teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (1285) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +1864 -1640
  4. teradataml/__init__.py +70 -60
  5. teradataml/_version.py +11 -11
  6. teradataml/analytics/Transformations.py +2995 -2995
  7. teradataml/analytics/__init__.py +81 -83
  8. teradataml/analytics/analytic_function_executor.py +2013 -2010
  9. teradataml/analytics/analytic_query_generator.py +958 -958
  10. teradataml/analytics/byom/H2OPredict.py +514 -514
  11. teradataml/analytics/byom/PMMLPredict.py +437 -437
  12. teradataml/analytics/byom/__init__.py +14 -14
  13. teradataml/analytics/json_parser/__init__.py +130 -130
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
  15. teradataml/analytics/json_parser/json_store.py +191 -191
  16. teradataml/analytics/json_parser/metadata.py +1637 -1637
  17. teradataml/analytics/json_parser/utils.py +804 -803
  18. teradataml/analytics/meta_class.py +196 -196
  19. teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
  21. teradataml/analytics/sqle/__init__.py +97 -110
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
  24. teradataml/analytics/table_operator/__init__.py +10 -10
  25. teradataml/analytics/uaf/__init__.py +63 -63
  26. teradataml/analytics/utils.py +693 -692
  27. teradataml/analytics/valib.py +1603 -1600
  28. teradataml/automl/__init__.py +1628 -0
  29. teradataml/automl/custom_json_utils.py +1270 -0
  30. teradataml/automl/data_preparation.py +993 -0
  31. teradataml/automl/data_transformation.py +727 -0
  32. teradataml/automl/feature_engineering.py +1648 -0
  33. teradataml/automl/feature_exploration.py +547 -0
  34. teradataml/automl/model_evaluation.py +163 -0
  35. teradataml/automl/model_training.py +887 -0
  36. teradataml/catalog/__init__.py +1 -3
  37. teradataml/catalog/byom.py +1759 -1716
  38. teradataml/catalog/function_argument_mapper.py +859 -861
  39. teradataml/catalog/model_cataloging_utils.py +491 -1510
  40. teradataml/clients/pkce_client.py +481 -481
  41. teradataml/common/aed_utils.py +6 -2
  42. teradataml/common/bulk_exposed_utils.py +111 -111
  43. teradataml/common/constants.py +1433 -1441
  44. teradataml/common/deprecations.py +160 -0
  45. teradataml/common/exceptions.py +73 -73
  46. teradataml/common/formula.py +742 -742
  47. teradataml/common/garbagecollector.py +592 -635
  48. teradataml/common/messagecodes.py +422 -431
  49. teradataml/common/messages.py +227 -231
  50. teradataml/common/sqlbundle.py +693 -693
  51. teradataml/common/td_coltype_code_to_tdtype.py +48 -48
  52. teradataml/common/utils.py +2418 -2500
  53. teradataml/common/warnings.py +25 -25
  54. teradataml/common/wrapper_utils.py +1 -110
  55. teradataml/config/dummy_file1.cfg +4 -4
  56. teradataml/config/dummy_file2.cfg +2 -2
  57. teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
  58. teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
  59. teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
  60. teradataml/context/aed_context.py +217 -217
  61. teradataml/context/context.py +1071 -999
  62. teradataml/data/A_loan.csv +19 -19
  63. teradataml/data/BINARY_REALS_LEFT.csv +11 -11
  64. teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
  65. teradataml/data/B_loan.csv +49 -49
  66. teradataml/data/BuoyData2.csv +17 -17
  67. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
  68. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
  69. teradataml/data/Convolve2RealsLeft.csv +5 -5
  70. teradataml/data/Convolve2RealsRight.csv +5 -5
  71. teradataml/data/Convolve2ValidLeft.csv +11 -11
  72. teradataml/data/Convolve2ValidRight.csv +11 -11
  73. teradataml/data/DFFTConv_Real_8_8.csv +65 -65
  74. teradataml/data/Orders1_12mf.csv +24 -24
  75. teradataml/data/Pi_loan.csv +7 -7
  76. teradataml/data/SMOOTHED_DATA.csv +7 -7
  77. teradataml/data/TestDFFT8.csv +9 -9
  78. teradataml/data/TestRiver.csv +109 -109
  79. teradataml/data/Traindata.csv +28 -28
  80. teradataml/data/acf.csv +17 -17
  81. teradataml/data/adaboost_example.json +34 -34
  82. teradataml/data/adaboostpredict_example.json +24 -24
  83. teradataml/data/additional_table.csv +10 -10
  84. teradataml/data/admissions_test.csv +21 -21
  85. teradataml/data/admissions_train.csv +41 -41
  86. teradataml/data/admissions_train_nulls.csv +41 -41
  87. teradataml/data/ageandheight.csv +13 -13
  88. teradataml/data/ageandpressure.csv +31 -31
  89. teradataml/data/antiselect_example.json +36 -36
  90. teradataml/data/antiselect_input.csv +8 -8
  91. teradataml/data/antiselect_input_mixed_case.csv +8 -8
  92. teradataml/data/applicant_external.csv +6 -6
  93. teradataml/data/applicant_reference.csv +6 -6
  94. teradataml/data/arima_example.json +9 -9
  95. teradataml/data/assortedtext_input.csv +8 -8
  96. teradataml/data/attribution_example.json +33 -33
  97. teradataml/data/attribution_sample_table.csv +27 -27
  98. teradataml/data/attribution_sample_table1.csv +6 -6
  99. teradataml/data/attribution_sample_table2.csv +11 -11
  100. teradataml/data/bank_churn.csv +10001 -0
  101. teradataml/data/bank_web_clicks1.csv +42 -42
  102. teradataml/data/bank_web_clicks2.csv +91 -91
  103. teradataml/data/bank_web_url.csv +85 -85
  104. teradataml/data/barrier.csv +2 -2
  105. teradataml/data/barrier_new.csv +3 -3
  106. teradataml/data/betweenness_example.json +13 -13
  107. teradataml/data/bin_breaks.csv +8 -8
  108. teradataml/data/bin_fit_ip.csv +3 -3
  109. teradataml/data/binary_complex_left.csv +11 -11
  110. teradataml/data/binary_complex_right.csv +11 -11
  111. teradataml/data/binary_matrix_complex_left.csv +21 -21
  112. teradataml/data/binary_matrix_complex_right.csv +21 -21
  113. teradataml/data/binary_matrix_real_left.csv +21 -21
  114. teradataml/data/binary_matrix_real_right.csv +21 -21
  115. teradataml/data/blood2ageandweight.csv +26 -26
  116. teradataml/data/bmi.csv +501 -0
  117. teradataml/data/boston.csv +507 -507
  118. teradataml/data/buoydata_mix.csv +11 -11
  119. teradataml/data/burst_data.csv +5 -5
  120. teradataml/data/burst_example.json +20 -20
  121. teradataml/data/byom_example.json +17 -17
  122. teradataml/data/bytes_table.csv +3 -3
  123. teradataml/data/cal_housing_ex_raw.csv +70 -70
  124. teradataml/data/callers.csv +7 -7
  125. teradataml/data/calls.csv +10 -10
  126. teradataml/data/cars_hist.csv +33 -33
  127. teradataml/data/cat_table.csv +24 -24
  128. teradataml/data/ccm_example.json +31 -31
  129. teradataml/data/ccm_input.csv +91 -91
  130. teradataml/data/ccm_input2.csv +13 -13
  131. teradataml/data/ccmexample.csv +101 -101
  132. teradataml/data/ccmprepare_example.json +8 -8
  133. teradataml/data/ccmprepare_input.csv +91 -91
  134. teradataml/data/cfilter_example.json +12 -12
  135. teradataml/data/changepointdetection_example.json +18 -18
  136. teradataml/data/changepointdetectionrt_example.json +8 -8
  137. teradataml/data/chi_sq.csv +2 -2
  138. teradataml/data/churn_data.csv +14 -14
  139. teradataml/data/churn_emission.csv +35 -35
  140. teradataml/data/churn_initial.csv +3 -3
  141. teradataml/data/churn_state_transition.csv +5 -5
  142. teradataml/data/citedges_2.csv +745 -745
  143. teradataml/data/citvertices_2.csv +1210 -1210
  144. teradataml/data/clicks2.csv +16 -16
  145. teradataml/data/clickstream.csv +12 -12
  146. teradataml/data/clickstream1.csv +11 -11
  147. teradataml/data/closeness_example.json +15 -15
  148. teradataml/data/complaints.csv +21 -21
  149. teradataml/data/complaints_mini.csv +3 -3
  150. teradataml/data/complaints_testtoken.csv +224 -224
  151. teradataml/data/complaints_tokens_test.csv +353 -353
  152. teradataml/data/complaints_traintoken.csv +472 -472
  153. teradataml/data/computers_category.csv +1001 -1001
  154. teradataml/data/computers_test1.csv +1252 -1252
  155. teradataml/data/computers_train1.csv +5009 -5009
  156. teradataml/data/computers_train1_clustered.csv +5009 -5009
  157. teradataml/data/confusionmatrix_example.json +9 -9
  158. teradataml/data/conversion_event_table.csv +3 -3
  159. teradataml/data/corr_input.csv +17 -17
  160. teradataml/data/correlation_example.json +11 -11
  161. teradataml/data/coxhazardratio_example.json +39 -39
  162. teradataml/data/coxph_example.json +15 -15
  163. teradataml/data/coxsurvival_example.json +28 -28
  164. teradataml/data/cpt.csv +41 -41
  165. teradataml/data/credit_ex_merged.csv +45 -45
  166. teradataml/data/customer_loyalty.csv +301 -301
  167. teradataml/data/customer_loyalty_newseq.csv +31 -31
  168. teradataml/data/dataframe_example.json +146 -146
  169. teradataml/data/decisionforest_example.json +37 -37
  170. teradataml/data/decisionforestpredict_example.json +38 -38
  171. teradataml/data/decisiontree_example.json +21 -21
  172. teradataml/data/decisiontreepredict_example.json +45 -45
  173. teradataml/data/dfft2_size4_real.csv +17 -17
  174. teradataml/data/dfft2_test_matrix16.csv +17 -17
  175. teradataml/data/dfft2conv_real_4_4.csv +65 -65
  176. teradataml/data/diabetes.csv +443 -443
  177. teradataml/data/diabetes_test.csv +89 -89
  178. teradataml/data/dict_table.csv +5 -5
  179. teradataml/data/docperterm_table.csv +4 -4
  180. teradataml/data/docs/__init__.py +1 -1
  181. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
  182. teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
  183. teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
  184. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
  185. teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
  186. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
  187. teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
  188. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
  189. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
  190. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
  191. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
  192. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
  193. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
  194. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
  195. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
  196. teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
  197. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
  198. teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
  199. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
  200. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
  201. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
  202. teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
  203. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
  204. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
  205. teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
  206. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
  207. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
  208. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
  209. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +132 -132
  210. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +103 -103
  211. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
  212. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +101 -101
  213. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
  214. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
  215. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
  216. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
  217. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
  218. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
  219. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
  220. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
  221. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
  222. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
  223. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
  224. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
  225. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
  226. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
  227. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
  228. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
  229. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
  230. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
  231. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
  232. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
  233. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
  234. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +126 -126
  235. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
  236. teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
  237. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
  238. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
  239. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
  240. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
  241. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
  242. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
  243. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +243 -243
  244. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
  245. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
  246. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
  247. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
  248. teradataml/data/docs/sqle/docs_17_20/FTest.py +160 -160
  249. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
  250. teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
  251. teradataml/data/docs/sqle/docs_17_20/GLM.py +380 -380
  252. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
  253. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
  254. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
  255. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +123 -123
  256. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
  257. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
  258. teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
  259. teradataml/data/docs/sqle/docs_17_20/KMeans.py +204 -204
  260. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
  261. teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
  262. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
  263. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
  264. teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
  265. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
  266. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
  267. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
  268. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +117 -117
  269. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
  270. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
  271. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
  272. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
  273. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +225 -225
  274. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +115 -115
  275. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
  276. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
  277. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
  278. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
  279. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
  280. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
  281. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
  282. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
  283. teradataml/data/docs/sqle/docs_17_20/ROC.py +163 -163
  284. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
  285. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
  286. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
  287. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
  288. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
  289. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
  290. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
  291. teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
  292. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +202 -202
  293. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
  294. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +197 -197
  295. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +110 -109
  296. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
  297. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
  298. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
  299. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
  300. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
  301. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
  302. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
  303. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
  304. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +171 -171
  305. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
  306. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
  307. teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
  308. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
  309. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
  310. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
  311. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
  312. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
  313. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
  314. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
  315. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
  316. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +353 -353
  317. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +275 -275
  318. teradataml/data/docs/sqle/docs_17_20/ZTest.py +155 -155
  319. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
  320. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
  321. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
  322. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
  323. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
  324. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
  325. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
  326. teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
  327. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
  328. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
  329. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
  330. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
  331. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
  332. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
  333. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
  334. teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
  335. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
  336. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
  337. teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
  338. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
  339. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
  340. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
  341. teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
  342. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
  343. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
  344. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
  345. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
  346. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
  347. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
  348. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
  349. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
  350. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
  351. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
  352. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
  353. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
  354. teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
  355. teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
  356. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
  357. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
  358. teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
  359. teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
  360. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
  361. teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
  362. teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
  363. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
  364. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
  365. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
  366. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
  367. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
  368. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
  369. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
  370. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
  371. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
  372. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
  373. teradataml/data/dtw_example.json +17 -17
  374. teradataml/data/dtw_t1.csv +11 -11
  375. teradataml/data/dtw_t2.csv +4 -4
  376. teradataml/data/dwt2d_example.json +15 -15
  377. teradataml/data/dwt_example.json +14 -14
  378. teradataml/data/dwt_filter_dim.csv +5 -5
  379. teradataml/data/emission.csv +9 -9
  380. teradataml/data/emp_table_by_dept.csv +19 -19
  381. teradataml/data/employee_info.csv +4 -4
  382. teradataml/data/employee_table.csv +6 -6
  383. teradataml/data/excluding_event_table.csv +2 -2
  384. teradataml/data/finance_data.csv +6 -6
  385. teradataml/data/finance_data2.csv +61 -61
  386. teradataml/data/finance_data3.csv +93 -93
  387. teradataml/data/fish.csv +160 -0
  388. teradataml/data/fm_blood2ageandweight.csv +26 -26
  389. teradataml/data/fmeasure_example.json +11 -11
  390. teradataml/data/followers_leaders.csv +10 -10
  391. teradataml/data/fpgrowth_example.json +12 -12
  392. teradataml/data/frequentpaths_example.json +29 -29
  393. teradataml/data/friends.csv +9 -9
  394. teradataml/data/fs_input.csv +33 -33
  395. teradataml/data/fs_input1.csv +33 -33
  396. teradataml/data/genData.csv +513 -513
  397. teradataml/data/geodataframe_example.json +39 -39
  398. teradataml/data/glass_types.csv +215 -0
  399. teradataml/data/glm_admissions_model.csv +12 -12
  400. teradataml/data/glm_example.json +29 -29
  401. teradataml/data/glml1l2_example.json +28 -28
  402. teradataml/data/glml1l2predict_example.json +54 -54
  403. teradataml/data/glmpredict_example.json +54 -54
  404. teradataml/data/gq_t1.csv +21 -21
  405. teradataml/data/hconvolve_complex_right.csv +5 -5
  406. teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
  407. teradataml/data/histogram_example.json +11 -11
  408. teradataml/data/hmmdecoder_example.json +78 -78
  409. teradataml/data/hmmevaluator_example.json +24 -24
  410. teradataml/data/hmmsupervised_example.json +10 -10
  411. teradataml/data/hmmunsupervised_example.json +7 -7
  412. teradataml/data/house_values.csv +12 -12
  413. teradataml/data/house_values2.csv +13 -13
  414. teradataml/data/housing_cat.csv +7 -7
  415. teradataml/data/housing_data.csv +9 -9
  416. teradataml/data/housing_test.csv +47 -47
  417. teradataml/data/housing_test_binary.csv +47 -47
  418. teradataml/data/housing_train.csv +493 -493
  419. teradataml/data/housing_train_attribute.csv +4 -4
  420. teradataml/data/housing_train_binary.csv +437 -437
  421. teradataml/data/housing_train_parameter.csv +2 -2
  422. teradataml/data/housing_train_response.csv +493 -493
  423. teradataml/data/ibm_stock.csv +370 -370
  424. teradataml/data/ibm_stock1.csv +370 -370
  425. teradataml/data/identitymatch_example.json +21 -21
  426. teradataml/data/idf_table.csv +4 -4
  427. teradataml/data/impressions.csv +101 -101
  428. teradataml/data/inflation.csv +21 -21
  429. teradataml/data/initial.csv +3 -3
  430. teradataml/data/insect_sprays.csv +12 -12
  431. teradataml/data/insurance.csv +1339 -1339
  432. teradataml/data/interpolator_example.json +12 -12
  433. teradataml/data/iris_altinput.csv +481 -481
  434. teradataml/data/iris_attribute_output.csv +8 -8
  435. teradataml/data/iris_attribute_test.csv +121 -121
  436. teradataml/data/iris_attribute_train.csv +481 -481
  437. teradataml/data/iris_category_expect_predict.csv +31 -31
  438. teradataml/data/iris_data.csv +151 -0
  439. teradataml/data/iris_input.csv +151 -151
  440. teradataml/data/iris_response_train.csv +121 -121
  441. teradataml/data/iris_test.csv +31 -31
  442. teradataml/data/iris_train.csv +121 -121
  443. teradataml/data/join_table1.csv +4 -4
  444. teradataml/data/join_table2.csv +4 -4
  445. teradataml/data/jsons/anly_function_name.json +6 -6
  446. teradataml/data/jsons/byom/dataikupredict.json +147 -147
  447. teradataml/data/jsons/byom/datarobotpredict.json +146 -146
  448. teradataml/data/jsons/byom/h2opredict.json +194 -194
  449. teradataml/data/jsons/byom/onnxpredict.json +186 -186
  450. teradataml/data/jsons/byom/pmmlpredict.json +146 -146
  451. teradataml/data/jsons/paired_functions.json +435 -435
  452. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
  453. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
  454. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
  455. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
  456. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
  457. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
  458. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
  459. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
  460. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
  461. teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
  462. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
  463. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
  464. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
  465. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
  466. teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
  467. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
  468. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
  469. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
  470. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
  471. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
  472. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
  473. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
  474. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
  475. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
  476. teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
  477. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
  478. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
  479. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
  480. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
  481. teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
  482. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
  483. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
  484. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
  485. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
  486. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
  487. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
  488. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
  489. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
  490. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
  491. teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
  492. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
  493. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
  494. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
  495. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
  496. teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
  497. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
  498. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
  499. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
  500. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
  501. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
  502. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
  503. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
  504. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
  505. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
  506. teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
  507. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
  508. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
  509. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
  510. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
  511. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
  512. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
  513. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
  514. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
  515. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
  516. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
  517. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
  518. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
  519. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
  520. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
  521. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
  522. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
  523. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
  524. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
  525. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
  526. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
  527. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
  528. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
  529. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
  530. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
  531. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
  532. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
  533. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
  534. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
  535. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
  536. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
  537. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
  538. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
  539. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
  540. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
  541. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
  542. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
  543. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
  544. teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
  545. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
  546. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
  547. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
  548. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
  549. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
  550. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
  551. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
  552. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
  553. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
  554. teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
  555. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
  556. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
  557. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
  558. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +76 -76
  559. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
  560. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
  561. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
  562. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
  563. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
  564. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
  565. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
  566. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
  567. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
  568. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
  569. teradataml/data/jsons/sqle/17.20/TD_FTest.json +186 -186
  570. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
  571. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
  572. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
  573. teradataml/data/jsons/sqle/17.20/TD_GLM.json +431 -431
  574. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +125 -125
  575. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
  576. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
  577. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +91 -91
  578. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
  579. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
  580. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
  581. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +211 -211
  582. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
  583. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
  584. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
  585. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +101 -101
  586. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
  587. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
  588. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
  589. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
  590. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
  591. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
  592. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
  593. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
  594. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
  595. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
  596. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
  597. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
  598. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
  599. teradataml/data/jsons/sqle/17.20/TD_ROC.json +177 -177
  600. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
  601. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
  602. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
  603. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
  604. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
  605. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
  606. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
  607. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
  608. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +124 -124
  609. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +156 -156
  610. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +70 -70
  611. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
  612. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
  613. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
  614. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
  615. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
  616. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
  617. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
  618. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
  619. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
  620. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
  621. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
  622. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
  623. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
  624. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
  625. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +312 -312
  626. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +182 -182
  627. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +170 -170
  628. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
  629. teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
  630. teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
  631. teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
  632. teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
  633. teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
  634. teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
  635. teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
  636. teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
  637. teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
  638. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
  639. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
  640. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
  641. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
  642. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
  643. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
  644. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
  645. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
  646. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
  647. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
  648. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
  649. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
  650. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
  651. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
  652. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
  653. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
  654. teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
  655. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
  656. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
  657. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
  658. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
  659. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
  660. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
  661. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
  662. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
  663. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
  664. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
  665. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
  666. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
  667. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
  668. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
  669. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
  670. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
  671. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
  672. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
  673. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
  674. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
  675. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
  676. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
  677. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
  678. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
  679. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
  680. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
  681. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
  682. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
  683. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
  684. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
  685. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
  686. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
  687. teradataml/data/kmeans_example.json +17 -17
  688. teradataml/data/kmeans_us_arrests_data.csv +0 -0
  689. teradataml/data/knn_example.json +18 -18
  690. teradataml/data/knnrecommender_example.json +6 -6
  691. teradataml/data/knnrecommenderpredict_example.json +12 -12
  692. teradataml/data/lar_example.json +17 -17
  693. teradataml/data/larpredict_example.json +30 -30
  694. teradataml/data/lc_new_predictors.csv +5 -5
  695. teradataml/data/lc_new_reference.csv +9 -9
  696. teradataml/data/lda_example.json +8 -8
  697. teradataml/data/ldainference_example.json +14 -14
  698. teradataml/data/ldatopicsummary_example.json +8 -8
  699. teradataml/data/levendist_input.csv +13 -13
  700. teradataml/data/levenshteindistance_example.json +10 -10
  701. teradataml/data/linreg_example.json +9 -9
  702. teradataml/data/load_example_data.py +326 -323
  703. teradataml/data/loan_prediction.csv +295 -295
  704. teradataml/data/lungcancer.csv +138 -138
  705. teradataml/data/mappingdata.csv +12 -12
  706. teradataml/data/milk_timeseries.csv +157 -157
  707. teradataml/data/min_max_titanic.csv +4 -4
  708. teradataml/data/minhash_example.json +6 -6
  709. teradataml/data/ml_ratings.csv +7547 -7547
  710. teradataml/data/ml_ratings_10.csv +2445 -2445
  711. teradataml/data/model1_table.csv +5 -5
  712. teradataml/data/model2_table.csv +5 -5
  713. teradataml/data/models/iris_db_glm_model.pmml +56 -56
  714. teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
  715. teradataml/data/modularity_example.json +12 -12
  716. teradataml/data/movavg_example.json +7 -7
  717. teradataml/data/mtx1.csv +7 -7
  718. teradataml/data/mtx2.csv +13 -13
  719. teradataml/data/multi_model_classification.csv +401 -0
  720. teradataml/data/multi_model_regression.csv +401 -0
  721. teradataml/data/mvdfft8.csv +9 -9
  722. teradataml/data/naivebayes_example.json +9 -9
  723. teradataml/data/naivebayespredict_example.json +19 -19
  724. teradataml/data/naivebayestextclassifier2_example.json +6 -6
  725. teradataml/data/naivebayestextclassifier_example.json +8 -8
  726. teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
  727. teradataml/data/name_Find_configure.csv +10 -10
  728. teradataml/data/namedentityfinder_example.json +14 -14
  729. teradataml/data/namedentityfinderevaluator_example.json +10 -10
  730. teradataml/data/namedentityfindertrainer_example.json +6 -6
  731. teradataml/data/nb_iris_input_test.csv +31 -31
  732. teradataml/data/nb_iris_input_train.csv +121 -121
  733. teradataml/data/nbp_iris_model.csv +13 -13
  734. teradataml/data/ner_extractor_text.csv +2 -2
  735. teradataml/data/ner_sports_test2.csv +29 -29
  736. teradataml/data/ner_sports_train.csv +501 -501
  737. teradataml/data/nerevaluator_example.json +5 -5
  738. teradataml/data/nerextractor_example.json +18 -18
  739. teradataml/data/nermem_sports_test.csv +17 -17
  740. teradataml/data/nermem_sports_train.csv +50 -50
  741. teradataml/data/nertrainer_example.json +6 -6
  742. teradataml/data/ngrams_example.json +6 -6
  743. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
  744. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
  745. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
  746. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
  747. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
  748. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
  749. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
  750. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
  751. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
  752. teradataml/data/npath_example.json +23 -23
  753. teradataml/data/ntree_example.json +14 -14
  754. teradataml/data/numeric_strings.csv +4 -4
  755. teradataml/data/numerics.csv +4 -4
  756. teradataml/data/ocean_buoy.csv +17 -17
  757. teradataml/data/ocean_buoy2.csv +17 -17
  758. teradataml/data/ocean_buoys.csv +27 -27
  759. teradataml/data/ocean_buoys2.csv +10 -10
  760. teradataml/data/ocean_buoys_nonpti.csv +28 -28
  761. teradataml/data/ocean_buoys_seq.csv +29 -29
  762. teradataml/data/openml_example.json +63 -0
  763. teradataml/data/optional_event_table.csv +4 -4
  764. teradataml/data/orders1.csv +11 -11
  765. teradataml/data/orders1_12.csv +12 -12
  766. teradataml/data/orders_ex.csv +4 -4
  767. teradataml/data/pack_example.json +8 -8
  768. teradataml/data/package_tracking.csv +19 -19
  769. teradataml/data/package_tracking_pti.csv +18 -18
  770. teradataml/data/pagerank_example.json +13 -13
  771. teradataml/data/paragraphs_input.csv +6 -6
  772. teradataml/data/pathanalyzer_example.json +7 -7
  773. teradataml/data/pathgenerator_example.json +7 -7
  774. teradataml/data/phrases.csv +7 -7
  775. teradataml/data/pivot_example.json +8 -8
  776. teradataml/data/pivot_input.csv +22 -22
  777. teradataml/data/playerRating.csv +31 -31
  778. teradataml/data/postagger_example.json +6 -6
  779. teradataml/data/posttagger_output.csv +44 -44
  780. teradataml/data/production_data.csv +16 -16
  781. teradataml/data/production_data2.csv +7 -7
  782. teradataml/data/randomsample_example.json +31 -31
  783. teradataml/data/randomwalksample_example.json +8 -8
  784. teradataml/data/rank_table.csv +6 -6
  785. teradataml/data/ref_mobile_data.csv +4 -4
  786. teradataml/data/ref_mobile_data_dense.csv +2 -2
  787. teradataml/data/ref_url.csv +17 -17
  788. teradataml/data/restaurant_reviews.csv +7 -7
  789. teradataml/data/river_data.csv +145 -145
  790. teradataml/data/roc_example.json +7 -7
  791. teradataml/data/roc_input.csv +101 -101
  792. teradataml/data/rule_inputs.csv +6 -6
  793. teradataml/data/rule_table.csv +2 -2
  794. teradataml/data/sales.csv +7 -7
  795. teradataml/data/sales_transaction.csv +501 -501
  796. teradataml/data/salesdata.csv +342 -342
  797. teradataml/data/sample_cities.csv +2 -2
  798. teradataml/data/sample_shapes.csv +10 -10
  799. teradataml/data/sample_streets.csv +2 -2
  800. teradataml/data/sampling_example.json +15 -15
  801. teradataml/data/sax_example.json +8 -8
  802. teradataml/data/scale_example.json +23 -23
  803. teradataml/data/scale_housing.csv +11 -11
  804. teradataml/data/scale_housing_test.csv +6 -6
  805. teradataml/data/scale_stat.csv +11 -11
  806. teradataml/data/scalebypartition_example.json +13 -13
  807. teradataml/data/scalemap_example.json +13 -13
  808. teradataml/data/scalesummary_example.json +12 -12
  809. teradataml/data/score_category.csv +101 -101
  810. teradataml/data/score_summary.csv +4 -4
  811. teradataml/data/script_example.json +9 -9
  812. teradataml/data/scripts/deploy_script.py +65 -0
  813. teradataml/data/scripts/mapper.R +20 -0
  814. teradataml/data/scripts/mapper.py +15 -15
  815. teradataml/data/scripts/mapper_replace.py +15 -15
  816. teradataml/data/scripts/sklearn/__init__.py +0 -0
  817. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  818. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  819. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  820. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  821. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  822. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  823. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  824. teradataml/data/seeds.csv +10 -10
  825. teradataml/data/sentenceextractor_example.json +6 -6
  826. teradataml/data/sentiment_extract_input.csv +11 -11
  827. teradataml/data/sentiment_train.csv +16 -16
  828. teradataml/data/sentiment_word.csv +20 -20
  829. teradataml/data/sentiment_word_input.csv +19 -19
  830. teradataml/data/sentimentextractor_example.json +24 -24
  831. teradataml/data/sentimenttrainer_example.json +8 -8
  832. teradataml/data/sequence_table.csv +10 -10
  833. teradataml/data/seriessplitter_example.json +7 -7
  834. teradataml/data/sessionize_example.json +17 -17
  835. teradataml/data/sessionize_table.csv +116 -116
  836. teradataml/data/setop_test1.csv +24 -24
  837. teradataml/data/setop_test2.csv +22 -22
  838. teradataml/data/soc_nw_edges.csv +10 -10
  839. teradataml/data/soc_nw_vertices.csv +7 -7
  840. teradataml/data/souvenir_timeseries.csv +167 -167
  841. teradataml/data/sparse_iris_attribute.csv +5 -5
  842. teradataml/data/sparse_iris_test.csv +121 -121
  843. teradataml/data/sparse_iris_train.csv +601 -601
  844. teradataml/data/star1.csv +6 -6
  845. teradataml/data/state_transition.csv +5 -5
  846. teradataml/data/stock_data.csv +53 -53
  847. teradataml/data/stock_movement.csv +11 -11
  848. teradataml/data/stock_vol.csv +76 -76
  849. teradataml/data/stop_words.csv +8 -8
  850. teradataml/data/store_sales.csv +37 -37
  851. teradataml/data/stringsimilarity_example.json +7 -7
  852. teradataml/data/strsimilarity_input.csv +13 -13
  853. teradataml/data/students.csv +101 -101
  854. teradataml/data/svm_iris_input_test.csv +121 -121
  855. teradataml/data/svm_iris_input_train.csv +481 -481
  856. teradataml/data/svm_iris_model.csv +7 -7
  857. teradataml/data/svmdense_example.json +9 -9
  858. teradataml/data/svmdensepredict_example.json +18 -18
  859. teradataml/data/svmsparse_example.json +7 -7
  860. teradataml/data/svmsparsepredict_example.json +13 -13
  861. teradataml/data/svmsparsesummary_example.json +7 -7
  862. teradataml/data/target_mobile_data.csv +13 -13
  863. teradataml/data/target_mobile_data_dense.csv +5 -5
  864. teradataml/data/templatedata.csv +1201 -1201
  865. teradataml/data/templates/open_source_ml.json +9 -0
  866. teradataml/data/teradataml_example.json +73 -1
  867. teradataml/data/test_classification.csv +101 -0
  868. teradataml/data/test_loan_prediction.csv +53 -53
  869. teradataml/data/test_pacf_12.csv +37 -37
  870. teradataml/data/test_prediction.csv +101 -0
  871. teradataml/data/test_regression.csv +101 -0
  872. teradataml/data/test_river2.csv +109 -109
  873. teradataml/data/text_inputs.csv +6 -6
  874. teradataml/data/textchunker_example.json +7 -7
  875. teradataml/data/textclassifier_example.json +6 -6
  876. teradataml/data/textclassifier_input.csv +7 -7
  877. teradataml/data/textclassifiertrainer_example.json +6 -6
  878. teradataml/data/textmorph_example.json +5 -5
  879. teradataml/data/textparser_example.json +15 -15
  880. teradataml/data/texttagger_example.json +11 -11
  881. teradataml/data/texttokenizer_example.json +6 -6
  882. teradataml/data/texttrainer_input.csv +11 -11
  883. teradataml/data/tf_example.json +6 -6
  884. teradataml/data/tfidf_example.json +13 -13
  885. teradataml/data/tfidf_input1.csv +201 -201
  886. teradataml/data/tfidf_train.csv +6 -6
  887. teradataml/data/time_table1.csv +535 -535
  888. teradataml/data/time_table2.csv +14 -14
  889. teradataml/data/timeseriesdata.csv +1601 -1601
  890. teradataml/data/timeseriesdatasetsd4.csv +105 -105
  891. teradataml/data/titanic.csv +892 -892
  892. teradataml/data/token_table.csv +696 -696
  893. teradataml/data/train_multiclass.csv +101 -0
  894. teradataml/data/train_regression.csv +101 -0
  895. teradataml/data/train_regression_multiple_labels.csv +101 -0
  896. teradataml/data/train_tracking.csv +27 -27
  897. teradataml/data/transformation_table.csv +5 -5
  898. teradataml/data/transformation_table_new.csv +1 -1
  899. teradataml/data/tv_spots.csv +16 -16
  900. teradataml/data/twod_climate_data.csv +117 -117
  901. teradataml/data/uaf_example.json +475 -475
  902. teradataml/data/univariatestatistics_example.json +8 -8
  903. teradataml/data/unpack_example.json +9 -9
  904. teradataml/data/unpivot_example.json +9 -9
  905. teradataml/data/unpivot_input.csv +8 -8
  906. teradataml/data/us_air_pass.csv +36 -36
  907. teradataml/data/us_population.csv +624 -624
  908. teradataml/data/us_states_shapes.csv +52 -52
  909. teradataml/data/varmax_example.json +17 -17
  910. teradataml/data/vectordistance_example.json +25 -25
  911. teradataml/data/ville_climatedata.csv +121 -121
  912. teradataml/data/ville_tempdata.csv +12 -12
  913. teradataml/data/ville_tempdata1.csv +12 -12
  914. teradataml/data/ville_temperature.csv +11 -11
  915. teradataml/data/waveletTable.csv +1605 -1605
  916. teradataml/data/waveletTable2.csv +1605 -1605
  917. teradataml/data/weightedmovavg_example.json +8 -8
  918. teradataml/data/wft_testing.csv +5 -5
  919. teradataml/data/wine_data.csv +1600 -0
  920. teradataml/data/word_embed_input_table1.csv +5 -5
  921. teradataml/data/word_embed_input_table2.csv +4 -4
  922. teradataml/data/word_embed_model.csv +22 -22
  923. teradataml/data/words_input.csv +13 -13
  924. teradataml/data/xconvolve_complex_left.csv +6 -6
  925. teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
  926. teradataml/data/xgboost_example.json +35 -35
  927. teradataml/data/xgboostpredict_example.json +31 -31
  928. teradataml/dataframe/copy_to.py +1764 -1698
  929. teradataml/dataframe/data_transfer.py +2753 -2745
  930. teradataml/dataframe/dataframe.py +17545 -16946
  931. teradataml/dataframe/dataframe_utils.py +1837 -1740
  932. teradataml/dataframe/fastload.py +611 -603
  933. teradataml/dataframe/indexer.py +424 -424
  934. teradataml/dataframe/setop.py +1179 -1166
  935. teradataml/dataframe/sql.py +10090 -6432
  936. teradataml/dataframe/sql_function_parameters.py +439 -388
  937. teradataml/dataframe/sql_functions.py +652 -652
  938. teradataml/dataframe/sql_interfaces.py +220 -220
  939. teradataml/dataframe/vantage_function_types.py +674 -630
  940. teradataml/dataframe/window.py +693 -692
  941. teradataml/dbutils/__init__.py +3 -3
  942. teradataml/dbutils/dbutils.py +1167 -1150
  943. teradataml/dbutils/filemgr.py +267 -267
  944. teradataml/gen_ai/__init__.py +2 -2
  945. teradataml/gen_ai/convAI.py +472 -472
  946. teradataml/geospatial/__init__.py +3 -3
  947. teradataml/geospatial/geodataframe.py +1105 -1094
  948. teradataml/geospatial/geodataframecolumn.py +392 -387
  949. teradataml/geospatial/geometry_types.py +925 -925
  950. teradataml/hyperparameter_tuner/__init__.py +1 -1
  951. teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
  952. teradataml/hyperparameter_tuner/utils.py +281 -187
  953. teradataml/lib/aed_0_1.dll +0 -0
  954. teradataml/lib/libaed_0_1.dylib +0 -0
  955. teradataml/lib/libaed_0_1.so +0 -0
  956. teradataml/libaed_0_1.dylib +0 -0
  957. teradataml/libaed_0_1.so +0 -0
  958. teradataml/opensource/__init__.py +1 -0
  959. teradataml/opensource/sklearn/__init__.py +1 -0
  960. teradataml/opensource/sklearn/_class.py +255 -0
  961. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  962. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  963. teradataml/opensource/sklearn/constants.py +54 -0
  964. teradataml/options/__init__.py +121 -124
  965. teradataml/options/configure.py +337 -336
  966. teradataml/options/display.py +176 -176
  967. teradataml/plot/__init__.py +2 -2
  968. teradataml/plot/axis.py +1388 -1388
  969. teradataml/plot/constants.py +15 -15
  970. teradataml/plot/figure.py +398 -398
  971. teradataml/plot/plot.py +760 -760
  972. teradataml/plot/query_generator.py +83 -83
  973. teradataml/plot/subplot.py +216 -216
  974. teradataml/scriptmgmt/UserEnv.py +3788 -3761
  975. teradataml/scriptmgmt/__init__.py +3 -3
  976. teradataml/scriptmgmt/lls_utils.py +1616 -1604
  977. teradataml/series/series.py +532 -532
  978. teradataml/series/series_utils.py +71 -71
  979. teradataml/table_operators/Apply.py +949 -917
  980. teradataml/table_operators/Script.py +1719 -1982
  981. teradataml/table_operators/TableOperator.py +1207 -1616
  982. teradataml/table_operators/__init__.py +2 -3
  983. teradataml/table_operators/apply_query_generator.py +262 -262
  984. teradataml/table_operators/query_generator.py +507 -507
  985. teradataml/table_operators/table_operator_query_generator.py +460 -460
  986. teradataml/table_operators/table_operator_util.py +631 -639
  987. teradataml/table_operators/templates/dataframe_apply.template +184 -184
  988. teradataml/table_operators/templates/dataframe_map.template +176 -176
  989. teradataml/table_operators/templates/script_executor.template +170 -170
  990. teradataml/utils/dtypes.py +684 -684
  991. teradataml/utils/internal_buffer.py +84 -84
  992. teradataml/utils/print_versions.py +205 -205
  993. teradataml/utils/utils.py +410 -410
  994. teradataml/utils/validators.py +2239 -2115
  995. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +270 -41
  996. teradataml-20.0.0.0.dist-info/RECORD +1038 -0
  997. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +1 -1
  998. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +1 -1
  999. teradataml/analytics/mle/AdaBoost.py +0 -651
  1000. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  1001. teradataml/analytics/mle/Antiselect.py +0 -342
  1002. teradataml/analytics/mle/Arima.py +0 -641
  1003. teradataml/analytics/mle/ArimaPredict.py +0 -477
  1004. teradataml/analytics/mle/Attribution.py +0 -1070
  1005. teradataml/analytics/mle/Betweenness.py +0 -658
  1006. teradataml/analytics/mle/Burst.py +0 -711
  1007. teradataml/analytics/mle/CCM.py +0 -600
  1008. teradataml/analytics/mle/CCMPrepare.py +0 -324
  1009. teradataml/analytics/mle/CFilter.py +0 -460
  1010. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  1011. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  1012. teradataml/analytics/mle/Closeness.py +0 -737
  1013. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  1014. teradataml/analytics/mle/Correlation.py +0 -477
  1015. teradataml/analytics/mle/Correlation2.py +0 -573
  1016. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  1017. teradataml/analytics/mle/CoxPH.py +0 -556
  1018. teradataml/analytics/mle/CoxSurvival.py +0 -478
  1019. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  1020. teradataml/analytics/mle/DTW.py +0 -623
  1021. teradataml/analytics/mle/DWT.py +0 -564
  1022. teradataml/analytics/mle/DWT2D.py +0 -599
  1023. teradataml/analytics/mle/DecisionForest.py +0 -716
  1024. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  1025. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  1026. teradataml/analytics/mle/DecisionTree.py +0 -830
  1027. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  1028. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  1029. teradataml/analytics/mle/FMeasure.py +0 -402
  1030. teradataml/analytics/mle/FPGrowth.py +0 -734
  1031. teradataml/analytics/mle/FrequentPaths.py +0 -695
  1032. teradataml/analytics/mle/GLM.py +0 -558
  1033. teradataml/analytics/mle/GLML1L2.py +0 -547
  1034. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  1035. teradataml/analytics/mle/GLMPredict.py +0 -529
  1036. teradataml/analytics/mle/HMMDecoder.py +0 -945
  1037. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  1038. teradataml/analytics/mle/HMMSupervised.py +0 -521
  1039. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  1040. teradataml/analytics/mle/Histogram.py +0 -561
  1041. teradataml/analytics/mle/IDWT.py +0 -476
  1042. teradataml/analytics/mle/IDWT2D.py +0 -493
  1043. teradataml/analytics/mle/IdentityMatch.py +0 -763
  1044. teradataml/analytics/mle/Interpolator.py +0 -918
  1045. teradataml/analytics/mle/KMeans.py +0 -485
  1046. teradataml/analytics/mle/KNN.py +0 -627
  1047. teradataml/analytics/mle/KNNRecommender.py +0 -488
  1048. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  1049. teradataml/analytics/mle/LAR.py +0 -439
  1050. teradataml/analytics/mle/LARPredict.py +0 -478
  1051. teradataml/analytics/mle/LDA.py +0 -548
  1052. teradataml/analytics/mle/LDAInference.py +0 -492
  1053. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  1054. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  1055. teradataml/analytics/mle/LinReg.py +0 -433
  1056. teradataml/analytics/mle/LinRegPredict.py +0 -438
  1057. teradataml/analytics/mle/MinHash.py +0 -544
  1058. teradataml/analytics/mle/Modularity.py +0 -587
  1059. teradataml/analytics/mle/NEREvaluator.py +0 -410
  1060. teradataml/analytics/mle/NERExtractor.py +0 -595
  1061. teradataml/analytics/mle/NERTrainer.py +0 -458
  1062. teradataml/analytics/mle/NGrams.py +0 -570
  1063. teradataml/analytics/mle/NPath.py +0 -634
  1064. teradataml/analytics/mle/NTree.py +0 -549
  1065. teradataml/analytics/mle/NaiveBayes.py +0 -462
  1066. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  1067. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  1068. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  1069. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  1070. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  1071. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  1072. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  1073. teradataml/analytics/mle/POSTagger.py +0 -417
  1074. teradataml/analytics/mle/Pack.py +0 -411
  1075. teradataml/analytics/mle/PageRank.py +0 -535
  1076. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  1077. teradataml/analytics/mle/PathGenerator.py +0 -367
  1078. teradataml/analytics/mle/PathStart.py +0 -464
  1079. teradataml/analytics/mle/PathSummarizer.py +0 -470
  1080. teradataml/analytics/mle/Pivot.py +0 -471
  1081. teradataml/analytics/mle/ROC.py +0 -425
  1082. teradataml/analytics/mle/RandomSample.py +0 -637
  1083. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  1084. teradataml/analytics/mle/SAX.py +0 -779
  1085. teradataml/analytics/mle/SVMDense.py +0 -677
  1086. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  1087. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  1088. teradataml/analytics/mle/SVMSparse.py +0 -557
  1089. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  1090. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  1091. teradataml/analytics/mle/Sampling.py +0 -549
  1092. teradataml/analytics/mle/Scale.py +0 -565
  1093. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  1094. teradataml/analytics/mle/ScaleMap.py +0 -378
  1095. teradataml/analytics/mle/ScaleSummary.py +0 -320
  1096. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  1097. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  1098. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  1099. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  1100. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  1101. teradataml/analytics/mle/Sessionize.py +0 -475
  1102. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  1103. teradataml/analytics/mle/StringSimilarity.py +0 -425
  1104. teradataml/analytics/mle/TF.py +0 -389
  1105. teradataml/analytics/mle/TFIDF.py +0 -504
  1106. teradataml/analytics/mle/TextChunker.py +0 -414
  1107. teradataml/analytics/mle/TextClassifier.py +0 -399
  1108. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  1109. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  1110. teradataml/analytics/mle/TextMorph.py +0 -494
  1111. teradataml/analytics/mle/TextParser.py +0 -623
  1112. teradataml/analytics/mle/TextTagger.py +0 -530
  1113. teradataml/analytics/mle/TextTokenizer.py +0 -502
  1114. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  1115. teradataml/analytics/mle/Unpack.py +0 -526
  1116. teradataml/analytics/mle/Unpivot.py +0 -438
  1117. teradataml/analytics/mle/VarMax.py +0 -776
  1118. teradataml/analytics/mle/VectorDistance.py +0 -762
  1119. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  1120. teradataml/analytics/mle/XGBoost.py +0 -842
  1121. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  1122. teradataml/analytics/mle/__init__.py +0 -123
  1123. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  1124. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  1125. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  1126. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  1127. teradataml/analytics/mle/json/arima_mle.json +0 -172
  1128. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  1129. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  1130. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  1131. teradataml/analytics/mle/json/burst_mle.json +0 -140
  1132. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  1133. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  1134. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  1135. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  1136. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  1137. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  1138. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  1139. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  1140. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  1141. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  1142. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  1143. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  1144. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  1145. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  1146. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  1147. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  1148. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  1149. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  1150. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  1151. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  1152. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  1153. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  1154. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  1155. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  1156. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  1157. teradataml/analytics/mle/json/glm_mle.json +0 -111
  1158. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  1159. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  1160. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  1161. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  1162. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  1163. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  1164. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  1165. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  1166. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  1167. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  1168. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  1169. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  1170. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  1171. teradataml/analytics/mle/json/knn_mle.json +0 -141
  1172. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  1173. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  1174. teradataml/analytics/mle/json/lar_mle.json +0 -78
  1175. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  1176. teradataml/analytics/mle/json/lda_mle.json +0 -130
  1177. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  1178. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  1179. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  1180. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  1181. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  1182. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  1183. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  1184. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  1185. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  1186. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  1187. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  1188. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  1189. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  1190. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  1191. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  1192. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  1193. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  1194. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  1195. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  1196. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  1197. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  1198. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  1199. teradataml/analytics/mle/json/pack_mle.json +0 -58
  1200. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  1201. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  1202. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  1203. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  1204. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  1205. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  1206. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  1207. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  1208. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  1209. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  1210. teradataml/analytics/mle/json/roc_mle.json +0 -73
  1211. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  1212. teradataml/analytics/mle/json/sax_mle.json +0 -154
  1213. teradataml/analytics/mle/json/scale_mle.json +0 -93
  1214. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  1215. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  1216. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  1217. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  1218. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  1219. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  1220. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  1221. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  1222. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  1223. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  1224. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  1225. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  1226. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  1227. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  1228. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  1229. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  1230. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  1231. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  1232. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  1233. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  1234. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  1235. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  1236. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  1237. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  1238. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  1239. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  1240. teradataml/analytics/mle/json/tf_mle.json +0 -33
  1241. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  1242. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  1243. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  1244. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  1245. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  1246. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  1247. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  1248. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  1249. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  1250. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  1251. teradataml/analytics/sqle/Antiselect.py +0 -321
  1252. teradataml/analytics/sqle/Attribution.py +0 -603
  1253. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  1254. teradataml/analytics/sqle/GLMPredict.py +0 -430
  1255. teradataml/analytics/sqle/MovingAverage.py +0 -543
  1256. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  1257. teradataml/analytics/sqle/NPath.py +0 -632
  1258. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  1259. teradataml/analytics/sqle/Pack.py +0 -388
  1260. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  1261. teradataml/analytics/sqle/Sessionize.py +0 -390
  1262. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  1263. teradataml/analytics/sqle/Unpack.py +0 -503
  1264. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  1265. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  1266. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  1267. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  1268. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  1269. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  1270. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  1271. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  1272. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  1273. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  1274. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  1275. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  1276. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  1277. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  1278. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  1279. teradataml/catalog/model_cataloging.py +0 -980
  1280. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  1281. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  1282. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  1283. teradataml/table_operators/sandbox_container_util.py +0 -643
  1284. teradataml-17.20.0.7.dist-info/RECORD +0 -1280
  1285. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
@@ -1,803 +1,804 @@
1
- """
2
- Unpublished work.
3
- Copyright (c) 2021 by Teradata Corporation. All rights reserved.
4
- TERADATA CORPORATION CONFIDENTIAL AND TRADE SECRET
5
-
6
- Primary Owner: pradeep.garre@teradata.com, gouri.patwardhan@teradata.com
7
- Secondary Owner: PankajVinod.Purandare@teradata.com
8
-
9
- This file implements the helper methods and classes which are required to
10
- process In-DB Functions.
11
- """
12
-
13
- from teradataml.options.configure import configure
14
- from teradataml.analytics.json_parser.json_store import _JsonStore
15
- from teradataml.analytics.json_parser.metadata import _AnlyFuncMetadata, _AnlyFuncMetadataUAF
16
- from teradataml.common.constants import TeradataAnalyticFunctionTypes, TeradataAnalyticFunctionInfo
17
- from teradataml.common.exceptions import TeradataMlException
18
- from teradataml.common.messages import Messages
19
- from teradataml.common.messagecodes import MessageCodes
20
- import json, os, importlib
21
- from teradataml import UtilFuncs
22
- from teradataml.common.formula import Formula
23
- from teradataml.utils.validators import _Validators
24
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
25
-
26
- # Map to store IN-DB function type and JSON directory for current database version.
27
- func_type_json_version = {}
28
- module = importlib.import_module("teradataml")
29
-
30
- def _get_json_data_from_tdml_repo():
31
- """
32
- DESCRIPTION:
33
- An internal function to parse the json files stored in teradataml repo. This function,
34
- first checks whether the version of json store is same as database version.
35
- If both versions are same, it then returns an empty list, i.e., the framework
36
- will neither parse the json files nor generate the SQLE functions. Otherwise cleans
37
- the json store and parses the json files in the corresponding directory and adds
38
- the json data to json store.
39
-
40
- PARAMETERS:
41
- None.
42
-
43
- RAISES:
44
- None.
45
-
46
- RETURNS:
47
- An iterator of _AnlyFuncMeta object OR list
48
-
49
- EXAMPLES:
50
- >>> _get_json_data_from_tdml_repo()
51
- """
52
-
53
- # Check if the json store version is matched with Vantage database version. If
54
- # both versions are matched, then the json store has data available so no need
55
- # to parse again.
56
- if configure.database_version != _JsonStore.version:
57
-
58
- # Json store version is different from database version. So, json's should
59
- # be parsed again. Before parsing the json, first clean the json store.
60
- _JsonStore.clean()
61
-
62
- # Set the json store version to current database version.
63
- _JsonStore.version = configure.database_version
64
-
65
- # Clean existing map between IN-DB function type and corresponding JSON directory.
66
- func_type_json_version.clear()
67
-
68
- # Load the mapping information for all analytic functions which are version dependent into _JsonStore.
69
- _load_anlyfuncs_jsons_versions_info()
70
-
71
- json_file_directories = __get_json_files_directory()
72
-
73
- # For the corresponding database version, if teradataml does not have any json
74
- # files, then return an empty list. So framework will not attach any SQLE function
75
- # to teradataml.
76
- if not json_file_directories:
77
- return []
78
-
79
- # Read the directory, parse the json file and add the _AnlyFuncMeta object to json store
80
- # and yield the same.
81
- for json_file_directory_list in json_file_directories:
82
- # Get the function type
83
- func_type = json_file_directory_list[1]
84
- # Get the json directory
85
- json_file_directory = json_file_directory_list[0]
86
-
87
- # Get the appropriate metadata class.
88
- metadata_class = getattr(TeradataAnalyticFunctionInfo, func_type).value.get("metadata_class",
89
- "_AnlyFuncMetadata")
90
- metadata_class = eval(metadata_class)
91
-
92
- for json_file in os.listdir(json_file_directory):
93
- file_path = os.path.join(json_file_directory, json_file)
94
- with open(file_path, encoding="utf-8") as fp:
95
- json_data = json.load(fp)
96
- metadata = metadata_class(json_data, file_path, func_type=func_type)
97
-
98
- # Functions which do not need to participate in IN-DB Framework
99
- # should not be stored in _JsonStore.
100
- if metadata.func_name in _JsonStore._functions_to_exclude:
101
- continue
102
- _JsonStore.add(metadata)
103
- yield metadata
104
-
105
- # If both database version and json store version are same, return an empty list so that
106
- # framework will not attach any SQLE function to teradataml.
107
- else:
108
- return []
109
-
110
-
111
- def _load_anlyfuncs_jsons_versions_info():
112
- """
113
- DESCRIPTION:
114
- Function populates following information for analytic functions:
115
- * Lowest supported version.
116
- * Parent directory containing JSONs.
117
- * Nearest matching JSON directory for a particular database version.
118
-
119
- PARAMETERS:
120
- None
121
-
122
- RETURNS:
123
- None
124
-
125
- RAISES:
126
- None
127
-
128
- EXAMPLES:
129
- >>> _load_anlyfuncs_jsons_versions_info()
130
- """
131
- # Import the required package.
132
- import re
133
- # Get the closest matching JSON directory out of all directories corresponding
134
- # to JSONs of different version.
135
- # First remove any letters present in the version
136
- temp_db_version = re.sub(r'[a-zA-Z]', r'', configure.database_version)
137
- db_version = float(temp_db_version[:5])
138
- for func_info in TeradataAnalyticFunctionInfo:
139
- func_type = func_info.value["func_type"]
140
- func_base_version = func_info.value["lowest_version"]
141
- parent_dir = UtilFuncs._get_data_directory(dir_name="jsons",
142
- func_type=func_info)
143
- if func_base_version:
144
- if db_version >= float(func_base_version):
145
- closest_version = _get_closest_version_json_dir(parent_dir, db_version)
146
- if closest_version:
147
- func_type_json_version[func_type] = closest_version
148
-
149
-
150
- def __get_json_files_directory():
151
- """
152
- DESCRIPTION:
153
- An internal function to get the corresponding directory name, which
154
- contains the json files.
155
-
156
- PARAMETERS:
157
- None.
158
-
159
- RAISES:
160
- None.
161
-
162
- RETURNS:
163
- list
164
-
165
- EXAMPLES:
166
- >>> __get_json_files_directory()
167
- """
168
- # If function has version specific JSON directory, return it by using mapping information in
169
- # _Jsonstore else return common JSON directory.
170
- for func_info in TeradataAnalyticFunctionInfo:
171
- if func_info.value["lowest_version"]:
172
- # Check if current function type is allowed on connected Vantage version or not.
173
- if func_info.value["func_type"] in func_type_json_version.keys():
174
- yield [UtilFuncs._get_data_directory(dir_name="jsons", func_type=func_info,
175
- version=func_type_json_version[func_info.value["func_type"]]),
176
- func_info.name]
177
- else:
178
- yield [UtilFuncs._get_data_directory(dir_name="jsons", func_type=func_info), func_info.name]
179
-
180
-
181
- def _get_closest_version_json_dir(parent_dir, database_version):
182
- """
183
- DESCRIPTION:
184
- Internal function to get the nearest matching JSON directory for a database
185
- version from the available JSON directories for the functions.
186
-
187
- PARAMETERS:
188
- parent_dir:
189
- Required Argument.
190
- Specifies the parent dirctory for JSONs of all teradataml version.
191
- Types: str
192
-
193
- database_version:
194
- Required Argument.
195
- Specifies the database version.
196
- Types: float
197
-
198
- RAISES:
199
- None.
200
-
201
- RETURNS:
202
- str
203
-
204
- EXAMPLES:
205
- >>> _get_closest_version_json_dir("path_to_teradataml/teradataml/analytics/jsons/sqle", 17.10)
206
- """
207
- # Get the exact matching JSON directory name for current database version.
208
- # If matching directory exists, return it.
209
- matching_dir = format(database_version, '.2f')
210
- if matching_dir in os.listdir(parent_dir):
211
- return matching_dir
212
-
213
- # If exact matching JSON directory is not found,
214
- # return the directory corresponding to the closest lower version.
215
- # List all the directories, not the files, and collect lower versions only.
216
- lower_versions = (json_dir for json_dir in os.listdir(parent_dir)
217
- if (os.path.isdir(os.path.join(parent_dir, json_dir))
218
- and float(json_dir) <= database_version))
219
-
220
- # If generator generates non-empty list, return max of all versions from that list,
221
- # else while an empty list is passed to max() it throws ValueError, so return None.
222
- try:
223
- return max(lower_versions)
224
- except ValueError:
225
- return None
226
-
227
- def _process_paired_functions():
228
- """
229
- DESCRIPTION:
230
- Process and reads the paired function json.
231
-
232
- PARAMETERS:
233
- None.
234
-
235
- RETURNS:
236
- None.
237
- """
238
-
239
- json_path = os.path.join(UtilFuncs._get_data_directory(), "jsons", "paired_functions.json")
240
- with open(json_path) as fp:
241
- _json = json.load(fp)
242
-
243
- _available_functions, _ = _JsonStore._get_function_list()
244
- for func_type, funcs in _json.items():
245
- # ToDo: Add support for VAL functions
246
- if func_type == "VAL":
247
- continue
248
- # Set all paired functions for SQLE and UAF.
249
- for func in funcs:
250
- # Check if function is existed in JSonStore or not. If exists, only
251
- # then process it.
252
- if func in _available_functions:
253
- metadata = _JsonStore.get_function_metadata(func)
254
- metadata.set_paired_functions(funcs.get(func))
255
-
256
- class _UAF_paired_function:
257
- """
258
- Parent class for _Inverse, _Convolve, _Forecast and _Validate.
259
- """
260
- def _process_arguments(self, function_relation, **kwargs):
261
- """
262
- DESCRIPTION:
263
- Method instantiate the reference function based on 'function_relation'.
264
-
265
- PARAMETERS:
266
- function_relation:
267
- defines which method to instantiate.
268
-
269
- **kwargs:
270
- Keyword arguments passed based on 'function_relation'.
271
-
272
- RETURNS:
273
- object of the reference function.
274
- """
275
- metadata = _JsonStore.get_function_metadata(self.__class__.__name__)
276
- paired_functions = metadata.get_paired_functions()
277
- paired_function = \
278
- [fun_relation for fun_relation in paired_functions
279
- if fun_relation.function_relation == function_relation][0]
280
- reference_function = paired_function.reference_function
281
- for _inp, _out in paired_function.arguments:
282
- kwargs[_inp] = getattr(self, _out)
283
- input_art_spec = {'data': kwargs[paired_function.input_arguments[0]]}
284
- if self.__class__.__name__ == "SeasonalNormalize":
285
- input_art_spec['layer'] = "ARTMETADATA"
286
- kwargs[paired_function.input_arguments[0]] = \
287
- getattr(module, "TDAnalyticResult")(**input_art_spec)
288
- return getattr(module, reference_function)(**kwargs)
289
-
290
-
291
- class _Convolve(_UAF_paired_function):
292
- """
293
- class to convolve the uaf function.
294
- """
295
- def convolve(self, **kwargs):
296
- """
297
- DESCRIPTION:
298
- Method to convolve the uaf function used by instance created from below functions:
299
- * DFFT
300
- * DFFT2
301
-
302
- PARAMETERS:
303
- **kwargs:
304
- Keyword arguments passed to the convolve method.
305
- Notes:
306
- * Every function can have different arguments.
307
- * This arguments are based on inverse functions.
308
-
309
- RETURNS:
310
- object of the reference function.
311
-
312
- EXAMPLE:
313
- load_example_data("uaf", ["dfft2conv_real_4_4"])
314
- data = DataFrame.from_table("dfft2conv_real_4_4")
315
- td_matrix = TDMatrix(data=data,
316
- id="id",
317
- row_index="row_i",
318
- row_index_style="SEQUENCE",
319
- column_index="column_i",
320
- column_index_style="SEQUENCE",
321
- payload_field="magnitude",
322
- payload_content="REAL")
323
- filter_expr = td_matrix.id==33
324
- dfft2_out = DFFT2(data=td_matrix,
325
- data_filter_expr=filter_expr,
326
- freq_style="K_INTEGRAL",
327
- human_readable=False,
328
- output_fmt_content="COMPLEX")
329
- convolve_output = dfft2_out.convolve(conv="HR_TO_RAW",
330
- output_fmt_content="AMPL_PHASE_RADIANS")
331
- """
332
- return self._process_arguments("convolve", **kwargs)
333
-
334
- class _Inverse(_UAF_paired_function):
335
- """
336
- class to inverse the effects of uaf function.
337
- """
338
- def inverse(self, **kwargs):
339
- """
340
- DESCRIPTION:
341
- Method to inverse the effect of uaf function used by instance created from below functions:
342
- * DIFF
343
- * UNDIFF
344
- * DFFT
345
- * IDFFT
346
- * DFFT2
347
- * IDFFT2
348
- * SeasonalNormalize
349
-
350
- PARAMETERS:
351
- **kwargs:
352
- Keyword arguments passed to the inverse method.
353
- Notes:
354
- * Every function can have different arguments.
355
- * This arguments are based on inverse functions.
356
-
357
- RETURNS:
358
- object of the reference function.
359
-
360
- EXAMPLE:
361
- load_example_data("uaf", "mvdfft8")
362
- data = DataFrame.from_table("mvdfft8")
363
- data_series_df = TDSeries(data=data,
364
- id="sid",
365
- row_index="n_seqno",
366
- row_index_style="SEQUENCE",
367
- payload_field="magnitude1",
368
- payload_content="REAL")
369
- DFFT_result = DFFT(data=data_series_df,
370
- human_readable=True,
371
- output_fmt_content='COMPLEX')
372
- inverse_output = DFFT_result.inverse()
373
- """
374
- return self._process_arguments("inverse", **kwargs)
375
-
376
-
377
- class _Forecast(_UAF_paired_function):
378
- """
379
- Class to forecast the model trainer object
380
- """
381
- def forecast(self, **kwargs):
382
- """
383
- DESCRIPTION:
384
- Method to forecast the model trainer object and instantiate
385
- the reference function.
386
-
387
- PARAMETERS:
388
- **kwargs:
389
- Keyword arguments passed to the forecast method.
390
- Notes:
391
- * Every function can have different arguments.
392
- * This arguments are based on forecast functions.
393
-
394
- RETURNS:
395
- object of the reference function which are:
396
- * result
397
-
398
- EXAMPLE:
399
- load_example_data("uaf", ["timeseriesdatasetsd4"])
400
- data = DataFrame.from_table("timeseriesdatasetsd4")
401
- data_series_df = TDSeries(data=data,
402
- id="dataset_id",
403
- row_index="seqno",
404
- row_index_style="SEQUENCE",
405
- payload_field="magnitude",
406
- payload_content="REAL")
407
- arima_estimate_op = ArimaEstimate(data1=data_series_df,
408
- nonseasonal_model_order=[2,0,0],
409
- constant=False,
410
- algorithm="MLE",
411
- coeff_stats=True,
412
- fit_metrics=True,
413
- residuals=True,
414
- fit_percentage=100)
415
- arima_estimate_op.forecast(forecast_periods=2)
416
- """
417
- return self._process_arguments("forecast", **kwargs)
418
-
419
- class _Validate(_UAF_paired_function):
420
- """
421
- Class to validate the model trainer object
422
- """
423
- def validate(self, **kwargs):
424
- """
425
- DESCRIPTION:
426
- Method to validate the model trainer object and instantiate
427
- the reference function.
428
-
429
- PARAMETERS:
430
- **kwargs:
431
- Keyword arguments passed to the validate method.
432
- Note:
433
- * Every function can have different arguments.
434
- * This arguments are based on validate functions.
435
-
436
- RETURNS:
437
- object of the reference function which are:
438
- * result
439
- * fitmetadata
440
- * fitresiduals
441
- * model
442
-
443
- EXAMPLE:
444
- load_example_data("uaf", ["timeseriesdatasetsd4"])
445
- data = DataFrame.from_table("timeseriesdatasetsd4")
446
- data_series_df = TDSeries(data=data,
447
- id="dataset_id",
448
- row_index="seqno",
449
- row_index_style="SEQUENCE",
450
- payload_field="magnitude",
451
- payload_content="REAL")
452
- arima_estimate_op = ArimaEstimate(data1=data_series_df,
453
- nonseasonal_model_order=[2,0,0],
454
- constant=False,
455
- algorithm="MLE",
456
- coeff_stats=True,
457
- fit_metrics=True,
458
- residuals=True,
459
- fit_percentage=80)
460
- arima_estimate_op.validate(residuals=True)
461
- """
462
- return self._process_arguments("validate", **kwargs)
463
-
464
- class _Transform:
465
- def transform(self, **kwargs):
466
- """
467
- DESCRIPTION:
468
- Method to transform the model trainer object and instantiate
469
- the reference function.
470
-
471
- PARAMETERS:
472
- **kwargs:
473
- Keyword arguments passed to the transform method.
474
-
475
- RETURNS:
476
- object of the reference function.
477
-
478
- EXAMPLES:
479
- fit_df = Fit(data=iris_input,
480
- object=transformation_df,
481
- object_order_column='TargetColumn'
482
- )
483
-
484
- fit_df.transform(data=iris_input)
485
- """
486
- metadata = _JsonStore.get_function_metadata(self.__class__.__name__)
487
- paired_functions = metadata.get_paired_functions()
488
- paired_function = [f for f in paired_functions if f.function_relation == "transform"][0]
489
- reference_function = paired_function.reference_function
490
- for _inp, _out in paired_function.arguments:
491
- kwargs[_inp] = getattr(self, _out)
492
- return getattr(module, reference_function)(**kwargs)
493
-
494
- class _Predict:
495
- def predict(self, **kwargs):
496
- """
497
- DESCRIPTION:
498
- Method to predict the model trainer object and instantiate
499
- the reference function.
500
-
501
- PARAMETERS:
502
- **kwargs:
503
- Keyword arguments passed to the transform method.
504
-
505
- RETURNS:
506
- object of the reference function.
507
-
508
- EXAMPLE:
509
- svm_obj = SVM(data=transform_obj.result,
510
- input_columns=['MedInc', 'HouseAge', 'AveRooms',
511
- 'AveBedrms', 'Population', 'AveOccup',
512
- 'Latitude', 'Longitude'],
513
- response_column="MedHouseVal",
514
- model_type="Regression"
515
- )
516
-
517
- svm_obj.predict(newdata = transform_obj.result,
518
- id_column = "id"
519
- )
520
- """
521
- metadata = _JsonStore.get_function_metadata(self.__class__.__name__)
522
- paired_functions = metadata.get_paired_functions()
523
- paired_function = [f for f in paired_functions if f.function_relation == "predict"][0]
524
- reference_function = paired_function.reference_function
525
- for _inp, _out in paired_function.arguments:
526
- kwargs[_inp] = getattr(self, _out)
527
- return getattr(module, reference_function)(**kwargs)
528
-
529
-
530
- class _KNNPredict:
531
- def predict(self, **kwargs):
532
- """
533
- DESCRIPTION:
534
- Method to predict the KNN model trainer object and instantiate
535
- the reference function.
536
-
537
- PARAMETERS:
538
- **kwargs:
539
- Keyword arguments passed to the transform method.
540
-
541
- RETURNS:
542
- object of the reference function.
543
-
544
- EXAMPLE:
545
- KNN_out = KNN(train_data=computers_train1_encoded.result.iloc[:100],
546
- test_data=computers_train1_encoded.result.iloc[10:],
547
- id_column="id",
548
- input_columns=["screen", "price", "speed", "hd"],
549
- model_type="REGRESSION",
550
- response_column="computer_category_special")
551
-
552
- res = KNN_out.evaluate(test_data=computers_train1_encoded.result.iloc[10:])
553
- """
554
- # response_column is required when the model_type is classification or regression.
555
- # accumulate is optional in case user specifies accumulate then consider the value specified by the user,
556
- # else consider the value specified for response_column.
557
-
558
- params = {"test_data": kwargs.get("test_data"),
559
- "id_column": self.id_column,
560
- "voting_weight": self.voting_weight,
561
- "k": self.k,
562
- "tolerance": self.tolerance,
563
- "output_prob": self.output_prob,
564
- "output_responses": self.output_responses,
565
- "emit_neighbors": self.emit_neighbors,
566
- "emit_distances": self.emit_distances,
567
- "train_data": self.train_data,
568
- "input_columns": self.input_columns,
569
- "model_type": self.model_type,
570
- "response_column": kwargs.get("response_column", self.response_column),
571
- "accumulate": kwargs.get("accumulate", kwargs.get("response_column", self.response_column)
572
- if getattr(self.obj, "accumulate") is None else self.accumulate)}
573
-
574
- return getattr(module, "KNN")(**params)
575
-
576
-
577
- class _Evaluate:
578
- """
579
- DESCRIPTION:
580
- Implements the Classification and Regression evaluator.
581
- """
582
- _accumulate_args = {"NaiveBayesTextClassifierTrainer": "doc_category_column"}
583
-
584
- # Mapper for mapping function names with argument names
585
- _evaluator_function_mapper = {"DecisionForest": "tree_type",
586
- "GLM": "family",
587
- "GLMPerSegment": "family",
588
- "SVM": "model_type",
589
- "XGBoost": "model_type"}
590
-
591
- def is_classification_model(self, **kwargs):
592
- """
593
- DESCRIPTION:
594
- Returns True if the model is classification model or regression model.
595
-
596
- PARAMETERS:
597
- **kwargs:
598
- Keyword arguments to access the model_type.
599
-
600
- RETURNS:
601
- Boolean.
602
- """
603
- is_classification_model = False
604
-
605
- # NaiveBayesTextClassifierTrainer takes Multinomial, Bernoulli as input
606
- # both comes under classification evaluator
607
- if self.get_function_name() == "NaiveBayesTextClassifierTrainer":
608
- return True
609
- # name of argument is model_type for most of the functions but for some it is different
610
- if "model_type" not in kwargs:
611
- arg_name = self.get_arg_name()
612
- model_type = getattr(self.obj, arg_name)
613
- kwargs["model_type"] = model_type
614
-
615
- if kwargs["model_type"].lower() == "binomial" or kwargs["model_type"].lower() == "classification":
616
- is_classification_model = True
617
-
618
- return is_classification_model
619
-
620
- def get_function_name(self):
621
- """
622
- DESCRIPTION:
623
- Function to get the name of the analytic function.
624
-
625
- PARAMETERS:
626
- None.
627
-
628
- RETURNS:
629
- str.
630
-
631
- """
632
- return self.__class__.__name__
633
-
634
- def get_response_column(self):
635
- """
636
- DESCRIPTION:
637
- Function to get the argument name for response column. For some functions
638
- argument name storing the response column is different, it can
639
- be fetched from the '_accumulate_arg' mapping.
640
-
641
- PARAMETER:
642
- None.
643
-
644
- RETURNS:
645
- str.
646
- """
647
- # By default it is 'response_column' but some functions require different names.
648
- return self._accumulate_args.get(self.get_function_name(), "response_column")
649
-
650
-
651
-
652
- def get_arg_name(self):
653
- """
654
- DESCRIPTION:
655
- Function to get the argument name for model type. For some functions argument
656
- name can be different, and it can be fetched using the '_evaluator_function_mapper'
657
- mapping.
658
-
659
- PARAMETER:
660
- None.
661
-
662
- RETURNS:
663
- String representing the argument name.
664
- """
665
- return self._evaluator_function_mapper.get(self.get_function_name(), "model_type")
666
-
667
- def evaluate(self, **kwargs):
668
- """
669
- DESCRIPTION:
670
- Method to evaluate the model trainer object, using
671
- either the classification or regression evaluator and
672
- instantiate the reference function.
673
-
674
- PARAMETER:
675
- **kwargs:
676
- Keyword arguments for specified for evaluate method.
677
-
678
- RETURNS:
679
- Attribute of Classification Evaluator or Regression Evaluator
680
-
681
- EXAMPLE:
682
- svm_obj = SVM(data=transform_obj.result,
683
- input_columns=['MedInc', 'HouseAge', 'AveRooms',
684
- 'AveBedrms', 'Population', 'AveOccup',
685
- 'Latitude', 'Longitude'],
686
- response_column="MedHouseVal",
687
- model_type="Regression"
688
- )
689
-
690
- svm_obj.evaluate(newdata = transform_obj.result,
691
- id_column = "id"
692
- )
693
- """
694
-
695
- response_column_arg_name = self.get_response_column()
696
- if hasattr(self.obj, response_column_arg_name):
697
- response_column = getattr(self.obj, response_column_arg_name)
698
- else:
699
- # Created formula object to access the response column property of the formula.
700
- formula_object = Formula(kwargs["newdata"]._metaexpr, getattr(self.obj, "formula"), "formula")
701
- response_column = formula_object.response_column
702
-
703
- # Populate 'accumulate' for predict function so that it will be available in output DataFrame.
704
- if "accumulate" not in kwargs:
705
- # In case accumulate is not specified by the user set the accumulate as response column.
706
- kwargs["accumulate"] = response_column
707
- elif response_column not in kwargs["accumulate"]:
708
- # Checking if accumulate is passed, and it is not having response column then append response column
709
- # to the list of values passed to accumulate.
710
- if isinstance(kwargs["accumulate"], str):
711
- kwargs["accumulate"] = [kwargs["accumulate"]]
712
- kwargs["accumulate"].append(response_column)
713
-
714
- predict = self.predict(**kwargs)
715
- is_classification_model = self.is_classification_model(**kwargs)
716
-
717
- if is_classification_model:
718
-
719
- kwargs["observation_column"] = response_column
720
- kwargs["prediction_column"] = "Prediction" if "Prediction" in predict.result.columns else "prediction"
721
-
722
- # get the column_names and types from the metaexpr to check if the datatype of prediction column
723
- # and observation column is same or not.
724
- col_names, col_types = df_utils._get_column_names_and_types_from_metaexpr(predict.result._metaexpr)
725
- res = dict(zip(col_names,col_types))
726
- pre_col_name = kwargs["prediction_column"]
727
- if res[kwargs["observation_column"]] != res[pre_col_name]:
728
- # Converting the prediction column datatype to observation column datatype.
729
- cast_cols_pre = {pre_col_name: getattr(predict.result, pre_col_name).expression.cast(
730
- type_=res[kwargs["observation_column"]])}
731
- # Update the predicted result dataframe.
732
- predict.result = predict.result.assign(**cast_cols_pre)
733
-
734
- # Update the num_labels by the number of unique values.
735
- kwargs["num_labels"] = predict.result.drop_duplicate(kwargs["observation_column"]).shape[0]
736
-
737
- kwargs["data"] = predict.result
738
-
739
- return getattr(module, "ClassificationEvaluator")(**kwargs)
740
- else:
741
-
742
- # Include the two missing metrics FSTAT and AR2, if the user did not pass the freedom_degrees and
743
- # independent_features_num then appropriate error message should be displayed.
744
-
745
- # If metrics is specified as "fstat" and "ar2".
746
- if 'metrics' in kwargs:
747
- metrics_list = [kwargs.get("metrics")] if isinstance(kwargs.get("metrics"), str) else kwargs.get("metrics")
748
- metrics_lower_case = {metric : metric.lower() for metric in metrics_list}
749
-
750
- if "fstat" in metrics_lower_case.values():
751
- _Validators._validate_dependent_argument("FSTAT", kwargs.get("metrics"),
752
- "freedom_degrees", kwargs.get("freedom_degrees"))
753
-
754
- if "ar2" in metrics_lower_case.values():
755
- _Validators._validate_dependent_argument("AR2", kwargs.get("metrics"),
756
- "independent_features_num",
757
- kwargs.get("independent_features_num"))
758
-
759
- if kwargs.get("metrics") is None:
760
- # If metrics is not specified then evaluate for all metrics except "fstat" and "ar2".
761
- metrics_list = ['MAE', 'MSE', 'MSLE', 'MAPE', 'MPE', 'RMSE', 'RMSLE', 'R2', 'EV', 'ME', 'MPD',
762
- 'MGD']
763
- # If the dependent and optional argument "independent_features_num" is specified then evaluate for AR2
764
- # also.
765
- if kwargs.get("independent_features_num") is not None:
766
- metrics_list.append("AR2")
767
- # If the dependent and optional argument "freedom_degrees" is specified then evaluate for FSTAT also.
768
- if kwargs.get("freedom_degrees") is not None:
769
- metrics_list.append("FSTAT")
770
- kwargs["metrics"] = metrics_list
771
-
772
- kwargs["data"] = predict.result
773
- kwargs["observation_column"] = response_column
774
- # The column name for predict result is "Prediction" in some cases and "prediction" in others.
775
- kwargs["prediction_column"] = "Prediction" if "Prediction" in predict.result.columns else "prediction"
776
-
777
- return getattr(module, "RegressionEvaluator")(**kwargs)
778
-
779
-
780
- def _get_associated_parent_classes(func_name):
781
- # By this time, context is established.
782
- json_path = os.path.join(UtilFuncs._get_data_directory(), "jsons", "paired_functions.json")
783
- with open(json_path) as fp:
784
- paired_functions = json.load(fp)
785
- # Get the paired functions for func_name
786
- paired_functions = [funcs.get(func_name) for _, funcs in paired_functions.items() if funcs.get(func_name, False)]
787
- # paired_func_dict uses mapping between class and model trainer object.
788
- paired_func_dict = {"predict": _Predict, "transform": _Transform,
789
- "evaluate": _Evaluate, "forecast": _Forecast,
790
- "validate": _Validate, "convolve": _Convolve,
791
- "inverse": _Inverse}
792
- # If paired_functions is empty return empty list
793
- if not paired_functions:
794
- return []
795
- # As there are multiple model trainer object one function can use running a loop to iterate
796
- for paired_function in paired_functions[0]:
797
-
798
- # KNN needs a special handling for predict. So, returning a specific class for KNN.
799
- if func_name == "KNN" and paired_function == "predict":
800
- yield _KNNPredict
801
- # Here returning class which is used as parent class for func_name.
802
- if paired_function in paired_func_dict:
803
- yield paired_func_dict[paired_function]
1
+ """
2
+ Unpublished work.
3
+ Copyright (c) 2021 by Teradata Corporation. All rights reserved.
4
+ TERADATA CORPORATION CONFIDENTIAL AND TRADE SECRET
5
+
6
+ Primary Owner: pradeep.garre@teradata.com, gouri.patwardhan@teradata.com
7
+ Secondary Owner: PankajVinod.Purandare@teradata.com
8
+
9
+ This file implements the helper methods and classes which are required to
10
+ process In-DB Functions.
11
+ """
12
+
13
+ from teradataml.options.configure import configure
14
+ from teradataml.analytics.json_parser.json_store import _JsonStore
15
+ from teradataml.analytics.json_parser.metadata import _AnlyFuncMetadata, _AnlyFuncMetadataUAF
16
+ from teradataml.common.constants import TeradataAnalyticFunctionTypes, TeradataAnalyticFunctionInfo
17
+ from teradataml.common.exceptions import TeradataMlException
18
+ from teradataml.common.messages import Messages
19
+ from teradataml.common.messagecodes import MessageCodes
20
+ import json, os, importlib
21
+ from teradataml import UtilFuncs
22
+ from teradataml.common.formula import Formula
23
+ from teradataml.utils.validators import _Validators
24
+ from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
25
+
26
+ # Map to store IN-DB function type and JSON directory for current database version.
27
+ func_type_json_version = {}
28
+ module = importlib.import_module("teradataml")
29
+
30
+ def _get_json_data_from_tdml_repo():
31
+ """
32
+ DESCRIPTION:
33
+ An internal function to parse the json files stored in teradataml repo. This function,
34
+ first checks whether the version of json store is same as database version.
35
+ If both versions are same, it then returns an empty list, i.e., the framework
36
+ will neither parse the json files nor generate the SQLE functions. Otherwise cleans
37
+ the json store and parses the json files in the corresponding directory and adds
38
+ the json data to json store.
39
+
40
+ PARAMETERS:
41
+ None.
42
+
43
+ RAISES:
44
+ None.
45
+
46
+ RETURNS:
47
+ An iterator of _AnlyFuncMeta object OR list
48
+
49
+ EXAMPLES:
50
+ >>> _get_json_data_from_tdml_repo()
51
+ """
52
+
53
+ # Check if the json store version is matched with Vantage database version. If
54
+ # both versions are matched, then the json store has data available so no need
55
+ # to parse again.
56
+ if configure.database_version != _JsonStore.version:
57
+
58
+ # Json store version is different from database version. So, json's should
59
+ # be parsed again. Before parsing the json, first clean the json store.
60
+ _JsonStore.clean()
61
+
62
+ # Set the json store version to current database version.
63
+ _JsonStore.version = configure.database_version
64
+
65
+ # Clean existing map between IN-DB function type and corresponding JSON directory.
66
+ func_type_json_version.clear()
67
+
68
+ # Load the mapping information for all analytic functions which are version dependent into _JsonStore.
69
+ _load_anlyfuncs_jsons_versions_info()
70
+
71
+ json_file_directories = __get_json_files_directory()
72
+
73
+ # For the corresponding database version, if teradataml does not have any json
74
+ # files, then return an empty list. So framework will not attach any SQLE function
75
+ # to teradataml.
76
+ if not json_file_directories:
77
+ return []
78
+
79
+ # Read the directory, parse the json file and add the _AnlyFuncMeta object to json store
80
+ # and yield the same.
81
+ for json_file_directory_list in json_file_directories:
82
+ # Get the function type
83
+ func_type = json_file_directory_list[1]
84
+ # Get the json directory
85
+ json_file_directory = json_file_directory_list[0]
86
+
87
+ # Get the appropriate metadata class.
88
+ metadata_class = getattr(TeradataAnalyticFunctionInfo, func_type).value.get("metadata_class",
89
+ "_AnlyFuncMetadata")
90
+ metadata_class = eval(metadata_class)
91
+
92
+ for json_file in os.listdir(json_file_directory):
93
+ file_path = os.path.join(json_file_directory, json_file)
94
+ with open(file_path, encoding="utf-8") as fp:
95
+ json_data = json.load(fp)
96
+ metadata = metadata_class(json_data, file_path, func_type=func_type)
97
+
98
+ # Functions which do not need to participate in IN-DB Framework
99
+ # should not be stored in _JsonStore.
100
+ if metadata.func_name in _JsonStore._functions_to_exclude:
101
+ continue
102
+ _JsonStore.add(metadata)
103
+ yield metadata
104
+
105
+ # If both database version and json store version are same, return an empty list so that
106
+ # framework will not attach any SQLE function to teradataml.
107
+ else:
108
+ return []
109
+
110
+
111
+ def _load_anlyfuncs_jsons_versions_info():
112
+ """
113
+ DESCRIPTION:
114
+ Function populates following information for analytic functions:
115
+ * Lowest supported version.
116
+ * Parent directory containing JSONs.
117
+ * Nearest matching JSON directory for a particular database version.
118
+
119
+ PARAMETERS:
120
+ None
121
+
122
+ RETURNS:
123
+ None
124
+
125
+ RAISES:
126
+ None
127
+
128
+ EXAMPLES:
129
+ >>> _load_anlyfuncs_jsons_versions_info()
130
+ """
131
+ # Import the required package.
132
+ import re
133
+ # Get the closest matching JSON directory out of all directories corresponding
134
+ # to JSONs of different version.
135
+ # First remove any letters present in the version
136
+ temp_db_version = re.sub(r'[a-zA-Z]', r'', configure.database_version)
137
+ db_version = float(temp_db_version[:5])
138
+ for func_info in TeradataAnalyticFunctionInfo:
139
+ func_type = func_info.value["func_type"]
140
+ func_base_version = func_info.value["lowest_version"]
141
+ parent_dir = UtilFuncs._get_data_directory(dir_name="jsons",
142
+ func_type=func_info)
143
+ if func_base_version:
144
+ if db_version >= float(func_base_version):
145
+ closest_version = _get_closest_version_json_dir(parent_dir, db_version)
146
+ if closest_version:
147
+ func_type_json_version[func_type] = closest_version
148
+
149
+
150
+ def __get_json_files_directory():
151
+ """
152
+ DESCRIPTION:
153
+ An internal function to get the corresponding directory name, which
154
+ contains the json files.
155
+
156
+ PARAMETERS:
157
+ None.
158
+
159
+ RAISES:
160
+ None.
161
+
162
+ RETURNS:
163
+ list
164
+
165
+ EXAMPLES:
166
+ >>> __get_json_files_directory()
167
+ """
168
+ # If function has version specific JSON directory, return it by using mapping information in
169
+ # _Jsonstore else return common JSON directory.
170
+ for func_info in TeradataAnalyticFunctionInfo:
171
+ if func_info.value["lowest_version"]:
172
+ # Check if current function type is allowed on connected Vantage version or not.
173
+ if func_info.value["func_type"] in func_type_json_version.keys():
174
+ yield [UtilFuncs._get_data_directory(dir_name="jsons", func_type=func_info,
175
+ version=func_type_json_version[func_info.value["func_type"]]),
176
+ func_info.name]
177
+ else:
178
+ yield [UtilFuncs._get_data_directory(dir_name="jsons", func_type=func_info), func_info.name]
179
+
180
+
181
+ def _get_closest_version_json_dir(parent_dir, database_version):
182
+ """
183
+ DESCRIPTION:
184
+ Internal function to get the nearest matching JSON directory for a database
185
+ version from the available JSON directories for the functions.
186
+
187
+ PARAMETERS:
188
+ parent_dir:
189
+ Required Argument.
190
+ Specifies the parent dirctory for JSONs of all teradataml version.
191
+ Types: str
192
+
193
+ database_version:
194
+ Required Argument.
195
+ Specifies the database version.
196
+ Types: float
197
+
198
+ RAISES:
199
+ None.
200
+
201
+ RETURNS:
202
+ str
203
+
204
+ EXAMPLES:
205
+ >>> _get_closest_version_json_dir("path_to_teradataml/teradataml/analytics/jsons/sqle", 17.10)
206
+ """
207
+ # Get the exact matching JSON directory name for current database version.
208
+ # If matching directory exists, return it.
209
+ matching_dir = format(database_version, '.2f')
210
+ if matching_dir in os.listdir(parent_dir):
211
+ return matching_dir
212
+
213
+ # If exact matching JSON directory is not found,
214
+ # return the directory corresponding to the closest lower version.
215
+ # List all the directories, not the files, and collect lower versions only.
216
+ lower_versions = (json_dir for json_dir in os.listdir(parent_dir)
217
+ if (os.path.isdir(os.path.join(parent_dir, json_dir))
218
+ and float(json_dir) <= database_version))
219
+
220
+ # If generator generates non-empty list, return max of all versions from that list,
221
+ # else while an empty list is passed to max() it throws ValueError, so return None.
222
+ try:
223
+ return max(lower_versions)
224
+ except ValueError:
225
+ return None
226
+
227
+ def _process_paired_functions():
228
+ """
229
+ DESCRIPTION:
230
+ Process and reads the paired function json.
231
+
232
+ PARAMETERS:
233
+ None.
234
+
235
+ RETURNS:
236
+ None.
237
+ """
238
+
239
+ json_path = os.path.join(UtilFuncs._get_data_directory(), "jsons", "paired_functions.json")
240
+ with open(json_path) as fp:
241
+ _json = json.load(fp)
242
+
243
+ _available_functions, _ = _JsonStore._get_function_list()
244
+ for func_type, funcs in _json.items():
245
+ # ToDo: Add support for VAL functions
246
+ if func_type == "VAL":
247
+ continue
248
+ # Set all paired functions for SQLE and UAF.
249
+ for func in funcs:
250
+ # Check if function is existed in JSonStore or not. If exists, only
251
+ # then process it.
252
+ if func in _available_functions:
253
+ metadata = _JsonStore.get_function_metadata(func)
254
+ metadata.set_paired_functions(funcs.get(func))
255
+
256
+ class _UAF_paired_function:
257
+ """
258
+ Parent class for _Inverse, _Convolve, _Forecast and _Validate.
259
+ """
260
+ def _process_arguments(self, function_relation, **kwargs):
261
+ """
262
+ DESCRIPTION:
263
+ Method instantiate the reference function based on 'function_relation'.
264
+
265
+ PARAMETERS:
266
+ function_relation:
267
+ defines which method to instantiate.
268
+
269
+ **kwargs:
270
+ Keyword arguments passed based on 'function_relation'.
271
+
272
+ RETURNS:
273
+ object of the reference function.
274
+ """
275
+ metadata = _JsonStore.get_function_metadata(self.__class__.__name__)
276
+ paired_functions = metadata.get_paired_functions()
277
+ paired_function = \
278
+ [fun_relation for fun_relation in paired_functions
279
+ if fun_relation.function_relation == function_relation][0]
280
+ reference_function = paired_function.reference_function
281
+ for _inp, _out in paired_function.arguments:
282
+ kwargs[_inp] = getattr(self, _out)
283
+ input_art_spec = {'data': kwargs[paired_function.input_arguments[0]]}
284
+ if self.__class__.__name__ == "SeasonalNormalize":
285
+ input_art_spec['layer'] = "ARTMETADATA"
286
+ kwargs[paired_function.input_arguments[0]] = \
287
+ getattr(module, "TDAnalyticResult")(**input_art_spec)
288
+ return getattr(module, reference_function)(**kwargs)
289
+
290
+
291
+ class _Convolve(_UAF_paired_function):
292
+ """
293
+ class to convolve the uaf function.
294
+ """
295
+ def convolve(self, **kwargs):
296
+ """
297
+ DESCRIPTION:
298
+ Method to convolve the uaf function used by instance created from below functions:
299
+ * DFFT
300
+ * DFFT2
301
+
302
+ PARAMETERS:
303
+ **kwargs:
304
+ Keyword arguments passed to the convolve method.
305
+ Notes:
306
+ * Every function can have different arguments.
307
+ * This arguments are based on inverse functions.
308
+
309
+ RETURNS:
310
+ object of the reference function.
311
+
312
+ EXAMPLE:
313
+ load_example_data("uaf", ["dfft2conv_real_4_4"])
314
+ data = DataFrame.from_table("dfft2conv_real_4_4")
315
+ td_matrix = TDMatrix(data=data,
316
+ id="id",
317
+ row_index="row_i",
318
+ row_index_style="SEQUENCE",
319
+ column_index="column_i",
320
+ column_index_style="SEQUENCE",
321
+ payload_field="magnitude",
322
+ payload_content="REAL")
323
+ filter_expr = td_matrix.id==33
324
+ dfft2_out = DFFT2(data=td_matrix,
325
+ data_filter_expr=filter_expr,
326
+ freq_style="K_INTEGRAL",
327
+ human_readable=False,
328
+ output_fmt_content="COMPLEX")
329
+ convolve_output = dfft2_out.convolve(conv="HR_TO_RAW",
330
+ output_fmt_content="AMPL_PHASE_RADIANS")
331
+ """
332
+ return self._process_arguments("convolve", **kwargs)
333
+
334
+ class _Inverse(_UAF_paired_function):
335
+ """
336
+ class to inverse the effects of uaf function.
337
+ """
338
+ def inverse(self, **kwargs):
339
+ """
340
+ DESCRIPTION:
341
+ Method to inverse the effect of uaf function used by instance created from below functions:
342
+ * DIFF
343
+ * UNDIFF
344
+ * DFFT
345
+ * IDFFT
346
+ * DFFT2
347
+ * IDFFT2
348
+ * SeasonalNormalize
349
+
350
+ PARAMETERS:
351
+ **kwargs:
352
+ Keyword arguments passed to the inverse method.
353
+ Notes:
354
+ * Every function can have different arguments.
355
+ * This arguments are based on inverse functions.
356
+
357
+ RETURNS:
358
+ object of the reference function.
359
+
360
+ EXAMPLE:
361
+ load_example_data("uaf", "mvdfft8")
362
+ data = DataFrame.from_table("mvdfft8")
363
+ data_series_df = TDSeries(data=data,
364
+ id="sid",
365
+ row_index="n_seqno",
366
+ row_index_style="SEQUENCE",
367
+ payload_field="magnitude1",
368
+ payload_content="REAL")
369
+ DFFT_result = DFFT(data=data_series_df,
370
+ human_readable=True,
371
+ output_fmt_content='COMPLEX')
372
+ inverse_output = DFFT_result.inverse()
373
+ """
374
+ return self._process_arguments("inverse", **kwargs)
375
+
376
+
377
+ class _Forecast(_UAF_paired_function):
378
+ """
379
+ Class to forecast the model trainer object
380
+ """
381
+ def forecast(self, **kwargs):
382
+ """
383
+ DESCRIPTION:
384
+ Method to forecast the model trainer object and instantiate
385
+ the reference function.
386
+
387
+ PARAMETERS:
388
+ **kwargs:
389
+ Keyword arguments passed to the forecast method.
390
+ Notes:
391
+ * Every function can have different arguments.
392
+ * This arguments are based on forecast functions.
393
+
394
+ RETURNS:
395
+ object of the reference function which are:
396
+ * result
397
+
398
+ EXAMPLE:
399
+ load_example_data("uaf", ["timeseriesdatasetsd4"])
400
+ data = DataFrame.from_table("timeseriesdatasetsd4")
401
+ data_series_df = TDSeries(data=data,
402
+ id="dataset_id",
403
+ row_index="seqno",
404
+ row_index_style="SEQUENCE",
405
+ payload_field="magnitude",
406
+ payload_content="REAL")
407
+ arima_estimate_op = ArimaEstimate(data1=data_series_df,
408
+ nonseasonal_model_order=[2,0,0],
409
+ constant=False,
410
+ algorithm="MLE",
411
+ coeff_stats=True,
412
+ fit_metrics=True,
413
+ residuals=True,
414
+ fit_percentage=100)
415
+ arima_estimate_op.forecast(forecast_periods=2)
416
+ """
417
+ return self._process_arguments("forecast", **kwargs)
418
+
419
+ class _Validate(_UAF_paired_function):
420
+ """
421
+ Class to validate the model trainer object
422
+ """
423
+ def validate(self, **kwargs):
424
+ """
425
+ DESCRIPTION:
426
+ Method to validate the model trainer object and instantiate
427
+ the reference function.
428
+
429
+ PARAMETERS:
430
+ **kwargs:
431
+ Keyword arguments passed to the validate method.
432
+ Note:
433
+ * Every function can have different arguments.
434
+ * This arguments are based on validate functions.
435
+
436
+ RETURNS:
437
+ object of the reference function which are:
438
+ * result
439
+ * fitmetadata
440
+ * fitresiduals
441
+ * model
442
+
443
+ EXAMPLE:
444
+ load_example_data("uaf", ["timeseriesdatasetsd4"])
445
+ data = DataFrame.from_table("timeseriesdatasetsd4")
446
+ data_series_df = TDSeries(data=data,
447
+ id="dataset_id",
448
+ row_index="seqno",
449
+ row_index_style="SEQUENCE",
450
+ payload_field="magnitude",
451
+ payload_content="REAL")
452
+ arima_estimate_op = ArimaEstimate(data1=data_series_df,
453
+ nonseasonal_model_order=[2,0,0],
454
+ constant=False,
455
+ algorithm="MLE",
456
+ coeff_stats=True,
457
+ fit_metrics=True,
458
+ residuals=True,
459
+ fit_percentage=80)
460
+ arima_estimate_op.validate(residuals=True)
461
+ """
462
+ return self._process_arguments("validate", **kwargs)
463
+
464
+ class _Transform:
465
+ def transform(self, **kwargs):
466
+ """
467
+ DESCRIPTION:
468
+ Method to transform the model trainer object and instantiate
469
+ the reference function.
470
+
471
+ PARAMETERS:
472
+ **kwargs:
473
+ Keyword arguments passed to the transform method.
474
+
475
+ RETURNS:
476
+ object of the reference function.
477
+
478
+ EXAMPLES:
479
+ fit_df = Fit(data=iris_input,
480
+ object=transformation_df,
481
+ object_order_column='TargetColumn'
482
+ )
483
+
484
+ fit_df.transform(data=iris_input)
485
+ """
486
+ metadata = _JsonStore.get_function_metadata(self.__class__.__name__)
487
+ paired_functions = metadata.get_paired_functions()
488
+ paired_function = [f for f in paired_functions if f.function_relation == "transform"][0]
489
+ reference_function = paired_function.reference_function
490
+ for _inp, _out in paired_function.arguments:
491
+ kwargs[_inp] = getattr(self, _out)
492
+ return getattr(module, reference_function)(**kwargs)
493
+
494
+ class _Predict:
495
+ def predict(self, **kwargs):
496
+ """
497
+ DESCRIPTION:
498
+ Method to predict the model trainer object and instantiate
499
+ the reference function.
500
+
501
+ PARAMETERS:
502
+ **kwargs:
503
+ Keyword arguments passed to the transform method.
504
+
505
+ RETURNS:
506
+ object of the reference function.
507
+
508
+ EXAMPLE:
509
+ svm_obj = SVM(data=transform_obj.result,
510
+ input_columns=['MedInc', 'HouseAge', 'AveRooms',
511
+ 'AveBedrms', 'Population', 'AveOccup',
512
+ 'Latitude', 'Longitude'],
513
+ response_column="MedHouseVal",
514
+ model_type="Regression"
515
+ )
516
+
517
+ svm_obj.predict(newdata = transform_obj.result,
518
+ id_column = "id"
519
+ )
520
+ """
521
+ metadata = _JsonStore.get_function_metadata(self.__class__.__name__)
522
+ paired_functions = metadata.get_paired_functions()
523
+ paired_function = [f for f in paired_functions if f.function_relation == "predict"][0]
524
+ reference_function = paired_function.reference_function
525
+ for _inp, _out in paired_function.arguments:
526
+ kwargs[_inp] = getattr(self, _out)
527
+ return getattr(module, reference_function)(**kwargs)
528
+
529
+
530
+ class _KNNPredict:
531
+ def predict(self, **kwargs):
532
+ """
533
+ DESCRIPTION:
534
+ Method to predict the KNN model trainer object and instantiate
535
+ the reference function.
536
+
537
+ PARAMETERS:
538
+ **kwargs:
539
+ Keyword arguments passed to the transform method.
540
+
541
+ RETURNS:
542
+ object of the reference function.
543
+
544
+ EXAMPLE:
545
+ KNN_out = KNN(train_data=computers_train1_encoded.result.iloc[:100],
546
+ test_data=computers_train1_encoded.result.iloc[10:],
547
+ id_column="id",
548
+ input_columns=["screen", "price", "speed", "hd"],
549
+ model_type="REGRESSION",
550
+ response_column="computer_category_special")
551
+
552
+ res = KNN_out.evaluate(test_data=computers_train1_encoded.result.iloc[10:])
553
+ """
554
+ params = {"test_data": kwargs.get("test_data"),
555
+ "id_column": self.id_column,
556
+ "train_data": self.train_data,
557
+ "input_columns": self.input_columns,
558
+ "response_column": kwargs.get("response_column", self.response_column),
559
+ "accumulate": kwargs.get("accumulate", kwargs.get("response_column", self.response_column)
560
+ if getattr(self.obj, "accumulate") is None else self.accumulate)}
561
+
562
+ # KNN works in a different way. predict calls the same function with test data along with
563
+ # the arguments passed to the actual function. The above parameters are required
564
+ # arguments so we expect them to be available in output of KNN. However, the below
565
+ # ones are optional arguments. They can be available or not based on user input. So, before
566
+ # passing those to KNN again, check whether that argument is passed or not.
567
+ optional_args = ["model_type", "k", "voting_weight",
568
+ "tolerance", "output_prob", "output_responses",
569
+ "emit_neighbors", "emit_distances"]
570
+
571
+ for optional_arg in optional_args:
572
+ if hasattr(self, optional_arg):
573
+ params[optional_arg] = getattr(self, optional_arg)
574
+
575
+ return getattr(module, "KNN")(**params)
576
+
577
+
578
+ class _Evaluate:
579
+ """
580
+ DESCRIPTION:
581
+ Implements the Classification and Regression evaluator.
582
+ """
583
+ _accumulate_args = {"NaiveBayesTextClassifierTrainer": "doc_category_column"}
584
+
585
+ # Mapper for mapping function names with argument names
586
+ _evaluator_function_mapper = {"DecisionForest": "tree_type",
587
+ "GLM": "family",
588
+ "GLMPerSegment": "family",
589
+ "SVM": "model_type",
590
+ "XGBoost": "model_type"}
591
+
592
+ def is_classification_model(self, **kwargs):
593
+ """
594
+ DESCRIPTION:
595
+ Returns True if the model is classification model or regression model.
596
+
597
+ PARAMETERS:
598
+ **kwargs:
599
+ Keyword arguments to access the model_type.
600
+
601
+ RETURNS:
602
+ Boolean.
603
+ """
604
+ is_classification_model = False
605
+
606
+ # NaiveBayesTextClassifierTrainer takes Multinomial, Bernoulli as input
607
+ # both comes under classification evaluator
608
+ if self.get_function_name() == "NaiveBayesTextClassifierTrainer":
609
+ return True
610
+ # name of argument is model_type for most of the functions but for some it is different
611
+ if "model_type" not in kwargs:
612
+ arg_name = self.get_arg_name()
613
+ model_type = getattr(self.obj, arg_name)
614
+ kwargs["model_type"] = model_type
615
+
616
+ if kwargs["model_type"].lower() == "binomial" or kwargs["model_type"].lower() == "classification":
617
+ is_classification_model = True
618
+
619
+ return is_classification_model
620
+
621
+ def get_function_name(self):
622
+ """
623
+ DESCRIPTION:
624
+ Function to get the name of the analytic function.
625
+
626
+ PARAMETERS:
627
+ None.
628
+
629
+ RETURNS:
630
+ str.
631
+
632
+ """
633
+ return self.__class__.__name__
634
+
635
+ def get_response_column(self):
636
+ """
637
+ DESCRIPTION:
638
+ Function to get the argument name for response column. For some functions
639
+ argument name storing the response column is different, it can
640
+ be fetched from the '_accumulate_arg' mapping.
641
+
642
+ PARAMETER:
643
+ None.
644
+
645
+ RETURNS:
646
+ str.
647
+ """
648
+ # By default it is 'response_column' but some functions require different names.
649
+ return self._accumulate_args.get(self.get_function_name(), "response_column")
650
+
651
+
652
+
653
+ def get_arg_name(self):
654
+ """
655
+ DESCRIPTION:
656
+ Function to get the argument name for model type. For some functions argument
657
+ name can be different, and it can be fetched using the '_evaluator_function_mapper'
658
+ mapping.
659
+
660
+ PARAMETER:
661
+ None.
662
+
663
+ RETURNS:
664
+ String representing the argument name.
665
+ """
666
+ return self._evaluator_function_mapper.get(self.get_function_name(), "model_type")
667
+
668
+ def evaluate(self, **kwargs):
669
+ """
670
+ DESCRIPTION:
671
+ Method to evaluate the model trainer object, using
672
+ either the classification or regression evaluator and
673
+ instantiate the reference function.
674
+
675
+ PARAMETER:
676
+ **kwargs:
677
+ Keyword arguments for specified for evaluate method.
678
+
679
+ RETURNS:
680
+ Attribute of Classification Evaluator or Regression Evaluator
681
+
682
+ EXAMPLE:
683
+ svm_obj = SVM(data=transform_obj.result,
684
+ input_columns=['MedInc', 'HouseAge', 'AveRooms',
685
+ 'AveBedrms', 'Population', 'AveOccup',
686
+ 'Latitude', 'Longitude'],
687
+ response_column="MedHouseVal",
688
+ model_type="Regression"
689
+ )
690
+
691
+ svm_obj.evaluate(newdata = transform_obj.result,
692
+ id_column = "id"
693
+ )
694
+ """
695
+
696
+ response_column_arg_name = self.get_response_column()
697
+ if hasattr(self.obj, response_column_arg_name):
698
+ response_column = getattr(self.obj, response_column_arg_name)
699
+ else:
700
+ # Created formula object to access the response column property of the formula.
701
+ formula_object = Formula(kwargs["newdata"]._metaexpr, getattr(self.obj, "formula"), "formula")
702
+ response_column = formula_object.response_column
703
+
704
+ # Populate 'accumulate' for predict function so that it will be available in output DataFrame.
705
+ if "accumulate" not in kwargs:
706
+ # In case accumulate is not specified by the user set the accumulate as response column.
707
+ kwargs["accumulate"] = response_column
708
+ elif response_column not in kwargs["accumulate"]:
709
+ # Checking if accumulate is passed, and it is not having response column then append response column
710
+ # to the list of values passed to accumulate.
711
+ if isinstance(kwargs["accumulate"], str):
712
+ kwargs["accumulate"] = [kwargs["accumulate"]]
713
+ kwargs["accumulate"].append(response_column)
714
+
715
+ predict = self.predict(**kwargs)
716
+ is_classification_model = self.is_classification_model(**kwargs)
717
+
718
+ if is_classification_model:
719
+
720
+ kwargs["observation_column"] = response_column
721
+ kwargs["prediction_column"] = "Prediction" if "Prediction" in predict.result.columns else "prediction"
722
+
723
+ # get the column_names and types from the metaexpr to check if the datatype of prediction column
724
+ # and observation column is same or not.
725
+ col_names, col_types = df_utils._get_column_names_and_types_from_metaexpr(predict.result._metaexpr)
726
+ res = dict(zip(col_names,col_types))
727
+ pre_col_name = kwargs["prediction_column"]
728
+ if res[kwargs["observation_column"]] != res[pre_col_name]:
729
+ # Converting the prediction column datatype to observation column datatype.
730
+ cast_cols_pre = {pre_col_name: getattr(predict.result, pre_col_name).expression.cast(
731
+ type_=res[kwargs["observation_column"]])}
732
+ # Update the predicted result dataframe.
733
+ predict.result = predict.result.assign(**cast_cols_pre)
734
+
735
+ # Update the num_labels by the number of unique values.
736
+ kwargs["num_labels"] = predict.result.drop_duplicate(kwargs["observation_column"]).shape[0]
737
+
738
+ kwargs["data"] = predict.result
739
+
740
+ return getattr(module, "ClassificationEvaluator")(**kwargs)
741
+ else:
742
+
743
+ # Include the two missing metrics FSTAT and AR2, if the user did not pass the freedom_degrees and
744
+ # independent_features_num then appropriate error message should be displayed.
745
+
746
+ # If metrics is specified as "fstat" and "ar2".
747
+ if 'metrics' in kwargs:
748
+ metrics_list = [kwargs.get("metrics")] if isinstance(kwargs.get("metrics"), str) else kwargs.get("metrics")
749
+ metrics_lower_case = {metric : metric.lower() for metric in metrics_list}
750
+
751
+ if "fstat" in metrics_lower_case.values():
752
+ _Validators._validate_dependent_argument("FSTAT", kwargs.get("metrics"),
753
+ "freedom_degrees", kwargs.get("freedom_degrees"))
754
+
755
+ if "ar2" in metrics_lower_case.values():
756
+ _Validators._validate_dependent_argument("AR2", kwargs.get("metrics"),
757
+ "independent_features_num",
758
+ kwargs.get("independent_features_num"))
759
+
760
+ if kwargs.get("metrics") is None:
761
+ # If metrics is not specified then evaluate for all metrics except "fstat" and "ar2".
762
+ metrics_list = ['MAE', 'MSE', 'MSLE', 'MAPE', 'MPE', 'RMSE', 'RMSLE', 'R2', 'EV', 'ME', 'MPD',
763
+ 'MGD']
764
+ # If the dependent and optional argument "independent_features_num" is specified then evaluate for AR2
765
+ # also.
766
+ if kwargs.get("independent_features_num") is not None:
767
+ metrics_list.append("AR2")
768
+ # If the dependent and optional argument "freedom_degrees" is specified then evaluate for FSTAT also.
769
+ if kwargs.get("freedom_degrees") is not None:
770
+ metrics_list.append("FSTAT")
771
+ kwargs["metrics"] = metrics_list
772
+
773
+ kwargs["data"] = predict.result
774
+ kwargs["observation_column"] = response_column
775
+ # The column name for predict result is "Prediction" in some cases and "prediction" in others.
776
+ kwargs["prediction_column"] = "Prediction" if "Prediction" in predict.result.columns else "prediction"
777
+
778
+ return getattr(module, "RegressionEvaluator")(**kwargs)
779
+
780
+
781
+ def _get_associated_parent_classes(func_name):
782
+ # By this time, context is established.
783
+ json_path = os.path.join(UtilFuncs._get_data_directory(), "jsons", "paired_functions.json")
784
+ with open(json_path) as fp:
785
+ paired_functions = json.load(fp)
786
+ # Get the paired functions for func_name
787
+ paired_functions = [funcs.get(func_name) for _, funcs in paired_functions.items() if funcs.get(func_name, False)]
788
+ # paired_func_dict uses mapping between class and model trainer object.
789
+ paired_func_dict = {"predict": _Predict, "transform": _Transform,
790
+ "evaluate": _Evaluate, "forecast": _Forecast,
791
+ "validate": _Validate, "convolve": _Convolve,
792
+ "inverse": _Inverse}
793
+ # If paired_functions is empty return empty list
794
+ if not paired_functions:
795
+ return []
796
+ # As there are multiple model trainer object one function can use running a loop to iterate
797
+ for paired_function in paired_functions[0]:
798
+
799
+ # KNN needs a special handling for predict. So, returning a specific class for KNN.
800
+ if func_name == "KNN" and paired_function == "predict":
801
+ yield _KNNPredict
802
+ # Here returning class which is used as parent class for func_name.
803
+ if paired_function in paired_func_dict:
804
+ yield paired_func_dict[paired_function]