432. teradataml/data/interpolator_example.json +12 -12
  433. teradataml/data/iris_altinput.csv +481 -481
  434. teradataml/data/iris_attribute_output.csv +8 -8
  435. teradataml/data/iris_attribute_test.csv +121 -121
  436. teradataml/data/iris_attribute_train.csv +481 -481
  437. teradataml/data/iris_category_expect_predict.csv +31 -31
  438. teradataml/data/iris_data.csv +151 -0
  439. teradataml/data/iris_input.csv +151 -151
  440. teradataml/data/iris_response_train.csv +121 -121
  441. teradataml/data/iris_test.csv +31 -31
  442. teradataml/data/iris_train.csv +121 -121
  443. teradataml/data/join_table1.csv +4 -4
  444. teradataml/data/join_table2.csv +4 -4
  445. teradataml/data/jsons/anly_function_name.json +6 -6
  446. teradataml/data/jsons/byom/dataikupredict.json +147 -147
  447. teradataml/data/jsons/byom/datarobotpredict.json +146 -146
  448. teradataml/data/jsons/byom/h2opredict.json +194 -194
  449. teradataml/data/jsons/byom/onnxpredict.json +186 -186
  450. teradataml/data/jsons/byom/pmmlpredict.json +146 -146
  451. teradataml/data/jsons/paired_functions.json +435 -435
  452. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
  453. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
  454. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
  455. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
  456. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
  457. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
  458. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
  459. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
  460. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
  461. teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
  462. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
  463. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
  464. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
  465. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
  466. teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
  467. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
  468. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
  469. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
  470. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
  471. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
  472. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
  473. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
  474. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
  475. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
  476. teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
  477. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
  478. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
  479. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
  480. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
  481. teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
  482. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
  483. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
  484. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
  485. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
  486. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
  487. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
  488. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
  489. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
  490. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
  491. teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
  492. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
  493. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
  494. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
  495. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
  496. teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
  497. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
  498. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
  499. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
  500. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
  501. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
  502. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
  503. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
  504. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
  505. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
  506. teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
  507. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
  508. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
  509. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
  510. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
  511. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
  512. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
  513. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
  514. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
  515. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
  516. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
  517. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
  518. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
  519. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
  520. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
  521. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
  522. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
  523. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
  524. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
  525. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
  526. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
  527. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
  528. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
  529. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
  530. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
  531. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
  532. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
  533. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
  534. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
  535. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
  536. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
  537. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
  538. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
  539. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
  540. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
  541. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
  542. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
  543. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
  544. teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
  545. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
  546. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
  547. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
  548. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
  549. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
  550. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
  551. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
  552. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
  553. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
  554. teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
  555. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
  556. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
  557. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
  558. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +76 -76
  559. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
  560. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
  561. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
  562. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
  563. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
  564. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
  565. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
  566. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
  567. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
  568. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
  569. teradataml/data/jsons/sqle/17.20/TD_FTest.json +186 -186
  570. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
  571. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
  572. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
  573. teradataml/data/jsons/sqle/17.20/TD_GLM.json +431 -431
  574. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +125 -125
  575. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
  576. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
  577. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +91 -91
  578. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
  579. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
  580. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
  581. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +211 -211
  582. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
  583. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
  584. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
  585. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +101 -101
  586. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
  587. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
  588. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
  589. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
  590. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
  591. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
  592. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
  593. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
  594. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
  595. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
  596. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
  597. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
  598. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
  599. teradataml/data/jsons/sqle/17.20/TD_ROC.json +177 -177
  600. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
  601. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
  602. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
  603. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
  604. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
  605. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
  606. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
  607. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
  608. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +124 -124
  609. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +156 -156
  610. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +70 -70
  611. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
  612. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
  613. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
  614. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
  615. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
  616. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
  617. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
  618. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
  619. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
  620. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
  621. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
  622. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
  623. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
  624. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
  625. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +312 -312
  626. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +182 -182
  627. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +170 -170
  628. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
  629. teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
  630. teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
  631. teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
  632. teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
  633. teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
  634. teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
  635. teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
  636. teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
  637. teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
  638. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
  639. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
  640. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
  641. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
  642. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
  643. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
  644. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
  645. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
  646. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
  647. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
  648. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
  649. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
  650. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
  651. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
  652. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
  653. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
  654. teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
  655. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
  656. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
  657. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
  658. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
  659. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
  660. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
  661. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
  662. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
  663. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
  664. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
  665. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
  666. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
  667. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
  668. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
  669. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
  670. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
  671. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
  672. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
  673. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
  674. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
  675. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
  676. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
  677. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
  678. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
  679. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
  680. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
  681. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
  682. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
  683. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
  684. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
  685. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
  686. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
  687. teradataml/data/kmeans_example.json +17 -17
  688. teradataml/data/kmeans_us_arrests_data.csv +0 -0
  689. teradataml/data/knn_example.json +18 -18
  690. teradataml/data/knnrecommender_example.json +6 -6
  691. teradataml/data/knnrecommenderpredict_example.json +12 -12
  692. teradataml/data/lar_example.json +17 -17
  693. teradataml/data/larpredict_example.json +30 -30
  694. teradataml/data/lc_new_predictors.csv +5 -5
  695. teradataml/data/lc_new_reference.csv +9 -9
  696. teradataml/data/lda_example.json +8 -8
  697. teradataml/data/ldainference_example.json +14 -14
  698. teradataml/data/ldatopicsummary_example.json +8 -8
  699. teradataml/data/levendist_input.csv +13 -13
  700. teradataml/data/levenshteindistance_example.json +10 -10
  701. teradataml/data/linreg_example.json +9 -9
  702. teradataml/data/load_example_data.py +326 -323
  703. teradataml/data/loan_prediction.csv +295 -295
  704. teradataml/data/lungcancer.csv +138 -138
  705. teradataml/data/mappingdata.csv +12 -12
  706. teradataml/data/milk_timeseries.csv +157 -157
  707. teradataml/data/min_max_titanic.csv +4 -4
  708. teradataml/data/minhash_example.json +6 -6
  709. teradataml/data/ml_ratings.csv +7547 -7547
  710. teradataml/data/ml_ratings_10.csv +2445 -2445
  711. teradataml/data/model1_table.csv +5 -5
  712. teradataml/data/model2_table.csv +5 -5
  713. teradataml/data/models/iris_db_glm_model.pmml +56 -56
  714. teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
  715. teradataml/data/modularity_example.json +12 -12
  716. teradataml/data/movavg_example.json +7 -7
  717. teradataml/data/mtx1.csv +7 -7
  718. teradataml/data/mtx2.csv +13 -13
  719. teradataml/data/multi_model_classification.csv +401 -0
  720. teradataml/data/multi_model_regression.csv +401 -0
  721. teradataml/data/mvdfft8.csv +9 -9
  722. teradataml/data/naivebayes_example.json +9 -9
  723. teradataml/data/naivebayespredict_example.json +19 -19
  724. teradataml/data/naivebayestextclassifier2_example.json +6 -6
  725. teradataml/data/naivebayestextclassifier_example.json +8 -8
  726. teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
  727. teradataml/data/name_Find_configure.csv +10 -10
  728. teradataml/data/namedentityfinder_example.json +14 -14
  729. teradataml/data/namedentityfinderevaluator_example.json +10 -10
  730. teradataml/data/namedentityfindertrainer_example.json +6 -6
  731. teradataml/data/nb_iris_input_test.csv +31 -31
  732. teradataml/data/nb_iris_input_train.csv +121 -121
  733. teradataml/data/nbp_iris_model.csv +13 -13
  734. teradataml/data/ner_extractor_text.csv +2 -2
  735. teradataml/data/ner_sports_test2.csv +29 -29
  736. teradataml/data/ner_sports_train.csv +501 -501
  737. teradataml/data/nerevaluator_example.json +5 -5
  738. teradataml/data/nerextractor_example.json +18 -18
  739. teradataml/data/nermem_sports_test.csv +17 -17
  740. teradataml/data/nermem_sports_train.csv +50 -50
  741. teradataml/data/nertrainer_example.json +6 -6
  742. teradataml/data/ngrams_example.json +6 -6
  743. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
  744. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
  745. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
  746. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
  747. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
  748. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
  749. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
  750. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
  751. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
  752. teradataml/data/npath_example.json +23 -23
  753. teradataml/data/ntree_example.json +14 -14
  754. teradataml/data/numeric_strings.csv +4 -4
  755. teradataml/data/numerics.csv +4 -4
  756. teradataml/data/ocean_buoy.csv +17 -17
  757. teradataml/data/ocean_buoy2.csv +17 -17
  758. teradataml/data/ocean_buoys.csv +27 -27
  759. teradataml/data/ocean_buoys2.csv +10 -10
  760. teradataml/data/ocean_buoys_nonpti.csv +28 -28
  761. teradataml/data/ocean_buoys_seq.csv +29 -29
  762. teradataml/data/openml_example.json +63 -0
  763. teradataml/data/optional_event_table.csv +4 -4
  764. teradataml/data/orders1.csv +11 -11
  765. teradataml/data/orders1_12.csv +12 -12
  766. teradataml/data/orders_ex.csv +4 -4
  767. teradataml/data/pack_example.json +8 -8
  768. teradataml/data/package_tracking.csv +19 -19
  769. teradataml/data/package_tracking_pti.csv +18 -18
  770. teradataml/data/pagerank_example.json +13 -13
  771. teradataml/data/paragraphs_input.csv +6 -6
  772. teradataml/data/pathanalyzer_example.json +7 -7
  773. teradataml/data/pathgenerator_example.json +7 -7
  774. teradataml/data/phrases.csv +7 -7
  775. teradataml/data/pivot_example.json +8 -8
  776. teradataml/data/pivot_input.csv +22 -22
  777. teradataml/data/playerRating.csv +31 -31
  778. teradataml/data/postagger_example.json +6 -6
  779. teradataml/data/posttagger_output.csv +44 -44
  780. teradataml/data/production_data.csv +16 -16
  781. teradataml/data/production_data2.csv +7 -7
  782. teradataml/data/randomsample_example.json +31 -31
  783. teradataml/data/randomwalksample_example.json +8 -8
  784. teradataml/data/rank_table.csv +6 -6
  785. teradataml/data/ref_mobile_data.csv +4 -4
  786. teradataml/data/ref_mobile_data_dense.csv +2 -2
  787. teradataml/data/ref_url.csv +17 -17
  788. teradataml/data/restaurant_reviews.csv +7 -7
  789. teradataml/data/river_data.csv +145 -145
  790. teradataml/data/roc_example.json +7 -7
  791. teradataml/data/roc_input.csv +101 -101
  792. teradataml/data/rule_inputs.csv +6 -6
  793. teradataml/data/rule_table.csv +2 -2
  794. teradataml/data/sales.csv +7 -7
  795. teradataml/data/sales_transaction.csv +501 -501
  796. teradataml/data/salesdata.csv +342 -342
  797. teradataml/data/sample_cities.csv +2 -2
  798. teradataml/data/sample_shapes.csv +10 -10
  799. teradataml/data/sample_streets.csv +2 -2
  800. teradataml/data/sampling_example.json +15 -15
  801. teradataml/data/sax_example.json +8 -8
  802. teradataml/data/scale_example.json +23 -23
  803. teradataml/data/scale_housing.csv +11 -11
  804. teradataml/data/scale_housing_test.csv +6 -6
  805. teradataml/data/scale_stat.csv +11 -11
  806. teradataml/data/scalebypartition_example.json +13 -13
  807. teradataml/data/scalemap_example.json +13 -13
  808. teradataml/data/scalesummary_example.json +12 -12
  809. teradataml/data/score_category.csv +101 -101
  810. teradataml/data/score_summary.csv +4 -4
  811. teradataml/data/script_example.json +9 -9
  812. teradataml/data/scripts/deploy_script.py +65 -0
  813. teradataml/data/scripts/mapper.R +20 -0
  814. teradataml/data/scripts/mapper.py +15 -15
  815. teradataml/data/scripts/mapper_replace.py +15 -15
  816. teradataml/data/scripts/sklearn/__init__.py +0 -0
  817. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  818. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  819. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  820. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  821. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  822. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  823. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  824. teradataml/data/seeds.csv +10 -10
  825. teradataml/data/sentenceextractor_example.json +6 -6
  826. teradataml/data/sentiment_extract_input.csv +11 -11
  827. teradataml/data/sentiment_train.csv +16 -16
  828. teradataml/data/sentiment_word.csv +20 -20
  829. teradataml/data/sentiment_word_input.csv +19 -19
  830. teradataml/data/sentimentextractor_example.json +24 -24
  831. teradataml/data/sentimenttrainer_example.json +8 -8
  832. teradataml/data/sequence_table.csv +10 -10
  833. teradataml/data/seriessplitter_example.json +7 -7
  834. teradataml/data/sessionize_example.json +17 -17
  835. teradataml/data/sessionize_table.csv +116 -116
  836. teradataml/data/setop_test1.csv +24 -24
  837. teradataml/data/setop_test2.csv +22 -22
  838. teradataml/data/soc_nw_edges.csv +10 -10
  839. teradataml/data/soc_nw_vertices.csv +7 -7
  840. teradataml/data/souvenir_timeseries.csv +167 -167
  841. teradataml/data/sparse_iris_attribute.csv +5 -5
  842. teradataml/data/sparse_iris_test.csv +121 -121
  843. teradataml/data/sparse_iris_train.csv +601 -601
  844. teradataml/data/star1.csv +6 -6
  845. teradataml/data/state_transition.csv +5 -5
  846. teradataml/data/stock_data.csv +53 -53
  847. teradataml/data/stock_movement.csv +11 -11
  848. teradataml/data/stock_vol.csv +76 -76
  849. teradataml/data/stop_words.csv +8 -8
  850. teradataml/data/store_sales.csv +37 -37
  851. teradataml/data/stringsimilarity_example.json +7 -7
  852. teradataml/data/strsimilarity_input.csv +13 -13
  853. teradataml/data/students.csv +101 -101
  854. teradataml/data/svm_iris_input_test.csv +121 -121
  855. teradataml/data/svm_iris_input_train.csv +481 -481
  856. teradataml/data/svm_iris_model.csv +7 -7
  857. teradataml/data/svmdense_example.json +9 -9
  858. teradataml/data/svmdensepredict_example.json +18 -18
  859. teradataml/data/svmsparse_example.json +7 -7
  860. teradataml/data/svmsparsepredict_example.json +13 -13
  861. teradataml/data/svmsparsesummary_example.json +7 -7
  862. teradataml/data/target_mobile_data.csv +13 -13
  863. teradataml/data/target_mobile_data_dense.csv +5 -5
  864. teradataml/data/templatedata.csv +1201 -1201
  865. teradataml/data/templates/open_source_ml.json +9 -0
  866. teradataml/data/teradataml_example.json +73 -1
  867. teradataml/data/test_classification.csv +101 -0
  868. teradataml/data/test_loan_prediction.csv +53 -53
  869. teradataml/data/test_pacf_12.csv +37 -37
  870. teradataml/data/test_prediction.csv +101 -0
  871. teradataml/data/test_regression.csv +101 -0
  872. teradataml/data/test_river2.csv +109 -109
  873. teradataml/data/text_inputs.csv +6 -6
  874. teradataml/data/textchunker_example.json +7 -7
  875. teradataml/data/textclassifier_example.json +6 -6
  876. teradataml/data/textclassifier_input.csv +7 -7
  877. teradataml/data/textclassifiertrainer_example.json +6 -6
  878. teradataml/data/textmorph_example.json +5 -5
  879. teradataml/data/textparser_example.json +15 -15
  880. teradataml/data/texttagger_example.json +11 -11
  881. teradataml/data/texttokenizer_example.json +6 -6
  882. teradataml/data/texttrainer_input.csv +11 -11
  883. teradataml/data/tf_example.json +6 -6
  884. teradataml/data/tfidf_example.json +13 -13
  885. teradataml/data/tfidf_input1.csv +201 -201
  886. teradataml/data/tfidf_train.csv +6 -6
  887. teradataml/data/time_table1.csv +535 -535
  888. teradataml/data/time_table2.csv +14 -14
  889. teradataml/data/timeseriesdata.csv +1601 -1601
  890. teradataml/data/timeseriesdatasetsd4.csv +105 -105
  891. teradataml/data/titanic.csv +892 -892
  892. teradataml/data/token_table.csv +696 -696
  893. teradataml/data/train_multiclass.csv +101 -0
  894. teradataml/data/train_regression.csv +101 -0
  895. teradataml/data/train_regression_multiple_labels.csv +101 -0
  896. teradataml/data/train_tracking.csv +27 -27
  897. teradataml/data/transformation_table.csv +5 -5
  898. teradataml/data/transformation_table_new.csv +1 -1
  899. teradataml/data/tv_spots.csv +16 -16
  900. teradataml/data/twod_climate_data.csv +117 -117
  901. teradataml/data/uaf_example.json +475 -475
  902. teradataml/data/univariatestatistics_example.json +8 -8
  903. teradataml/data/unpack_example.json +9 -9
  904. teradataml/data/unpivot_example.json +9 -9
  905. teradataml/data/unpivot_input.csv +8 -8
  906. teradataml/data/us_air_pass.csv +36 -36
  907. teradataml/data/us_population.csv +624 -624
  908. teradataml/data/us_states_shapes.csv +52 -52
  909. teradataml/data/varmax_example.json +17 -17
  910. teradataml/data/vectordistance_example.json +25 -25
  911. teradataml/data/ville_climatedata.csv +121 -121
  912. teradataml/data/ville_tempdata.csv +12 -12
  913. teradataml/data/ville_tempdata1.csv +12 -12
  914. teradataml/data/ville_temperature.csv +11 -11
  915. teradataml/data/waveletTable.csv +1605 -1605
  916. teradataml/data/waveletTable2.csv +1605 -1605
  917. teradataml/data/weightedmovavg_example.json +8 -8
  918. teradataml/data/wft_testing.csv +5 -5
  919. teradataml/data/wine_data.csv +1600 -0
  920. teradataml/data/word_embed_input_table1.csv +5 -5
  921. teradataml/data/word_embed_input_table2.csv +4 -4
  922. teradataml/data/word_embed_model.csv +22 -22
  923. teradataml/data/words_input.csv +13 -13
  924. teradataml/data/xconvolve_complex_left.csv +6 -6
  925. teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
  926. teradataml/data/xgboost_example.json +35 -35
  927. teradataml/data/xgboostpredict_example.json +31 -31
  928. teradataml/dataframe/copy_to.py +1764 -1698
  929. teradataml/dataframe/data_transfer.py +2753 -2745
  930. teradataml/dataframe/dataframe.py +17545 -16946
  931. teradataml/dataframe/dataframe_utils.py +1837 -1740
  932. teradataml/dataframe/fastload.py +611 -603
  933. teradataml/dataframe/indexer.py +424 -424
  934. teradataml/dataframe/setop.py +1179 -1166
  935. teradataml/dataframe/sql.py +10090 -6432
  936. teradataml/dataframe/sql_function_parameters.py +439 -388
  937. teradataml/dataframe/sql_functions.py +652 -652
  938. teradataml/dataframe/sql_interfaces.py +220 -220
  939. teradataml/dataframe/vantage_function_types.py +674 -630
  940. teradataml/dataframe/window.py +693 -692
  941. teradataml/dbutils/__init__.py +3 -3
  942. teradataml/dbutils/dbutils.py +1167 -1150
  943. teradataml/dbutils/filemgr.py +267 -267
  944. teradataml/gen_ai/__init__.py +2 -2
  945. teradataml/gen_ai/convAI.py +472 -472
  946. teradataml/geospatial/__init__.py +3 -3
  947. teradataml/geospatial/geodataframe.py +1105 -1094
  948. teradataml/geospatial/geodataframecolumn.py +392 -387
  949. teradataml/geospatial/geometry_types.py +925 -925
  950. teradataml/hyperparameter_tuner/__init__.py +1 -1
  951. teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
  952. teradataml/hyperparameter_tuner/utils.py +281 -187
  953. teradataml/lib/aed_0_1.dll +0 -0
  954. teradataml/lib/libaed_0_1.dylib +0 -0
  955. teradataml/lib/libaed_0_1.so +0 -0
  956. teradataml/libaed_0_1.dylib +0 -0
  957. teradataml/libaed_0_1.so +0 -0
  958. teradataml/opensource/__init__.py +1 -0
  959. teradataml/opensource/sklearn/__init__.py +1 -0
  960. teradataml/opensource/sklearn/_class.py +255 -0
  961. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  962. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  963. teradataml/opensource/sklearn/constants.py +54 -0
  964. teradataml/options/__init__.py +121 -124
  965. teradataml/options/configure.py +337 -336
  966. teradataml/options/display.py +176 -176
  967. teradataml/plot/__init__.py +2 -2
  968. teradataml/plot/axis.py +1388 -1388
  969. teradataml/plot/constants.py +15 -15
  970. teradataml/plot/figure.py +398 -398
  971. teradataml/plot/plot.py +760 -760
  972. teradataml/plot/query_generator.py +83 -83
  973. teradataml/plot/subplot.py +216 -216
  974. teradataml/scriptmgmt/UserEnv.py +3788 -3761
  975. teradataml/scriptmgmt/__init__.py +3 -3
  976. teradataml/scriptmgmt/lls_utils.py +1616 -1604
  977. teradataml/series/series.py +532 -532
  978. teradataml/series/series_utils.py +71 -71
  979. teradataml/table_operators/Apply.py +949 -917
  980. teradataml/table_operators/Script.py +1719 -1982
  981. teradataml/table_operators/TableOperator.py +1207 -1616
  982. teradataml/table_operators/__init__.py +2 -3
  983. teradataml/table_operators/apply_query_generator.py +262 -262
  984. teradataml/table_operators/query_generator.py +507 -507
  985. teradataml/table_operators/table_operator_query_generator.py +460 -460
  986. teradataml/table_operators/table_operator_util.py +631 -639
  987. teradataml/table_operators/templates/dataframe_apply.template +184 -184
  988. teradataml/table_operators/templates/dataframe_map.template +176 -176
  989. teradataml/table_operators/templates/script_executor.template +170 -170
  990. teradataml/utils/dtypes.py +684 -684
  991. teradataml/utils/internal_buffer.py +84 -84
  992. teradataml/utils/print_versions.py +205 -205
  993. teradataml/utils/utils.py +410 -410
  994. teradataml/utils/validators.py +2239 -2115
  995. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +270 -41
  996. teradataml-20.0.0.0.dist-info/RECORD +1038 -0
  997. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +1 -1
  998. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +1 -1
  999. teradataml/analytics/mle/AdaBoost.py +0 -651
  1000. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  1001. teradataml/analytics/mle/Antiselect.py +0 -342
  1002. teradataml/analytics/mle/Arima.py +0 -641
  1003. teradataml/analytics/mle/ArimaPredict.py +0 -477
  1004. teradataml/analytics/mle/Attribution.py +0 -1070
  1005. teradataml/analytics/mle/Betweenness.py +0 -658
  1006. teradataml/analytics/mle/Burst.py +0 -711
  1007. teradataml/analytics/mle/CCM.py +0 -600
  1008. teradataml/analytics/mle/CCMPrepare.py +0 -324
  1009. teradataml/analytics/mle/CFilter.py +0 -460
  1010. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  1011. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  1012. teradataml/analytics/mle/Closeness.py +0 -737
  1013. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  1014. teradataml/analytics/mle/Correlation.py +0 -477
  1015. teradataml/analytics/mle/Correlation2.py +0 -573
  1016. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  1017. teradataml/analytics/mle/CoxPH.py +0 -556
  1018. teradataml/analytics/mle/CoxSurvival.py +0 -478
  1019. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  1020. teradataml/analytics/mle/DTW.py +0 -623
  1021. teradataml/analytics/mle/DWT.py +0 -564
  1022. teradataml/analytics/mle/DWT2D.py +0 -599
  1023. teradataml/analytics/mle/DecisionForest.py +0 -716
  1024. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  1025. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  1026. teradataml/analytics/mle/DecisionTree.py +0 -830
  1027. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  1028. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  1029. teradataml/analytics/mle/FMeasure.py +0 -402
  1030. teradataml/analytics/mle/FPGrowth.py +0 -734
  1031. teradataml/analytics/mle/FrequentPaths.py +0 -695
  1032. teradataml/analytics/mle/GLM.py +0 -558
  1033. teradataml/analytics/mle/GLML1L2.py +0 -547
  1034. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  1035. teradataml/analytics/mle/GLMPredict.py +0 -529
  1036. teradataml/analytics/mle/HMMDecoder.py +0 -945
  1037. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  1038. teradataml/analytics/mle/HMMSupervised.py +0 -521
  1039. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  1040. teradataml/analytics/mle/Histogram.py +0 -561
  1041. teradataml/analytics/mle/IDWT.py +0 -476
  1042. teradataml/analytics/mle/IDWT2D.py +0 -493
  1043. teradataml/analytics/mle/IdentityMatch.py +0 -763
  1044. teradataml/analytics/mle/Interpolator.py +0 -918
  1045. teradataml/analytics/mle/KMeans.py +0 -485
  1046. teradataml/analytics/mle/KNN.py +0 -627
  1047. teradataml/analytics/mle/KNNRecommender.py +0 -488
  1048. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  1049. teradataml/analytics/mle/LAR.py +0 -439
  1050. teradataml/analytics/mle/LARPredict.py +0 -478
  1051. teradataml/analytics/mle/LDA.py +0 -548
  1052. teradataml/analytics/mle/LDAInference.py +0 -492
  1053. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  1054. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  1055. teradataml/analytics/mle/LinReg.py +0 -433
  1056. teradataml/analytics/mle/LinRegPredict.py +0 -438
  1057. teradataml/analytics/mle/MinHash.py +0 -544
  1058. teradataml/analytics/mle/Modularity.py +0 -587
  1059. teradataml/analytics/mle/NEREvaluator.py +0 -410
  1060. teradataml/analytics/mle/NERExtractor.py +0 -595
  1061. teradataml/analytics/mle/NERTrainer.py +0 -458
  1062. teradataml/analytics/mle/NGrams.py +0 -570
  1063. teradataml/analytics/mle/NPath.py +0 -634
  1064. teradataml/analytics/mle/NTree.py +0 -549
  1065. teradataml/analytics/mle/NaiveBayes.py +0 -462
  1066. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  1067. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  1068. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  1069. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  1070. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  1071. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  1072. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  1073. teradataml/analytics/mle/POSTagger.py +0 -417
  1074. teradataml/analytics/mle/Pack.py +0 -411
  1075. teradataml/analytics/mle/PageRank.py +0 -535
  1076. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  1077. teradataml/analytics/mle/PathGenerator.py +0 -367
  1078. teradataml/analytics/mle/PathStart.py +0 -464
  1079. teradataml/analytics/mle/PathSummarizer.py +0 -470
  1080. teradataml/analytics/mle/Pivot.py +0 -471
  1081. teradataml/analytics/mle/ROC.py +0 -425
  1082. teradataml/analytics/mle/RandomSample.py +0 -637
  1083. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  1084. teradataml/analytics/mle/SAX.py +0 -779
  1085. teradataml/analytics/mle/SVMDense.py +0 -677
  1086. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  1087. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  1088. teradataml/analytics/mle/SVMSparse.py +0 -557
  1089. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  1090. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  1091. teradataml/analytics/mle/Sampling.py +0 -549
  1092. teradataml/analytics/mle/Scale.py +0 -565
  1093. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  1094. teradataml/analytics/mle/ScaleMap.py +0 -378
  1095. teradataml/analytics/mle/ScaleSummary.py +0 -320
  1096. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  1097. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  1098. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  1099. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  1100. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  1101. teradataml/analytics/mle/Sessionize.py +0 -475
  1102. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  1103. teradataml/analytics/mle/StringSimilarity.py +0 -425
  1104. teradataml/analytics/mle/TF.py +0 -389
  1105. teradataml/analytics/mle/TFIDF.py +0 -504
  1106. teradataml/analytics/mle/TextChunker.py +0 -414
  1107. teradataml/analytics/mle/TextClassifier.py +0 -399
  1108. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  1109. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  1110. teradataml/analytics/mle/TextMorph.py +0 -494
  1111. teradataml/analytics/mle/TextParser.py +0 -623
  1112. teradataml/analytics/mle/TextTagger.py +0 -530
  1113. teradataml/analytics/mle/TextTokenizer.py +0 -502
  1114. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  1115. teradataml/analytics/mle/Unpack.py +0 -526
  1116. teradataml/analytics/mle/Unpivot.py +0 -438
  1117. teradataml/analytics/mle/VarMax.py +0 -776
  1118. teradataml/analytics/mle/VectorDistance.py +0 -762
  1119. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  1120. teradataml/analytics/mle/XGBoost.py +0 -842
  1121. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  1122. teradataml/analytics/mle/__init__.py +0 -123
  1123. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  1124. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  1125. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  1126. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  1127. teradataml/analytics/mle/json/arima_mle.json +0 -172
  1128. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  1129. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  1130. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  1131. teradataml/analytics/mle/json/burst_mle.json +0 -140
  1132. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  1133. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  1134. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  1135. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  1136. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  1137. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  1138. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  1139. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  1140. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  1141. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  1142. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  1143. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  1144. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  1145. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  1146. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  1147. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  1148. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  1149. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  1150. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  1151. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  1152. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  1153. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  1154. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  1155. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  1156. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  1157. teradataml/analytics/mle/json/glm_mle.json +0 -111
  1158. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  1159. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  1160. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  1161. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  1162. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  1163. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  1164. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  1165. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  1166. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  1167. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  1168. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  1169. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  1170. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  1171. teradataml/analytics/mle/json/knn_mle.json +0 -141
  1172. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  1173. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  1174. teradataml/analytics/mle/json/lar_mle.json +0 -78
  1175. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  1176. teradataml/analytics/mle/json/lda_mle.json +0 -130
  1177. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  1178. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  1179. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  1180. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  1181. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  1182. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  1183. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  1184. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  1185. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  1186. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  1187. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  1188. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  1189. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  1190. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  1191. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  1192. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  1193. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  1194. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  1195. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  1196. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  1197. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  1198. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  1199. teradataml/analytics/mle/json/pack_mle.json +0 -58
  1200. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  1201. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  1202. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  1203. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  1204. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  1205. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  1206. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  1207. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  1208. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  1209. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  1210. teradataml/analytics/mle/json/roc_mle.json +0 -73
  1211. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  1212. teradataml/analytics/mle/json/sax_mle.json +0 -154
  1213. teradataml/analytics/mle/json/scale_mle.json +0 -93
  1214. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  1215. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  1216. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  1217. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  1218. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  1219. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  1220. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  1221. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  1222. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  1223. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  1224. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  1225. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  1226. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  1227. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  1228. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  1229. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  1230. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  1231. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  1232. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  1233. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  1234. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  1235. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  1236. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  1237. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  1238. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  1239. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  1240. teradataml/analytics/mle/json/tf_mle.json +0 -33
  1241. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  1242. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  1243. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  1244. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  1245. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  1246. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  1247. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  1248. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  1249. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  1250. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  1251. teradataml/analytics/sqle/Antiselect.py +0 -321
  1252. teradataml/analytics/sqle/Attribution.py +0 -603
  1253. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  1254. teradataml/analytics/sqle/GLMPredict.py +0 -430
  1255. teradataml/analytics/sqle/MovingAverage.py +0 -543
  1256. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  1257. teradataml/analytics/sqle/NPath.py +0 -632
  1258. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  1259. teradataml/analytics/sqle/Pack.py +0 -388
  1260. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  1261. teradataml/analytics/sqle/Sessionize.py +0 -390
  1262. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  1263. teradataml/analytics/sqle/Unpack.py +0 -503
  1264. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  1265. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  1266. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  1267. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  1268. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  1269. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  1270. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  1271. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  1272. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  1273. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  1274. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  1275. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  1276. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  1277. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  1278. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  1279. teradataml/catalog/model_cataloging.py +0 -980
  1280. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  1281. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  1282. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  1283. teradataml/table_operators/sandbox_container_util.py +0 -643
  1284. teradataml-17.20.0.7.dist-info/RECORD +0 -1280
  1285. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
@@ -1,743 +1,743 @@
1
- """
2
- Unpublished work.
3
- Copyright (c) 2018 by Teradata Corporation. All rights reserved.
4
- TERADATA CORPORATION CONFIDENTIAL AND TRADE SECRET
5
-
6
- Primary Owner: mounika.kotha@teradata.com
7
- Secondary Owner:
8
-
9
- This file implements processing of formula variables that will be used
10
- in Teradata Vantage Analytical function wrappers.
11
- """
12
-
13
- import inspect
14
- import re
15
- from teradataml.common.exceptions import TeradataMlException
16
- from teradataml.common.messagecodes import MessageCodes
17
- from teradataml.common.messages import Messages
18
- from teradataml.utils.validators import _Validators
19
-
20
- def as_categorical(columns):
21
- """
22
- Function to explicitly specify columns to be treated as categorical type. Sometimes, user may need to
23
- treat column(s) as categorical column, when used in analytic function. User will be able to do so via
24
- formula and this function. User can classify Numeric columns as categorical columns.
25
-
26
- PARAMETERS:
27
- columns:
28
- Required Argument.
29
- Specifies the name or names of column to be treated as categorical in formula for analytic function.
30
-
31
- RAISES:
32
- TypeError - If incorrect type of value is passed.
33
- ValueError - If empty string is passed.
34
-
35
- RETURNS:
36
- A string
37
-
38
- EXAMPLES:
39
- # Let's say a DataFrame has numeric columns 'stories' and 'garagepl'. To treat these columns as categorical
40
- # in analytic function execution, one can use 'as_categorical()' function and combine the output of the same
41
- # with formula string to be passed to formula argument of analytic function.
42
- formula = "homestyle ~ lotsize + price + fullbase + driveway + prefarea \
43
- + {}".format(as_categorical(["stories", "garagepl"]))
44
-
45
-
46
- """
47
- # Validate argument types
48
- _Validators._validate_function_arguments([["columns", columns, False, (str, list), True]])
49
-
50
- if isinstance(columns, str):
51
- columns = [columns]
52
-
53
- return " + ".join(["CATEGORICAL({})".format(col) for col in columns])
54
-
55
- def __as_numerical(columns):
56
- """
57
- Function to explicitly specify columns to be treated as numeric type in a formula.
58
- Currently, this is internal function, and is not exposed. It'll be exposed as and when required.
59
- As of now, just passing varchar column directly to Numerical Columns argument fails with error.
60
-
61
- Provisions for Numeric columns processing are already made as part of this Formula class.
62
- :param columns:
63
- :return:
64
- """
65
- # Validate argument types
66
- _Validators._validate_function_arguments([["columns", columns, False, (str, list), True]])
67
-
68
- if isinstance(columns, str):
69
- columns = [columns]
70
-
71
- return " + ".join(["NUMERICAL({})".format(col) for col in columns])
72
-
73
- class Formula(object):
74
- """
75
- This class contains all the variables and datatypes of the formula input provided
76
- by the user.
77
- """
78
- def __init__(self, metaexpr, formula, arg_name, response_column=None,
79
- all_columns=None, categorical_columns=None, numerical_columns=None):
80
- """
81
- Constructor for the Formula class.
82
-
83
- PARAMETERS:
84
- metaexpr - Parent meta data (_MetaExpression object).
85
- formula - Specifies formula string passed by the user.
86
- arg_name - Specifies the argument name of the argument used to specify for formula.
87
-
88
- RAISES:
89
- TypeError - In case of incorrect type of value passed to any argument.
90
- ValueError - Invalid value passed to arguments.
91
- TeradataMlException - If formula is in incorrect format.
92
-
93
- EXAMPLE:
94
- formula = "admitted ~ masters + gpa + stats + programming"
95
- formula_object = Formula(data._metaexpr, formula, "formula")
96
-
97
- RETURNS:
98
- A formula object.
99
- """
100
- if inspect.stack()[1][3] == '_from_formula_attr':
101
- self.__formula = formula
102
- self._all_columns = all_columns
103
- self._response_column = response_column
104
- self._numeric_columns = numerical_columns
105
- self._categorical_columns = categorical_columns
106
- else:
107
- awu_matrix = []
108
- awu_matrix.append([arg_name, formula, False, (str), True])
109
- awu_matrix.append(["arg_name", arg_name, False, (str), True])
110
-
111
- # Validate argument types
112
- _Validators._validate_function_arguments(awu_matrix)
113
-
114
- # Validations for formula.
115
- formula_expression = r"^(\s*\w*\s*[~]\s*)((([(\w+)|(\w+\(\w+\))|(\w+\(\.\))]\s*[+]?\s*)*\s*[(\w+)|(\w+\(\w+\))|(\w+\(\.\))]\s*)|(\.))$"
116
- if bool(re.match(formula_expression,formula)) is False:
117
- raise TeradataMlException(Messages.get_message(MessageCodes.FORMULA_INVALID_FORMAT, arg_name),
118
- MessageCodes.FORMULA_INVALID_FORMAT)
119
-
120
- # Validate that dependent variables are present.
121
- dependent_var, independent_vars = re.split('~', formula)
122
- if ((len(dependent_var.strip()) == 0) or (len(re.sub(' ', '', dependent_var)) == 0)):
123
- raise TeradataMlException(Messages.get_message(MessageCodes.FORMULA_MISSING_DEPENDENT_VARIABLE, arg_name),
124
- MessageCodes.FORMULA_MISSING_DEPENDENT_VARIABLE)
125
-
126
- # Variables holding formula information.
127
- self.__dependent_vars = dependent_var.strip()
128
- self.__independent_var_str = independent_vars
129
- self.__independent_vars = []
130
- self.__metaexpr = metaexpr
131
- self.__all_col_notation_used = False
132
- self._formula_column_type_map = {}
133
- self._all_columns = None
134
- self._categorical_columns = None
135
- self._numeric_columns = None
136
- self._response_column = self.__dependent_vars
137
- self.__formula = formula
138
-
139
- # Variables used for processing explicit variables.
140
- # Variables that will be classified based on their types.
141
- self._default_independent_variables = []
142
- # Variables that will be classified as 'Categorical' regardless of their types.
143
- self._explicit_independent_categorical = []
144
- # Variables that will be classified as 'Numerical' regardless of their types.
145
- self._explicit_independent_numerical = []
146
-
147
- # Patterns to identify the explicit classificatioon for some columns.
148
- self.__EXPLICIT_CATEGORICAL_PATTERN = r"CATEGORICAL\((.+)\)"
149
- self.__EXPLICIT_NUMERICAL_PATTERN = r"NUMERICAL\((.+)\)"
150
- self.__EXPLICIT_CATEGORICAL_PATTERN_ALL_COL = r"CATEGORICAL\(\.\)"
151
- self.__EXPLICIT_NUMERICAL_PATTERN_ALL_COL = r"NUMERICAL\(\.\)"
152
-
153
- # Process independent variables.
154
- self.__process_independent_vars()
155
-
156
- # Validate columns used as independent and dependent variables exist in dataframe.
157
- _Validators._validate_column_exists_in_dataframe(self.__independent_vars, self.__metaexpr)
158
- _Validators._validate_column_exists_in_dataframe(self.__dependent_vars, self.__metaexpr)
159
-
160
- # Set the column type for all variables in formula.
161
- for column in self._get_independent_vars():
162
- self.__set_column_type(column)
163
- self.__set_column_type(self.__dependent_vars)
164
-
165
- @classmethod
166
- def _from_formula_attr(cls, formula, response_column=None, all_columns=None,
167
- categorical_columns=None, numerical_columns=None):
168
-
169
- """
170
- Classmethod which will be used by Model Cataloging, to instantiate this Formula class.
171
- """
172
- return cls(metaexpr=None, formula=formula, arg_name="formula", response_column=response_column,
173
- all_columns=all_columns, categorical_columns=categorical_columns,
174
- numerical_columns=numerical_columns)
175
-
176
- def __set_column_type(self, column):
177
- """
178
- Internal function, to map column name to column type.
179
-
180
- PARAMETER:
181
- column:
182
- Required Argument.
183
- Name of the column to be added to the mapper.
184
-
185
- RAISES:
186
- None.
187
-
188
- RETURNS:
189
- None.
190
-
191
- EXAMPLES:
192
- self.__set_column_type(self.__dependent_vars)
193
- """
194
- for c in self.__metaexpr.c:
195
- if column == c.name:
196
- self._formula_column_type_map[column] = type(c.type)
197
-
198
- def __classify_as_categorical(self, col, all=False):
199
- """
200
- Method to check whether the column provided in the string must be classified as categorical or not.
201
-
202
- PARAMETERS:
203
- col:
204
- Required Argument.
205
- Specifies column string from the formula.
206
- Types: str
207
-
208
- all:
209
- Optional Argument.
210
- Specifies boolean flag asking to validate for all columns to be classified as categorical or not.
211
- Types: bool
212
-
213
- RETURNS:
214
- True, if columns is to be classified as Categorical
215
-
216
- RAISES:
217
- TeradataMlExacpetion - If multiple '.' are used in formula.
218
-
219
- EXAMPLES:
220
- self.__classify_as_categorical(col)
221
- """
222
- if all:
223
- pattern_cat = re.compile(self.__EXPLICIT_CATEGORICAL_PATTERN_ALL_COL)
224
- match_cat = pattern_cat.match(col)
225
- if match_cat is not None:
226
- self._explicit_independent_categorical = list(set([c.name for c in self.__metaexpr.c]) -
227
- {self._get_dependent_vars()})
228
- return True
229
-
230
- else:
231
- pattern_cat = re.compile(self.__EXPLICIT_CATEGORICAL_PATTERN)
232
- match_cat = pattern_cat.match(col)
233
- if match_cat is not None:
234
- if match_cat.group(1).strip() == ".":
235
- if self.__all_col_notation_used:
236
- raise TeradataMlException(Messages.get_message(MessageCodes.FORMULA_INVALID_FORMAT,
237
- "mulitple time all column dot (.) notation is used"),
238
- MessageCodes.FORMULA_INVALID_FORMAT)
239
- else:
240
- self.__all_col_notation_used = True
241
- self._explicit_independent_categorical.append(match_cat.group(1).strip())
242
- return True
243
-
244
- return False
245
-
246
- def __classify_as_numerical(self, col, all=False):
247
- """
248
- Method to check whether the column provided in the string must be classified as numerical or not.
249
-
250
- PARAMETERS:
251
- col:
252
- Required Argument.
253
- Specifies column string from the formula.
254
- Types: str
255
-
256
- all:
257
- Optional Argument.
258
- Specifies boolean flag asking to validate for all columns to be classified as numerical or not.
259
- Types: bool
260
-
261
- RETURNS:
262
- True, if columns is to be classified as Categorical
263
-
264
- RAISES:
265
- TeradataMlExacpetion - If multiple '.' are used in formula.
266
-
267
- EXAMPLES:
268
- self.__classify_as_numerical(col)
269
- """
270
- if all:
271
- pattern_cat = re.compile(self.__EXPLICIT_NUMERICAL_PATTERN_ALL_COL)
272
- match_cat = pattern_cat.match(col)
273
- if match_cat is not None:
274
- self._explicit_independent_numerical = list(set([c.name for c in self.__metaexpr.c]) -
275
- {self._get_dependent_vars()})
276
- return True
277
-
278
- else:
279
- pattern_cat = re.compile(self.__EXPLICIT_NUMERICAL_PATTERN)
280
- match_cat = pattern_cat.match(col)
281
- if match_cat is not None:
282
- if match_cat.group(1).strip() == ".":
283
- if self.__all_col_notation_used:
284
- raise TeradataMlException(Messages.get_message(MessageCodes.FORMULA_INVALID_FORMAT,
285
- "mulitple time all column dot (.) notation is used"),
286
- MessageCodes.FORMULA_INVALID_FORMAT)
287
- else:
288
- self.__all_col_notation_used = True
289
- self._explicit_independent_numerical.append(match_cat.group(1).strip())
290
- return True
291
-
292
- return False
293
-
294
- def __process_independent_vars(self):
295
- """
296
- Internal method to process variables on the RHS of the formula.
297
-
298
- PARAMETERS:
299
- None.
300
-
301
- RAISES:
302
- None.
303
-
304
- RETURNS:
305
- True on success of processing independent varaibles.
306
-
307
- EXAMPLES:
308
- self.__process_independent_vars()
309
- """
310
- # If independent variable is ".", then use the same.
311
- if self.__independent_var_str.strip() == ".":
312
- self.__independent_vars = list(set([c.name for c in self.__metaexpr.c]) - {self.__dependent_vars})
313
- self._default_independent_variables = self.__independent_vars
314
- return True
315
-
316
- # If all independent variables are needed to be classified as categorical or numerical,
317
- # then update the lists accordingly.
318
- if self.__classify_as_categorical(self.__independent_var_str.strip(), True):
319
- # If dot '.' notation is used in as_categorical, that means,
320
- # user wants to classify all columns as categorical.
321
- self.__independent_vars = list(set([c.name for c in self.__metaexpr.c]) - {self.__dependent_vars})
322
- self._explicit_independent_categorical = self._get_independent_vars()
323
- return True
324
-
325
- if self.__classify_as_numerical(self.__independent_var_str.strip(), True):
326
- # If dot '.' notation is used in as_numerical, that means,
327
- # user wants to classify all columns as numerical.
328
- self.__independent_vars = list(set([c.name for c in self.__metaexpr.c]) - {self.__dependent_vars})
329
- self._explicit_independent_numerical = self._get_independent_vars()
330
- return True
331
-
332
- # Check whether formula contains any column that must classified as categorical/numerical column.
333
- for col in self._var_split(self.__independent_var_str):
334
- # First let's check if any column, must be categorized as categorical/numerical column or not.
335
- # If not add it directly to independent_vars list.
336
- if not self.__classify_as_categorical(col) and not self.__classify_as_numerical(col):
337
- self._default_independent_variables.append(col)
338
-
339
- if len(self._explicit_independent_categorical) > 0:
340
- # Process columns from 'explicit_independent_categorical' for explicit classification as Categorical
341
- self.__process_explicit_independent_variables()
342
-
343
- if len(self._explicit_independent_numerical) > 0:
344
- # Process columns from 'explicit_independent_numerical' for explicit classification as Numerical
345
- self.__process_explicit_independent_variables(True)
346
-
347
- self.__independent_vars = self._default_independent_variables + self._explicit_independent_categorical \
348
- + self._explicit_independent_numerical
349
-
350
- return True
351
-
352
- def __process_explicit_independent_variables(self, numerical=False):
353
- """
354
- Internal method to process independent variables, which have been asked by user to be
355
- explicitly classified as either categorical or numerical.
356
-
357
- PARAMETERS:
358
- numerical:
359
- Optional Argument.
360
- Specifies a flag that allows us to process for numerical variables, if set to True.
361
- Otherwise, processing happens for categorical variables.
362
- Default Value: False
363
- Types: bool
364
-
365
- RAISES:
366
- None.
367
-
368
- RETURNS:
369
- None.
370
-
371
- EXAMPLES:
372
- # To process categorical varaibles.
373
- self.__process_explicit_independent_variables()
374
-
375
- # To process numerical varaibles.
376
- self.__process_explicit_independent_variables(True)
377
- """
378
- if not numerical:
379
- explicit_list = self._explicit_independent_categorical
380
- other_explicit_list = self._explicit_independent_numerical
381
- else:
382
- explicit_list = self._explicit_independent_numerical
383
- other_explicit_list = self._explicit_independent_categorical
384
-
385
- if "." in explicit_list:
386
- # If all column notation '.' dot is used, then we must include all columns in
387
- # CATEGORICAL/NUMERICAL category, excluding following columns:
388
- # 1. Dependent variable column
389
- # 2. Default independent variables specified by user, i.e., variables specified without casting.
390
- # 3. NUMERICAL/CATEGORICAL independent variable explicitly specified by user using
391
- # 'as_numerical()/as_categorical()'.
392
- explicit_list = list(set([c.name for c in self.__metaexpr.c]) - {self.__dependent_vars}
393
- - set(self._default_independent_variables) - set(other_explicit_list))
394
-
395
- if not numerical:
396
- self._explicit_independent_categorical = explicit_list
397
- else:
398
- self._explicit_independent_numerical = explicit_list
399
-
400
- def _get_all_vars(self):
401
- """
402
- Method returns a list which contains all the variables of the formula.
403
- """
404
- all_vars = self.__independent_vars
405
- if self.__dependent_vars is not None:
406
- all_vars.insert(0,self._get_dependent_vars())
407
- return all_vars
408
-
409
- def _get_dependent_vars(self):
410
- """
411
- Method returns variable on the LHS of the formula.
412
- """
413
- return self.__dependent_vars.strip()
414
-
415
- def _get_independent_vars(self):
416
- """
417
- Method returns variable on the RHS of the formula.
418
- """
419
- return self.__independent_vars
420
-
421
- def _var_split(self, var):
422
- """
423
- Split string into multiple strings on + or -.
424
-
425
- PARAMETERS:
426
- string - var to split
427
-
428
- RETURNS:
429
- A list of strings
430
- """
431
- split_expr = re.split(r"[+-]", var)
432
- varlist = filter(None,split_expr)
433
- return [col.strip() for col in list(varlist)]
434
-
435
- def get_categorical_columns(self, data_types):
436
- """
437
- Function that will return all columns that belong to categorical column types.
438
- Columns present in '_explicit_independent_categorical' list are directly added as
439
- categorical columns, without type checking, where as columns in _default_independent_variables
440
- are type checked against 'data_types'.
441
-
442
- PARAMETERS:
443
- data_types:
444
- Required Argument.
445
- Specifies the list of categorical column types.
446
- Types: SQLAlchemy VisitableType or List of such types.
447
-
448
- RETURNS:
449
- List of column names which are to be classified as categorical columns.
450
-
451
- RAISES:
452
- None.
453
-
454
- EXAMPLES:
455
- data_types = UtilsFunc()._get_categorical_datatypes()
456
- print(str(formula_object.get_categorical_columns(data_types)))
457
- """
458
- if self._categorical_columns is not None:
459
- return self._categorical_columns
460
-
461
- columns_bytype = []
462
- for column in self._default_independent_variables:
463
- if self._formula_column_type_map[column] in data_types:
464
- columns_bytype.append(column)
465
-
466
- for column in self._explicit_independent_categorical:
467
- columns_bytype.append(column)
468
-
469
- self._categorical_columns = columns_bytype
470
- return columns_bytype
471
-
472
- def get_numerical_columns(self, data_types, all=False):
473
- """
474
- Function that will return all columns that belong to numerical column types.
475
- Columns present in '_explicit_independent_numerical' list are directly added as
476
- numerical columns, without type checking, where as columns in _default_independent_variables
477
- are type checked against 'data_types'.
478
-
479
- PARAMETERS:
480
- data_types:
481
- Required Argument.
482
- Specifies the list of numerical column types.
483
- Types: SQLAlchemy VisitableType or List of such types.
484
-
485
- all:
486
- Optional Argument.
487
- Specifies a boolean that will decide whether to add dependent variable as well as
488
- part of the returned columns or not.
489
- If True, the dependent variable is also considered.
490
- Default Value: False
491
- Types: bool
492
-
493
-
494
- RETURNS:
495
- List of column names which are to be classified as numerical columns.
496
-
497
- RAISES:
498
- None.
499
-
500
- EXAMPLES:
501
- # Get "numerical" type columns
502
- data_types = UtilsFunc()._get_numeric_datatypes()
503
- print(str(formula_object.get_numerical_columns(data_types)))
504
-
505
- # Get "numerical" type columns including dependent variable, if it is of type numeric.
506
- data_types = UtilsFunc()._get_numeric_datatypes()
507
- print(str(formula_object.get_numerical_columns(data_types, all=True)))
508
- """
509
- if self._numeric_columns is not None:
510
- return self._numeric_columns
511
-
512
- columns_bytype = []
513
- if all:
514
- if self._formula_column_type_map[self.__dependent_vars] in data_types:
515
- columns_bytype.append(self.__dependent_vars)
516
-
517
- for column in self._default_independent_variables:
518
- if self._formula_column_type_map[column] in data_types:
519
- columns_bytype.append(column)
520
-
521
- for column in self._explicit_independent_numerical:
522
- columns_bytype.append(column)
523
-
524
- self._numeric_columns = columns_bytype
525
- return columns_bytype
526
-
527
- def get_all_columns(self, data_types):
528
- """
529
- Function that will return all columns that belong to types specified by data_types.
530
-
531
- PARAMETERS:
532
- data_types:
533
- Required Argument.
534
- Specifies the list of categorical column types.
535
- Types: SQLAlchemy VisitableType or List of such types.
536
-
537
- RETURNS:
538
- List of column names which belong to types specified by data_types.
539
-
540
- RAISES:
541
- None.
542
-
543
- EXAMPLES:
544
- data_types = UtilsFunc()._get_all_datatypes()
545
- print(str(formula_object.get_all_columns(data_types)))
546
- """
547
- if self._all_columns is not None:
548
- return self._all_columns
549
-
550
- columns_bytype = []
551
- for column in self._get_all_vars():
552
- if self._formula_column_type_map[column] in data_types:
553
- columns_bytype.append(column)
554
-
555
- self._all_columns = columns_bytype
556
- return columns_bytype
557
-
558
- @property
559
- def all_columns(self):
560
- """
561
- DESCRIPTION:
562
- Property to get the list of all columns used in formula.
563
-
564
- PARAMETERS:
565
- None.
566
-
567
- RETURNS:
568
- List of all columns used in formula.
569
-
570
- RAISES:
571
- None.
572
-
573
- EXAMPLES:
574
- # Load the data to run the example
575
- load_example_data("decisionforest", ["housing_train"])
576
-
577
- # Create teradataml DataFrame.
578
- housing_train = DataFrame.from_table("housing_train")
579
-
580
- # Example 1 -
581
- decision_forest_out1 = DecisionForest(formula = "homestyle ~ bedrooms + lotsize + gashw + driveway + \
582
- stories + recroom + price + garagepl + bathrms + fullbase + airco + \
583
- prefarea",
584
- data = housing_train,
585
- tree_type = "classification",
586
- ntree = 50,
587
- nodesize = 1,
588
- variance = 0.0,
589
- max_depth = 12,
590
- mtry = 3,
591
- mtry_seed = 100,
592
- seed = 100)
593
-
594
- # Print all columns used in formula.
595
- decision_forest_out1.formula.all_columns
596
- """
597
- if self._all_columns is None:
598
- self._all_columns = [self.response_column]
599
-
600
- if self.categorical_columns is not None:
601
- for col in self.categorical_columns:
602
- if col not in self._all_columns:
603
- self._all_columns.append(col)
604
-
605
- if self.numeric_columns is not None:
606
- for col in self.numeric_columns:
607
- if col not in self._all_columns:
608
- self._all_columns.append(col)
609
-
610
- return self._all_columns
611
-
612
- @property
613
- def categorical_columns(self):
614
- """
615
- DESCRIPTION:
616
- Property to get the list of all independent categorical columns used in formula.
617
-
618
- PARAMETERS:
619
- None.
620
-
621
- RETURNS:
622
- List of categorical columns used in formula.
623
- If no categorical column is used in formula, property will return None.
624
-
625
- RAISES:
626
- None.
627
-
628
- EXAMPLES:
629
- # Load the data to run the example
630
- load_example_data("decisionforest", ["housing_train"])
631
-
632
- # Create teradataml DataFrame.
633
- housing_train = DataFrame.from_table("housing_train")
634
-
635
- # Example 1 -
636
- decision_forest_out1 = DecisionForest(formula = "homestyle ~ bedrooms + lotsize + gashw + driveway + \
637
- stories + recroom + price + garagepl + bathrms + fullbase + airco + \
638
- prefarea",
639
- data = housing_train,
640
- tree_type = "classification",
641
- ntree = 50,
642
- nodesize = 1,
643
- variance = 0.0,
644
- max_depth = 12,
645
- mtry = 3,
646
- mtry_seed = 100,
647
- seed = 100)
648
-
649
- # Print categorical columns used in formula.
650
- decision_forest_out1.formula.categorical_columns
651
- """
652
- return self._categorical_columns
653
-
654
- @property
655
- def numeric_columns(self):
656
- """
657
- DESCRIPTION:
658
- Property to get the list of all independent numerical columns used in formula.
659
-
660
- PARAMETERS:
661
- None.
662
-
663
- RETURNS:
664
- List of numerical columns used in formula.
665
- If no numerical column is used in formula, property will return None.
666
-
667
- RAISES:
668
- None.
669
-
670
- EXAMPLES:
671
- # Load the data to run the example
672
- load_example_data("decisionforest", ["housing_train"])
673
-
674
- # Create teradataml DataFrame.
675
- housing_train = DataFrame.from_table("housing_train")
676
-
677
- # Example 1 -
678
- decision_forest_out1 = DecisionForest(formula = "homestyle ~ bedrooms + lotsize + gashw + driveway + \
679
- stories + recroom + price + garagepl + bathrms + fullbase + airco + \
680
- prefarea",
681
- data = housing_train,
682
- tree_type = "classification",
683
- ntree = 50,
684
- nodesize = 1,
685
- variance = 0.0,
686
- max_depth = 12,
687
- mtry = 3,
688
- mtry_seed = 100,
689
- seed = 100)
690
-
691
- # Print numeric columns used in formula.
692
- decision_forest_out1.formula.numeric_columns
693
- """
694
- return self._numeric_columns
695
-
696
- @property
697
- def response_column(self):
698
- """
699
- DESCRIPTION:
700
- Property to get the response column used in formula.
701
-
702
- PARAMETERS:
703
- None.
704
-
705
- RETURNS:
706
- Returns response column.
707
-
708
- RAISES:
709
- None.
710
-
711
- EXAMPLES:
712
- # Load the data to run the example
713
- load_example_data("decisionforest", ["housing_train"])
714
-
715
- # Create teradataml DataFrame.
716
- housing_train = DataFrame.from_table("housing_train")
717
-
718
- # Example 1 -
719
- decision_forest_out1 = DecisionForest(formula = "homestyle ~ bedrooms + lotsize + gashw + driveway + \
720
- stories + recroom + price + garagepl + bathrms + fullbase + airco + \
721
- prefarea",
722
- data = housing_train,
723
- tree_type = "classification",
724
- ntree = 50,
725
- nodesize = 1,
726
- variance = 0.0,
727
- max_depth = 12,
728
- mtry = 3,
729
- mtry_seed = 100,
730
- seed = 100)
731
-
732
- # Print response column used in formula.
733
- decision_forest_out1.formula.response_column
734
- """
735
- return self._response_column
736
-
737
- def __repr__(self):
738
- """Returns the string representation for a 'formula' instance."""
739
- return self.__formula
740
-
741
- def __str__(self):
742
- """Returns the string representation for a 'formula' instance."""
1
+ """
2
+ Unpublished work.
3
+ Copyright (c) 2018 by Teradata Corporation. All rights reserved.
4
+ TERADATA CORPORATION CONFIDENTIAL AND TRADE SECRET
5
+
6
+ Primary Owner: mounika.kotha@teradata.com
7
+ Secondary Owner:
8
+
9
+ This file implements processing of formula variables that will be used
10
+ in Teradata Vantage Analytical function wrappers.
11
+ """
12
+
13
+ import inspect
14
+ import re
15
+ from teradataml.common.exceptions import TeradataMlException
16
+ from teradataml.common.messagecodes import MessageCodes
17
+ from teradataml.common.messages import Messages
18
+ from teradataml.utils.validators import _Validators
19
+
20
+ def as_categorical(columns):
21
+ """
22
+ Function to explicitly specify columns to be treated as categorical type. Sometimes, user may need to
23
+ treat column(s) as categorical column, when used in analytic function. User will be able to do so via
24
+ formula and this function. User can classify Numeric columns as categorical columns.
25
+
26
+ PARAMETERS:
27
+ columns:
28
+ Required Argument.
29
+ Specifies the name or names of column to be treated as categorical in formula for analytic function.
30
+
31
+ RAISES:
32
+ TypeError - If incorrect type of value is passed.
33
+ ValueError - If empty string is passed.
34
+
35
+ RETURNS:
36
+ A string
37
+
38
+ EXAMPLES:
39
+ # Let's say a DataFrame has numeric columns 'stories' and 'garagepl'. To treat these columns as categorical
40
+ # in analytic function execution, one can use 'as_categorical()' function and combine the output of the same
41
+ # with formula string to be passed to formula argument of analytic function.
42
+ formula = "homestyle ~ lotsize + price + fullbase + driveway + prefarea \
43
+ + {}".format(as_categorical(["stories", "garagepl"]))
44
+
45
+
46
+ """
47
+ # Validate argument types
48
+ _Validators._validate_function_arguments([["columns", columns, False, (str, list), True]])
49
+
50
+ if isinstance(columns, str):
51
+ columns = [columns]
52
+
53
+ return " + ".join(["CATEGORICAL({})".format(col) for col in columns])
54
+
55
+ def __as_numerical(columns):
56
+ """
57
+ Function to explicitly specify columns to be treated as numeric type in a formula.
58
+ Currently, this is internal function, and is not exposed. It'll be exposed as and when required.
59
+ As of now, just passing varchar column directly to Numerical Columns argument fails with error.
60
+
61
+ Provisions for Numeric columns processing are already made as part of this Formula class.
62
+ :param columns:
63
+ :return:
64
+ """
65
+ # Validate argument types
66
+ _Validators._validate_function_arguments([["columns", columns, False, (str, list), True]])
67
+
68
+ if isinstance(columns, str):
69
+ columns = [columns]
70
+
71
+ return " + ".join(["NUMERICAL({})".format(col) for col in columns])
72
+
73
+ class Formula(object):
74
+ """
75
+ This class contains all the variables and datatypes of the formula input provided
76
+ by the user.
77
+ """
78
+ def __init__(self, metaexpr, formula, arg_name, response_column=None,
79
+ all_columns=None, categorical_columns=None, numerical_columns=None):
80
+ """
81
+ Constructor for the Formula class.
82
+
83
+ PARAMETERS:
84
+ metaexpr - Parent meta data (_MetaExpression object).
85
+ formula - Specifies formula string passed by the user.
86
+ arg_name - Specifies the argument name of the argument used to specify for formula.
87
+
88
+ RAISES:
89
+ TypeError - In case of incorrect type of value passed to any argument.
90
+ ValueError - Invalid value passed to arguments.
91
+ TeradataMlException - If formula is in incorrect format.
92
+
93
+ EXAMPLE:
94
+ formula = "admitted ~ masters + gpa + stats + programming"
95
+ formula_object = Formula(data._metaexpr, formula, "formula")
96
+
97
+ RETURNS:
98
+ A formula object.
99
+ """
100
+ if inspect.stack()[1][3] == '_from_formula_attr':
101
+ self.__formula = formula
102
+ self._all_columns = all_columns
103
+ self._response_column = response_column
104
+ self._numeric_columns = numerical_columns
105
+ self._categorical_columns = categorical_columns
106
+ else:
107
+ awu_matrix = []
108
+ awu_matrix.append([arg_name, formula, False, (str), True])
109
+ awu_matrix.append(["arg_name", arg_name, False, (str), True])
110
+
111
+ # Validate argument types
112
+ _Validators._validate_function_arguments(awu_matrix)
113
+
114
+ # Validations for formula.
115
+ formula_expression = r"^(\s*\w*\s*[~]\s*)((([(\w+)|(\w+\(\w+\))|(\w+\(\.\))]\s*[+]?\s*)*\s*[(\w+)|(\w+\(\w+\))|(\w+\(\.\))]\s*)|(\.))$"
116
+ if bool(re.match(formula_expression,formula)) is False:
117
+ raise TeradataMlException(Messages.get_message(MessageCodes.FORMULA_INVALID_FORMAT, arg_name),
118
+ MessageCodes.FORMULA_INVALID_FORMAT)
119
+
120
+ # Validate that dependent variables are present.
121
+ dependent_var, independent_vars = re.split('~', formula)
122
+ if ((len(dependent_var.strip()) == 0) or (len(re.sub(' ', '', dependent_var)) == 0)):
123
+ raise TeradataMlException(Messages.get_message(MessageCodes.FORMULA_MISSING_DEPENDENT_VARIABLE, arg_name),
124
+ MessageCodes.FORMULA_MISSING_DEPENDENT_VARIABLE)
125
+
126
+ # Variables holding formula information.
127
+ self.__dependent_vars = dependent_var.strip()
128
+ self.__independent_var_str = independent_vars
129
+ self.__independent_vars = []
130
+ self.__metaexpr = metaexpr
131
+ self.__all_col_notation_used = False
132
+ self._formula_column_type_map = {}
133
+ self._all_columns = None
134
+ self._categorical_columns = None
135
+ self._numeric_columns = None
136
+ self._response_column = self.__dependent_vars
137
+ self.__formula = formula
138
+
139
+ # Variables used for processing explicit variables.
140
+ # Variables that will be classified based on their types.
141
+ self._default_independent_variables = []
142
+ # Variables that will be classified as 'Categorical' regardless of their types.
143
+ self._explicit_independent_categorical = []
144
+ # Variables that will be classified as 'Numerical' regardless of their types.
145
+ self._explicit_independent_numerical = []
146
+
147
+ # Patterns to identify the explicit classificatioon for some columns.
148
+ self.__EXPLICIT_CATEGORICAL_PATTERN = r"CATEGORICAL\((.+)\)"
149
+ self.__EXPLICIT_NUMERICAL_PATTERN = r"NUMERICAL\((.+)\)"
150
+ self.__EXPLICIT_CATEGORICAL_PATTERN_ALL_COL = r"CATEGORICAL\(\.\)"
151
+ self.__EXPLICIT_NUMERICAL_PATTERN_ALL_COL = r"NUMERICAL\(\.\)"
152
+
153
+ # Process independent variables.
154
+ self.__process_independent_vars()
155
+
156
+ # Validate columns used as independent and dependent variables exist in dataframe.
157
+ _Validators._validate_column_exists_in_dataframe(self.__independent_vars, self.__metaexpr)
158
+ _Validators._validate_column_exists_in_dataframe(self.__dependent_vars, self.__metaexpr)
159
+
160
+ # Set the column type for all variables in formula.
161
+ for column in self._get_independent_vars():
162
+ self.__set_column_type(column)
163
+ self.__set_column_type(self.__dependent_vars)
164
+
165
+ @classmethod
166
+ def _from_formula_attr(cls, formula, response_column=None, all_columns=None,
167
+ categorical_columns=None, numerical_columns=None):
168
+
169
+ """
170
+ Classmethod which will be used by Model Cataloging, to instantiate this Formula class.
171
+ """
172
+ return cls(metaexpr=None, formula=formula, arg_name="formula", response_column=response_column,
173
+ all_columns=all_columns, categorical_columns=categorical_columns,
174
+ numerical_columns=numerical_columns)
175
+
176
+ def __set_column_type(self, column):
177
+ """
178
+ Internal function, to map column name to column type.
179
+
180
+ PARAMETER:
181
+ column:
182
+ Required Argument.
183
+ Name of the column to be added to the mapper.
184
+
185
+ RAISES:
186
+ None.
187
+
188
+ RETURNS:
189
+ None.
190
+
191
+ EXAMPLES:
192
+ self.__set_column_type(self.__dependent_vars)
193
+ """
194
+ for c in self.__metaexpr.c:
195
+ if column == c.name:
196
+ self._formula_column_type_map[column] = type(c.type)
197
+
198
+ def __classify_as_categorical(self, col, all=False):
199
+ """
200
+ Method to check whether the column provided in the string must be classified as categorical or not.
201
+
202
+ PARAMETERS:
203
+ col:
204
+ Required Argument.
205
+ Specifies column string from the formula.
206
+ Types: str
207
+
208
+ all:
209
+ Optional Argument.
210
+ Specifies boolean flag asking to validate for all columns to be classified as categorical or not.
211
+ Types: bool
212
+
213
+ RETURNS:
214
+ True, if columns is to be classified as Categorical
215
+
216
+ RAISES:
217
+ TeradataMlExacpetion - If multiple '.' are used in formula.
218
+
219
+ EXAMPLES:
220
+ self.__classify_as_categorical(col)
221
+ """
222
+ if all:
223
+ pattern_cat = re.compile(self.__EXPLICIT_CATEGORICAL_PATTERN_ALL_COL)
224
+ match_cat = pattern_cat.match(col)
225
+ if match_cat is not None:
226
+ self._explicit_independent_categorical = list(set([c.name for c in self.__metaexpr.c]) -
227
+ {self._get_dependent_vars()})
228
+ return True
229
+
230
+ else:
231
+ pattern_cat = re.compile(self.__EXPLICIT_CATEGORICAL_PATTERN)
232
+ match_cat = pattern_cat.match(col)
233
+ if match_cat is not None:
234
+ if match_cat.group(1).strip() == ".":
235
+ if self.__all_col_notation_used:
236
+ raise TeradataMlException(Messages.get_message(MessageCodes.FORMULA_INVALID_FORMAT,
237
+ "mulitple time all column dot (.) notation is used"),
238
+ MessageCodes.FORMULA_INVALID_FORMAT)
239
+ else:
240
+ self.__all_col_notation_used = True
241
+ self._explicit_independent_categorical.append(match_cat.group(1).strip())
242
+ return True
243
+
244
+ return False
245
+
246
+ def __classify_as_numerical(self, col, all=False):
247
+ """
248
+ Method to check whether the column provided in the string must be classified as numerical or not.
249
+
250
+ PARAMETERS:
251
+ col:
252
+ Required Argument.
253
+ Specifies column string from the formula.
254
+ Types: str
255
+
256
+ all:
257
+ Optional Argument.
258
+ Specifies boolean flag asking to validate for all columns to be classified as numerical or not.
259
+ Types: bool
260
+
261
+ RETURNS:
262
+ True, if columns is to be classified as Categorical
263
+
264
+ RAISES:
265
+ TeradataMlExacpetion - If multiple '.' are used in formula.
266
+
267
+ EXAMPLES:
268
+ self.__classify_as_numerical(col)
269
+ """
270
+ if all:
271
+ pattern_cat = re.compile(self.__EXPLICIT_NUMERICAL_PATTERN_ALL_COL)
272
+ match_cat = pattern_cat.match(col)
273
+ if match_cat is not None:
274
+ self._explicit_independent_numerical = list(set([c.name for c in self.__metaexpr.c]) -
275
+ {self._get_dependent_vars()})
276
+ return True
277
+
278
+ else:
279
+ pattern_cat = re.compile(self.__EXPLICIT_NUMERICAL_PATTERN)
280
+ match_cat = pattern_cat.match(col)
281
+ if match_cat is not None:
282
+ if match_cat.group(1).strip() == ".":
283
+ if self.__all_col_notation_used:
284
+ raise TeradataMlException(Messages.get_message(MessageCodes.FORMULA_INVALID_FORMAT,
285
+ "mulitple time all column dot (.) notation is used"),
286
+ MessageCodes.FORMULA_INVALID_FORMAT)
287
+ else:
288
+ self.__all_col_notation_used = True
289
+ self._explicit_independent_numerical.append(match_cat.group(1).strip())
290
+ return True
291
+
292
+ return False
293
+
294
+ def __process_independent_vars(self):
295
+ """
296
+ Internal method to process variables on the RHS of the formula.
297
+
298
+ PARAMETERS:
299
+ None.
300
+
301
+ RAISES:
302
+ None.
303
+
304
+ RETURNS:
305
+ True on success of processing independent varaibles.
306
+
307
+ EXAMPLES:
308
+ self.__process_independent_vars()
309
+ """
310
+ # If independent variable is ".", then use the same.
311
+ if self.__independent_var_str.strip() == ".":
312
+ self.__independent_vars = list(set([c.name for c in self.__metaexpr.c]) - {self.__dependent_vars})
313
+ self._default_independent_variables = self.__independent_vars
314
+ return True
315
+
316
+ # If all independent variables are needed to be classified as categorical or numerical,
317
+ # then update the lists accordingly.
318
+ if self.__classify_as_categorical(self.__independent_var_str.strip(), True):
319
+ # If dot '.' notation is used in as_categorical, that means,
320
+ # user wants to classify all columns as categorical.
321
+ self.__independent_vars = list(set([c.name for c in self.__metaexpr.c]) - {self.__dependent_vars})
322
+ self._explicit_independent_categorical = self._get_independent_vars()
323
+ return True
324
+
325
+ if self.__classify_as_numerical(self.__independent_var_str.strip(), True):
326
+ # If dot '.' notation is used in as_numerical, that means,
327
+ # user wants to classify all columns as numerical.
328
+ self.__independent_vars = list(set([c.name for c in self.__metaexpr.c]) - {self.__dependent_vars})
329
+ self._explicit_independent_numerical = self._get_independent_vars()
330
+ return True
331
+
332
+ # Check whether formula contains any column that must classified as categorical/numerical column.
333
+ for col in self._var_split(self.__independent_var_str):
334
+ # First let's check if any column, must be categorized as categorical/numerical column or not.
335
+ # If not add it directly to independent_vars list.
336
+ if not self.__classify_as_categorical(col) and not self.__classify_as_numerical(col):
337
+ self._default_independent_variables.append(col)
338
+
339
+ if len(self._explicit_independent_categorical) > 0:
340
+ # Process columns from 'explicit_independent_categorical' for explicit classification as Categorical
341
+ self.__process_explicit_independent_variables()
342
+
343
+ if len(self._explicit_independent_numerical) > 0:
344
+ # Process columns from 'explicit_independent_numerical' for explicit classification as Numerical
345
+ self.__process_explicit_independent_variables(True)
346
+
347
+ self.__independent_vars = self._default_independent_variables + self._explicit_independent_categorical \
348
+ + self._explicit_independent_numerical
349
+
350
+ return True
351
+
352
+ def __process_explicit_independent_variables(self, numerical=False):
353
+ """
354
+ Internal method to process independent variables, which have been asked by user to be
355
+ explicitly classified as either categorical or numerical.
356
+
357
+ PARAMETERS:
358
+ numerical:
359
+ Optional Argument.
360
+ Specifies a flag that allows us to process for numerical variables, if set to True.
361
+ Otherwise, processing happens for categorical variables.
362
+ Default Value: False
363
+ Types: bool
364
+
365
+ RAISES:
366
+ None.
367
+
368
+ RETURNS:
369
+ None.
370
+
371
+ EXAMPLES:
372
+ # To process categorical varaibles.
373
+ self.__process_explicit_independent_variables()
374
+
375
+ # To process numerical varaibles.
376
+ self.__process_explicit_independent_variables(True)
377
+ """
378
+ if not numerical:
379
+ explicit_list = self._explicit_independent_categorical
380
+ other_explicit_list = self._explicit_independent_numerical
381
+ else:
382
+ explicit_list = self._explicit_independent_numerical
383
+ other_explicit_list = self._explicit_independent_categorical
384
+
385
+ if "." in explicit_list:
386
+ # If all column notation '.' dot is used, then we must include all columns in
387
+ # CATEGORICAL/NUMERICAL category, excluding following columns:
388
+ # 1. Dependent variable column
389
+ # 2. Default independent variables specified by user, i.e., variables specified without casting.
390
+ # 3. NUMERICAL/CATEGORICAL independent variable explicitly specified by user using
391
+ # 'as_numerical()/as_categorical()'.
392
+ explicit_list = list(set([c.name for c in self.__metaexpr.c]) - {self.__dependent_vars}
393
+ - set(self._default_independent_variables) - set(other_explicit_list))
394
+
395
+ if not numerical:
396
+ self._explicit_independent_categorical = explicit_list
397
+ else:
398
+ self._explicit_independent_numerical = explicit_list
399
+
400
+ def _get_all_vars(self):
401
+ """
402
+ Method returns a list which contains all the variables of the formula.
403
+ """
404
+ all_vars = self.__independent_vars
405
+ if self.__dependent_vars is not None:
406
+ all_vars.insert(0,self._get_dependent_vars())
407
+ return all_vars
408
+
409
+ def _get_dependent_vars(self):
410
+ """
411
+ Method returns variable on the LHS of the formula.
412
+ """
413
+ return self.__dependent_vars.strip()
414
+
415
+ def _get_independent_vars(self):
416
+ """
417
+ Method returns variable on the RHS of the formula.
418
+ """
419
+ return self.__independent_vars
420
+
421
+ def _var_split(self, var):
422
+ """
423
+ Split string into multiple strings on + or -.
424
+
425
+ PARAMETERS:
426
+ string - var to split
427
+
428
+ RETURNS:
429
+ A list of strings
430
+ """
431
+ split_expr = re.split(r"[+-]", var)
432
+ varlist = filter(None,split_expr)
433
+ return [col.strip() for col in list(varlist)]
434
+
435
+ def get_categorical_columns(self, data_types):
436
+ """
437
+ Function that will return all columns that belong to categorical column types.
438
+ Columns present in '_explicit_independent_categorical' list are directly added as
439
+ categorical columns, without type checking, where as columns in _default_independent_variables
440
+ are type checked against 'data_types'.
441
+
442
+ PARAMETERS:
443
+ data_types:
444
+ Required Argument.
445
+ Specifies the list of categorical column types.
446
+ Types: SQLAlchemy VisitableType or List of such types.
447
+
448
+ RETURNS:
449
+ List of column names which are to be classified as categorical columns.
450
+
451
+ RAISES:
452
+ None.
453
+
454
+ EXAMPLES:
455
+ data_types = UtilsFunc()._get_categorical_datatypes()
456
+ print(str(formula_object.get_categorical_columns(data_types)))
457
+ """
458
+ if self._categorical_columns is not None:
459
+ return self._categorical_columns
460
+
461
+ columns_bytype = []
462
+ for column in self._default_independent_variables:
463
+ if self._formula_column_type_map[column] in data_types:
464
+ columns_bytype.append(column)
465
+
466
+ for column in self._explicit_independent_categorical:
467
+ columns_bytype.append(column)
468
+
469
+ self._categorical_columns = columns_bytype
470
+ return columns_bytype
471
+
472
+ def get_numerical_columns(self, data_types, all=False):
473
+ """
474
+ Function that will return all columns that belong to numerical column types.
475
+ Columns present in '_explicit_independent_numerical' list are directly added as
476
+ numerical columns, without type checking, where as columns in _default_independent_variables
477
+ are type checked against 'data_types'.
478
+
479
+ PARAMETERS:
480
+ data_types:
481
+ Required Argument.
482
+ Specifies the list of numerical column types.
483
+ Types: SQLAlchemy VisitableType or List of such types.
484
+
485
+ all:
486
+ Optional Argument.
487
+ Specifies a boolean that will decide whether to add dependent variable as well as
488
+ part of the returned columns or not.
489
+ If True, the dependent variable is also considered.
490
+ Default Value: False
491
+ Types: bool
492
+
493
+
494
+ RETURNS:
495
+ List of column names which are to be classified as numerical columns.
496
+
497
+ RAISES:
498
+ None.
499
+
500
+ EXAMPLES:
501
+ # Get "numerical" type columns
502
+ data_types = UtilsFunc()._get_numeric_datatypes()
503
+ print(str(formula_object.get_numerical_columns(data_types)))
504
+
505
+ # Get "numerical" type columns including dependent variable, if it is of type numeric.
506
+ data_types = UtilsFunc()._get_numeric_datatypes()
507
+ print(str(formula_object.get_numerical_columns(data_types, all=True)))
508
+ """
509
+ if self._numeric_columns is not None:
510
+ return self._numeric_columns
511
+
512
+ columns_bytype = []
513
+ if all:
514
+ if self._formula_column_type_map[self.__dependent_vars] in data_types:
515
+ columns_bytype.append(self.__dependent_vars)
516
+
517
+ for column in self._default_independent_variables:
518
+ if self._formula_column_type_map[column] in data_types:
519
+ columns_bytype.append(column)
520
+
521
+ for column in self._explicit_independent_numerical:
522
+ columns_bytype.append(column)
523
+
524
+ self._numeric_columns = columns_bytype
525
+ return columns_bytype
526
+
527
+ def get_all_columns(self, data_types):
528
+ """
529
+ Function that will return all columns that belong to types specified by data_types.
530
+
531
+ PARAMETERS:
532
+ data_types:
533
+ Required Argument.
534
+ Specifies the list of categorical column types.
535
+ Types: SQLAlchemy VisitableType or List of such types.
536
+
537
+ RETURNS:
538
+ List of column names which belong to types specified by data_types.
539
+
540
+ RAISES:
541
+ None.
542
+
543
+ EXAMPLES:
544
+ data_types = UtilsFunc()._get_all_datatypes()
545
+ print(str(formula_object.get_all_columns(data_types)))
546
+ """
547
+ if self._all_columns is not None:
548
+ return self._all_columns
549
+
550
+ columns_bytype = []
551
+ for column in self._get_all_vars():
552
+ if self._formula_column_type_map[column] in data_types:
553
+ columns_bytype.append(column)
554
+
555
+ self._all_columns = columns_bytype
556
+ return columns_bytype
557
+
558
+ @property
559
+ def all_columns(self):
560
+ """
561
+ DESCRIPTION:
562
+ Property to get the list of all columns used in formula.
563
+
564
+ PARAMETERS:
565
+ None.
566
+
567
+ RETURNS:
568
+ List of all columns used in formula.
569
+
570
+ RAISES:
571
+ None.
572
+
573
+ EXAMPLES:
574
+ # Load the data to run the example
575
+ load_example_data("decisionforest", ["housing_train"])
576
+
577
+ # Create teradataml DataFrame.
578
+ housing_train = DataFrame.from_table("housing_train")
579
+
580
+ # Example 1 -
581
+ decision_forest_out1 = DecisionForest(formula = "homestyle ~ bedrooms + lotsize + gashw + driveway + \
582
+ stories + recroom + price + garagepl + bathrms + fullbase + airco + \
583
+ prefarea",
584
+ data = housing_train,
585
+ tree_type = "classification",
586
+ ntree = 50,
587
+ nodesize = 1,
588
+ variance = 0.0,
589
+ max_depth = 12,
590
+ mtry = 3,
591
+ mtry_seed = 100,
592
+ seed = 100)
593
+
594
+ # Print all columns used in formula.
595
+ decision_forest_out1.formula.all_columns
596
+ """
597
+ if self._all_columns is None:
598
+ self._all_columns = [self.response_column]
599
+
600
+ if self.categorical_columns is not None:
601
+ for col in self.categorical_columns:
602
+ if col not in self._all_columns:
603
+ self._all_columns.append(col)
604
+
605
+ if self.numeric_columns is not None:
606
+ for col in self.numeric_columns:
607
+ if col not in self._all_columns:
608
+ self._all_columns.append(col)
609
+
610
+ return self._all_columns
611
+
612
+ @property
613
+ def categorical_columns(self):
614
+ """
615
+ DESCRIPTION:
616
+ Property to get the list of all independent categorical columns used in formula.
617
+
618
+ PARAMETERS:
619
+ None.
620
+
621
+ RETURNS:
622
+ List of categorical columns used in formula.
623
+ If no categorical column is used in formula, property will return None.
624
+
625
+ RAISES:
626
+ None.
627
+
628
+ EXAMPLES:
629
+ # Load the data to run the example
630
+ load_example_data("decisionforest", ["housing_train"])
631
+
632
+ # Create teradataml DataFrame.
633
+ housing_train = DataFrame.from_table("housing_train")
634
+
635
+ # Example 1 -
636
+ decision_forest_out1 = DecisionForest(formula = "homestyle ~ bedrooms + lotsize + gashw + driveway + \
637
+ stories + recroom + price + garagepl + bathrms + fullbase + airco + \
638
+ prefarea",
639
+ data = housing_train,
640
+ tree_type = "classification",
641
+ ntree = 50,
642
+ nodesize = 1,
643
+ variance = 0.0,
644
+ max_depth = 12,
645
+ mtry = 3,
646
+ mtry_seed = 100,
647
+ seed = 100)
648
+
649
+ # Print categorical columns used in formula.
650
+ decision_forest_out1.formula.categorical_columns
651
+ """
652
+ return self._categorical_columns
653
+
654
+ @property
655
+ def numeric_columns(self):
656
+ """
657
+ DESCRIPTION:
658
+ Property to get the list of all independent numerical columns used in formula.
659
+
660
+ PARAMETERS:
661
+ None.
662
+
663
+ RETURNS:
664
+ List of numerical columns used in formula.
665
+ If no numerical column is used in formula, property will return None.
666
+
667
+ RAISES:
668
+ None.
669
+
670
+ EXAMPLES:
671
+ # Load the data to run the example
672
+ load_example_data("decisionforest", ["housing_train"])
673
+
674
+ # Create teradataml DataFrame.
675
+ housing_train = DataFrame.from_table("housing_train")
676
+
677
+ # Example 1 -
678
+ decision_forest_out1 = DecisionForest(formula = "homestyle ~ bedrooms + lotsize + gashw + driveway + \
679
+ stories + recroom + price + garagepl + bathrms + fullbase + airco + \
680
+ prefarea",
681
+ data = housing_train,
682
+ tree_type = "classification",
683
+ ntree = 50,
684
+ nodesize = 1,
685
+ variance = 0.0,
686
+ max_depth = 12,
687
+ mtry = 3,
688
+ mtry_seed = 100,
689
+ seed = 100)
690
+
691
+ # Print numeric columns used in formula.
692
+ decision_forest_out1.formula.numeric_columns
693
+ """
694
+ return self._numeric_columns
695
+
696
+ @property
697
+ def response_column(self):
698
+ """
699
+ DESCRIPTION:
700
+ Property to get the response column used in formula.
701
+
702
+ PARAMETERS:
703
+ None.
704
+
705
+ RETURNS:
706
+ Returns response column.
707
+
708
+ RAISES:
709
+ None.
710
+
711
+ EXAMPLES:
712
+ # Load the data to run the example
713
+ load_example_data("decisionforest", ["housing_train"])
714
+
715
+ # Create teradataml DataFrame.
716
+ housing_train = DataFrame.from_table("housing_train")
717
+
718
+ # Example 1 -
719
+ decision_forest_out1 = DecisionForest(formula = "homestyle ~ bedrooms + lotsize + gashw + driveway + \
720
+ stories + recroom + price + garagepl + bathrms + fullbase + airco + \
721
+ prefarea",
722
+ data = housing_train,
723
+ tree_type = "classification",
724
+ ntree = 50,
725
+ nodesize = 1,
726
+ variance = 0.0,
727
+ max_depth = 12,
728
+ mtry = 3,
729
+ mtry_seed = 100,
730
+ seed = 100)
731
+
732
+ # Print response column used in formula.
733
+ decision_forest_out1.formula.response_column
734
+ """
735
+ return self._response_column
736
+
737
+ def __repr__(self):
738
+ """Returns the string representation for a 'formula' instance."""
739
+ return self.__formula
740
+
741
+ def __str__(self):
742
+ """Returns the string representation for a 'formula' instance."""
743
743
  return self.__formula