teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (1285) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +1864 -1640
  4. teradataml/__init__.py +70 -60
  5. teradataml/_version.py +11 -11
  6. teradataml/analytics/Transformations.py +2995 -2995
  7. teradataml/analytics/__init__.py +81 -83
  8. teradataml/analytics/analytic_function_executor.py +2013 -2010
  9. teradataml/analytics/analytic_query_generator.py +958 -958
  10. teradataml/analytics/byom/H2OPredict.py +514 -514
  11. teradataml/analytics/byom/PMMLPredict.py +437 -437
  12. teradataml/analytics/byom/__init__.py +14 -14
  13. teradataml/analytics/json_parser/__init__.py +130 -130
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
  15. teradataml/analytics/json_parser/json_store.py +191 -191
  16. teradataml/analytics/json_parser/metadata.py +1637 -1637
  17. teradataml/analytics/json_parser/utils.py +804 -803
  18. teradataml/analytics/meta_class.py +196 -196
  19. teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
  21. teradataml/analytics/sqle/__init__.py +97 -110
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
  24. teradataml/analytics/table_operator/__init__.py +10 -10
  25. teradataml/analytics/uaf/__init__.py +63 -63
  26. teradataml/analytics/utils.py +693 -692
  27. teradataml/analytics/valib.py +1603 -1600
  28. teradataml/automl/__init__.py +1628 -0
  29. teradataml/automl/custom_json_utils.py +1270 -0
  30. teradataml/automl/data_preparation.py +993 -0
  31. teradataml/automl/data_transformation.py +727 -0
  32. teradataml/automl/feature_engineering.py +1648 -0
  33. teradataml/automl/feature_exploration.py +547 -0
  34. teradataml/automl/model_evaluation.py +163 -0
  35. teradataml/automl/model_training.py +887 -0
  36. teradataml/catalog/__init__.py +1 -3
  37. teradataml/catalog/byom.py +1759 -1716
  38. teradataml/catalog/function_argument_mapper.py +859 -861
  39. teradataml/catalog/model_cataloging_utils.py +491 -1510
  40. teradataml/clients/pkce_client.py +481 -481
  41. teradataml/common/aed_utils.py +6 -2
  42. teradataml/common/bulk_exposed_utils.py +111 -111
  43. teradataml/common/constants.py +1433 -1441
  44. teradataml/common/deprecations.py +160 -0
  45. teradataml/common/exceptions.py +73 -73
  46. teradataml/common/formula.py +742 -742
  47. teradataml/common/garbagecollector.py +592 -635
  48. teradataml/common/messagecodes.py +422 -431
  49. teradataml/common/messages.py +227 -231
  50. teradataml/common/sqlbundle.py +693 -693
  51. teradataml/common/td_coltype_code_to_tdtype.py +48 -48
  52. teradataml/common/utils.py +2418 -2500
  53. teradataml/common/warnings.py +25 -25
  54. teradataml/common/wrapper_utils.py +1 -110
  55. teradataml/config/dummy_file1.cfg +4 -4
  56. teradataml/config/dummy_file2.cfg +2 -2
  57. teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
  58. teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
  59. teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
  60. teradataml/context/aed_context.py +217 -217
  61. teradataml/context/context.py +1071 -999
  62. teradataml/data/A_loan.csv +19 -19
  63. teradataml/data/BINARY_REALS_LEFT.csv +11 -11
  64. teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
  65. teradataml/data/B_loan.csv +49 -49
  66. teradataml/data/BuoyData2.csv +17 -17
  67. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
  68. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
  69. teradataml/data/Convolve2RealsLeft.csv +5 -5
  70. teradataml/data/Convolve2RealsRight.csv +5 -5
  71. teradataml/data/Convolve2ValidLeft.csv +11 -11
  72. teradataml/data/Convolve2ValidRight.csv +11 -11
  73. teradataml/data/DFFTConv_Real_8_8.csv +65 -65
  74. teradataml/data/Orders1_12mf.csv +24 -24
  75. teradataml/data/Pi_loan.csv +7 -7
  76. teradataml/data/SMOOTHED_DATA.csv +7 -7
  77. teradataml/data/TestDFFT8.csv +9 -9
  78. teradataml/data/TestRiver.csv +109 -109
  79. teradataml/data/Traindata.csv +28 -28
  80. teradataml/data/acf.csv +17 -17
  81. teradataml/data/adaboost_example.json +34 -34
  82. teradataml/data/adaboostpredict_example.json +24 -24
  83. teradataml/data/additional_table.csv +10 -10
  84. teradataml/data/admissions_test.csv +21 -21
  85. teradataml/data/admissions_train.csv +41 -41
  86. teradataml/data/admissions_train_nulls.csv +41 -41
  87. teradataml/data/ageandheight.csv +13 -13
  88. teradataml/data/ageandpressure.csv +31 -31
  89. teradataml/data/antiselect_example.json +36 -36
  90. teradataml/data/antiselect_input.csv +8 -8
  91. teradataml/data/antiselect_input_mixed_case.csv +8 -8
  92. teradataml/data/applicant_external.csv +6 -6
  93. teradataml/data/applicant_reference.csv +6 -6
  94. teradataml/data/arima_example.json +9 -9
  95. teradataml/data/assortedtext_input.csv +8 -8
  96. teradataml/data/attribution_example.json +33 -33
  97. teradataml/data/attribution_sample_table.csv +27 -27
  98. teradataml/data/attribution_sample_table1.csv +6 -6
  99. teradataml/data/attribution_sample_table2.csv +11 -11
  100. teradataml/data/bank_churn.csv +10001 -0
  101. teradataml/data/bank_web_clicks1.csv +42 -42
  102. teradataml/data/bank_web_clicks2.csv +91 -91
  103. teradataml/data/bank_web_url.csv +85 -85
  104. teradataml/data/barrier.csv +2 -2
  105. teradataml/data/barrier_new.csv +3 -3
  106. teradataml/data/betweenness_example.json +13 -13
  107. teradataml/data/bin_breaks.csv +8 -8
  108. teradataml/data/bin_fit_ip.csv +3 -3
  109. teradataml/data/binary_complex_left.csv +11 -11
  110. teradataml/data/binary_complex_right.csv +11 -11
  111. teradataml/data/binary_matrix_complex_left.csv +21 -21
  112. teradataml/data/binary_matrix_complex_right.csv +21 -21
  113. teradataml/data/binary_matrix_real_left.csv +21 -21
  114. teradataml/data/binary_matrix_real_right.csv +21 -21
  115. teradataml/data/blood2ageandweight.csv +26 -26
  116. teradataml/data/bmi.csv +501 -0
  117. teradataml/data/boston.csv +507 -507
  118. teradataml/data/buoydata_mix.csv +11 -11
  119. teradataml/data/burst_data.csv +5 -5
  120. teradataml/data/burst_example.json +20 -20
  121. teradataml/data/byom_example.json +17 -17
  122. teradataml/data/bytes_table.csv +3 -3
  123. teradataml/data/cal_housing_ex_raw.csv +70 -70
  124. teradataml/data/callers.csv +7 -7
  125. teradataml/data/calls.csv +10 -10
  126. teradataml/data/cars_hist.csv +33 -33
  127. teradataml/data/cat_table.csv +24 -24
  128. teradataml/data/ccm_example.json +31 -31
  129. teradataml/data/ccm_input.csv +91 -91
  130. teradataml/data/ccm_input2.csv +13 -13
  131. teradataml/data/ccmexample.csv +101 -101
  132. teradataml/data/ccmprepare_example.json +8 -8
  133. teradataml/data/ccmprepare_input.csv +91 -91
  134. teradataml/data/cfilter_example.json +12 -12
  135. teradataml/data/changepointdetection_example.json +18 -18
  136. teradataml/data/changepointdetectionrt_example.json +8 -8
  137. teradataml/data/chi_sq.csv +2 -2
  138. teradataml/data/churn_data.csv +14 -14
  139. teradataml/data/churn_emission.csv +35 -35
  140. teradataml/data/churn_initial.csv +3 -3
  141. teradataml/data/churn_state_transition.csv +5 -5
  142. teradataml/data/citedges_2.csv +745 -745
  143. teradataml/data/citvertices_2.csv +1210 -1210
  144. teradataml/data/clicks2.csv +16 -16
  145. teradataml/data/clickstream.csv +12 -12
  146. teradataml/data/clickstream1.csv +11 -11
  147. teradataml/data/closeness_example.json +15 -15
  148. teradataml/data/complaints.csv +21 -21
  149. teradataml/data/complaints_mini.csv +3 -3
  150. teradataml/data/complaints_testtoken.csv +224 -224
  151. teradataml/data/complaints_tokens_test.csv +353 -353
  152. teradataml/data/complaints_traintoken.csv +472 -472
  153. teradataml/data/computers_category.csv +1001 -1001
  154. teradataml/data/computers_test1.csv +1252 -1252
  155. teradataml/data/computers_train1.csv +5009 -5009
  156. teradataml/data/computers_train1_clustered.csv +5009 -5009
  157. teradataml/data/confusionmatrix_example.json +9 -9
  158. teradataml/data/conversion_event_table.csv +3 -3
  159. teradataml/data/corr_input.csv +17 -17
  160. teradataml/data/correlation_example.json +11 -11
  161. teradataml/data/coxhazardratio_example.json +39 -39
  162. teradataml/data/coxph_example.json +15 -15
  163. teradataml/data/coxsurvival_example.json +28 -28
  164. teradataml/data/cpt.csv +41 -41
  165. teradataml/data/credit_ex_merged.csv +45 -45
  166. teradataml/data/customer_loyalty.csv +301 -301
  167. teradataml/data/customer_loyalty_newseq.csv +31 -31
  168. teradataml/data/dataframe_example.json +146 -146
  169. teradataml/data/decisionforest_example.json +37 -37
  170. teradataml/data/decisionforestpredict_example.json +38 -38
  171. teradataml/data/decisiontree_example.json +21 -21
  172. teradataml/data/decisiontreepredict_example.json +45 -45
  173. teradataml/data/dfft2_size4_real.csv +17 -17
  174. teradataml/data/dfft2_test_matrix16.csv +17 -17
  175. teradataml/data/dfft2conv_real_4_4.csv +65 -65
  176. teradataml/data/diabetes.csv +443 -443
  177. teradataml/data/diabetes_test.csv +89 -89
  178. teradataml/data/dict_table.csv +5 -5
  179. teradataml/data/docperterm_table.csv +4 -4
  180. teradataml/data/docs/__init__.py +1 -1
  181. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
  182. teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
  183. teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
  184. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
  185. teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
  186. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
  187. teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
  188. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
  189. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
  190. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
  191. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
  192. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
  193. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
  194. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
  195. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
  196. teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
  197. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
  198. teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
  199. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
  200. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
  201. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
  202. teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
  203. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
  204. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
  205. teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
  206. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
  207. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
  208. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
  209. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +132 -132
  210. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +103 -103
  211. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
  212. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +101 -101
  213. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
  214. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
  215. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
  216. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
  217. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
  218. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
  219. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
  220. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
  221. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
  222. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
  223. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
  224. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
  225. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
  226. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
  227. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
  228. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
  229. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
  230. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
  231. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
  232. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
  233. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
  234. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +126 -126
  235. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
  236. teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
  237. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
  238. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
  239. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
  240. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
  241. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
  242. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
  243. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +243 -243
  244. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
  245. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
  246. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
  247. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
  248. teradataml/data/docs/sqle/docs_17_20/FTest.py +160 -160
  249. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
  250. teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
  251. teradataml/data/docs/sqle/docs_17_20/GLM.py +380 -380
  252. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
  253. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
  254. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
  255. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +123 -123
  256. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
  257. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
  258. teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
  259. teradataml/data/docs/sqle/docs_17_20/KMeans.py +204 -204
  260. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
  261. teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
  262. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
  263. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
  264. teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
  265. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
  266. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
  267. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
  268. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +117 -117
  269. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
  270. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
  271. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
  272. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
  273. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +225 -225
  274. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +115 -115
  275. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
  276. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
  277. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
  278. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
  279. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
  280. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
  281. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
  282. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
  283. teradataml/data/docs/sqle/docs_17_20/ROC.py +163 -163
  284. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
  285. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
  286. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
  287. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
  288. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
  289. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
  290. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
  291. teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
  292. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +202 -202
  293. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
  294. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +197 -197
  295. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +110 -109
  296. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
  297. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
  298. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
  299. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
  300. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
  301. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
  302. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
  303. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
  304. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +171 -171
  305. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
  306. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
  307. teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
  308. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
  309. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
  310. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
  311. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
  312. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
  313. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
  314. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
  315. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
  316. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +353 -353
  317. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +275 -275
  318. teradataml/data/docs/sqle/docs_17_20/ZTest.py +155 -155
  319. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
  320. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
  321. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
  322. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
  323. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
  324. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
  325. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
  326. teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
  327. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
  328. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
  329. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
  330. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
  331. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
  332. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
  333. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
  334. teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
  335. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
  336. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
  337. teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
  338. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
  339. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
  340. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
  341. teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
  342. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
  343. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
  344. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
  345. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
  346. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
  347. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
  348. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
  349. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
  350. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
  351. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
  352. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
  353. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
  354. teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
  355. teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
  356. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
  357. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
  358. teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
  359. teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
  360. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
  361. teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
  362. teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
  363. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
  364. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
  365. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
  366. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
  367. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
  368. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
  369. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
  370. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
  371. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
  372. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
  373. teradataml/data/dtw_example.json +17 -17
  374. teradataml/data/dtw_t1.csv +11 -11
  375. teradataml/data/dtw_t2.csv +4 -4
  376. teradataml/data/dwt2d_example.json +15 -15
  377. teradataml/data/dwt_example.json +14 -14
  378. teradataml/data/dwt_filter_dim.csv +5 -5
  379. teradataml/data/emission.csv +9 -9
  380. teradataml/data/emp_table_by_dept.csv +19 -19
  381. teradataml/data/employee_info.csv +4 -4
  382. teradataml/data/employee_table.csv +6 -6
  383. teradataml/data/excluding_event_table.csv +2 -2
  384. teradataml/data/finance_data.csv +6 -6
  385. teradataml/data/finance_data2.csv +61 -61
  386. teradataml/data/finance_data3.csv +93 -93
  387. teradataml/data/fish.csv +160 -0
  388. teradataml/data/fm_blood2ageandweight.csv +26 -26
  389. teradataml/data/fmeasure_example.json +11 -11
  390. teradataml/data/followers_leaders.csv +10 -10
  391. teradataml/data/fpgrowth_example.json +12 -12
  392. teradataml/data/frequentpaths_example.json +29 -29
  393. teradataml/data/friends.csv +9 -9
  394. teradataml/data/fs_input.csv +33 -33
  395. teradataml/data/fs_input1.csv +33 -33
  396. teradataml/data/genData.csv +513 -513
  397. teradataml/data/geodataframe_example.json +39 -39
  398. teradataml/data/glass_types.csv +215 -0
  399. teradataml/data/glm_admissions_model.csv +12 -12
  400. teradataml/data/glm_example.json +29 -29
  401. teradataml/data/glml1l2_example.json +28 -28
  402. teradataml/data/glml1l2predict_example.json +54 -54
  403. teradataml/data/glmpredict_example.json +54 -54
  404. teradataml/data/gq_t1.csv +21 -21
  405. teradataml/data/hconvolve_complex_right.csv +5 -5
  406. teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
  407. teradataml/data/histogram_example.json +11 -11
  408. teradataml/data/hmmdecoder_example.json +78 -78
  409. teradataml/data/hmmevaluator_example.json +24 -24
  410. teradataml/data/hmmsupervised_example.json +10 -10
  411. teradataml/data/hmmunsupervised_example.json +7 -7
  412. teradataml/data/house_values.csv +12 -12
  413. teradataml/data/house_values2.csv +13 -13
  414. teradataml/data/housing_cat.csv +7 -7
  415. teradataml/data/housing_data.csv +9 -9
  416. teradataml/data/housing_test.csv +47 -47
  417. teradataml/data/housing_test_binary.csv +47 -47
  418. teradataml/data/housing_train.csv +493 -493
  419. teradataml/data/housing_train_attribute.csv +4 -4
  420. teradataml/data/housing_train_binary.csv +437 -437
  421. teradataml/data/housing_train_parameter.csv +2 -2
  422. teradataml/data/housing_train_response.csv +493 -493
  423. teradataml/data/ibm_stock.csv +370 -370
  424. teradataml/data/ibm_stock1.csv +370 -370
  425. teradataml/data/identitymatch_example.json +21 -21
  426. teradataml/data/idf_table.csv +4 -4
  427. teradataml/data/impressions.csv +101 -101
  428. teradataml/data/inflation.csv +21 -21
  429. teradataml/data/initial.csv +3 -3
  430. teradataml/data/insect_sprays.csv +12 -12
  431. teradataml/data/insurance.csv +1339 -1339
  432. teradataml/data/interpolator_example.json +12 -12
  433. teradataml/data/iris_altinput.csv +481 -481
  434. teradataml/data/iris_attribute_output.csv +8 -8
  435. teradataml/data/iris_attribute_test.csv +121 -121
  436. teradataml/data/iris_attribute_train.csv +481 -481
  437. teradataml/data/iris_category_expect_predict.csv +31 -31
  438. teradataml/data/iris_data.csv +151 -0
  439. teradataml/data/iris_input.csv +151 -151
  440. teradataml/data/iris_response_train.csv +121 -121
  441. teradataml/data/iris_test.csv +31 -31
  442. teradataml/data/iris_train.csv +121 -121
  443. teradataml/data/join_table1.csv +4 -4
  444. teradataml/data/join_table2.csv +4 -4
  445. teradataml/data/jsons/anly_function_name.json +6 -6
  446. teradataml/data/jsons/byom/dataikupredict.json +147 -147
  447. teradataml/data/jsons/byom/datarobotpredict.json +146 -146
  448. teradataml/data/jsons/byom/h2opredict.json +194 -194
  449. teradataml/data/jsons/byom/onnxpredict.json +186 -186
  450. teradataml/data/jsons/byom/pmmlpredict.json +146 -146
  451. teradataml/data/jsons/paired_functions.json +435 -435
  452. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
  453. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
  454. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
  455. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
  456. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
  457. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
  458. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
  459. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
  460. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
  461. teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
  462. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
  463. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
  464. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
  465. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
  466. teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
  467. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
  468. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
  469. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
  470. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
  471. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
  472. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
  473. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
  474. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
  475. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
  476. teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
  477. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
  478. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
  479. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
  480. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
  481. teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
  482. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
  483. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
  484. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
  485. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
  486. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
  487. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
  488. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
  489. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
  490. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
  491. teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
  492. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
  493. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
  494. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
  495. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
  496. teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
  497. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
  498. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
  499. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
  500. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
  501. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
  502. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
  503. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
  504. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
  505. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
  506. teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
  507. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
  508. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
  509. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
  510. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
  511. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
  512. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
  513. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
  514. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
  515. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
  516. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
  517. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
  518. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
  519. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
  520. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
  521. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
  522. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
  523. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
  524. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
  525. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
  526. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
  527. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
  528. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
  529. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
  530. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
  531. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
  532. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
  533. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
  534. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
  535. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
  536. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
  537. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
  538. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
  539. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
  540. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
  541. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
  542. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
  543. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
  544. teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
  545. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
  546. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
  547. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
  548. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
  549. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
  550. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
  551. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
  552. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
  553. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
  554. teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
  555. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
  556. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
  557. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
  558. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +76 -76
  559. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
  560. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
  561. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
  562. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
  563. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
  564. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
  565. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
  566. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
  567. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
  568. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
  569. teradataml/data/jsons/sqle/17.20/TD_FTest.json +186 -186
  570. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
  571. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
  572. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
  573. teradataml/data/jsons/sqle/17.20/TD_GLM.json +431 -431
  574. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +125 -125
  575. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
  576. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
  577. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +91 -91
  578. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
  579. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
  580. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
  581. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +211 -211
  582. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
  583. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
  584. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
  585. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +101 -101
  586. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
  587. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
  588. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
  589. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
  590. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
  591. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
  592. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
  593. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
  594. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
  595. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
  596. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
  597. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
  598. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
  599. teradataml/data/jsons/sqle/17.20/TD_ROC.json +177 -177
  600. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
  601. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
  602. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
  603. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
  604. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
  605. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
  606. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
  607. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
  608. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +124 -124
  609. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +156 -156
  610. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +70 -70
  611. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
  612. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
  613. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
  614. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
  615. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
  616. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
  617. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
  618. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
  619. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
  620. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
  621. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
  622. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
  623. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
  624. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
  625. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +312 -312
  626. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +182 -182
  627. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +170 -170
  628. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
  629. teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
  630. teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
  631. teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
  632. teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
  633. teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
  634. teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
  635. teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
  636. teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
  637. teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
  638. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
  639. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
  640. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
  641. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
  642. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
  643. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
  644. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
  645. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
  646. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
  647. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
  648. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
  649. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
  650. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
  651. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
  652. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
  653. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
  654. teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
  655. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
  656. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
  657. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
  658. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
  659. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
  660. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
  661. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
  662. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
  663. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
  664. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
  665. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
  666. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
  667. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
  668. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
  669. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
  670. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
  671. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
  672. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
  673. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
  674. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
  675. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
  676. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
  677. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
  678. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
  679. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
  680. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
  681. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
  682. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
  683. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
  684. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
  685. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
  686. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
  687. teradataml/data/kmeans_example.json +17 -17
  688. teradataml/data/kmeans_us_arrests_data.csv +0 -0
  689. teradataml/data/knn_example.json +18 -18
  690. teradataml/data/knnrecommender_example.json +6 -6
  691. teradataml/data/knnrecommenderpredict_example.json +12 -12
  692. teradataml/data/lar_example.json +17 -17
  693. teradataml/data/larpredict_example.json +30 -30
  694. teradataml/data/lc_new_predictors.csv +5 -5
  695. teradataml/data/lc_new_reference.csv +9 -9
  696. teradataml/data/lda_example.json +8 -8
  697. teradataml/data/ldainference_example.json +14 -14
  698. teradataml/data/ldatopicsummary_example.json +8 -8
  699. teradataml/data/levendist_input.csv +13 -13
  700. teradataml/data/levenshteindistance_example.json +10 -10
  701. teradataml/data/linreg_example.json +9 -9
  702. teradataml/data/load_example_data.py +326 -323
  703. teradataml/data/loan_prediction.csv +295 -295
  704. teradataml/data/lungcancer.csv +138 -138
  705. teradataml/data/mappingdata.csv +12 -12
  706. teradataml/data/milk_timeseries.csv +157 -157
  707. teradataml/data/min_max_titanic.csv +4 -4
  708. teradataml/data/minhash_example.json +6 -6
  709. teradataml/data/ml_ratings.csv +7547 -7547
  710. teradataml/data/ml_ratings_10.csv +2445 -2445
  711. teradataml/data/model1_table.csv +5 -5
  712. teradataml/data/model2_table.csv +5 -5
  713. teradataml/data/models/iris_db_glm_model.pmml +56 -56
  714. teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
  715. teradataml/data/modularity_example.json +12 -12
  716. teradataml/data/movavg_example.json +7 -7
  717. teradataml/data/mtx1.csv +7 -7
  718. teradataml/data/mtx2.csv +13 -13
  719. teradataml/data/multi_model_classification.csv +401 -0
  720. teradataml/data/multi_model_regression.csv +401 -0
  721. teradataml/data/mvdfft8.csv +9 -9
  722. teradataml/data/naivebayes_example.json +9 -9
  723. teradataml/data/naivebayespredict_example.json +19 -19
  724. teradataml/data/naivebayestextclassifier2_example.json +6 -6
  725. teradataml/data/naivebayestextclassifier_example.json +8 -8
  726. teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
  727. teradataml/data/name_Find_configure.csv +10 -10
  728. teradataml/data/namedentityfinder_example.json +14 -14
  729. teradataml/data/namedentityfinderevaluator_example.json +10 -10
  730. teradataml/data/namedentityfindertrainer_example.json +6 -6
  731. teradataml/data/nb_iris_input_test.csv +31 -31
  732. teradataml/data/nb_iris_input_train.csv +121 -121
  733. teradataml/data/nbp_iris_model.csv +13 -13
  734. teradataml/data/ner_extractor_text.csv +2 -2
  735. teradataml/data/ner_sports_test2.csv +29 -29
  736. teradataml/data/ner_sports_train.csv +501 -501
  737. teradataml/data/nerevaluator_example.json +5 -5
  738. teradataml/data/nerextractor_example.json +18 -18
  739. teradataml/data/nermem_sports_test.csv +17 -17
  740. teradataml/data/nermem_sports_train.csv +50 -50
  741. teradataml/data/nertrainer_example.json +6 -6
  742. teradataml/data/ngrams_example.json +6 -6
  743. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
  744. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
  745. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
  746. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
  747. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
  748. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
  749. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
  750. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
  751. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
  752. teradataml/data/npath_example.json +23 -23
  753. teradataml/data/ntree_example.json +14 -14
  754. teradataml/data/numeric_strings.csv +4 -4
  755. teradataml/data/numerics.csv +4 -4
  756. teradataml/data/ocean_buoy.csv +17 -17
  757. teradataml/data/ocean_buoy2.csv +17 -17
  758. teradataml/data/ocean_buoys.csv +27 -27
  759. teradataml/data/ocean_buoys2.csv +10 -10
  760. teradataml/data/ocean_buoys_nonpti.csv +28 -28
  761. teradataml/data/ocean_buoys_seq.csv +29 -29
  762. teradataml/data/openml_example.json +63 -0
  763. teradataml/data/optional_event_table.csv +4 -4
  764. teradataml/data/orders1.csv +11 -11
  765. teradataml/data/orders1_12.csv +12 -12
  766. teradataml/data/orders_ex.csv +4 -4
  767. teradataml/data/pack_example.json +8 -8
  768. teradataml/data/package_tracking.csv +19 -19
  769. teradataml/data/package_tracking_pti.csv +18 -18
  770. teradataml/data/pagerank_example.json +13 -13
  771. teradataml/data/paragraphs_input.csv +6 -6
  772. teradataml/data/pathanalyzer_example.json +7 -7
  773. teradataml/data/pathgenerator_example.json +7 -7
  774. teradataml/data/phrases.csv +7 -7
  775. teradataml/data/pivot_example.json +8 -8
  776. teradataml/data/pivot_input.csv +22 -22
  777. teradataml/data/playerRating.csv +31 -31
  778. teradataml/data/postagger_example.json +6 -6
  779. teradataml/data/posttagger_output.csv +44 -44
  780. teradataml/data/production_data.csv +16 -16
  781. teradataml/data/production_data2.csv +7 -7
  782. teradataml/data/randomsample_example.json +31 -31
  783. teradataml/data/randomwalksample_example.json +8 -8
  784. teradataml/data/rank_table.csv +6 -6
  785. teradataml/data/ref_mobile_data.csv +4 -4
  786. teradataml/data/ref_mobile_data_dense.csv +2 -2
  787. teradataml/data/ref_url.csv +17 -17
  788. teradataml/data/restaurant_reviews.csv +7 -7
  789. teradataml/data/river_data.csv +145 -145
  790. teradataml/data/roc_example.json +7 -7
  791. teradataml/data/roc_input.csv +101 -101
  792. teradataml/data/rule_inputs.csv +6 -6
  793. teradataml/data/rule_table.csv +2 -2
  794. teradataml/data/sales.csv +7 -7
  795. teradataml/data/sales_transaction.csv +501 -501
  796. teradataml/data/salesdata.csv +342 -342
  797. teradataml/data/sample_cities.csv +2 -2
  798. teradataml/data/sample_shapes.csv +10 -10
  799. teradataml/data/sample_streets.csv +2 -2
  800. teradataml/data/sampling_example.json +15 -15
  801. teradataml/data/sax_example.json +8 -8
  802. teradataml/data/scale_example.json +23 -23
  803. teradataml/data/scale_housing.csv +11 -11
  804. teradataml/data/scale_housing_test.csv +6 -6
  805. teradataml/data/scale_stat.csv +11 -11
  806. teradataml/data/scalebypartition_example.json +13 -13
  807. teradataml/data/scalemap_example.json +13 -13
  808. teradataml/data/scalesummary_example.json +12 -12
  809. teradataml/data/score_category.csv +101 -101
  810. teradataml/data/score_summary.csv +4 -4
  811. teradataml/data/script_example.json +9 -9
  812. teradataml/data/scripts/deploy_script.py +65 -0
  813. teradataml/data/scripts/mapper.R +20 -0
  814. teradataml/data/scripts/mapper.py +15 -15
  815. teradataml/data/scripts/mapper_replace.py +15 -15
  816. teradataml/data/scripts/sklearn/__init__.py +0 -0
  817. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  818. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  819. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  820. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  821. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  822. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  823. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  824. teradataml/data/seeds.csv +10 -10
  825. teradataml/data/sentenceextractor_example.json +6 -6
  826. teradataml/data/sentiment_extract_input.csv +11 -11
  827. teradataml/data/sentiment_train.csv +16 -16
  828. teradataml/data/sentiment_word.csv +20 -20
  829. teradataml/data/sentiment_word_input.csv +19 -19
  830. teradataml/data/sentimentextractor_example.json +24 -24
  831. teradataml/data/sentimenttrainer_example.json +8 -8
  832. teradataml/data/sequence_table.csv +10 -10
  833. teradataml/data/seriessplitter_example.json +7 -7
  834. teradataml/data/sessionize_example.json +17 -17
  835. teradataml/data/sessionize_table.csv +116 -116
  836. teradataml/data/setop_test1.csv +24 -24
  837. teradataml/data/setop_test2.csv +22 -22
  838. teradataml/data/soc_nw_edges.csv +10 -10
  839. teradataml/data/soc_nw_vertices.csv +7 -7
  840. teradataml/data/souvenir_timeseries.csv +167 -167
  841. teradataml/data/sparse_iris_attribute.csv +5 -5
  842. teradataml/data/sparse_iris_test.csv +121 -121
  843. teradataml/data/sparse_iris_train.csv +601 -601
  844. teradataml/data/star1.csv +6 -6
  845. teradataml/data/state_transition.csv +5 -5
  846. teradataml/data/stock_data.csv +53 -53
  847. teradataml/data/stock_movement.csv +11 -11
  848. teradataml/data/stock_vol.csv +76 -76
  849. teradataml/data/stop_words.csv +8 -8
  850. teradataml/data/store_sales.csv +37 -37
  851. teradataml/data/stringsimilarity_example.json +7 -7
  852. teradataml/data/strsimilarity_input.csv +13 -13
  853. teradataml/data/students.csv +101 -101
  854. teradataml/data/svm_iris_input_test.csv +121 -121
  855. teradataml/data/svm_iris_input_train.csv +481 -481
  856. teradataml/data/svm_iris_model.csv +7 -7
  857. teradataml/data/svmdense_example.json +9 -9
  858. teradataml/data/svmdensepredict_example.json +18 -18
  859. teradataml/data/svmsparse_example.json +7 -7
  860. teradataml/data/svmsparsepredict_example.json +13 -13
  861. teradataml/data/svmsparsesummary_example.json +7 -7
  862. teradataml/data/target_mobile_data.csv +13 -13
  863. teradataml/data/target_mobile_data_dense.csv +5 -5
  864. teradataml/data/templatedata.csv +1201 -1201
  865. teradataml/data/templates/open_source_ml.json +9 -0
  866. teradataml/data/teradataml_example.json +73 -1
  867. teradataml/data/test_classification.csv +101 -0
  868. teradataml/data/test_loan_prediction.csv +53 -53
  869. teradataml/data/test_pacf_12.csv +37 -37
  870. teradataml/data/test_prediction.csv +101 -0
  871. teradataml/data/test_regression.csv +101 -0
  872. teradataml/data/test_river2.csv +109 -109
  873. teradataml/data/text_inputs.csv +6 -6
  874. teradataml/data/textchunker_example.json +7 -7
  875. teradataml/data/textclassifier_example.json +6 -6
  876. teradataml/data/textclassifier_input.csv +7 -7
  877. teradataml/data/textclassifiertrainer_example.json +6 -6
  878. teradataml/data/textmorph_example.json +5 -5
  879. teradataml/data/textparser_example.json +15 -15
  880. teradataml/data/texttagger_example.json +11 -11
  881. teradataml/data/texttokenizer_example.json +6 -6
  882. teradataml/data/texttrainer_input.csv +11 -11
  883. teradataml/data/tf_example.json +6 -6
  884. teradataml/data/tfidf_example.json +13 -13
  885. teradataml/data/tfidf_input1.csv +201 -201
  886. teradataml/data/tfidf_train.csv +6 -6
  887. teradataml/data/time_table1.csv +535 -535
  888. teradataml/data/time_table2.csv +14 -14
  889. teradataml/data/timeseriesdata.csv +1601 -1601
  890. teradataml/data/timeseriesdatasetsd4.csv +105 -105
  891. teradataml/data/titanic.csv +892 -892
  892. teradataml/data/token_table.csv +696 -696
  893. teradataml/data/train_multiclass.csv +101 -0
  894. teradataml/data/train_regression.csv +101 -0
  895. teradataml/data/train_regression_multiple_labels.csv +101 -0
  896. teradataml/data/train_tracking.csv +27 -27
  897. teradataml/data/transformation_table.csv +5 -5
  898. teradataml/data/transformation_table_new.csv +1 -1
  899. teradataml/data/tv_spots.csv +16 -16
  900. teradataml/data/twod_climate_data.csv +117 -117
  901. teradataml/data/uaf_example.json +475 -475
  902. teradataml/data/univariatestatistics_example.json +8 -8
  903. teradataml/data/unpack_example.json +9 -9
  904. teradataml/data/unpivot_example.json +9 -9
  905. teradataml/data/unpivot_input.csv +8 -8
  906. teradataml/data/us_air_pass.csv +36 -36
  907. teradataml/data/us_population.csv +624 -624
  908. teradataml/data/us_states_shapes.csv +52 -52
  909. teradataml/data/varmax_example.json +17 -17
  910. teradataml/data/vectordistance_example.json +25 -25
  911. teradataml/data/ville_climatedata.csv +121 -121
  912. teradataml/data/ville_tempdata.csv +12 -12
  913. teradataml/data/ville_tempdata1.csv +12 -12
  914. teradataml/data/ville_temperature.csv +11 -11
  915. teradataml/data/waveletTable.csv +1605 -1605
  916. teradataml/data/waveletTable2.csv +1605 -1605
  917. teradataml/data/weightedmovavg_example.json +8 -8
  918. teradataml/data/wft_testing.csv +5 -5
  919. teradataml/data/wine_data.csv +1600 -0
  920. teradataml/data/word_embed_input_table1.csv +5 -5
  921. teradataml/data/word_embed_input_table2.csv +4 -4
  922. teradataml/data/word_embed_model.csv +22 -22
  923. teradataml/data/words_input.csv +13 -13
  924. teradataml/data/xconvolve_complex_left.csv +6 -6
  925. teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
  926. teradataml/data/xgboost_example.json +35 -35
  927. teradataml/data/xgboostpredict_example.json +31 -31
  928. teradataml/dataframe/copy_to.py +1764 -1698
  929. teradataml/dataframe/data_transfer.py +2753 -2745
  930. teradataml/dataframe/dataframe.py +17545 -16946
  931. teradataml/dataframe/dataframe_utils.py +1837 -1740
  932. teradataml/dataframe/fastload.py +611 -603
  933. teradataml/dataframe/indexer.py +424 -424
  934. teradataml/dataframe/setop.py +1179 -1166
  935. teradataml/dataframe/sql.py +10090 -6432
  936. teradataml/dataframe/sql_function_parameters.py +439 -388
  937. teradataml/dataframe/sql_functions.py +652 -652
  938. teradataml/dataframe/sql_interfaces.py +220 -220
  939. teradataml/dataframe/vantage_function_types.py +674 -630
  940. teradataml/dataframe/window.py +693 -692
  941. teradataml/dbutils/__init__.py +3 -3
  942. teradataml/dbutils/dbutils.py +1167 -1150
  943. teradataml/dbutils/filemgr.py +267 -267
  944. teradataml/gen_ai/__init__.py +2 -2
  945. teradataml/gen_ai/convAI.py +472 -472
  946. teradataml/geospatial/__init__.py +3 -3
  947. teradataml/geospatial/geodataframe.py +1105 -1094
  948. teradataml/geospatial/geodataframecolumn.py +392 -387
  949. teradataml/geospatial/geometry_types.py +925 -925
  950. teradataml/hyperparameter_tuner/__init__.py +1 -1
  951. teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
  952. teradataml/hyperparameter_tuner/utils.py +281 -187
  953. teradataml/lib/aed_0_1.dll +0 -0
  954. teradataml/lib/libaed_0_1.dylib +0 -0
  955. teradataml/lib/libaed_0_1.so +0 -0
  956. teradataml/libaed_0_1.dylib +0 -0
  957. teradataml/libaed_0_1.so +0 -0
  958. teradataml/opensource/__init__.py +1 -0
  959. teradataml/opensource/sklearn/__init__.py +1 -0
  960. teradataml/opensource/sklearn/_class.py +255 -0
  961. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  962. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  963. teradataml/opensource/sklearn/constants.py +54 -0
  964. teradataml/options/__init__.py +121 -124
  965. teradataml/options/configure.py +337 -336
  966. teradataml/options/display.py +176 -176
  967. teradataml/plot/__init__.py +2 -2
  968. teradataml/plot/axis.py +1388 -1388
  969. teradataml/plot/constants.py +15 -15
  970. teradataml/plot/figure.py +398 -398
  971. teradataml/plot/plot.py +760 -760
  972. teradataml/plot/query_generator.py +83 -83
  973. teradataml/plot/subplot.py +216 -216
  974. teradataml/scriptmgmt/UserEnv.py +3788 -3761
  975. teradataml/scriptmgmt/__init__.py +3 -3
  976. teradataml/scriptmgmt/lls_utils.py +1616 -1604
  977. teradataml/series/series.py +532 -532
  978. teradataml/series/series_utils.py +71 -71
  979. teradataml/table_operators/Apply.py +949 -917
  980. teradataml/table_operators/Script.py +1719 -1982
  981. teradataml/table_operators/TableOperator.py +1207 -1616
  982. teradataml/table_operators/__init__.py +2 -3
  983. teradataml/table_operators/apply_query_generator.py +262 -262
  984. teradataml/table_operators/query_generator.py +507 -507
  985. teradataml/table_operators/table_operator_query_generator.py +460 -460
  986. teradataml/table_operators/table_operator_util.py +631 -639
  987. teradataml/table_operators/templates/dataframe_apply.template +184 -184
  988. teradataml/table_operators/templates/dataframe_map.template +176 -176
  989. teradataml/table_operators/templates/script_executor.template +170 -170
  990. teradataml/utils/dtypes.py +684 -684
  991. teradataml/utils/internal_buffer.py +84 -84
  992. teradataml/utils/print_versions.py +205 -205
  993. teradataml/utils/utils.py +410 -410
  994. teradataml/utils/validators.py +2239 -2115
  995. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +270 -41
  996. teradataml-20.0.0.0.dist-info/RECORD +1038 -0
  997. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +1 -1
  998. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +1 -1
  999. teradataml/analytics/mle/AdaBoost.py +0 -651
  1000. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  1001. teradataml/analytics/mle/Antiselect.py +0 -342
  1002. teradataml/analytics/mle/Arima.py +0 -641
  1003. teradataml/analytics/mle/ArimaPredict.py +0 -477
  1004. teradataml/analytics/mle/Attribution.py +0 -1070
  1005. teradataml/analytics/mle/Betweenness.py +0 -658
  1006. teradataml/analytics/mle/Burst.py +0 -711
  1007. teradataml/analytics/mle/CCM.py +0 -600
  1008. teradataml/analytics/mle/CCMPrepare.py +0 -324
  1009. teradataml/analytics/mle/CFilter.py +0 -460
  1010. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  1011. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  1012. teradataml/analytics/mle/Closeness.py +0 -737
  1013. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  1014. teradataml/analytics/mle/Correlation.py +0 -477
  1015. teradataml/analytics/mle/Correlation2.py +0 -573
  1016. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  1017. teradataml/analytics/mle/CoxPH.py +0 -556
  1018. teradataml/analytics/mle/CoxSurvival.py +0 -478
  1019. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  1020. teradataml/analytics/mle/DTW.py +0 -623
  1021. teradataml/analytics/mle/DWT.py +0 -564
  1022. teradataml/analytics/mle/DWT2D.py +0 -599
  1023. teradataml/analytics/mle/DecisionForest.py +0 -716
  1024. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  1025. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  1026. teradataml/analytics/mle/DecisionTree.py +0 -830
  1027. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  1028. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  1029. teradataml/analytics/mle/FMeasure.py +0 -402
  1030. teradataml/analytics/mle/FPGrowth.py +0 -734
  1031. teradataml/analytics/mle/FrequentPaths.py +0 -695
  1032. teradataml/analytics/mle/GLM.py +0 -558
  1033. teradataml/analytics/mle/GLML1L2.py +0 -547
  1034. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  1035. teradataml/analytics/mle/GLMPredict.py +0 -529
  1036. teradataml/analytics/mle/HMMDecoder.py +0 -945
  1037. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  1038. teradataml/analytics/mle/HMMSupervised.py +0 -521
  1039. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  1040. teradataml/analytics/mle/Histogram.py +0 -561
  1041. teradataml/analytics/mle/IDWT.py +0 -476
  1042. teradataml/analytics/mle/IDWT2D.py +0 -493
  1043. teradataml/analytics/mle/IdentityMatch.py +0 -763
  1044. teradataml/analytics/mle/Interpolator.py +0 -918
  1045. teradataml/analytics/mle/KMeans.py +0 -485
  1046. teradataml/analytics/mle/KNN.py +0 -627
  1047. teradataml/analytics/mle/KNNRecommender.py +0 -488
  1048. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  1049. teradataml/analytics/mle/LAR.py +0 -439
  1050. teradataml/analytics/mle/LARPredict.py +0 -478
  1051. teradataml/analytics/mle/LDA.py +0 -548
  1052. teradataml/analytics/mle/LDAInference.py +0 -492
  1053. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  1054. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  1055. teradataml/analytics/mle/LinReg.py +0 -433
  1056. teradataml/analytics/mle/LinRegPredict.py +0 -438
  1057. teradataml/analytics/mle/MinHash.py +0 -544
  1058. teradataml/analytics/mle/Modularity.py +0 -587
  1059. teradataml/analytics/mle/NEREvaluator.py +0 -410
  1060. teradataml/analytics/mle/NERExtractor.py +0 -595
  1061. teradataml/analytics/mle/NERTrainer.py +0 -458
  1062. teradataml/analytics/mle/NGrams.py +0 -570
  1063. teradataml/analytics/mle/NPath.py +0 -634
  1064. teradataml/analytics/mle/NTree.py +0 -549
  1065. teradataml/analytics/mle/NaiveBayes.py +0 -462
  1066. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  1067. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  1068. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  1069. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  1070. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  1071. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  1072. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  1073. teradataml/analytics/mle/POSTagger.py +0 -417
  1074. teradataml/analytics/mle/Pack.py +0 -411
  1075. teradataml/analytics/mle/PageRank.py +0 -535
  1076. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  1077. teradataml/analytics/mle/PathGenerator.py +0 -367
  1078. teradataml/analytics/mle/PathStart.py +0 -464
  1079. teradataml/analytics/mle/PathSummarizer.py +0 -470
  1080. teradataml/analytics/mle/Pivot.py +0 -471
  1081. teradataml/analytics/mle/ROC.py +0 -425
  1082. teradataml/analytics/mle/RandomSample.py +0 -637
  1083. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  1084. teradataml/analytics/mle/SAX.py +0 -779
  1085. teradataml/analytics/mle/SVMDense.py +0 -677
  1086. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  1087. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  1088. teradataml/analytics/mle/SVMSparse.py +0 -557
  1089. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  1090. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  1091. teradataml/analytics/mle/Sampling.py +0 -549
  1092. teradataml/analytics/mle/Scale.py +0 -565
  1093. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  1094. teradataml/analytics/mle/ScaleMap.py +0 -378
  1095. teradataml/analytics/mle/ScaleSummary.py +0 -320
  1096. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  1097. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  1098. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  1099. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  1100. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  1101. teradataml/analytics/mle/Sessionize.py +0 -475
  1102. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  1103. teradataml/analytics/mle/StringSimilarity.py +0 -425
  1104. teradataml/analytics/mle/TF.py +0 -389
  1105. teradataml/analytics/mle/TFIDF.py +0 -504
  1106. teradataml/analytics/mle/TextChunker.py +0 -414
  1107. teradataml/analytics/mle/TextClassifier.py +0 -399
  1108. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  1109. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  1110. teradataml/analytics/mle/TextMorph.py +0 -494
  1111. teradataml/analytics/mle/TextParser.py +0 -623
  1112. teradataml/analytics/mle/TextTagger.py +0 -530
  1113. teradataml/analytics/mle/TextTokenizer.py +0 -502
  1114. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  1115. teradataml/analytics/mle/Unpack.py +0 -526
  1116. teradataml/analytics/mle/Unpivot.py +0 -438
  1117. teradataml/analytics/mle/VarMax.py +0 -776
  1118. teradataml/analytics/mle/VectorDistance.py +0 -762
  1119. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  1120. teradataml/analytics/mle/XGBoost.py +0 -842
  1121. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  1122. teradataml/analytics/mle/__init__.py +0 -123
  1123. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  1124. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  1125. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  1126. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  1127. teradataml/analytics/mle/json/arima_mle.json +0 -172
  1128. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  1129. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  1130. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  1131. teradataml/analytics/mle/json/burst_mle.json +0 -140
  1132. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  1133. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  1134. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  1135. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  1136. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  1137. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  1138. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  1139. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  1140. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  1141. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  1142. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  1143. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  1144. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  1145. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  1146. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  1147. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  1148. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  1149. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  1150. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  1151. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  1152. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  1153. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  1154. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  1155. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  1156. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  1157. teradataml/analytics/mle/json/glm_mle.json +0 -111
  1158. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  1159. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  1160. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  1161. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  1162. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  1163. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  1164. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  1165. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  1166. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  1167. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  1168. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  1169. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  1170. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  1171. teradataml/analytics/mle/json/knn_mle.json +0 -141
  1172. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  1173. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  1174. teradataml/analytics/mle/json/lar_mle.json +0 -78
  1175. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  1176. teradataml/analytics/mle/json/lda_mle.json +0 -130
  1177. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  1178. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  1179. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  1180. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  1181. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  1182. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  1183. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  1184. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  1185. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  1186. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  1187. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  1188. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  1189. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  1190. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  1191. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  1192. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  1193. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  1194. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  1195. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  1196. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  1197. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  1198. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  1199. teradataml/analytics/mle/json/pack_mle.json +0 -58
  1200. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  1201. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  1202. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  1203. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  1204. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  1205. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  1206. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  1207. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  1208. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  1209. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  1210. teradataml/analytics/mle/json/roc_mle.json +0 -73
  1211. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  1212. teradataml/analytics/mle/json/sax_mle.json +0 -154
  1213. teradataml/analytics/mle/json/scale_mle.json +0 -93
  1214. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  1215. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  1216. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  1217. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  1218. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  1219. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  1220. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  1221. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  1222. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  1223. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  1224. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  1225. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  1226. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  1227. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  1228. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  1229. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  1230. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  1231. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  1232. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  1233. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  1234. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  1235. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  1236. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  1237. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  1238. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  1239. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  1240. teradataml/analytics/mle/json/tf_mle.json +0 -33
  1241. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  1242. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  1243. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  1244. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  1245. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  1246. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  1247. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  1248. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  1249. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  1250. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  1251. teradataml/analytics/sqle/Antiselect.py +0 -321
  1252. teradataml/analytics/sqle/Attribution.py +0 -603
  1253. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  1254. teradataml/analytics/sqle/GLMPredict.py +0 -430
  1255. teradataml/analytics/sqle/MovingAverage.py +0 -543
  1256. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  1257. teradataml/analytics/sqle/NPath.py +0 -632
  1258. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  1259. teradataml/analytics/sqle/Pack.py +0 -388
  1260. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  1261. teradataml/analytics/sqle/Sessionize.py +0 -390
  1262. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  1263. teradataml/analytics/sqle/Unpack.py +0 -503
  1264. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  1265. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  1266. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  1267. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  1268. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  1269. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  1270. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  1271. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  1272. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  1273. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  1274. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  1275. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  1276. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  1277. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  1278. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  1279. teradataml/catalog/model_cataloging.py +0 -980
  1280. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  1281. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  1282. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  1283. teradataml/table_operators/sandbox_container_util.py +0 -643
  1284. teradataml-17.20.0.7.dist-info/RECORD +0 -1280
  1285. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,9 @@
1
+ {
2
+ "env_specs": [
3
+ {
4
+ "env_name": "openml_env",
5
+ "libs": "scikit-learn",
6
+ "desc": "DONT DELETE: OpenML environment"
7
+ }
8
+ ]
9
+ }
@@ -1200,5 +1200,77 @@
1200
1200
  "column_name": "VARCHAR(20)",
1201
1201
  "category": "VARCHAR(50)",
1202
1202
  "ordinal_value": "INTEGER"
1203
+ },
1204
+ "insurance":{
1205
+ "age":"INTEGER",
1206
+ "sex":"VARCHAR(20)",
1207
+ "bmi":"FLOAT",
1208
+ "children":"INTEGER",
1209
+ "smoker":"VARCHAR(20)",
1210
+ "region":"VARCHAR(20)",
1211
+ "charges":"FLOAT"
1212
+ },
1213
+ "bank_churn":{
1214
+ "customer_id":"BIGINT",
1215
+ "credit_score":"BIGINT",
1216
+ "country":"VARCHAR(256)",
1217
+ "gender":"varchar(20)",
1218
+ "age":"INTEGER",
1219
+ "tenure":"BIGINT",
1220
+ "balance":"FLOAT",
1221
+ "products_number":"BIGINT",
1222
+ "credit_card":"BIGINT",
1223
+ "active_member":"BIGINT",
1224
+ "estimated_salary":"FLOAT",
1225
+ "churn":"BIGINT"
1226
+ },
1227
+ "wine_data":{
1228
+ "fixed_acidity":"FLOAT",
1229
+ "volatile_acidity":"FLOAT",
1230
+ "citric_acid":"FLOAT",
1231
+ "residual_sugar":"FLOAT",
1232
+ "chlorides":"FLOAT",
1233
+ "free_sulfur_dioxide":"FLOAT",
1234
+ "total_sulfur_dioxide":"FLOAT",
1235
+ "density":"FLOAT",
1236
+ "pH":"FLOAT",
1237
+ "sulphates":"FLOAT",
1238
+ "alcohol":"FLOAT",
1239
+ "quality":"VARCHAR(20)"
1240
+ },
1241
+ "fish":{
1242
+ "Species":"VARCHAR(20)",
1243
+ "Weight":"INTEGER",
1244
+ "Length1":"FLOAT",
1245
+ "Length2":"FLOAT",
1246
+ "Length3":"FLOAT",
1247
+ "Height":"FLOAT",
1248
+ "Width":"FLOAT"
1249
+ },
1250
+ "iris_data":{
1251
+ "sepal_length":"FLOAT",
1252
+ "sepal_width":"FLOAT",
1253
+ "petal_length":"FLOAT",
1254
+ "petal_width":"FLOAT",
1255
+ "species":"VARCHAR(20)"
1256
+ },
1257
+ "glass_types":{
1258
+ "ri":"FLOAT",
1259
+ "na":"FLOAT",
1260
+ "mg":"FLOAT",
1261
+ "ai":"FLOAT",
1262
+ "si":"FLOAT",
1263
+ "k":"FLOAT",
1264
+ "ca":"FLOAT",
1265
+ "ba":"FLOAT",
1266
+ "fe":"FLOAT",
1267
+ "gtype":"INTEGER"
1268
+ },
1269
+ "bmi":{
1270
+ "gender":"VARCHAR(20)",
1271
+ "height":"INTEGER",
1272
+ "weight":"INTEGER",
1273
+ "bmi":"INTEGER"
1203
1274
  }
1204
- }
1275
+
1276
+ }
@@ -0,0 +1,101 @@
1
+ col1,col2,col3,col4,label
2
+ -7.156025619387396e-02,2.295539000122874e-01,2.1654344712218576e-01,6.527397921673574e-02,1
3
+ -4.032571038523639e-01,2.0061840569850093e+00,2.027512477119932e+00,8.508919440196765e-01,1
4
+ -1.1305820619922704e+00,-2.0295925141421645e-02,-7.102336334648424e-01,-1.440991082992062e+00,0
5
+ 1.8332468205821462e-01,-7.74610353732039e-01,-7.66054694735782e-01,-2.9366863291253276e-01,0
6
+ -2.8692000017174224e-01,-7.169529842687833e-01,-9.865850877151031e-01,-8.48214734984639e-01,0
7
+ -2.5604297516143286e+00,4.0223233672431147e-01,-1.1007419820939432e+00,-2.9595882598466674e+00,0
8
+ 4.223414406917685e-01,-2.039114403027563e+00,-2.053215806414584e+00,-8.491230457662061e-01,0
9
+ -5.097927128625588e-01,4.926589443964751e-01,2.482067293662461e-01,-3.095907315896897e-01,1
10
+ 7.216694959200303e-01,-1.1215566442946217e+00,-8.318398647044646e-01,1.5074209659533433e-01,0
11
+ -9.861325665504175e-01,1.7105310292848412e+00,1.3382818041204743e+00,-8.534109029742931e-02,1
12
+ -7.231680381760497e-02,-7.736683335839201e-01,-9.203832529446819e-01,-6.157487035381035e-01,0
13
+ 4.559464978500706e-01,-4.578687619407589e-01,-2.4152710035941571e-01,2.6519962031057953e-01,1
14
+ 3.9390607557342605e-01,3.902473455403299e-01,6.815206771027396e-01,7.618043278846556e-01,1
15
+ 2.031968254396686e+00,8.403986546299471e-01,2.1871813975599217e+00,3.1348238328210307e+00,1
16
+ 4.5893100825733946e-02,-2.614033916761356e-01,-2.682252643663885e-01,-1.1926611814335958e-01,1
17
+ 3.734361597739779e-01,-1.0738263398394476e+00,-9.894492879424683e-01,-2.565077828985802e-01,0
18
+ -1.2011443492922544e+00,1.1724106094128572e-01,-5.973218447748447e-01,-1.436834012027966e+00,0
19
+ -1.308191714615154e+00,-4.3265955878063e-01,-1.2853288297891097e+00,-1.9447377443527114e+00,0
20
+ 5.5626974301926e-01,-5.842642261304858e-01,-3.2372692196790664e-01,3.0616506646092834e-01,1
21
+ -1.7950634462096733e+00,3.929047275333263e+00,3.3597325348675415e+00,3.9736974686402515e-01,1
22
+ -1.3081345089927474e+00,1.5169724178877273e+00,9.232814514163201e-01,-6.230425160474049e-01,1
23
+ -2.380763938123808e+00,1.1371277773786237e+00,-1.5902752431047806e-01,-2.2346069917229e+00,0
24
+ -4.86612461597536e-01,-1.9216172048359466e+00,-2.4726349400207184e+00,-1.916925819699851e+00,0
25
+ 4.329945316598389e-01,2.2034637129059273e-01,5.128145618207097e-01,6.959760736131354e-01,1
26
+ 1.2678043992138572e+00,-1.8017079299088052e+00,-1.2703498629717205e+00,3.791128277285917e-01,0
27
+ 1.1050264748849479e+00,-1.9498938738833806e+00,-1.5371644824583068e+00,7.317120819146172e-02,1
28
+ 1.3405762424958136e+00,-8.145933633680679e-01,-1.0789456676958853e-01,1.1401276101958635e+00,1
29
+ -6.795980112953546e-01,1.0394390740067625e+00,7.643895292440813e-01,-1.5329770651272379e-01,1
30
+ -1.8289652217246832e-01,-1.0129018665883924e+00,-1.258608594846326e+00,-9.175155960168716e-01,0
31
+ 1.1069863727547826e+00,-1.067015728836049e+00,-5.358340907741215e-01,6.741337341703041e-01,1
32
+ 5.448188127966272e-01,-1.3333047607577708e+00,-1.1792131172184188e+00,-2.1605253663187984e-01,1
33
+ 1.555250600398339e+00,2.562532716572834e-01,1.2356714816573484e+00,2.1370389455234107e+00,1
34
+ -3.4553805148756467e-01,-2.2967233366922146e+00,-2.8118071037996795e+00,-1.9931134219738014e+00,0
35
+ 1.120734838779243e+00,-3.247441907424656e-01,3.133806659361569e-01,1.1946631281496634e+00,1
36
+ -9.071974278788116e-01,3.8781319921728025e-01,-1.1213297416928425e-01,-8.82342711984023e-01,1
37
+ 1.878348872411074e+00,5.772885191549086e-01,1.7957459076734437e+00,2.7625386504818605e+00,1
38
+ 1.4337012132131193e+00,-1.7542398362245135e+00,-1.1157342322226846e+00,6.207167434763821e-01,0
39
+ 3.802515663893694e-01,2.0295669683967534e+00,2.530269084921403e+00,1.855834485876084e+00,1
40
+ -1.2573206891835977e+00,-2.1486101200899306e+00,-3.198263394150648e+00,-3.043733068054326e+00,0
41
+ 6.876617604053404e-01,-1.3659201799604759e+00,-1.1293310758797774e+00,-5.78388149501351e-02,0
42
+ -1.1045395160596065e+00,2.1014117205877856e+00,1.7091024231467271e+00,3.0154944776507597e-02,1
43
+ -7.934701915546589e-01,1.2666241997891345e+00,9.52529621622912e-01,-1.4304352954382915e-01,0
44
+ -1.2437812638415866e+00,2.808211117074704e-01,-4.3793316291108564e-01,-1.3797701364848058e+00,0
45
+ 4.171803637611743e-01,-1.1678611541651076e+00,-1.069382886775273e+00,-2.650302736268299e-01,0
46
+ -4.2276158128364316e-01,-7.692135037774855e-01,-1.1283601124999758e+00,-1.0551260019803728e+00,0
47
+ -2.475534022965409e-03,3.9979927136949633e-01,4.513944673876453e-01,2.6789217705377905e-01,1
48
+ 4.866811876964725e-01,-1.547405674112523e+00,-1.4570900594036427e+00,-4.3458019526275143e-01,0
49
+ -6.054157973815384e-01,-2.959705989254669e-01,-7.032919195935738e-01,-9.649029503155023e-01,0
50
+ -1.6613005248968182e+00,2.3920366515222007e+00,1.6998912473108954e+00,-4.756834722241752e-01,1
51
+ -1.4024688627878925e+00,-1.1285650300388772e-01,-9.80358458750089e-01,-1.8469628905866908e+00,0
52
+ 1.7762447906304968e+00,8.014786986933157e-01,1.9876466987502077e+00,2.7856185053131712e+00,1
53
+ -3.5875462239471156e+00,2.9181935785016044e-01,-1.850168527344012e+00,-4.331054510250071e+00,0
54
+ -8.6069961887752e-01,-3.0560569985919417e-01,-8.693850044520386e-01,-1.2937015638901872e+00,0
55
+ -2.5215955002082238e+00,2.478225544122823e+00,1.2745836381384683e+00,-1.503283196868372e+00,1
56
+ -2.680512096708636e-01,-2.510822715809212e-01,-4.4736931037076955e-01,-5.085890180828015e-01,0
57
+ 1.4704989233220236e+00,1.277797620936113e+00,2.341376260856668e+00,2.722537359608725e+00,1
58
+ -1.6207337470423404e+00,-1.0921935526093054e+00,-2.2224434857026436e+00,-2.7863740396742367e+00,0
59
+ 9.299503177551005e-01,-1.2885146301716626e+00,-8.94365875666622e-01,3.0049519527933966e-01,0
60
+ -2.0572167152672716e-01,1.7589532053530663e+00,1.867520275756581e+00,9.326645584872928e-01,1
61
+ 2.028990234337061e+00,-1.6696358577770876e-01,1.0442144720383355e+00,2.448190349139855e+00,1
62
+ 4.2434508106371127e-01,-1.278059889065437e+00,-1.1898626592786472e+00,-3.3068750825746973e-01,0
63
+ 1.2319505503720647e+00,-1.5394952592671587e+00,-9.951053168689495e-01,5.11600970144431e-01,0
64
+ 1.9769890149980527e+00,-2.1326410553140835e+00,-1.21414739515473e+00,1.0500446681804023e+00,0
65
+ 7.092165932574367e-01,-1.481739570005534e+00,-1.2474307620913612e+00,-1.091402940812165e-01,0
66
+ -9.615415551232644e-01,1.6014346799820025e+00,1.2296436790616394e+00,-1.2825229790994352e-01,1
67
+ 2.6332591353317136e+00,1.9968582753260276e+00,3.8627421878639634e+00,4.677830701373434e+00,1
68
+ -1.2326739561548532e+00,1.1655623753837756e+00,5.710681973205789e-01,-7.659970564179892e-01,0
69
+ 2.115647338564104e+00,-1.142415827390722e+00,-8.11815766831625e-03,1.8963423940631976e+00,1
70
+ -1.6218421243563732e+00,1.7133806672783916e+00,9.550838772751624e-01,-8.8592125248134e-01,1
71
+ 1.7944511285596305e+00,-1.7603283965924263e+00,-9.033439498079894e-01,1.0719956418304486e+00,0
72
+ -4.3784329530910715e-02,-1.1011002600500417e+00,-1.273959668620149e+00,-8.016903048376662e-01,0
73
+ -1.0486202319833615e-01,2.771360265873167e-01,2.502022685945151e-01,5.548937069062941e-02,1
74
+ 1.7803747427888172e+00,-1.7499486432213605e+00,-9.001421449524415e-01,1.061262048267582e+00,0
75
+ 3.5117341307021976e-01,-9.789691163230871e-01,-8.955262089440742e-01,-2.203098686670774e-01,0
76
+ 5.593131963144458e-01,2.9407023239132535e-01,6.731149622919457e-01,9.054153700658307e-01,1
77
+ -2.8978824993367214e-01,-9.071101176908198e-01,-1.2037417597331295e+00,-9.807399284527443e-01,0
78
+ -8.271824743359713e-01,1.5208867942038558e+00,1.2200699738201646e+00,-1.3241124747140454e-02,1
79
+ -3.6974359976891638e+00,1.5768875645658011e+00,-4.6122012950176094e-01,-3.5986516890499547e+00,0
80
+ -8.640081290830173e-01,-7.952928105950496e-02,-6.15293009552834e-01,-1.1446247511104104e+00,0
81
+ -2.08311803057051e-01,8.624849330033639e-01,8.504116645498019e-01,3.2169391260614677e-01,1
82
+ -1.001711293894727e-01,2.1778421202365075e+00,2.406205156499104e+00,1.3498680692557434e+00,1
83
+ 1.8508239150610382e+00,-1.6824992225408963e+00,-7.80910683743241e-01,1.1959190498938077e+00,0
84
+ 7.338999623284566e-01,-5.143119923571249e-01,-1.3650854882454633e-01,5.77822711680621e-01,1
85
+ -8.695369519005374e-01,1.9989687710081492e+00,1.7359033485741289e+00,2.573749080243791e-01,1
86
+ 1.3532962753060973e+00,-1.2874410336483981e+00,-6.358121950079192e-01,8.356496699669813e-01,0
87
+ -8.002210588472312e-01,-1.7356949681552813e-01,-6.830493560168442e-01,-1.1278490368861847e+00,1
88
+ 2.4254808486506256e+00,-5.498915480430562e-01,8.5144036205131e-01,2.689134716018992e+00,1
89
+ 1.2666139424327671e+00,-1.6660989176826315e+00,-1.1174533578348345e+00,4.6953709831874846e-01,0
90
+ -3.211053667726502e-01,4.1328802958184946e-01,2.729906061625348e-01,-1.2519837916582902e-01,1
91
+ 8.658254600723946e-01,-1.4784947067277336e+00,-1.1485577664230358e+00,9.07604413995754e-02,0
92
+ -7.628844164635872e-01,-8.717458260209808e-01,-1.4512594413079423e+00,-1.5539978148072322e+00,0
93
+ -4.4358418688521395e-01,9.942821241511963e-01,8.566996977399313e-01,1.1403208330863496e-01,1
94
+ -2.2011901612056937e+00,2.867239546533001e+00,1.9100285859432384e+00,-8.351013526293585e-01,1
95
+ 1.8324086110597337e+00,-1.9101544353699098e+00,-1.049996324589264e+00,1.018348124556209e+00,0
96
+ -3.545288721030091e-01,1.212189150478433e-01,-7.818714416774197e-02,-3.653805823167333e-01,1
97
+ -1.972427560720223e+00,1.5208760827120622e+00,5.23902617748198e-01,-1.4589916202641877e+00,1
98
+ -1.0528659778077893e+00,-6.415151124325393e-01,-1.366720111082726e+00,-1.7639973894652614e+00,0
99
+ -4.718241674174253e-01,4.4496832895711996e-01,2.1726178451322842e-01,-2.939883824642023e-01,1
100
+ -1.9464385931107386e-01,1.296884427177927e+00,1.3508149060562555e+00,6.334203305402286e-01,1
101
+ -3.5996730357206175e-01,-1.0547372143709348e+00,-1.413635629086208e+00,-1.1694070454905325e+00,0
@@ -1,53 +1,53 @@
1
- "model_id","seq_id","seq_vertex_id","observed_id"
2
- 1,17,0," 1"
3
- 1,17,1," 1"
4
- 1,17,2," 1"
5
- 1,17,3," 1"
6
- 1,17,4," 1"
7
- 1,17,5," 1"
8
- 1,17,6," 1"
9
- 1,17,7," 2"
10
- 1,17,8," 1"
11
- 1,17,9," 1"
12
- 1,17,10," 1"
13
- 1,17,11," 1"
14
- 1,17,12," 1"
15
- 1,17,13," 1"
16
- 1,17,14," 3"
17
- 1,17,15," 4"
18
- 1,17,16," 5"
19
- 1,17,17," 6"
20
- 1,17,18," 6"
21
- 1,17,19," 6"
22
- 1,17,20," 6"
23
- 1,17,21," 6"
24
- 1,17,22," 6"
25
- 1,17,23," 6"
26
- 1,17,24," 6"
27
- 1,17,25," 6"
28
- 2,17,0," 1"
29
- 2,17,1," 1"
30
- 2,17,2," 1"
31
- 2,17,3," 1"
32
- 2,17,4," 1"
33
- 2,17,5," 1"
34
- 2,17,6," 1"
35
- 2,17,7," 2"
36
- 2,17,8," 1"
37
- 2,17,9," 1"
38
- 2,17,10," 1"
39
- 2,17,11," 1"
40
- 2,17,12," 1"
41
- 2,17,13," 1"
42
- 2,17,14," 3"
43
- 2,17,15," 4"
44
- 2,17,16," 5"
45
- 2,17,17," 6"
46
- 2,17,18," 6"
47
- 2,17,19," 6"
48
- 2,17,20," 6"
49
- 2,17,21," 6"
50
- 2,17,22," 6"
51
- 2,17,23," 6"
52
- 2,17,24," 6"
53
- 2,17,25," 6"
1
+ "model_id","seq_id","seq_vertex_id","observed_id"
2
+ 1,17,0," 1"
3
+ 1,17,1," 1"
4
+ 1,17,2," 1"
5
+ 1,17,3," 1"
6
+ 1,17,4," 1"
7
+ 1,17,5," 1"
8
+ 1,17,6," 1"
9
+ 1,17,7," 2"
10
+ 1,17,8," 1"
11
+ 1,17,9," 1"
12
+ 1,17,10," 1"
13
+ 1,17,11," 1"
14
+ 1,17,12," 1"
15
+ 1,17,13," 1"
16
+ 1,17,14," 3"
17
+ 1,17,15," 4"
18
+ 1,17,16," 5"
19
+ 1,17,17," 6"
20
+ 1,17,18," 6"
21
+ 1,17,19," 6"
22
+ 1,17,20," 6"
23
+ 1,17,21," 6"
24
+ 1,17,22," 6"
25
+ 1,17,23," 6"
26
+ 1,17,24," 6"
27
+ 1,17,25," 6"
28
+ 2,17,0," 1"
29
+ 2,17,1," 1"
30
+ 2,17,2," 1"
31
+ 2,17,3," 1"
32
+ 2,17,4," 1"
33
+ 2,17,5," 1"
34
+ 2,17,6," 1"
35
+ 2,17,7," 2"
36
+ 2,17,8," 1"
37
+ 2,17,9," 1"
38
+ 2,17,10," 1"
39
+ 2,17,11," 1"
40
+ 2,17,12," 1"
41
+ 2,17,13," 1"
42
+ 2,17,14," 3"
43
+ 2,17,15," 4"
44
+ 2,17,16," 5"
45
+ 2,17,17," 6"
46
+ 2,17,18," 6"
47
+ 2,17,19," 6"
48
+ 2,17,20," 6"
49
+ 2,17,21," 6"
50
+ 2,17,22," 6"
51
+ 2,17,23," 6"
52
+ 2,17,24," 6"
53
+ 2,17,25," 6"
@@ -1,37 +1,37 @@
1
- n_seq_no,buoy_id,magnitude1,magnitude2,magnitude3
2
- 5,33,6e+00,1e+00,2.4e+01
3
- 5,34,6e+00,6e+00,4.5e+00
4
- 5,35,6e+00,6e+00,4.5e+00
5
- 3,33,4e+00,3e+00,2.3e+01
6
- 3,34,8e+00,4e+00,6.8e+00
7
- 3,35,8e+00,4e+00,6.8e+00
8
- 1,33,2e+00,5e+00,2.2e+01
9
- 1,34,1e+01,2e+00,8.9e+00
10
- 1,35,1e+01,2e+00,8.9e+00
11
- 8,33,9e+00,4e+00,1.2e+01
12
- 8,34,9e+00,3e+00,7.9e+00
13
- 8,35,3e+00,4e+00,1.2e+01
14
- 2,33,3e+00,4e+00,1.2e+01
15
- 2,34,9e+00,3e+00,7.9e+00
16
- 2,35,9e+00,3e+00,7.9e+00
17
- 11,33,1.2e+01,1e+00,2.4e+01
18
- 11,34,6e+00,6e+00,4.5e+00
19
- 11,35,6e+00,1e+00,2.4e+01
20
- 9,33,1e+01,3e+00,2.3e+01
21
- 9,34,8e+00,4e+00,6.8e+00
22
- 9,35,4e+00,3e+00,2.3e+01
23
- 10,33,1.1e+01,2e+00,1.3e+01
24
- 10,34,7e+00,5e+00,5.5e+00
25
- 10,35,5e+00,2e+00,1.3e+01
26
- 7,33,8e+00,5e+00,2.2e+01
27
- 7,34,1e+01,2e+00,8.9e+00
28
- 7,35,2e+00,5e+00,2.2e+01
29
- 4,33,5e+00,2e+00,1.3e+01
30
- 4,34,7e+00,5e+00,5.5e+00
31
- 4,35,7e+00,5e+00,5.5e+00
32
- 0,33,1e+00,6e+00,1.1e+01
33
- 0,34,1.1e+01,1e+00,9.9e+00
34
- 0,35,1.1e+01,1e+00,9.9e+00
35
- 6,33,7e+00,6e+00,1.1e+01
36
- 6,34,1.1e+01,1e+00,9.9e+00
37
- 6,35,1e+00,6e+00,1.1e+01
1
+ n_seq_no,buoy_id,magnitude1,magnitude2,magnitude3
2
+ 5,33,6e+00,1e+00,2.4e+01
3
+ 5,34,6e+00,6e+00,4.5e+00
4
+ 5,35,6e+00,6e+00,4.5e+00
5
+ 3,33,4e+00,3e+00,2.3e+01
6
+ 3,34,8e+00,4e+00,6.8e+00
7
+ 3,35,8e+00,4e+00,6.8e+00
8
+ 1,33,2e+00,5e+00,2.2e+01
9
+ 1,34,1e+01,2e+00,8.9e+00
10
+ 1,35,1e+01,2e+00,8.9e+00
11
+ 8,33,9e+00,4e+00,1.2e+01
12
+ 8,34,9e+00,3e+00,7.9e+00
13
+ 8,35,3e+00,4e+00,1.2e+01
14
+ 2,33,3e+00,4e+00,1.2e+01
15
+ 2,34,9e+00,3e+00,7.9e+00
16
+ 2,35,9e+00,3e+00,7.9e+00
17
+ 11,33,1.2e+01,1e+00,2.4e+01
18
+ 11,34,6e+00,6e+00,4.5e+00
19
+ 11,35,6e+00,1e+00,2.4e+01
20
+ 9,33,1e+01,3e+00,2.3e+01
21
+ 9,34,8e+00,4e+00,6.8e+00
22
+ 9,35,4e+00,3e+00,2.3e+01
23
+ 10,33,1.1e+01,2e+00,1.3e+01
24
+ 10,34,7e+00,5e+00,5.5e+00
25
+ 10,35,5e+00,2e+00,1.3e+01
26
+ 7,33,8e+00,5e+00,2.2e+01
27
+ 7,34,1e+01,2e+00,8.9e+00
28
+ 7,35,2e+00,5e+00,2.2e+01
29
+ 4,33,5e+00,2e+00,1.3e+01
30
+ 4,34,7e+00,5e+00,5.5e+00
31
+ 4,35,7e+00,5e+00,5.5e+00
32
+ 0,33,1e+00,6e+00,1.1e+01
33
+ 0,34,1.1e+01,1e+00,9.9e+00
34
+ 0,35,1.1e+01,1e+00,9.9e+00
35
+ 6,33,7e+00,6e+00,1.1e+01
36
+ 6,34,1.1e+01,1e+00,9.9e+00
37
+ 6,35,1e+00,6e+00,1.1e+01
@@ -0,0 +1,101 @@
1
+ col1,col2,col3,col4
2
+ -7.156025619387396e-02,2.295539000122874e-01,2.1654344712218576e-01,6.527397921673574e-02
3
+ -4.032571038523639e-01,2.0061840569850093e+00,2.027512477119932e+00,8.508919440196765e-01
4
+ -1.1305820619922704e+00,-2.0295925141421645e-02,-7.102336334648424e-01,-1.440991082992062e+00
5
+ 1.8332468205821462e-01,-7.74610353732039e-01,-7.66054694735782e-01,-2.9366863291253276e-01
6
+ -2.8692000017174224e-01,-7.169529842687833e-01,-9.865850877151031e-01,-8.48214734984639e-01
7
+ -2.5604297516143286e+00,4.0223233672431147e-01,-1.1007419820939432e+00,-2.9595882598466674e+00
8
+ 4.223414406917685e-01,-2.039114403027563e+00,-2.053215806414584e+00,-8.491230457662061e-01
9
+ -5.097927128625588e-01,4.926589443964751e-01,2.482067293662461e-01,-3.095907315896897e-01
10
+ 7.216694959200303e-01,-1.1215566442946217e+00,-8.318398647044646e-01,1.5074209659533433e-01
11
+ -9.861325665504175e-01,1.7105310292848412e+00,1.3382818041204743e+00,-8.534109029742931e-02
12
+ -7.231680381760497e-02,-7.736683335839201e-01,-9.203832529446819e-01,-6.157487035381035e-01
13
+ 4.559464978500706e-01,-4.578687619407589e-01,-2.4152710035941571e-01,2.6519962031057953e-01
14
+ 3.9390607557342605e-01,3.902473455403299e-01,6.815206771027396e-01,7.618043278846556e-01
15
+ 2.031968254396686e+00,8.403986546299471e-01,2.1871813975599217e+00,3.1348238328210307e+00
16
+ 4.5893100825733946e-02,-2.614033916761356e-01,-2.682252643663885e-01,-1.1926611814335958e-01
17
+ 3.734361597739779e-01,-1.0738263398394476e+00,-9.894492879424683e-01,-2.565077828985802e-01
18
+ -1.2011443492922544e+00,1.1724106094128572e-01,-5.973218447748447e-01,-1.436834012027966e+00
19
+ -1.308191714615154e+00,-4.3265955878063e-01,-1.2853288297891097e+00,-1.9447377443527114e+00
20
+ 5.5626974301926e-01,-5.842642261304858e-01,-3.2372692196790664e-01,3.0616506646092834e-01
21
+ -1.7950634462096733e+00,3.929047275333263e+00,3.3597325348675415e+00,3.9736974686402515e-01
22
+ -1.3081345089927474e+00,1.5169724178877273e+00,9.232814514163201e-01,-6.230425160474049e-01
23
+ -2.380763938123808e+00,1.1371277773786237e+00,-1.5902752431047806e-01,-2.2346069917229e+00
24
+ -4.86612461597536e-01,-1.9216172048359466e+00,-2.4726349400207184e+00,-1.916925819699851e+00
25
+ 4.329945316598389e-01,2.2034637129059273e-01,5.128145618207097e-01,6.959760736131354e-01
26
+ 1.2678043992138572e+00,-1.8017079299088052e+00,-1.2703498629717205e+00,3.791128277285917e-01
27
+ 1.1050264748849479e+00,-1.9498938738833806e+00,-1.5371644824583068e+00,7.317120819146172e-02
28
+ 1.3405762424958136e+00,-8.145933633680679e-01,-1.0789456676958853e-01,1.1401276101958635e+00
29
+ -6.795980112953546e-01,1.0394390740067625e+00,7.643895292440813e-01,-1.5329770651272379e-01
30
+ -1.8289652217246832e-01,-1.0129018665883924e+00,-1.258608594846326e+00,-9.175155960168716e-01
31
+ 1.1069863727547826e+00,-1.067015728836049e+00,-5.358340907741215e-01,6.741337341703041e-01
32
+ 5.448188127966272e-01,-1.3333047607577708e+00,-1.1792131172184188e+00,-2.1605253663187984e-01
33
+ 1.555250600398339e+00,2.562532716572834e-01,1.2356714816573484e+00,2.1370389455234107e+00
34
+ -3.4553805148756467e-01,-2.2967233366922146e+00,-2.8118071037996795e+00,-1.9931134219738014e+00
35
+ 1.120734838779243e+00,-3.247441907424656e-01,3.133806659361569e-01,1.1946631281496634e+00
36
+ -9.071974278788116e-01,3.8781319921728025e-01,-1.1213297416928425e-01,-8.82342711984023e-01
37
+ 1.878348872411074e+00,5.772885191549086e-01,1.7957459076734437e+00,2.7625386504818605e+00
38
+ 1.4337012132131193e+00,-1.7542398362245135e+00,-1.1157342322226846e+00,6.207167434763821e-01
39
+ 3.802515663893694e-01,2.0295669683967534e+00,2.530269084921403e+00,1.855834485876084e+00
40
+ -1.2573206891835977e+00,-2.1486101200899306e+00,-3.198263394150648e+00,-3.043733068054326e+00
41
+ 6.876617604053404e-01,-1.3659201799604759e+00,-1.1293310758797774e+00,-5.78388149501351e-02
42
+ -1.1045395160596065e+00,2.1014117205877856e+00,1.7091024231467271e+00,3.0154944776507597e-02
43
+ -7.934701915546589e-01,1.2666241997891345e+00,9.52529621622912e-01,-1.4304352954382915e-01
44
+ -1.2437812638415866e+00,2.808211117074704e-01,-4.3793316291108564e-01,-1.3797701364848058e+00
45
+ 4.171803637611743e-01,-1.1678611541651076e+00,-1.069382886775273e+00,-2.650302736268299e-01
46
+ -4.2276158128364316e-01,-7.692135037774855e-01,-1.1283601124999758e+00,-1.0551260019803728e+00
47
+ -2.475534022965409e-03,3.9979927136949633e-01,4.513944673876453e-01,2.6789217705377905e-01
48
+ 4.866811876964725e-01,-1.547405674112523e+00,-1.4570900594036427e+00,-4.3458019526275143e-01
49
+ -6.054157973815384e-01,-2.959705989254669e-01,-7.032919195935738e-01,-9.649029503155023e-01
50
+ -1.6613005248968182e+00,2.3920366515222007e+00,1.6998912473108954e+00,-4.756834722241752e-01
51
+ -1.4024688627878925e+00,-1.1285650300388772e-01,-9.80358458750089e-01,-1.8469628905866908e+00
52
+ 1.7762447906304968e+00,8.014786986933157e-01,1.9876466987502077e+00,2.7856185053131712e+00
53
+ -3.5875462239471156e+00,2.9181935785016044e-01,-1.850168527344012e+00,-4.331054510250071e+00
54
+ -8.6069961887752e-01,-3.0560569985919417e-01,-8.693850044520386e-01,-1.2937015638901872e+00
55
+ -2.5215955002082238e+00,2.478225544122823e+00,1.2745836381384683e+00,-1.503283196868372e+00
56
+ -2.680512096708636e-01,-2.510822715809212e-01,-4.4736931037076955e-01,-5.085890180828015e-01
57
+ 1.4704989233220236e+00,1.277797620936113e+00,2.341376260856668e+00,2.722537359608725e+00
58
+ -1.6207337470423404e+00,-1.0921935526093054e+00,-2.2224434857026436e+00,-2.7863740396742367e+00
59
+ 9.299503177551005e-01,-1.2885146301716626e+00,-8.94365875666622e-01,3.0049519527933966e-01
60
+ -2.0572167152672716e-01,1.7589532053530663e+00,1.867520275756581e+00,9.326645584872928e-01
61
+ 2.028990234337061e+00,-1.6696358577770876e-01,1.0442144720383355e+00,2.448190349139855e+00
62
+ 4.2434508106371127e-01,-1.278059889065437e+00,-1.1898626592786472e+00,-3.3068750825746973e-01
63
+ 1.2319505503720647e+00,-1.5394952592671587e+00,-9.951053168689495e-01,5.11600970144431e-01
64
+ 1.9769890149980527e+00,-2.1326410553140835e+00,-1.21414739515473e+00,1.0500446681804023e+00
65
+ 7.092165932574367e-01,-1.481739570005534e+00,-1.2474307620913612e+00,-1.091402940812165e-01
66
+ -9.615415551232644e-01,1.6014346799820025e+00,1.2296436790616394e+00,-1.2825229790994352e-01
67
+ 2.6332591353317136e+00,1.9968582753260276e+00,3.8627421878639634e+00,4.677830701373434e+00
68
+ -1.2326739561548532e+00,1.1655623753837756e+00,5.710681973205789e-01,-7.659970564179892e-01
69
+ 2.115647338564104e+00,-1.142415827390722e+00,-8.11815766831625e-03,1.8963423940631976e+00
70
+ -1.6218421243563732e+00,1.7133806672783916e+00,9.550838772751624e-01,-8.8592125248134e-01
71
+ 1.7944511285596305e+00,-1.7603283965924263e+00,-9.033439498079894e-01,1.0719956418304486e+00
72
+ -4.3784329530910715e-02,-1.1011002600500417e+00,-1.273959668620149e+00,-8.016903048376662e-01
73
+ -1.0486202319833615e-01,2.771360265873167e-01,2.502022685945151e-01,5.548937069062941e-02
74
+ 1.7803747427888172e+00,-1.7499486432213605e+00,-9.001421449524415e-01,1.061262048267582e+00
75
+ 3.5117341307021976e-01,-9.789691163230871e-01,-8.955262089440742e-01,-2.203098686670774e-01
76
+ 5.593131963144458e-01,2.9407023239132535e-01,6.731149622919457e-01,9.054153700658307e-01
77
+ -2.8978824993367214e-01,-9.071101176908198e-01,-1.2037417597331295e+00,-9.807399284527443e-01
78
+ -8.271824743359713e-01,1.5208867942038558e+00,1.2200699738201646e+00,-1.3241124747140454e-02
79
+ -3.6974359976891638e+00,1.5768875645658011e+00,-4.6122012950176094e-01,-3.5986516890499547e+00
80
+ -8.640081290830173e-01,-7.952928105950496e-02,-6.15293009552834e-01,-1.1446247511104104e+00
81
+ -2.08311803057051e-01,8.624849330033639e-01,8.504116645498019e-01,3.2169391260614677e-01
82
+ -1.001711293894727e-01,2.1778421202365075e+00,2.406205156499104e+00,1.3498680692557434e+00
83
+ 1.8508239150610382e+00,-1.6824992225408963e+00,-7.80910683743241e-01,1.1959190498938077e+00
84
+ 7.338999623284566e-01,-5.143119923571249e-01,-1.3650854882454633e-01,5.77822711680621e-01
85
+ -8.695369519005374e-01,1.9989687710081492e+00,1.7359033485741289e+00,2.573749080243791e-01
86
+ 1.3532962753060973e+00,-1.2874410336483981e+00,-6.358121950079192e-01,8.356496699669813e-01
87
+ -8.002210588472312e-01,-1.7356949681552813e-01,-6.830493560168442e-01,-1.1278490368861847e+00
88
+ 2.4254808486506256e+00,-5.498915480430562e-01,8.5144036205131e-01,2.689134716018992e+00
89
+ 1.2666139424327671e+00,-1.6660989176826315e+00,-1.1174533578348345e+00,4.6953709831874846e-01
90
+ -3.211053667726502e-01,4.1328802958184946e-01,2.729906061625348e-01,-1.2519837916582902e-01
91
+ 8.658254600723946e-01,-1.4784947067277336e+00,-1.1485577664230358e+00,9.07604413995754e-02
92
+ -7.628844164635872e-01,-8.717458260209808e-01,-1.4512594413079423e+00,-1.5539978148072322e+00
93
+ -4.4358418688521395e-01,9.942821241511963e-01,8.566996977399313e-01,1.1403208330863496e-01
94
+ -2.2011901612056937e+00,2.867239546533001e+00,1.9100285859432384e+00,-8.351013526293585e-01
95
+ 1.8324086110597337e+00,-1.9101544353699098e+00,-1.049996324589264e+00,1.018348124556209e+00
96
+ -3.545288721030091e-01,1.212189150478433e-01,-7.818714416774197e-02,-3.653805823167333e-01
97
+ -1.972427560720223e+00,1.5208760827120622e+00,5.23902617748198e-01,-1.4589916202641877e+00
98
+ -1.0528659778077893e+00,-6.415151124325393e-01,-1.366720111082726e+00,-1.7639973894652614e+00
99
+ -4.718241674174253e-01,4.4496832895711996e-01,2.1726178451322842e-01,-2.939883824642023e-01
100
+ -1.9464385931107386e-01,1.296884427177927e+00,1.3508149060562555e+00,6.334203305402286e-01
101
+ -3.5996730357206175e-01,-1.0547372143709348e+00,-1.413635629086208e+00,-1.1694070454905325e+00
@@ -0,0 +1,101 @@
1
+ col1,col2,col3,col4
2
+ -5.096521817516535e-01,-4.380743016111864e-01,-1.2527953600499262e+00,7.774903558319101e-01
3
+ -6.743326606573761e-01,3.183055827435118e-02,-6.35846078378881e-01,6.764332949464997e-01
4
+ -8.877857476301128e-01,-1.980796468223927e+00,-3.479121493261526e-01,1.5634896910398005e-01
5
+ 1.9559123082506942e+00,3.9009332268792646e-01,-6.5240858238702e-01,-3.909533751876011e-01
6
+ 9.77249677148556e-02,5.829536797532936e-01,-3.994490292628752e-01,3.7005588784751875e-01
7
+ -1.8430695501566485e+00,-4.779740040404867e-01,-4.7965581400794766e-01,6.203582983435125e-01
8
+ 8.416312640736364e-01,-2.4945858016094885e-01,4.949498165009074e-02,4.9383677628095635e-01
9
+ -7.196043885517929e-01,-8.129929885540773e-01,2.745163577239395e-01,-8.909150829955279e-01
10
+ -1.568211160255477e-02,1.6092816829822298e-01,-1.9065349358139935e-01,-3.948495140334503e-01
11
+ -3.090129690471222e-01,-1.6760038063299767e+00,1.15233156478312e+00,1.079618592036821e+00
12
+ -7.255973784635843e-01,-1.3833639553950554e+00,-1.582938397335082e+00,6.103793791072052e-01
13
+ 2.303916697683942e+00,-1.0600158227215473e+00,-1.3594970067832082e-01,1.1368913626026953e+00
14
+ 5.765908166149409e-01,-2.0829875557799488e-01,3.960067126616453e-01,-1.0930615087305058e+00
15
+ 1.4940790731576061e+00,-2.0515826376580087e-01,3.1306770165090136e-01,-8.540957393017248e-01
16
+ -3.5343174875719907e-01,-1.6164741886510325e+00,-2.918373627478628e-01,-7.614922118116233e-01
17
+ 6.651722238316789e-02,3.024718977397814e-01,-6.343220936809636e-01,-3.627411659871381e-01
18
+ -2.6773353689396645e-01,-1.1280113314700069e+00,2.80441705316296e-01,-9.931236109295807e-01
19
+ -5.973160689653627e-01,-2.37921729736007e-01,-1.4240609089825316e+00,-4.9331988336219407e-01
20
+ 6.433144650629279e-01,-1.5706234086334527e+00,-2.0690367616397173e-01,8.801789120807822e-01
21
+ 1.8831506970562544e+00,-1.3477590611424464e+00,-1.2704849984857336e+00,9.693967081580112e-01
22
+ -9.072983643832422e-01,5.194539579613895e-02,7.290905621775369e-01,1.2898291075741067e-01
23
+ -1.1054065723247261e-01,1.0201727117157997e+00,-6.920498477843912e-01,1.5363770542457977e+00
24
+ -1.1573552591908536e+00,-3.122922511256933e-01,-1.576670161638159e-01,2.2567234972982093e+00
25
+ 1.0500020720820478e-02,1.7858704939058352e+00,1.2691209270361992e-01,4.0198936344470165e-01
26
+ -1.1651498407833565e+00,9.008264869541871e-01,4.6566243973045984e-01,-1.5362436862772237e+00
27
+ -4.409226322925914e-01,-2.803554951845091e-01,-3.646935443916854e-01,1.5670385527236397e-01
28
+ 1.9229420264803847e+00,1.4805147914344243e+00,1.8675589604265699e+00,9.060446582753853e-01
29
+ -8.034096641738411e-01,-6.895497777502005e-01,-4.5553250351734315e-01,1.747915902505673e-02
30
+ -1.4912575927056055e+00,4.393917012645369e-01,1.6667349537252904e-01,6.350314368921064e-01
31
+ 7.610377251469934e-01,1.2167501649282841e-01,4.4386323274542566e-01,3.3367432737426683e-01
32
+ 1.1880297923523018e+00,3.169426119248496e-01,9.20858823780819e-01,3.187276529430212e-01
33
+ -1.5407970144446248e+00,6.326199420033171e-02,1.565065379653756e-01,2.3218103620027578e-01
34
+ -1.936279805846507e+00,1.8877859679382855e-01,5.238910238342056e-01,8.842208704466141e-02
35
+ 2.082749780768603e-01,9.766390364837128e-01,3.563663971744019e-01,7.065731681919482e-01
36
+ 7.732529774025997e-01,-1.1838806401933177e+00,-2.659172237996741e+00,6.063195243593807e-01
37
+ 2.7992459904323824e-01,-9.815038964295794e-02,9.101789080925919e-01,3.1721821519130206e-01
38
+ -5.428614760167177e-01,4.160500462614255e-01,-1.1561824318219127e+00,7.811981017099934e-01
39
+ 1.5327792143584575e+00,1.469358769900285e+00,1.549474256969163e-01,3.7816251960217356e-01
40
+ -1.225435518830168e+00,8.443629764015471e-01,-1.0002153473895647e+00,-1.5447710967776116e+00
41
+ -3.5399391125348395e-01,-1.3749512934180188e+00,-6.436184028328905e-01,-2.2234031522244266e+00
42
+ 6.98457149107336e-01,3.77088908626934e-03,9.318483741143037e-01,3.39964983801262e-01
43
+ -9.55945000492777e-01,-3.4598177569938643e-01,-4.635959746460942e-01,4.814814737734622e-01
44
+ -8.612256850547025e-01,1.9100649530990337e+00,-2.680033709513804e-01,8.024563957963952e-01
45
+ 6.937731526901325e-01,-1.595734381462669e-01,-1.3370155966843916e-01,1.0777438059762627e+00
46
+ 6.252314510271875e-01,-1.6020576556067476e+00,-1.1043833394284506e+00,5.2165079260974405e-02
47
+ -7.047002758562337e-01,9.432607249694948e-01,7.471883342046318e-01,-1.188944955203736e+00
48
+ 2.383144774863942e+00,9.444794869904138e-01,-9.128222254441586e-01,1.117016288095853e+00
49
+ -3.108861716984717e-01,9.740016626878341e-02,3.990463456401302e-01,-2.77259275642665e+00
50
+ -8.707971491818818e-01,-5.788496647644155e-01,-3.1155253212737266e-01,5.616534222974544e-02
51
+ -1.0707526215105425e+00,1.0544517269311366e+00,-4.0317694697317963e-01,1.2224450703824274e+00
52
+ 1.126635922106507e+00,-1.0799315083634233e+00,-1.1474686524111024e+00,-4.3782004474443403e-01
53
+ 4.9374177734918845e-01,-1.1610393903436653e-01,-2.0306844677814944e+00,2.0644928613593194e+00
54
+ -1.7020413861440594e-02,3.791517355550818e-01,2.259308950690852e+00,-4.225715166064269e-02
55
+ 1.764052345967664e+00,4.001572083672233e-01,9.787379841057392e-01,2.240893199201458e+00
56
+ 5.785214977288784e-01,3.49654456993174e-01,-7.64143923906443e-01,-1.4377914738015785e+00
57
+ -1.6138978475579515e+00,-2.127402802139687e-01,-8.954665611936756e-01,3.86902497859262e-01
58
+ 1.6481349322075596e+00,1.6422775548733395e-01,5.672902778526694e-01,-2.226751005151545e-01
59
+ -6.37437025552229e-01,-3.9727181432879766e-01,-1.3288057758695562e-01,-2.977908794017283e-01
60
+ 1.7742614225375283e-01,-4.017809362082619e-01,-1.6301983469660446e+00,4.627822555257742e-01
61
+ 2.8634368889227957e-01,6.088438344754508e-01,-1.0452533661469547e+00,1.2111452896827009e+00
62
+ 6.722947570124355e-01,4.0746183624111043e-01,-7.699160744453164e-01,5.392491912918173e-01
63
+ -6.945678597313655e-01,-1.4963454032767076e-01,-4.3515355172163744e-01,1.8492637284793418e+00
64
+ 7.717905512136674e-01,8.235041539637314e-01,2.16323594928069e+00,1.336527949436392e+00
65
+ 1.4944845444913688e+00,-2.0699850250135325e+00,4.2625873077810095e-01,6.769080350302455e-01
66
+ -1.3159074105115212e+00,-4.61584604814709e-01,-6.824160532463124e-02,1.7133427216493666e+00
67
+ 1.4195316332077967e-01,-3.193284171450952e-01,6.915387510701866e-01,6.947491436560059e-01
68
+ -6.72460447775951e-01,-3.595531615405413e-01,-8.13146282044454e-01,-1.7262826023316769e+00
69
+ -1.7558905834377194e+00,4.5093446180591484e-01,-6.840108977372166e-01,1.6595507961898721e+00
70
+ 3.7642553115562943e-01,-1.0994007905841945e+00,2.98238174206056e-01,1.3263858966870303e+00
71
+ -1.17312340511416e+00,1.9436211856492926e+00,-4.1361898075974735e-01,-7.474548114407578e-01
72
+ -4.980324506923049e-01,1.9295320538169858e+00,9.494208069257608e-01,8.75512413851909e-02
73
+ -3.92828182274956e-02,-1.1680934977411974e+00,5.232766605317537e-01,-1.715463312222481e-01
74
+ -1.6981058194322545e+00,3.872804753950634e-01,-2.2555642294021894e+00,-1.0225068436356035e+00
75
+ -5.10805137568873e-01,-1.180632184122412e+00,-2.8182228338654868e-02,4.2833187053041766e-01
76
+ 1.1394006845433007e+00,-1.2348258203536526e+00,4.02341641177549e-01,-6.848100909403132e-01
77
+ 1.4882521937955997e+00,1.8958891760305832e+00,1.1787795711596507e+00,-1.7992483581235091e-01
78
+ -1.1268258087567435e+00,-7.306777528648248e-01,-3.8487980918127546e-01,9.4351589317074e-02
79
+ -7.395629963913133e-01,1.5430145954067358e+00,-1.2928569097234486e+00,2.6705086934918293e-01
80
+ 1.3645318481024713e+00,-6.894491845499376e-01,-6.522935999350191e-01,-5.211893123011109e-01
81
+ -8.133642592042029e-01,-1.466424327802514e+00,5.210648764527586e-01,-5.757879698130661e-01
82
+ -4.2171451290578935e-02,-2.868871923899076e-01,-6.16264020956474e-02,-1.0730527629117469e-01
83
+ 8.568306119026912e-01,-6.510255933001469e-01,-1.0342428417844647e+00,6.81594518281627e-01
84
+ -1.188859257784029e+00,-5.068163542986875e-01,-5.963140384505081e-01,-5.256729626954629e-02
85
+ 7.863279621089762e-01,-4.6641909673594306e-01,-9.444462559182504e-01,-4.1004969320254847e-01
86
+ -2.5529898158340787e+00,6.536185954403606e-01,8.644361988595057e-01,-7.421650204064419e-01
87
+ 6.898181645347884e-01,1.3018462295649984e+00,-6.280875596415789e-01,-4.810271184607877e-01
88
+ 1.2302906807277207e+00,1.2023798487844113e+00,-3.873268174079523e-01,-3.0230275057533557e-01
89
+ 9.47251967773748e-01,-1.550100930908342e-01,6.140793703460803e-01,9.222066715665268e-01
90
+ 6.663830820319143e-01,-4.607197873885533e-01,-1.3342584714027534e+00,-1.3467175057975553e+00
91
+ -1.0321885179355784e-01,4.1059850193837233e-01,1.44043571160878e-01,1.454273506962975e+00
92
+ 6.40131526097592e-01,-1.6169560443108344e+00,-2.4326124398935636e-02,-7.380309092056887e-01
93
+ -3.691818379424436e-01,-2.393791775759264e-01,1.0996595958871132e+00,6.552637307225978e-01
94
+ 1.068509399316009e+00,-4.5338580385138766e-01,-6.878376110286823e-01,-1.2140774030941206e+00
95
+ -1.3065268517353166e+00,1.658130679618188e+00,-1.1816404512856976e-01,-6.801782039968504e-01
96
+ 8.579239242923363e-01,1.1411018666575734e+00,1.4665787155741776e+00,8.52551939461232e-01
97
+ 3.86305518401881e-02,-1.6567151023219537e+00,-9.855107376841507e-01,-1.4718350074635869e+00
98
+ 2.2697546239876076e+00,-1.4543656745987648e+00,4.575851730144607e-02,-1.871838500258336e-01
99
+ -1.0485529650670926e+00,-1.4200179371789752e+00,-1.7062701906250126e+00,1.9507753952317897e+00
100
+ 1.8675579901499675e+00,-9.77277879876411e-01,9.500884175255894e-01,-1.513572082976979e-01
101
+ -7.447548220484399e-01,-8.264385386590144e-01,-9.84525244254323e-02,-6.634782863621074e-01