teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (1285) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +1864 -1640
  4. teradataml/__init__.py +70 -60
  5. teradataml/_version.py +11 -11
  6. teradataml/analytics/Transformations.py +2995 -2995
  7. teradataml/analytics/__init__.py +81 -83
  8. teradataml/analytics/analytic_function_executor.py +2013 -2010
  9. teradataml/analytics/analytic_query_generator.py +958 -958
  10. teradataml/analytics/byom/H2OPredict.py +514 -514
  11. teradataml/analytics/byom/PMMLPredict.py +437 -437
  12. teradataml/analytics/byom/__init__.py +14 -14
  13. teradataml/analytics/json_parser/__init__.py +130 -130
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
  15. teradataml/analytics/json_parser/json_store.py +191 -191
  16. teradataml/analytics/json_parser/metadata.py +1637 -1637
  17. teradataml/analytics/json_parser/utils.py +804 -803
  18. teradataml/analytics/meta_class.py +196 -196
  19. teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
  21. teradataml/analytics/sqle/__init__.py +97 -110
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
  24. teradataml/analytics/table_operator/__init__.py +10 -10
  25. teradataml/analytics/uaf/__init__.py +63 -63
  26. teradataml/analytics/utils.py +693 -692
  27. teradataml/analytics/valib.py +1603 -1600
  28. teradataml/automl/__init__.py +1628 -0
  29. teradataml/automl/custom_json_utils.py +1270 -0
  30. teradataml/automl/data_preparation.py +993 -0
  31. teradataml/automl/data_transformation.py +727 -0
  32. teradataml/automl/feature_engineering.py +1648 -0
  33. teradataml/automl/feature_exploration.py +547 -0
  34. teradataml/automl/model_evaluation.py +163 -0
  35. teradataml/automl/model_training.py +887 -0
  36. teradataml/catalog/__init__.py +1 -3
  37. teradataml/catalog/byom.py +1759 -1716
  38. teradataml/catalog/function_argument_mapper.py +859 -861
  39. teradataml/catalog/model_cataloging_utils.py +491 -1510
  40. teradataml/clients/pkce_client.py +481 -481
  41. teradataml/common/aed_utils.py +6 -2
  42. teradataml/common/bulk_exposed_utils.py +111 -111
  43. teradataml/common/constants.py +1433 -1441
  44. teradataml/common/deprecations.py +160 -0
  45. teradataml/common/exceptions.py +73 -73
  46. teradataml/common/formula.py +742 -742
  47. teradataml/common/garbagecollector.py +592 -635
  48. teradataml/common/messagecodes.py +422 -431
  49. teradataml/common/messages.py +227 -231
  50. teradataml/common/sqlbundle.py +693 -693
  51. teradataml/common/td_coltype_code_to_tdtype.py +48 -48
  52. teradataml/common/utils.py +2418 -2500
  53. teradataml/common/warnings.py +25 -25
  54. teradataml/common/wrapper_utils.py +1 -110
  55. teradataml/config/dummy_file1.cfg +4 -4
  56. teradataml/config/dummy_file2.cfg +2 -2
  57. teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
  58. teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
  59. teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
  60. teradataml/context/aed_context.py +217 -217
  61. teradataml/context/context.py +1071 -999
  62. teradataml/data/A_loan.csv +19 -19
  63. teradataml/data/BINARY_REALS_LEFT.csv +11 -11
  64. teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
  65. teradataml/data/B_loan.csv +49 -49
  66. teradataml/data/BuoyData2.csv +17 -17
  67. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
  68. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
  69. teradataml/data/Convolve2RealsLeft.csv +5 -5
  70. teradataml/data/Convolve2RealsRight.csv +5 -5
  71. teradataml/data/Convolve2ValidLeft.csv +11 -11
  72. teradataml/data/Convolve2ValidRight.csv +11 -11
  73. teradataml/data/DFFTConv_Real_8_8.csv +65 -65
  74. teradataml/data/Orders1_12mf.csv +24 -24
  75. teradataml/data/Pi_loan.csv +7 -7
  76. teradataml/data/SMOOTHED_DATA.csv +7 -7
  77. teradataml/data/TestDFFT8.csv +9 -9
  78. teradataml/data/TestRiver.csv +109 -109
  79. teradataml/data/Traindata.csv +28 -28
  80. teradataml/data/acf.csv +17 -17
  81. teradataml/data/adaboost_example.json +34 -34
  82. teradataml/data/adaboostpredict_example.json +24 -24
  83. teradataml/data/additional_table.csv +10 -10
  84. teradataml/data/admissions_test.csv +21 -21
  85. teradataml/data/admissions_train.csv +41 -41
  86. teradataml/data/admissions_train_nulls.csv +41 -41
  87. teradataml/data/ageandheight.csv +13 -13
  88. teradataml/data/ageandpressure.csv +31 -31
  89. teradataml/data/antiselect_example.json +36 -36
  90. teradataml/data/antiselect_input.csv +8 -8
  91. teradataml/data/antiselect_input_mixed_case.csv +8 -8
  92. teradataml/data/applicant_external.csv +6 -6
  93. teradataml/data/applicant_reference.csv +6 -6
  94. teradataml/data/arima_example.json +9 -9
  95. teradataml/data/assortedtext_input.csv +8 -8
  96. teradataml/data/attribution_example.json +33 -33
  97. teradataml/data/attribution_sample_table.csv +27 -27
  98. teradataml/data/attribution_sample_table1.csv +6 -6
  99. teradataml/data/attribution_sample_table2.csv +11 -11
  100. teradataml/data/bank_churn.csv +10001 -0
  101. teradataml/data/bank_web_clicks1.csv +42 -42
  102. teradataml/data/bank_web_clicks2.csv +91 -91
  103. teradataml/data/bank_web_url.csv +85 -85
  104. teradataml/data/barrier.csv +2 -2
  105. teradataml/data/barrier_new.csv +3 -3
  106. teradataml/data/betweenness_example.json +13 -13
  107. teradataml/data/bin_breaks.csv +8 -8
  108. teradataml/data/bin_fit_ip.csv +3 -3
  109. teradataml/data/binary_complex_left.csv +11 -11
  110. teradataml/data/binary_complex_right.csv +11 -11
  111. teradataml/data/binary_matrix_complex_left.csv +21 -21
  112. teradataml/data/binary_matrix_complex_right.csv +21 -21
  113. teradataml/data/binary_matrix_real_left.csv +21 -21
  114. teradataml/data/binary_matrix_real_right.csv +21 -21
  115. teradataml/data/blood2ageandweight.csv +26 -26
  116. teradataml/data/bmi.csv +501 -0
  117. teradataml/data/boston.csv +507 -507
  118. teradataml/data/buoydata_mix.csv +11 -11
  119. teradataml/data/burst_data.csv +5 -5
  120. teradataml/data/burst_example.json +20 -20
  121. teradataml/data/byom_example.json +17 -17
  122. teradataml/data/bytes_table.csv +3 -3
  123. teradataml/data/cal_housing_ex_raw.csv +70 -70
  124. teradataml/data/callers.csv +7 -7
  125. teradataml/data/calls.csv +10 -10
  126. teradataml/data/cars_hist.csv +33 -33
  127. teradataml/data/cat_table.csv +24 -24
  128. teradataml/data/ccm_example.json +31 -31
  129. teradataml/data/ccm_input.csv +91 -91
  130. teradataml/data/ccm_input2.csv +13 -13
  131. teradataml/data/ccmexample.csv +101 -101
  132. teradataml/data/ccmprepare_example.json +8 -8
  133. teradataml/data/ccmprepare_input.csv +91 -91
  134. teradataml/data/cfilter_example.json +12 -12
  135. teradataml/data/changepointdetection_example.json +18 -18
  136. teradataml/data/changepointdetectionrt_example.json +8 -8
  137. teradataml/data/chi_sq.csv +2 -2
  138. teradataml/data/churn_data.csv +14 -14
  139. teradataml/data/churn_emission.csv +35 -35
  140. teradataml/data/churn_initial.csv +3 -3
  141. teradataml/data/churn_state_transition.csv +5 -5
  142. teradataml/data/citedges_2.csv +745 -745
  143. teradataml/data/citvertices_2.csv +1210 -1210
  144. teradataml/data/clicks2.csv +16 -16
  145. teradataml/data/clickstream.csv +12 -12
  146. teradataml/data/clickstream1.csv +11 -11
  147. teradataml/data/closeness_example.json +15 -15
  148. teradataml/data/complaints.csv +21 -21
  149. teradataml/data/complaints_mini.csv +3 -3
  150. teradataml/data/complaints_testtoken.csv +224 -224
  151. teradataml/data/complaints_tokens_test.csv +353 -353
  152. teradataml/data/complaints_traintoken.csv +472 -472
  153. teradataml/data/computers_category.csv +1001 -1001
  154. teradataml/data/computers_test1.csv +1252 -1252
  155. teradataml/data/computers_train1.csv +5009 -5009
  156. teradataml/data/computers_train1_clustered.csv +5009 -5009
  157. teradataml/data/confusionmatrix_example.json +9 -9
  158. teradataml/data/conversion_event_table.csv +3 -3
  159. teradataml/data/corr_input.csv +17 -17
  160. teradataml/data/correlation_example.json +11 -11
  161. teradataml/data/coxhazardratio_example.json +39 -39
  162. teradataml/data/coxph_example.json +15 -15
  163. teradataml/data/coxsurvival_example.json +28 -28
  164. teradataml/data/cpt.csv +41 -41
  165. teradataml/data/credit_ex_merged.csv +45 -45
  166. teradataml/data/customer_loyalty.csv +301 -301
  167. teradataml/data/customer_loyalty_newseq.csv +31 -31
  168. teradataml/data/dataframe_example.json +146 -146
  169. teradataml/data/decisionforest_example.json +37 -37
  170. teradataml/data/decisionforestpredict_example.json +38 -38
  171. teradataml/data/decisiontree_example.json +21 -21
  172. teradataml/data/decisiontreepredict_example.json +45 -45
  173. teradataml/data/dfft2_size4_real.csv +17 -17
  174. teradataml/data/dfft2_test_matrix16.csv +17 -17
  175. teradataml/data/dfft2conv_real_4_4.csv +65 -65
  176. teradataml/data/diabetes.csv +443 -443
  177. teradataml/data/diabetes_test.csv +89 -89
  178. teradataml/data/dict_table.csv +5 -5
  179. teradataml/data/docperterm_table.csv +4 -4
  180. teradataml/data/docs/__init__.py +1 -1
  181. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
  182. teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
  183. teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
  184. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
  185. teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
  186. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
  187. teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
  188. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
  189. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
  190. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
  191. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
  192. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
  193. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
  194. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
  195. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
  196. teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
  197. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
  198. teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
  199. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
  200. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
  201. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
  202. teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
  203. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
  204. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
  205. teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
  206. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
  207. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
  208. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
  209. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +132 -132
  210. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +103 -103
  211. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
  212. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +101 -101
  213. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
  214. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
  215. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
  216. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
  217. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
  218. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
  219. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
  220. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
  221. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
  222. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
  223. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
  224. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
  225. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
  226. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
  227. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
  228. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
  229. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
  230. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
  231. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
  232. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
  233. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
  234. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +126 -126
  235. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
  236. teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
  237. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
  238. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
  239. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
  240. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
  241. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
  242. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
  243. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +243 -243
  244. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
  245. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
  246. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
  247. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
  248. teradataml/data/docs/sqle/docs_17_20/FTest.py +160 -160
  249. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
  250. teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
  251. teradataml/data/docs/sqle/docs_17_20/GLM.py +380 -380
  252. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
  253. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
  254. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
  255. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +123 -123
  256. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
  257. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
  258. teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
  259. teradataml/data/docs/sqle/docs_17_20/KMeans.py +204 -204
  260. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
  261. teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
  262. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
  263. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
  264. teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
  265. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
  266. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
  267. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
  268. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +117 -117
  269. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
  270. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
  271. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
  272. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
  273. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +225 -225
  274. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +115 -115
  275. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
  276. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
  277. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
  278. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
  279. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
  280. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
  281. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
  282. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
  283. teradataml/data/docs/sqle/docs_17_20/ROC.py +163 -163
  284. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
  285. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
  286. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
  287. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
  288. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
  289. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
  290. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
  291. teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
  292. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +202 -202
  293. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
  294. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +197 -197
  295. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +110 -109
  296. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
  297. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
  298. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
  299. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
  300. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
  301. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
  302. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
  303. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
  304. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +171 -171
  305. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
  306. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
  307. teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
  308. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
  309. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
  310. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
  311. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
  312. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
  313. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
  314. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
  315. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
  316. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +353 -353
  317. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +275 -275
  318. teradataml/data/docs/sqle/docs_17_20/ZTest.py +155 -155
  319. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
  320. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
  321. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
  322. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
  323. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
  324. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
  325. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
  326. teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
  327. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
  328. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
  329. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
  330. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
  331. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
  332. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
  333. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
  334. teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
  335. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
  336. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
  337. teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
  338. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
  339. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
  340. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
  341. teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
  342. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
  343. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
  344. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
  345. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
  346. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
  347. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
  348. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
  349. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
  350. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
  351. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
  352. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
  353. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
  354. teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
  355. teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
  356. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
  357. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
  358. teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
  359. teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
  360. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
  361. teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
  362. teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
  363. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
  364. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
  365. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
  366. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
  367. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
  368. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
  369. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
  370. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
  371. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
  372. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
  373. teradataml/data/dtw_example.json +17 -17
  374. teradataml/data/dtw_t1.csv +11 -11
  375. teradataml/data/dtw_t2.csv +4 -4
  376. teradataml/data/dwt2d_example.json +15 -15
  377. teradataml/data/dwt_example.json +14 -14
  378. teradataml/data/dwt_filter_dim.csv +5 -5
  379. teradataml/data/emission.csv +9 -9
  380. teradataml/data/emp_table_by_dept.csv +19 -19
  381. teradataml/data/employee_info.csv +4 -4
  382. teradataml/data/employee_table.csv +6 -6
  383. teradataml/data/excluding_event_table.csv +2 -2
  384. teradataml/data/finance_data.csv +6 -6
  385. teradataml/data/finance_data2.csv +61 -61
  386. teradataml/data/finance_data3.csv +93 -93
  387. teradataml/data/fish.csv +160 -0
  388. teradataml/data/fm_blood2ageandweight.csv +26 -26
  389. teradataml/data/fmeasure_example.json +11 -11
  390. teradataml/data/followers_leaders.csv +10 -10
  391. teradataml/data/fpgrowth_example.json +12 -12
  392. teradataml/data/frequentpaths_example.json +29 -29
  393. teradataml/data/friends.csv +9 -9
  394. teradataml/data/fs_input.csv +33 -33
  395. teradataml/data/fs_input1.csv +33 -33
  396. teradataml/data/genData.csv +513 -513
  397. teradataml/data/geodataframe_example.json +39 -39
  398. teradataml/data/glass_types.csv +215 -0
  399. teradataml/data/glm_admissions_model.csv +12 -12
  400. teradataml/data/glm_example.json +29 -29
  401. teradataml/data/glml1l2_example.json +28 -28
  402. teradataml/data/glml1l2predict_example.json +54 -54
  403. teradataml/data/glmpredict_example.json +54 -54
  404. teradataml/data/gq_t1.csv +21 -21
  405. teradataml/data/hconvolve_complex_right.csv +5 -5
  406. teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
  407. teradataml/data/histogram_example.json +11 -11
  408. teradataml/data/hmmdecoder_example.json +78 -78
  409. teradataml/data/hmmevaluator_example.json +24 -24
  410. teradataml/data/hmmsupervised_example.json +10 -10
  411. teradataml/data/hmmunsupervised_example.json +7 -7
  412. teradataml/data/house_values.csv +12 -12
  413. teradataml/data/house_values2.csv +13 -13
  414. teradataml/data/housing_cat.csv +7 -7
  415. teradataml/data/housing_data.csv +9 -9
  416. teradataml/data/housing_test.csv +47 -47
  417. teradataml/data/housing_test_binary.csv +47 -47
  418. teradataml/data/housing_train.csv +493 -493
  419. teradataml/data/housing_train_attribute.csv +4 -4
  420. teradataml/data/housing_train_binary.csv +437 -437
  421. teradataml/data/housing_train_parameter.csv +2 -2
  422. teradataml/data/housing_train_response.csv +493 -493
  423. teradataml/data/ibm_stock.csv +370 -370
  424. teradataml/data/ibm_stock1.csv +370 -370
  425. teradataml/data/identitymatch_example.json +21 -21
  426. teradataml/data/idf_table.csv +4 -4
  427. teradataml/data/impressions.csv +101 -101
  428. teradataml/data/inflation.csv +21 -21
  429. teradataml/data/initial.csv +3 -3
  430. teradataml/data/insect_sprays.csv +12 -12
  431. teradataml/data/insurance.csv +1339 -1339
  432. teradataml/data/interpolator_example.json +12 -12
  433. teradataml/data/iris_altinput.csv +481 -481
  434. teradataml/data/iris_attribute_output.csv +8 -8
  435. teradataml/data/iris_attribute_test.csv +121 -121
  436. teradataml/data/iris_attribute_train.csv +481 -481
  437. teradataml/data/iris_category_expect_predict.csv +31 -31
  438. teradataml/data/iris_data.csv +151 -0
  439. teradataml/data/iris_input.csv +151 -151
  440. teradataml/data/iris_response_train.csv +121 -121
  441. teradataml/data/iris_test.csv +31 -31
  442. teradataml/data/iris_train.csv +121 -121
  443. teradataml/data/join_table1.csv +4 -4
  444. teradataml/data/join_table2.csv +4 -4
  445. teradataml/data/jsons/anly_function_name.json +6 -6
  446. teradataml/data/jsons/byom/dataikupredict.json +147 -147
  447. teradataml/data/jsons/byom/datarobotpredict.json +146 -146
  448. teradataml/data/jsons/byom/h2opredict.json +194 -194
  449. teradataml/data/jsons/byom/onnxpredict.json +186 -186
  450. teradataml/data/jsons/byom/pmmlpredict.json +146 -146
  451. teradataml/data/jsons/paired_functions.json +435 -435
  452. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
  453. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
  454. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
  455. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
  456. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
  457. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
  458. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
  459. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
  460. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
  461. teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
  462. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
  463. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
  464. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
  465. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
  466. teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
  467. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
  468. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
  469. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
  470. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
  471. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
  472. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
  473. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
  474. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
  475. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
  476. teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
  477. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
  478. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
  479. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
  480. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
  481. teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
  482. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
  483. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
  484. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
  485. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
  486. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
  487. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
  488. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
  489. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
  490. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
  491. teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
  492. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
  493. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
  494. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
  495. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
  496. teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
  497. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
  498. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
  499. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
  500. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
  501. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
  502. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
  503. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
  504. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
  505. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
  506. teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
  507. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
  508. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
  509. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
  510. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
  511. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
  512. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
  513. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
  514. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
  515. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
  516. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
  517. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
  518. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
  519. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
  520. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
  521. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
  522. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
  523. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
  524. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
  525. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
  526. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
  527. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
  528. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
  529. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
  530. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
  531. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
  532. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
  533. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
  534. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
  535. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
  536. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
  537. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
  538. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
  539. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
  540. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
  541. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
  542. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
  543. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
  544. teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
  545. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
  546. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
  547. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
  548. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
  549. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
  550. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
  551. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
  552. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
  553. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
  554. teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
  555. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
  556. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
  557. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
  558. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +76 -76
  559. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
  560. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
  561. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
  562. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
  563. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
  564. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
  565. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
  566. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
  567. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
  568. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
  569. teradataml/data/jsons/sqle/17.20/TD_FTest.json +186 -186
  570. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
  571. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
  572. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
  573. teradataml/data/jsons/sqle/17.20/TD_GLM.json +431 -431
  574. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +125 -125
  575. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
  576. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
  577. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +91 -91
  578. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
  579. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
  580. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
  581. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +211 -211
  582. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
  583. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
  584. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
  585. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +101 -101
  586. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
  587. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
  588. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
  589. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
  590. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
  591. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
  592. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
  593. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
  594. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
  595. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
  596. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
  597. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
  598. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
  599. teradataml/data/jsons/sqle/17.20/TD_ROC.json +177 -177
  600. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
  601. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
  602. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
  603. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
  604. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
  605. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
  606. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
  607. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
  608. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +124 -124
  609. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +156 -156
  610. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +70 -70
  611. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
  612. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
  613. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
  614. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
  615. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
  616. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
  617. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
  618. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
  619. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
  620. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
  621. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
  622. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
  623. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
  624. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
  625. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +312 -312
  626. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +182 -182
  627. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +170 -170
  628. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
  629. teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
  630. teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
  631. teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
  632. teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
  633. teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
  634. teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
  635. teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
  636. teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
  637. teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
  638. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
  639. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
  640. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
  641. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
  642. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
  643. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
  644. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
  645. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
  646. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
  647. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
  648. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
  649. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
  650. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
  651. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
  652. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
  653. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
  654. teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
  655. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
  656. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
  657. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
  658. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
  659. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
  660. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
  661. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
  662. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
  663. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
  664. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
  665. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
  666. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
  667. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
  668. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
  669. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
  670. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
  671. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
  672. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
  673. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
  674. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
  675. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
  676. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
  677. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
  678. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
  679. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
  680. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
  681. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
  682. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
  683. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
  684. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
  685. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
  686. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
  687. teradataml/data/kmeans_example.json +17 -17
  688. teradataml/data/kmeans_us_arrests_data.csv +0 -0
  689. teradataml/data/knn_example.json +18 -18
  690. teradataml/data/knnrecommender_example.json +6 -6
  691. teradataml/data/knnrecommenderpredict_example.json +12 -12
  692. teradataml/data/lar_example.json +17 -17
  693. teradataml/data/larpredict_example.json +30 -30
  694. teradataml/data/lc_new_predictors.csv +5 -5
  695. teradataml/data/lc_new_reference.csv +9 -9
  696. teradataml/data/lda_example.json +8 -8
  697. teradataml/data/ldainference_example.json +14 -14
  698. teradataml/data/ldatopicsummary_example.json +8 -8
  699. teradataml/data/levendist_input.csv +13 -13
  700. teradataml/data/levenshteindistance_example.json +10 -10
  701. teradataml/data/linreg_example.json +9 -9
  702. teradataml/data/load_example_data.py +326 -323
  703. teradataml/data/loan_prediction.csv +295 -295
  704. teradataml/data/lungcancer.csv +138 -138
  705. teradataml/data/mappingdata.csv +12 -12
  706. teradataml/data/milk_timeseries.csv +157 -157
  707. teradataml/data/min_max_titanic.csv +4 -4
  708. teradataml/data/minhash_example.json +6 -6
  709. teradataml/data/ml_ratings.csv +7547 -7547
  710. teradataml/data/ml_ratings_10.csv +2445 -2445
  711. teradataml/data/model1_table.csv +5 -5
  712. teradataml/data/model2_table.csv +5 -5
  713. teradataml/data/models/iris_db_glm_model.pmml +56 -56
  714. teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
  715. teradataml/data/modularity_example.json +12 -12
  716. teradataml/data/movavg_example.json +7 -7
  717. teradataml/data/mtx1.csv +7 -7
  718. teradataml/data/mtx2.csv +13 -13
  719. teradataml/data/multi_model_classification.csv +401 -0
  720. teradataml/data/multi_model_regression.csv +401 -0
  721. teradataml/data/mvdfft8.csv +9 -9
  722. teradataml/data/naivebayes_example.json +9 -9
  723. teradataml/data/naivebayespredict_example.json +19 -19
  724. teradataml/data/naivebayestextclassifier2_example.json +6 -6
  725. teradataml/data/naivebayestextclassifier_example.json +8 -8
  726. teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
  727. teradataml/data/name_Find_configure.csv +10 -10
  728. teradataml/data/namedentityfinder_example.json +14 -14
  729. teradataml/data/namedentityfinderevaluator_example.json +10 -10
  730. teradataml/data/namedentityfindertrainer_example.json +6 -6
  731. teradataml/data/nb_iris_input_test.csv +31 -31
  732. teradataml/data/nb_iris_input_train.csv +121 -121
  733. teradataml/data/nbp_iris_model.csv +13 -13
  734. teradataml/data/ner_extractor_text.csv +2 -2
  735. teradataml/data/ner_sports_test2.csv +29 -29
  736. teradataml/data/ner_sports_train.csv +501 -501
  737. teradataml/data/nerevaluator_example.json +5 -5
  738. teradataml/data/nerextractor_example.json +18 -18
  739. teradataml/data/nermem_sports_test.csv +17 -17
  740. teradataml/data/nermem_sports_train.csv +50 -50
  741. teradataml/data/nertrainer_example.json +6 -6
  742. teradataml/data/ngrams_example.json +6 -6
  743. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
  744. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
  745. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
  746. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
  747. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
  748. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
  749. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
  750. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
  751. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
  752. teradataml/data/npath_example.json +23 -23
  753. teradataml/data/ntree_example.json +14 -14
  754. teradataml/data/numeric_strings.csv +4 -4
  755. teradataml/data/numerics.csv +4 -4
  756. teradataml/data/ocean_buoy.csv +17 -17
  757. teradataml/data/ocean_buoy2.csv +17 -17
  758. teradataml/data/ocean_buoys.csv +27 -27
  759. teradataml/data/ocean_buoys2.csv +10 -10
  760. teradataml/data/ocean_buoys_nonpti.csv +28 -28
  761. teradataml/data/ocean_buoys_seq.csv +29 -29
  762. teradataml/data/openml_example.json +63 -0
  763. teradataml/data/optional_event_table.csv +4 -4
  764. teradataml/data/orders1.csv +11 -11
  765. teradataml/data/orders1_12.csv +12 -12
  766. teradataml/data/orders_ex.csv +4 -4
  767. teradataml/data/pack_example.json +8 -8
  768. teradataml/data/package_tracking.csv +19 -19
  769. teradataml/data/package_tracking_pti.csv +18 -18
  770. teradataml/data/pagerank_example.json +13 -13
  771. teradataml/data/paragraphs_input.csv +6 -6
  772. teradataml/data/pathanalyzer_example.json +7 -7
  773. teradataml/data/pathgenerator_example.json +7 -7
  774. teradataml/data/phrases.csv +7 -7
  775. teradataml/data/pivot_example.json +8 -8
  776. teradataml/data/pivot_input.csv +22 -22
  777. teradataml/data/playerRating.csv +31 -31
  778. teradataml/data/postagger_example.json +6 -6
  779. teradataml/data/posttagger_output.csv +44 -44
  780. teradataml/data/production_data.csv +16 -16
  781. teradataml/data/production_data2.csv +7 -7
  782. teradataml/data/randomsample_example.json +31 -31
  783. teradataml/data/randomwalksample_example.json +8 -8
  784. teradataml/data/rank_table.csv +6 -6
  785. teradataml/data/ref_mobile_data.csv +4 -4
  786. teradataml/data/ref_mobile_data_dense.csv +2 -2
  787. teradataml/data/ref_url.csv +17 -17
  788. teradataml/data/restaurant_reviews.csv +7 -7
  789. teradataml/data/river_data.csv +145 -145
  790. teradataml/data/roc_example.json +7 -7
  791. teradataml/data/roc_input.csv +101 -101
  792. teradataml/data/rule_inputs.csv +6 -6
  793. teradataml/data/rule_table.csv +2 -2
  794. teradataml/data/sales.csv +7 -7
  795. teradataml/data/sales_transaction.csv +501 -501
  796. teradataml/data/salesdata.csv +342 -342
  797. teradataml/data/sample_cities.csv +2 -2
  798. teradataml/data/sample_shapes.csv +10 -10
  799. teradataml/data/sample_streets.csv +2 -2
  800. teradataml/data/sampling_example.json +15 -15
  801. teradataml/data/sax_example.json +8 -8
  802. teradataml/data/scale_example.json +23 -23
  803. teradataml/data/scale_housing.csv +11 -11
  804. teradataml/data/scale_housing_test.csv +6 -6
  805. teradataml/data/scale_stat.csv +11 -11
  806. teradataml/data/scalebypartition_example.json +13 -13
  807. teradataml/data/scalemap_example.json +13 -13
  808. teradataml/data/scalesummary_example.json +12 -12
  809. teradataml/data/score_category.csv +101 -101
  810. teradataml/data/score_summary.csv +4 -4
  811. teradataml/data/script_example.json +9 -9
  812. teradataml/data/scripts/deploy_script.py +65 -0
  813. teradataml/data/scripts/mapper.R +20 -0
  814. teradataml/data/scripts/mapper.py +15 -15
  815. teradataml/data/scripts/mapper_replace.py +15 -15
  816. teradataml/data/scripts/sklearn/__init__.py +0 -0
  817. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  818. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  819. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  820. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  821. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  822. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  823. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  824. teradataml/data/seeds.csv +10 -10
  825. teradataml/data/sentenceextractor_example.json +6 -6
  826. teradataml/data/sentiment_extract_input.csv +11 -11
  827. teradataml/data/sentiment_train.csv +16 -16
  828. teradataml/data/sentiment_word.csv +20 -20
  829. teradataml/data/sentiment_word_input.csv +19 -19
  830. teradataml/data/sentimentextractor_example.json +24 -24
  831. teradataml/data/sentimenttrainer_example.json +8 -8
  832. teradataml/data/sequence_table.csv +10 -10
  833. teradataml/data/seriessplitter_example.json +7 -7
  834. teradataml/data/sessionize_example.json +17 -17
  835. teradataml/data/sessionize_table.csv +116 -116
  836. teradataml/data/setop_test1.csv +24 -24
  837. teradataml/data/setop_test2.csv +22 -22
  838. teradataml/data/soc_nw_edges.csv +10 -10
  839. teradataml/data/soc_nw_vertices.csv +7 -7
  840. teradataml/data/souvenir_timeseries.csv +167 -167
  841. teradataml/data/sparse_iris_attribute.csv +5 -5
  842. teradataml/data/sparse_iris_test.csv +121 -121
  843. teradataml/data/sparse_iris_train.csv +601 -601
  844. teradataml/data/star1.csv +6 -6
  845. teradataml/data/state_transition.csv +5 -5
  846. teradataml/data/stock_data.csv +53 -53
  847. teradataml/data/stock_movement.csv +11 -11
  848. teradataml/data/stock_vol.csv +76 -76
  849. teradataml/data/stop_words.csv +8 -8
  850. teradataml/data/store_sales.csv +37 -37
  851. teradataml/data/stringsimilarity_example.json +7 -7
  852. teradataml/data/strsimilarity_input.csv +13 -13
  853. teradataml/data/students.csv +101 -101
  854. teradataml/data/svm_iris_input_test.csv +121 -121
  855. teradataml/data/svm_iris_input_train.csv +481 -481
  856. teradataml/data/svm_iris_model.csv +7 -7
  857. teradataml/data/svmdense_example.json +9 -9
  858. teradataml/data/svmdensepredict_example.json +18 -18
  859. teradataml/data/svmsparse_example.json +7 -7
  860. teradataml/data/svmsparsepredict_example.json +13 -13
  861. teradataml/data/svmsparsesummary_example.json +7 -7
  862. teradataml/data/target_mobile_data.csv +13 -13
  863. teradataml/data/target_mobile_data_dense.csv +5 -5
  864. teradataml/data/templatedata.csv +1201 -1201
  865. teradataml/data/templates/open_source_ml.json +9 -0
  866. teradataml/data/teradataml_example.json +73 -1
  867. teradataml/data/test_classification.csv +101 -0
  868. teradataml/data/test_loan_prediction.csv +53 -53
  869. teradataml/data/test_pacf_12.csv +37 -37
  870. teradataml/data/test_prediction.csv +101 -0
  871. teradataml/data/test_regression.csv +101 -0
  872. teradataml/data/test_river2.csv +109 -109
  873. teradataml/data/text_inputs.csv +6 -6
  874. teradataml/data/textchunker_example.json +7 -7
  875. teradataml/data/textclassifier_example.json +6 -6
  876. teradataml/data/textclassifier_input.csv +7 -7
  877. teradataml/data/textclassifiertrainer_example.json +6 -6
  878. teradataml/data/textmorph_example.json +5 -5
  879. teradataml/data/textparser_example.json +15 -15
  880. teradataml/data/texttagger_example.json +11 -11
  881. teradataml/data/texttokenizer_example.json +6 -6
  882. teradataml/data/texttrainer_input.csv +11 -11
  883. teradataml/data/tf_example.json +6 -6
  884. teradataml/data/tfidf_example.json +13 -13
  885. teradataml/data/tfidf_input1.csv +201 -201
  886. teradataml/data/tfidf_train.csv +6 -6
  887. teradataml/data/time_table1.csv +535 -535
  888. teradataml/data/time_table2.csv +14 -14
  889. teradataml/data/timeseriesdata.csv +1601 -1601
  890. teradataml/data/timeseriesdatasetsd4.csv +105 -105
  891. teradataml/data/titanic.csv +892 -892
  892. teradataml/data/token_table.csv +696 -696
  893. teradataml/data/train_multiclass.csv +101 -0
  894. teradataml/data/train_regression.csv +101 -0
  895. teradataml/data/train_regression_multiple_labels.csv +101 -0
  896. teradataml/data/train_tracking.csv +27 -27
  897. teradataml/data/transformation_table.csv +5 -5
  898. teradataml/data/transformation_table_new.csv +1 -1
  899. teradataml/data/tv_spots.csv +16 -16
  900. teradataml/data/twod_climate_data.csv +117 -117
  901. teradataml/data/uaf_example.json +475 -475
  902. teradataml/data/univariatestatistics_example.json +8 -8
  903. teradataml/data/unpack_example.json +9 -9
  904. teradataml/data/unpivot_example.json +9 -9
  905. teradataml/data/unpivot_input.csv +8 -8
  906. teradataml/data/us_air_pass.csv +36 -36
  907. teradataml/data/us_population.csv +624 -624
  908. teradataml/data/us_states_shapes.csv +52 -52
  909. teradataml/data/varmax_example.json +17 -17
  910. teradataml/data/vectordistance_example.json +25 -25
  911. teradataml/data/ville_climatedata.csv +121 -121
  912. teradataml/data/ville_tempdata.csv +12 -12
  913. teradataml/data/ville_tempdata1.csv +12 -12
  914. teradataml/data/ville_temperature.csv +11 -11
  915. teradataml/data/waveletTable.csv +1605 -1605
  916. teradataml/data/waveletTable2.csv +1605 -1605
  917. teradataml/data/weightedmovavg_example.json +8 -8
  918. teradataml/data/wft_testing.csv +5 -5
  919. teradataml/data/wine_data.csv +1600 -0
  920. teradataml/data/word_embed_input_table1.csv +5 -5
  921. teradataml/data/word_embed_input_table2.csv +4 -4
  922. teradataml/data/word_embed_model.csv +22 -22
  923. teradataml/data/words_input.csv +13 -13
  924. teradataml/data/xconvolve_complex_left.csv +6 -6
  925. teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
  926. teradataml/data/xgboost_example.json +35 -35
  927. teradataml/data/xgboostpredict_example.json +31 -31
  928. teradataml/dataframe/copy_to.py +1764 -1698
  929. teradataml/dataframe/data_transfer.py +2753 -2745
  930. teradataml/dataframe/dataframe.py +17545 -16946
  931. teradataml/dataframe/dataframe_utils.py +1837 -1740
  932. teradataml/dataframe/fastload.py +611 -603
  933. teradataml/dataframe/indexer.py +424 -424
  934. teradataml/dataframe/setop.py +1179 -1166
  935. teradataml/dataframe/sql.py +10090 -6432
  936. teradataml/dataframe/sql_function_parameters.py +439 -388
  937. teradataml/dataframe/sql_functions.py +652 -652
  938. teradataml/dataframe/sql_interfaces.py +220 -220
  939. teradataml/dataframe/vantage_function_types.py +674 -630
  940. teradataml/dataframe/window.py +693 -692
  941. teradataml/dbutils/__init__.py +3 -3
  942. teradataml/dbutils/dbutils.py +1167 -1150
  943. teradataml/dbutils/filemgr.py +267 -267
  944. teradataml/gen_ai/__init__.py +2 -2
  945. teradataml/gen_ai/convAI.py +472 -472
  946. teradataml/geospatial/__init__.py +3 -3
  947. teradataml/geospatial/geodataframe.py +1105 -1094
  948. teradataml/geospatial/geodataframecolumn.py +392 -387
  949. teradataml/geospatial/geometry_types.py +925 -925
  950. teradataml/hyperparameter_tuner/__init__.py +1 -1
  951. teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
  952. teradataml/hyperparameter_tuner/utils.py +281 -187
  953. teradataml/lib/aed_0_1.dll +0 -0
  954. teradataml/lib/libaed_0_1.dylib +0 -0
  955. teradataml/lib/libaed_0_1.so +0 -0
  956. teradataml/libaed_0_1.dylib +0 -0
  957. teradataml/libaed_0_1.so +0 -0
  958. teradataml/opensource/__init__.py +1 -0
  959. teradataml/opensource/sklearn/__init__.py +1 -0
  960. teradataml/opensource/sklearn/_class.py +255 -0
  961. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  962. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  963. teradataml/opensource/sklearn/constants.py +54 -0
  964. teradataml/options/__init__.py +121 -124
  965. teradataml/options/configure.py +337 -336
  966. teradataml/options/display.py +176 -176
  967. teradataml/plot/__init__.py +2 -2
  968. teradataml/plot/axis.py +1388 -1388
  969. teradataml/plot/constants.py +15 -15
  970. teradataml/plot/figure.py +398 -398
  971. teradataml/plot/plot.py +760 -760
  972. teradataml/plot/query_generator.py +83 -83
  973. teradataml/plot/subplot.py +216 -216
  974. teradataml/scriptmgmt/UserEnv.py +3788 -3761
  975. teradataml/scriptmgmt/__init__.py +3 -3
  976. teradataml/scriptmgmt/lls_utils.py +1616 -1604
  977. teradataml/series/series.py +532 -532
  978. teradataml/series/series_utils.py +71 -71
  979. teradataml/table_operators/Apply.py +949 -917
  980. teradataml/table_operators/Script.py +1719 -1982
  981. teradataml/table_operators/TableOperator.py +1207 -1616
  982. teradataml/table_operators/__init__.py +2 -3
  983. teradataml/table_operators/apply_query_generator.py +262 -262
  984. teradataml/table_operators/query_generator.py +507 -507
  985. teradataml/table_operators/table_operator_query_generator.py +460 -460
  986. teradataml/table_operators/table_operator_util.py +631 -639
  987. teradataml/table_operators/templates/dataframe_apply.template +184 -184
  988. teradataml/table_operators/templates/dataframe_map.template +176 -176
  989. teradataml/table_operators/templates/script_executor.template +170 -170
  990. teradataml/utils/dtypes.py +684 -684
  991. teradataml/utils/internal_buffer.py +84 -84
  992. teradataml/utils/print_versions.py +205 -205
  993. teradataml/utils/utils.py +410 -410
  994. teradataml/utils/validators.py +2239 -2115
  995. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +270 -41
  996. teradataml-20.0.0.0.dist-info/RECORD +1038 -0
  997. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +1 -1
  998. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +1 -1
  999. teradataml/analytics/mle/AdaBoost.py +0 -651
  1000. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  1001. teradataml/analytics/mle/Antiselect.py +0 -342
  1002. teradataml/analytics/mle/Arima.py +0 -641
  1003. teradataml/analytics/mle/ArimaPredict.py +0 -477
  1004. teradataml/analytics/mle/Attribution.py +0 -1070
  1005. teradataml/analytics/mle/Betweenness.py +0 -658
  1006. teradataml/analytics/mle/Burst.py +0 -711
  1007. teradataml/analytics/mle/CCM.py +0 -600
  1008. teradataml/analytics/mle/CCMPrepare.py +0 -324
  1009. teradataml/analytics/mle/CFilter.py +0 -460
  1010. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  1011. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  1012. teradataml/analytics/mle/Closeness.py +0 -737
  1013. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  1014. teradataml/analytics/mle/Correlation.py +0 -477
  1015. teradataml/analytics/mle/Correlation2.py +0 -573
  1016. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  1017. teradataml/analytics/mle/CoxPH.py +0 -556
  1018. teradataml/analytics/mle/CoxSurvival.py +0 -478
  1019. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  1020. teradataml/analytics/mle/DTW.py +0 -623
  1021. teradataml/analytics/mle/DWT.py +0 -564
  1022. teradataml/analytics/mle/DWT2D.py +0 -599
  1023. teradataml/analytics/mle/DecisionForest.py +0 -716
  1024. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  1025. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  1026. teradataml/analytics/mle/DecisionTree.py +0 -830
  1027. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  1028. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  1029. teradataml/analytics/mle/FMeasure.py +0 -402
  1030. teradataml/analytics/mle/FPGrowth.py +0 -734
  1031. teradataml/analytics/mle/FrequentPaths.py +0 -695
  1032. teradataml/analytics/mle/GLM.py +0 -558
  1033. teradataml/analytics/mle/GLML1L2.py +0 -547
  1034. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  1035. teradataml/analytics/mle/GLMPredict.py +0 -529
  1036. teradataml/analytics/mle/HMMDecoder.py +0 -945
  1037. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  1038. teradataml/analytics/mle/HMMSupervised.py +0 -521
  1039. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  1040. teradataml/analytics/mle/Histogram.py +0 -561
  1041. teradataml/analytics/mle/IDWT.py +0 -476
  1042. teradataml/analytics/mle/IDWT2D.py +0 -493
  1043. teradataml/analytics/mle/IdentityMatch.py +0 -763
  1044. teradataml/analytics/mle/Interpolator.py +0 -918
  1045. teradataml/analytics/mle/KMeans.py +0 -485
  1046. teradataml/analytics/mle/KNN.py +0 -627
  1047. teradataml/analytics/mle/KNNRecommender.py +0 -488
  1048. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  1049. teradataml/analytics/mle/LAR.py +0 -439
  1050. teradataml/analytics/mle/LARPredict.py +0 -478
  1051. teradataml/analytics/mle/LDA.py +0 -548
  1052. teradataml/analytics/mle/LDAInference.py +0 -492
  1053. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  1054. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  1055. teradataml/analytics/mle/LinReg.py +0 -433
  1056. teradataml/analytics/mle/LinRegPredict.py +0 -438
  1057. teradataml/analytics/mle/MinHash.py +0 -544
  1058. teradataml/analytics/mle/Modularity.py +0 -587
  1059. teradataml/analytics/mle/NEREvaluator.py +0 -410
  1060. teradataml/analytics/mle/NERExtractor.py +0 -595
  1061. teradataml/analytics/mle/NERTrainer.py +0 -458
  1062. teradataml/analytics/mle/NGrams.py +0 -570
  1063. teradataml/analytics/mle/NPath.py +0 -634
  1064. teradataml/analytics/mle/NTree.py +0 -549
  1065. teradataml/analytics/mle/NaiveBayes.py +0 -462
  1066. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  1067. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  1068. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  1069. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  1070. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  1071. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  1072. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  1073. teradataml/analytics/mle/POSTagger.py +0 -417
  1074. teradataml/analytics/mle/Pack.py +0 -411
  1075. teradataml/analytics/mle/PageRank.py +0 -535
  1076. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  1077. teradataml/analytics/mle/PathGenerator.py +0 -367
  1078. teradataml/analytics/mle/PathStart.py +0 -464
  1079. teradataml/analytics/mle/PathSummarizer.py +0 -470
  1080. teradataml/analytics/mle/Pivot.py +0 -471
  1081. teradataml/analytics/mle/ROC.py +0 -425
  1082. teradataml/analytics/mle/RandomSample.py +0 -637
  1083. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  1084. teradataml/analytics/mle/SAX.py +0 -779
  1085. teradataml/analytics/mle/SVMDense.py +0 -677
  1086. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  1087. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  1088. teradataml/analytics/mle/SVMSparse.py +0 -557
  1089. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  1090. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  1091. teradataml/analytics/mle/Sampling.py +0 -549
  1092. teradataml/analytics/mle/Scale.py +0 -565
  1093. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  1094. teradataml/analytics/mle/ScaleMap.py +0 -378
  1095. teradataml/analytics/mle/ScaleSummary.py +0 -320
  1096. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  1097. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  1098. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  1099. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  1100. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  1101. teradataml/analytics/mle/Sessionize.py +0 -475
  1102. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  1103. teradataml/analytics/mle/StringSimilarity.py +0 -425
  1104. teradataml/analytics/mle/TF.py +0 -389
  1105. teradataml/analytics/mle/TFIDF.py +0 -504
  1106. teradataml/analytics/mle/TextChunker.py +0 -414
  1107. teradataml/analytics/mle/TextClassifier.py +0 -399
  1108. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  1109. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  1110. teradataml/analytics/mle/TextMorph.py +0 -494
  1111. teradataml/analytics/mle/TextParser.py +0 -623
  1112. teradataml/analytics/mle/TextTagger.py +0 -530
  1113. teradataml/analytics/mle/TextTokenizer.py +0 -502
  1114. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  1115. teradataml/analytics/mle/Unpack.py +0 -526
  1116. teradataml/analytics/mle/Unpivot.py +0 -438
  1117. teradataml/analytics/mle/VarMax.py +0 -776
  1118. teradataml/analytics/mle/VectorDistance.py +0 -762
  1119. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  1120. teradataml/analytics/mle/XGBoost.py +0 -842
  1121. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  1122. teradataml/analytics/mle/__init__.py +0 -123
  1123. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  1124. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  1125. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  1126. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  1127. teradataml/analytics/mle/json/arima_mle.json +0 -172
  1128. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  1129. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  1130. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  1131. teradataml/analytics/mle/json/burst_mle.json +0 -140
  1132. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  1133. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  1134. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  1135. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  1136. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  1137. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  1138. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  1139. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  1140. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  1141. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  1142. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  1143. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  1144. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  1145. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  1146. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  1147. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  1148. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  1149. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  1150. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  1151. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  1152. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  1153. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  1154. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  1155. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  1156. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  1157. teradataml/analytics/mle/json/glm_mle.json +0 -111
  1158. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  1159. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  1160. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  1161. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  1162. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  1163. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  1164. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  1165. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  1166. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  1167. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  1168. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  1169. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  1170. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  1171. teradataml/analytics/mle/json/knn_mle.json +0 -141
  1172. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  1173. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  1174. teradataml/analytics/mle/json/lar_mle.json +0 -78
  1175. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  1176. teradataml/analytics/mle/json/lda_mle.json +0 -130
  1177. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  1178. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  1179. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  1180. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  1181. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  1182. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  1183. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  1184. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  1185. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  1186. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  1187. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  1188. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  1189. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  1190. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  1191. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  1192. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  1193. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  1194. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  1195. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  1196. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  1197. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  1198. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  1199. teradataml/analytics/mle/json/pack_mle.json +0 -58
  1200. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  1201. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  1202. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  1203. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  1204. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  1205. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  1206. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  1207. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  1208. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  1209. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  1210. teradataml/analytics/mle/json/roc_mle.json +0 -73
  1211. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  1212. teradataml/analytics/mle/json/sax_mle.json +0 -154
  1213. teradataml/analytics/mle/json/scale_mle.json +0 -93
  1214. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  1215. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  1216. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  1217. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  1218. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  1219. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  1220. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  1221. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  1222. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  1223. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  1224. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  1225. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  1226. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  1227. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  1228. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  1229. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  1230. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  1231. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  1232. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  1233. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  1234. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  1235. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  1236. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  1237. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  1238. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  1239. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  1240. teradataml/analytics/mle/json/tf_mle.json +0 -33
  1241. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  1242. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  1243. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  1244. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  1245. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  1246. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  1247. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  1248. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  1249. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  1250. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  1251. teradataml/analytics/sqle/Antiselect.py +0 -321
  1252. teradataml/analytics/sqle/Attribution.py +0 -603
  1253. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  1254. teradataml/analytics/sqle/GLMPredict.py +0 -430
  1255. teradataml/analytics/sqle/MovingAverage.py +0 -543
  1256. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  1257. teradataml/analytics/sqle/NPath.py +0 -632
  1258. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  1259. teradataml/analytics/sqle/Pack.py +0 -388
  1260. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  1261. teradataml/analytics/sqle/Sessionize.py +0 -390
  1262. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  1263. teradataml/analytics/sqle/Unpack.py +0 -503
  1264. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  1265. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  1266. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  1267. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  1268. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  1269. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  1270. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  1271. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  1272. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  1273. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  1274. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  1275. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  1276. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  1277. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  1278. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  1279. teradataml/catalog/model_cataloging.py +0 -980
  1280. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  1281. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  1282. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  1283. teradataml/table_operators/sandbox_container_util.py +0 -643
  1284. teradataml-17.20.0.7.dist-info/RECORD +0 -1280
  1285. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
@@ -1,1708 +1,1708 @@
1
- """
2
- Unpublished work.
3
- Copyright (c) 2021 by Teradata Corporation. All rights reserved.
4
- TERADATA CORPORATION CONFIDENTIAL AND TRADE SECRET
5
-
6
- Primary Owner: pradeep.garre@teradata.com
7
- Secondary Owner: PankajVinod.Purandare@teradata.com
8
-
9
- This file implements several classes for representing the input, output and other
10
- arguments of analytic functions. These are used by IN-DB SQLE analytic framework
11
- for parsing and storing the JSON details of each argument of each function.
12
- File implements classes for following:
13
- * Analytic Function Argument Base
14
- * Analytic Function Input Argument
15
- * Analytic Function Output Argument
16
- * Analytic Function Other Argument
17
- """
18
- from teradataml.analytics.json_parser import PartitionKind
19
- from teradataml.utils.dtypes import _Dtypes
20
- from teradataml.utils.validators import _Validators
21
- from teradataml.common.messages import Messages, MessageCodes
22
- from teradataml.common.exceptions import TeradataMlException
23
- from teradataml.common.utils import UtilFuncs
24
- from teradataml.analytics.json_parser import UAFJsonFields as SJF
25
- from teradataml.dataframe.dataframe import TDSeries, TDMatrix, TDAnalyticResult, TDGenSeries
26
-
27
-
28
- class _DependentArgument:
29
- """
30
- Class to hold the information about dependent argument.
31
- """
32
- def __init__(self, sql_name, type, operator, right_operand):
33
- """
34
- DESCRIPTION:
35
- Constructor for the class.
36
-
37
- PARAMETERS:
38
- sql_name:
39
- Required Argument.
40
- Specifies the name of the dependent argument in SQL.
41
- Types: str
42
-
43
- type:
44
- Required Argument.
45
- Specifies the type of the dependent argument. Dependent argument
46
- type can be input_tables or arguments or output_tables.
47
- Types: str
48
-
49
- operator:
50
- Required Argument.
51
- Specifies the comparision operators for dependent argument.
52
- Types: str
53
-
54
- right_operand:
55
- Required Argument.
56
- Specifies the value to be used for comparing the dependent argument
57
- using 'operator'.
58
- Types: str
59
- """
60
- self.sql_name = sql_name
61
- self.operator = operator
62
- self.right_operand = right_operand
63
- self.type = type
64
-
65
- def is_required(self, arg_value):
66
- """
67
- DESCRIPTION:
68
- Check if argument is required or not based on the value of dependent argument.
69
-
70
- PARAMETERS:
71
- arg_value:
72
- Required Argument.
73
- Specifies the value of dependent argument passed by the user.
74
- Types: str or int or bool or float or list
75
-
76
- RETURNS:
77
- bool
78
-
79
- RAISES:
80
- None
81
-
82
- EXAMPLES:
83
- _DependentArgument("MethodType", "arguments", "=", "EQUAL-WIDTH").is_required("EQUAL-WIDTH")
84
- """
85
- if self.operator == "=":
86
- return arg_value == self.right_operand
87
- elif self.operator == ">=":
88
- return arg_value >= self.right_operand
89
- elif self.operator == ">":
90
- return arg_value > self.right_operand
91
- elif self.operator == "<=":
92
- return arg_value <= self.right_operand
93
- elif self.operator == "<":
94
- return arg_value < self.right_operand
95
- elif self.operator == "IN":
96
- return arg_value in self.right_operand
97
- elif self.operator == "NOT IN":
98
- return arg_value not in self.right_operand
99
- else:
100
- msg_code = MessageCodes.EXECUTION_FAILED
101
- raise TeradataMlException(
102
- Messages.get_message(msg_code,
103
- "parse the dependent argument '{}'".format(self.sql_name),
104
- "Operator '{}' is not implemented".format(self.operator)),
105
- msg_code)
106
-
107
-
108
- class _AnlyFuncArgumentBase(object):
109
- """
110
- Class to hold the basic/common information about all the arguments.
111
- """
112
- def __init__(self, sql_name, is_required, sql_description, lang_description, lang_name, use_in_r):
113
- """
114
- DESCRIPTION:
115
- Constructor for the class.
116
-
117
- PARAMETERS:
118
- sql_name:
119
- Required Argument.
120
- Specifies the name of the argument in SQL.
121
- Types: str
122
-
123
- is_required:
124
- Required Argument.
125
- Specifies whether the argument is required or not.
126
- Types: bool
127
-
128
- sql_description:
129
- Required Argument.
130
- Specifies the description of argument in SQL.
131
- Types: str
132
-
133
- lang_description:
134
- Required Argument.
135
- Specifies the description of the argument, which needs to be exposed
136
- to user.
137
- Types: str
138
-
139
- lang_name:
140
- Required Argument.
141
- Specifies the name of the argument to be exposed to user.
142
- Types: str
143
-
144
- use_in_r:
145
- Required Argument.
146
- Specifies whether argument should be used in client or not.
147
- Types: bool
148
- """
149
- self.__sql_name = sql_name
150
- self.__is_required = is_required
151
- self.__sql_description = sql_description
152
- self.__description = lang_description
153
- self.__name = lang_name
154
- self.__use_in_r = use_in_r
155
-
156
- awu_matrix = []
157
- awu_matrix.append(["sql_name", sql_name, False, (str,), True])
158
- awu_matrix.append(["is_required", is_required, False, (bool,)])
159
- awu_matrix.append(["sql_description", sql_description, False, (str,), True])
160
- awu_matrix.append(["lang_description", lang_description, False, (str,), True])
161
- awu_matrix.append(["lang_name", lang_name, False, (str,), True])
162
- awu_matrix.append(["use_in_r", use_in_r, False, (bool,)])
163
-
164
- # Validate argument types.
165
- _Validators._validate_function_arguments(awu_matrix)
166
- self.is_empty_value_allowed = lambda: True
167
- self.is_output_column = lambda: False
168
- self.get_r_default_value = lambda: None
169
-
170
- # Getters
171
- def get_sql_name(self):
172
- """
173
- DESCRIPTION:
174
- Get SQL name of the argument.
175
-
176
- RETURNS:
177
- str
178
-
179
- RAISES:
180
- None
181
-
182
- EXAMPLES:
183
- # Get the argument name used in SQL Query.
184
- from teradataml.analytics.json_parser.argument import _AnlyFuncArgumentBase
185
- argument_base = _AnlyFuncArgumentBase("sql_name", True, "SQL Description", "Python Description", "name", True)
186
- argument_base.get_sql_name()
187
- """
188
- return self.__sql_name
189
-
190
- def is_required(self):
191
- """
192
- DESCRIPTION:
193
- Check if argument is required or not.
194
-
195
- RETURNS:
196
- bool
197
-
198
- RAISES:
199
- None
200
-
201
- EXAMPLES:
202
- # Check whether the argument is a mandatory or not for Analytic function.
203
- from teradataml.analytics.json_parser.argument import _AnlyFuncArgumentBase
204
- argument_base = _AnlyFuncArgumentBase("sql_name", True, "SQL Description", "Python Description", "name", True)
205
- if argument_base.is_required():
206
- print("Required")
207
- """
208
- return self.__is_required
209
-
210
- def get_sql_description(self):
211
- """
212
- DESCRIPTION:
213
- Get SQL description of the argument.
214
-
215
- RETURNS:
216
- str
217
-
218
- RAISES:
219
- None
220
-
221
- EXAMPLES:
222
- # Get the description of the argument with respect to SQL.
223
- from teradataml.analytics.json_parser.argument import _AnlyFuncArgumentBase
224
- argument_base = _AnlyFuncArgumentBase("sql_name", True, "SQL Description", "Python Description", "name", True)
225
- argument_base.get_sql_description()
226
- """
227
- return self.__sql_description
228
-
229
- def get_lang_description(self):
230
- """
231
- DESCRIPTION:
232
- Get client specific description name of the argument.
233
-
234
- RETURNS:
235
- str
236
-
237
- RAISES:
238
- None
239
-
240
- EXAMPLES:
241
- # Get the description of the argument with respect to Python.
242
- from teradataml.analytics.json_parser.argument import _AnlyFuncArgumentBase
243
- argument_base = _AnlyFuncArgumentBase("sql_name", True, "SQL Description", "Python Description", "name", True)
244
- argument_base.get_lang_description()
245
- """
246
- return self.__description
247
-
248
- def get_lang_name(self):
249
- """
250
- DESCRIPTION:
251
- Get client specific name of the argument.
252
-
253
- RETURNS:
254
- str
255
-
256
- RAISES:
257
- None
258
-
259
- EXAMPLES:
260
- # Get the argument name, which is exposed to user.
261
- from teradataml.analytics.json_parser.argument import _AnlyFuncArgumentBase
262
- argument_base = _AnlyFuncArgumentBase("sql_name", True, "SQL Description", "Python Description", "name", True)
263
- argument_base.get_lang_name()
264
- """
265
- return self.__name
266
-
267
- def use_in_r(self):
268
- """
269
- DESCRIPTION:
270
- Check if argument should be used in client function or not.
271
-
272
- RETURNS:
273
- str
274
-
275
- RAISES:
276
- None
277
-
278
- EXAMPLES:
279
- # Check whether argument is used in R or not.
280
- from teradataml.analytics.json_parser.argument import _AnlyFuncArgumentBase
281
- argument_base = _AnlyFuncArgumentBase("sql_name", True, "SQL Description", "Python Description", "name", True)
282
- if argument_base.use_in_r():
283
- print("Yes")
284
- """
285
- return self.__use_in_r
286
-
287
-
288
- class _AnlyFuncInput(_AnlyFuncArgumentBase):
289
- """
290
- Class to hold the information about input argument.
291
- """
292
-
293
- def __init__(self,
294
- sql_name,
295
- is_required,
296
- sql_description,
297
- lang_description,
298
- lang_name,
299
- use_in_r,
300
- r_order_num,
301
- datatype="TABLE_NAME",
302
- required_input_kind=None,
303
- partition_by_one=False,
304
- partition_by_one_inclusive=False,
305
- is_ordered=False,
306
- is_local_ordered=False,
307
- hash_by_key=False,
308
- allows_lists=False,
309
- r_formula_usage=False,
310
- alternate_sql_name=None):
311
- """
312
- Constructor for generating an object of Analytic Function Argument from
313
- JSON for arguments accepting input table.
314
-
315
- PARAMETERS:
316
- sql_name:
317
- Required Argument.
318
- Specifies the name of the argument in SQL.
319
- Types: str
320
-
321
- is_required:
322
- Required Argument.
323
- Specifies whether the argument is required or not.
324
- Types: bool
325
-
326
- sql_description:
327
- Required Argument.
328
- Specifies the description of argument in SQL.
329
- Types: str
330
-
331
- lang_description:
332
- Required Argument.
333
- Specifies the description of the argument, which needs to be exposed
334
- to user.
335
- Types: str
336
-
337
- lang_name:
338
- Required Argument.
339
- Specifies the name of the argument to be exposed to user.
340
- Types: str
341
-
342
- use_in_r:
343
- Required Argument.
344
- Specifies whether argument should be used in client or not.
345
- Types: bool
346
-
347
- r_order_num:
348
- Required Argument.
349
- Specifies the ordering sequence of the argument for R function call.
350
- Types: integer
351
-
352
- datatype:
353
- Optional Argument.
354
- Specifies the datatype for output table.
355
- Permitted Values: table_name, table_alias
356
- Default Value: table_name
357
- Types: str
358
-
359
- required_input_kind:
360
- Optional Argument.
361
- Specifies the kind of input.
362
- Permitted Values: partition_by_key, partition_by_any, or dimension
363
- Default Value: None
364
- Types: str or list of str
365
-
366
- partition_by_one:
367
- Optional Argument.
368
- Specifies that for partition_by_key input kind, the key should be
369
- "Partition by 1". If this argument is set to true and
370
- "partition_by_one_inclusive" is set to False, the function only accepts
371
- "Partition by 1" but not "Partition by key".
372
- Default Value: False
373
- Types: bool
374
-
375
- partition_by_one_inclusive:
376
- Optional Argument.
377
- Specifies that for partition_by_key input kind, the function accepts both
378
- "Partition by 1" and "Partition by key". This argument can be set to True
379
- only if "required_input_kind" has partition_by_key, partition_by_any.
380
- Default Value: False
381
- Types: bool
382
-
383
- is_ordered:
384
- Optional Argument.
385
- Specifies that the table must be input with an "Order by" clause.
386
- Default Value: False
387
- Types: bool
388
-
389
- is_local_ordered:
390
- Optional Argument.
391
- Specifies whether the table supports LOCAL ORDER BY clause or not.
392
- Default Value: False
393
- Types: bool
394
-
395
- hash_by_key:
396
- Optional Argument.
397
- Specifies whether data is grouped according to the HASH BY clause.
398
- Default Value: False
399
- Types: bool
400
-
401
- allow_lists:
402
- Optional Argument.
403
- Specifies whether the argument accepts list of values. If false, the
404
- argument can only accept a single value.
405
- Default Value: False
406
- Types: bool
407
-
408
- r_formula_usage:
409
- Optional Argument.
410
- Specifies if the argument contains a formula.
411
- Default Value: False
412
- Types: bool
413
-
414
- alternate_sql_name:
415
- Optional Argument.
416
- Specifies alternate names for the argument.
417
- Default Value: None
418
- Types: str or list of str
419
- """
420
-
421
- # Call Abstract class constructor
422
- super().__init__(sql_name, is_required, sql_description, lang_description,
423
- lang_name,
424
- use_in_r)
425
-
426
- # Process other parameters of input table argument.
427
- self.__required_input_kind = required_input_kind
428
- self.__partition_by_one = partition_by_one
429
- self.__partition_by_one_inclusive = partition_by_one_inclusive
430
- self.__is_ordered = is_ordered
431
- self.__is_local_ordered = is_local_ordered
432
- self.__hash_by_key = hash_by_key
433
- self.__datatype = datatype
434
- self.__allows_lists = allows_lists
435
- self.__r_formula_usage = r_formula_usage
436
- self.__r_order_num = r_order_num
437
- self.__alternate_sql_name = alternate_sql_name
438
-
439
- # Create argument information matrix to do parameter checking
440
- self.__arg_info_matrix = []
441
- required_input_kind_permitted_values = ["PartitionByKey", "PartitionByAny", "Dimension"]
442
- self.__arg_info_matrix.append(
443
- ["required_input_kind", self.__required_input_kind, True, (list, str), True,
444
- required_input_kind_permitted_values])
445
- self.__arg_info_matrix.append(
446
- ["partition_by_one", self.__partition_by_one, True, (bool)])
447
- self.__arg_info_matrix.append(
448
- ["partition_by_one_inclusive", self.__partition_by_one_inclusive, True, (bool)])
449
- self.__arg_info_matrix.append(["is_ordered", self.__is_ordered, True, (bool)])
450
- self.__arg_info_matrix.append(["is_local_ordered", self.__is_local_ordered, True, (bool)])
451
- self.__arg_info_matrix.append(["hash_by_key", self.__hash_by_key, True, (bool)])
452
- self.__arg_info_matrix.append(
453
- ["datatype", self.__datatype, False, (str), True, ["table_name", "table_alias"]])
454
- self.__arg_info_matrix.append(["r_order_num", self.__r_order_num, False, (int), True])
455
- self.__arg_info_matrix.append(["allows_lists", self.__allows_lists, True, (bool)])
456
- self.__arg_info_matrix.append(["alternate_sql_name", self.__alternate_sql_name, True, (list, str)])
457
- self.__arg_info_matrix.append(["r_formula_usage", self.__r_formula_usage, True, (bool)])
458
- # Perform the function validations
459
- self.__validate()
460
- self.get_default_value = lambda: None
461
- self.get_permitted_values = lambda: None
462
- self._only_partition_by_one = lambda: \
463
- self.__partition_by_one and not self.__partition_by_one_inclusive
464
-
465
- def __validate(self):
466
- """
467
- DESCRIPTION:
468
- Function to validate arguments, which verifies missing arguments,
469
- input argument.
470
- """
471
- # Validate argument types.
472
- _Validators._validate_function_arguments(self.__arg_info_matrix)
473
-
474
- # Getters.
475
- def get_required_input_kind(self):
476
- """
477
- DESCRIPTION:
478
- Function to get the required_input_kind argument.
479
- """
480
- return self.__required_input_kind
481
-
482
- def get_python_type(self):
483
- """
484
- DESCRIPTION:
485
- Function to get the python type of argument.
486
- """
487
- from teradataml.dataframe.dataframe import DataFrame
488
- return DataFrame
489
-
490
- def is_reference_function_acceptable(self):
491
- """
492
- DESCRIPTION:
493
- Function to check if argument accepts reference function name or not.
494
- """
495
- return self.get_lang_name().lower() in ("object", "modeldata")
496
-
497
- def is_partition_by_one(self):
498
- """
499
- DESCRIPTION:
500
- Function to check whether partition_by_one is True or False.
501
- """
502
- return self.__partition_by_one
503
-
504
- def is_partition_by_one_inclusive(self):
505
- """
506
- DESCRIPTION:
507
- Function to check whether partition_by_one_inclusive is True or False.
508
- """
509
- return self.__partition_by_one_inclusive
510
-
511
- def is_ordered(self):
512
- """
513
- DESCRIPTION:
514
- Function to check whether input table has an order by clause.
515
- """
516
- return self.__is_ordered
517
-
518
- def is_local_ordered(self):
519
- """
520
- DESCRIPTION:
521
- Check whether input supports LOCAL ORDER BY clause or not.
522
- """
523
- return self.__is_local_ordered
524
-
525
- def hash_by_key(self):
526
- """
527
- DESCRIPTION:
528
- Check whether input supports HASH BY KEY clause or not.
529
- """
530
- return self.__hash_by_key
531
-
532
- def get_data_type(self):
533
- """
534
- DESCRIPTION:
535
- Function to get the datatype of the argument.
536
- """
537
- return self.__datatype
538
-
539
- def allows_lists(self):
540
- """
541
- DESCRIPTION:
542
- Function to check if argument accepts lists or not.
543
- """
544
- return self.__allows_lists
545
-
546
- def get_r_formula_usage(self):
547
- """
548
- DESCRIPTION:
549
- Function to check if argument is part of a formula or not.
550
- """
551
- return self.__r_formula_usage
552
-
553
- def get_r_order_number(self):
554
- """
555
- DESCRIPTION:
556
- Function to get the order number of the argument.
557
- """
558
- return self.__r_order_num
559
-
560
- def get_alternate_sql_name(self):
561
- """
562
- DESCRIPTION:
563
- Function to get the alternate SQL name of the argument.
564
- """
565
- return self.__alternate_sql_name
566
-
567
- def _get_partition_column_required_kind(self):
568
- """
569
- DESCRIPTION:
570
- Function to determine if the input table is partitioned by a column or ANY or 1
571
- or data distribution is DIMENSION. This function follows below steps and derives
572
- partition column kind.
573
- * The input_table is partitioned by a key, if requireInputKind == PartitionByKey
574
- and partitionByOne == False.
575
- * The input_table is partitioned by 1/key, if requireInputKind == PartitionByKey,
576
- partitionByOneInclusive == True and partitionByOne == True.
577
- * The input_table is partitioned by 1 only, if partitionByOneInclusive == False
578
- and partitionByOne=true.
579
- * The input_table is partitioned by ANY/key, if requireInputKind == PartitionByKey
580
- and requireInputKind == PartitionByAny.
581
- * The input_table is partitioned by ANY only, if requireInputKind == PartitionByAny.
582
- * The input_table is distributed by either DIMENSION or partitioned by key, if
583
- requireInputKind == PartitionByKey and requireInputKind == DIMENSION.
584
- * The input_table is distributed by either DIMENSION or partitioned by ANY/key, if
585
- requireInputKind == PartitionByKey and requireInputKind == PartitionByAny and
586
- requireInputKind == DIMENSION.
587
-
588
- RAISES:
589
- None
590
-
591
- RETURNS:
592
- enum of type teradataml.analytics.json_parser.PartitionKind
593
-
594
- EXAMPLES:
595
- self._get_partition_column_required_kind()
596
- """
597
- is_partition_by_key, is_partition_by_any, is_partition_by_one, is_dimension = [False]*4
598
-
599
- # Input table is partitioned by 1 ONLY when partitionByOneInclusive is false and
600
- # partitionByOne is true.
601
- if self.__partition_by_one and not self.__partition_by_one_inclusive:
602
- is_partition_by_one = True
603
- else:
604
- for input_kind in self.__required_input_kind:
605
- if input_kind == "Dimension":
606
- is_dimension = True
607
- # If requiredInputKind has PartitionByKey and partitionByOneInclusive and
608
- # partitionByOne is True then input table is partitioned by 1 or Key.
609
- # Else input table is partitioned by Key Only.
610
- elif input_kind == "PartitionByKey":
611
- if self.__partition_by_one_inclusive and self.__partition_by_one:
612
- is_partition_by_one = True
613
- is_partition_by_key = True
614
- else:
615
- is_partition_by_key = True
616
- elif input_kind == "PartitionByAny":
617
- is_partition_by_any = True
618
-
619
- if is_dimension:
620
- if is_partition_by_key and is_partition_by_any:
621
- return PartitionKind.DIMENSIONKEYANY
622
- elif is_partition_by_key and not is_partition_by_any:
623
- return PartitionKind.DIMENSIONKEY
624
- else:
625
- return PartitionKind.DIMENSION
626
- else:
627
- if is_partition_by_key and not is_partition_by_any and not is_partition_by_one:
628
- return PartitionKind.KEY
629
- elif is_partition_by_key and is_partition_by_any:
630
- return PartitionKind.ANY
631
- elif not is_partition_by_key and is_partition_by_any:
632
- return PartitionKind.ANYONLY
633
- elif is_partition_by_one and is_partition_by_key:
634
- return PartitionKind.ONE
635
- elif is_partition_by_one and is_partition_by_key:
636
- return PartitionKind.ONEONLY
637
-
638
- def _get_default_partition_column_kind(self):
639
- """ Returns the default Parition Type based on requiredInputKind parameter in json file. """
640
- required_column_kind = UtilFuncs._as_list(self.__required_input_kind)[0]
641
-
642
- if required_column_kind == "PartitionByAny":
643
- return PartitionKind.ANY
644
- elif required_column_kind == "Dimension":
645
- return PartitionKind.DIMENSION
646
- elif required_column_kind == "PartitionByOne":
647
- return PartitionKind.ONE
648
- else:
649
- return None
650
-
651
- '''
652
- @staticmethod
653
- def _get_default_partition_by_value(partition_kind):
654
- """
655
- DESCRIPTION:
656
- Function to get the default value for partition column kind.
657
-
658
- PARAMETERS:
659
- partition_kind:
660
- Required Argument.
661
- Specifies input table partition type.
662
-
663
- RAISES:
664
- None
665
-
666
- RETURNS:
667
- str OR int
668
-
669
- EXAMPLES:
670
- self._get_default_partition_by_value(PartitionKind.KEY)
671
- """
672
- if partition_kind == PartitionKind.KEY or partition_kind == PartitionKind.DIMENSIONKEY:
673
- return None
674
- elif partition_kind == PartitionKind.ONE or partition_kind == PartitionKind.ONEONLY:
675
- return 1
676
- elif partition_kind == PartitionKind.ANY or partition_kind == PartitionKind.ANYONLY or \
677
- partition_kind == PartitionKind.DIMENSIONKEYANY:
678
- return "ANY"
679
- '''
680
-
681
- def _only_partition_by_any(self):
682
- """
683
- DESCRIPTION:
684
- Check partition column supports only Partition By Any.
685
-
686
- RAISES:
687
- None
688
-
689
- RETURNS:
690
- bool
691
-
692
- EXAMPLES:
693
- self._only_partition_by_any()
694
- """
695
- if isinstance(self.__required_input_kind, str):
696
- return self.__required_input_kind == "PartitionByAny"
697
- return self.__required_input_kind == ["PartitionByAny"]
698
-
699
-
700
- class _AnlyFuncOutput(_AnlyFuncArgumentBase):
701
- """
702
- Class to hold the information about output argument.
703
- """
704
-
705
- def __init__(self,
706
- sql_name,
707
- is_required,
708
- sql_description,
709
- lang_description,
710
- lang_name,
711
- use_in_r,
712
- r_order_num,
713
- datatype="TABLE_NAME",
714
- is_output_table=True,
715
- allows_lists=False,
716
- output_schema=None,
717
- alternate_sql_name=None,
718
- support_volatility=False,
719
- is_required_dependent_argument=None):
720
- """
721
- Constructor for generating an object of Analytic Function Argument from
722
- JSON for arguments accepting output table information.
723
-
724
- PARAMETERS:
725
- sql_name:
726
- Required Argument.
727
- Specifies the name of the argument in SQL.
728
- Types: str
729
-
730
- is_required:
731
- Required Argument.
732
- Specifies whether the argument is required or not.
733
- Types: bool
734
-
735
- sql_description:
736
- Required Argument.
737
- Specifies the description of argument in SQL.
738
- Types: str
739
-
740
- lang_description:
741
- Required Argument.
742
- Specifies the description of the argument, which needs to be exposed
743
- to user.
744
- Types: str
745
-
746
- lang_name:
747
- Required Argument.
748
- Specifies the name of the argument to be exposed to user.
749
- Types: str
750
-
751
- use_in_r:
752
- Required Argument.
753
- Specifies whether argument should be used in client or not.
754
- Types: bool
755
-
756
- r_order_num:
757
- Required Argument.
758
- Specifies the ordering sequence of the argument for R function call.
759
- Types: integer
760
-
761
- datatype:
762
- Optional Argument.
763
- Specifies the datatype for output table.
764
- Permitted Values: table_name, table_alias
765
- Default Value: table_name
766
- Types: str
767
-
768
- is_output_table:
769
- Optional Argument.
770
- Specifies whether the argument clause has an output table name.
771
- Default Value: True
772
- Types: bool
773
-
774
- allow_lists:
775
- Optional Argument.
776
- Specifies whether the argument accepts list of values. If false, the
777
- argument can only accept a single value.
778
- Default Value: False
779
- Types: bool
780
-
781
- output_schema:
782
- Optional Argument.
783
- Specifies the output schema of the function.
784
- Default Value: None
785
- Types: str
786
-
787
- alternate_sql_name:
788
- Optional Argument.
789
- Specifies alternate names for the argument.
790
- Default Value: None
791
- Types: str or list of str
792
-
793
- support_volatility:
794
- Optional Argument.
795
- Specifies whether the output table support VOLATILE table or not.
796
- Default Value: False
797
- Types: bool
798
- """
799
-
800
- # Call super class constructor to initialize basic parameters.
801
- super().__init__(sql_name, is_required, sql_description, lang_description,
802
- lang_name,
803
- use_in_r)
804
-
805
- self.__r_order_num = r_order_num
806
- self.__allows_lists = allows_lists
807
- self.__output_schema = output_schema
808
- self.__alternate_sql_name = alternate_sql_name
809
- self.__is_output_table = is_output_table
810
- self.__datatype = datatype
811
- self.__support_volatility = support_volatility
812
- # Create argument information matrix to do parameter checking
813
- self.__arg_info_matrix = []
814
- self.__arg_info_matrix.append(["r_order_num", self.__r_order_num, False, int, True])
815
- self.__arg_info_matrix.append(["allows_lists", self.__allows_lists, True, bool])
816
- self.__arg_info_matrix.append(["output_schema", self.__output_schema, True, str, True])
817
- self.__arg_info_matrix.append(["alternate_sql_name", self.__alternate_sql_name, True, (list, str)])
818
- self.__arg_info_matrix.append(["is_output_table", self.__is_output_table, True, bool])
819
- self.__arg_info_matrix.append(
820
- ["datatype", self.__datatype, True, str, True, ["table_name", "table_alias"]])
821
- self.__arg_info_matrix.append(["support_volatility", self.__support_volatility, True, bool])
822
- self.__arg_info_matrix.append(
823
- ["is_required_dependent_argument", is_required_dependent_argument, True, _DependentArgument])
824
-
825
- # Perform the function validations
826
- self.__validate()
827
- self.is_volatility_supported = lambda : self.__support_volatility
828
- self.get_is_required_dependent_argument = lambda : is_required_dependent_argument
829
-
830
- def __validate(self):
831
- """
832
- DESCRIPTION:
833
- Function to validate arguments, which verifies missing arguments,
834
- input argument.
835
- """
836
- # Validate argument types.
837
- _Validators._validate_function_arguments(self.__arg_info_matrix)
838
-
839
- # Getters
840
- def get_data_type(self):
841
- """
842
- DESCRIPTION:
843
- Function to get the datatype of the argument.
844
- """
845
- return self.__datatype
846
-
847
- def is_output_table(self):
848
- """
849
- DESCRIPTION:
850
- Function to check if argument represents output table or not.
851
- """
852
- return self.__is_output_table
853
-
854
- def get_r_order_number(self):
855
- """
856
- DESCRIPTION:
857
- Function to get the order number of the argument.
858
- """
859
- return self.__r_order_num
860
-
861
- def allows_lists(self):
862
- """
863
- DESCRIPTION:
864
- Function to check if argument accepts lists or not.
865
- """
866
- return self.__allows_lists
867
-
868
- def get_output_schema(self):
869
- """
870
- DESCRIPTION:
871
- Function to get the output schema of the argument.
872
- """
873
- return self.__output_schema
874
-
875
- def get_alternate_sql_name(self):
876
- """
877
- DESCRIPTION:
878
- Function to get the alternate SQL name of the argument.
879
- """
880
- return self.__alternate_sql_name
881
-
882
-
883
- class _AnlyFuncArgument(_AnlyFuncArgumentBase):
884
- """
885
- Class to hold the information about analytic function argument.
886
- """
887
-
888
- def __init__(self,
889
- sql_name,
890
- is_required,
891
- sql_description,
892
- lang_description,
893
- lang_name,
894
- use_in_r,
895
- r_order_num,
896
- datatype,
897
- default_value=None,
898
- permitted_values=None,
899
- lower_bound=None,
900
- lower_bound_type=None,
901
- upper_bound=None,
902
- upper_bound_type=None,
903
- allow_nan=False,
904
- required_length=0,
905
- match_length_of_argument=None,
906
- allows_lists=False,
907
- allow_padding=False,
908
- r_formula_usage=False,
909
- r_default_value=None,
910
- target_table=None,
911
- target_table_lang_name=None,
912
- check_duplicate=False,
913
- allowed_types=None,
914
- allowed_type_groups=None,
915
- is_output_column=False,
916
- alternate_sql_name=None):
917
- """
918
- Constructor for generating an object of Analytic Function Argument from
919
- JSON for other arguments.
920
-
921
- PARAMETERS:
922
- sql_name:
923
- Required Argument.
924
- Specifies the name of the argument in SQL.
925
- Types: str
926
-
927
- is_required:
928
- Required Argument.
929
- Specifies whether the argument is required or not.
930
- Types: bool
931
-
932
- sql_description:
933
- Required Argument.
934
- Specifies the description of argument in SQL.
935
- Types: str
936
-
937
- lang_description:
938
- Required Argument.
939
- Specifies the description of the argument, which needs to be exposed
940
- to user.
941
- Types: str
942
-
943
- lang_name:
944
- Required Argument.
945
- Specifies the name of the argument to be exposed to user.
946
- Types: str
947
-
948
- use_in_r:
949
- Required Argument.
950
- Specifies whether argument should be used in client or not.
951
- Types: bool
952
-
953
- r_order_num:
954
- Required Argument.
955
- Specifies the ordering sequence of the argument.
956
- Types: integer
957
-
958
- datatype:
959
- Required Argument.
960
- Specifies the datatype for argument.
961
- Types: str OR list of str
962
-
963
- default_value:
964
- Optional Argument.
965
- Specifies the default value for argument.
966
- Types: str OR int OR float OR bool
967
-
968
- permitted_values:
969
- Optional Argument.
970
- Specified the permitted values for argument.
971
- Types: list OR str OR float OR int
972
-
973
- lower_bound:
974
- Optional Argument.
975
- Specifies the lower bound value for argument.
976
- Types: int OR float
977
-
978
- lower_bound_type:
979
- Optional Argument.
980
- Specifies whether "lower_bound" is inclusive or exclusive.
981
- Permitted Values: INCLUSIVE, EXCLUSIVE
982
- Types: str
983
-
984
- upper_bound:
985
- Optional Argument.
986
- Specifies the upper bound value for argument.
987
- Types: int OR float
988
-
989
- upper_bound_type:
990
- Optional Argument.
991
- Specifies whether "upper_bound" is inclusive or exclusive.
992
- Permitted Values: INCLUSIVE, EXCLUSIVE
993
- Types: str
994
-
995
- allow_nan:
996
- Optional Argument.
997
- Specifies whether argument accepts None or not.
998
- Default Value: False
999
- Types: bool
1000
-
1001
- allows_lists:
1002
- Optional Argument.
1003
- Specifies whether argument accepts a list of values or not.
1004
- Default Value: False
1005
- Types: bool
1006
-
1007
- match_length_of_argument:
1008
- Optional Argument.
1009
- Specifies whether length of "allow_lists" should be checked or not.
1010
- Default Value: False
1011
- Types: bool
1012
-
1013
- required_length:
1014
- Optional Argument.
1015
- Specifies if the list must be the same length as the list specified
1016
- in argument clause.
1017
- Default Value: 0
1018
- Types: int
1019
-
1020
- allow_padding:
1021
- Optional Argument.
1022
- Specifies whether to add padding to argument or not. When set to True,
1023
- user submitted value will be padded into a list equal to the required
1024
- length.
1025
- Default Value: False
1026
- Types: bool
1027
-
1028
- r_formula_usage:
1029
- Optional Argument.
1030
- Specifies whether argument is part of formula.
1031
- Default Value: False
1032
- Types: bool
1033
-
1034
- r_default_value:
1035
- Optional Argument.
1036
- Specifies the default value of the argument.
1037
- Types: str OR int OR float
1038
-
1039
- target_table:
1040
- Optional Argument.
1041
- Specifies the name of the input table that the input column
1042
- should be found in (Only applicable for datatype COLUMNS or COLUMN_NAMES)
1043
- Types: str OR list of str
1044
-
1045
- target_table_lang_name:
1046
- Optional Argument.
1047
- Specifies the lang name of the input table that the input column
1048
- should be found in (Only applicable for datatype COLUMNS or COLUMN_NAMES)
1049
- Types: str
1050
-
1051
- check_duplicate:
1052
- Optional Argument.
1053
- Specifies whether duplicate columns should be checked in input
1054
- or not (Only applicable for datatype COLUMNS or COLUMN_NAMES).
1055
- Default Value: False
1056
- Types: bool
1057
-
1058
- allowed_types:
1059
- Optional Argument.
1060
- Specifies SQL types that are allowed (Only applicable for datatype
1061
- COLUMNS or COLUMN_NAMES).
1062
- Types: str OR list of str
1063
-
1064
- allowed_type_groups:
1065
- Optional Argument.
1066
- Species the group of SQL types that are allowed.
1067
- * NUMERIC for all numeric types.
1068
- * STRING for all char/varchar types.
1069
- * GROUPTYPE for any type except double or float.
1070
- Types: list of str
1071
-
1072
- is_output_column:
1073
- Optional Argument.
1074
- Specifies whether argument is output column or not.
1075
- Default Value: False
1076
- Types: bool
1077
-
1078
- alternate_sql_name:
1079
- Optional Argument.
1080
- Specifies alternate names for the argument.
1081
- Types: str or list of str
1082
- """
1083
-
1084
- # Call super class constructor to initialize basic parameters.
1085
- super().__init__(sql_name, is_required, sql_description, lang_description, lang_name, use_in_r)
1086
-
1087
- # Initialize rest of the parameters for the Arguments class.
1088
- self.__default_value = default_value
1089
- self.__permitted_values = permitted_values
1090
- self.__lower_bound = lower_bound
1091
- self.__lower_bound_type = lower_bound_type
1092
- self.__upper_bound = upper_bound
1093
- self.__upper_bound_type = upper_bound_type
1094
- self.__allow_nan = allow_nan
1095
- self.__required_length = required_length
1096
- self.__match_length_of_argument = match_length_of_argument
1097
- self.__datatype = datatype
1098
- self.__allows_lists = allows_lists
1099
- self.__allow_padding = allow_padding
1100
- self.__r_formula_usage = r_formula_usage
1101
- self.__r_default_value = r_default_value
1102
- self.__target_table = target_table
1103
- self.__target_table_lang_name = target_table_lang_name
1104
- self.__check_duplicate = check_duplicate
1105
- self.__allowed_types = allowed_types
1106
- self.__allowed_type_groups = allowed_type_groups
1107
- self.__r_order_num = r_order_num
1108
- self.__is_output_column = is_output_column
1109
- self.__alternate_sql_name = alternate_sql_name
1110
-
1111
- awu_matrix = []
1112
- awu_matrix.append(["r_order_num", r_order_num, False, int])
1113
- awu_matrix.append(["datatype", datatype, False, (list, str), True])
1114
- awu_matrix.append(["default_value", default_value, True, (int, str, bool, float)])
1115
- awu_matrix.append(["permitted_values", permitted_values, True, (list, str, int, float)])
1116
- awu_matrix.append(["lower_bound", lower_bound, True, (int, float)])
1117
- awu_matrix.append(["lower_bound_type", lower_bound_type, True, str, True, ["INCLUSIVE", "EXCLUSIVE"]])
1118
- awu_matrix.append(["upper_bound", upper_bound, True, (int, float)])
1119
- awu_matrix.append(["upper_bound_type", upper_bound_type, True, str, True, ["INCLUSIVE", "EXCLUSIVE"]])
1120
- awu_matrix.append(["allow_nan", allow_nan, True, bool])
1121
- awu_matrix.append(["allows_lists", allows_lists, True, bool])
1122
- awu_matrix.append(["match_length_of_argument", match_length_of_argument, True, bool])
1123
- awu_matrix.append(["required_length", required_length, True, int])
1124
- awu_matrix.append(["allow_padding", allow_padding, True, bool])
1125
- awu_matrix.append(["r_formula_usage", r_formula_usage, True, bool])
1126
- awu_matrix.append(["r_default_value", r_default_value, True, (int, float, str)])
1127
- awu_matrix.append(["target_table", target_table, True, (list, str)])
1128
- awu_matrix.append(["target_table_lang_name", target_table_lang_name, True, str])
1129
- awu_matrix.append(["check_duplicate", check_duplicate, True, bool])
1130
- awu_matrix.append(["allowed_types", allowed_types, True, (list, str)])
1131
- awu_matrix.append(["allowed_type_groups", allowed_type_groups, True, (list, str)])
1132
- awu_matrix.append(["is_output_column", is_output_column, True, bool])
1133
- awu_matrix.append(["alternate_sql_name", alternate_sql_name, True, (list, str)])
1134
-
1135
- # Validate argument types.
1136
- _Validators._validate_function_arguments(awu_matrix)
1137
-
1138
- # Validate lower bound is greater than upper bound.
1139
- # _validate_argument_range validates whether lower bound is less than upper bound
1140
- # or not if argument is None.
1141
- _Validators._validate_argument_range(
1142
- arg_name="dummy", arg=None, lbound=self.__lower_bound, ubound=self.__upper_bound)
1143
-
1144
- # Getters.
1145
- self.get_r_order_number = lambda: self.__r_order_num
1146
- self.get_data_type = lambda: self.__datatype
1147
- self.get_default_value = lambda: self.__default_value
1148
- self.get_permitted_values = lambda: self.__permitted_values
1149
- self.get_lower_bound = lambda: self.__lower_bound
1150
- self.get_lower_bound_type = lambda: self.__lower_bound_type
1151
- self.get_upper_bound = lambda: self.__upper_bound
1152
- self.get_upper_bound_type = lambda: self.__upper_bound_type
1153
- self.is_nan_allowed = lambda: self.__allow_nan
1154
- self.get_required_length = lambda: self.__required_length
1155
- self.get_match_length_of_argument = lambda: self.__match_length_of_argument
1156
- self.is_lists_allowed = lambda: self.__allows_lists
1157
- self.is_padding_required = lambda: self.__allow_padding
1158
- self.is_argument_a_formula = lambda: self.__r_formula_usage
1159
- self.get_r_default_value = lambda: self.__r_default_value
1160
- self.get_target_table = lambda: self.__target_table
1161
- self.get_target_table_lang_name = lambda: self.__target_table_lang_name
1162
- self.check_duplicate = lambda: self.__check_duplicate
1163
- self.get_allowed_types = lambda: self.__allowed_types
1164
- self.get_allowed_type_groups = lambda: self.__allowed_type_groups
1165
- self.is_output_column = lambda: self.__is_output_column
1166
- self.get_alternate_sql_name = lambda: self.__alternate_sql_name
1167
- self.is_empty_value_allowed = lambda: not self.is_column_argument()
1168
-
1169
- def get_python_type(self):
1170
- """
1171
- DESCRIPTION:
1172
- Get equivalent Python type for the JSON datatype for an argument.
1173
-
1174
- PARAMETERS:
1175
- None
1176
-
1177
- RETURNS:
1178
- type.
1179
-
1180
- RAISES:
1181
- None
1182
-
1183
- EXAMPLES:
1184
- self.get_python_type(arg1="string", arg2="db", arg3=2)
1185
- """
1186
- py_types = tuple()
1187
-
1188
- # If multiple datatype's allowed, return the tuple of all allowed python types.
1189
- if isinstance(self.__datatype, list):
1190
- for td_type in self.__datatype:
1191
- py_type = _Dtypes._anly_json_type_to_python_type(td_type)
1192
-
1193
- # If py_type is not a tuple, convert to a tuple.
1194
- py_types = py_types + ((py_type, ) if not isinstance(py_type, tuple) else py_type)
1195
- else:
1196
- py_type = _Dtypes._anly_json_type_to_python_type(self.__datatype)
1197
- py_types = py_type if isinstance(py_type, tuple) else (py_type, )
1198
-
1199
- # If lists are allowed, add list type also.
1200
- if self.__allows_lists and (list not in py_types):
1201
- py_types = py_types + (list, )
1202
-
1203
- return py_types
1204
-
1205
- def is_column_argument(self):
1206
- """
1207
- DESCRIPTION:
1208
- Function checks if the argument accepts column as input or not.
1209
-
1210
- PARAMETERS:
1211
- None
1212
-
1213
- RETURNS:
1214
- bool
1215
-
1216
- RAISES:
1217
- None
1218
-
1219
- EXAMPLES:
1220
- self.is_column_argument()
1221
- """
1222
- # __datatype can be either string or list.
1223
- if isinstance(self.__datatype, list):
1224
- datatype = (datatype.lower() for datatype in self.__datatype)
1225
- else:
1226
- datatype = self.__datatype.lower()
1227
- return "column" in datatype
1228
-
1229
-
1230
- class _AnlyFuncArgumentBaseUAF(object):
1231
- """ Class to hold the basic/common information about all the arguments."""
1232
- def __init__(self, data_type, description, lang_name, is_required=False):
1233
- """
1234
- DESCRIPTION:
1235
- Constructor for the class.
1236
-
1237
- PARAMETERS:
1238
- data_type:
1239
- Required Argument.
1240
- Specifies the data type an argument can accept.
1241
- Type: str
1242
-
1243
- description:
1244
- Required Argument.
1245
- Specifies the argument description.
1246
- Type: str or List
1247
-
1248
- lang_name:
1249
- Required Argument.
1250
- Specifies the name of the argument to be exposed to user.
1251
- Type: str
1252
-
1253
- is_required:
1254
- Optional Argument.
1255
- Specifies whether the argument is required or not.
1256
- Default Value: False
1257
- Types: bool
1258
-
1259
- """
1260
- self.__data_type = data_type
1261
- self.__description = description
1262
- self.__lang_name = lang_name
1263
- self.__is_required = is_required
1264
-
1265
- # Getters
1266
- self.get_data_type = lambda: self.__data_type
1267
- self.get_description = lambda: self.__description
1268
- self.get_lang_name = lambda: self.__lang_name
1269
- self.is_required = lambda: self.__is_required
1270
- self.is_empty_value_allowed = lambda: True
1271
- self.is_output_column = lambda: False
1272
- self.get_r_default_value = lambda: None
1273
-
1274
- # Validation
1275
- self.__arg_info_matrix = []
1276
- self.__arg_info_matrix.append(["type", self.__data_type, False, (list, str), True])
1277
- self.__arg_info_matrix.append(["description", self.__description, False, (list, str)])
1278
- self.__arg_info_matrix.append(["lang_name", self.__lang_name, False, str])
1279
- self.__arg_info_matrix.append(["optional", self.__is_required, True, bool])
1280
-
1281
- _Validators._validate_function_arguments(self.__arg_info_matrix)
1282
- self.is_empty_value_allowed = lambda: True
1283
- self.is_output_column = lambda: False
1284
- self.get_permitted_values = lambda: None
1285
-
1286
- # Combining list to string.
1287
- self.__description = ''.join(description)
1288
-
1289
- def is_column_argument(self):
1290
- """
1291
- DESCRIPTION:
1292
- Function checks if the argument accepts column as input or not.
1293
-
1294
- PARAMETERS:
1295
- None
1296
-
1297
- RETURNS:
1298
- bool
1299
-
1300
- RAISES:
1301
- None
1302
-
1303
- EXAMPLES:
1304
- self.is_column_argument()
1305
- """
1306
- # __datatype can be either string or list.
1307
- if isinstance(self.__data_type, list):
1308
- datatype = (datatype.lower() for datatype in self.__data_type)
1309
- else:
1310
- datatype = self.__data_type.lower()
1311
- return "column" in datatype
1312
-
1313
- def get_python_type(self):
1314
- """
1315
- DESCRIPTION:
1316
- Get equivalent Python type for the JSON datatype for an argument.
1317
-
1318
- PARAMETERS:
1319
- None
1320
-
1321
- RETURNS:
1322
- type.
1323
-
1324
- RAISES:
1325
- None
1326
-
1327
- EXAMPLES:
1328
- self.get_python_type(arg1="string", arg2="db", arg3=2)
1329
- """
1330
- py_types = tuple()
1331
- supp_data_types = UtilFuncs._as_list(self.__data_type)
1332
- # If multiple datatype's allowed, return the tuple of all allowed Python types.
1333
- for td_type in supp_data_types:
1334
- py_type = _Dtypes._anly_json_type_to_python_type(td_type)
1335
-
1336
- # If py_type is not a tuple, convert to a tuple.
1337
- py_types = py_types + ((py_type,) if not isinstance(py_type, tuple) else py_type)
1338
-
1339
- # If lists are allowed, add list type also.
1340
- if self.is_lists_allowed() and (list not in py_types):
1341
- py_types = py_types + (list,)
1342
- return py_types
1343
-
1344
- def set_is_required(self, value):
1345
- """
1346
- DESCRIPTION:
1347
- Setter function to set if argument is required or not.
1348
-
1349
- RETURNS:
1350
- None
1351
-
1352
- RAISES:
1353
- None
1354
-
1355
- EXAMPLES:
1356
- self.set_is_required(True)
1357
- """
1358
- self.__is_required = value
1359
-
1360
-
1361
- class _AnlyFuncInputUAF(_AnlyFuncArgumentBaseUAF):
1362
- """ Class to hold the information about input argument of UAF."""
1363
- def __init__(self, data_type, description, lang_name, is_required=False):
1364
- """
1365
- DESCRIPTION:
1366
- Constructor for the class.
1367
-
1368
- PARAMETERS:
1369
- data_type:
1370
- Required Argument.
1371
- Specifies the data type an input argument can accept.
1372
- Type: str
1373
-
1374
- description:
1375
- Required Argument.
1376
- Specifies the input argument description.
1377
- Type: Str or List
1378
-
1379
- lang_name:
1380
- Required Argument.
1381
- Specifies the name of the argument to be exposed to user.
1382
- Type: str
1383
-
1384
- is_required:
1385
- Optional Argument.
1386
- Specifies whether the argument is required or not.
1387
- Default Value: False
1388
- Type: bool
1389
- """
1390
-
1391
- # Call Abstract class constructor
1392
- super().__init__(data_type, description, lang_name, is_required)
1393
- self.get_default_value = lambda: None
1394
- self.is_lists_allowed = lambda: False
1395
-
1396
-
1397
- class _AnlyFuncOutputUAF(_AnlyFuncArgumentBaseUAF):
1398
- """ Class to hold the information about output argument of UAF."""
1399
- def __init__(self, data_type, description, lang_name, layer_name,
1400
- primary_layer=False, result_table_column_types=None, is_required=False):
1401
- """
1402
- DESCRIPTION:
1403
- Constructor for the class.
1404
-
1405
- PARAMETERS:
1406
- description:
1407
- Required Argument.
1408
- Specifies the output argument description.
1409
- Type: str or List
1410
-
1411
- data_type:
1412
- Required Argument.
1413
- Specifies data type an output argument can accept.
1414
- Type: str
1415
-
1416
- lang_name:
1417
- Required Argument.
1418
- Specifies the name of the argument to be exposed to user.
1419
- Type: str
1420
-
1421
- primary_layer:
1422
- Optional Argument.
1423
- Specifies whether the layer is primary or not.
1424
- Default Value: False
1425
- Type: bool
1426
-
1427
- layer_name:
1428
- Required Argument.
1429
- Specifies the name of the output layer.
1430
- Type:str
1431
-
1432
- result_table_column_types:
1433
- Optional Argument
1434
- Specifies the column types for the result table.
1435
- Type: List or str
1436
-
1437
- is_required:
1438
- Optional Argument.
1439
- Specifies whether the argument is required or not.
1440
- Default Value: False
1441
- Type: bool
1442
- """
1443
-
1444
- # Call Abstract class constructor
1445
- super().__init__(data_type, description, lang_name, is_required)
1446
- # Process other parameters of output table argument.
1447
- self.__result_table_column_types = result_table_column_types
1448
- self.__primary_layer = primary_layer
1449
- self.__layer_name = layer_name
1450
-
1451
- # Getters
1452
- self.get_result_table_column_types = lambda: self.__result_table_column_types
1453
- self.get_primary_layer = lambda : self.__primary_layer
1454
- self.get_layer_name = lambda : self.__layer_name
1455
-
1456
- # Validation
1457
- self.__arg_info_matrix = []
1458
- self.__arg_info_matrix.append(["result_table_column_types", self.__result_table_column_types, True, (list, str)])
1459
- self.__arg_info_matrix.append(["primary_layer", self.__primary_layer, True, bool])
1460
- self.__arg_info_matrix.append(["layer_name", self.__layer_name, False, str])
1461
- _Validators._validate_function_arguments(self.__arg_info_matrix)
1462
-
1463
-
1464
- class _AnlyFuncArgumentUAF(_AnlyFuncArgumentBaseUAF):
1465
- """Class to hold the information about the other function parameters."""
1466
-
1467
- def __init__(self, data_type, description, name, is_required=False, permitted_values=None,
1468
- lower_bound=None, upper_bound=None, lower_bound_type=None, upper_bound_type=None,
1469
- check_duplicates=False, list_type=None, allow_nan=None, lang_name=None,
1470
- default_value=None, required_length=0, nested_param_list=None,
1471
- is_nested=False, parent=None, has_nested=False):
1472
- """
1473
- DESCRIPTION:
1474
- Constructor for the class.
1475
-
1476
- PARAMETERS:
1477
- description:
1478
- Required Argument.
1479
- Specifies the argument description.
1480
- Type: str or List
1481
-
1482
- name:
1483
- Required Argument.
1484
- Specifies the SQL name of the argument.
1485
- Type: str
1486
-
1487
- data_type:
1488
- Required Argument.
1489
- Specifies the data type for the argument.
1490
- Type: str
1491
-
1492
- is_required:
1493
- Optional Argument.
1494
- Specifies whether the argument is required or not.
1495
- Default Value: False
1496
- Types: bool
1497
-
1498
- permitted_values:
1499
- Optional Argument.
1500
- Specifies the permitted values for the particular argument.
1501
- Type: List
1502
-
1503
- lower_bound:
1504
- Optional Argument.
1505
- Specifies the lower bound for the particular argument.
1506
- Type: int or float
1507
-
1508
- upper_bound:
1509
- Optional Argument.
1510
- Specifies the upper bound for the particular argument.
1511
- Type: int or float
1512
-
1513
- lower_bound_type:
1514
- Optional Argument.
1515
- Specifies whether the lower bound is inclusive or not.
1516
- Type: str
1517
-
1518
- upper_bound_type:
1519
- Optional Argument.
1520
- Specifies whether the upper bound is inclusive or not.
1521
- Type: str
1522
-
1523
- check_duplicates:
1524
- Optional Argument
1525
- Specifies if the argument checks for duplicate values.
1526
- Type: bool
1527
-
1528
- list_type:
1529
- Optional Argument.
1530
- Specifies the type of the list in the argument.
1531
- Type: str
1532
-
1533
- allow_nan:
1534
- Required Argument.
1535
- Specifies whether nan values are allowed or not.
1536
- Type: bool
1537
-
1538
- is_required:
1539
- Optional Argument.
1540
- Specifies whether the argument is required or not .
1541
- Type: bool
1542
-
1543
- lang_name:
1544
- Optional Argument.
1545
- Specifies the name of the argument to be exposed to user.
1546
- Type: str
1547
-
1548
- default_value:
1549
- Optional Argument.
1550
- Specifies the default value of the particular argument.
1551
- Type: int or str or float
1552
-
1553
- required_length:
1554
- Optional Argument.
1555
- Specifies if the list must be the same length as the list specified
1556
- in argument clause.
1557
- Types: int
1558
-
1559
- nested_params_json:
1560
- Optional Argument.
1561
- Specifies the json object for nested_params argument.
1562
- Type: List
1563
-
1564
- is_nested:
1565
- Optional Argument.
1566
- Specifies whether the argument is a nested argument or not.
1567
- Default Value: False
1568
- Type: bool
1569
-
1570
- parent:
1571
- Optional Argument.
1572
- Specifies the name of the parent incase of nested argument.
1573
- Default Value: None
1574
- Type: str or None
1575
-
1576
- has_nested:
1577
- Optional Argument.
1578
- Specifies whether the argument has nested_params or not.
1579
- Default Value:False
1580
- Type: bool
1581
-
1582
- """
1583
- # Call Abstract class constructor
1584
- super().__init__(data_type, description, lang_name, is_required)
1585
-
1586
- # Process other parameters of arguments.
1587
- self.__name = name
1588
- self.__data_type = self.get_data_type()
1589
- self.__permitted_values = permitted_values
1590
- self.__default_value = default_value
1591
- self.__r_default_value = None
1592
- self.__allow_nan = allow_nan
1593
- self.__lower_bound = lower_bound
1594
- self.__upper_bound = upper_bound
1595
- self.__lower_bound_type = lower_bound_type
1596
- self.__upper_bound_type = upper_bound_type
1597
- self.__check_duplicates = check_duplicates
1598
- self.__required_length = required_length
1599
- self.__parent = parent
1600
- self.__is_nested = is_nested
1601
- self.__has_nested = has_nested
1602
- self.__allows_lists = False
1603
- self.__match_length_of_arguments = False
1604
-
1605
- # Creating a list for nested params
1606
- self.__nested_param_list = nested_param_list
1607
-
1608
- # Getters
1609
- self.get_name = lambda: self.__name
1610
- self.get_data_type = lambda: self.__data_type
1611
- self.get_permitted_values = lambda: self.__permitted_values
1612
- self.get_default_value = lambda: self.__default_value
1613
- self.get_r_default_value = lambda: self.__r_default_value
1614
- self.is_nan_allowed = lambda: self.__allow_nan
1615
- self.get_parent = lambda: self.__parent
1616
- self.get_lower_bound = lambda: self.__lower_bound
1617
- self.get_upper_bound = lambda: self.__upper_bound
1618
- self.get_lower_bound_type = lambda: self.__lower_bound_type
1619
- self.get_upper_bound_type = lambda: self.__upper_bound_type
1620
- self.get_check_duplicates = lambda: self.__check_duplicates
1621
- self.get_required_length = lambda: self.__required_length
1622
- self.get_nested_param_list = lambda: self.__nested_param_list
1623
- self.get_is_nested = lambda: self.__is_nested
1624
- self.get_has_nested = lambda: self.__has_nested
1625
- self.is_lists_allowed = lambda: self.__allows_lists
1626
- self.get_match_length_of_arguments = lambda: self.__match_length_of_arguments
1627
-
1628
- # In order to make it similar to variables of SQLE functions if the data_type is list
1629
- # we are setting allows_list=True and data_type to the data_type of the list elements.
1630
- if self.get_data_type() == "list":
1631
- self.__allows_lists = True
1632
- self.__data_type = list_type
1633
-
1634
- # Validation
1635
- self.__arg_info_matrix = []
1636
- self.__arg_info_matrix.append(["name", self.__name, True, str])
1637
- self.__arg_info_matrix.append(["permitted_values", self.__permitted_values, True, list])
1638
- self.__arg_info_matrix.append(["default_value", self.__default_value, True, (int, str, float, bool, list)])
1639
- self.__arg_info_matrix.append(["r_default_value", self.__r_default_value, True, (int, str, float, bool, list)])
1640
- self.__arg_info_matrix.append(["allow_nan", self.__allow_nan, True, bool])
1641
- self.__arg_info_matrix.append(["lower_bound", self.__lower_bound, True, (int, float)])
1642
- self.__arg_info_matrix.append(["upper_bound", self.__upper_bound, True, (int, float)])
1643
- self.__arg_info_matrix.append(["lower_bound_type", self.__lower_bound_type, True, str])
1644
- self.__arg_info_matrix.append(["upper_bound_type", self.__upper_bound_type, True, str])
1645
- self.__arg_info_matrix.append(["check_duplicates", self.__check_duplicates, True, bool])
1646
- self.__arg_info_matrix.append(["list_size", self.__required_length, True, (int, str)])
1647
-
1648
- _Validators._validate_function_arguments(self.__arg_info_matrix)
1649
-
1650
- # Validate whether lower bound is less than upper bound.
1651
- _Validators._validate_argument_range(arg_name="dummy", arg=None, lbound=self.__lower_bound,
1652
- ubound=self.__upper_bound)
1653
- # Validate whether lower_bound and lower_bound_type are mutually inclusive.
1654
- _Validators._validate_mutually_inclusive_arguments(lower_bound, "lower_bound", lower_bound_type, "lower_bound_type")
1655
- # Validate whether upper_bound and upper_bound_type are mutually inclusive.
1656
- _Validators._validate_mutually_inclusive_arguments(upper_bound, "upper_bound", upper_bound_type, "upper_bound_type")
1657
-
1658
- # In order to make it similar to variables of SQLE functions, if get_required_length specifies
1659
- # a value we set match_length_of_arguments which will validate the length of the arguments
1660
- if not isinstance(self.__required_length, str) and self.get_required_length() > 0:
1661
- self.__match_length_of_arguments = True
1662
-
1663
- # If the argument is an int type and permitted values are 0 and 1, then we should consider it as boolean.
1664
- if "INTEGER" in self.__data_type.upper() and self.__permitted_values is not None\
1665
- and set(self.__permitted_values) == {0, 1}:
1666
- self.__data_type = "BOOLEAN"
1667
- self.__permitted_values = None
1668
- self.set_is_required(False)
1669
- if self.__default_value is not None:
1670
- self.__default_value = bool(self.__default_value)
1671
- else:
1672
- self.__r_default_value = False
1673
-
1674
- def get_python_type(self):
1675
- """
1676
- DESCRIPTION:
1677
- Get equivalent Python type for the JSON datatype for an argument.
1678
-
1679
- PARAMETERS:
1680
- None
1681
-
1682
- RETURNS:
1683
- type.
1684
-
1685
- RAISES:
1686
- None
1687
-
1688
- EXAMPLES:
1689
- self.get_python_type(arg1="string", arg2="db", arg3=2)
1690
- """
1691
- py_types = tuple()
1692
-
1693
- # If multiple datatype's allowed, return the tuple of all allowed python types.
1694
- if isinstance(self.__data_type, list):
1695
- for td_type in self.__data_type:
1696
- py_type = _Dtypes._anly_json_type_to_python_type(td_type)
1697
-
1698
- # If py_type is not a tuple, convert to a tuple.
1699
- py_types = py_types + ((py_type,) if not isinstance(py_type, tuple) else py_type)
1700
- else:
1701
- py_type = _Dtypes._anly_json_type_to_python_type(self.__data_type)
1702
- py_types = py_type if isinstance(py_type, tuple) else (py_type,)
1703
-
1704
- # If lists are allowed, add list type also.
1705
- if self.__allows_lists and (list not in py_types):
1706
- py_types = py_types + (list,)
1707
-
1
+ """
2
+ Unpublished work.
3
+ Copyright (c) 2021 by Teradata Corporation. All rights reserved.
4
+ TERADATA CORPORATION CONFIDENTIAL AND TRADE SECRET
5
+
6
+ Primary Owner: pradeep.garre@teradata.com
7
+ Secondary Owner: PankajVinod.Purandare@teradata.com
8
+
9
+ This file implements several classes for representing the input, output and other
10
+ arguments of analytic functions. These are used by IN-DB SQLE analytic framework
11
+ for parsing and storing the JSON details of each argument of each function.
12
+ File implements classes for following:
13
+ * Analytic Function Argument Base
14
+ * Analytic Function Input Argument
15
+ * Analytic Function Output Argument
16
+ * Analytic Function Other Argument
17
+ """
18
+ from teradataml.analytics.json_parser import PartitionKind
19
+ from teradataml.utils.dtypes import _Dtypes
20
+ from teradataml.utils.validators import _Validators
21
+ from teradataml.common.messages import Messages, MessageCodes
22
+ from teradataml.common.exceptions import TeradataMlException
23
+ from teradataml.common.utils import UtilFuncs
24
+ from teradataml.analytics.json_parser import UAFJsonFields as SJF
25
+ from teradataml.dataframe.dataframe import TDSeries, TDMatrix, TDAnalyticResult, TDGenSeries
26
+
27
+
28
+ class _DependentArgument:
29
+ """
30
+ Class to hold the information about dependent argument.
31
+ """
32
+ def __init__(self, sql_name, type, operator, right_operand):
33
+ """
34
+ DESCRIPTION:
35
+ Constructor for the class.
36
+
37
+ PARAMETERS:
38
+ sql_name:
39
+ Required Argument.
40
+ Specifies the name of the dependent argument in SQL.
41
+ Types: str
42
+
43
+ type:
44
+ Required Argument.
45
+ Specifies the type of the dependent argument. Dependent argument
46
+ type can be input_tables or arguments or output_tables.
47
+ Types: str
48
+
49
+ operator:
50
+ Required Argument.
51
+ Specifies the comparision operators for dependent argument.
52
+ Types: str
53
+
54
+ right_operand:
55
+ Required Argument.
56
+ Specifies the value to be used for comparing the dependent argument
57
+ using 'operator'.
58
+ Types: str
59
+ """
60
+ self.sql_name = sql_name
61
+ self.operator = operator
62
+ self.right_operand = right_operand
63
+ self.type = type
64
+
65
+ def is_required(self, arg_value):
66
+ """
67
+ DESCRIPTION:
68
+ Check if argument is required or not based on the value of dependent argument.
69
+
70
+ PARAMETERS:
71
+ arg_value:
72
+ Required Argument.
73
+ Specifies the value of dependent argument passed by the user.
74
+ Types: str or int or bool or float or list
75
+
76
+ RETURNS:
77
+ bool
78
+
79
+ RAISES:
80
+ None
81
+
82
+ EXAMPLES:
83
+ _DependentArgument("MethodType", "arguments", "=", "EQUAL-WIDTH").is_required("EQUAL-WIDTH")
84
+ """
85
+ if self.operator == "=":
86
+ return arg_value == self.right_operand
87
+ elif self.operator == ">=":
88
+ return arg_value >= self.right_operand
89
+ elif self.operator == ">":
90
+ return arg_value > self.right_operand
91
+ elif self.operator == "<=":
92
+ return arg_value <= self.right_operand
93
+ elif self.operator == "<":
94
+ return arg_value < self.right_operand
95
+ elif self.operator == "IN":
96
+ return arg_value in self.right_operand
97
+ elif self.operator == "NOT IN":
98
+ return arg_value not in self.right_operand
99
+ else:
100
+ msg_code = MessageCodes.EXECUTION_FAILED
101
+ raise TeradataMlException(
102
+ Messages.get_message(msg_code,
103
+ "parse the dependent argument '{}'".format(self.sql_name),
104
+ "Operator '{}' is not implemented".format(self.operator)),
105
+ msg_code)
106
+
107
+
108
+ class _AnlyFuncArgumentBase(object):
109
+ """
110
+ Class to hold the basic/common information about all the arguments.
111
+ """
112
+ def __init__(self, sql_name, is_required, sql_description, lang_description, lang_name, use_in_r):
113
+ """
114
+ DESCRIPTION:
115
+ Constructor for the class.
116
+
117
+ PARAMETERS:
118
+ sql_name:
119
+ Required Argument.
120
+ Specifies the name of the argument in SQL.
121
+ Types: str
122
+
123
+ is_required:
124
+ Required Argument.
125
+ Specifies whether the argument is required or not.
126
+ Types: bool
127
+
128
+ sql_description:
129
+ Required Argument.
130
+ Specifies the description of argument in SQL.
131
+ Types: str
132
+
133
+ lang_description:
134
+ Required Argument.
135
+ Specifies the description of the argument, which needs to be exposed
136
+ to user.
137
+ Types: str
138
+
139
+ lang_name:
140
+ Required Argument.
141
+ Specifies the name of the argument to be exposed to user.
142
+ Types: str
143
+
144
+ use_in_r:
145
+ Required Argument.
146
+ Specifies whether argument should be used in client or not.
147
+ Types: bool
148
+ """
149
+ self.__sql_name = sql_name
150
+ self.__is_required = is_required
151
+ self.__sql_description = sql_description
152
+ self.__description = lang_description
153
+ self.__name = lang_name
154
+ self.__use_in_r = use_in_r
155
+
156
+ awu_matrix = []
157
+ awu_matrix.append(["sql_name", sql_name, False, (str,), True])
158
+ awu_matrix.append(["is_required", is_required, False, (bool,)])
159
+ awu_matrix.append(["sql_description", sql_description, False, (str,), True])
160
+ awu_matrix.append(["lang_description", lang_description, False, (str,), True])
161
+ awu_matrix.append(["lang_name", lang_name, False, (str,), True])
162
+ awu_matrix.append(["use_in_r", use_in_r, False, (bool,)])
163
+
164
+ # Validate argument types.
165
+ _Validators._validate_function_arguments(awu_matrix)
166
+ self.is_empty_value_allowed = lambda: True
167
+ self.is_output_column = lambda: False
168
+ self.get_r_default_value = lambda: None
169
+
170
+ # Getters
171
+ def get_sql_name(self):
172
+ """
173
+ DESCRIPTION:
174
+ Get SQL name of the argument.
175
+
176
+ RETURNS:
177
+ str
178
+
179
+ RAISES:
180
+ None
181
+
182
+ EXAMPLES:
183
+ # Get the argument name used in SQL Query.
184
+ from teradataml.analytics.json_parser.argument import _AnlyFuncArgumentBase
185
+ argument_base = _AnlyFuncArgumentBase("sql_name", True, "SQL Description", "Python Description", "name", True)
186
+ argument_base.get_sql_name()
187
+ """
188
+ return self.__sql_name
189
+
190
+ def is_required(self):
191
+ """
192
+ DESCRIPTION:
193
+ Check if argument is required or not.
194
+
195
+ RETURNS:
196
+ bool
197
+
198
+ RAISES:
199
+ None
200
+
201
+ EXAMPLES:
202
+ # Check whether the argument is a mandatory or not for Analytic function.
203
+ from teradataml.analytics.json_parser.argument import _AnlyFuncArgumentBase
204
+ argument_base = _AnlyFuncArgumentBase("sql_name", True, "SQL Description", "Python Description", "name", True)
205
+ if argument_base.is_required():
206
+ print("Required")
207
+ """
208
+ return self.__is_required
209
+
210
+ def get_sql_description(self):
211
+ """
212
+ DESCRIPTION:
213
+ Get SQL description of the argument.
214
+
215
+ RETURNS:
216
+ str
217
+
218
+ RAISES:
219
+ None
220
+
221
+ EXAMPLES:
222
+ # Get the description of the argument with respect to SQL.
223
+ from teradataml.analytics.json_parser.argument import _AnlyFuncArgumentBase
224
+ argument_base = _AnlyFuncArgumentBase("sql_name", True, "SQL Description", "Python Description", "name", True)
225
+ argument_base.get_sql_description()
226
+ """
227
+ return self.__sql_description
228
+
229
+ def get_lang_description(self):
230
+ """
231
+ DESCRIPTION:
232
+ Get client specific description name of the argument.
233
+
234
+ RETURNS:
235
+ str
236
+
237
+ RAISES:
238
+ None
239
+
240
+ EXAMPLES:
241
+ # Get the description of the argument with respect to Python.
242
+ from teradataml.analytics.json_parser.argument import _AnlyFuncArgumentBase
243
+ argument_base = _AnlyFuncArgumentBase("sql_name", True, "SQL Description", "Python Description", "name", True)
244
+ argument_base.get_lang_description()
245
+ """
246
+ return self.__description
247
+
248
+ def get_lang_name(self):
249
+ """
250
+ DESCRIPTION:
251
+ Get client specific name of the argument.
252
+
253
+ RETURNS:
254
+ str
255
+
256
+ RAISES:
257
+ None
258
+
259
+ EXAMPLES:
260
+ # Get the argument name, which is exposed to user.
261
+ from teradataml.analytics.json_parser.argument import _AnlyFuncArgumentBase
262
+ argument_base = _AnlyFuncArgumentBase("sql_name", True, "SQL Description", "Python Description", "name", True)
263
+ argument_base.get_lang_name()
264
+ """
265
+ return self.__name
266
+
267
+ def use_in_r(self):
268
+ """
269
+ DESCRIPTION:
270
+ Check if argument should be used in client function or not.
271
+
272
+ RETURNS:
273
+ str
274
+
275
+ RAISES:
276
+ None
277
+
278
+ EXAMPLES:
279
+ # Check whether argument is used in R or not.
280
+ from teradataml.analytics.json_parser.argument import _AnlyFuncArgumentBase
281
+ argument_base = _AnlyFuncArgumentBase("sql_name", True, "SQL Description", "Python Description", "name", True)
282
+ if argument_base.use_in_r():
283
+ print("Yes")
284
+ """
285
+ return self.__use_in_r
286
+
287
+
288
+ class _AnlyFuncInput(_AnlyFuncArgumentBase):
289
+ """
290
+ Class to hold the information about input argument.
291
+ """
292
+
293
+ def __init__(self,
294
+ sql_name,
295
+ is_required,
296
+ sql_description,
297
+ lang_description,
298
+ lang_name,
299
+ use_in_r,
300
+ r_order_num,
301
+ datatype="TABLE_NAME",
302
+ required_input_kind=None,
303
+ partition_by_one=False,
304
+ partition_by_one_inclusive=False,
305
+ is_ordered=False,
306
+ is_local_ordered=False,
307
+ hash_by_key=False,
308
+ allows_lists=False,
309
+ r_formula_usage=False,
310
+ alternate_sql_name=None):
311
+ """
312
+ Constructor for generating an object of Analytic Function Argument from
313
+ JSON for arguments accepting input table.
314
+
315
+ PARAMETERS:
316
+ sql_name:
317
+ Required Argument.
318
+ Specifies the name of the argument in SQL.
319
+ Types: str
320
+
321
+ is_required:
322
+ Required Argument.
323
+ Specifies whether the argument is required or not.
324
+ Types: bool
325
+
326
+ sql_description:
327
+ Required Argument.
328
+ Specifies the description of argument in SQL.
329
+ Types: str
330
+
331
+ lang_description:
332
+ Required Argument.
333
+ Specifies the description of the argument, which needs to be exposed
334
+ to user.
335
+ Types: str
336
+
337
+ lang_name:
338
+ Required Argument.
339
+ Specifies the name of the argument to be exposed to user.
340
+ Types: str
341
+
342
+ use_in_r:
343
+ Required Argument.
344
+ Specifies whether argument should be used in client or not.
345
+ Types: bool
346
+
347
+ r_order_num:
348
+ Required Argument.
349
+ Specifies the ordering sequence of the argument for R function call.
350
+ Types: integer
351
+
352
+ datatype:
353
+ Optional Argument.
354
+ Specifies the datatype for output table.
355
+ Permitted Values: table_name, table_alias
356
+ Default Value: table_name
357
+ Types: str
358
+
359
+ required_input_kind:
360
+ Optional Argument.
361
+ Specifies the kind of input.
362
+ Permitted Values: partition_by_key, partition_by_any, or dimension
363
+ Default Value: None
364
+ Types: str or list of str
365
+
366
+ partition_by_one:
367
+ Optional Argument.
368
+ Specifies that for partition_by_key input kind, the key should be
369
+ "Partition by 1". If this argument is set to true and
370
+ "partition_by_one_inclusive" is set to False, the function only accepts
371
+ "Partition by 1" but not "Partition by key".
372
+ Default Value: False
373
+ Types: bool
374
+
375
+ partition_by_one_inclusive:
376
+ Optional Argument.
377
+ Specifies that for partition_by_key input kind, the function accepts both
378
+ "Partition by 1" and "Partition by key". This argument can be set to True
379
+ only if "required_input_kind" has partition_by_key, partition_by_any.
380
+ Default Value: False
381
+ Types: bool
382
+
383
+ is_ordered:
384
+ Optional Argument.
385
+ Specifies that the table must be input with an "Order by" clause.
386
+ Default Value: False
387
+ Types: bool
388
+
389
+ is_local_ordered:
390
+ Optional Argument.
391
+ Specifies whether the table supports LOCAL ORDER BY clause or not.
392
+ Default Value: False
393
+ Types: bool
394
+
395
+ hash_by_key:
396
+ Optional Argument.
397
+ Specifies whether data is grouped according to the HASH BY clause.
398
+ Default Value: False
399
+ Types: bool
400
+
401
+ allow_lists:
402
+ Optional Argument.
403
+ Specifies whether the argument accepts list of values. If false, the
404
+ argument can only accept a single value.
405
+ Default Value: False
406
+ Types: bool
407
+
408
+ r_formula_usage:
409
+ Optional Argument.
410
+ Specifies if the argument contains a formula.
411
+ Default Value: False
412
+ Types: bool
413
+
414
+ alternate_sql_name:
415
+ Optional Argument.
416
+ Specifies alternate names for the argument.
417
+ Default Value: None
418
+ Types: str or list of str
419
+ """
420
+
421
+ # Call Abstract class constructor
422
+ super().__init__(sql_name, is_required, sql_description, lang_description,
423
+ lang_name,
424
+ use_in_r)
425
+
426
+ # Process other parameters of input table argument.
427
+ self.__required_input_kind = required_input_kind
428
+ self.__partition_by_one = partition_by_one
429
+ self.__partition_by_one_inclusive = partition_by_one_inclusive
430
+ self.__is_ordered = is_ordered
431
+ self.__is_local_ordered = is_local_ordered
432
+ self.__hash_by_key = hash_by_key
433
+ self.__datatype = datatype
434
+ self.__allows_lists = allows_lists
435
+ self.__r_formula_usage = r_formula_usage
436
+ self.__r_order_num = r_order_num
437
+ self.__alternate_sql_name = alternate_sql_name
438
+
439
+ # Create argument information matrix to do parameter checking
440
+ self.__arg_info_matrix = []
441
+ required_input_kind_permitted_values = ["PartitionByKey", "PartitionByAny", "Dimension"]
442
+ self.__arg_info_matrix.append(
443
+ ["required_input_kind", self.__required_input_kind, True, (list, str), True,
444
+ required_input_kind_permitted_values])
445
+ self.__arg_info_matrix.append(
446
+ ["partition_by_one", self.__partition_by_one, True, (bool)])
447
+ self.__arg_info_matrix.append(
448
+ ["partition_by_one_inclusive", self.__partition_by_one_inclusive, True, (bool)])
449
+ self.__arg_info_matrix.append(["is_ordered", self.__is_ordered, True, (bool)])
450
+ self.__arg_info_matrix.append(["is_local_ordered", self.__is_local_ordered, True, (bool)])
451
+ self.__arg_info_matrix.append(["hash_by_key", self.__hash_by_key, True, (bool)])
452
+ self.__arg_info_matrix.append(
453
+ ["datatype", self.__datatype, False, (str), True, ["table_name", "table_alias"]])
454
+ self.__arg_info_matrix.append(["r_order_num", self.__r_order_num, False, (int), True])
455
+ self.__arg_info_matrix.append(["allows_lists", self.__allows_lists, True, (bool)])
456
+ self.__arg_info_matrix.append(["alternate_sql_name", self.__alternate_sql_name, True, (list, str)])
457
+ self.__arg_info_matrix.append(["r_formula_usage", self.__r_formula_usage, True, (bool)])
458
+ # Perform the function validations
459
+ self.__validate()
460
+ self.get_default_value = lambda: None
461
+ self.get_permitted_values = lambda: None
462
+ self._only_partition_by_one = lambda: \
463
+ self.__partition_by_one and not self.__partition_by_one_inclusive
464
+
465
+ def __validate(self):
466
+ """
467
+ DESCRIPTION:
468
+ Function to validate arguments, which verifies missing arguments,
469
+ input argument.
470
+ """
471
+ # Validate argument types.
472
+ _Validators._validate_function_arguments(self.__arg_info_matrix)
473
+
474
+ # Getters.
475
+ def get_required_input_kind(self):
476
+ """
477
+ DESCRIPTION:
478
+ Function to get the required_input_kind argument.
479
+ """
480
+ return self.__required_input_kind
481
+
482
+ def get_python_type(self):
483
+ """
484
+ DESCRIPTION:
485
+ Function to get the python type of argument.
486
+ """
487
+ from teradataml.dataframe.dataframe import DataFrame
488
+ return DataFrame
489
+
490
+ def is_reference_function_acceptable(self):
491
+ """
492
+ DESCRIPTION:
493
+ Function to check if argument accepts reference function name or not.
494
+ """
495
+ return self.get_lang_name().lower() in ("object", "modeldata")
496
+
497
+ def is_partition_by_one(self):
498
+ """
499
+ DESCRIPTION:
500
+ Function to check whether partition_by_one is True or False.
501
+ """
502
+ return self.__partition_by_one
503
+
504
+ def is_partition_by_one_inclusive(self):
505
+ """
506
+ DESCRIPTION:
507
+ Function to check whether partition_by_one_inclusive is True or False.
508
+ """
509
+ return self.__partition_by_one_inclusive
510
+
511
+ def is_ordered(self):
512
+ """
513
+ DESCRIPTION:
514
+ Function to check whether input table has an order by clause.
515
+ """
516
+ return self.__is_ordered
517
+
518
+ def is_local_ordered(self):
519
+ """
520
+ DESCRIPTION:
521
+ Check whether input supports LOCAL ORDER BY clause or not.
522
+ """
523
+ return self.__is_local_ordered
524
+
525
+ def hash_by_key(self):
526
+ """
527
+ DESCRIPTION:
528
+ Check whether input supports HASH BY KEY clause or not.
529
+ """
530
+ return self.__hash_by_key
531
+
532
+ def get_data_type(self):
533
+ """
534
+ DESCRIPTION:
535
+ Function to get the datatype of the argument.
536
+ """
537
+ return self.__datatype
538
+
539
+ def allows_lists(self):
540
+ """
541
+ DESCRIPTION:
542
+ Function to check if argument accepts lists or not.
543
+ """
544
+ return self.__allows_lists
545
+
546
+ def get_r_formula_usage(self):
547
+ """
548
+ DESCRIPTION:
549
+ Function to check if argument is part of a formula or not.
550
+ """
551
+ return self.__r_formula_usage
552
+
553
+ def get_r_order_number(self):
554
+ """
555
+ DESCRIPTION:
556
+ Function to get the order number of the argument.
557
+ """
558
+ return self.__r_order_num
559
+
560
+ def get_alternate_sql_name(self):
561
+ """
562
+ DESCRIPTION:
563
+ Function to get the alternate SQL name of the argument.
564
+ """
565
+ return self.__alternate_sql_name
566
+
567
+ def _get_partition_column_required_kind(self):
568
+ """
569
+ DESCRIPTION:
570
+ Function to determine if the input table is partitioned by a column or ANY or 1
571
+ or data distribution is DIMENSION. This function follows below steps and derives
572
+ partition column kind.
573
+ * The input_table is partitioned by a key, if requireInputKind == PartitionByKey
574
+ and partitionByOne == False.
575
+ * The input_table is partitioned by 1/key, if requireInputKind == PartitionByKey,
576
+ partitionByOneInclusive == True and partitionByOne == True.
577
+ * The input_table is partitioned by 1 only, if partitionByOneInclusive == False
578
+ and partitionByOne=true.
579
+ * The input_table is partitioned by ANY/key, if requireInputKind == PartitionByKey
580
+ and requireInputKind == PartitionByAny.
581
+ * The input_table is partitioned by ANY only, if requireInputKind == PartitionByAny.
582
+ * The input_table is distributed by either DIMENSION or partitioned by key, if
583
+ requireInputKind == PartitionByKey and requireInputKind == DIMENSION.
584
+ * The input_table is distributed by either DIMENSION or partitioned by ANY/key, if
585
+ requireInputKind == PartitionByKey and requireInputKind == PartitionByAny and
586
+ requireInputKind == DIMENSION.
587
+
588
+ RAISES:
589
+ None
590
+
591
+ RETURNS:
592
+ enum of type teradataml.analytics.json_parser.PartitionKind
593
+
594
+ EXAMPLES:
595
+ self._get_partition_column_required_kind()
596
+ """
597
+ is_partition_by_key, is_partition_by_any, is_partition_by_one, is_dimension = [False]*4
598
+
599
+ # Input table is partitioned by 1 ONLY when partitionByOneInclusive is false and
600
+ # partitionByOne is true.
601
+ if self.__partition_by_one and not self.__partition_by_one_inclusive:
602
+ is_partition_by_one = True
603
+ else:
604
+ for input_kind in self.__required_input_kind:
605
+ if input_kind == "Dimension":
606
+ is_dimension = True
607
+ # If requiredInputKind has PartitionByKey and partitionByOneInclusive and
608
+ # partitionByOne is True then input table is partitioned by 1 or Key.
609
+ # Else input table is partitioned by Key Only.
610
+ elif input_kind == "PartitionByKey":
611
+ if self.__partition_by_one_inclusive and self.__partition_by_one:
612
+ is_partition_by_one = True
613
+ is_partition_by_key = True
614
+ else:
615
+ is_partition_by_key = True
616
+ elif input_kind == "PartitionByAny":
617
+ is_partition_by_any = True
618
+
619
+ if is_dimension:
620
+ if is_partition_by_key and is_partition_by_any:
621
+ return PartitionKind.DIMENSIONKEYANY
622
+ elif is_partition_by_key and not is_partition_by_any:
623
+ return PartitionKind.DIMENSIONKEY
624
+ else:
625
+ return PartitionKind.DIMENSION
626
+ else:
627
+ if is_partition_by_key and not is_partition_by_any and not is_partition_by_one:
628
+ return PartitionKind.KEY
629
+ elif is_partition_by_key and is_partition_by_any:
630
+ return PartitionKind.ANY
631
+ elif not is_partition_by_key and is_partition_by_any:
632
+ return PartitionKind.ANYONLY
633
+ elif is_partition_by_one and is_partition_by_key:
634
+ return PartitionKind.ONE
635
+ elif is_partition_by_one and is_partition_by_key:
636
+ return PartitionKind.ONEONLY
637
+
638
+ def _get_default_partition_column_kind(self):
639
+ """ Returns the default Parition Type based on requiredInputKind parameter in json file. """
640
+ required_column_kind = UtilFuncs._as_list(self.__required_input_kind)[0]
641
+
642
+ if required_column_kind == "PartitionByAny":
643
+ return PartitionKind.ANY
644
+ elif required_column_kind == "Dimension":
645
+ return PartitionKind.DIMENSION
646
+ elif required_column_kind == "PartitionByOne":
647
+ return PartitionKind.ONE
648
+ else:
649
+ return None
650
+
651
+ '''
652
+ @staticmethod
653
+ def _get_default_partition_by_value(partition_kind):
654
+ """
655
+ DESCRIPTION:
656
+ Function to get the default value for partition column kind.
657
+
658
+ PARAMETERS:
659
+ partition_kind:
660
+ Required Argument.
661
+ Specifies input table partition type.
662
+
663
+ RAISES:
664
+ None
665
+
666
+ RETURNS:
667
+ str OR int
668
+
669
+ EXAMPLES:
670
+ self._get_default_partition_by_value(PartitionKind.KEY)
671
+ """
672
+ if partition_kind == PartitionKind.KEY or partition_kind == PartitionKind.DIMENSIONKEY:
673
+ return None
674
+ elif partition_kind == PartitionKind.ONE or partition_kind == PartitionKind.ONEONLY:
675
+ return 1
676
+ elif partition_kind == PartitionKind.ANY or partition_kind == PartitionKind.ANYONLY or \
677
+ partition_kind == PartitionKind.DIMENSIONKEYANY:
678
+ return "ANY"
679
+ '''
680
+
681
+ def _only_partition_by_any(self):
682
+ """
683
+ DESCRIPTION:
684
+ Check partition column supports only Partition By Any.
685
+
686
+ RAISES:
687
+ None
688
+
689
+ RETURNS:
690
+ bool
691
+
692
+ EXAMPLES:
693
+ self._only_partition_by_any()
694
+ """
695
+ if isinstance(self.__required_input_kind, str):
696
+ return self.__required_input_kind == "PartitionByAny"
697
+ return self.__required_input_kind == ["PartitionByAny"]
698
+
699
+
700
+ class _AnlyFuncOutput(_AnlyFuncArgumentBase):
701
+ """
702
+ Class to hold the information about output argument.
703
+ """
704
+
705
+ def __init__(self,
706
+ sql_name,
707
+ is_required,
708
+ sql_description,
709
+ lang_description,
710
+ lang_name,
711
+ use_in_r,
712
+ r_order_num,
713
+ datatype="TABLE_NAME",
714
+ is_output_table=True,
715
+ allows_lists=False,
716
+ output_schema=None,
717
+ alternate_sql_name=None,
718
+ support_volatility=False,
719
+ is_required_dependent_argument=None):
720
+ """
721
+ Constructor for generating an object of Analytic Function Argument from
722
+ JSON for arguments accepting output table information.
723
+
724
+ PARAMETERS:
725
+ sql_name:
726
+ Required Argument.
727
+ Specifies the name of the argument in SQL.
728
+ Types: str
729
+
730
+ is_required:
731
+ Required Argument.
732
+ Specifies whether the argument is required or not.
733
+ Types: bool
734
+
735
+ sql_description:
736
+ Required Argument.
737
+ Specifies the description of argument in SQL.
738
+ Types: str
739
+
740
+ lang_description:
741
+ Required Argument.
742
+ Specifies the description of the argument, which needs to be exposed
743
+ to user.
744
+ Types: str
745
+
746
+ lang_name:
747
+ Required Argument.
748
+ Specifies the name of the argument to be exposed to user.
749
+ Types: str
750
+
751
+ use_in_r:
752
+ Required Argument.
753
+ Specifies whether argument should be used in client or not.
754
+ Types: bool
755
+
756
+ r_order_num:
757
+ Required Argument.
758
+ Specifies the ordering sequence of the argument for R function call.
759
+ Types: integer
760
+
761
+ datatype:
762
+ Optional Argument.
763
+ Specifies the datatype for output table.
764
+ Permitted Values: table_name, table_alias
765
+ Default Value: table_name
766
+ Types: str
767
+
768
+ is_output_table:
769
+ Optional Argument.
770
+ Specifies whether the argument clause has an output table name.
771
+ Default Value: True
772
+ Types: bool
773
+
774
+ allow_lists:
775
+ Optional Argument.
776
+ Specifies whether the argument accepts list of values. If false, the
777
+ argument can only accept a single value.
778
+ Default Value: False
779
+ Types: bool
780
+
781
+ output_schema:
782
+ Optional Argument.
783
+ Specifies the output schema of the function.
784
+ Default Value: None
785
+ Types: str
786
+
787
+ alternate_sql_name:
788
+ Optional Argument.
789
+ Specifies alternate names for the argument.
790
+ Default Value: None
791
+ Types: str or list of str
792
+
793
+ support_volatility:
794
+ Optional Argument.
795
+ Specifies whether the output table support VOLATILE table or not.
796
+ Default Value: False
797
+ Types: bool
798
+ """
799
+
800
+ # Call super class constructor to initialize basic parameters.
801
+ super().__init__(sql_name, is_required, sql_description, lang_description,
802
+ lang_name,
803
+ use_in_r)
804
+
805
+ self.__r_order_num = r_order_num
806
+ self.__allows_lists = allows_lists
807
+ self.__output_schema = output_schema
808
+ self.__alternate_sql_name = alternate_sql_name
809
+ self.__is_output_table = is_output_table
810
+ self.__datatype = datatype
811
+ self.__support_volatility = support_volatility
812
+ # Create argument information matrix to do parameter checking
813
+ self.__arg_info_matrix = []
814
+ self.__arg_info_matrix.append(["r_order_num", self.__r_order_num, False, int, True])
815
+ self.__arg_info_matrix.append(["allows_lists", self.__allows_lists, True, bool])
816
+ self.__arg_info_matrix.append(["output_schema", self.__output_schema, True, str, True])
817
+ self.__arg_info_matrix.append(["alternate_sql_name", self.__alternate_sql_name, True, (list, str)])
818
+ self.__arg_info_matrix.append(["is_output_table", self.__is_output_table, True, bool])
819
+ self.__arg_info_matrix.append(
820
+ ["datatype", self.__datatype, True, str, True, ["table_name", "table_alias"]])
821
+ self.__arg_info_matrix.append(["support_volatility", self.__support_volatility, True, bool])
822
+ self.__arg_info_matrix.append(
823
+ ["is_required_dependent_argument", is_required_dependent_argument, True, _DependentArgument])
824
+
825
+ # Perform the function validations
826
+ self.__validate()
827
+ self.is_volatility_supported = lambda : self.__support_volatility
828
+ self.get_is_required_dependent_argument = lambda : is_required_dependent_argument
829
+
830
+ def __validate(self):
831
+ """
832
+ DESCRIPTION:
833
+ Function to validate arguments, which verifies missing arguments,
834
+ input argument.
835
+ """
836
+ # Validate argument types.
837
+ _Validators._validate_function_arguments(self.__arg_info_matrix)
838
+
839
+ # Getters
840
+ def get_data_type(self):
841
+ """
842
+ DESCRIPTION:
843
+ Function to get the datatype of the argument.
844
+ """
845
+ return self.__datatype
846
+
847
+ def is_output_table(self):
848
+ """
849
+ DESCRIPTION:
850
+ Function to check if argument represents output table or not.
851
+ """
852
+ return self.__is_output_table
853
+
854
+ def get_r_order_number(self):
855
+ """
856
+ DESCRIPTION:
857
+ Function to get the order number of the argument.
858
+ """
859
+ return self.__r_order_num
860
+
861
+ def allows_lists(self):
862
+ """
863
+ DESCRIPTION:
864
+ Function to check if argument accepts lists or not.
865
+ """
866
+ return self.__allows_lists
867
+
868
+ def get_output_schema(self):
869
+ """
870
+ DESCRIPTION:
871
+ Function to get the output schema of the argument.
872
+ """
873
+ return self.__output_schema
874
+
875
+ def get_alternate_sql_name(self):
876
+ """
877
+ DESCRIPTION:
878
+ Function to get the alternate SQL name of the argument.
879
+ """
880
+ return self.__alternate_sql_name
881
+
882
+
883
+ class _AnlyFuncArgument(_AnlyFuncArgumentBase):
884
+ """
885
+ Class to hold the information about analytic function argument.
886
+ """
887
+
888
+ def __init__(self,
889
+ sql_name,
890
+ is_required,
891
+ sql_description,
892
+ lang_description,
893
+ lang_name,
894
+ use_in_r,
895
+ r_order_num,
896
+ datatype,
897
+ default_value=None,
898
+ permitted_values=None,
899
+ lower_bound=None,
900
+ lower_bound_type=None,
901
+ upper_bound=None,
902
+ upper_bound_type=None,
903
+ allow_nan=False,
904
+ required_length=0,
905
+ match_length_of_argument=None,
906
+ allows_lists=False,
907
+ allow_padding=False,
908
+ r_formula_usage=False,
909
+ r_default_value=None,
910
+ target_table=None,
911
+ target_table_lang_name=None,
912
+ check_duplicate=False,
913
+ allowed_types=None,
914
+ allowed_type_groups=None,
915
+ is_output_column=False,
916
+ alternate_sql_name=None):
917
+ """
918
+ Constructor for generating an object of Analytic Function Argument from
919
+ JSON for other arguments.
920
+
921
+ PARAMETERS:
922
+ sql_name:
923
+ Required Argument.
924
+ Specifies the name of the argument in SQL.
925
+ Types: str
926
+
927
+ is_required:
928
+ Required Argument.
929
+ Specifies whether the argument is required or not.
930
+ Types: bool
931
+
932
+ sql_description:
933
+ Required Argument.
934
+ Specifies the description of argument in SQL.
935
+ Types: str
936
+
937
+ lang_description:
938
+ Required Argument.
939
+ Specifies the description of the argument, which needs to be exposed
940
+ to user.
941
+ Types: str
942
+
943
+ lang_name:
944
+ Required Argument.
945
+ Specifies the name of the argument to be exposed to user.
946
+ Types: str
947
+
948
+ use_in_r:
949
+ Required Argument.
950
+ Specifies whether argument should be used in client or not.
951
+ Types: bool
952
+
953
+ r_order_num:
954
+ Required Argument.
955
+ Specifies the ordering sequence of the argument.
956
+ Types: integer
957
+
958
+ datatype:
959
+ Required Argument.
960
+ Specifies the datatype for argument.
961
+ Types: str OR list of str
962
+
963
+ default_value:
964
+ Optional Argument.
965
+ Specifies the default value for argument.
966
+ Types: str OR int OR float OR bool
967
+
968
+ permitted_values:
969
+ Optional Argument.
970
+ Specified the permitted values for argument.
971
+ Types: list OR str OR float OR int
972
+
973
+ lower_bound:
974
+ Optional Argument.
975
+ Specifies the lower bound value for argument.
976
+ Types: int OR float
977
+
978
+ lower_bound_type:
979
+ Optional Argument.
980
+ Specifies whether "lower_bound" is inclusive or exclusive.
981
+ Permitted Values: INCLUSIVE, EXCLUSIVE
982
+ Types: str
983
+
984
+ upper_bound:
985
+ Optional Argument.
986
+ Specifies the upper bound value for argument.
987
+ Types: int OR float
988
+
989
+ upper_bound_type:
990
+ Optional Argument.
991
+ Specifies whether "upper_bound" is inclusive or exclusive.
992
+ Permitted Values: INCLUSIVE, EXCLUSIVE
993
+ Types: str
994
+
995
+ allow_nan:
996
+ Optional Argument.
997
+ Specifies whether argument accepts None or not.
998
+ Default Value: False
999
+ Types: bool
1000
+
1001
+ allows_lists:
1002
+ Optional Argument.
1003
+ Specifies whether argument accepts a list of values or not.
1004
+ Default Value: False
1005
+ Types: bool
1006
+
1007
+ match_length_of_argument:
1008
+ Optional Argument.
1009
+ Specifies whether length of "allow_lists" should be checked or not.
1010
+ Default Value: False
1011
+ Types: bool
1012
+
1013
+ required_length:
1014
+ Optional Argument.
1015
+ Specifies if the list must be the same length as the list specified
1016
+ in argument clause.
1017
+ Default Value: 0
1018
+ Types: int
1019
+
1020
+ allow_padding:
1021
+ Optional Argument.
1022
+ Specifies whether to add padding to argument or not. When set to True,
1023
+ user submitted value will be padded into a list equal to the required
1024
+ length.
1025
+ Default Value: False
1026
+ Types: bool
1027
+
1028
+ r_formula_usage:
1029
+ Optional Argument.
1030
+ Specifies whether argument is part of formula.
1031
+ Default Value: False
1032
+ Types: bool
1033
+
1034
+ r_default_value:
1035
+ Optional Argument.
1036
+ Specifies the default value of the argument.
1037
+ Types: str OR int OR float
1038
+
1039
+ target_table:
1040
+ Optional Argument.
1041
+ Specifies the name of the input table that the input column
1042
+ should be found in (Only applicable for datatype COLUMNS or COLUMN_NAMES)
1043
+ Types: str OR list of str
1044
+
1045
+ target_table_lang_name:
1046
+ Optional Argument.
1047
+ Specifies the lang name of the input table that the input column
1048
+ should be found in (Only applicable for datatype COLUMNS or COLUMN_NAMES)
1049
+ Types: str
1050
+
1051
+ check_duplicate:
1052
+ Optional Argument.
1053
+ Specifies whether duplicate columns should be checked in input
1054
+ or not (Only applicable for datatype COLUMNS or COLUMN_NAMES).
1055
+ Default Value: False
1056
+ Types: bool
1057
+
1058
+ allowed_types:
1059
+ Optional Argument.
1060
+ Specifies SQL types that are allowed (Only applicable for datatype
1061
+ COLUMNS or COLUMN_NAMES).
1062
+ Types: str OR list of str
1063
+
1064
+ allowed_type_groups:
1065
+ Optional Argument.
1066
+ Species the group of SQL types that are allowed.
1067
+ * NUMERIC for all numeric types.
1068
+ * STRING for all char/varchar types.
1069
+ * GROUPTYPE for any type except double or float.
1070
+ Types: list of str
1071
+
1072
+ is_output_column:
1073
+ Optional Argument.
1074
+ Specifies whether argument is output column or not.
1075
+ Default Value: False
1076
+ Types: bool
1077
+
1078
+ alternate_sql_name:
1079
+ Optional Argument.
1080
+ Specifies alternate names for the argument.
1081
+ Types: str or list of str
1082
+ """
1083
+
1084
+ # Call super class constructor to initialize basic parameters.
1085
+ super().__init__(sql_name, is_required, sql_description, lang_description, lang_name, use_in_r)
1086
+
1087
+ # Initialize rest of the parameters for the Arguments class.
1088
+ self.__default_value = default_value
1089
+ self.__permitted_values = permitted_values
1090
+ self.__lower_bound = lower_bound
1091
+ self.__lower_bound_type = lower_bound_type
1092
+ self.__upper_bound = upper_bound
1093
+ self.__upper_bound_type = upper_bound_type
1094
+ self.__allow_nan = allow_nan
1095
+ self.__required_length = required_length
1096
+ self.__match_length_of_argument = match_length_of_argument
1097
+ self.__datatype = datatype
1098
+ self.__allows_lists = allows_lists
1099
+ self.__allow_padding = allow_padding
1100
+ self.__r_formula_usage = r_formula_usage
1101
+ self.__r_default_value = r_default_value
1102
+ self.__target_table = target_table
1103
+ self.__target_table_lang_name = target_table_lang_name
1104
+ self.__check_duplicate = check_duplicate
1105
+ self.__allowed_types = allowed_types
1106
+ self.__allowed_type_groups = allowed_type_groups
1107
+ self.__r_order_num = r_order_num
1108
+ self.__is_output_column = is_output_column
1109
+ self.__alternate_sql_name = alternate_sql_name
1110
+
1111
+ awu_matrix = []
1112
+ awu_matrix.append(["r_order_num", r_order_num, False, int])
1113
+ awu_matrix.append(["datatype", datatype, False, (list, str), True])
1114
+ awu_matrix.append(["default_value", default_value, True, (int, str, bool, float)])
1115
+ awu_matrix.append(["permitted_values", permitted_values, True, (list, str, int, float)])
1116
+ awu_matrix.append(["lower_bound", lower_bound, True, (int, float)])
1117
+ awu_matrix.append(["lower_bound_type", lower_bound_type, True, str, True, ["INCLUSIVE", "EXCLUSIVE"]])
1118
+ awu_matrix.append(["upper_bound", upper_bound, True, (int, float)])
1119
+ awu_matrix.append(["upper_bound_type", upper_bound_type, True, str, True, ["INCLUSIVE", "EXCLUSIVE"]])
1120
+ awu_matrix.append(["allow_nan", allow_nan, True, bool])
1121
+ awu_matrix.append(["allows_lists", allows_lists, True, bool])
1122
+ awu_matrix.append(["match_length_of_argument", match_length_of_argument, True, bool])
1123
+ awu_matrix.append(["required_length", required_length, True, int])
1124
+ awu_matrix.append(["allow_padding", allow_padding, True, bool])
1125
+ awu_matrix.append(["r_formula_usage", r_formula_usage, True, bool])
1126
+ awu_matrix.append(["r_default_value", r_default_value, True, (int, float, str)])
1127
+ awu_matrix.append(["target_table", target_table, True, (list, str)])
1128
+ awu_matrix.append(["target_table_lang_name", target_table_lang_name, True, str])
1129
+ awu_matrix.append(["check_duplicate", check_duplicate, True, bool])
1130
+ awu_matrix.append(["allowed_types", allowed_types, True, (list, str)])
1131
+ awu_matrix.append(["allowed_type_groups", allowed_type_groups, True, (list, str)])
1132
+ awu_matrix.append(["is_output_column", is_output_column, True, bool])
1133
+ awu_matrix.append(["alternate_sql_name", alternate_sql_name, True, (list, str)])
1134
+
1135
+ # Validate argument types.
1136
+ _Validators._validate_function_arguments(awu_matrix)
1137
+
1138
+ # Validate lower bound is greater than upper bound.
1139
+ # _validate_argument_range validates whether lower bound is less than upper bound
1140
+ # or not if argument is None.
1141
+ _Validators._validate_argument_range(
1142
+ arg_name="dummy", arg=None, lbound=self.__lower_bound, ubound=self.__upper_bound)
1143
+
1144
+ # Getters.
1145
+ self.get_r_order_number = lambda: self.__r_order_num
1146
+ self.get_data_type = lambda: self.__datatype
1147
+ self.get_default_value = lambda: self.__default_value
1148
+ self.get_permitted_values = lambda: self.__permitted_values
1149
+ self.get_lower_bound = lambda: self.__lower_bound
1150
+ self.get_lower_bound_type = lambda: self.__lower_bound_type
1151
+ self.get_upper_bound = lambda: self.__upper_bound
1152
+ self.get_upper_bound_type = lambda: self.__upper_bound_type
1153
+ self.is_nan_allowed = lambda: self.__allow_nan
1154
+ self.get_required_length = lambda: self.__required_length
1155
+ self.get_match_length_of_argument = lambda: self.__match_length_of_argument
1156
+ self.is_lists_allowed = lambda: self.__allows_lists
1157
+ self.is_padding_required = lambda: self.__allow_padding
1158
+ self.is_argument_a_formula = lambda: self.__r_formula_usage
1159
+ self.get_r_default_value = lambda: self.__r_default_value
1160
+ self.get_target_table = lambda: self.__target_table
1161
+ self.get_target_table_lang_name = lambda: self.__target_table_lang_name
1162
+ self.check_duplicate = lambda: self.__check_duplicate
1163
+ self.get_allowed_types = lambda: self.__allowed_types
1164
+ self.get_allowed_type_groups = lambda: self.__allowed_type_groups
1165
+ self.is_output_column = lambda: self.__is_output_column
1166
+ self.get_alternate_sql_name = lambda: self.__alternate_sql_name
1167
+ self.is_empty_value_allowed = lambda: not self.is_column_argument()
1168
+
1169
+ def get_python_type(self):
1170
+ """
1171
+ DESCRIPTION:
1172
+ Get equivalent Python type for the JSON datatype for an argument.
1173
+
1174
+ PARAMETERS:
1175
+ None
1176
+
1177
+ RETURNS:
1178
+ type.
1179
+
1180
+ RAISES:
1181
+ None
1182
+
1183
+ EXAMPLES:
1184
+ self.get_python_type(arg1="string", arg2="db", arg3=2)
1185
+ """
1186
+ py_types = tuple()
1187
+
1188
+ # If multiple datatype's allowed, return the tuple of all allowed python types.
1189
+ if isinstance(self.__datatype, list):
1190
+ for td_type in self.__datatype:
1191
+ py_type = _Dtypes._anly_json_type_to_python_type(td_type)
1192
+
1193
+ # If py_type is not a tuple, convert to a tuple.
1194
+ py_types = py_types + ((py_type, ) if not isinstance(py_type, tuple) else py_type)
1195
+ else:
1196
+ py_type = _Dtypes._anly_json_type_to_python_type(self.__datatype)
1197
+ py_types = py_type if isinstance(py_type, tuple) else (py_type, )
1198
+
1199
+ # If lists are allowed, add list type also.
1200
+ if self.__allows_lists and (list not in py_types):
1201
+ py_types = py_types + (list, )
1202
+
1203
+ return py_types
1204
+
1205
+ def is_column_argument(self):
1206
+ """
1207
+ DESCRIPTION:
1208
+ Function checks if the argument accepts column as input or not.
1209
+
1210
+ PARAMETERS:
1211
+ None
1212
+
1213
+ RETURNS:
1214
+ bool
1215
+
1216
+ RAISES:
1217
+ None
1218
+
1219
+ EXAMPLES:
1220
+ self.is_column_argument()
1221
+ """
1222
+ # __datatype can be either string or list.
1223
+ if isinstance(self.__datatype, list):
1224
+ datatype = (datatype.lower() for datatype in self.__datatype)
1225
+ else:
1226
+ datatype = self.__datatype.lower()
1227
+ return "column" in datatype
1228
+
1229
+
1230
+ class _AnlyFuncArgumentBaseUAF(object):
1231
+ """ Class to hold the basic/common information about all the arguments."""
1232
+ def __init__(self, data_type, description, lang_name, is_required=False):
1233
+ """
1234
+ DESCRIPTION:
1235
+ Constructor for the class.
1236
+
1237
+ PARAMETERS:
1238
+ data_type:
1239
+ Required Argument.
1240
+ Specifies the data type an argument can accept.
1241
+ Type: str
1242
+
1243
+ description:
1244
+ Required Argument.
1245
+ Specifies the argument description.
1246
+ Type: str or List
1247
+
1248
+ lang_name:
1249
+ Required Argument.
1250
+ Specifies the name of the argument to be exposed to user.
1251
+ Type: str
1252
+
1253
+ is_required:
1254
+ Optional Argument.
1255
+ Specifies whether the argument is required or not.
1256
+ Default Value: False
1257
+ Types: bool
1258
+
1259
+ """
1260
+ self.__data_type = data_type
1261
+ self.__description = description
1262
+ self.__lang_name = lang_name
1263
+ self.__is_required = is_required
1264
+
1265
+ # Getters
1266
+ self.get_data_type = lambda: self.__data_type
1267
+ self.get_description = lambda: self.__description
1268
+ self.get_lang_name = lambda: self.__lang_name
1269
+ self.is_required = lambda: self.__is_required
1270
+ self.is_empty_value_allowed = lambda: True
1271
+ self.is_output_column = lambda: False
1272
+ self.get_r_default_value = lambda: None
1273
+
1274
+ # Validation
1275
+ self.__arg_info_matrix = []
1276
+ self.__arg_info_matrix.append(["type", self.__data_type, False, (list, str), True])
1277
+ self.__arg_info_matrix.append(["description", self.__description, False, (list, str)])
1278
+ self.__arg_info_matrix.append(["lang_name", self.__lang_name, False, str])
1279
+ self.__arg_info_matrix.append(["optional", self.__is_required, True, bool])
1280
+
1281
+ _Validators._validate_function_arguments(self.__arg_info_matrix)
1282
+ self.is_empty_value_allowed = lambda: True
1283
+ self.is_output_column = lambda: False
1284
+ self.get_permitted_values = lambda: None
1285
+
1286
+ # Combining list to string.
1287
+ self.__description = ''.join(description)
1288
+
1289
+ def is_column_argument(self):
1290
+ """
1291
+ DESCRIPTION:
1292
+ Function checks if the argument accepts column as input or not.
1293
+
1294
+ PARAMETERS:
1295
+ None
1296
+
1297
+ RETURNS:
1298
+ bool
1299
+
1300
+ RAISES:
1301
+ None
1302
+
1303
+ EXAMPLES:
1304
+ self.is_column_argument()
1305
+ """
1306
+ # __datatype can be either string or list.
1307
+ if isinstance(self.__data_type, list):
1308
+ datatype = (datatype.lower() for datatype in self.__data_type)
1309
+ else:
1310
+ datatype = self.__data_type.lower()
1311
+ return "column" in datatype
1312
+
1313
+ def get_python_type(self):
1314
+ """
1315
+ DESCRIPTION:
1316
+ Get equivalent Python type for the JSON datatype for an argument.
1317
+
1318
+ PARAMETERS:
1319
+ None
1320
+
1321
+ RETURNS:
1322
+ type.
1323
+
1324
+ RAISES:
1325
+ None
1326
+
1327
+ EXAMPLES:
1328
+ self.get_python_type(arg1="string", arg2="db", arg3=2)
1329
+ """
1330
+ py_types = tuple()
1331
+ supp_data_types = UtilFuncs._as_list(self.__data_type)
1332
+ # If multiple datatype's allowed, return the tuple of all allowed Python types.
1333
+ for td_type in supp_data_types:
1334
+ py_type = _Dtypes._anly_json_type_to_python_type(td_type)
1335
+
1336
+ # If py_type is not a tuple, convert to a tuple.
1337
+ py_types = py_types + ((py_type,) if not isinstance(py_type, tuple) else py_type)
1338
+
1339
+ # If lists are allowed, add list type also.
1340
+ if self.is_lists_allowed() and (list not in py_types):
1341
+ py_types = py_types + (list,)
1342
+ return py_types
1343
+
1344
+ def set_is_required(self, value):
1345
+ """
1346
+ DESCRIPTION:
1347
+ Setter function to set if argument is required or not.
1348
+
1349
+ RETURNS:
1350
+ None
1351
+
1352
+ RAISES:
1353
+ None
1354
+
1355
+ EXAMPLES:
1356
+ self.set_is_required(True)
1357
+ """
1358
+ self.__is_required = value
1359
+
1360
+
1361
+ class _AnlyFuncInputUAF(_AnlyFuncArgumentBaseUAF):
1362
+ """ Class to hold the information about input argument of UAF."""
1363
+ def __init__(self, data_type, description, lang_name, is_required=False):
1364
+ """
1365
+ DESCRIPTION:
1366
+ Constructor for the class.
1367
+
1368
+ PARAMETERS:
1369
+ data_type:
1370
+ Required Argument.
1371
+ Specifies the data type an input argument can accept.
1372
+ Type: str
1373
+
1374
+ description:
1375
+ Required Argument.
1376
+ Specifies the input argument description.
1377
+ Type: Str or List
1378
+
1379
+ lang_name:
1380
+ Required Argument.
1381
+ Specifies the name of the argument to be exposed to user.
1382
+ Type: str
1383
+
1384
+ is_required:
1385
+ Optional Argument.
1386
+ Specifies whether the argument is required or not.
1387
+ Default Value: False
1388
+ Type: bool
1389
+ """
1390
+
1391
+ # Call Abstract class constructor
1392
+ super().__init__(data_type, description, lang_name, is_required)
1393
+ self.get_default_value = lambda: None
1394
+ self.is_lists_allowed = lambda: False
1395
+
1396
+
1397
+ class _AnlyFuncOutputUAF(_AnlyFuncArgumentBaseUAF):
1398
+ """ Class to hold the information about output argument of UAF."""
1399
+ def __init__(self, data_type, description, lang_name, layer_name,
1400
+ primary_layer=False, result_table_column_types=None, is_required=False):
1401
+ """
1402
+ DESCRIPTION:
1403
+ Constructor for the class.
1404
+
1405
+ PARAMETERS:
1406
+ description:
1407
+ Required Argument.
1408
+ Specifies the output argument description.
1409
+ Type: str or List
1410
+
1411
+ data_type:
1412
+ Required Argument.
1413
+ Specifies data type an output argument can accept.
1414
+ Type: str
1415
+
1416
+ lang_name:
1417
+ Required Argument.
1418
+ Specifies the name of the argument to be exposed to user.
1419
+ Type: str
1420
+
1421
+ primary_layer:
1422
+ Optional Argument.
1423
+ Specifies whether the layer is primary or not.
1424
+ Default Value: False
1425
+ Type: bool
1426
+
1427
+ layer_name:
1428
+ Required Argument.
1429
+ Specifies the name of the output layer.
1430
+ Type:str
1431
+
1432
+ result_table_column_types:
1433
+ Optional Argument
1434
+ Specifies the column types for the result table.
1435
+ Type: List or str
1436
+
1437
+ is_required:
1438
+ Optional Argument.
1439
+ Specifies whether the argument is required or not.
1440
+ Default Value: False
1441
+ Type: bool
1442
+ """
1443
+
1444
+ # Call Abstract class constructor
1445
+ super().__init__(data_type, description, lang_name, is_required)
1446
+ # Process other parameters of output table argument.
1447
+ self.__result_table_column_types = result_table_column_types
1448
+ self.__primary_layer = primary_layer
1449
+ self.__layer_name = layer_name
1450
+
1451
+ # Getters
1452
+ self.get_result_table_column_types = lambda: self.__result_table_column_types
1453
+ self.get_primary_layer = lambda : self.__primary_layer
1454
+ self.get_layer_name = lambda : self.__layer_name
1455
+
1456
+ # Validation
1457
+ self.__arg_info_matrix = []
1458
+ self.__arg_info_matrix.append(["result_table_column_types", self.__result_table_column_types, True, (list, str)])
1459
+ self.__arg_info_matrix.append(["primary_layer", self.__primary_layer, True, bool])
1460
+ self.__arg_info_matrix.append(["layer_name", self.__layer_name, False, str])
1461
+ _Validators._validate_function_arguments(self.__arg_info_matrix)
1462
+
1463
+
1464
+ class _AnlyFuncArgumentUAF(_AnlyFuncArgumentBaseUAF):
1465
+ """Class to hold the information about the other function parameters."""
1466
+
1467
+ def __init__(self, data_type, description, name, is_required=False, permitted_values=None,
1468
+ lower_bound=None, upper_bound=None, lower_bound_type=None, upper_bound_type=None,
1469
+ check_duplicates=False, list_type=None, allow_nan=None, lang_name=None,
1470
+ default_value=None, required_length=0, nested_param_list=None,
1471
+ is_nested=False, parent=None, has_nested=False):
1472
+ """
1473
+ DESCRIPTION:
1474
+ Constructor for the class.
1475
+
1476
+ PARAMETERS:
1477
+ description:
1478
+ Required Argument.
1479
+ Specifies the argument description.
1480
+ Type: str or List
1481
+
1482
+ name:
1483
+ Required Argument.
1484
+ Specifies the SQL name of the argument.
1485
+ Type: str
1486
+
1487
+ data_type:
1488
+ Required Argument.
1489
+ Specifies the data type for the argument.
1490
+ Type: str
1491
+
1492
+ is_required:
1493
+ Optional Argument.
1494
+ Specifies whether the argument is required or not.
1495
+ Default Value: False
1496
+ Types: bool
1497
+
1498
+ permitted_values:
1499
+ Optional Argument.
1500
+ Specifies the permitted values for the particular argument.
1501
+ Type: List
1502
+
1503
+ lower_bound:
1504
+ Optional Argument.
1505
+ Specifies the lower bound for the particular argument.
1506
+ Type: int or float
1507
+
1508
+ upper_bound:
1509
+ Optional Argument.
1510
+ Specifies the upper bound for the particular argument.
1511
+ Type: int or float
1512
+
1513
+ lower_bound_type:
1514
+ Optional Argument.
1515
+ Specifies whether the lower bound is inclusive or not.
1516
+ Type: str
1517
+
1518
+ upper_bound_type:
1519
+ Optional Argument.
1520
+ Specifies whether the upper bound is inclusive or not.
1521
+ Type: str
1522
+
1523
+ check_duplicates:
1524
+ Optional Argument
1525
+ Specifies if the argument checks for duplicate values.
1526
+ Type: bool
1527
+
1528
+ list_type:
1529
+ Optional Argument.
1530
+ Specifies the type of the list in the argument.
1531
+ Type: str
1532
+
1533
+ allow_nan:
1534
+ Required Argument.
1535
+ Specifies whether nan values are allowed or not.
1536
+ Type: bool
1537
+
1538
+ is_required:
1539
+ Optional Argument.
1540
+ Specifies whether the argument is required or not .
1541
+ Type: bool
1542
+
1543
+ lang_name:
1544
+ Optional Argument.
1545
+ Specifies the name of the argument to be exposed to user.
1546
+ Type: str
1547
+
1548
+ default_value:
1549
+ Optional Argument.
1550
+ Specifies the default value of the particular argument.
1551
+ Type: int or str or float
1552
+
1553
+ required_length:
1554
+ Optional Argument.
1555
+ Specifies if the list must be the same length as the list specified
1556
+ in argument clause.
1557
+ Types: int
1558
+
1559
+ nested_params_json:
1560
+ Optional Argument.
1561
+ Specifies the json object for nested_params argument.
1562
+ Type: List
1563
+
1564
+ is_nested:
1565
+ Optional Argument.
1566
+ Specifies whether the argument is a nested argument or not.
1567
+ Default Value: False
1568
+ Type: bool
1569
+
1570
+ parent:
1571
+ Optional Argument.
1572
+ Specifies the name of the parent incase of nested argument.
1573
+ Default Value: None
1574
+ Type: str or None
1575
+
1576
+ has_nested:
1577
+ Optional Argument.
1578
+ Specifies whether the argument has nested_params or not.
1579
+ Default Value:False
1580
+ Type: bool
1581
+
1582
+ """
1583
+ # Call Abstract class constructor
1584
+ super().__init__(data_type, description, lang_name, is_required)
1585
+
1586
+ # Process other parameters of arguments.
1587
+ self.__name = name
1588
+ self.__data_type = self.get_data_type()
1589
+ self.__permitted_values = permitted_values
1590
+ self.__default_value = default_value
1591
+ self.__r_default_value = None
1592
+ self.__allow_nan = allow_nan
1593
+ self.__lower_bound = lower_bound
1594
+ self.__upper_bound = upper_bound
1595
+ self.__lower_bound_type = lower_bound_type
1596
+ self.__upper_bound_type = upper_bound_type
1597
+ self.__check_duplicates = check_duplicates
1598
+ self.__required_length = required_length
1599
+ self.__parent = parent
1600
+ self.__is_nested = is_nested
1601
+ self.__has_nested = has_nested
1602
+ self.__allows_lists = False
1603
+ self.__match_length_of_arguments = False
1604
+
1605
+ # Creating a list for nested params
1606
+ self.__nested_param_list = nested_param_list
1607
+
1608
+ # Getters
1609
+ self.get_name = lambda: self.__name
1610
+ self.get_data_type = lambda: self.__data_type
1611
+ self.get_permitted_values = lambda: self.__permitted_values
1612
+ self.get_default_value = lambda: self.__default_value
1613
+ self.get_r_default_value = lambda: self.__r_default_value
1614
+ self.is_nan_allowed = lambda: self.__allow_nan
1615
+ self.get_parent = lambda: self.__parent
1616
+ self.get_lower_bound = lambda: self.__lower_bound
1617
+ self.get_upper_bound = lambda: self.__upper_bound
1618
+ self.get_lower_bound_type = lambda: self.__lower_bound_type
1619
+ self.get_upper_bound_type = lambda: self.__upper_bound_type
1620
+ self.get_check_duplicates = lambda: self.__check_duplicates
1621
+ self.get_required_length = lambda: self.__required_length
1622
+ self.get_nested_param_list = lambda: self.__nested_param_list
1623
+ self.get_is_nested = lambda: self.__is_nested
1624
+ self.get_has_nested = lambda: self.__has_nested
1625
+ self.is_lists_allowed = lambda: self.__allows_lists
1626
+ self.get_match_length_of_arguments = lambda: self.__match_length_of_arguments
1627
+
1628
+ # In order to make it similar to variables of SQLE functions if the data_type is list
1629
+ # we are setting allows_list=True and data_type to the data_type of the list elements.
1630
+ if self.get_data_type() == "list":
1631
+ self.__allows_lists = True
1632
+ self.__data_type = list_type
1633
+
1634
+ # Validation
1635
+ self.__arg_info_matrix = []
1636
+ self.__arg_info_matrix.append(["name", self.__name, True, str])
1637
+ self.__arg_info_matrix.append(["permitted_values", self.__permitted_values, True, list])
1638
+ self.__arg_info_matrix.append(["default_value", self.__default_value, True, (int, str, float, bool, list)])
1639
+ self.__arg_info_matrix.append(["r_default_value", self.__r_default_value, True, (int, str, float, bool, list)])
1640
+ self.__arg_info_matrix.append(["allow_nan", self.__allow_nan, True, bool])
1641
+ self.__arg_info_matrix.append(["lower_bound", self.__lower_bound, True, (int, float)])
1642
+ self.__arg_info_matrix.append(["upper_bound", self.__upper_bound, True, (int, float)])
1643
+ self.__arg_info_matrix.append(["lower_bound_type", self.__lower_bound_type, True, str])
1644
+ self.__arg_info_matrix.append(["upper_bound_type", self.__upper_bound_type, True, str])
1645
+ self.__arg_info_matrix.append(["check_duplicates", self.__check_duplicates, True, bool])
1646
+ self.__arg_info_matrix.append(["list_size", self.__required_length, True, (int, str)])
1647
+
1648
+ _Validators._validate_function_arguments(self.__arg_info_matrix)
1649
+
1650
+ # Validate whether lower bound is less than upper bound.
1651
+ _Validators._validate_argument_range(arg_name="dummy", arg=None, lbound=self.__lower_bound,
1652
+ ubound=self.__upper_bound)
1653
+ # Validate whether lower_bound and lower_bound_type are mutually inclusive.
1654
+ _Validators._validate_mutually_inclusive_arguments(lower_bound, "lower_bound", lower_bound_type, "lower_bound_type")
1655
+ # Validate whether upper_bound and upper_bound_type are mutually inclusive.
1656
+ _Validators._validate_mutually_inclusive_arguments(upper_bound, "upper_bound", upper_bound_type, "upper_bound_type")
1657
+
1658
+ # In order to make it similar to variables of SQLE functions, if get_required_length specifies
1659
+ # a value we set match_length_of_arguments which will validate the length of the arguments
1660
+ if not isinstance(self.__required_length, str) and self.get_required_length() > 0:
1661
+ self.__match_length_of_arguments = True
1662
+
1663
+ # If the argument is an int type and permitted values are 0 and 1, then we should consider it as boolean.
1664
+ if "INTEGER" in self.__data_type.upper() and self.__permitted_values is not None\
1665
+ and set(self.__permitted_values) == {0, 1}:
1666
+ self.__data_type = "BOOLEAN"
1667
+ self.__permitted_values = None
1668
+ self.set_is_required(False)
1669
+ if self.__default_value is not None:
1670
+ self.__default_value = bool(self.__default_value)
1671
+ else:
1672
+ self.__r_default_value = False
1673
+
1674
+ def get_python_type(self):
1675
+ """
1676
+ DESCRIPTION:
1677
+ Get equivalent Python type for the JSON datatype for an argument.
1678
+
1679
+ PARAMETERS:
1680
+ None
1681
+
1682
+ RETURNS:
1683
+ type.
1684
+
1685
+ RAISES:
1686
+ None
1687
+
1688
+ EXAMPLES:
1689
+ self.get_python_type(arg1="string", arg2="db", arg3=2)
1690
+ """
1691
+ py_types = tuple()
1692
+
1693
+ # If multiple datatype's allowed, return the tuple of all allowed python types.
1694
+ if isinstance(self.__data_type, list):
1695
+ for td_type in self.__data_type:
1696
+ py_type = _Dtypes._anly_json_type_to_python_type(td_type)
1697
+
1698
+ # If py_type is not a tuple, convert to a tuple.
1699
+ py_types = py_types + ((py_type,) if not isinstance(py_type, tuple) else py_type)
1700
+ else:
1701
+ py_type = _Dtypes._anly_json_type_to_python_type(self.__data_type)
1702
+ py_types = py_type if isinstance(py_type, tuple) else (py_type,)
1703
+
1704
+ # If lists are allowed, add list type also.
1705
+ if self.__allows_lists and (list not in py_types):
1706
+ py_types = py_types + (list,)
1707
+
1708
1708
  return py_types