teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (1285) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +1864 -1640
  4. teradataml/__init__.py +70 -60
  5. teradataml/_version.py +11 -11
  6. teradataml/analytics/Transformations.py +2995 -2995
  7. teradataml/analytics/__init__.py +81 -83
  8. teradataml/analytics/analytic_function_executor.py +2013 -2010
  9. teradataml/analytics/analytic_query_generator.py +958 -958
  10. teradataml/analytics/byom/H2OPredict.py +514 -514
  11. teradataml/analytics/byom/PMMLPredict.py +437 -437
  12. teradataml/analytics/byom/__init__.py +14 -14
  13. teradataml/analytics/json_parser/__init__.py +130 -130
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
  15. teradataml/analytics/json_parser/json_store.py +191 -191
  16. teradataml/analytics/json_parser/metadata.py +1637 -1637
  17. teradataml/analytics/json_parser/utils.py +804 -803
  18. teradataml/analytics/meta_class.py +196 -196
  19. teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
  21. teradataml/analytics/sqle/__init__.py +97 -110
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
  24. teradataml/analytics/table_operator/__init__.py +10 -10
  25. teradataml/analytics/uaf/__init__.py +63 -63
  26. teradataml/analytics/utils.py +693 -692
  27. teradataml/analytics/valib.py +1603 -1600
  28. teradataml/automl/__init__.py +1628 -0
  29. teradataml/automl/custom_json_utils.py +1270 -0
  30. teradataml/automl/data_preparation.py +993 -0
  31. teradataml/automl/data_transformation.py +727 -0
  32. teradataml/automl/feature_engineering.py +1648 -0
  33. teradataml/automl/feature_exploration.py +547 -0
  34. teradataml/automl/model_evaluation.py +163 -0
  35. teradataml/automl/model_training.py +887 -0
  36. teradataml/catalog/__init__.py +1 -3
  37. teradataml/catalog/byom.py +1759 -1716
  38. teradataml/catalog/function_argument_mapper.py +859 -861
  39. teradataml/catalog/model_cataloging_utils.py +491 -1510
  40. teradataml/clients/pkce_client.py +481 -481
  41. teradataml/common/aed_utils.py +6 -2
  42. teradataml/common/bulk_exposed_utils.py +111 -111
  43. teradataml/common/constants.py +1433 -1441
  44. teradataml/common/deprecations.py +160 -0
  45. teradataml/common/exceptions.py +73 -73
  46. teradataml/common/formula.py +742 -742
  47. teradataml/common/garbagecollector.py +592 -635
  48. teradataml/common/messagecodes.py +422 -431
  49. teradataml/common/messages.py +227 -231
  50. teradataml/common/sqlbundle.py +693 -693
  51. teradataml/common/td_coltype_code_to_tdtype.py +48 -48
  52. teradataml/common/utils.py +2418 -2500
  53. teradataml/common/warnings.py +25 -25
  54. teradataml/common/wrapper_utils.py +1 -110
  55. teradataml/config/dummy_file1.cfg +4 -4
  56. teradataml/config/dummy_file2.cfg +2 -2
  57. teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
  58. teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
  59. teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
  60. teradataml/context/aed_context.py +217 -217
  61. teradataml/context/context.py +1071 -999
  62. teradataml/data/A_loan.csv +19 -19
  63. teradataml/data/BINARY_REALS_LEFT.csv +11 -11
  64. teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
  65. teradataml/data/B_loan.csv +49 -49
  66. teradataml/data/BuoyData2.csv +17 -17
  67. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
  68. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
  69. teradataml/data/Convolve2RealsLeft.csv +5 -5
  70. teradataml/data/Convolve2RealsRight.csv +5 -5
  71. teradataml/data/Convolve2ValidLeft.csv +11 -11
  72. teradataml/data/Convolve2ValidRight.csv +11 -11
  73. teradataml/data/DFFTConv_Real_8_8.csv +65 -65
  74. teradataml/data/Orders1_12mf.csv +24 -24
  75. teradataml/data/Pi_loan.csv +7 -7
  76. teradataml/data/SMOOTHED_DATA.csv +7 -7
  77. teradataml/data/TestDFFT8.csv +9 -9
  78. teradataml/data/TestRiver.csv +109 -109
  79. teradataml/data/Traindata.csv +28 -28
  80. teradataml/data/acf.csv +17 -17
  81. teradataml/data/adaboost_example.json +34 -34
  82. teradataml/data/adaboostpredict_example.json +24 -24
  83. teradataml/data/additional_table.csv +10 -10
  84. teradataml/data/admissions_test.csv +21 -21
  85. teradataml/data/admissions_train.csv +41 -41
  86. teradataml/data/admissions_train_nulls.csv +41 -41
  87. teradataml/data/ageandheight.csv +13 -13
  88. teradataml/data/ageandpressure.csv +31 -31
  89. teradataml/data/antiselect_example.json +36 -36
  90. teradataml/data/antiselect_input.csv +8 -8
  91. teradataml/data/antiselect_input_mixed_case.csv +8 -8
  92. teradataml/data/applicant_external.csv +6 -6
  93. teradataml/data/applicant_reference.csv +6 -6
  94. teradataml/data/arima_example.json +9 -9
  95. teradataml/data/assortedtext_input.csv +8 -8
  96. teradataml/data/attribution_example.json +33 -33
  97. teradataml/data/attribution_sample_table.csv +27 -27
  98. teradataml/data/attribution_sample_table1.csv +6 -6
  99. teradataml/data/attribution_sample_table2.csv +11 -11
  100. teradataml/data/bank_churn.csv +10001 -0
  101. teradataml/data/bank_web_clicks1.csv +42 -42
  102. teradataml/data/bank_web_clicks2.csv +91 -91
  103. teradataml/data/bank_web_url.csv +85 -85
  104. teradataml/data/barrier.csv +2 -2
  105. teradataml/data/barrier_new.csv +3 -3
  106. teradataml/data/betweenness_example.json +13 -13
  107. teradataml/data/bin_breaks.csv +8 -8
  108. teradataml/data/bin_fit_ip.csv +3 -3
  109. teradataml/data/binary_complex_left.csv +11 -11
  110. teradataml/data/binary_complex_right.csv +11 -11
  111. teradataml/data/binary_matrix_complex_left.csv +21 -21
  112. teradataml/data/binary_matrix_complex_right.csv +21 -21
  113. teradataml/data/binary_matrix_real_left.csv +21 -21
  114. teradataml/data/binary_matrix_real_right.csv +21 -21
  115. teradataml/data/blood2ageandweight.csv +26 -26
  116. teradataml/data/bmi.csv +501 -0
  117. teradataml/data/boston.csv +507 -507
  118. teradataml/data/buoydata_mix.csv +11 -11
  119. teradataml/data/burst_data.csv +5 -5
  120. teradataml/data/burst_example.json +20 -20
  121. teradataml/data/byom_example.json +17 -17
  122. teradataml/data/bytes_table.csv +3 -3
  123. teradataml/data/cal_housing_ex_raw.csv +70 -70
  124. teradataml/data/callers.csv +7 -7
  125. teradataml/data/calls.csv +10 -10
  126. teradataml/data/cars_hist.csv +33 -33
  127. teradataml/data/cat_table.csv +24 -24
  128. teradataml/data/ccm_example.json +31 -31
  129. teradataml/data/ccm_input.csv +91 -91
  130. teradataml/data/ccm_input2.csv +13 -13
  131. teradataml/data/ccmexample.csv +101 -101
  132. teradataml/data/ccmprepare_example.json +8 -8
  133. teradataml/data/ccmprepare_input.csv +91 -91
  134. teradataml/data/cfilter_example.json +12 -12
  135. teradataml/data/changepointdetection_example.json +18 -18
  136. teradataml/data/changepointdetectionrt_example.json +8 -8
  137. teradataml/data/chi_sq.csv +2 -2
  138. teradataml/data/churn_data.csv +14 -14
  139. teradataml/data/churn_emission.csv +35 -35
  140. teradataml/data/churn_initial.csv +3 -3
  141. teradataml/data/churn_state_transition.csv +5 -5
  142. teradataml/data/citedges_2.csv +745 -745
  143. teradataml/data/citvertices_2.csv +1210 -1210
  144. teradataml/data/clicks2.csv +16 -16
  145. teradataml/data/clickstream.csv +12 -12
  146. teradataml/data/clickstream1.csv +11 -11
  147. teradataml/data/closeness_example.json +15 -15
  148. teradataml/data/complaints.csv +21 -21
  149. teradataml/data/complaints_mini.csv +3 -3
  150. teradataml/data/complaints_testtoken.csv +224 -224
  151. teradataml/data/complaints_tokens_test.csv +353 -353
  152. teradataml/data/complaints_traintoken.csv +472 -472
  153. teradataml/data/computers_category.csv +1001 -1001
  154. teradataml/data/computers_test1.csv +1252 -1252
  155. teradataml/data/computers_train1.csv +5009 -5009
  156. teradataml/data/computers_train1_clustered.csv +5009 -5009
  157. teradataml/data/confusionmatrix_example.json +9 -9
  158. teradataml/data/conversion_event_table.csv +3 -3
  159. teradataml/data/corr_input.csv +17 -17
  160. teradataml/data/correlation_example.json +11 -11
  161. teradataml/data/coxhazardratio_example.json +39 -39
  162. teradataml/data/coxph_example.json +15 -15
  163. teradataml/data/coxsurvival_example.json +28 -28
  164. teradataml/data/cpt.csv +41 -41
  165. teradataml/data/credit_ex_merged.csv +45 -45
  166. teradataml/data/customer_loyalty.csv +301 -301
  167. teradataml/data/customer_loyalty_newseq.csv +31 -31
  168. teradataml/data/dataframe_example.json +146 -146
  169. teradataml/data/decisionforest_example.json +37 -37
  170. teradataml/data/decisionforestpredict_example.json +38 -38
  171. teradataml/data/decisiontree_example.json +21 -21
  172. teradataml/data/decisiontreepredict_example.json +45 -45
  173. teradataml/data/dfft2_size4_real.csv +17 -17
  174. teradataml/data/dfft2_test_matrix16.csv +17 -17
  175. teradataml/data/dfft2conv_real_4_4.csv +65 -65
  176. teradataml/data/diabetes.csv +443 -443
  177. teradataml/data/diabetes_test.csv +89 -89
  178. teradataml/data/dict_table.csv +5 -5
  179. teradataml/data/docperterm_table.csv +4 -4
  180. teradataml/data/docs/__init__.py +1 -1
  181. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
  182. teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
  183. teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
  184. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
  185. teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
  186. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
  187. teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
  188. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
  189. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
  190. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
  191. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
  192. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
  193. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
  194. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
  195. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
  196. teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
  197. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
  198. teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
  199. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
  200. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
  201. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
  202. teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
  203. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
  204. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
  205. teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
  206. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
  207. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
  208. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
  209. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +132 -132
  210. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +103 -103
  211. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
  212. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +101 -101
  213. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
  214. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
  215. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
  216. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
  217. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
  218. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
  219. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
  220. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
  221. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
  222. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
  223. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
  224. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
  225. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
  226. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
  227. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
  228. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
  229. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
  230. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
  231. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
  232. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
  233. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
  234. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +126 -126
  235. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
  236. teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
  237. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
  238. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
  239. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
  240. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
  241. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
  242. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
  243. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +243 -243
  244. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
  245. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
  246. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
  247. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
  248. teradataml/data/docs/sqle/docs_17_20/FTest.py +160 -160
  249. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
  250. teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
  251. teradataml/data/docs/sqle/docs_17_20/GLM.py +380 -380
  252. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
  253. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
  254. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
  255. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +123 -123
  256. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
  257. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
  258. teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
  259. teradataml/data/docs/sqle/docs_17_20/KMeans.py +204 -204
  260. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
  261. teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
  262. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
  263. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
  264. teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
  265. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
  266. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
  267. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
  268. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +117 -117
  269. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
  270. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
  271. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
  272. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
  273. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +225 -225
  274. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +115 -115
  275. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
  276. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
  277. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
  278. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
  279. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
  280. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
  281. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
  282. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
  283. teradataml/data/docs/sqle/docs_17_20/ROC.py +163 -163
  284. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
  285. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
  286. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
  287. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
  288. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
  289. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
  290. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
  291. teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
  292. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +202 -202
  293. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
  294. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +197 -197
  295. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +110 -109
  296. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
  297. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
  298. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
  299. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
  300. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
  301. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
  302. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
  303. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
  304. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +171 -171
  305. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
  306. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
  307. teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
  308. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
  309. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
  310. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
  311. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
  312. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
  313. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
  314. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
  315. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
  316. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +353 -353
  317. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +275 -275
  318. teradataml/data/docs/sqle/docs_17_20/ZTest.py +155 -155
  319. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
  320. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
  321. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
  322. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
  323. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
  324. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
  325. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
  326. teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
  327. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
  328. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
  329. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
  330. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
  331. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
  332. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
  333. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
  334. teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
  335. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
  336. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
  337. teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
  338. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
  339. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
  340. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
  341. teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
  342. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
  343. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
  344. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
  345. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
  346. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
  347. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
  348. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
  349. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
  350. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
  351. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
  352. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
  353. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
  354. teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
  355. teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
  356. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
  357. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
  358. teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
  359. teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
  360. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
  361. teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
  362. teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
  363. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
  364. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
  365. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
  366. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
  367. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
  368. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
  369. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
  370. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
  371. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
  372. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
  373. teradataml/data/dtw_example.json +17 -17
  374. teradataml/data/dtw_t1.csv +11 -11
  375. teradataml/data/dtw_t2.csv +4 -4
  376. teradataml/data/dwt2d_example.json +15 -15
  377. teradataml/data/dwt_example.json +14 -14
  378. teradataml/data/dwt_filter_dim.csv +5 -5
  379. teradataml/data/emission.csv +9 -9
  380. teradataml/data/emp_table_by_dept.csv +19 -19
  381. teradataml/data/employee_info.csv +4 -4
  382. teradataml/data/employee_table.csv +6 -6
  383. teradataml/data/excluding_event_table.csv +2 -2
  384. teradataml/data/finance_data.csv +6 -6
  385. teradataml/data/finance_data2.csv +61 -61
  386. teradataml/data/finance_data3.csv +93 -93
  387. teradataml/data/fish.csv +160 -0
  388. teradataml/data/fm_blood2ageandweight.csv +26 -26
  389. teradataml/data/fmeasure_example.json +11 -11
  390. teradataml/data/followers_leaders.csv +10 -10
  391. teradataml/data/fpgrowth_example.json +12 -12
  392. teradataml/data/frequentpaths_example.json +29 -29
  393. teradataml/data/friends.csv +9 -9
  394. teradataml/data/fs_input.csv +33 -33
  395. teradataml/data/fs_input1.csv +33 -33
  396. teradataml/data/genData.csv +513 -513
  397. teradataml/data/geodataframe_example.json +39 -39
  398. teradataml/data/glass_types.csv +215 -0
  399. teradataml/data/glm_admissions_model.csv +12 -12
  400. teradataml/data/glm_example.json +29 -29
  401. teradataml/data/glml1l2_example.json +28 -28
  402. teradataml/data/glml1l2predict_example.json +54 -54
  403. teradataml/data/glmpredict_example.json +54 -54
  404. teradataml/data/gq_t1.csv +21 -21
  405. teradataml/data/hconvolve_complex_right.csv +5 -5
  406. teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
  407. teradataml/data/histogram_example.json +11 -11
  408. teradataml/data/hmmdecoder_example.json +78 -78
  409. teradataml/data/hmmevaluator_example.json +24 -24
  410. teradataml/data/hmmsupervised_example.json +10 -10
  411. teradataml/data/hmmunsupervised_example.json +7 -7
  412. teradataml/data/house_values.csv +12 -12
  413. teradataml/data/house_values2.csv +13 -13
  414. teradataml/data/housing_cat.csv +7 -7
  415. teradataml/data/housing_data.csv +9 -9
  416. teradataml/data/housing_test.csv +47 -47
  417. teradataml/data/housing_test_binary.csv +47 -47
  418. teradataml/data/housing_train.csv +493 -493
  419. teradataml/data/housing_train_attribute.csv +4 -4
  420. teradataml/data/housing_train_binary.csv +437 -437
  421. teradataml/data/housing_train_parameter.csv +2 -2
  422. teradataml/data/housing_train_response.csv +493 -493
  423. teradataml/data/ibm_stock.csv +370 -370
  424. teradataml/data/ibm_stock1.csv +370 -370
  425. teradataml/data/identitymatch_example.json +21 -21
  426. teradataml/data/idf_table.csv +4 -4
  427. teradataml/data/impressions.csv +101 -101
  428. teradataml/data/inflation.csv +21 -21
  429. teradataml/data/initial.csv +3 -3
  430. teradataml/data/insect_sprays.csv +12 -12
  431. teradataml/data/insurance.csv +1339 -1339
  432. teradataml/data/interpolator_example.json +12 -12
  433. teradataml/data/iris_altinput.csv +481 -481
  434. teradataml/data/iris_attribute_output.csv +8 -8
  435. teradataml/data/iris_attribute_test.csv +121 -121
  436. teradataml/data/iris_attribute_train.csv +481 -481
  437. teradataml/data/iris_category_expect_predict.csv +31 -31
  438. teradataml/data/iris_data.csv +151 -0
  439. teradataml/data/iris_input.csv +151 -151
  440. teradataml/data/iris_response_train.csv +121 -121
  441. teradataml/data/iris_test.csv +31 -31
  442. teradataml/data/iris_train.csv +121 -121
  443. teradataml/data/join_table1.csv +4 -4
  444. teradataml/data/join_table2.csv +4 -4
  445. teradataml/data/jsons/anly_function_name.json +6 -6
  446. teradataml/data/jsons/byom/dataikupredict.json +147 -147
  447. teradataml/data/jsons/byom/datarobotpredict.json +146 -146
  448. teradataml/data/jsons/byom/h2opredict.json +194 -194
  449. teradataml/data/jsons/byom/onnxpredict.json +186 -186
  450. teradataml/data/jsons/byom/pmmlpredict.json +146 -146
  451. teradataml/data/jsons/paired_functions.json +435 -435
  452. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
  453. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
  454. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
  455. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
  456. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
  457. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
  458. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
  459. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
  460. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
  461. teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
  462. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
  463. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
  464. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
  465. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
  466. teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
  467. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
  468. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
  469. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
  470. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
  471. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
  472. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
  473. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
  474. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
  475. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
  476. teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
  477. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
  478. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
  479. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
  480. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
  481. teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
  482. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
  483. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
  484. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
  485. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
  486. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
  487. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
  488. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
  489. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
  490. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
  491. teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
  492. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
  493. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
  494. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
  495. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
  496. teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
  497. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
  498. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
  499. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
  500. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
  501. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
  502. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
  503. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
  504. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
  505. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
  506. teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
  507. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
  508. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
  509. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
  510. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
  511. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
  512. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
  513. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
  514. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
  515. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
  516. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
  517. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
  518. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
  519. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
  520. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
  521. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
  522. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
  523. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
  524. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
  525. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
  526. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
  527. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
  528. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
  529. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
  530. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
  531. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
  532. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
  533. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
  534. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
  535. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
  536. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
  537. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
  538. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
  539. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
  540. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
  541. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
  542. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
  543. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
  544. teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
  545. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
  546. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
  547. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
  548. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
  549. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
  550. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
  551. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
  552. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
  553. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
  554. teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
  555. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
  556. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
  557. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
  558. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +76 -76
  559. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
  560. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
  561. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
  562. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
  563. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
  564. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
  565. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
  566. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
  567. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
  568. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
  569. teradataml/data/jsons/sqle/17.20/TD_FTest.json +186 -186
  570. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
  571. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
  572. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
  573. teradataml/data/jsons/sqle/17.20/TD_GLM.json +431 -431
  574. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +125 -125
  575. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
  576. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
  577. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +91 -91
  578. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
  579. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
  580. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
  581. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +211 -211
  582. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
  583. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
  584. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
  585. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +101 -101
  586. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
  587. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
  588. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
  589. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
  590. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
  591. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
  592. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
  593. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
  594. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
  595. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
  596. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
  597. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
  598. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
  599. teradataml/data/jsons/sqle/17.20/TD_ROC.json +177 -177
  600. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
  601. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
  602. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
  603. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
  604. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
  605. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
  606. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
  607. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
  608. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +124 -124
  609. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +156 -156
  610. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +70 -70
  611. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
  612. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
  613. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
  614. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
  615. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
  616. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
  617. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
  618. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
  619. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
  620. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
  621. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
  622. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
  623. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
  624. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
  625. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +312 -312
  626. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +182 -182
  627. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +170 -170
  628. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
  629. teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
  630. teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
  631. teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
  632. teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
  633. teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
  634. teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
  635. teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
  636. teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
  637. teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
  638. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
  639. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
  640. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
  641. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
  642. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
  643. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
  644. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
  645. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
  646. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
  647. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
  648. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
  649. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
  650. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
  651. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
  652. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
  653. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
  654. teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
  655. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
  656. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
  657. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
  658. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
  659. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
  660. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
  661. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
  662. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
  663. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
  664. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
  665. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
  666. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
  667. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
  668. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
  669. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
  670. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
  671. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
  672. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
  673. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
  674. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
  675. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
  676. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
  677. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
  678. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
  679. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
  680. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
  681. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
  682. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
  683. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
  684. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
  685. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
  686. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
  687. teradataml/data/kmeans_example.json +17 -17
  688. teradataml/data/kmeans_us_arrests_data.csv +0 -0
  689. teradataml/data/knn_example.json +18 -18
  690. teradataml/data/knnrecommender_example.json +6 -6
  691. teradataml/data/knnrecommenderpredict_example.json +12 -12
  692. teradataml/data/lar_example.json +17 -17
  693. teradataml/data/larpredict_example.json +30 -30
  694. teradataml/data/lc_new_predictors.csv +5 -5
  695. teradataml/data/lc_new_reference.csv +9 -9
  696. teradataml/data/lda_example.json +8 -8
  697. teradataml/data/ldainference_example.json +14 -14
  698. teradataml/data/ldatopicsummary_example.json +8 -8
  699. teradataml/data/levendist_input.csv +13 -13
  700. teradataml/data/levenshteindistance_example.json +10 -10
  701. teradataml/data/linreg_example.json +9 -9
  702. teradataml/data/load_example_data.py +326 -323
  703. teradataml/data/loan_prediction.csv +295 -295
  704. teradataml/data/lungcancer.csv +138 -138
  705. teradataml/data/mappingdata.csv +12 -12
  706. teradataml/data/milk_timeseries.csv +157 -157
  707. teradataml/data/min_max_titanic.csv +4 -4
  708. teradataml/data/minhash_example.json +6 -6
  709. teradataml/data/ml_ratings.csv +7547 -7547
  710. teradataml/data/ml_ratings_10.csv +2445 -2445
  711. teradataml/data/model1_table.csv +5 -5
  712. teradataml/data/model2_table.csv +5 -5
  713. teradataml/data/models/iris_db_glm_model.pmml +56 -56
  714. teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
  715. teradataml/data/modularity_example.json +12 -12
  716. teradataml/data/movavg_example.json +7 -7
  717. teradataml/data/mtx1.csv +7 -7
  718. teradataml/data/mtx2.csv +13 -13
  719. teradataml/data/multi_model_classification.csv +401 -0
  720. teradataml/data/multi_model_regression.csv +401 -0
  721. teradataml/data/mvdfft8.csv +9 -9
  722. teradataml/data/naivebayes_example.json +9 -9
  723. teradataml/data/naivebayespredict_example.json +19 -19
  724. teradataml/data/naivebayestextclassifier2_example.json +6 -6
  725. teradataml/data/naivebayestextclassifier_example.json +8 -8
  726. teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
  727. teradataml/data/name_Find_configure.csv +10 -10
  728. teradataml/data/namedentityfinder_example.json +14 -14
  729. teradataml/data/namedentityfinderevaluator_example.json +10 -10
  730. teradataml/data/namedentityfindertrainer_example.json +6 -6
  731. teradataml/data/nb_iris_input_test.csv +31 -31
  732. teradataml/data/nb_iris_input_train.csv +121 -121
  733. teradataml/data/nbp_iris_model.csv +13 -13
  734. teradataml/data/ner_extractor_text.csv +2 -2
  735. teradataml/data/ner_sports_test2.csv +29 -29
  736. teradataml/data/ner_sports_train.csv +501 -501
  737. teradataml/data/nerevaluator_example.json +5 -5
  738. teradataml/data/nerextractor_example.json +18 -18
  739. teradataml/data/nermem_sports_test.csv +17 -17
  740. teradataml/data/nermem_sports_train.csv +50 -50
  741. teradataml/data/nertrainer_example.json +6 -6
  742. teradataml/data/ngrams_example.json +6 -6
  743. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
  744. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
  745. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
  746. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
  747. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
  748. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
  749. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
  750. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
  751. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
  752. teradataml/data/npath_example.json +23 -23
  753. teradataml/data/ntree_example.json +14 -14
  754. teradataml/data/numeric_strings.csv +4 -4
  755. teradataml/data/numerics.csv +4 -4
  756. teradataml/data/ocean_buoy.csv +17 -17
  757. teradataml/data/ocean_buoy2.csv +17 -17
  758. teradataml/data/ocean_buoys.csv +27 -27
  759. teradataml/data/ocean_buoys2.csv +10 -10
  760. teradataml/data/ocean_buoys_nonpti.csv +28 -28
  761. teradataml/data/ocean_buoys_seq.csv +29 -29
  762. teradataml/data/openml_example.json +63 -0
  763. teradataml/data/optional_event_table.csv +4 -4
  764. teradataml/data/orders1.csv +11 -11
  765. teradataml/data/orders1_12.csv +12 -12
  766. teradataml/data/orders_ex.csv +4 -4
  767. teradataml/data/pack_example.json +8 -8
  768. teradataml/data/package_tracking.csv +19 -19
  769. teradataml/data/package_tracking_pti.csv +18 -18
  770. teradataml/data/pagerank_example.json +13 -13
  771. teradataml/data/paragraphs_input.csv +6 -6
  772. teradataml/data/pathanalyzer_example.json +7 -7
  773. teradataml/data/pathgenerator_example.json +7 -7
  774. teradataml/data/phrases.csv +7 -7
  775. teradataml/data/pivot_example.json +8 -8
  776. teradataml/data/pivot_input.csv +22 -22
  777. teradataml/data/playerRating.csv +31 -31
  778. teradataml/data/postagger_example.json +6 -6
  779. teradataml/data/posttagger_output.csv +44 -44
  780. teradataml/data/production_data.csv +16 -16
  781. teradataml/data/production_data2.csv +7 -7
  782. teradataml/data/randomsample_example.json +31 -31
  783. teradataml/data/randomwalksample_example.json +8 -8
  784. teradataml/data/rank_table.csv +6 -6
  785. teradataml/data/ref_mobile_data.csv +4 -4
  786. teradataml/data/ref_mobile_data_dense.csv +2 -2
  787. teradataml/data/ref_url.csv +17 -17
  788. teradataml/data/restaurant_reviews.csv +7 -7
  789. teradataml/data/river_data.csv +145 -145
  790. teradataml/data/roc_example.json +7 -7
  791. teradataml/data/roc_input.csv +101 -101
  792. teradataml/data/rule_inputs.csv +6 -6
  793. teradataml/data/rule_table.csv +2 -2
  794. teradataml/data/sales.csv +7 -7
  795. teradataml/data/sales_transaction.csv +501 -501
  796. teradataml/data/salesdata.csv +342 -342
  797. teradataml/data/sample_cities.csv +2 -2
  798. teradataml/data/sample_shapes.csv +10 -10
  799. teradataml/data/sample_streets.csv +2 -2
  800. teradataml/data/sampling_example.json +15 -15
  801. teradataml/data/sax_example.json +8 -8
  802. teradataml/data/scale_example.json +23 -23
  803. teradataml/data/scale_housing.csv +11 -11
  804. teradataml/data/scale_housing_test.csv +6 -6
  805. teradataml/data/scale_stat.csv +11 -11
  806. teradataml/data/scalebypartition_example.json +13 -13
  807. teradataml/data/scalemap_example.json +13 -13
  808. teradataml/data/scalesummary_example.json +12 -12
  809. teradataml/data/score_category.csv +101 -101
  810. teradataml/data/score_summary.csv +4 -4
  811. teradataml/data/script_example.json +9 -9
  812. teradataml/data/scripts/deploy_script.py +65 -0
  813. teradataml/data/scripts/mapper.R +20 -0
  814. teradataml/data/scripts/mapper.py +15 -15
  815. teradataml/data/scripts/mapper_replace.py +15 -15
  816. teradataml/data/scripts/sklearn/__init__.py +0 -0
  817. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  818. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  819. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  820. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  821. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  822. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  823. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  824. teradataml/data/seeds.csv +10 -10
  825. teradataml/data/sentenceextractor_example.json +6 -6
  826. teradataml/data/sentiment_extract_input.csv +11 -11
  827. teradataml/data/sentiment_train.csv +16 -16
  828. teradataml/data/sentiment_word.csv +20 -20
  829. teradataml/data/sentiment_word_input.csv +19 -19
  830. teradataml/data/sentimentextractor_example.json +24 -24
  831. teradataml/data/sentimenttrainer_example.json +8 -8
  832. teradataml/data/sequence_table.csv +10 -10
  833. teradataml/data/seriessplitter_example.json +7 -7
  834. teradataml/data/sessionize_example.json +17 -17
  835. teradataml/data/sessionize_table.csv +116 -116
  836. teradataml/data/setop_test1.csv +24 -24
  837. teradataml/data/setop_test2.csv +22 -22
  838. teradataml/data/soc_nw_edges.csv +10 -10
  839. teradataml/data/soc_nw_vertices.csv +7 -7
  840. teradataml/data/souvenir_timeseries.csv +167 -167
  841. teradataml/data/sparse_iris_attribute.csv +5 -5
  842. teradataml/data/sparse_iris_test.csv +121 -121
  843. teradataml/data/sparse_iris_train.csv +601 -601
  844. teradataml/data/star1.csv +6 -6
  845. teradataml/data/state_transition.csv +5 -5
  846. teradataml/data/stock_data.csv +53 -53
  847. teradataml/data/stock_movement.csv +11 -11
  848. teradataml/data/stock_vol.csv +76 -76
  849. teradataml/data/stop_words.csv +8 -8
  850. teradataml/data/store_sales.csv +37 -37
  851. teradataml/data/stringsimilarity_example.json +7 -7
  852. teradataml/data/strsimilarity_input.csv +13 -13
  853. teradataml/data/students.csv +101 -101
  854. teradataml/data/svm_iris_input_test.csv +121 -121
  855. teradataml/data/svm_iris_input_train.csv +481 -481
  856. teradataml/data/svm_iris_model.csv +7 -7
  857. teradataml/data/svmdense_example.json +9 -9
  858. teradataml/data/svmdensepredict_example.json +18 -18
  859. teradataml/data/svmsparse_example.json +7 -7
  860. teradataml/data/svmsparsepredict_example.json +13 -13
  861. teradataml/data/svmsparsesummary_example.json +7 -7
  862. teradataml/data/target_mobile_data.csv +13 -13
  863. teradataml/data/target_mobile_data_dense.csv +5 -5
  864. teradataml/data/templatedata.csv +1201 -1201
  865. teradataml/data/templates/open_source_ml.json +9 -0
  866. teradataml/data/teradataml_example.json +73 -1
  867. teradataml/data/test_classification.csv +101 -0
  868. teradataml/data/test_loan_prediction.csv +53 -53
  869. teradataml/data/test_pacf_12.csv +37 -37
  870. teradataml/data/test_prediction.csv +101 -0
  871. teradataml/data/test_regression.csv +101 -0
  872. teradataml/data/test_river2.csv +109 -109
  873. teradataml/data/text_inputs.csv +6 -6
  874. teradataml/data/textchunker_example.json +7 -7
  875. teradataml/data/textclassifier_example.json +6 -6
  876. teradataml/data/textclassifier_input.csv +7 -7
  877. teradataml/data/textclassifiertrainer_example.json +6 -6
  878. teradataml/data/textmorph_example.json +5 -5
  879. teradataml/data/textparser_example.json +15 -15
  880. teradataml/data/texttagger_example.json +11 -11
  881. teradataml/data/texttokenizer_example.json +6 -6
  882. teradataml/data/texttrainer_input.csv +11 -11
  883. teradataml/data/tf_example.json +6 -6
  884. teradataml/data/tfidf_example.json +13 -13
  885. teradataml/data/tfidf_input1.csv +201 -201
  886. teradataml/data/tfidf_train.csv +6 -6
  887. teradataml/data/time_table1.csv +535 -535
  888. teradataml/data/time_table2.csv +14 -14
  889. teradataml/data/timeseriesdata.csv +1601 -1601
  890. teradataml/data/timeseriesdatasetsd4.csv +105 -105
  891. teradataml/data/titanic.csv +892 -892
  892. teradataml/data/token_table.csv +696 -696
  893. teradataml/data/train_multiclass.csv +101 -0
  894. teradataml/data/train_regression.csv +101 -0
  895. teradataml/data/train_regression_multiple_labels.csv +101 -0
  896. teradataml/data/train_tracking.csv +27 -27
  897. teradataml/data/transformation_table.csv +5 -5
  898. teradataml/data/transformation_table_new.csv +1 -1
  899. teradataml/data/tv_spots.csv +16 -16
  900. teradataml/data/twod_climate_data.csv +117 -117
  901. teradataml/data/uaf_example.json +475 -475
  902. teradataml/data/univariatestatistics_example.json +8 -8
  903. teradataml/data/unpack_example.json +9 -9
  904. teradataml/data/unpivot_example.json +9 -9
  905. teradataml/data/unpivot_input.csv +8 -8
  906. teradataml/data/us_air_pass.csv +36 -36
  907. teradataml/data/us_population.csv +624 -624
  908. teradataml/data/us_states_shapes.csv +52 -52
  909. teradataml/data/varmax_example.json +17 -17
  910. teradataml/data/vectordistance_example.json +25 -25
  911. teradataml/data/ville_climatedata.csv +121 -121
  912. teradataml/data/ville_tempdata.csv +12 -12
  913. teradataml/data/ville_tempdata1.csv +12 -12
  914. teradataml/data/ville_temperature.csv +11 -11
  915. teradataml/data/waveletTable.csv +1605 -1605
  916. teradataml/data/waveletTable2.csv +1605 -1605
  917. teradataml/data/weightedmovavg_example.json +8 -8
  918. teradataml/data/wft_testing.csv +5 -5
  919. teradataml/data/wine_data.csv +1600 -0
  920. teradataml/data/word_embed_input_table1.csv +5 -5
  921. teradataml/data/word_embed_input_table2.csv +4 -4
  922. teradataml/data/word_embed_model.csv +22 -22
  923. teradataml/data/words_input.csv +13 -13
  924. teradataml/data/xconvolve_complex_left.csv +6 -6
  925. teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
  926. teradataml/data/xgboost_example.json +35 -35
  927. teradataml/data/xgboostpredict_example.json +31 -31
  928. teradataml/dataframe/copy_to.py +1764 -1698
  929. teradataml/dataframe/data_transfer.py +2753 -2745
  930. teradataml/dataframe/dataframe.py +17545 -16946
  931. teradataml/dataframe/dataframe_utils.py +1837 -1740
  932. teradataml/dataframe/fastload.py +611 -603
  933. teradataml/dataframe/indexer.py +424 -424
  934. teradataml/dataframe/setop.py +1179 -1166
  935. teradataml/dataframe/sql.py +10090 -6432
  936. teradataml/dataframe/sql_function_parameters.py +439 -388
  937. teradataml/dataframe/sql_functions.py +652 -652
  938. teradataml/dataframe/sql_interfaces.py +220 -220
  939. teradataml/dataframe/vantage_function_types.py +674 -630
  940. teradataml/dataframe/window.py +693 -692
  941. teradataml/dbutils/__init__.py +3 -3
  942. teradataml/dbutils/dbutils.py +1167 -1150
  943. teradataml/dbutils/filemgr.py +267 -267
  944. teradataml/gen_ai/__init__.py +2 -2
  945. teradataml/gen_ai/convAI.py +472 -472
  946. teradataml/geospatial/__init__.py +3 -3
  947. teradataml/geospatial/geodataframe.py +1105 -1094
  948. teradataml/geospatial/geodataframecolumn.py +392 -387
  949. teradataml/geospatial/geometry_types.py +925 -925
  950. teradataml/hyperparameter_tuner/__init__.py +1 -1
  951. teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
  952. teradataml/hyperparameter_tuner/utils.py +281 -187
  953. teradataml/lib/aed_0_1.dll +0 -0
  954. teradataml/lib/libaed_0_1.dylib +0 -0
  955. teradataml/lib/libaed_0_1.so +0 -0
  956. teradataml/libaed_0_1.dylib +0 -0
  957. teradataml/libaed_0_1.so +0 -0
  958. teradataml/opensource/__init__.py +1 -0
  959. teradataml/opensource/sklearn/__init__.py +1 -0
  960. teradataml/opensource/sklearn/_class.py +255 -0
  961. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  962. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  963. teradataml/opensource/sklearn/constants.py +54 -0
  964. teradataml/options/__init__.py +121 -124
  965. teradataml/options/configure.py +337 -336
  966. teradataml/options/display.py +176 -176
  967. teradataml/plot/__init__.py +2 -2
  968. teradataml/plot/axis.py +1388 -1388
  969. teradataml/plot/constants.py +15 -15
  970. teradataml/plot/figure.py +398 -398
  971. teradataml/plot/plot.py +760 -760
  972. teradataml/plot/query_generator.py +83 -83
  973. teradataml/plot/subplot.py +216 -216
  974. teradataml/scriptmgmt/UserEnv.py +3788 -3761
  975. teradataml/scriptmgmt/__init__.py +3 -3
  976. teradataml/scriptmgmt/lls_utils.py +1616 -1604
  977. teradataml/series/series.py +532 -532
  978. teradataml/series/series_utils.py +71 -71
  979. teradataml/table_operators/Apply.py +949 -917
  980. teradataml/table_operators/Script.py +1719 -1982
  981. teradataml/table_operators/TableOperator.py +1207 -1616
  982. teradataml/table_operators/__init__.py +2 -3
  983. teradataml/table_operators/apply_query_generator.py +262 -262
  984. teradataml/table_operators/query_generator.py +507 -507
  985. teradataml/table_operators/table_operator_query_generator.py +460 -460
  986. teradataml/table_operators/table_operator_util.py +631 -639
  987. teradataml/table_operators/templates/dataframe_apply.template +184 -184
  988. teradataml/table_operators/templates/dataframe_map.template +176 -176
  989. teradataml/table_operators/templates/script_executor.template +170 -170
  990. teradataml/utils/dtypes.py +684 -684
  991. teradataml/utils/internal_buffer.py +84 -84
  992. teradataml/utils/print_versions.py +205 -205
  993. teradataml/utils/utils.py +410 -410
  994. teradataml/utils/validators.py +2239 -2115
  995. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +270 -41
  996. teradataml-20.0.0.0.dist-info/RECORD +1038 -0
  997. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +1 -1
  998. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +1 -1
  999. teradataml/analytics/mle/AdaBoost.py +0 -651
  1000. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  1001. teradataml/analytics/mle/Antiselect.py +0 -342
  1002. teradataml/analytics/mle/Arima.py +0 -641
  1003. teradataml/analytics/mle/ArimaPredict.py +0 -477
  1004. teradataml/analytics/mle/Attribution.py +0 -1070
  1005. teradataml/analytics/mle/Betweenness.py +0 -658
  1006. teradataml/analytics/mle/Burst.py +0 -711
  1007. teradataml/analytics/mle/CCM.py +0 -600
  1008. teradataml/analytics/mle/CCMPrepare.py +0 -324
  1009. teradataml/analytics/mle/CFilter.py +0 -460
  1010. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  1011. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  1012. teradataml/analytics/mle/Closeness.py +0 -737
  1013. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  1014. teradataml/analytics/mle/Correlation.py +0 -477
  1015. teradataml/analytics/mle/Correlation2.py +0 -573
  1016. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  1017. teradataml/analytics/mle/CoxPH.py +0 -556
  1018. teradataml/analytics/mle/CoxSurvival.py +0 -478
  1019. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  1020. teradataml/analytics/mle/DTW.py +0 -623
  1021. teradataml/analytics/mle/DWT.py +0 -564
  1022. teradataml/analytics/mle/DWT2D.py +0 -599
  1023. teradataml/analytics/mle/DecisionForest.py +0 -716
  1024. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  1025. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  1026. teradataml/analytics/mle/DecisionTree.py +0 -830
  1027. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  1028. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  1029. teradataml/analytics/mle/FMeasure.py +0 -402
  1030. teradataml/analytics/mle/FPGrowth.py +0 -734
  1031. teradataml/analytics/mle/FrequentPaths.py +0 -695
  1032. teradataml/analytics/mle/GLM.py +0 -558
  1033. teradataml/analytics/mle/GLML1L2.py +0 -547
  1034. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  1035. teradataml/analytics/mle/GLMPredict.py +0 -529
  1036. teradataml/analytics/mle/HMMDecoder.py +0 -945
  1037. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  1038. teradataml/analytics/mle/HMMSupervised.py +0 -521
  1039. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  1040. teradataml/analytics/mle/Histogram.py +0 -561
  1041. teradataml/analytics/mle/IDWT.py +0 -476
  1042. teradataml/analytics/mle/IDWT2D.py +0 -493
  1043. teradataml/analytics/mle/IdentityMatch.py +0 -763
  1044. teradataml/analytics/mle/Interpolator.py +0 -918
  1045. teradataml/analytics/mle/KMeans.py +0 -485
  1046. teradataml/analytics/mle/KNN.py +0 -627
  1047. teradataml/analytics/mle/KNNRecommender.py +0 -488
  1048. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  1049. teradataml/analytics/mle/LAR.py +0 -439
  1050. teradataml/analytics/mle/LARPredict.py +0 -478
  1051. teradataml/analytics/mle/LDA.py +0 -548
  1052. teradataml/analytics/mle/LDAInference.py +0 -492
  1053. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  1054. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  1055. teradataml/analytics/mle/LinReg.py +0 -433
  1056. teradataml/analytics/mle/LinRegPredict.py +0 -438
  1057. teradataml/analytics/mle/MinHash.py +0 -544
  1058. teradataml/analytics/mle/Modularity.py +0 -587
  1059. teradataml/analytics/mle/NEREvaluator.py +0 -410
  1060. teradataml/analytics/mle/NERExtractor.py +0 -595
  1061. teradataml/analytics/mle/NERTrainer.py +0 -458
  1062. teradataml/analytics/mle/NGrams.py +0 -570
  1063. teradataml/analytics/mle/NPath.py +0 -634
  1064. teradataml/analytics/mle/NTree.py +0 -549
  1065. teradataml/analytics/mle/NaiveBayes.py +0 -462
  1066. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  1067. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  1068. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  1069. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  1070. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  1071. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  1072. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  1073. teradataml/analytics/mle/POSTagger.py +0 -417
  1074. teradataml/analytics/mle/Pack.py +0 -411
  1075. teradataml/analytics/mle/PageRank.py +0 -535
  1076. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  1077. teradataml/analytics/mle/PathGenerator.py +0 -367
  1078. teradataml/analytics/mle/PathStart.py +0 -464
  1079. teradataml/analytics/mle/PathSummarizer.py +0 -470
  1080. teradataml/analytics/mle/Pivot.py +0 -471
  1081. teradataml/analytics/mle/ROC.py +0 -425
  1082. teradataml/analytics/mle/RandomSample.py +0 -637
  1083. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  1084. teradataml/analytics/mle/SAX.py +0 -779
  1085. teradataml/analytics/mle/SVMDense.py +0 -677
  1086. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  1087. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  1088. teradataml/analytics/mle/SVMSparse.py +0 -557
  1089. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  1090. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  1091. teradataml/analytics/mle/Sampling.py +0 -549
  1092. teradataml/analytics/mle/Scale.py +0 -565
  1093. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  1094. teradataml/analytics/mle/ScaleMap.py +0 -378
  1095. teradataml/analytics/mle/ScaleSummary.py +0 -320
  1096. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  1097. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  1098. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  1099. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  1100. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  1101. teradataml/analytics/mle/Sessionize.py +0 -475
  1102. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  1103. teradataml/analytics/mle/StringSimilarity.py +0 -425
  1104. teradataml/analytics/mle/TF.py +0 -389
  1105. teradataml/analytics/mle/TFIDF.py +0 -504
  1106. teradataml/analytics/mle/TextChunker.py +0 -414
  1107. teradataml/analytics/mle/TextClassifier.py +0 -399
  1108. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  1109. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  1110. teradataml/analytics/mle/TextMorph.py +0 -494
  1111. teradataml/analytics/mle/TextParser.py +0 -623
  1112. teradataml/analytics/mle/TextTagger.py +0 -530
  1113. teradataml/analytics/mle/TextTokenizer.py +0 -502
  1114. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  1115. teradataml/analytics/mle/Unpack.py +0 -526
  1116. teradataml/analytics/mle/Unpivot.py +0 -438
  1117. teradataml/analytics/mle/VarMax.py +0 -776
  1118. teradataml/analytics/mle/VectorDistance.py +0 -762
  1119. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  1120. teradataml/analytics/mle/XGBoost.py +0 -842
  1121. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  1122. teradataml/analytics/mle/__init__.py +0 -123
  1123. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  1124. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  1125. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  1126. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  1127. teradataml/analytics/mle/json/arima_mle.json +0 -172
  1128. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  1129. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  1130. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  1131. teradataml/analytics/mle/json/burst_mle.json +0 -140
  1132. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  1133. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  1134. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  1135. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  1136. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  1137. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  1138. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  1139. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  1140. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  1141. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  1142. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  1143. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  1144. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  1145. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  1146. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  1147. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  1148. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  1149. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  1150. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  1151. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  1152. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  1153. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  1154. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  1155. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  1156. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  1157. teradataml/analytics/mle/json/glm_mle.json +0 -111
  1158. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  1159. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  1160. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  1161. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  1162. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  1163. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  1164. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  1165. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  1166. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  1167. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  1168. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  1169. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  1170. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  1171. teradataml/analytics/mle/json/knn_mle.json +0 -141
  1172. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  1173. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  1174. teradataml/analytics/mle/json/lar_mle.json +0 -78
  1175. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  1176. teradataml/analytics/mle/json/lda_mle.json +0 -130
  1177. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  1178. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  1179. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  1180. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  1181. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  1182. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  1183. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  1184. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  1185. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  1186. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  1187. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  1188. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  1189. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  1190. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  1191. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  1192. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  1193. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  1194. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  1195. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  1196. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  1197. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  1198. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  1199. teradataml/analytics/mle/json/pack_mle.json +0 -58
  1200. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  1201. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  1202. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  1203. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  1204. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  1205. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  1206. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  1207. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  1208. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  1209. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  1210. teradataml/analytics/mle/json/roc_mle.json +0 -73
  1211. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  1212. teradataml/analytics/mle/json/sax_mle.json +0 -154
  1213. teradataml/analytics/mle/json/scale_mle.json +0 -93
  1214. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  1215. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  1216. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  1217. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  1218. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  1219. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  1220. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  1221. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  1222. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  1223. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  1224. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  1225. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  1226. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  1227. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  1228. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  1229. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  1230. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  1231. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  1232. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  1233. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  1234. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  1235. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  1236. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  1237. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  1238. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  1239. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  1240. teradataml/analytics/mle/json/tf_mle.json +0 -33
  1241. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  1242. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  1243. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  1244. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  1245. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  1246. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  1247. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  1248. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  1249. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  1250. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  1251. teradataml/analytics/sqle/Antiselect.py +0 -321
  1252. teradataml/analytics/sqle/Attribution.py +0 -603
  1253. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  1254. teradataml/analytics/sqle/GLMPredict.py +0 -430
  1255. teradataml/analytics/sqle/MovingAverage.py +0 -543
  1256. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  1257. teradataml/analytics/sqle/NPath.py +0 -632
  1258. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  1259. teradataml/analytics/sqle/Pack.py +0 -388
  1260. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  1261. teradataml/analytics/sqle/Sessionize.py +0 -390
  1262. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  1263. teradataml/analytics/sqle/Unpack.py +0 -503
  1264. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  1265. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  1266. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  1267. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  1268. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  1269. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  1270. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  1271. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  1272. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  1273. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  1274. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  1275. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  1276. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  1277. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  1278. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  1279. teradataml/catalog/model_cataloging.py +0 -980
  1280. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  1281. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  1282. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  1283. teradataml/table_operators/sandbox_container_util.py +0 -643
  1284. teradataml-17.20.0.7.dist-info/RECORD +0 -1280
  1285. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
@@ -1,1094 +1,1105 @@
1
- # ##################################################################
2
- #
3
- # Copyright 2021 Teradata. All rights reserved.
4
- # TERADATA CONFIDENTIAL AND TRADE SECRET
5
- #
6
- # Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
7
- # Secondary Owner:
8
- #
9
- # This file implements teradataml GeoDataFrame.
10
- # teradataml GeoDataFrame allows user to access table on Vantage
11
- # containing Geometry or Geospatial data.
12
- #
13
- # ##################################################################
14
- import sqlalchemy
15
- from teradataml.common.constants import GeospatialConstants, TeradataTypes
16
- from teradataml.common.messagecodes import MessageCodes
17
- from teradataml.common.messages import Messages
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.common.exceptions import TeradataMlException
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.geospatial.geodataframecolumn import GeoDataFrameColumn
22
- from teradataml.plot.plot import _Plot
23
- from teradataml.utils.validators import _Validators
24
- from teradatasqlalchemy import (GEOMETRY, MBR, MBB)
25
-
26
- class GeoDataFrame(DataFrame):
27
- """
28
- The teradataml GeoDataFrame enables data manipulation, exploration, and
29
- analysis on tables, views, and queries on Teradata Vantage that contains
30
- Geospatial data.
31
- """
32
- def __init__(self, table_name=None, index=True, index_label=None,
33
- query=None, materialize=False):
34
- """
35
- Constructor for teradataml GeoDataFrame.
36
-
37
- PARAMETERS:
38
- table_name:
39
- Optional Argument.
40
- The table name or view name in Teradata Vantage referenced by this DataFrame.
41
- Types: str
42
-
43
- index:
44
- Optional Argument.
45
- True if using index column for sorting, otherwise False.
46
- Default Value: True
47
- Types: bool
48
-
49
- index_label:
50
- Optional Argument.
51
- Column/s used for sorting.
52
- Types: str OR list of Strings (str)
53
-
54
- query:
55
- Optional Argument.
56
- SQL query for this Dataframe. Used by class method from_query.
57
- Types: str
58
-
59
- materialize:
60
- Optional Argument.
61
- Whether to materialize DataFrame or not when created.
62
- Used by class method from_query.
63
-
64
- One should use enable materialization, when the query passed
65
- to from_query(), is expected to produce non-deterministic
66
- results, when it is executed multiple times. Using this option
67
- will help user to have deterministic results in the resulting
68
- teradataml GeoDataFrame.
69
- Default Value: False (No materialization)
70
- Types: bool
71
-
72
- EXAMPLES:
73
- from teradataml.dataframe.dataframe import DataFrame
74
- df = DataFrame("mytab")
75
- df = DataFrame("myview")
76
- df = DataFrame("myview", False)
77
- df = DataFrame("mytab", True, "Col1, Col2")
78
-
79
- RAISES:
80
- TeradataMlException - TDMLDF_CREATE_FAIL
81
- """
82
- self.__geom_column = None
83
- # Call super(), to process the inputs.
84
- super().__init__(table_name=table_name, index=index,
85
- index_label=index_label, query=query,
86
- materialize=materialize)
87
-
88
- def _check_geom_column(self, metaexpr=None):
89
- """
90
- DESCRIPTION:
91
- Internal function to whether the metaexpr contains a geospatial
92
- type column or not.
93
-
94
- PARAMETERS:
95
- metaexpr:
96
- Required Argument.
97
- Specifies the teradataml DataFrame/teradataml GeoDataFrame
98
- metaexpr to validate for geospatial content.
99
- Types: _MetaExpression
100
-
101
- RETURNS:
102
- boolean.
103
- True if Geospatial data type column exists, False otherwise.
104
-
105
- RAISES:
106
- None.
107
-
108
- EXAMPLES:
109
- self._check_geom_column(metaexpr)
110
- """
111
- if metaexpr is None:
112
- metaexpr = self._metaexpr.c
113
- for col in metaexpr.c:
114
- if isinstance(col.type, (GEOMETRY, MBR, MBB)):
115
- return True
116
- return False
117
-
118
- def plot(self, x=None, y=None, kind="geometry", **kwargs):
119
- """
120
- DESCRIPTION:
121
- Generate plots on teradataml GeoDataFrame. Following type of plots
122
- are supported, which can be specified using argument "kind":
123
- * geometry plot
124
- * bar plot
125
- * corr plot
126
- * line plot
127
- * mesh plot
128
- * scatter plot
129
- * wiggle plot
130
- Notes:
131
- * Geometry plot is generated based on geometry column in teradataml GeoDataFrame.
132
- * Only the columns with ST_GEOMETRY type are allowed for generating geometry plot.
133
- * The maximum size for ST_GEOMETRY must be less than or equal to 64000.
134
- * The ST_GEOMETRY shape can be POINT, LINESTRING etc. It is POLGYON that allows
135
- filling of different colors.
136
-
137
- PARAMETERS:
138
- x:
139
- Optional Argument.
140
- Specifies a GeoDataFrame column to use for the x-axis data.
141
- Note:
142
- "x" is not significant for geometry plots. For other plots
143
- it is mandatory argument.
144
- Types: teradataml GeoDataFrame Column
145
-
146
- y:
147
- Required Argument.
148
- Specifies GeoDataFrame column(s) to use for the y-axis data.
149
- Notes:
150
- * Geometry plot always requires geometry column and corresponding 'weight'
151
- column. 'weight' column represents the weight of a shape mentioned in
152
- geometry column.
153
- * If user does not specify geometry column, the default geometry column
154
- is considered for plotting.
155
- Types: teradataml GeoDataFrame Column OR tuple of GeoDataFrame Column OR list of teradataml GeoDataFrame Columns.
156
-
157
- scale:
158
- Optional Argument.
159
- Specifies GeoDataFrame column to use for scale data to
160
- wiggle and mesh plots.
161
- Note:
162
- "scale" is significant for wiggle and mesh plots. Ignored for other
163
- type of plots.
164
- Types: teradataml GeoDataFrame Column.
165
-
166
- kind:
167
- Optional Argument.
168
- Specifies the kind of plot.
169
- Permitted Values:
170
- * 'geometry'
171
- * 'line'
172
- * 'bar'
173
- * 'scatter'
174
- * 'corr'
175
- * 'wiggle'
176
- * 'mesh'
177
- Default Value: geometry
178
- Types: str
179
-
180
- ax:
181
- Optional Argument.
182
- Specifies the axis for the plot.
183
- Types: Axis
184
-
185
- cmap:
186
- Optional Argument.
187
- Specifies the name of the colormap to be used for plotting.
188
- Notes:
189
- * Significant only when corresponding type of plot is mesh or geometry.
190
- * Ignored for other type of plots.
191
- Permitted Values:
192
- * All the colormaps mentioned in below URLs are supported.
193
- * https://matplotlib.org/stable/tutorials/colors/colormaps.html
194
- * https://matplotlib.org/cmocean/
195
- Types: str
196
-
197
- color:
198
- Optional Argument.
199
- Specifies the color for the plot.
200
- Note:
201
- Hexadecimal color codes are not supported.
202
- Permitted Values:
203
- * 'blue'
204
- * 'orange'
205
- * 'green'
206
- * 'red'
207
- * 'purple'
208
- * 'brown'
209
- * 'pink'
210
- * 'gray'
211
- * 'olive'
212
- * 'cyan'
213
- * Apart from above mentioned colors, the colors mentioned in
214
- https://xkcd.com/color/rgb are also supported.
215
- Default Value: 'blue'
216
- Types: str OR list of str
217
-
218
- figure:
219
- Optional Argument.
220
- Specifies the figure for the plot.
221
- Types: Figure
222
-
223
- figsize:
224
- Optional Argument.
225
- Specifies the size of the figure in a tuple of 2 elements. First
226
- element represents width of plot image in pixels and second
227
- element represents height of plot image in pixels.
228
- Default Value: (640, 480)
229
- Types: tuple
230
-
231
- figtype:
232
- Optional Argument.
233
- Specifies the type of the image to generate.
234
- Permitted Values:
235
- * 'png'
236
- * 'jpg'
237
- * 'svg'
238
- Default Value: png
239
- Types: str
240
-
241
- figdpi:
242
- Optional Argument.
243
- Specifies the dots per inch for the plot image.
244
- Note:
245
- * Valid range for "dpi" is: 72 <= width <= 300.
246
- Default Value: 100 for PNG and JPG Type image.
247
- Types: int
248
-
249
- grid_color:
250
- Optional Argument.
251
- Specifies the color of the grid.
252
- Note:
253
- Hexadecimal color codes are not supported.
254
- Permitted Values:
255
- * 'blue'
256
- * 'orange'
257
- * 'green'
258
- * 'red'
259
- * 'purple'
260
- * 'brown'
261
- * 'pink'
262
- * 'gray'
263
- * 'olive'
264
- * 'cyan'
265
- * Apart from above mentioned colors, the colors mentioned in
266
- https://xkcd.com/color/rgb are also supported.
267
- Default Value: gray
268
- Types: str
269
-
270
- grid_format:
271
- Optional Argument.
272
- Specifies the format for the grid.
273
- Types: str
274
-
275
- grid_linestyle:
276
- Optional Argument.
277
- Specifies the line style of the grid.
278
- Permitted Values:
279
- * -
280
- * --
281
- * -.
282
- Default Value: -
283
- Types: str
284
-
285
- grid_linewidth:
286
- Optional Argument.
287
- Specifies the line width of the grid.
288
- Note:
289
- Valid range for "grid_linewidth" is: 0.5 <= grid_linewidth <= 10.
290
- Default Value: 0.8
291
- Types: int OR float
292
-
293
- heading:
294
- Optional Argument.
295
- Specifies the heading for the plot.
296
- Types: str
297
-
298
- legend:
299
- Optional Argument.
300
- Specifies the legend(s) for the Plot.
301
- Types: str OR list of str
302
-
303
- legend_style:
304
- Optional Argument.
305
- Specifies the location for legend to display on Plot image. By default,
306
- legend is displayed at upper right corner.
307
- Permitted Values:
308
- * 'upper right'
309
- * 'upper left'
310
- * 'lower right'
311
- * 'lower left'
312
- * 'right'
313
- * 'center left'
314
- * 'center right'
315
- * 'lower center'
316
- * 'upper center'
317
- * 'center'
318
- Default Value: 'upper right'
319
- Types: str
320
-
321
- linestyle:
322
- Optional Argument.
323
- Specifies the line style for the plot.
324
- Permitted Values:
325
- * -
326
- * --
327
- * -.
328
- * :
329
- Default Value: -
330
- Types: str OR list of str
331
-
332
- linewidth:
333
- Optional Argument.
334
- Specifies the line width for the plot.
335
- Note:
336
- Valid range for "linewidth" is: 0.5 <= linewidth <= 10.
337
- Default Value: 0.8
338
- Types: int OR float OR list of int OR list of float
339
-
340
- marker:
341
- Optional Argument.
342
- Specifies the type of the marker to be used.
343
- Permitted Values:
344
- All the markers mentioned in https://matplotlib.org/stable/api/markers_api.html
345
- are supported.
346
- Types: str OR list of str
347
-
348
- markersize:
349
- Optional Argument.
350
- Specifies the size of the marker.
351
- Note:
352
- Valid range for "markersize" is: 1 <= markersize <= 20.
353
- Default Value: 6
354
- Types: int OR float OR list of int OR list of float
355
-
356
- position:
357
- Optional Argument.
358
- Specifies the position of the axis in the figure. Accepts a tuple
359
- of two elements where first element represents the row and second
360
- element represents column.
361
- Default Value: (1, 1)
362
- Types: tuple
363
-
364
- span:
365
- Optional Argument.
366
- Specifies the span of the axis in the figure. Accepts a tuple
367
- of two elements where first element represents the row and second
368
- element represents column.
369
- For Example,
370
- Span of (2, 1) specifies the Axis occupies 2 rows and 1 column
371
- in Figure.
372
- Default Value: (1, 1)
373
- Types: tuple
374
-
375
- reverse_xaxis:
376
- Optional Argument.
377
- Specifies whether to reverse tick values on x-axis or not.
378
- Default Value: False
379
- Types: bool
380
-
381
- reverse_yaxis:
382
- Optional Argument.
383
- Specifies whether to reverse tick values on y-axis or not.
384
- Default Value: False
385
- Types: bool
386
-
387
- series_identifier:
388
- Optional Argument.
389
- Specifies the teradataml GeoDataFrame Column which represents the
390
- identifier for the data. As many plots as distinct "series_identifier"
391
- are generated in a single Axis.
392
- For example:
393
- consider the below data in teradataml GeoDataFrame.
394
- ID x y
395
- 0 1 1 1
396
- 1 1 2 2
397
- 2 2 10 10
398
- 3 2 20 20
399
- If "series_identifier" is not specified, simple plot is
400
- generated where every 'y' is plotted against 'x' in a
401
- single plot. However, specifying "series_identifier" as 'ID'
402
- generates two plots in a single axis. One plot is for ID 1
403
- and another plot is for ID 2.
404
- Types: teradataml GeoDataFrame Column.
405
-
406
- title:
407
- Optional Argument.
408
- Specifies the title for the Axis.
409
- Types: str
410
-
411
- xlabel:
412
- Optional Argument.
413
- Specifies the label for x-axis.
414
- Notes:
415
- * When set to empty string, label is not displayed for x-axis.
416
- * When set to None, name of the x-axis column is displayed as
417
- label.
418
- Types: str
419
-
420
- xlim:
421
- Optional Argument.
422
- Specifies the range for xtick values.
423
- Types: tuple
424
-
425
- xtick_format:
426
- Optional Argument.
427
- Specifies whether to format tick values for x-axis or not.
428
- Types: str
429
-
430
- ylabel:
431
- Optional Argument.
432
- Specifies the label for y-axis.
433
- Notes:
434
- * When set to empty string, label is not displayed for y-axis.
435
- * When set to None, name of the y-axis column(s) is displayed as
436
- label.
437
- Types: str
438
-
439
- ylim:
440
- Optional Argument.
441
- Specifies the range for ytick values.
442
- Types: tuple
443
-
444
- ytick_format:
445
- Optional Argument.
446
- Specifies whether to format tick values for y-axis or not.
447
- Types: str
448
-
449
- vmin:
450
- Optional Argument.
451
- Specifies the lower range of the color map. By default, the range
452
- is derived from data and color codes are assigned accordingly.
453
- Note:
454
- "vmin" Significant only for Geometry Plot.
455
- Types: int OR float
456
-
457
- vmax:
458
- Optional Argument.
459
- Specifies the upper range of the color map. By default, the range is
460
- derived from data and color codes are assigned accordingly.
461
- Note:
462
- "vmax" Significant only for Geometry Plot.
463
- For example:
464
- Assuming user wants to use colormap 'matter' and derive the colors for
465
- values which are in between 1 and 100.
466
- Note:
467
- colormap 'matter' starts with Pale Yellow and ends with Violet.
468
- * If "colormap_range" is not specified, then range is derived from
469
- existing values. Thus, colors are represented as below in the whole range:
470
- * 1 as Pale Yellow.
471
- * 100 as Violet.
472
- * If "colormap_range" is specified as -100 and 100, the value 1 is at middle of
473
- the specified range. Thus, colors are represented as below in the whole range:
474
- * -100 as Pale Yellow.
475
- * 1 as Orange.
476
- * 100 as Violet.
477
- Types: int OR float
478
-
479
- wiggle_fill:
480
- Optional Argument.
481
- Specifies whether to fill the wiggle area or not. By default, the right
482
- positive half of the wiggle is not filled. If specified as True, wiggle
483
- area is filled.
484
- Note:
485
- Applicable only for the wiggle plot.
486
- Default Value: False
487
- Types: bool
488
-
489
- wiggle_scale:
490
- Optional Argument.
491
- Specifies the scale of the wiggle. By default, the amplitude of wiggle is scaled
492
- relative to RMS of the first payload. In certain cases, it can lead to excessively
493
- large wiggles. Use "wiggle_scale" to adjust the relative size of the wiggle.
494
- Note:
495
- Applicable only for the wiggle and mesh plots.
496
- Types: int OR float
497
-
498
- RAISES:
499
- TeradataMlException
500
-
501
- EXAMPLES:
502
- >>> load_example_data("geodataframe", ["sample_shapes"])
503
- >>> shapes_df = GeoDataFrame("sample_shapes")
504
- >>> shapes_df
505
- points linestrings polygons geom_collections geosequence
506
- skey
507
- 1006 POINT (235.52 54.546 7.4564) LINESTRING (1.35 3.6456 4.5,3. POLYGON ((0 0 0,0 0 20,0 20 0, None None
508
- 1007 MULTIPOINT (1 1,1 3,6 3,10 5,2 MULTILINESTRING ((1 1,1 3,6 3) MULTIPOLYGON (((1 1,1 3,6 3,6 None None
509
- 1005 POINT (1 3 5) LINESTRING (1 3 6,3 0 6,6 0 1) POLYGON ((0 0 0,0 0 20.435,0.0 GEOMETRYCOLLECTION (POINT (10 None
510
- 1004 POINT (10 20 30) LINESTRING (10 20 30,40 50 60, POLYGON ((0 0 0,0 10 20,20 20 GEOMETRYCOLLECTION (POINT (10 None
511
- 1003 POINT (235.52 54.546) LINESTRING (1.35 3.6456,3.6756 POLYGON ((0.6 0.8,0.6 20.8,20. None None
512
- 1001 POINT (10 20) LINESTRING (1 1,2 2,3 3,4 4) POLYGON ((0 0,0 20,20 20,20 0, GEOMETRYCOLLECTION (POINT (10 GEOSEQUENCE((10 20,30 40,50 60
513
- 1002 POINT (1 3) LINESTRING (1 3,3 0,0 1) POLYGON ((0 0,0 20,20 20,20 0, None GEOSEQUENCE((10 10,15 15,-2 0)
514
- 1009 MULTIPOINT (10 20 30,40 50 60, MULTILINESTRING ((10 20 30,40 MULTIPOLYGON (((0 0 0,0 20 20, None None
515
- 1008 MULTIPOINT (1.65 1.76,1.23 3.7 MULTILINESTRING ((1 3,3 0,0 1) MULTIPOLYGON (((0 0,0 20,20 20 None None
516
- 1010 MULTIPOINT (10.345 20.32 30.6, MULTILINESTRING ((1 3 6,3 0 6, MULTIPOLYGON (((0 0 0,0 0 20,0 None None
517
- >>>
518
- >>> load_example_data("geodataframe", ["us_population", "us_states_shapes"])
519
- >>> us_population
520
- location_type population_year population
521
- state_name
522
- Georgia State 1930 2908506.0
523
- Georgia State 1950 3444578.0
524
- Georgia State 1960 3943116.0
525
- Georgia State 1970 4589575.0
526
- Georgia State 1990 6478216.0
527
- Georgia State 2000 8186453.0
528
- Georgia State 1980 5463105.0
529
- Georgia State 1940 3123723.0
530
- Georgia State 1920 2895832.0
531
- Georgia State 1910 2609121.0
532
- >>> us_states_shapes = GeoDataFrame("us_states_shapes")
533
- >>> us_states_shapes
534
- state_name state_shape
535
- id
536
- NM New Mexico POLYGON ((472.45213 324.75551,
537
- VA Virginia POLYGON ((908.75086 270.98255,
538
- ND North Dakota POLYGON ((556.50879 73.847349,
539
- OK Oklahoma POLYGON ((609.50526 322.91131,
540
- WI Wisconsin POLYGON ((705.79187 134.80299,
541
- RI Rhode Island POLYGON ((946.50841 152.08022,
542
- HI Hawaii POLYGON ((416.34965 514.99923,
543
- KY Kentucky POLYGON ((693.17367 317.18459,
544
- WV West Virginia POLYGON ((836.73002 223.71281,
545
- NJ New Jersey POLYGON ((916.80709 207.30914,
546
- >>>
547
- >>> # Join shapes with population and filter only 1990 data.
548
- >>> population_data = us_states_shapes.join(us_population,
549
- ... on=us_population.state_name == us_states_shapes.state_name,
550
- ... lsuffix="us",
551
- ... rsuffix="t2")
552
- >>> population_data = population_data.select(["us_state_name", "state_shape", "population_year", "population"])
553
- >>> type(population_data)
554
- teradataml.geospatial.geodataframe.GeoDataFrame
555
- >>>
556
-
557
- # Example 1: Generate the geometry plot to show the density of population
558
- # across the US states in year 1990.
559
- >>> population_data_1990 = population_data[population_data.population_year == 1990]
560
- >>> population_data_1990
561
- us_state_name state_shape population_year population
562
- 0 New Mexico POLYGON ((472.45213 324.75551, 1990 1515069.0
563
- 1 Hawaii POLYGON ((416.34965 514.99923, 1990 1108229.0
564
- 2 Kentucky POLYGON ((693.17367 317.18459, 1990 3685296.0
565
- 3 New Jersey POLYGON ((916.80709 207.30914, 1990 7730188.0
566
- 4 North Dakota POLYGON ((556.50879 73.847349, 1990 638800.0
567
- 5 Oklahoma POLYGON ((609.50526 322.91131, 1990 3145585.0
568
- 6 West Virginia POLYGON ((836.73002 223.71281, 1990 1793477.0
569
- 7 Wisconsin POLYGON ((705.79187 134.80299, 1990 4891769.0
570
- 8 Virginia POLYGON ((908.75086 270.98255, 1990 6187358.0
571
- 9 Rhode Island POLYGON ((946.50841 152.08022, 1990 1003464.0
572
- >>>
573
- >>> # Define Figure.
574
- >>> from teradataml import Figure
575
- >>> figure = Figure(width=1500, height=862, heading="Geometry Plot")
576
- >>> figure.heading = "Geometry Plot"
577
- >>>
578
- >>> plot_1990 = population_data_1990.plot(y=population_data_1990.population,
579
- ... cmap='rainbow',
580
- ... figure=figure,
581
- ... reverse_yaxis=True,
582
- ... title="US 1990 Population",
583
- ... xlabel="",
584
- ... ylabel="")
585
- >>>
586
- >>> plot_1990.show()
587
-
588
- # Example 2: Plot a geometry plot for a single polygon to visualize the shape.
589
- # Note: X-axis is not significant in geometry plot. Y-axis can be a tuple,
590
- # first element represents weight of geometry shape and second element
591
- # represents the geometry column. Since color of geometry shape is generated
592
- # based on first column and since the example is to plot a single polygon,
593
- # the first element in tuple is not significant.
594
- >>> # Generate GeoDataFrame which has single Polygon.
595
- >>> single_polygon_df = shapes_df[shapes_df.skey==1004]
596
- >>> single_polygon_df.plot(y=(single_polygon_df.skey, single_polygon_df.polygons))
597
-
598
- # Example 3: Generate a bar plot on a GeoDataFrame.
599
- # Note: The below example shows how the population of the United States
600
- # changed from 1910 to 2020.
601
- >>> population_data.plot(x=population_data.population_year, y=population_data.population, kind="bar")
602
-
603
- # Example 4: Generate a subplot on a GeoDataFrame to show the rate of population increase over 4 decades.
604
- # Create DataFrames for population in the year 2020, 2010, 2000, 1990.
605
- >>> df_2020 = population_data[population_data.population_year == 2020]
606
- >>> df_2010 = population_data[population_data.population_year == 2010]
607
- >>> df_2000 = population_data[population_data.population_year == 2000]
608
- >>> df_1990 = population_data[population_data.population_year == 1990]
609
-
610
- # Define subplot.
611
- >>> fig, axes = subplots(nrows=2, ncols=2)
612
-
613
- >>> plot_population = df_1990.plot(y=(df_1990.population, df_1990.state_shape),
614
- ... cmap='rainbow',
615
- ... figure=fig,
616
- ... ax=axis[0],
617
- ... reverse_yaxis=True,
618
- ... vmin=55036.0,
619
- ... vmax=39538223.0,
620
- ... heading="US Population growth over 4 decades",
621
- ... title="US 1990 Population",
622
- ... xlabel="",
623
- ... yylabel="")
624
- >>> plot_population = df_2000.plot(y=(df_2000.population, df_2000.state_shape),
625
- ... cmap='rainbow',
626
- ... figure=fig,
627
- ... ax=axis[1],
628
- ... reverse_yaxis=True,
629
- ... vmin=55036.0,
630
- ... vmax=39538223.0,
631
- ... heading="US Population growth over 4 decades",
632
- ... title="US 2000 Population",
633
- ... xlabel="",
634
- ... ylabel="")
635
- >>> plot_population = df_2010.plot(x=df_2010.population_year,
636
- ... y=(df_2010.population, df_2010.state_shape),
637
- ... cmap='rainbow',
638
- ... figure=fig,
639
- ... ax=axis[2],
640
- ... reverse_yaxis=True,
641
- ... vmin=55036.0,
642
- ... vmax=39538223.0,
643
- ... heading="US Population growth over 4 decades",
644
- ... title="US 2010 Population",
645
- ... xlabel="",
646
- ... ylabel="",
647
- ... xtick_values_format="")
648
- >>> plot_population = df_2020.plot(x=df_2020.population_year,
649
- ... y=(df_2020.population, df_2020.state_shape),
650
- ... cmap='rainbow',
651
- ... figure=fig,
652
- ... ax=axis[3],
653
- ... reverse_yaxis=True,
654
- ... vmin=55036.0,
655
- ... vmax=39538223.0,
656
- ... heading="US Population growth over 4 decades",
657
- ... title="US 2020 Population",
658
- ... xlabel="",
659
- ... ylabel="",
660
- ... xtick_values_format="")
661
- >>> # Show the plot.
662
- >>> plot_population.show()
663
-
664
- """
665
- if kind == "geometry":
666
- # x is not really required for geometry plot. So, users can pass a None here.
667
- # However, UAF needs all the records to be a Non NULL value. So, construct x with
668
- # a dummy value.
669
- x = x if x is not None else 1
670
- y = UtilFuncs._as_list(y)
671
-
672
- # For geometry plot, x axis is not significant really.
673
- # They do not mean any thing.
674
- kwargs["xlabel"] = ""
675
- kwargs["xtick_values_format"] = ""
676
-
677
- # Geometry plot always need a tuple. Second
678
- # element should be a Geometry column. If user does not
679
- # specify a tuple, convert it to tuple by using default geometry column.
680
- # use "geometry" API.
681
- _get_y_axis = lambda x: x if isinstance(x, tuple) else (x, self.geometry)
682
- y = [_get_y_axis(arg) for arg in y]
683
-
684
- plot = _Plot(x=x, y=y, kind=kind, **kwargs)
685
- return plot
686
-
687
- def __getattr__(self, name):
688
- """
689
- Returns an attribute of the GeoDataFrame.
690
-
691
- PARAMETERS:
692
- name:
693
- Required Argument.
694
- Specifies the name of the attribute.
695
- Types: str
696
-
697
- RETURNS:
698
- Return the value of the named attribute of object (if found).
699
-
700
- EXAMPLES:
701
- df = GeoDataFrame('table')
702
-
703
- # You can access a column from the teradataml GeoDataFrame.
704
- df.c1
705
-
706
- RAISES:
707
- Attribute Error when the named attribute is not found.
708
- """
709
-
710
- # Look in the underlying _MetaExpression for columns
711
- for col in self._metaexpr.c:
712
- if col.name == name:
713
- col._parent_df = self
714
- return col
715
-
716
- # If "name" is present in any of the following 'GeospatialConstants'
717
- # 1. GeospatialConstants.PROPERTY_TO_NO_ARG_SQL_FUNCTION_NAME
718
- # 2. GeospatialConstants.METHOD_TO_ARG_ACCEPTING_SQL_FUNCTION_NAME
719
- # 3. GeospatialConstants.METHOD_TO_NO_ARG_SQL_FUNCTION_NAME
720
- # that means, it's a function that operates on Geometry Data.
721
- #
722
- # Look for such function names.
723
- if name in GeospatialConstants.PROPERTY_TO_NO_ARG_SQL_FUNCTION_NAME.value:
724
- # Geospatial functions which are exposed as property of teradataml
725
- # GeoDataFrame.
726
- return self.__process_geometry(func_name=name, all_geom=False,
727
- property=True)
728
-
729
- if name in GeospatialConstants.METHOD_TO_ARG_ACCEPTING_SQL_FUNCTION_NAME.value \
730
- or name in GeospatialConstants.METHOD_TO_NO_ARG_SQL_FUNCTION_NAME.value:
731
- # Geospatial functions which are exposed as method of teradataml
732
- # GeoDataFrame.
733
- return lambda *args, **kwargs: \
734
- self.__process_geometry(name, *args, **kwargs)
735
-
736
- # TODO - Raise error or Keep it open ended to accept SQL Function names.
737
- raise AttributeError("'GeoDataFrame' object has no attribute %s" % name)
738
-
739
- def __process_geometry(self, func_name, *args, **kwargs):
740
- """
741
- Function helps to execute the Geospatial function on the column(s)
742
- containing geometry data.
743
-
744
- PARAMETERS:
745
- func_name:
746
- Required Argument.
747
- Specifies the name of the function to execute.
748
- Types: string
749
-
750
- all_geom:
751
- Optional Argument.
752
- Specifies whether to execute the function on all geometry
753
- columns in the GeoDataFrame or not.
754
- When set to 'True', geospatial function specified in
755
- "func_name", is executed on all the columns containing
756
- geometry data, i.e., geospatial data.
757
- When set to 'False', geospatial function specified in
758
- "func_name", is executed only on the column represented
759
- by the 'GeoDataFrame.geometry' property.
760
- Default Value: False
761
- Types: bool
762
-
763
- property:
764
- Optional Argument.
765
- Specifies whether the function being executed should be treated
766
- as GeoDataFrame property or not.
767
- When set to 'True', geospatial function specified in
768
- "func_name", is treated as property, otherwise treated as
769
- method.
770
- Default Value: False
771
- Types: bool
772
-
773
- *args:
774
- Positional arguments passed to the method, i.e., geospatial
775
- function.
776
-
777
- **kwargs:
778
- Keyword arguments passed to the method, i.e., geospatial
779
- function.
780
-
781
- RETURNS:
782
- DataFrame or GeoDataFrame
783
-
784
- RAISES:
785
- None.
786
-
787
- EXAMPLES:
788
- self.__process_geometry(fname, all_geom, False, *c, **kwargs)
789
- """
790
- property = kwargs.pop("property", False)
791
- all_geom = kwargs.pop("all_geom", False)
792
- assign_args = {}
793
- if not all_geom:
794
- # Function will be run only on column represented by
795
- # 'GeoDataFrame.geometry' property.
796
- new_col = "{}_{}_geom".format(func_name, self.geometry.name)
797
- if property:
798
- # If property is set to True, then no need to pass **kwargs and
799
- # no need to invoke the call with parenthesis '()'.
800
- assign_args[new_col] = self.geometry[func_name]
801
- else:
802
- # Pass *args and **kwargs as function accepts arguments.
803
- assign_args[new_col] = self.geometry[func_name](*args, **kwargs)
804
- else:
805
- # Function will be run on all column(s) containing geometry data.
806
- # Columns containing geometry data can be following types:
807
- # 1. ST_GEOMETRY
808
- # 2. MBR
809
- # 3. MBB
810
- for col in self._metaexpr.c:
811
- if col.type in [GEOMETRY, MBR, MBB]:
812
- new_col = "{}_{}".format(func_name, col.name)
813
- if property:
814
- # If property is set to True, then no need to pass
815
- # **kwargs and no need to invoke the call with
816
- # parenthesis '()'.
817
- assign_args[new_col] = self[col.name][func_name]
818
- else:
819
- # Pass *args and **kwargs as function accepts arguments.
820
- assign_args[new_col] = self[col.name][func_name](*args,
821
- **kwargs)
822
-
823
- return self.assign(**assign_args)
824
-
825
- @property
826
- def geometry(self):
827
- """
828
- DESCRIPTION:
829
- Returns a GeoColumnExpression for a column containing geometry data.
830
- If GeoDataFrame contains, multiple columns containing geometry data,
831
- then it returns reference to only one of them.
832
- Columns containing geometry data can be of following types:
833
- 1. ST_GEOMETRY
834
- 2. MBB
835
- 3. MBR
836
- Refer 'GeoDataFrame.tdtypes' to view the Teradata column data types.
837
-
838
- Note:
839
- This property is used to execute any geospatial operation on
840
- GeoDataFrame, i.e., any geospatial function executed on
841
- GeoDataFrame, is executed on the geomtry column referenced by
842
- this property.
843
-
844
- RETURNS:
845
- GeoDataFrameColumn
846
-
847
- EXAMPLES:
848
- >>> load_example_data("geodataframe", ["sample_cities", "sample_streets"])
849
- >>> cities = GeoDataFrame("sample_cities")
850
- >>> streets = GeoDataFrame("sample_streets")
851
- >>> city_streets = cities.join(streets, how="cross", lsuffix="l", rsuffix="r")
852
- >>> city_streets
853
- l_skey r_skey city_name city_shape street_name street_shape
854
- 0 0 1 Oceanville POLYGON ((1 1,1 3,6 3,6 0,1 1)) Main Street LINESTRING (2 2,3 2,4 1)
855
- 1 0 1 Oceanville POLYGON ((1 1,1 3,6 3,6 0,1 1)) Coast Blvd LINESTRING (12 12,18 17)
856
- 2 1 1 Seaside POLYGON ((10 10,10 20,20 20,20 15,10 10)) Coast Blvd LINESTRING (12 12,18 17)
857
- 3 1 1 Seaside POLYGON ((10 10,10 20,20 20,20 15,10 10)) Main Street LINESTRING (2 2,3 2,4 1)
858
- >>>
859
-
860
- # Check the name of the column containing geometry data, where
861
- # 'geometry' property references.
862
- >>> city_streets.geometry.name
863
- 'city_shape'
864
- >>>
865
-
866
- # Check all the column types.
867
- >>> city_streets.tdtypes
868
- l_skey INTEGER()
869
- r_skey INTEGER()
870
- city_name VARCHAR(length=40, charset='LATIN')
871
- city_shape GEOMETRY()
872
- street_name VARCHAR(length=40, charset='LATIN')
873
- street_shape GEOMETRY()
874
- >>>
875
- >>>
876
-
877
- # Set the 'geometry' property to refer 'street_shape' column.
878
- >>> city_streets.geometry = city_streets.street_shape
879
- >>> city_streets.geometry.name
880
- 'street_shape'
881
- >>>
882
-
883
- # Check whether the geometry referenced by 'geometry' property are 3D
884
- # or not.
885
- >>> city_streets.is_3D
886
- l_skey r_skey city_name city_shape street_name street_shape is_3D_street_shape_geom
887
- 0 1 1 Seaside POLYGON ((10 10,10 20,20 20,20 15,10 10)) Main Street LINESTRING (2 2,3 2,4 1) 0
888
- 1 1 1 Seaside POLYGON ((10 10,10 20,20 20,20 15,10 10)) Coast Blvd LINESTRING (12 12,18 17) 0
889
- 2 0 1 Oceanville POLYGON ((1 1,1 3,6 3,6 0,1 1)) Coast Blvd LINESTRING (12 12,18 17) 0
890
- 3 0 1 Oceanville POLYGON ((1 1,1 3,6 3,6 0,1 1)) Main Street LINESTRING (2 2,3 2,4 1) 0
891
- >>>
892
-
893
- # Use the geometry property to execute multiple geospatial functions
894
- # in conjunctions with GeoDataFrame.assign()
895
- # Get the geometry type.
896
- >>> geom_type = city_streets.geometry.geom_type
897
- # Check if geometry is simple or not.
898
- >>> is_simple = city_streets.geometry.is_simple
899
- # Check if geometry is valid or not.
900
- >>> is_valid = city_streets.geometry.is_valid
901
- >>>
902
- # Call GeoDataFrame.assign() and pass the above GeoDataFrameColumn, i.e.,
903
- # ColumnExpressions as input.
904
- >>> city_streets.assign(geom_type = geom_type,
905
- ... is_simple = is_simple,
906
- ... is_valid = is_valid
907
- ... )
908
- l_skey r_skey city_name city_shape street_name street_shape geom_type is_simple is_valid
909
- 0 0 1 Oceanville POLYGON ((1 1,1 3,6 3,6 0,1 1)) Main Street LINESTRING (2 2,3 2,4 1) ST_LineString 1 1
910
- 1 0 1 Oceanville POLYGON ((1 1,1 3,6 3,6 0,1 1)) Coast Blvd LINESTRING (12 12,18 17) ST_LineString 1 1
911
- 2 1 1 Seaside POLYGON ((10 10,10 20,20 20,20 15,10 10)) Coast Blvd LINESTRING (12 12,18 17) ST_LineString 1 1
912
- 3 1 1 Seaside POLYGON ((10 10,10 20,20 20,20 15,10 10)) Main Street LINESTRING (2 2,3 2,4 1) ST_LineString 1 1
913
- >>>
914
- """
915
- # Check if attribute __geom_column is already set or not.
916
- if self.__geom_column is not None:
917
- return self.__geom_column
918
- else:
919
- # No geom column identified, iterate over the columns
920
- # and set the attribute and return the same.
921
- for col in self._metaexpr.c:
922
- if isinstance(col.type, (GEOMETRY, MBR, MBB)):
923
- self.__geom_column = col
924
- return col
925
-
926
- @geometry.setter
927
- def geometry(self, column):
928
- """
929
- DESCRIPTION:
930
- Sets the geometry property to new geometry column.
931
-
932
- PARAMETERS:
933
- column:
934
- Required Argument.
935
- Specifies the column used for setting the 'geometry'
936
- property. Column passed to the function must contain the
937
- geometry data, i.e., column should be of type GEOMETRY, MBR,
938
- or MBB.
939
- Types: str or GeoDataFrameColumn
940
-
941
- RAISES:
942
- TeradataMlException
943
-
944
- EXAMPLES:
945
- # Set the property by passing the column name.
946
- df.geometry = "geom_column"
947
-
948
- # Set the property by passing the GeoDataFrameColumn.
949
- df.geometry = df.geom_column
950
- """
951
- awu_matrix = []
952
- awu_matrix.append(["column", column, False, (str, GeoDataFrameColumn),
953
- True])
954
-
955
- # Validate argument types
956
- _Validators._validate_function_arguments(awu_matrix)
957
-
958
- if isinstance(column, str):
959
- column = getattr(self, column)
960
-
961
- supported_types = (GEOMETRY, MBR, MBB)
962
- if not isinstance(column.type, supported_types):
963
- err_fmt = Messages.get_message(MessageCodes.INVALID_COLUMN_DATATYPE)
964
- err_ = err_fmt.format(column.name, "column", "Supported",
965
- supported_types)
966
- raise TeradataMlException(err_, MessageCodes.INVALID_COLUMN_DATATYPE)
967
-
968
- self.__geom_column = column
969
-
970
- def _create_dataframe_from_node(self, nodeid, metaexpr, index_label, undropped_columns=None):
971
- """
972
- DESCRIPTION:
973
- This function overrides the parent method, that creates the
974
- dataframe from node, i.e., using '_Parent_from_node' function.
975
-
976
- Parent class always returns a teradataml DataFrame, but for
977
- GeoDataFrame, we will return teradataml DataFrame or teradataml
978
- GeoDataFrame, based on whether the resultant DataFrame contains
979
- geometry column or not.
980
-
981
- PARAMETERS:
982
- nodeid:
983
- Required Argument.
984
- Specifies the nodeid for the DataFrame or GeoDataFrame.
985
- Types: str
986
-
987
- metaexpr:
988
- Required Argument.
989
- Specifies the metadata for the resultant object.
990
- Types: _MetaExpression
991
-
992
- index_label:
993
- Required Argument.
994
- Specifies list specifying index column(s) for the DataFrame.
995
- Types: str OR list of Strings (str)
996
-
997
- undropped_columns:
998
- Optional Argument.
999
- Specifies list of index column(s) to be retained as columns for printing.
1000
- Types: list
1001
-
1002
- RETURNS:
1003
- teradataml DataFrame or teradataml GeoDataFrame
1004
-
1005
- RAISES:
1006
- None
1007
-
1008
- EXAMPLES:
1009
- self._create_dataframe_from_node(new_nodeid, new_meta,
1010
- self._index_label, undropped_columns)
1011
- """
1012
- # TODO: <DEPENDENT_ON_GEOMETRY_DATATYPES_SUPPORT_IN_teradatasqlalchemy>
1013
- # 1. Add the test cases.
1014
- # a. Run teradataml DataFrame functions, that will result in
1015
- # dropping the geometry datatype columns.
1016
- # b. Run GeoDataFrame.assign() with "drop_columns=True" and
1017
- # run geospatial function on a column, a function that will
1018
- # not return the Geometry data type column.
1019
- # All other cases, this should return the object of this class.
1020
- if not self._check_geom_column(metaexpr):
1021
- # If generated metaexpr does not contain a geometry column
1022
- # then we should return the teradataml DataFrame.
1023
- return DataFrame._from_node(nodeid, metaexpr, index_label, undropped_columns)
1024
- else:
1025
- # Return the teradataml GeoDataFrame.
1026
- return self._from_node(nodeid, metaexpr, index_label, undropped_columns)
1027
-
1028
- def _get_metadata_from_metaexpr(self, metaexpr):
1029
- """
1030
- Private method for setting _metaexpr and retrieving column names and types.
1031
-
1032
- PARAMETERS:
1033
- metaexpr - Parent meta data (_MetaExpression object).
1034
-
1035
- RETURNS:
1036
- None
1037
-
1038
- RAISES:
1039
- None
1040
-
1041
- EXAMPLE:
1042
- self._get_metadata_from_metaexpr(metaexpr)
1043
- """
1044
- self._metaexpr = self._generate_child_metaexpr(metaexpr)
1045
- self._column_names_and_types = []
1046
- self._td_column_names_and_types = []
1047
- self._td_column_names_and_sqlalchemy_types = {}
1048
- for col in self._metaexpr.c:
1049
- if isinstance(col.type, sqlalchemy.sql.sqltypes.NullType):
1050
- tdtype = TeradataTypes.TD_NULL_TYPE.value
1051
- else:
1052
- tdtype = "{}".format(col.type)
1053
-
1054
- self._column_names_and_types.append((str(col.name), UtilFuncs._teradata_type_to_python_type(col.type)))
1055
- self._td_column_names_and_types.append((str(col.name), tdtype))
1056
- self._td_column_names_and_sqlalchemy_types[(str(col.name)).lower()] = col.type
1057
-
1058
- # Set the Geometry column, which will be used as "geometry"
1059
- # property.
1060
- if self.__geom_column is None and \
1061
- isinstance(col.type, (GEOMETRY, MBR, MBB)):
1062
- self.__geom_column = col
1063
-
1064
- if self.__geom_column is None:
1065
- error_code = MessageCodes.NO_GEOM_COLUMN_EXIST
1066
- raise TeradataMlException(Messages.get_message(error_code), error_code)
1067
-
1068
-
1069
- def _generate_child_metaexpr(self, metaexpr):
1070
- """
1071
- Internal function that generates the metaexpression by converting
1072
- _SQLColumnExpression to GeoDataFrameColumn.
1073
-
1074
- PARAMETERS:
1075
- metaexpr:
1076
- Required Arguments.
1077
- Specifies the metaexpression to update.
1078
- Types: _MetaExpression
1079
-
1080
- RETURNS:
1081
- _MetaExpression
1082
-
1083
- RAISES:
1084
- None.
1085
-
1086
- EXAMPLES:
1087
- self._metaexpr = self._generate_child_metaexpr(metaexpr)
1088
- """
1089
- metaexpr.c = [GeoDataFrameColumn(col.expression)
1090
- if not isinstance(col, GeoDataFrameColumn) else col
1091
- for col in metaexpr.c]
1092
- return metaexpr
1093
-
1094
-
1
+ # ##################################################################
2
+ #
3
+ # Copyright 2021 Teradata. All rights reserved.
4
+ # TERADATA CONFIDENTIAL AND TRADE SECRET
5
+ #
6
+ # Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
7
+ # Secondary Owner:
8
+ #
9
+ # This file implements teradataml GeoDataFrame.
10
+ # teradataml GeoDataFrame allows user to access table on Vantage
11
+ # containing Geometry or Geospatial data.
12
+ #
13
+ # ##################################################################
14
+ import sqlalchemy
15
+ from teradataml.common.constants import GeospatialConstants, TeradataTypes
16
+ from teradataml.common.messagecodes import MessageCodes
17
+ from teradataml.common.messages import Messages
18
+ from teradataml.common.utils import UtilFuncs
19
+ from teradataml.common.exceptions import TeradataMlException
20
+ from teradataml.dataframe.dataframe import DataFrame
21
+ from teradataml.geospatial.geodataframecolumn import GeoDataFrameColumn
22
+ from teradataml.plot.plot import _Plot
23
+ from teradataml.utils.validators import _Validators
24
+ from teradatasqlalchemy import (GEOMETRY, MBR, MBB)
25
+ from teradatasqlalchemy.telemetry.queryband import collect_queryband
26
+
27
+ class GeoDataFrame(DataFrame):
28
+ """
29
+ The teradataml GeoDataFrame enables data manipulation, exploration, and
30
+ analysis on tables, views, and queries on Teradata Vantage that contains
31
+ Geospatial data.
32
+ """
33
+
34
+ @collect_queryband(queryband="GDF")
35
+ def __init__(self, table_name=None, index=True, index_label=None,
36
+ query=None, materialize=False):
37
+ """
38
+ Constructor for teradataml GeoDataFrame.
39
+
40
+ PARAMETERS:
41
+ table_name:
42
+ Optional Argument.
43
+ The table name or view name in Teradata Vantage referenced by this DataFrame.
44
+ Types: str
45
+
46
+ index:
47
+ Optional Argument.
48
+ True if using index column for sorting, otherwise False.
49
+ Default Value: True
50
+ Types: bool
51
+
52
+ index_label:
53
+ Optional Argument.
54
+ Column/s used for sorting.
55
+ Types: str OR list of Strings (str)
56
+
57
+ query:
58
+ Optional Argument.
59
+ SQL query for this Dataframe. Used by class method from_query.
60
+ Types: str
61
+
62
+ materialize:
63
+ Optional Argument.
64
+ Whether to materialize DataFrame or not when created.
65
+ Used by class method from_query.
66
+
67
+ One should use enable materialization, when the query passed
68
+ to from_query(), is expected to produce non-deterministic
69
+ results, when it is executed multiple times. Using this option
70
+ will help user to have deterministic results in the resulting
71
+ teradataml GeoDataFrame.
72
+ Default Value: False (No materialization)
73
+ Types: bool
74
+
75
+ EXAMPLES:
76
+ from teradataml.dataframe.dataframe import DataFrame
77
+ df = DataFrame("mytab")
78
+ df = DataFrame("myview")
79
+ df = DataFrame("myview", False)
80
+ df = DataFrame("mytab", True, "Col1, Col2")
81
+
82
+ RAISES:
83
+ TeradataMlException - TDMLDF_CREATE_FAIL
84
+ """
85
+ self.__geom_column = None
86
+ # Call super(), to process the inputs.
87
+ super().__init__(table_name=table_name, index=index,
88
+ index_label=index_label, query=query,
89
+ materialize=materialize)
90
+
91
+ def _check_geom_column(self, metaexpr=None):
92
+ """
93
+ DESCRIPTION:
94
+ Internal function to whether the metaexpr contains a geospatial
95
+ type column or not.
96
+
97
+ PARAMETERS:
98
+ metaexpr:
99
+ Required Argument.
100
+ Specifies the teradataml DataFrame/teradataml GeoDataFrame
101
+ metaexpr to validate for geospatial content.
102
+ Types: _MetaExpression
103
+
104
+ RETURNS:
105
+ boolean.
106
+ True if Geospatial data type column exists, False otherwise.
107
+
108
+ RAISES:
109
+ None.
110
+
111
+ EXAMPLES:
112
+ self._check_geom_column(metaexpr)
113
+ """
114
+ if metaexpr is None:
115
+ metaexpr = self._metaexpr.c
116
+ for col in metaexpr.c:
117
+ if isinstance(col.type, (GEOMETRY, MBR, MBB)):
118
+ return True
119
+ return False
120
+
121
+ @collect_queryband(queryband="GDF_plot")
122
+ def plot(self, x=None, y=None, kind="geometry", **kwargs):
123
+ """
124
+ DESCRIPTION:
125
+ Generate plots on teradataml GeoDataFrame. Following type of plots
126
+ are supported, which can be specified using argument "kind":
127
+ * geometry plot
128
+ * bar plot
129
+ * corr plot
130
+ * line plot
131
+ * mesh plot
132
+ * scatter plot
133
+ * wiggle plot
134
+ Notes:
135
+ * Geometry plot is generated based on geometry column in teradataml GeoDataFrame.
136
+ * Only the columns with ST_GEOMETRY type are allowed for generating geometry plot.
137
+ * The maximum size for ST_GEOMETRY must be less than or equal to 64000.
138
+ * The ST_GEOMETRY shape can be POINT, LINESTRING etc. It is POLGYON that allows
139
+ filling of different colors.
140
+
141
+ PARAMETERS:
142
+ x:
143
+ Optional Argument.
144
+ Specifies a GeoDataFrame column to use for the x-axis data.
145
+ Note:
146
+ "x" is not significant for geometry plots. For other plots
147
+ it is mandatory argument.
148
+ Types: teradataml GeoDataFrame Column
149
+
150
+ y:
151
+ Required Argument.
152
+ Specifies GeoDataFrame column(s) to use for the y-axis data.
153
+ Notes:
154
+ * Geometry plot always requires geometry column and corresponding 'weight'
155
+ column. 'weight' column represents the weight of a shape mentioned in
156
+ geometry column.
157
+ * If user does not specify geometry column, the default geometry column
158
+ is considered for plotting.
159
+ Types: teradataml GeoDataFrame Column OR tuple of GeoDataFrame Column OR list of teradataml GeoDataFrame Columns.
160
+
161
+ scale:
162
+ Optional Argument.
163
+ Specifies GeoDataFrame column to use for scale data to
164
+ wiggle and mesh plots.
165
+ Note:
166
+ "scale" is significant for wiggle and mesh plots. Ignored for other
167
+ type of plots.
168
+ Types: teradataml GeoDataFrame Column.
169
+
170
+ kind:
171
+ Optional Argument.
172
+ Specifies the kind of plot.
173
+ Permitted Values:
174
+ * 'geometry'
175
+ * 'line'
176
+ * 'bar'
177
+ * 'scatter'
178
+ * 'corr'
179
+ * 'wiggle'
180
+ * 'mesh'
181
+ Default Value: geometry
182
+ Types: str
183
+
184
+ ax:
185
+ Optional Argument.
186
+ Specifies the axis for the plot.
187
+ Types: Axis
188
+
189
+ cmap:
190
+ Optional Argument.
191
+ Specifies the name of the colormap to be used for plotting.
192
+ Notes:
193
+ * Significant only when corresponding type of plot is mesh or geometry.
194
+ * Ignored for other type of plots.
195
+ Permitted Values:
196
+ * All the colormaps mentioned in below URLs are supported.
197
+ * https://matplotlib.org/stable/tutorials/colors/colormaps.html
198
+ * https://matplotlib.org/cmocean/
199
+ Types: str
200
+
201
+ color:
202
+ Optional Argument.
203
+ Specifies the color for the plot.
204
+ Note:
205
+ Hexadecimal color codes are not supported.
206
+ Permitted Values:
207
+ * 'blue'
208
+ * 'orange'
209
+ * 'green'
210
+ * 'red'
211
+ * 'purple'
212
+ * 'brown'
213
+ * 'pink'
214
+ * 'gray'
215
+ * 'olive'
216
+ * 'cyan'
217
+ * Apart from above mentioned colors, the colors mentioned in
218
+ https://xkcd.com/color/rgb are also supported.
219
+ Default Value: 'blue'
220
+ Types: str OR list of str
221
+
222
+ figure:
223
+ Optional Argument.
224
+ Specifies the figure for the plot.
225
+ Types: Figure
226
+
227
+ figsize:
228
+ Optional Argument.
229
+ Specifies the size of the figure in a tuple of 2 elements. First
230
+ element represents width of plot image in pixels and second
231
+ element represents height of plot image in pixels.
232
+ Default Value: (640, 480)
233
+ Types: tuple
234
+
235
+ figtype:
236
+ Optional Argument.
237
+ Specifies the type of the image to generate.
238
+ Permitted Values:
239
+ * 'png'
240
+ * 'jpg'
241
+ * 'svg'
242
+ Default Value: png
243
+ Types: str
244
+
245
+ figdpi:
246
+ Optional Argument.
247
+ Specifies the dots per inch for the plot image.
248
+ Note:
249
+ * Valid range for "dpi" is: 72 <= width <= 300.
250
+ Default Value: 100 for PNG and JPG Type image.
251
+ Types: int
252
+
253
+ grid_color:
254
+ Optional Argument.
255
+ Specifies the color of the grid.
256
+ Note:
257
+ Hexadecimal color codes are not supported.
258
+ Permitted Values:
259
+ * 'blue'
260
+ * 'orange'
261
+ * 'green'
262
+ * 'red'
263
+ * 'purple'
264
+ * 'brown'
265
+ * 'pink'
266
+ * 'gray'
267
+ * 'olive'
268
+ * 'cyan'
269
+ * Apart from above mentioned colors, the colors mentioned in
270
+ https://xkcd.com/color/rgb are also supported.
271
+ Default Value: gray
272
+ Types: str
273
+
274
+ grid_format:
275
+ Optional Argument.
276
+ Specifies the format for the grid.
277
+ Types: str
278
+
279
+ grid_linestyle:
280
+ Optional Argument.
281
+ Specifies the line style of the grid.
282
+ Permitted Values:
283
+ * -
284
+ * --
285
+ * -.
286
+ Default Value: -
287
+ Types: str
288
+
289
+ grid_linewidth:
290
+ Optional Argument.
291
+ Specifies the line width of the grid.
292
+ Note:
293
+ Valid range for "grid_linewidth" is: 0.5 <= grid_linewidth <= 10.
294
+ Default Value: 0.8
295
+ Types: int OR float
296
+
297
+ heading:
298
+ Optional Argument.
299
+ Specifies the heading for the plot.
300
+ Types: str
301
+
302
+ legend:
303
+ Optional Argument.
304
+ Specifies the legend(s) for the Plot.
305
+ Types: str OR list of str
306
+
307
+ legend_style:
308
+ Optional Argument.
309
+ Specifies the location for legend to display on Plot image. By default,
310
+ legend is displayed at upper right corner.
311
+ Permitted Values:
312
+ * 'upper right'
313
+ * 'upper left'
314
+ * 'lower right'
315
+ * 'lower left'
316
+ * 'right'
317
+ * 'center left'
318
+ * 'center right'
319
+ * 'lower center'
320
+ * 'upper center'
321
+ * 'center'
322
+ Default Value: 'upper right'
323
+ Types: str
324
+
325
+ linestyle:
326
+ Optional Argument.
327
+ Specifies the line style for the plot.
328
+ Permitted Values:
329
+ * -
330
+ * --
331
+ * -.
332
+ * :
333
+ Default Value: -
334
+ Types: str OR list of str
335
+
336
+ linewidth:
337
+ Optional Argument.
338
+ Specifies the line width for the plot.
339
+ Note:
340
+ Valid range for "linewidth" is: 0.5 <= linewidth <= 10.
341
+ Default Value: 0.8
342
+ Types: int OR float OR list of int OR list of float
343
+
344
+ marker:
345
+ Optional Argument.
346
+ Specifies the type of the marker to be used.
347
+ Permitted Values:
348
+ All the markers mentioned in https://matplotlib.org/stable/api/markers_api.html
349
+ are supported.
350
+ Types: str OR list of str
351
+
352
+ markersize:
353
+ Optional Argument.
354
+ Specifies the size of the marker.
355
+ Note:
356
+ Valid range for "markersize" is: 1 <= markersize <= 20.
357
+ Default Value: 6
358
+ Types: int OR float OR list of int OR list of float
359
+
360
+ position:
361
+ Optional Argument.
362
+ Specifies the position of the axis in the figure. Accepts a tuple
363
+ of two elements where first element represents the row and second
364
+ element represents column.
365
+ Default Value: (1, 1)
366
+ Types: tuple
367
+
368
+ span:
369
+ Optional Argument.
370
+ Specifies the span of the axis in the figure. Accepts a tuple
371
+ of two elements where first element represents the row and second
372
+ element represents column.
373
+ For Example,
374
+ Span of (2, 1) specifies the Axis occupies 2 rows and 1 column
375
+ in Figure.
376
+ Default Value: (1, 1)
377
+ Types: tuple
378
+
379
+ reverse_xaxis:
380
+ Optional Argument.
381
+ Specifies whether to reverse tick values on x-axis or not.
382
+ Default Value: False
383
+ Types: bool
384
+
385
+ reverse_yaxis:
386
+ Optional Argument.
387
+ Specifies whether to reverse tick values on y-axis or not.
388
+ Default Value: False
389
+ Types: bool
390
+
391
+ series_identifier:
392
+ Optional Argument.
393
+ Specifies the teradataml GeoDataFrame Column which represents the
394
+ identifier for the data. As many plots as distinct "series_identifier"
395
+ are generated in a single Axis.
396
+ For example:
397
+ consider the below data in teradataml GeoDataFrame.
398
+ ID x y
399
+ 0 1 1 1
400
+ 1 1 2 2
401
+ 2 2 10 10
402
+ 3 2 20 20
403
+ If "series_identifier" is not specified, simple plot is
404
+ generated where every 'y' is plotted against 'x' in a
405
+ single plot. However, specifying "series_identifier" as 'ID'
406
+ generates two plots in a single axis. One plot is for ID 1
407
+ and another plot is for ID 2.
408
+ Types: teradataml GeoDataFrame Column.
409
+
410
+ title:
411
+ Optional Argument.
412
+ Specifies the title for the Axis.
413
+ Types: str
414
+
415
+ xlabel:
416
+ Optional Argument.
417
+ Specifies the label for x-axis.
418
+ Notes:
419
+ * When set to empty string, label is not displayed for x-axis.
420
+ * When set to None, name of the x-axis column is displayed as
421
+ label.
422
+ Types: str
423
+
424
+ xlim:
425
+ Optional Argument.
426
+ Specifies the range for xtick values.
427
+ Types: tuple
428
+
429
+ xtick_format:
430
+ Optional Argument.
431
+ Specifies whether to format tick values for x-axis or not.
432
+ Types: str
433
+
434
+ ylabel:
435
+ Optional Argument.
436
+ Specifies the label for y-axis.
437
+ Notes:
438
+ * When set to empty string, label is not displayed for y-axis.
439
+ * When set to None, name of the y-axis column(s) is displayed as
440
+ label.
441
+ Types: str
442
+
443
+ ylim:
444
+ Optional Argument.
445
+ Specifies the range for ytick values.
446
+ Types: tuple
447
+
448
+ ytick_format:
449
+ Optional Argument.
450
+ Specifies whether to format tick values for y-axis or not.
451
+ Types: str
452
+
453
+ vmin:
454
+ Optional Argument.
455
+ Specifies the lower range of the color map. By default, the range
456
+ is derived from data and color codes are assigned accordingly.
457
+ Note:
458
+ "vmin" Significant only for Geometry Plot.
459
+ Types: int OR float
460
+
461
+ vmax:
462
+ Optional Argument.
463
+ Specifies the upper range of the color map. By default, the range is
464
+ derived from data and color codes are assigned accordingly.
465
+ Note:
466
+ "vmax" Significant only for Geometry Plot.
467
+ For example:
468
+ Assuming user wants to use colormap 'matter' and derive the colors for
469
+ values which are in between 1 and 100.
470
+ Note:
471
+ colormap 'matter' starts with Pale Yellow and ends with Violet.
472
+ * If "colormap_range" is not specified, then range is derived from
473
+ existing values. Thus, colors are represented as below in the whole range:
474
+ * 1 as Pale Yellow.
475
+ * 100 as Violet.
476
+ * If "colormap_range" is specified as -100 and 100, the value 1 is at middle of
477
+ the specified range. Thus, colors are represented as below in the whole range:
478
+ * -100 as Pale Yellow.
479
+ * 1 as Orange.
480
+ * 100 as Violet.
481
+ Types: int OR float
482
+
483
+ wiggle_fill:
484
+ Optional Argument.
485
+ Specifies whether to fill the wiggle area or not. By default, the right
486
+ positive half of the wiggle is not filled. If specified as True, wiggle
487
+ area is filled.
488
+ Note:
489
+ Applicable only for the wiggle plot.
490
+ Default Value: False
491
+ Types: bool
492
+
493
+ wiggle_scale:
494
+ Optional Argument.
495
+ Specifies the scale of the wiggle. By default, the amplitude of wiggle is scaled
496
+ relative to RMS of the first payload. In certain cases, it can lead to excessively
497
+ large wiggles. Use "wiggle_scale" to adjust the relative size of the wiggle.
498
+ Note:
499
+ Applicable only for the wiggle and mesh plots.
500
+ Types: int OR float
501
+
502
+ ignore_nulls:
503
+ Optional Argument.
504
+ Specifies whether to delete rows with null values or not present in 'x', 'y' and
505
+ 'scale' params.
506
+ Default Value: False
507
+ Types: bool
508
+
509
+
510
+ RAISES:
511
+ TeradataMlException
512
+
513
+ EXAMPLES:
514
+ >>> load_example_data("geodataframe", ["sample_shapes"])
515
+ >>> shapes_df = GeoDataFrame("sample_shapes")
516
+ >>> shapes_df
517
+ points linestrings polygons geom_collections geosequence
518
+ skey
519
+ 1006 POINT (235.52 54.546 7.4564) LINESTRING (1.35 3.6456 4.5,3. POLYGON ((0 0 0,0 0 20,0 20 0, None None
520
+ 1007 MULTIPOINT (1 1,1 3,6 3,10 5,2 MULTILINESTRING ((1 1,1 3,6 3) MULTIPOLYGON (((1 1,1 3,6 3,6 None None
521
+ 1005 POINT (1 3 5) LINESTRING (1 3 6,3 0 6,6 0 1) POLYGON ((0 0 0,0 0 20.435,0.0 GEOMETRYCOLLECTION (POINT (10 None
522
+ 1004 POINT (10 20 30) LINESTRING (10 20 30,40 50 60, POLYGON ((0 0 0,0 10 20,20 20 GEOMETRYCOLLECTION (POINT (10 None
523
+ 1003 POINT (235.52 54.546) LINESTRING (1.35 3.6456,3.6756 POLYGON ((0.6 0.8,0.6 20.8,20. None None
524
+ 1001 POINT (10 20) LINESTRING (1 1,2 2,3 3,4 4) POLYGON ((0 0,0 20,20 20,20 0, GEOMETRYCOLLECTION (POINT (10 GEOSEQUENCE((10 20,30 40,50 60
525
+ 1002 POINT (1 3) LINESTRING (1 3,3 0,0 1) POLYGON ((0 0,0 20,20 20,20 0, None GEOSEQUENCE((10 10,15 15,-2 0)
526
+ 1009 MULTIPOINT (10 20 30,40 50 60, MULTILINESTRING ((10 20 30,40 MULTIPOLYGON (((0 0 0,0 20 20, None None
527
+ 1008 MULTIPOINT (1.65 1.76,1.23 3.7 MULTILINESTRING ((1 3,3 0,0 1) MULTIPOLYGON (((0 0,0 20,20 20 None None
528
+ 1010 MULTIPOINT (10.345 20.32 30.6, MULTILINESTRING ((1 3 6,3 0 6, MULTIPOLYGON (((0 0 0,0 0 20,0 None None
529
+ >>>
530
+ >>> load_example_data("geodataframe", ["us_population", "us_states_shapes"])
531
+ >>> us_population = DataFrame("us_population")
532
+ >>> us_population
533
+ location_type population_year population
534
+ state_name
535
+ Georgia State 1930 2908506.0
536
+ Georgia State 1950 3444578.0
537
+ Georgia State 1960 3943116.0
538
+ Georgia State 1970 4589575.0
539
+ Georgia State 1990 6478216.0
540
+ Georgia State 2000 8186453.0
541
+ Georgia State 1980 5463105.0
542
+ Georgia State 1940 3123723.0
543
+ Georgia State 1920 2895832.0
544
+ Georgia State 1910 2609121.0
545
+ >>> us_states_shapes = GeoDataFrame("us_states_shapes")
546
+ >>> us_states_shapes
547
+ state_name state_shape
548
+ id
549
+ NM New Mexico POLYGON ((472.45213 324.75551,
550
+ VA Virginia POLYGON ((908.75086 270.98255,
551
+ ND North Dakota POLYGON ((556.50879 73.847349,
552
+ OK Oklahoma POLYGON ((609.50526 322.91131,
553
+ WI Wisconsin POLYGON ((705.79187 134.80299,
554
+ RI Rhode Island POLYGON ((946.50841 152.08022,
555
+ HI Hawaii POLYGON ((416.34965 514.99923,
556
+ KY Kentucky POLYGON ((693.17367 317.18459,
557
+ WV West Virginia POLYGON ((836.73002 223.71281,
558
+ NJ New Jersey POLYGON ((916.80709 207.30914,
559
+ >>>
560
+ >>> # Join shapes with population and filter only 1990 data.
561
+ >>> population_data = us_states_shapes.join(us_population,
562
+ ... on=us_population.state_name == us_states_shapes.state_name,
563
+ ... lsuffix="us",
564
+ ... rsuffix="t2")
565
+ >>> population_data = population_data.select(["us_state_name", "state_shape", "population_year", "population"])
566
+ >>> type(population_data)
567
+ teradataml.geospatial.geodataframe.GeoDataFrame
568
+ >>>
569
+
570
+ # Example 1: Generate the geometry plot to show the density of population
571
+ # across the US states in year 1990.
572
+ >>> population_data_1990 = population_data[population_data.population_year == 1990]
573
+ >>> population_data_1990
574
+ us_state_name state_shape population_year population
575
+ 0 New Mexico POLYGON ((472.45213 324.75551, 1990 1515069.0
576
+ 1 Hawaii POLYGON ((416.34965 514.99923, 1990 1108229.0
577
+ 2 Kentucky POLYGON ((693.17367 317.18459, 1990 3685296.0
578
+ 3 New Jersey POLYGON ((916.80709 207.30914, 1990 7730188.0
579
+ 4 North Dakota POLYGON ((556.50879 73.847349, 1990 638800.0
580
+ 5 Oklahoma POLYGON ((609.50526 322.91131, 1990 3145585.0
581
+ 6 West Virginia POLYGON ((836.73002 223.71281, 1990 1793477.0
582
+ 7 Wisconsin POLYGON ((705.79187 134.80299, 1990 4891769.0
583
+ 8 Virginia POLYGON ((908.75086 270.98255, 1990 6187358.0
584
+ 9 Rhode Island POLYGON ((946.50841 152.08022, 1990 1003464.0
585
+ >>>
586
+ >>> # Define Figure.
587
+ >>> from teradataml import Figure
588
+ >>> figure = Figure(width=1500, height=862, heading="Geometry Plot")
589
+ >>> figure.heading = "Geometry Plot"
590
+ >>>
591
+ >>> plot_1990 = population_data_1990.plot(y=population_data_1990.population,
592
+ ... cmap='rainbow',
593
+ ... figure=figure,
594
+ ... reverse_yaxis=True,
595
+ ... title="US 1990 Population",
596
+ ... xlabel="",
597
+ ... ylabel="")
598
+ >>>
599
+ >>> plot_1990.show()
600
+
601
+ # Example 2: Plot a geometry plot for a single polygon to visualize the shape.
602
+ # Note: X-axis is not significant in geometry plot. Y-axis can be a tuple,
603
+ # first element represents weight of geometry shape and second element
604
+ # represents the geometry column. Since color of geometry shape is generated
605
+ # based on first column and since the example is to plot a single polygon,
606
+ # the first element in tuple is not significant.
607
+ >>> # Generate GeoDataFrame which has single Polygon.
608
+ >>> single_polygon_df = shapes_df[shapes_df.skey==1004]
609
+ >>> single_polygon_df.plot(y=(single_polygon_df.skey, single_polygon_df.polygons))
610
+
611
+ # Example 3: Generate a bar plot on a GeoDataFrame.
612
+ # Note: The below example shows how the population of the United States
613
+ # changed from 1910 to 2020.
614
+ >>> population_data.plot(x=population_data.population_year, y=population_data.population, kind="bar")
615
+
616
+ # Example 4: Generate a subplot on a GeoDataFrame to show the rate of population increase over 4 decades.
617
+ # Create DataFrames for population in the year 2020, 2010, 2000, 1990.
618
+ >>> df_2020 = population_data[population_data.population_year == 2020]
619
+ >>> df_2010 = population_data[population_data.population_year == 2010]
620
+ >>> df_2000 = population_data[population_data.population_year == 2000]
621
+ >>> df_1990 = population_data[population_data.population_year == 1990]
622
+
623
+ # Define subplot.
624
+ >>> fig, axes = subplots(nrows=2, ncols=2)
625
+
626
+ >>> plot_population = df_1990.plot(y=(df_1990.population, df_1990.state_shape),
627
+ ... cmap='rainbow',
628
+ ... figure=fig,
629
+ ... ax=axes[0],
630
+ ... reverse_yaxis=True,
631
+ ... vmin=55036.0,
632
+ ... vmax=39538223.0,
633
+ ... heading="US Population growth over 4 decades",
634
+ ... title="US 1990 Population",
635
+ ... xlabel="",
636
+ ... yylabel="")
637
+ >>> plot_population = df_2000.plot(y=(df_2000.population, df_2000.state_shape),
638
+ ... cmap='rainbow',
639
+ ... figure=fig,
640
+ ... ax=axes[1],
641
+ ... reverse_yaxis=True,
642
+ ... vmin=55036.0,
643
+ ... vmax=39538223.0,
644
+ ... heading="US Population growth over 4 decades",
645
+ ... title="US 2000 Population",
646
+ ... xlabel="",
647
+ ... ylabel="")
648
+ >>> plot_population = df_2010.plot(x=df_2010.population_year,
649
+ ... y=(df_2010.population, df_2010.state_shape),
650
+ ... cmap='rainbow',
651
+ ... figure=fig,
652
+ ... ax=axes[2],
653
+ ... reverse_yaxis=True,
654
+ ... vmin=55036.0,
655
+ ... vmax=39538223.0,
656
+ ... heading="US Population growth over 4 decades",
657
+ ... title="US 2010 Population",
658
+ ... xlabel="",
659
+ ... ylabel="",
660
+ ... xtick_values_format="")
661
+ >>> plot_population = df_2020.plot(x=df_2020.population_year,
662
+ ... y=(df_2020.population, df_2020.state_shape),
663
+ ... cmap='rainbow',
664
+ ... figure=fig,
665
+ ... ax=axes[3],
666
+ ... reverse_yaxis=True,
667
+ ... vmin=55036.0,
668
+ ... vmax=39538223.0,
669
+ ... heading="US Population growth over 4 decades",
670
+ ... title="US 2020 Population",
671
+ ... xlabel="",
672
+ ... ylabel="",
673
+ ... xtick_values_format="")
674
+ >>> # Show the plot.
675
+ >>> plot_population.show()
676
+
677
+ """
678
+ if kind == "geometry":
679
+ # x is not really required for geometry plot. So, users can pass a None here.
680
+ # However, UAF needs all the records to be a Non NULL value. So, construct x with
681
+ # a dummy value.
682
+ x = x if x is not None else 1
683
+ y = UtilFuncs._as_list(y)
684
+
685
+ # For geometry plot, x axis is not significant really.
686
+ # They do not mean any thing.
687
+ kwargs["xlabel"] = ""
688
+ kwargs["xtick_values_format"] = ""
689
+
690
+ # Geometry plot always need a tuple. Second
691
+ # element should be a Geometry column. If user does not
692
+ # specify a tuple, convert it to tuple by using default geometry column.
693
+ # use "geometry" API.
694
+ _get_y_axis = lambda x: x if isinstance(x, tuple) else (x, self.geometry)
695
+ y = [_get_y_axis(arg) for arg in y]
696
+
697
+ plot = _Plot(x=x, y=y, kind=kind, **kwargs)
698
+ return plot
699
+
700
+ def __getattr__(self, name):
701
+ """
702
+ Returns an attribute of the GeoDataFrame.
703
+
704
+ PARAMETERS:
705
+ name:
706
+ Required Argument.
707
+ Specifies the name of the attribute.
708
+ Types: str
709
+
710
+ RETURNS:
711
+ Return the value of the named attribute of object (if found).
712
+
713
+ EXAMPLES:
714
+ df = GeoDataFrame('table')
715
+
716
+ # You can access a column from the teradataml GeoDataFrame.
717
+ df.c1
718
+
719
+ RAISES:
720
+ Attribute Error when the named attribute is not found.
721
+ """
722
+
723
+ # Look in the underlying _MetaExpression for columns
724
+ for col in self._metaexpr.c:
725
+ if col.name == name:
726
+ col._parent_df = self
727
+ return col
728
+
729
+ # If "name" is present in any of the following 'GeospatialConstants'
730
+ # 1. GeospatialConstants.PROPERTY_TO_NO_ARG_SQL_FUNCTION_NAME
731
+ # 2. GeospatialConstants.METHOD_TO_ARG_ACCEPTING_SQL_FUNCTION_NAME
732
+ # 3. GeospatialConstants.METHOD_TO_NO_ARG_SQL_FUNCTION_NAME
733
+ # that means, it's a function that operates on Geometry Data.
734
+ #
735
+ # Look for such function names.
736
+ if name in GeospatialConstants.PROPERTY_TO_NO_ARG_SQL_FUNCTION_NAME.value:
737
+ # Geospatial functions which are exposed as property of teradataml
738
+ # GeoDataFrame.
739
+ return self.__process_geometry(func_name=name, all_geom=False,
740
+ property=True)
741
+
742
+ if name in GeospatialConstants.METHOD_TO_ARG_ACCEPTING_SQL_FUNCTION_NAME.value \
743
+ or name in GeospatialConstants.METHOD_TO_NO_ARG_SQL_FUNCTION_NAME.value:
744
+ # Geospatial functions which are exposed as method of teradataml
745
+ # GeoDataFrame.
746
+ return lambda *args, **kwargs: \
747
+ self.__process_geometry(name, *args, **kwargs)
748
+
749
+ # TODO - Raise error or Keep it open ended to accept SQL Function names.
750
+ raise AttributeError("'GeoDataFrame' object has no attribute %s" % name)
751
+
752
+ @collect_queryband(arg_name="func_name", prefix="GDF")
753
+ def __process_geometry(self, func_name, *args, **kwargs):
754
+ """
755
+ Function helps to execute the Geospatial function on the column(s)
756
+ containing geometry data.
757
+
758
+ PARAMETERS:
759
+ func_name:
760
+ Required Argument.
761
+ Specifies the name of the function to execute.
762
+ Types: string
763
+
764
+ all_geom:
765
+ Optional Argument.
766
+ Specifies whether to execute the function on all geometry
767
+ columns in the GeoDataFrame or not.
768
+ When set to 'True', geospatial function specified in
769
+ "func_name", is executed on all the columns containing
770
+ geometry data, i.e., geospatial data.
771
+ When set to 'False', geospatial function specified in
772
+ "func_name", is executed only on the column represented
773
+ by the 'GeoDataFrame.geometry' property.
774
+ Default Value: False
775
+ Types: bool
776
+
777
+ property:
778
+ Optional Argument.
779
+ Specifies whether the function being executed should be treated
780
+ as GeoDataFrame property or not.
781
+ When set to 'True', geospatial function specified in
782
+ "func_name", is treated as property, otherwise treated as
783
+ method.
784
+ Default Value: False
785
+ Types: bool
786
+
787
+ *args:
788
+ Positional arguments passed to the method, i.e., geospatial
789
+ function.
790
+
791
+ **kwargs:
792
+ Keyword arguments passed to the method, i.e., geospatial
793
+ function.
794
+
795
+ RETURNS:
796
+ DataFrame or GeoDataFrame
797
+
798
+ RAISES:
799
+ None.
800
+
801
+ EXAMPLES:
802
+ self.__process_geometry(fname, all_geom, False, *c, **kwargs)
803
+ """
804
+ property = kwargs.pop("property", False)
805
+ all_geom = kwargs.pop("all_geom", False)
806
+ assign_args = {}
807
+ if not all_geom:
808
+ # Function will be run only on column represented by
809
+ # 'GeoDataFrame.geometry' property.
810
+ new_col = "{}_{}_geom".format(func_name, self.geometry.name)
811
+ if property:
812
+ # If property is set to True, then no need to pass **kwargs and
813
+ # no need to invoke the call with parenthesis '()'.
814
+ assign_args[new_col] = self.geometry[func_name]
815
+ else:
816
+ # Pass *args and **kwargs as function accepts arguments.
817
+ assign_args[new_col] = self.geometry[func_name](*args, **kwargs)
818
+ else:
819
+ # Function will be run on all column(s) containing geometry data.
820
+ # Columns containing geometry data can be following types:
821
+ # 1. ST_GEOMETRY
822
+ # 2. MBR
823
+ # 3. MBB
824
+ for col in self._metaexpr.c:
825
+ if col.type in [GEOMETRY, MBR, MBB]:
826
+ new_col = "{}_{}".format(func_name, col.name)
827
+ if property:
828
+ # If property is set to True, then no need to pass
829
+ # **kwargs and no need to invoke the call with
830
+ # parenthesis '()'.
831
+ assign_args[new_col] = self[col.name][func_name]
832
+ else:
833
+ # Pass *args and **kwargs as function accepts arguments.
834
+ assign_args[new_col] = self[col.name][func_name](*args,
835
+ **kwargs)
836
+
837
+ return self.assign(**assign_args)
838
+
839
+ @property
840
+ def geometry(self):
841
+ """
842
+ DESCRIPTION:
843
+ Returns a GeoColumnExpression for a column containing geometry data.
844
+ If GeoDataFrame contains, multiple columns containing geometry data,
845
+ then it returns reference to only one of them.
846
+ Columns containing geometry data can be of following types:
847
+ 1. ST_GEOMETRY
848
+ 2. MBB
849
+ 3. MBR
850
+ Refer 'GeoDataFrame.tdtypes' to view the Teradata column data types.
851
+
852
+ Note:
853
+ This property is used to execute any geospatial operation on
854
+ GeoDataFrame, i.e., any geospatial function executed on
855
+ GeoDataFrame, is executed on the geomtry column referenced by
856
+ this property.
857
+
858
+ RETURNS:
859
+ GeoDataFrameColumn
860
+
861
+ EXAMPLES:
862
+ >>> load_example_data("geodataframe", ["sample_cities", "sample_streets"])
863
+ >>> cities = GeoDataFrame("sample_cities")
864
+ >>> streets = GeoDataFrame("sample_streets")
865
+ >>> city_streets = cities.join(streets, how="cross", lsuffix="l", rsuffix="r")
866
+ >>> city_streets
867
+ l_skey r_skey city_name city_shape street_name street_shape
868
+ 0 0 1 Oceanville POLYGON ((1 1,1 3,6 3,6 0,1 1)) Main Street LINESTRING (2 2,3 2,4 1)
869
+ 1 0 1 Oceanville POLYGON ((1 1,1 3,6 3,6 0,1 1)) Coast Blvd LINESTRING (12 12,18 17)
870
+ 2 1 1 Seaside POLYGON ((10 10,10 20,20 20,20 15,10 10)) Coast Blvd LINESTRING (12 12,18 17)
871
+ 3 1 1 Seaside POLYGON ((10 10,10 20,20 20,20 15,10 10)) Main Street LINESTRING (2 2,3 2,4 1)
872
+ >>>
873
+
874
+ # Check the name of the column containing geometry data, where
875
+ # 'geometry' property references.
876
+ >>> city_streets.geometry.name
877
+ 'city_shape'
878
+ >>>
879
+
880
+ # Check all the column types.
881
+ >>> city_streets.tdtypes
882
+ l_skey INTEGER()
883
+ r_skey INTEGER()
884
+ city_name VARCHAR(length=40, charset='LATIN')
885
+ city_shape GEOMETRY()
886
+ street_name VARCHAR(length=40, charset='LATIN')
887
+ street_shape GEOMETRY()
888
+ >>>
889
+ >>>
890
+
891
+ # Set the 'geometry' property to refer 'street_shape' column.
892
+ >>> city_streets.geometry = city_streets.street_shape
893
+ >>> city_streets.geometry.name
894
+ 'street_shape'
895
+ >>>
896
+
897
+ # Check whether the geometry referenced by 'geometry' property are 3D
898
+ # or not.
899
+ >>> city_streets.is_3D
900
+ l_skey r_skey city_name city_shape street_name street_shape is_3D_street_shape_geom
901
+ 0 1 1 Seaside POLYGON ((10 10,10 20,20 20,20 15,10 10)) Main Street LINESTRING (2 2,3 2,4 1) 0
902
+ 1 1 1 Seaside POLYGON ((10 10,10 20,20 20,20 15,10 10)) Coast Blvd LINESTRING (12 12,18 17) 0
903
+ 2 0 1 Oceanville POLYGON ((1 1,1 3,6 3,6 0,1 1)) Coast Blvd LINESTRING (12 12,18 17) 0
904
+ 3 0 1 Oceanville POLYGON ((1 1,1 3,6 3,6 0,1 1)) Main Street LINESTRING (2 2,3 2,4 1) 0
905
+ >>>
906
+
907
+ # Use the geometry property to execute multiple geospatial functions
908
+ # in conjunctions with GeoDataFrame.assign()
909
+ # Get the geometry type.
910
+ >>> geom_type = city_streets.geometry.geom_type
911
+ # Check if geometry is simple or not.
912
+ >>> is_simple = city_streets.geometry.is_simple
913
+ # Check if geometry is valid or not.
914
+ >>> is_valid = city_streets.geometry.is_valid
915
+ >>>
916
+ # Call GeoDataFrame.assign() and pass the above GeoDataFrameColumn, i.e.,
917
+ # ColumnExpressions as input.
918
+ >>> city_streets.assign(geom_type = geom_type,
919
+ ... is_simple = is_simple,
920
+ ... is_valid = is_valid
921
+ ... )
922
+ l_skey r_skey city_name city_shape street_name street_shape geom_type is_simple is_valid
923
+ 0 0 1 Oceanville POLYGON ((1 1,1 3,6 3,6 0,1 1)) Main Street LINESTRING (2 2,3 2,4 1) ST_LineString 1 1
924
+ 1 0 1 Oceanville POLYGON ((1 1,1 3,6 3,6 0,1 1)) Coast Blvd LINESTRING (12 12,18 17) ST_LineString 1 1
925
+ 2 1 1 Seaside POLYGON ((10 10,10 20,20 20,20 15,10 10)) Coast Blvd LINESTRING (12 12,18 17) ST_LineString 1 1
926
+ 3 1 1 Seaside POLYGON ((10 10,10 20,20 20,20 15,10 10)) Main Street LINESTRING (2 2,3 2,4 1) ST_LineString 1 1
927
+ >>>
928
+ """
929
+ # Check if attribute __geom_column is already set or not.
930
+ if self.__geom_column is not None:
931
+ return self.__geom_column
932
+ else:
933
+ # No geom column identified, iterate over the columns
934
+ # and set the attribute and return the same.
935
+ for col in self._metaexpr.c:
936
+ if isinstance(col.type, (GEOMETRY, MBR, MBB)):
937
+ self.__geom_column = col
938
+ return col
939
+
940
+ @geometry.setter
941
+ def geometry(self, column):
942
+ """
943
+ DESCRIPTION:
944
+ Sets the geometry property to new geometry column.
945
+
946
+ PARAMETERS:
947
+ column:
948
+ Required Argument.
949
+ Specifies the column used for setting the 'geometry'
950
+ property. Column passed to the function must contain the
951
+ geometry data, i.e., column should be of type GEOMETRY, MBR,
952
+ or MBB.
953
+ Types: str or GeoDataFrameColumn
954
+
955
+ RAISES:
956
+ TeradataMlException
957
+
958
+ EXAMPLES:
959
+ # Set the property by passing the column name.
960
+ df.geometry = "geom_column"
961
+
962
+ # Set the property by passing the GeoDataFrameColumn.
963
+ df.geometry = df.geom_column
964
+ """
965
+ awu_matrix = []
966
+ awu_matrix.append(["column", column, False, (str, GeoDataFrameColumn),
967
+ True])
968
+
969
+ # Validate argument types
970
+ _Validators._validate_function_arguments(awu_matrix)
971
+
972
+ if isinstance(column, str):
973
+ column = getattr(self, column)
974
+
975
+ supported_types = (GEOMETRY, MBR, MBB)
976
+ if not isinstance(column.type, supported_types):
977
+ err_fmt = Messages.get_message(MessageCodes.INVALID_COLUMN_DATATYPE)
978
+ err_ = err_fmt.format(column.name, "column", "Supported",
979
+ supported_types)
980
+ raise TeradataMlException(err_, MessageCodes.INVALID_COLUMN_DATATYPE)
981
+
982
+ self.__geom_column = column
983
+
984
+ def _create_dataframe_from_node(self, nodeid, metaexpr, index_label, undropped_columns=None):
985
+ """
986
+ DESCRIPTION:
987
+ This function overrides the parent method, that creates the
988
+ dataframe from node, i.e., using '_Parent_from_node' function.
989
+
990
+ Parent class always returns a teradataml DataFrame, but for
991
+ GeoDataFrame, we will return teradataml DataFrame or teradataml
992
+ GeoDataFrame, based on whether the resultant DataFrame contains
993
+ geometry column or not.
994
+
995
+ PARAMETERS:
996
+ nodeid:
997
+ Required Argument.
998
+ Specifies the nodeid for the DataFrame or GeoDataFrame.
999
+ Types: str
1000
+
1001
+ metaexpr:
1002
+ Required Argument.
1003
+ Specifies the metadata for the resultant object.
1004
+ Types: _MetaExpression
1005
+
1006
+ index_label:
1007
+ Required Argument.
1008
+ Specifies list specifying index column(s) for the DataFrame.
1009
+ Types: str OR list of Strings (str)
1010
+
1011
+ undropped_columns:
1012
+ Optional Argument.
1013
+ Specifies list of index column(s) to be retained as columns for printing.
1014
+ Types: list
1015
+
1016
+ RETURNS:
1017
+ teradataml DataFrame or teradataml GeoDataFrame
1018
+
1019
+ RAISES:
1020
+ None
1021
+
1022
+ EXAMPLES:
1023
+ self._create_dataframe_from_node(new_nodeid, new_meta,
1024
+ self._index_label, undropped_columns)
1025
+ """
1026
+ # TODO: <DEPENDENT_ON_GEOMETRY_DATATYPES_SUPPORT_IN_teradatasqlalchemy>
1027
+ # 1. Add the test cases.
1028
+ # a. Run teradataml DataFrame functions, that will result in
1029
+ # dropping the geometry datatype columns.
1030
+ # b. Run GeoDataFrame.assign() with "drop_columns=True" and
1031
+ # run geospatial function on a column, a function that will
1032
+ # not return the Geometry data type column.
1033
+ # All other cases, this should return the object of this class.
1034
+ if not self._check_geom_column(metaexpr):
1035
+ # If generated metaexpr does not contain a geometry column
1036
+ # then we should return the teradataml DataFrame.
1037
+ return DataFrame._from_node(nodeid, metaexpr, index_label, undropped_columns)
1038
+ else:
1039
+ # Return the teradataml GeoDataFrame.
1040
+ return self._from_node(nodeid, metaexpr, index_label, undropped_columns)
1041
+
1042
+ def _get_metadata_from_metaexpr(self, metaexpr):
1043
+ """
1044
+ Private method for setting _metaexpr and retrieving column names and types.
1045
+
1046
+ PARAMETERS:
1047
+ metaexpr - Parent meta data (_MetaExpression object).
1048
+
1049
+ RETURNS:
1050
+ None
1051
+
1052
+ RAISES:
1053
+ None
1054
+
1055
+ EXAMPLE:
1056
+ self._get_metadata_from_metaexpr(metaexpr)
1057
+ """
1058
+ self._metaexpr = self._generate_child_metaexpr(metaexpr)
1059
+ self._column_names_and_types = []
1060
+ self._td_column_names_and_types = []
1061
+ self._td_column_names_and_sqlalchemy_types = {}
1062
+ for col in self._metaexpr.c:
1063
+ if isinstance(col.type, sqlalchemy.sql.sqltypes.NullType):
1064
+ tdtype = TeradataTypes.TD_NULL_TYPE.value
1065
+ else:
1066
+ tdtype = "{}".format(col.type)
1067
+
1068
+ self._column_names_and_types.append((str(col.name), UtilFuncs._teradata_type_to_python_type(col.type)))
1069
+ self._td_column_names_and_types.append((str(col.name), tdtype))
1070
+ self._td_column_names_and_sqlalchemy_types[(str(col.name)).lower()] = col.type
1071
+
1072
+ # Set the Geometry column, which will be used as "geometry"
1073
+ # property.
1074
+ if self.__geom_column is None and \
1075
+ isinstance(col.type, (GEOMETRY, MBR, MBB)):
1076
+ self.__geom_column = col
1077
+
1078
+ if self.__geom_column is None:
1079
+ error_code = MessageCodes.NO_GEOM_COLUMN_EXIST
1080
+ raise TeradataMlException(Messages.get_message(error_code), error_code)
1081
+
1082
+ def _generate_child_metaexpr(self, metaexpr):
1083
+ """
1084
+ Internal function that generates the metaexpression by converting
1085
+ _SQLColumnExpression to GeoDataFrameColumn.
1086
+
1087
+ PARAMETERS:
1088
+ metaexpr:
1089
+ Required Arguments.
1090
+ Specifies the metaexpression to update.
1091
+ Types: _MetaExpression
1092
+
1093
+ RETURNS:
1094
+ _MetaExpression
1095
+
1096
+ RAISES:
1097
+ None.
1098
+
1099
+ EXAMPLES:
1100
+ self._metaexpr = self._generate_child_metaexpr(metaexpr)
1101
+ """
1102
+ metaexpr.c = [GeoDataFrameColumn(col.expression)
1103
+ if not isinstance(col, GeoDataFrameColumn) else col
1104
+ for col in metaexpr.c]
1105
+ return metaexpr