teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (1285) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +1864 -1640
  4. teradataml/__init__.py +70 -60
  5. teradataml/_version.py +11 -11
  6. teradataml/analytics/Transformations.py +2995 -2995
  7. teradataml/analytics/__init__.py +81 -83
  8. teradataml/analytics/analytic_function_executor.py +2013 -2010
  9. teradataml/analytics/analytic_query_generator.py +958 -958
  10. teradataml/analytics/byom/H2OPredict.py +514 -514
  11. teradataml/analytics/byom/PMMLPredict.py +437 -437
  12. teradataml/analytics/byom/__init__.py +14 -14
  13. teradataml/analytics/json_parser/__init__.py +130 -130
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
  15. teradataml/analytics/json_parser/json_store.py +191 -191
  16. teradataml/analytics/json_parser/metadata.py +1637 -1637
  17. teradataml/analytics/json_parser/utils.py +804 -803
  18. teradataml/analytics/meta_class.py +196 -196
  19. teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
  21. teradataml/analytics/sqle/__init__.py +97 -110
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
  24. teradataml/analytics/table_operator/__init__.py +10 -10
  25. teradataml/analytics/uaf/__init__.py +63 -63
  26. teradataml/analytics/utils.py +693 -692
  27. teradataml/analytics/valib.py +1603 -1600
  28. teradataml/automl/__init__.py +1628 -0
  29. teradataml/automl/custom_json_utils.py +1270 -0
  30. teradataml/automl/data_preparation.py +993 -0
  31. teradataml/automl/data_transformation.py +727 -0
  32. teradataml/automl/feature_engineering.py +1648 -0
  33. teradataml/automl/feature_exploration.py +547 -0
  34. teradataml/automl/model_evaluation.py +163 -0
  35. teradataml/automl/model_training.py +887 -0
  36. teradataml/catalog/__init__.py +1 -3
  37. teradataml/catalog/byom.py +1759 -1716
  38. teradataml/catalog/function_argument_mapper.py +859 -861
  39. teradataml/catalog/model_cataloging_utils.py +491 -1510
  40. teradataml/clients/pkce_client.py +481 -481
  41. teradataml/common/aed_utils.py +6 -2
  42. teradataml/common/bulk_exposed_utils.py +111 -111
  43. teradataml/common/constants.py +1433 -1441
  44. teradataml/common/deprecations.py +160 -0
  45. teradataml/common/exceptions.py +73 -73
  46. teradataml/common/formula.py +742 -742
  47. teradataml/common/garbagecollector.py +592 -635
  48. teradataml/common/messagecodes.py +422 -431
  49. teradataml/common/messages.py +227 -231
  50. teradataml/common/sqlbundle.py +693 -693
  51. teradataml/common/td_coltype_code_to_tdtype.py +48 -48
  52. teradataml/common/utils.py +2418 -2500
  53. teradataml/common/warnings.py +25 -25
  54. teradataml/common/wrapper_utils.py +1 -110
  55. teradataml/config/dummy_file1.cfg +4 -4
  56. teradataml/config/dummy_file2.cfg +2 -2
  57. teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
  58. teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
  59. teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
  60. teradataml/context/aed_context.py +217 -217
  61. teradataml/context/context.py +1071 -999
  62. teradataml/data/A_loan.csv +19 -19
  63. teradataml/data/BINARY_REALS_LEFT.csv +11 -11
  64. teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
  65. teradataml/data/B_loan.csv +49 -49
  66. teradataml/data/BuoyData2.csv +17 -17
  67. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
  68. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
  69. teradataml/data/Convolve2RealsLeft.csv +5 -5
  70. teradataml/data/Convolve2RealsRight.csv +5 -5
  71. teradataml/data/Convolve2ValidLeft.csv +11 -11
  72. teradataml/data/Convolve2ValidRight.csv +11 -11
  73. teradataml/data/DFFTConv_Real_8_8.csv +65 -65
  74. teradataml/data/Orders1_12mf.csv +24 -24
  75. teradataml/data/Pi_loan.csv +7 -7
  76. teradataml/data/SMOOTHED_DATA.csv +7 -7
  77. teradataml/data/TestDFFT8.csv +9 -9
  78. teradataml/data/TestRiver.csv +109 -109
  79. teradataml/data/Traindata.csv +28 -28
  80. teradataml/data/acf.csv +17 -17
  81. teradataml/data/adaboost_example.json +34 -34
  82. teradataml/data/adaboostpredict_example.json +24 -24
  83. teradataml/data/additional_table.csv +10 -10
  84. teradataml/data/admissions_test.csv +21 -21
  85. teradataml/data/admissions_train.csv +41 -41
  86. teradataml/data/admissions_train_nulls.csv +41 -41
  87. teradataml/data/ageandheight.csv +13 -13
  88. teradataml/data/ageandpressure.csv +31 -31
  89. teradataml/data/antiselect_example.json +36 -36
  90. teradataml/data/antiselect_input.csv +8 -8
  91. teradataml/data/antiselect_input_mixed_case.csv +8 -8
  92. teradataml/data/applicant_external.csv +6 -6
  93. teradataml/data/applicant_reference.csv +6 -6
  94. teradataml/data/arima_example.json +9 -9
  95. teradataml/data/assortedtext_input.csv +8 -8
  96. teradataml/data/attribution_example.json +33 -33
  97. teradataml/data/attribution_sample_table.csv +27 -27
  98. teradataml/data/attribution_sample_table1.csv +6 -6
  99. teradataml/data/attribution_sample_table2.csv +11 -11
  100. teradataml/data/bank_churn.csv +10001 -0
  101. teradataml/data/bank_web_clicks1.csv +42 -42
  102. teradataml/data/bank_web_clicks2.csv +91 -91
  103. teradataml/data/bank_web_url.csv +85 -85
  104. teradataml/data/barrier.csv +2 -2
  105. teradataml/data/barrier_new.csv +3 -3
  106. teradataml/data/betweenness_example.json +13 -13
  107. teradataml/data/bin_breaks.csv +8 -8
  108. teradataml/data/bin_fit_ip.csv +3 -3
  109. teradataml/data/binary_complex_left.csv +11 -11
  110. teradataml/data/binary_complex_right.csv +11 -11
  111. teradataml/data/binary_matrix_complex_left.csv +21 -21
  112. teradataml/data/binary_matrix_complex_right.csv +21 -21
  113. teradataml/data/binary_matrix_real_left.csv +21 -21
  114. teradataml/data/binary_matrix_real_right.csv +21 -21
  115. teradataml/data/blood2ageandweight.csv +26 -26
  116. teradataml/data/bmi.csv +501 -0
  117. teradataml/data/boston.csv +507 -507
  118. teradataml/data/buoydata_mix.csv +11 -11
  119. teradataml/data/burst_data.csv +5 -5
  120. teradataml/data/burst_example.json +20 -20
  121. teradataml/data/byom_example.json +17 -17
  122. teradataml/data/bytes_table.csv +3 -3
  123. teradataml/data/cal_housing_ex_raw.csv +70 -70
  124. teradataml/data/callers.csv +7 -7
  125. teradataml/data/calls.csv +10 -10
  126. teradataml/data/cars_hist.csv +33 -33
  127. teradataml/data/cat_table.csv +24 -24
  128. teradataml/data/ccm_example.json +31 -31
  129. teradataml/data/ccm_input.csv +91 -91
  130. teradataml/data/ccm_input2.csv +13 -13
  131. teradataml/data/ccmexample.csv +101 -101
  132. teradataml/data/ccmprepare_example.json +8 -8
  133. teradataml/data/ccmprepare_input.csv +91 -91
  134. teradataml/data/cfilter_example.json +12 -12
  135. teradataml/data/changepointdetection_example.json +18 -18
  136. teradataml/data/changepointdetectionrt_example.json +8 -8
  137. teradataml/data/chi_sq.csv +2 -2
  138. teradataml/data/churn_data.csv +14 -14
  139. teradataml/data/churn_emission.csv +35 -35
  140. teradataml/data/churn_initial.csv +3 -3
  141. teradataml/data/churn_state_transition.csv +5 -5
  142. teradataml/data/citedges_2.csv +745 -745
  143. teradataml/data/citvertices_2.csv +1210 -1210
  144. teradataml/data/clicks2.csv +16 -16
  145. teradataml/data/clickstream.csv +12 -12
  146. teradataml/data/clickstream1.csv +11 -11
  147. teradataml/data/closeness_example.json +15 -15
  148. teradataml/data/complaints.csv +21 -21
  149. teradataml/data/complaints_mini.csv +3 -3
  150. teradataml/data/complaints_testtoken.csv +224 -224
  151. teradataml/data/complaints_tokens_test.csv +353 -353
  152. teradataml/data/complaints_traintoken.csv +472 -472
  153. teradataml/data/computers_category.csv +1001 -1001
  154. teradataml/data/computers_test1.csv +1252 -1252
  155. teradataml/data/computers_train1.csv +5009 -5009
  156. teradataml/data/computers_train1_clustered.csv +5009 -5009
  157. teradataml/data/confusionmatrix_example.json +9 -9
  158. teradataml/data/conversion_event_table.csv +3 -3
  159. teradataml/data/corr_input.csv +17 -17
  160. teradataml/data/correlation_example.json +11 -11
  161. teradataml/data/coxhazardratio_example.json +39 -39
  162. teradataml/data/coxph_example.json +15 -15
  163. teradataml/data/coxsurvival_example.json +28 -28
  164. teradataml/data/cpt.csv +41 -41
  165. teradataml/data/credit_ex_merged.csv +45 -45
  166. teradataml/data/customer_loyalty.csv +301 -301
  167. teradataml/data/customer_loyalty_newseq.csv +31 -31
  168. teradataml/data/dataframe_example.json +146 -146
  169. teradataml/data/decisionforest_example.json +37 -37
  170. teradataml/data/decisionforestpredict_example.json +38 -38
  171. teradataml/data/decisiontree_example.json +21 -21
  172. teradataml/data/decisiontreepredict_example.json +45 -45
  173. teradataml/data/dfft2_size4_real.csv +17 -17
  174. teradataml/data/dfft2_test_matrix16.csv +17 -17
  175. teradataml/data/dfft2conv_real_4_4.csv +65 -65
  176. teradataml/data/diabetes.csv +443 -443
  177. teradataml/data/diabetes_test.csv +89 -89
  178. teradataml/data/dict_table.csv +5 -5
  179. teradataml/data/docperterm_table.csv +4 -4
  180. teradataml/data/docs/__init__.py +1 -1
  181. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
  182. teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
  183. teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
  184. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
  185. teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
  186. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
  187. teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
  188. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
  189. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
  190. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
  191. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
  192. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
  193. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
  194. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
  195. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
  196. teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
  197. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
  198. teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
  199. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
  200. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
  201. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
  202. teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
  203. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
  204. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
  205. teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
  206. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
  207. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
  208. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
  209. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +132 -132
  210. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +103 -103
  211. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
  212. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +101 -101
  213. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
  214. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
  215. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
  216. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
  217. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
  218. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
  219. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
  220. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
  221. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
  222. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
  223. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
  224. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
  225. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
  226. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
  227. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
  228. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
  229. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
  230. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
  231. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
  232. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
  233. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
  234. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +126 -126
  235. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
  236. teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
  237. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
  238. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
  239. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
  240. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
  241. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
  242. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
  243. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +243 -243
  244. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
  245. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
  246. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
  247. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
  248. teradataml/data/docs/sqle/docs_17_20/FTest.py +160 -160
  249. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
  250. teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
  251. teradataml/data/docs/sqle/docs_17_20/GLM.py +380 -380
  252. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
  253. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
  254. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
  255. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +123 -123
  256. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
  257. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
  258. teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
  259. teradataml/data/docs/sqle/docs_17_20/KMeans.py +204 -204
  260. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
  261. teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
  262. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
  263. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
  264. teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
  265. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
  266. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
  267. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
  268. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +117 -117
  269. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
  270. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
  271. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
  272. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
  273. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +225 -225
  274. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +115 -115
  275. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
  276. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
  277. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
  278. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
  279. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
  280. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
  281. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
  282. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
  283. teradataml/data/docs/sqle/docs_17_20/ROC.py +163 -163
  284. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
  285. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
  286. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
  287. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
  288. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
  289. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
  290. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
  291. teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
  292. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +202 -202
  293. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
  294. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +197 -197
  295. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +110 -109
  296. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
  297. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
  298. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
  299. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
  300. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
  301. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
  302. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
  303. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
  304. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +171 -171
  305. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
  306. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
  307. teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
  308. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
  309. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
  310. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
  311. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
  312. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
  313. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
  314. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
  315. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
  316. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +353 -353
  317. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +275 -275
  318. teradataml/data/docs/sqle/docs_17_20/ZTest.py +155 -155
  319. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
  320. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
  321. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
  322. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
  323. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
  324. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
  325. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
  326. teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
  327. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
  328. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
  329. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
  330. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
  331. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
  332. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
  333. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
  334. teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
  335. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
  336. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
  337. teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
  338. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
  339. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
  340. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
  341. teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
  342. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
  343. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
  344. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
  345. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
  346. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
  347. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
  348. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
  349. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
  350. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
  351. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
  352. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
  353. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
  354. teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
  355. teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
  356. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
  357. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
  358. teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
  359. teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
  360. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
  361. teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
  362. teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
  363. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
  364. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
  365. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
  366. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
  367. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
  368. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
  369. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
  370. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
  371. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
  372. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
  373. teradataml/data/dtw_example.json +17 -17
  374. teradataml/data/dtw_t1.csv +11 -11
  375. teradataml/data/dtw_t2.csv +4 -4
  376. teradataml/data/dwt2d_example.json +15 -15
  377. teradataml/data/dwt_example.json +14 -14
  378. teradataml/data/dwt_filter_dim.csv +5 -5
  379. teradataml/data/emission.csv +9 -9
  380. teradataml/data/emp_table_by_dept.csv +19 -19
  381. teradataml/data/employee_info.csv +4 -4
  382. teradataml/data/employee_table.csv +6 -6
  383. teradataml/data/excluding_event_table.csv +2 -2
  384. teradataml/data/finance_data.csv +6 -6
  385. teradataml/data/finance_data2.csv +61 -61
  386. teradataml/data/finance_data3.csv +93 -93
  387. teradataml/data/fish.csv +160 -0
  388. teradataml/data/fm_blood2ageandweight.csv +26 -26
  389. teradataml/data/fmeasure_example.json +11 -11
  390. teradataml/data/followers_leaders.csv +10 -10
  391. teradataml/data/fpgrowth_example.json +12 -12
  392. teradataml/data/frequentpaths_example.json +29 -29
  393. teradataml/data/friends.csv +9 -9
  394. teradataml/data/fs_input.csv +33 -33
  395. teradataml/data/fs_input1.csv +33 -33
  396. teradataml/data/genData.csv +513 -513
  397. teradataml/data/geodataframe_example.json +39 -39
  398. teradataml/data/glass_types.csv +215 -0
  399. teradataml/data/glm_admissions_model.csv +12 -12
  400. teradataml/data/glm_example.json +29 -29
  401. teradataml/data/glml1l2_example.json +28 -28
  402. teradataml/data/glml1l2predict_example.json +54 -54
  403. teradataml/data/glmpredict_example.json +54 -54
  404. teradataml/data/gq_t1.csv +21 -21
  405. teradataml/data/hconvolve_complex_right.csv +5 -5
  406. teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
  407. teradataml/data/histogram_example.json +11 -11
  408. teradataml/data/hmmdecoder_example.json +78 -78
  409. teradataml/data/hmmevaluator_example.json +24 -24
  410. teradataml/data/hmmsupervised_example.json +10 -10
  411. teradataml/data/hmmunsupervised_example.json +7 -7
  412. teradataml/data/house_values.csv +12 -12
  413. teradataml/data/house_values2.csv +13 -13
  414. teradataml/data/housing_cat.csv +7 -7
  415. teradataml/data/housing_data.csv +9 -9
  416. teradataml/data/housing_test.csv +47 -47
  417. teradataml/data/housing_test_binary.csv +47 -47
  418. teradataml/data/housing_train.csv +493 -493
  419. teradataml/data/housing_train_attribute.csv +4 -4
  420. teradataml/data/housing_train_binary.csv +437 -437
  421. teradataml/data/housing_train_parameter.csv +2 -2
  422. teradataml/data/housing_train_response.csv +493 -493
  423. teradataml/data/ibm_stock.csv +370 -370
  424. teradataml/data/ibm_stock1.csv +370 -370
  425. teradataml/data/identitymatch_example.json +21 -21
  426. teradataml/data/idf_table.csv +4 -4
  427. teradataml/data/impressions.csv +101 -101
  428. teradataml/data/inflation.csv +21 -21
  429. teradataml/data/initial.csv +3 -3
  430. teradataml/data/insect_sprays.csv +12 -12
  431. teradataml/data/insurance.csv +1339 -1339
  432. teradataml/data/interpolator_example.json +12 -12
  433. teradataml/data/iris_altinput.csv +481 -481
  434. teradataml/data/iris_attribute_output.csv +8 -8
  435. teradataml/data/iris_attribute_test.csv +121 -121
  436. teradataml/data/iris_attribute_train.csv +481 -481
  437. teradataml/data/iris_category_expect_predict.csv +31 -31
  438. teradataml/data/iris_data.csv +151 -0
  439. teradataml/data/iris_input.csv +151 -151
  440. teradataml/data/iris_response_train.csv +121 -121
  441. teradataml/data/iris_test.csv +31 -31
  442. teradataml/data/iris_train.csv +121 -121
  443. teradataml/data/join_table1.csv +4 -4
  444. teradataml/data/join_table2.csv +4 -4
  445. teradataml/data/jsons/anly_function_name.json +6 -6
  446. teradataml/data/jsons/byom/dataikupredict.json +147 -147
  447. teradataml/data/jsons/byom/datarobotpredict.json +146 -146
  448. teradataml/data/jsons/byom/h2opredict.json +194 -194
  449. teradataml/data/jsons/byom/onnxpredict.json +186 -186
  450. teradataml/data/jsons/byom/pmmlpredict.json +146 -146
  451. teradataml/data/jsons/paired_functions.json +435 -435
  452. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
  453. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
  454. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
  455. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
  456. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
  457. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
  458. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
  459. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
  460. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
  461. teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
  462. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
  463. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
  464. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
  465. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
  466. teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
  467. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
  468. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
  469. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
  470. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
  471. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
  472. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
  473. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
  474. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
  475. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
  476. teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
  477. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
  478. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
  479. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
  480. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
  481. teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
  482. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
  483. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
  484. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
  485. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
  486. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
  487. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
  488. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
  489. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
  490. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
  491. teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
  492. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
  493. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
  494. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
  495. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
  496. teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
  497. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
  498. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
  499. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
  500. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
  501. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
  502. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
  503. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
  504. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
  505. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
  506. teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
  507. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
  508. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
  509. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
  510. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
  511. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
  512. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
  513. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
  514. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
  515. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
  516. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
  517. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
  518. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
  519. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
  520. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
  521. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
  522. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
  523. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
  524. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
  525. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
  526. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
  527. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
  528. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
  529. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
  530. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
  531. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
  532. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
  533. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
  534. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
  535. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
  536. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
  537. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
  538. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
  539. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
  540. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
  541. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
  542. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
  543. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
  544. teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
  545. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
  546. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
  547. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
  548. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
  549. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
  550. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
  551. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
  552. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
  553. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
  554. teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
  555. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
  556. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
  557. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
  558. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +76 -76
  559. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
  560. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
  561. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
  562. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
  563. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
  564. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
  565. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
  566. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
  567. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
  568. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
  569. teradataml/data/jsons/sqle/17.20/TD_FTest.json +186 -186
  570. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
  571. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
  572. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
  573. teradataml/data/jsons/sqle/17.20/TD_GLM.json +431 -431
  574. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +125 -125
  575. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
  576. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
  577. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +91 -91
  578. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
  579. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
  580. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
  581. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +211 -211
  582. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
  583. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
  584. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
  585. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +101 -101
  586. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
  587. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
  588. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
  589. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
  590. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
  591. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
  592. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
  593. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
  594. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
  595. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
  596. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
  597. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
  598. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
  599. teradataml/data/jsons/sqle/17.20/TD_ROC.json +177 -177
  600. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
  601. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
  602. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
  603. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
  604. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
  605. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
  606. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
  607. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
  608. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +124 -124
  609. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +156 -156
  610. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +70 -70
  611. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
  612. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
  613. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
  614. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
  615. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
  616. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
  617. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
  618. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
  619. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
  620. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
  621. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
  622. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
  623. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
  624. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
  625. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +312 -312
  626. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +182 -182
  627. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +170 -170
  628. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
  629. teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
  630. teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
  631. teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
  632. teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
  633. teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
  634. teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
  635. teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
  636. teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
  637. teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
  638. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
  639. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
  640. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
  641. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
  642. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
  643. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
  644. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
  645. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
  646. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
  647. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
  648. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
  649. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
  650. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
  651. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
  652. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
  653. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
  654. teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
  655. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
  656. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
  657. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
  658. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
  659. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
  660. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
  661. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
  662. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
  663. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
  664. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
  665. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
  666. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
  667. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
  668. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
  669. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
  670. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
  671. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
  672. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
  673. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
  674. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
  675. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
  676. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
  677. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
  678. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
  679. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
  680. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
  681. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
  682. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
  683. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
  684. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
  685. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
  686. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
  687. teradataml/data/kmeans_example.json +17 -17
  688. teradataml/data/kmeans_us_arrests_data.csv +0 -0
  689. teradataml/data/knn_example.json +18 -18
  690. teradataml/data/knnrecommender_example.json +6 -6
  691. teradataml/data/knnrecommenderpredict_example.json +12 -12
  692. teradataml/data/lar_example.json +17 -17
  693. teradataml/data/larpredict_example.json +30 -30
  694. teradataml/data/lc_new_predictors.csv +5 -5
  695. teradataml/data/lc_new_reference.csv +9 -9
  696. teradataml/data/lda_example.json +8 -8
  697. teradataml/data/ldainference_example.json +14 -14
  698. teradataml/data/ldatopicsummary_example.json +8 -8
  699. teradataml/data/levendist_input.csv +13 -13
  700. teradataml/data/levenshteindistance_example.json +10 -10
  701. teradataml/data/linreg_example.json +9 -9
  702. teradataml/data/load_example_data.py +326 -323
  703. teradataml/data/loan_prediction.csv +295 -295
  704. teradataml/data/lungcancer.csv +138 -138
  705. teradataml/data/mappingdata.csv +12 -12
  706. teradataml/data/milk_timeseries.csv +157 -157
  707. teradataml/data/min_max_titanic.csv +4 -4
  708. teradataml/data/minhash_example.json +6 -6
  709. teradataml/data/ml_ratings.csv +7547 -7547
  710. teradataml/data/ml_ratings_10.csv +2445 -2445
  711. teradataml/data/model1_table.csv +5 -5
  712. teradataml/data/model2_table.csv +5 -5
  713. teradataml/data/models/iris_db_glm_model.pmml +56 -56
  714. teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
  715. teradataml/data/modularity_example.json +12 -12
  716. teradataml/data/movavg_example.json +7 -7
  717. teradataml/data/mtx1.csv +7 -7
  718. teradataml/data/mtx2.csv +13 -13
  719. teradataml/data/multi_model_classification.csv +401 -0
  720. teradataml/data/multi_model_regression.csv +401 -0
  721. teradataml/data/mvdfft8.csv +9 -9
  722. teradataml/data/naivebayes_example.json +9 -9
  723. teradataml/data/naivebayespredict_example.json +19 -19
  724. teradataml/data/naivebayestextclassifier2_example.json +6 -6
  725. teradataml/data/naivebayestextclassifier_example.json +8 -8
  726. teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
  727. teradataml/data/name_Find_configure.csv +10 -10
  728. teradataml/data/namedentityfinder_example.json +14 -14
  729. teradataml/data/namedentityfinderevaluator_example.json +10 -10
  730. teradataml/data/namedentityfindertrainer_example.json +6 -6
  731. teradataml/data/nb_iris_input_test.csv +31 -31
  732. teradataml/data/nb_iris_input_train.csv +121 -121
  733. teradataml/data/nbp_iris_model.csv +13 -13
  734. teradataml/data/ner_extractor_text.csv +2 -2
  735. teradataml/data/ner_sports_test2.csv +29 -29
  736. teradataml/data/ner_sports_train.csv +501 -501
  737. teradataml/data/nerevaluator_example.json +5 -5
  738. teradataml/data/nerextractor_example.json +18 -18
  739. teradataml/data/nermem_sports_test.csv +17 -17
  740. teradataml/data/nermem_sports_train.csv +50 -50
  741. teradataml/data/nertrainer_example.json +6 -6
  742. teradataml/data/ngrams_example.json +6 -6
  743. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
  744. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
  745. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
  746. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
  747. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
  748. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
  749. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
  750. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
  751. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
  752. teradataml/data/npath_example.json +23 -23
  753. teradataml/data/ntree_example.json +14 -14
  754. teradataml/data/numeric_strings.csv +4 -4
  755. teradataml/data/numerics.csv +4 -4
  756. teradataml/data/ocean_buoy.csv +17 -17
  757. teradataml/data/ocean_buoy2.csv +17 -17
  758. teradataml/data/ocean_buoys.csv +27 -27
  759. teradataml/data/ocean_buoys2.csv +10 -10
  760. teradataml/data/ocean_buoys_nonpti.csv +28 -28
  761. teradataml/data/ocean_buoys_seq.csv +29 -29
  762. teradataml/data/openml_example.json +63 -0
  763. teradataml/data/optional_event_table.csv +4 -4
  764. teradataml/data/orders1.csv +11 -11
  765. teradataml/data/orders1_12.csv +12 -12
  766. teradataml/data/orders_ex.csv +4 -4
  767. teradataml/data/pack_example.json +8 -8
  768. teradataml/data/package_tracking.csv +19 -19
  769. teradataml/data/package_tracking_pti.csv +18 -18
  770. teradataml/data/pagerank_example.json +13 -13
  771. teradataml/data/paragraphs_input.csv +6 -6
  772. teradataml/data/pathanalyzer_example.json +7 -7
  773. teradataml/data/pathgenerator_example.json +7 -7
  774. teradataml/data/phrases.csv +7 -7
  775. teradataml/data/pivot_example.json +8 -8
  776. teradataml/data/pivot_input.csv +22 -22
  777. teradataml/data/playerRating.csv +31 -31
  778. teradataml/data/postagger_example.json +6 -6
  779. teradataml/data/posttagger_output.csv +44 -44
  780. teradataml/data/production_data.csv +16 -16
  781. teradataml/data/production_data2.csv +7 -7
  782. teradataml/data/randomsample_example.json +31 -31
  783. teradataml/data/randomwalksample_example.json +8 -8
  784. teradataml/data/rank_table.csv +6 -6
  785. teradataml/data/ref_mobile_data.csv +4 -4
  786. teradataml/data/ref_mobile_data_dense.csv +2 -2
  787. teradataml/data/ref_url.csv +17 -17
  788. teradataml/data/restaurant_reviews.csv +7 -7
  789. teradataml/data/river_data.csv +145 -145
  790. teradataml/data/roc_example.json +7 -7
  791. teradataml/data/roc_input.csv +101 -101
  792. teradataml/data/rule_inputs.csv +6 -6
  793. teradataml/data/rule_table.csv +2 -2
  794. teradataml/data/sales.csv +7 -7
  795. teradataml/data/sales_transaction.csv +501 -501
  796. teradataml/data/salesdata.csv +342 -342
  797. teradataml/data/sample_cities.csv +2 -2
  798. teradataml/data/sample_shapes.csv +10 -10
  799. teradataml/data/sample_streets.csv +2 -2
  800. teradataml/data/sampling_example.json +15 -15
  801. teradataml/data/sax_example.json +8 -8
  802. teradataml/data/scale_example.json +23 -23
  803. teradataml/data/scale_housing.csv +11 -11
  804. teradataml/data/scale_housing_test.csv +6 -6
  805. teradataml/data/scale_stat.csv +11 -11
  806. teradataml/data/scalebypartition_example.json +13 -13
  807. teradataml/data/scalemap_example.json +13 -13
  808. teradataml/data/scalesummary_example.json +12 -12
  809. teradataml/data/score_category.csv +101 -101
  810. teradataml/data/score_summary.csv +4 -4
  811. teradataml/data/script_example.json +9 -9
  812. teradataml/data/scripts/deploy_script.py +65 -0
  813. teradataml/data/scripts/mapper.R +20 -0
  814. teradataml/data/scripts/mapper.py +15 -15
  815. teradataml/data/scripts/mapper_replace.py +15 -15
  816. teradataml/data/scripts/sklearn/__init__.py +0 -0
  817. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  818. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  819. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  820. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  821. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  822. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  823. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  824. teradataml/data/seeds.csv +10 -10
  825. teradataml/data/sentenceextractor_example.json +6 -6
  826. teradataml/data/sentiment_extract_input.csv +11 -11
  827. teradataml/data/sentiment_train.csv +16 -16
  828. teradataml/data/sentiment_word.csv +20 -20
  829. teradataml/data/sentiment_word_input.csv +19 -19
  830. teradataml/data/sentimentextractor_example.json +24 -24
  831. teradataml/data/sentimenttrainer_example.json +8 -8
  832. teradataml/data/sequence_table.csv +10 -10
  833. teradataml/data/seriessplitter_example.json +7 -7
  834. teradataml/data/sessionize_example.json +17 -17
  835. teradataml/data/sessionize_table.csv +116 -116
  836. teradataml/data/setop_test1.csv +24 -24
  837. teradataml/data/setop_test2.csv +22 -22
  838. teradataml/data/soc_nw_edges.csv +10 -10
  839. teradataml/data/soc_nw_vertices.csv +7 -7
  840. teradataml/data/souvenir_timeseries.csv +167 -167
  841. teradataml/data/sparse_iris_attribute.csv +5 -5
  842. teradataml/data/sparse_iris_test.csv +121 -121
  843. teradataml/data/sparse_iris_train.csv +601 -601
  844. teradataml/data/star1.csv +6 -6
  845. teradataml/data/state_transition.csv +5 -5
  846. teradataml/data/stock_data.csv +53 -53
  847. teradataml/data/stock_movement.csv +11 -11
  848. teradataml/data/stock_vol.csv +76 -76
  849. teradataml/data/stop_words.csv +8 -8
  850. teradataml/data/store_sales.csv +37 -37
  851. teradataml/data/stringsimilarity_example.json +7 -7
  852. teradataml/data/strsimilarity_input.csv +13 -13
  853. teradataml/data/students.csv +101 -101
  854. teradataml/data/svm_iris_input_test.csv +121 -121
  855. teradataml/data/svm_iris_input_train.csv +481 -481
  856. teradataml/data/svm_iris_model.csv +7 -7
  857. teradataml/data/svmdense_example.json +9 -9
  858. teradataml/data/svmdensepredict_example.json +18 -18
  859. teradataml/data/svmsparse_example.json +7 -7
  860. teradataml/data/svmsparsepredict_example.json +13 -13
  861. teradataml/data/svmsparsesummary_example.json +7 -7
  862. teradataml/data/target_mobile_data.csv +13 -13
  863. teradataml/data/target_mobile_data_dense.csv +5 -5
  864. teradataml/data/templatedata.csv +1201 -1201
  865. teradataml/data/templates/open_source_ml.json +9 -0
  866. teradataml/data/teradataml_example.json +73 -1
  867. teradataml/data/test_classification.csv +101 -0
  868. teradataml/data/test_loan_prediction.csv +53 -53
  869. teradataml/data/test_pacf_12.csv +37 -37
  870. teradataml/data/test_prediction.csv +101 -0
  871. teradataml/data/test_regression.csv +101 -0
  872. teradataml/data/test_river2.csv +109 -109
  873. teradataml/data/text_inputs.csv +6 -6
  874. teradataml/data/textchunker_example.json +7 -7
  875. teradataml/data/textclassifier_example.json +6 -6
  876. teradataml/data/textclassifier_input.csv +7 -7
  877. teradataml/data/textclassifiertrainer_example.json +6 -6
  878. teradataml/data/textmorph_example.json +5 -5
  879. teradataml/data/textparser_example.json +15 -15
  880. teradataml/data/texttagger_example.json +11 -11
  881. teradataml/data/texttokenizer_example.json +6 -6
  882. teradataml/data/texttrainer_input.csv +11 -11
  883. teradataml/data/tf_example.json +6 -6
  884. teradataml/data/tfidf_example.json +13 -13
  885. teradataml/data/tfidf_input1.csv +201 -201
  886. teradataml/data/tfidf_train.csv +6 -6
  887. teradataml/data/time_table1.csv +535 -535
  888. teradataml/data/time_table2.csv +14 -14
  889. teradataml/data/timeseriesdata.csv +1601 -1601
  890. teradataml/data/timeseriesdatasetsd4.csv +105 -105
  891. teradataml/data/titanic.csv +892 -892
  892. teradataml/data/token_table.csv +696 -696
  893. teradataml/data/train_multiclass.csv +101 -0
  894. teradataml/data/train_regression.csv +101 -0
  895. teradataml/data/train_regression_multiple_labels.csv +101 -0
  896. teradataml/data/train_tracking.csv +27 -27
  897. teradataml/data/transformation_table.csv +5 -5
  898. teradataml/data/transformation_table_new.csv +1 -1
  899. teradataml/data/tv_spots.csv +16 -16
  900. teradataml/data/twod_climate_data.csv +117 -117
  901. teradataml/data/uaf_example.json +475 -475
  902. teradataml/data/univariatestatistics_example.json +8 -8
  903. teradataml/data/unpack_example.json +9 -9
  904. teradataml/data/unpivot_example.json +9 -9
  905. teradataml/data/unpivot_input.csv +8 -8
  906. teradataml/data/us_air_pass.csv +36 -36
  907. teradataml/data/us_population.csv +624 -624
  908. teradataml/data/us_states_shapes.csv +52 -52
  909. teradataml/data/varmax_example.json +17 -17
  910. teradataml/data/vectordistance_example.json +25 -25
  911. teradataml/data/ville_climatedata.csv +121 -121
  912. teradataml/data/ville_tempdata.csv +12 -12
  913. teradataml/data/ville_tempdata1.csv +12 -12
  914. teradataml/data/ville_temperature.csv +11 -11
  915. teradataml/data/waveletTable.csv +1605 -1605
  916. teradataml/data/waveletTable2.csv +1605 -1605
  917. teradataml/data/weightedmovavg_example.json +8 -8
  918. teradataml/data/wft_testing.csv +5 -5
  919. teradataml/data/wine_data.csv +1600 -0
  920. teradataml/data/word_embed_input_table1.csv +5 -5
  921. teradataml/data/word_embed_input_table2.csv +4 -4
  922. teradataml/data/word_embed_model.csv +22 -22
  923. teradataml/data/words_input.csv +13 -13
  924. teradataml/data/xconvolve_complex_left.csv +6 -6
  925. teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
  926. teradataml/data/xgboost_example.json +35 -35
  927. teradataml/data/xgboostpredict_example.json +31 -31
  928. teradataml/dataframe/copy_to.py +1764 -1698
  929. teradataml/dataframe/data_transfer.py +2753 -2745
  930. teradataml/dataframe/dataframe.py +17545 -16946
  931. teradataml/dataframe/dataframe_utils.py +1837 -1740
  932. teradataml/dataframe/fastload.py +611 -603
  933. teradataml/dataframe/indexer.py +424 -424
  934. teradataml/dataframe/setop.py +1179 -1166
  935. teradataml/dataframe/sql.py +10090 -6432
  936. teradataml/dataframe/sql_function_parameters.py +439 -388
  937. teradataml/dataframe/sql_functions.py +652 -652
  938. teradataml/dataframe/sql_interfaces.py +220 -220
  939. teradataml/dataframe/vantage_function_types.py +674 -630
  940. teradataml/dataframe/window.py +693 -692
  941. teradataml/dbutils/__init__.py +3 -3
  942. teradataml/dbutils/dbutils.py +1167 -1150
  943. teradataml/dbutils/filemgr.py +267 -267
  944. teradataml/gen_ai/__init__.py +2 -2
  945. teradataml/gen_ai/convAI.py +472 -472
  946. teradataml/geospatial/__init__.py +3 -3
  947. teradataml/geospatial/geodataframe.py +1105 -1094
  948. teradataml/geospatial/geodataframecolumn.py +392 -387
  949. teradataml/geospatial/geometry_types.py +925 -925
  950. teradataml/hyperparameter_tuner/__init__.py +1 -1
  951. teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
  952. teradataml/hyperparameter_tuner/utils.py +281 -187
  953. teradataml/lib/aed_0_1.dll +0 -0
  954. teradataml/lib/libaed_0_1.dylib +0 -0
  955. teradataml/lib/libaed_0_1.so +0 -0
  956. teradataml/libaed_0_1.dylib +0 -0
  957. teradataml/libaed_0_1.so +0 -0
  958. teradataml/opensource/__init__.py +1 -0
  959. teradataml/opensource/sklearn/__init__.py +1 -0
  960. teradataml/opensource/sklearn/_class.py +255 -0
  961. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  962. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  963. teradataml/opensource/sklearn/constants.py +54 -0
  964. teradataml/options/__init__.py +121 -124
  965. teradataml/options/configure.py +337 -336
  966. teradataml/options/display.py +176 -176
  967. teradataml/plot/__init__.py +2 -2
  968. teradataml/plot/axis.py +1388 -1388
  969. teradataml/plot/constants.py +15 -15
  970. teradataml/plot/figure.py +398 -398
  971. teradataml/plot/plot.py +760 -760
  972. teradataml/plot/query_generator.py +83 -83
  973. teradataml/plot/subplot.py +216 -216
  974. teradataml/scriptmgmt/UserEnv.py +3788 -3761
  975. teradataml/scriptmgmt/__init__.py +3 -3
  976. teradataml/scriptmgmt/lls_utils.py +1616 -1604
  977. teradataml/series/series.py +532 -532
  978. teradataml/series/series_utils.py +71 -71
  979. teradataml/table_operators/Apply.py +949 -917
  980. teradataml/table_operators/Script.py +1719 -1982
  981. teradataml/table_operators/TableOperator.py +1207 -1616
  982. teradataml/table_operators/__init__.py +2 -3
  983. teradataml/table_operators/apply_query_generator.py +262 -262
  984. teradataml/table_operators/query_generator.py +507 -507
  985. teradataml/table_operators/table_operator_query_generator.py +460 -460
  986. teradataml/table_operators/table_operator_util.py +631 -639
  987. teradataml/table_operators/templates/dataframe_apply.template +184 -184
  988. teradataml/table_operators/templates/dataframe_map.template +176 -176
  989. teradataml/table_operators/templates/script_executor.template +170 -170
  990. teradataml/utils/dtypes.py +684 -684
  991. teradataml/utils/internal_buffer.py +84 -84
  992. teradataml/utils/print_versions.py +205 -205
  993. teradataml/utils/utils.py +410 -410
  994. teradataml/utils/validators.py +2239 -2115
  995. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +270 -41
  996. teradataml-20.0.0.0.dist-info/RECORD +1038 -0
  997. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +1 -1
  998. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +1 -1
  999. teradataml/analytics/mle/AdaBoost.py +0 -651
  1000. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  1001. teradataml/analytics/mle/Antiselect.py +0 -342
  1002. teradataml/analytics/mle/Arima.py +0 -641
  1003. teradataml/analytics/mle/ArimaPredict.py +0 -477
  1004. teradataml/analytics/mle/Attribution.py +0 -1070
  1005. teradataml/analytics/mle/Betweenness.py +0 -658
  1006. teradataml/analytics/mle/Burst.py +0 -711
  1007. teradataml/analytics/mle/CCM.py +0 -600
  1008. teradataml/analytics/mle/CCMPrepare.py +0 -324
  1009. teradataml/analytics/mle/CFilter.py +0 -460
  1010. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  1011. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  1012. teradataml/analytics/mle/Closeness.py +0 -737
  1013. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  1014. teradataml/analytics/mle/Correlation.py +0 -477
  1015. teradataml/analytics/mle/Correlation2.py +0 -573
  1016. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  1017. teradataml/analytics/mle/CoxPH.py +0 -556
  1018. teradataml/analytics/mle/CoxSurvival.py +0 -478
  1019. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  1020. teradataml/analytics/mle/DTW.py +0 -623
  1021. teradataml/analytics/mle/DWT.py +0 -564
  1022. teradataml/analytics/mle/DWT2D.py +0 -599
  1023. teradataml/analytics/mle/DecisionForest.py +0 -716
  1024. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  1025. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  1026. teradataml/analytics/mle/DecisionTree.py +0 -830
  1027. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  1028. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  1029. teradataml/analytics/mle/FMeasure.py +0 -402
  1030. teradataml/analytics/mle/FPGrowth.py +0 -734
  1031. teradataml/analytics/mle/FrequentPaths.py +0 -695
  1032. teradataml/analytics/mle/GLM.py +0 -558
  1033. teradataml/analytics/mle/GLML1L2.py +0 -547
  1034. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  1035. teradataml/analytics/mle/GLMPredict.py +0 -529
  1036. teradataml/analytics/mle/HMMDecoder.py +0 -945
  1037. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  1038. teradataml/analytics/mle/HMMSupervised.py +0 -521
  1039. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  1040. teradataml/analytics/mle/Histogram.py +0 -561
  1041. teradataml/analytics/mle/IDWT.py +0 -476
  1042. teradataml/analytics/mle/IDWT2D.py +0 -493
  1043. teradataml/analytics/mle/IdentityMatch.py +0 -763
  1044. teradataml/analytics/mle/Interpolator.py +0 -918
  1045. teradataml/analytics/mle/KMeans.py +0 -485
  1046. teradataml/analytics/mle/KNN.py +0 -627
  1047. teradataml/analytics/mle/KNNRecommender.py +0 -488
  1048. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  1049. teradataml/analytics/mle/LAR.py +0 -439
  1050. teradataml/analytics/mle/LARPredict.py +0 -478
  1051. teradataml/analytics/mle/LDA.py +0 -548
  1052. teradataml/analytics/mle/LDAInference.py +0 -492
  1053. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  1054. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  1055. teradataml/analytics/mle/LinReg.py +0 -433
  1056. teradataml/analytics/mle/LinRegPredict.py +0 -438
  1057. teradataml/analytics/mle/MinHash.py +0 -544
  1058. teradataml/analytics/mle/Modularity.py +0 -587
  1059. teradataml/analytics/mle/NEREvaluator.py +0 -410
  1060. teradataml/analytics/mle/NERExtractor.py +0 -595
  1061. teradataml/analytics/mle/NERTrainer.py +0 -458
  1062. teradataml/analytics/mle/NGrams.py +0 -570
  1063. teradataml/analytics/mle/NPath.py +0 -634
  1064. teradataml/analytics/mle/NTree.py +0 -549
  1065. teradataml/analytics/mle/NaiveBayes.py +0 -462
  1066. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  1067. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  1068. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  1069. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  1070. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  1071. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  1072. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  1073. teradataml/analytics/mle/POSTagger.py +0 -417
  1074. teradataml/analytics/mle/Pack.py +0 -411
  1075. teradataml/analytics/mle/PageRank.py +0 -535
  1076. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  1077. teradataml/analytics/mle/PathGenerator.py +0 -367
  1078. teradataml/analytics/mle/PathStart.py +0 -464
  1079. teradataml/analytics/mle/PathSummarizer.py +0 -470
  1080. teradataml/analytics/mle/Pivot.py +0 -471
  1081. teradataml/analytics/mle/ROC.py +0 -425
  1082. teradataml/analytics/mle/RandomSample.py +0 -637
  1083. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  1084. teradataml/analytics/mle/SAX.py +0 -779
  1085. teradataml/analytics/mle/SVMDense.py +0 -677
  1086. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  1087. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  1088. teradataml/analytics/mle/SVMSparse.py +0 -557
  1089. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  1090. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  1091. teradataml/analytics/mle/Sampling.py +0 -549
  1092. teradataml/analytics/mle/Scale.py +0 -565
  1093. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  1094. teradataml/analytics/mle/ScaleMap.py +0 -378
  1095. teradataml/analytics/mle/ScaleSummary.py +0 -320
  1096. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  1097. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  1098. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  1099. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  1100. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  1101. teradataml/analytics/mle/Sessionize.py +0 -475
  1102. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  1103. teradataml/analytics/mle/StringSimilarity.py +0 -425
  1104. teradataml/analytics/mle/TF.py +0 -389
  1105. teradataml/analytics/mle/TFIDF.py +0 -504
  1106. teradataml/analytics/mle/TextChunker.py +0 -414
  1107. teradataml/analytics/mle/TextClassifier.py +0 -399
  1108. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  1109. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  1110. teradataml/analytics/mle/TextMorph.py +0 -494
  1111. teradataml/analytics/mle/TextParser.py +0 -623
  1112. teradataml/analytics/mle/TextTagger.py +0 -530
  1113. teradataml/analytics/mle/TextTokenizer.py +0 -502
  1114. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  1115. teradataml/analytics/mle/Unpack.py +0 -526
  1116. teradataml/analytics/mle/Unpivot.py +0 -438
  1117. teradataml/analytics/mle/VarMax.py +0 -776
  1118. teradataml/analytics/mle/VectorDistance.py +0 -762
  1119. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  1120. teradataml/analytics/mle/XGBoost.py +0 -842
  1121. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  1122. teradataml/analytics/mle/__init__.py +0 -123
  1123. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  1124. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  1125. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  1126. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  1127. teradataml/analytics/mle/json/arima_mle.json +0 -172
  1128. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  1129. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  1130. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  1131. teradataml/analytics/mle/json/burst_mle.json +0 -140
  1132. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  1133. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  1134. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  1135. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  1136. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  1137. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  1138. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  1139. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  1140. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  1141. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  1142. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  1143. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  1144. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  1145. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  1146. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  1147. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  1148. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  1149. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  1150. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  1151. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  1152. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  1153. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  1154. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  1155. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  1156. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  1157. teradataml/analytics/mle/json/glm_mle.json +0 -111
  1158. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  1159. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  1160. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  1161. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  1162. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  1163. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  1164. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  1165. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  1166. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  1167. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  1168. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  1169. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  1170. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  1171. teradataml/analytics/mle/json/knn_mle.json +0 -141
  1172. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  1173. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  1174. teradataml/analytics/mle/json/lar_mle.json +0 -78
  1175. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  1176. teradataml/analytics/mle/json/lda_mle.json +0 -130
  1177. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  1178. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  1179. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  1180. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  1181. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  1182. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  1183. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  1184. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  1185. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  1186. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  1187. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  1188. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  1189. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  1190. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  1191. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  1192. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  1193. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  1194. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  1195. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  1196. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  1197. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  1198. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  1199. teradataml/analytics/mle/json/pack_mle.json +0 -58
  1200. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  1201. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  1202. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  1203. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  1204. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  1205. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  1206. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  1207. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  1208. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  1209. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  1210. teradataml/analytics/mle/json/roc_mle.json +0 -73
  1211. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  1212. teradataml/analytics/mle/json/sax_mle.json +0 -154
  1213. teradataml/analytics/mle/json/scale_mle.json +0 -93
  1214. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  1215. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  1216. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  1217. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  1218. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  1219. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  1220. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  1221. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  1222. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  1223. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  1224. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  1225. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  1226. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  1227. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  1228. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  1229. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  1230. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  1231. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  1232. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  1233. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  1234. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  1235. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  1236. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  1237. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  1238. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  1239. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  1240. teradataml/analytics/mle/json/tf_mle.json +0 -33
  1241. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  1242. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  1243. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  1244. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  1245. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  1246. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  1247. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  1248. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  1249. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  1250. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  1251. teradataml/analytics/sqle/Antiselect.py +0 -321
  1252. teradataml/analytics/sqle/Attribution.py +0 -603
  1253. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  1254. teradataml/analytics/sqle/GLMPredict.py +0 -430
  1255. teradataml/analytics/sqle/MovingAverage.py +0 -543
  1256. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  1257. teradataml/analytics/sqle/NPath.py +0 -632
  1258. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  1259. teradataml/analytics/sqle/Pack.py +0 -388
  1260. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  1261. teradataml/analytics/sqle/Sessionize.py +0 -390
  1262. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  1263. teradataml/analytics/sqle/Unpack.py +0 -503
  1264. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  1265. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  1266. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  1267. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  1268. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  1269. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  1270. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  1271. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  1272. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  1273. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  1274. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  1275. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  1276. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  1277. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  1278. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  1279. teradataml/catalog/model_cataloging.py +0 -980
  1280. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  1281. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  1282. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  1283. teradataml/table_operators/sandbox_container_util.py +0 -643
  1284. teradataml-17.20.0.7.dist-info/RECORD +0 -1280
  1285. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1270 @@
1
+ # ##################################################################
2
+ #
3
+ # Copyright 2024 Teradata. All rights reserved.
4
+ # TERADATA CONFIDENTIAL AND TRADE SECRET
5
+ #
6
+ # Primary Owner: Sweta Shaw
7
+ # Email Id: Sweta.Shaw@Teradata.com
8
+ #
9
+ # Secondary Owner: Akhil Bisht
10
+ # Email Id: AKHIL.BISHT@Teradata.com
11
+ #
12
+ # Version: 1.1
13
+ # Function Version: 1.0
14
+ # ##################################################################
15
+
16
+ import json
17
+
18
+
19
+ class _GenerateCustomJson:
20
+
21
+ def __init__(self):
22
+ """
23
+ DESCRIPTION:
24
+ Function initializes the data and flags for custom JSON file generation.
25
+
26
+ """
27
+ # Initializing data dictionary for storing custom parameters
28
+ self.data = {}
29
+ # Initializing first time execution flag variables for each phase
30
+ self.fe_flag = {index : False for index in range(1, 8)}
31
+ self.de_flag = {index : False for index in range(1, 5)}
32
+ self.mt_flag = {index : False for index in range(1, 2)}
33
+
34
+ def _process_list_input(self,
35
+ input_data,
36
+ value_type='str',
37
+ allowed_values=None):
38
+ """
39
+ DESCRIPTION:
40
+ Function processes input data contaning one or more than one, expected
41
+ to be comma separated and converts them into list of specified type.
42
+
43
+ PARAMETERS:
44
+ input_data:
45
+ Required Argument.
46
+ Specifies the input data to be processed.
47
+ Types: str
48
+
49
+ value_type:
50
+ Optional Argument.
51
+ Specifies the type of value present in input data.
52
+ Default Value: "str"
53
+ Types: str
54
+
55
+ allowed_values:
56
+ Optional Argument.
57
+ Specifies the list of allowed values for input data.
58
+ Default Value: None
59
+ Types: list
60
+
61
+ RETURNS:
62
+ List containing values of specified type.
63
+
64
+ RAISES:
65
+ ValueError: If input data is empty or not valid.
66
+ """
67
+ while True:
68
+ try:
69
+ # Checking if input is empty
70
+ if not input_data.strip():
71
+ raise ValueError("\nInput data cannot be empty. "
72
+ "Please provide a valid comma separated input.")
73
+ # Processing multi-valued input data
74
+ if value_type == 'int':
75
+ result = [int(value.strip()) for value in input_data.split(',')]
76
+ elif value_type == 'float':
77
+ result = [float(value.strip()) for value in input_data.split(',')]
78
+ elif value_type == 'bool':
79
+ result = [True if value.strip().lower() == 'true' else False for value in input_data.split(',')]
80
+ else:
81
+ result = [value.strip() for value in input_data.split(',')]
82
+
83
+ if allowed_values:
84
+ for value in result:
85
+ if value not in allowed_values:
86
+ raise ValueError(f"\nInvalid input {value}. "
87
+ f"Please provide a valid input from {allowed_values}.")
88
+ return result
89
+ # Handling exceptions for invalid input
90
+ except ValueError as msg:
91
+ print(f"\n**ERROR:** {msg}")
92
+ # Ask the user to try again
93
+ input_data = input("\nEnter the correct input: ")
94
+
95
+ def _process_single_input(self,
96
+ input_data,
97
+ value_type='str',
98
+ allowed_values=None):
99
+ """
100
+ DESCRIPTION:
101
+ Function processes the input data containing only single value and
102
+ converts it into specified type.
103
+
104
+ PARAMETERS:
105
+ input_data:
106
+ Required Argument.
107
+ Specifies the input data to be processed.
108
+ Types: str
109
+
110
+ value_type:
111
+ Optional Argument.
112
+ Specifies the type of value present in input data.
113
+ Default Value: "str"
114
+ Types: str
115
+
116
+ RETURNS:
117
+ Value of specified type.
118
+
119
+ RAISES:
120
+ ValueError: If input data is empty or not valid.
121
+ """
122
+ while True:
123
+ try:
124
+ # Checking if input is empty
125
+ if not input_data.strip():
126
+ raise ValueError("\nInput data cannot be empty. "
127
+ "Please provide a valid input.")
128
+ # Processing single value input data
129
+ if value_type == 'int':
130
+ result = int(input_data)
131
+ elif value_type == 'float':
132
+ result = float(input_data)
133
+ elif value_type == 'bool':
134
+ result = True if input_data.lower() == 'true' else False
135
+ else:
136
+ result = input_data
137
+
138
+ if allowed_values:
139
+ if result not in allowed_values:
140
+ raise ValueError(f"\nInvalid input {result}. "
141
+ f"Please provide a valid input from {allowed_values}.")
142
+ return result
143
+ # Handling exceptions for invalid input
144
+ except ValueError as msg:
145
+ print(f"\n**ERROR:** {msg}")
146
+ # Ask the user to try again
147
+ input_data = input("\nEnter the correct input: ")
148
+
149
+ def _generate_custom_json(self):
150
+ """
151
+ DESCRIPTION:
152
+ Function collects customized user input using prompt for feature enginnering,
153
+ data preparation and model training phases.
154
+
155
+ RETURNS:
156
+ Dictionary containing custom parameters to generate custom JSON file for AutoML.
157
+ """
158
+
159
+ print("\nGenerating custom config JSON for AutoML ...")
160
+
161
+ customize_options = {
162
+ 1: 'Customize Feature Engineering Phase',
163
+ 2: 'Customize Data Preparation Phase',
164
+ 3: 'Customize Model Training Phase',
165
+ 4: 'Generate custom json and exit'
166
+ }
167
+
168
+ while True:
169
+
170
+ print(f"\nAvailable main options for customization with corresponding indices: ")
171
+ print("-"*80)
172
+ for index, options in customize_options.items():
173
+ print(f"\nIndex {index}: {options}")
174
+ print("-"*80)
175
+ # Mapping each index to corresponding functionality
176
+ custom_method_map = {
177
+ 1: self._get_customize_input_feature_engineering,
178
+ 2: self._get_customize_input_data_preparation,
179
+ 3: self._get_customize_input_model_training
180
+ }
181
+
182
+ # Taking required input for customizing feature engineering, data preparation and model training phases
183
+ phase_idx = self._process_single_input(
184
+ input("\nEnter the index you want to customize: "),
185
+ 'int', list(customize_options.keys()))
186
+ # Checking if user wants to exit
187
+ if phase_idx == 4:
188
+ print("\nGenerating custom json and exiting ...")
189
+ break
190
+ else:
191
+ # Processing each functionality for customization
192
+ # Getting exit flag to exit from main menu
193
+ exit_flag = custom_method_map[phase_idx]()
194
+ if exit_flag:
195
+ break
196
+
197
+ print("\nProcess of generating custom config file for AutoML has been completed successfully.")
198
+ # Returning custom parameters
199
+ return self.data
200
+
201
+ def _get_customize_input_feature_engineering(self):
202
+ """
203
+ DESCRIPTION:
204
+ Function takes user input for different functionalities to customize
205
+ feature engineering phase.
206
+ """
207
+
208
+ print("\nCustomizing Feature Engineering Phase ...")
209
+ # Available options for customization of feature engineering phase
210
+ fe_customize_options = {
211
+ 1: 'Customize Missing Value Handling',
212
+ 2: 'Customize Bincode Encoding',
213
+ 3: 'Customize String Manipulation',
214
+ 4: 'Customize Categorical Encoding',
215
+ 5: 'Customize Mathematical Transformation',
216
+ 6: 'Customize Nonlinear Transformation',
217
+ 7: 'Customize Antiselect Features',
218
+ 8: 'Back to main menu',
219
+ 9: 'Generate custom json and exit'
220
+ }
221
+
222
+ while True:
223
+
224
+ print(f"\nAvailable options for customization of feature engineering phase with corresponding indices: ")
225
+ print("-"*80)
226
+ for index, options in fe_customize_options.items():
227
+ print(f"\nIndex {index}: {options}")
228
+ print("-"*80)
229
+ # Mapping each index to corresponding functionality
230
+ fe_method_map = {
231
+ 1: self._get_customize_input_missing_value_handling,
232
+ 2: self._get_customize_input_bin_code_encoding,
233
+ 3: self._get_customize_input_string_manipulation,
234
+ 4: self._get_customize_input_categorical_encoding,
235
+ 5: self._get_customize_input_mathematical_transformation,
236
+ 6: self._get_customize_input_nonlinear_transformation,
237
+ 7: self._get_customize_input_antiselect
238
+ }
239
+
240
+ # Taking required input for customizing feature engineering
241
+ fe_phase_idx = self._process_list_input(
242
+ input("\nEnter the list of indices you want to customize in feature engineering phase: "),
243
+ 'int', list(fe_customize_options.keys()))
244
+
245
+ # Flag variable to back to main menu
246
+ fe_exit_to_main_flag = False
247
+ # Flag variable to exit from main menu
248
+ # Handling the scenario when input contains both index 8 and 9
249
+ fe_exit_from_main_flag = 9 in fe_phase_idx
250
+
251
+ # Processing each functionality for customization in sorted order
252
+ for index in sorted(fe_phase_idx):
253
+ if index == 8 or index == 9:
254
+ fe_exit_to_main_flag = True
255
+ if index == 9:
256
+ fe_exit_from_main_flag = True
257
+ break
258
+ fe_method_map[index](self.fe_flag[index])
259
+ self.fe_flag[index] = True
260
+ # Checking if user wants to return to main menu
261
+ if fe_exit_to_main_flag:
262
+ print("\nCustomization of feature engineering phase has been completed successfully.")
263
+ break
264
+ # Returning flag to exit from main menu
265
+ return fe_exit_from_main_flag
266
+
267
+ def _get_customize_input_data_preparation(self):
268
+ """
269
+ DESCRIPTION:
270
+ Function takes user input for different functionalities to customize
271
+ data preparation phase.
272
+ """
273
+ print("\nCustomizing Data Preparation Phase ...")
274
+ # Available options for customization of data preparation phase
275
+ dp_customize_options = {
276
+ 1: 'Customize Train Test Split',
277
+ 2: 'Customize Data Imbalance Handling',
278
+ 3: 'Customize Outlier Handling',
279
+ 4: 'Customize Feature Scaling',
280
+ 5: 'Back to main menu',
281
+ 6: 'Generate custom json and exit'
282
+ }
283
+
284
+ while True:
285
+
286
+ print(f"\nAvailable options for customization of data preparation phase with corresponding indices: ")
287
+ print("-"*80)
288
+ for index, options in dp_customize_options.items():
289
+ print(f"\nIndex {index}: {options}")
290
+ print("-"*80)
291
+ # Mapping each index to corresponding functionality
292
+ de_method_map = {
293
+ 1: self._get_customize_input_train_test_split,
294
+ 2: self._get_customize_input_data_imbalance_handling,
295
+ 3: self._get_customize_input_outlier_handling,
296
+ 4: self._get_customize_input_feature_scaling
297
+ }
298
+
299
+ # Taking required input for customizing data preparation.
300
+ dp_phase_idx = self._process_list_input(
301
+ input("\nEnter the list of indices you want to customize in data preparation phase: "),
302
+ 'int', list(dp_customize_options.keys()))
303
+
304
+ # Flag variable to back to main menu
305
+ de_exit_to_main_flag = False
306
+ # Flag variable to exit from main menu
307
+ # Handling the scenario when input contains both index 5 and 6
308
+ de_exit_from_main_flag = 6 in dp_phase_idx
309
+
310
+ # Processing each functionality for customization in sorted order
311
+ for index in sorted(dp_phase_idx):
312
+ if index == 5 or index == 6:
313
+ de_exit_to_main_flag = True
314
+ if index == 6:
315
+ de_exit_from_main_flag = True
316
+ break
317
+ de_method_map[index](self.de_flag[index])
318
+ self.de_flag[index] = True
319
+ # Checking if user wants to return to main menu
320
+ if de_exit_to_main_flag:
321
+ print("\nCustomization of data preparation phase has been completed successfully.")
322
+ break
323
+ # Returning flag to exit from main menu
324
+ return de_exit_from_main_flag
325
+
326
+ def _get_customize_input_model_training(self):
327
+ """
328
+ DESCRIPTION:
329
+ Function takes user input for different functionalities to customize
330
+ model training phase.
331
+ """
332
+ print("\nCustomizing Model Training Phase ...")
333
+ # Available options for customization of model training phase
334
+ mt_customize_options = {
335
+ 1: 'Customize Model Hyperparameter',
336
+ 2: 'Back to main menu',
337
+ 3: 'Generate custom json and exit'
338
+ }
339
+
340
+ while True:
341
+
342
+ print(f"\nAvailable options for customization of model training phase with corresponding indices: ")
343
+ print("-"*80)
344
+ for index, options in mt_customize_options.items():
345
+ print(f"\nIndex {index}: {options}")
346
+ print("-"*80)
347
+
348
+ # Taking required input for customizing model training.
349
+ mt_phase_idx = self._process_list_input(
350
+ input("\nEnter the list of indices you want to customize in model training phase: "),
351
+ 'int', list(mt_customize_options.keys()))
352
+
353
+ # Flag variable to back to main menu
354
+ mt_exit_to_main_flag = False
355
+ # Flag variable to exit from main menu
356
+ # Handling the scenario when input contains both index 2 and 3
357
+ mt_exit_from_main_flag = 3 in mt_phase_idx
358
+
359
+ # Processing each functionality for customization in sorted order
360
+ for index in sorted(mt_phase_idx):
361
+ if index == 1:
362
+ self._get_customize_input_model_hyperparameter(self.mt_flag[index])
363
+ elif index == 2 or index == 3:
364
+ mt_exit_to_main_flag = True
365
+ if index == 3:
366
+ mt_exit_from_main_flag = True
367
+ break
368
+ self.mt_flag[index] = True
369
+ # Checking if user wants to return to main menu
370
+ if mt_exit_to_main_flag:
371
+ print("\nCustomization of model training phase has been completed successfully.")
372
+ break
373
+ # Returning flag to exit from main menu
374
+ return mt_exit_from_main_flag
375
+
376
+ def _get_customize_input_missing_value_handling(self,
377
+ first_execution_flag=False):
378
+ """
379
+ DESCRIPTION:
380
+ Function takes user input to generate custom json paramaters for missing value handling.
381
+
382
+ PARAMETERS:
383
+ first_execution_flag:
384
+ Optional Argument.
385
+ Specifies the flag to check if the function is called for the first time.
386
+ Default Value: False
387
+ Types: bool
388
+ """
389
+ if first_execution_flag:
390
+ print("\nWARNING : Reinitiated missing value handling customization. "
391
+ "Overwriting the previous input.")
392
+
393
+ print("\nCustomizing Missing Value Handling ...")
394
+ # Setting indicator for missing value handling
395
+ self.data['MissingValueHandlingIndicator'] = True
396
+ print("\nProvide the following details to customize missing value handling:")
397
+ # Setting parameters for missing value handling
398
+ self.data['MissingValueHandlingParam'] = {}
399
+
400
+ missing_handling_methods = {1: 'Drop Columns',
401
+ 2: 'Drop Rows',
402
+ 3: 'Impute Missing values'}
403
+
404
+ print("\nAvailable missing value handling methods with corresponding indices: ")
405
+ for index, method in missing_handling_methods.items():
406
+ print(f"Index {index}: {method}")
407
+
408
+ missing_handling_methods_idx = self._process_list_input(
409
+ input("\nEnter the list of indices for missing value handling methods : "),
410
+ 'int', list(missing_handling_methods.keys()))
411
+
412
+ for index in missing_handling_methods_idx:
413
+ if index == 1:
414
+ # Setting indicator for dropping columns with missing values
415
+ self.data['MissingValueHandlingParam']['DroppingColumnIndicator'] = True
416
+ drop_col_list = self._process_list_input(
417
+ input("\nEnter the feature or list of features for dropping columns with missing values: "))
418
+ self.data['MissingValueHandlingParam']['DroppingColumnList'] = drop_col_list
419
+ elif index == 2:
420
+ self.data['MissingValueHandlingParam']['DroppingRowIndicator'] = True
421
+ drop_row_list = self._process_list_input(
422
+ input("\nEnter the feature or list of features for dropping rows with missing values: "))
423
+ self.data['MissingValueHandlingParam']['DroppingRowList'] = drop_row_list
424
+ elif index == 3:
425
+ self.data['MissingValueHandlingParam']['ImputeMissingIndicator'] = True
426
+
427
+ impute_methods = {1: 'Statistical Imputation',
428
+ 2: 'Literal Imputation'}
429
+ print("\nAvailable missing value imputation methods with corresponding indices: ")
430
+ for index, method in impute_methods.items():
431
+ print(f"Index {index}: {method}")
432
+
433
+ impute_methods_idx = self._process_list_input(
434
+ input("\nEnter the list of corresponding index missing value imputation methods you want to use: "),
435
+ 'int', list(impute_methods.keys()))
436
+
437
+ for index in impute_methods_idx:
438
+ if index == 1:
439
+ stat_imp_list = self._process_list_input(
440
+ input("\nEnter the feature or list of features for imputing missing values using statistic values: "))
441
+ self.data['MissingValueHandlingParam']['StatImputeList'] = stat_imp_list
442
+
443
+ # Displaying available statistical imputation methods
444
+ stat_methods = {1: 'min',
445
+ 2: 'max',
446
+ 3: 'mean',
447
+ 4: 'median',
448
+ 5: 'mode'}
449
+ print("\nAvailable statistical methods with corresponding indices:")
450
+ for index, method in stat_methods.items():
451
+ print(f"Index {index}: {method}")
452
+
453
+ self.data['MissingValueHandlingParam']['StatImputeMethod'] = []
454
+ # Setting statistical imputation methods for features
455
+ for feature in stat_imp_list:
456
+ method_idx = self._process_single_input(
457
+ input(f"\nEnter the index of corresponding statistic imputation "
458
+ f"method for feature {feature}: "),
459
+ 'int', list(stat_methods.keys()))
460
+ self.data['MissingValueHandlingParam']['StatImputeMethod'].append(stat_methods[method_idx])
461
+ elif index == 2:
462
+ literal_imp_list = self._process_list_input(
463
+ input("\nEnter the feature or list of features for imputing missing values "
464
+ "using a specific value(Literal): "))
465
+ # Setting list of features for imputing missing values using specific literal value
466
+ self.data['MissingValueHandlingParam']['LiteralImputeList'] = literal_imp_list
467
+ self.data['MissingValueHandlingParam']['LiteralImputeValue'] = []
468
+ for feature in literal_imp_list:
469
+ # Setting specific literal value for imputing missing values for each feature
470
+ literal_value = self._process_single_input(
471
+ input(f"\nEnter the specific literal value for imputing missing "
472
+ f"values for feature {feature}: "))
473
+ self.data['MissingValueHandlingParam']['LiteralImputeValue'].append(literal_value)
474
+
475
+ print("\nCustomization of missing value handling has been completed successfully.")
476
+
477
+ def _get_customize_input_bin_code_encoding(self,
478
+ first_execution_flag=False):
479
+ """
480
+ DESCRIPTION:
481
+ Function takes user input to generate custom json paramaters for performing binning on features.
482
+
483
+ PARAMETERS:
484
+ first_execution_flag:
485
+ Optional Argument.
486
+ Specifies the flag to check if the function is called for the first time.
487
+ Default Value: False
488
+ Types: bool
489
+
490
+ """
491
+ if first_execution_flag:
492
+ print("\nWARNING : Reinitiated bincode encoding customization. "
493
+ "Overwriting the previous input.")
494
+
495
+ print("\nCustomizing Bincode Encoding ...")
496
+ # Setting indicator for binning
497
+ self.data['BincodeIndicator'] = True
498
+ print("\nProvide the following details to customize binning and coding encoding:")
499
+ self.data['BincodeParam'] = {}
500
+
501
+ # Displaying available binning methods
502
+ binning_methods = {1: 'Equal-Width',
503
+ 2: 'Variable-Width'}
504
+ print("\nAvailable binning methods with corresponding indices:")
505
+ for index, method in binning_methods.items():
506
+ print(f"Index {index}: {method}")
507
+
508
+ # Setting parameters for binning
509
+ binning_list = self._process_list_input(input("\nEnter the feature or list of features for binning: "))
510
+ if binning_list:
511
+ for feature in binning_list:
512
+ # Setting parameters for binning each feature
513
+ self.data['BincodeParam'][feature] = {}
514
+ bin_method_idx = self._process_single_input(
515
+ input(f"\nEnter the index of corresponding binning method for feature {feature}: "),
516
+ 'int', list(binning_methods.keys()))
517
+
518
+ # Setting binning method and number of bins for each feature
519
+ self.data['BincodeParam'][feature]["Type"] = binning_methods[bin_method_idx]
520
+ num_of_bin = self._process_single_input(
521
+ input(f"\nEnter the number of bins for feature {feature}: "), 'int')
522
+ self.data['BincodeParam'][feature]["NumOfBins"] = num_of_bin
523
+
524
+ # Setting parameters for each bin of feature in case of variable width binning
525
+ if bin_method_idx == 2:
526
+ value_type = {
527
+ 1: 'int',
528
+ 2: 'float'
529
+ }
530
+ print("\nAvailable value type of feature for variable binning with corresponding indices:")
531
+ for index, v_type in value_type.items():
532
+ print(f"Index {index}: {v_type}")
533
+ # Setting parameters for each bin of feature
534
+ for num in range(1, num_of_bin+1):
535
+ print(f"\nProvide the range for bin {num} of feature {feature}: ")
536
+ bin_num="Bin_"+str(num)
537
+ self.data['BincodeParam'][feature][bin_num] = {}
538
+
539
+ # Setting bin value type for corresponding bin
540
+ bin_value_type_idx = self._process_single_input(
541
+ input(f"\nEnter the index of corresponding value type of feature {feature}: "),
542
+ 'int', list(value_type.keys()))
543
+
544
+ bin_value_type = value_type[bin_value_type_idx]
545
+
546
+ # Setting minimum value for corresponding bin
547
+ self.data['BincodeParam'][feature][bin_num]['min_value'] = self._process_single_input(
548
+ input(f"\nEnter the minimum value for bin {num} of feature {feature}: "),
549
+ bin_value_type)
550
+ # Setting maximum value for corresponding bin
551
+ self.data['BincodeParam'][feature][bin_num]['max_value'] = self._process_single_input(
552
+ input(f"\nEnter the maximum value for bin {num} of feature {feature}: "),
553
+ bin_value_type)
554
+ # Setting label for corresponding bin
555
+ self.data['BincodeParam'][feature][bin_num]['label'] = self._process_single_input(
556
+ input(f"\nEnter the label for bin {num} of feature {feature}: "))
557
+
558
+ print("\nCustomization of bincode encoding has been completed successfully.")
559
+
560
+ def _get_customize_input_string_manipulation(self,
561
+ first_execution_flag=False):
562
+ """
563
+ DESCRIPTION:
564
+ Function takes user input to generate custom json paramaters for string manipulation.
565
+
566
+ PARAMETERS:
567
+ first_execution_flag:
568
+ Optional Argument.
569
+ Specifies the flag to check if the function is called for the first time.
570
+ Default Value: False
571
+ Types: bool
572
+
573
+ """
574
+ if first_execution_flag:
575
+ print("\nWARNING : Reinitiated string manipulation customization. "
576
+ "Overwriting the previous input.")
577
+
578
+ print("\nCustomizing String Manipulation ...")
579
+ # Setting indicator for string manipulation
580
+ self.data['StringManipulationIndicator'] = True
581
+ print("\nProvide the following details to customize string manipulation:")
582
+ self.data['StringManipulationParam'] = {}
583
+ # Displaying available string manipulation methods
584
+ string_methods = {1: 'ToLower',
585
+ 2: 'ToUpper',
586
+ 3: 'StringCon',
587
+ 4: 'StringPad',
588
+ 5: 'Substring'}
589
+ print("\nAvailable string manipulation methods with corresponding indices:")
590
+ for index, method in string_methods.items():
591
+ print(f"Index {index}: {method}")
592
+
593
+ # Setting parameters for string manipulation
594
+ str_mnpl_list = self._process_list_input(
595
+ input("\nEnter the feature or list of features for string manipulation: "))
596
+ # Processing each feature
597
+ if str_mnpl_list:
598
+ for feature in str_mnpl_list:
599
+ # Setting parameters for string manipulation each feature
600
+ self.data['StringManipulationParam'][feature] = {}
601
+ str_mnpl_method_idx = self._process_single_input(
602
+ input(f"\nEnter the index of corresponding string manipulation "
603
+ f"method for feature {feature}: "), 'int', list(string_methods.keys()))
604
+ self.data['StringManipulationParam'][feature]["StringOperation"] = \
605
+ string_methods[str_mnpl_method_idx]
606
+ # Setting required parameters specific to each string manipulation method
607
+ if str_mnpl_method_idx in [3, 4]:
608
+ str_mnpl_string = self._process_single_input(
609
+ input(f"\nEnter the string value required for string manipulation "
610
+ f"operation for feature {feature}: "))
611
+ self.data['StringManipulationParam'][feature]["String"] = str_mnpl_string
612
+
613
+ if str_mnpl_method_idx in [4, 5]:
614
+ str_mnpl_length = self._process_single_input(
615
+ input(f"\nEnter the length value required for string manipulation "
616
+ f"operation for feature {feature}: "), 'int')
617
+ self.data['StringManipulationParam'][feature]["StringLength"] = str_mnpl_length
618
+
619
+ if str_mnpl_method_idx == 5:
620
+ str_mnpl_start = self._process_single_input(
621
+ input(f"\nEnter the start value required for string manipulation "
622
+ f"operation for feature {feature}: "), 'int')
623
+ self.data['StringManipulationParam'][feature]["StartIndex"] = str_mnpl_start
624
+
625
+ print("\nCustomization of string manipulation has been completed successfully.")
626
+
627
+
628
+ def _get_customize_input_categorical_encoding(self,
629
+ first_execution_flag=False):
630
+ """
631
+ DESCRIPTION:
632
+ Function takes user input to generate custom json paramaters for categorical encoding.
633
+
634
+ PARAMETERS:
635
+ first_execution_flag:
636
+ Optional Argument.
637
+ Specifies the flag to check if the function is called for the first time.
638
+ Default Value: False
639
+ Types: bool
640
+
641
+ """
642
+ if first_execution_flag:
643
+ print("\nWARNING : Reinitiated categorical encoding customization. "
644
+ "Overwriting the previous input.")
645
+
646
+ print("\nCustomizing Categorical Encoding ...")
647
+ # Setting indicator for categorical encoding
648
+ self.data['CategoricalEncodingIndicator'] = True
649
+ print("\nProvide the following details to customize categorical encoding:")
650
+ # Setting parameters for categorical encoding
651
+ self.data['CategoricalEncodingParam'] = {}
652
+
653
+ encoding_methods = {1: 'OneHotEncoding',
654
+ 2: 'OrdinalEncoding',
655
+ 3: 'TargetEncoding'}
656
+
657
+ print("\nAvailable categorical encoding methods with corresponding indices:")
658
+ for index, method in encoding_methods.items():
659
+ print(f"Index {index}: {method}")
660
+
661
+ encoding_methods_idx = self._process_list_input(
662
+ input("\nEnter the list of corresponding index categorical encoding methods you want to use: "),
663
+ 'int', list(encoding_methods.keys()))
664
+
665
+ for index in encoding_methods_idx:
666
+ if index == 1:
667
+ # Setting indicator for OneHotEncoding
668
+ self.data['CategoricalEncodingParam']['OneHotEncodingIndicator'] = True
669
+ # Setting parameters for OneHotEncoding
670
+ one_hot_list = self._process_list_input(
671
+ input("\nEnter the feature or list of features for OneHotEncoding: "))
672
+ self.data['CategoricalEncodingParam']['OneHotEncodingList'] = one_hot_list
673
+ elif index == 2:
674
+ # Setting indicator for OrdinalEncoding
675
+ self.data['CategoricalEncodingParam']['OrdinalEncodingIndicator'] = True
676
+ # Setting parameters for OrdinalEncoding
677
+ ordinal_list = self._process_list_input(
678
+ input("\nEnter the feature or list of features for OrdinalEncoding: "))
679
+ self.data['CategoricalEncodingParam']['OrdinalEncodingList'] = ordinal_list
680
+ elif index == 3:
681
+ # Setting indicator for TargetEncoding
682
+ self.data['CategoricalEncodingParam']['TargetEncodingIndicator'] = True
683
+ target_end_list = self._process_list_input(input("\nEnter the feature or list of features for TargetEncoding: "))
684
+ # Setting parameters for TargetEncoding
685
+ self.data['CategoricalEncodingParam']['TargetEncodingList'] = {}
686
+ target_end_methods = {1: 'CBM_BETA',
687
+ 2: 'CBM_DIRICHLET',
688
+ 3: 'CBM_GAUSSIAN_INVERSE_GAMMA'}
689
+ print("\nAvailable target encoding methods with corresponding indices:")
690
+ for index, method in target_end_methods.items():
691
+ print(f"Index {index}: {method}")
692
+
693
+ # Setting parameters specific to each feature and corresponding method
694
+ for feature in target_end_list:
695
+ self.data['CategoricalEncodingParam']['TargetEncodingList'][feature] = {}
696
+ end_method_idx = self._process_single_input(
697
+ input(f"\nEnter the index of target encoding method for feature {feature}: "),
698
+ 'int', list(target_end_methods.keys()))
699
+ # Setting target encoding method for each feature
700
+ self.data['CategoricalEncodingParam']['TargetEncodingList'][feature]["encoder_method"] = \
701
+ target_end_methods[end_method_idx]
702
+
703
+ # Setting response column for target encoding method
704
+ response_column = self._process_single_input(
705
+ input(f"\nEnter the response column for target encoding method for feature {feature}: "))
706
+ self.data['CategoricalEncodingParam']['TargetEncodingList'][feature]["response_column"] = \
707
+ response_column
708
+
709
+ # Getting specific parameter in case of CBM_DIRICHLET method
710
+ if end_method_idx == 2:
711
+ num_distinct_responses = self._process_single_input(
712
+ input(f"\nEnter the distinct count of response column "
713
+ f"for target encoding method for feature {feature}: "), 'int')
714
+ self.data['CategoricalEncodingParam']['TargetEncodingList'][feature]["num_distinct_responses"] = \
715
+ num_distinct_responses
716
+
717
+ print("\nCustomization of categorical encoding has been completed successfully.")
718
+
719
+ def _get_customize_input_mathematical_transformation(self,
720
+ first_execution_flag=False):
721
+ """
722
+ DESCRIPTION:
723
+ Function takes user input to generate custom json paramaters for mathematical transformation.
724
+
725
+ PARAMETERS:
726
+ first_execution_flag:
727
+ Optional Argument.
728
+ Specifies the flag to check if the function is called for the first time.
729
+ Default Value: False
730
+ Types: bool
731
+
732
+ """
733
+ if first_execution_flag:
734
+ print("\nWARNING : Reinitiated mathematical transformation customization. "
735
+ "Overwriting the previous input.")
736
+
737
+ print("\nCustomizing Mathematical Transformation ...")
738
+ # Setting indicator for mathematical transformation
739
+ self.data['MathameticalTransformationIndicator'] = True
740
+ print("\nProvide the following details to customize mathematical transformation:")
741
+ # Setting parameters for mathematical transformation
742
+ self.data['MathameticalTransformationParam'] = {}
743
+ mat_trans_methods = {1: 'sigmoid',
744
+ 2: 'sininv',
745
+ 3: 'log',
746
+ 4: 'pow',
747
+ 5: 'exp'}
748
+ print("\nAvailable mathematical transformation methods with corresponding indices:")
749
+ for index, method in mat_trans_methods.items():
750
+ print(f"Index {index}: {method}")
751
+
752
+ mat_trans_list = self._process_list_input(
753
+ input("\nEnter the feature or list of features for mathematical transformation: "))
754
+ if mat_trans_list:
755
+ for feature in mat_trans_list:
756
+ # Setting parameters for mathematical transformation specific to each feature
757
+ self.data['MathameticalTransformationParam'][feature] = {}
758
+ mat_trans_method_idx = self._process_single_input(
759
+ input(f"\nEnter the index of corresponding mathematical "
760
+ f"transformation method for feature {feature}: "),
761
+ 'int', list(mat_trans_methods.keys()))
762
+
763
+ self.data['MathameticalTransformationParam'][feature]["apply_method"] = \
764
+ mat_trans_methods[mat_trans_method_idx]
765
+ # Setting required parameters specific to each mathematical transformation method
766
+ if mat_trans_method_idx == 1 :
767
+ sigmoid_style = self._process_single_input(
768
+ input(f"\nEnter the sigmoid style required for mathematical "
769
+ f"transformation for feature {feature}: "))
770
+ self.data['MathameticalTransformationParam'][feature]["sigmoid_style"] = \
771
+ sigmoid_style
772
+
773
+ if mat_trans_method_idx == 3:
774
+ base = self._process_single_input(
775
+ input(f"\nEnter the base value required for mathematical "
776
+ f"transformation for feature {feature}: "), 'int')
777
+ self.data['MathameticalTransformationParam'][feature]["base"] = base
778
+
779
+ if mat_trans_method_idx == 4:
780
+ exponent = self._process_single_input(
781
+ input(f"\nEnter the exponent value required for mathematical "
782
+ f"transformation for feature {feature}: "), 'int')
783
+ self.data['MathameticalTransformationParam'][feature]["exponent"] = exponent
784
+
785
+ print("\nCustomization of mathematical transformation has been completed successfully.")
786
+
787
+ def _get_customize_input_nonlinear_transformation(self,
788
+ first_execution_flag=False):
789
+ """
790
+ DESCRIPTION:
791
+ Function takes user input to generate custom json paramaters for nonlinear transformation.
792
+
793
+ PARAMETERS:
794
+ first_execution_flag:
795
+ Optional Argument.
796
+ Specifies the flag to check if the function is called for the first time.
797
+ Default Value: False
798
+ Types: bool
799
+ """
800
+ if first_execution_flag:
801
+ print("\nWARNING : Reinitiated nonlinear transformation customization. "
802
+ "Overwriting the previous input.")
803
+
804
+ print("\nCustomizing Nonlinear Transformation ...")
805
+ # Setting indicator for nonlinear transformation
806
+ self.data['NonLinearTransformationIndicator'] = True
807
+ print("\nProvide the following details to customize nonlinear transformation:")
808
+ # Setting parameters for nonlinear transformation
809
+ self.data['NonLinearTransformationParam'] = {}
810
+
811
+ # Getting total number of non-linear combinations
812
+ total_combinations = self._process_single_input(
813
+ input("\nEnter number of non-linear combination you want to make: "), 'int')
814
+ for num in range(1, total_combinations+1):
815
+ print(f"\nProvide the details for non-linear combination {num}:")
816
+ # Creating combination name and setting parameters for each combination
817
+ combination = "Combination_"+str(num)
818
+ self.data['NonLinearTransformationParam'][combination] = {}
819
+ target_columns = self._process_list_input(
820
+ input(f"\nEnter the list of target feature/s for non-linear combination {num}: "))
821
+ self.data['NonLinearTransformationParam'][combination]["target_columns"] = target_columns
822
+
823
+ formula = self._process_single_input(
824
+ input(f"\nEnter the formula for non-linear combination {num}: "))
825
+ self.data['NonLinearTransformationParam'][combination]["formula"] = formula
826
+
827
+ result_column = self._process_single_input(
828
+ input(f"\nEnter the resultant feature for non-linear combination {num}: "))
829
+ self.data['NonLinearTransformationParam'][combination]["result_column"] = result_column
830
+
831
+ print("\nCustomization of nonlinear transformation has been completed successfully.")
832
+
833
+ def _get_customize_input_antiselect(self,
834
+ first_execution_flag=False):
835
+ """
836
+ DESCRIPTION:
837
+ Function takes user input to generate custom json paramaters for antiselect features.
838
+
839
+ PARAMETERS:
840
+ first_execution_flag:
841
+ Optional Argument.
842
+ Specifies the flag to check if the function is called for the first time.
843
+ Default Value: False
844
+ Types: bool
845
+ """
846
+ if first_execution_flag:
847
+ print("\nWARNING : Reinitiated nonlinear antiselect customization. "
848
+ "Overwriting the previous input.")
849
+
850
+ print("\nCustomizing Antiselect Features ...")
851
+ # Setting indicator and parameter for antiselect
852
+ self.data['AntiselectIndicator'] = True
853
+ self.data['AntiselectParam'] = self._process_list_input(
854
+ input("\nEnter the feature or list of features for antiselect: "))
855
+
856
+ print("\nCustomization of antiselect features has been completed successfully.")
857
+
858
+ def _get_customize_input_train_test_split(self,
859
+ first_execution_flag=False):
860
+ """
861
+ DESCRIPTION:
862
+ Function takes user input to generate custom json paramaters for train test split.
863
+
864
+ PARAMETERS:
865
+ first_execution_flag:
866
+ Optional Argument.
867
+ Specifies the flag to check if the function is called for the first time.
868
+ Default Value: False
869
+ Types: bool
870
+ """
871
+ if first_execution_flag:
872
+ print("\nWARNING : Reinitiated train test split customization. "
873
+ "Overwriting the previous input.")
874
+
875
+ print("\nCustomizing Train Test Split ...")
876
+ # Setting indicator and parameter for customizing train test split
877
+ self.data['TrainTestSplitIndicator'] = True
878
+ self.data['TrainingSize']= self._process_single_input(
879
+ input("\nEnter the train size for train test split: "), 'float')
880
+
881
+ print("\nCustomization of train test split has been completed successfully.")
882
+
883
+ def _get_customize_input_data_imbalance_handling(self,
884
+ first_execution_flag):
885
+ """
886
+ DESCRIPTION:
887
+ Function takes user input to generate custom json paramaters for data imbalance handling.
888
+
889
+ """
890
+ if first_execution_flag:
891
+ print("\nWARNING : Reinitiated data imbalance handling customization. "
892
+ "Overwriting the previous input.")
893
+
894
+ print("\nCustomizing Data Imbalance Handling ...")
895
+ # Setting indicator for data imbalance handling
896
+ self.data['DataImbalanceIndicator'] = True
897
+ sampling_methods = {1: 'SMOTE',
898
+ 2: 'NearMiss'}
899
+ print("\nAvailable data sampling methods with corresponding indices:")
900
+ for index, method in sampling_methods.items():
901
+ print(f"Index {index}: {method}")
902
+
903
+ sampling_mthd_idx = self._process_single_input(
904
+ input("\nEnter the corresponding index data imbalance handling method: "),
905
+ 'int', list(sampling_methods.keys()))
906
+ # Setting parameters for data imbalance handling
907
+ self.data['DataImbalanceMethod'] = sampling_methods[sampling_mthd_idx]
908
+
909
+ print("\nCustomization of data imbalance handling has been completed successfully.")
910
+
911
+
912
+ def _get_customize_input_outlier_handling(self,
913
+ first_execution_flag=False):
914
+ """
915
+ DESCRIPTION:
916
+ Function takes user input to generate custom json paramaters for outlier handling.
917
+
918
+ PARAMETERS:
919
+ first_execution_flag:
920
+ Optional Argument.
921
+ Specifies the flag to check if the function is called for the first time.
922
+ Default Value: False
923
+ Types: bool
924
+
925
+ """
926
+ if first_execution_flag:
927
+ print("\nWARNING : Reinitiated outlier handling customization. "
928
+ "Overwriting the previous input.")
929
+ keys_to_remove = ['OutlierLowerPercentile', 'OutlierUpperPercentile']
930
+ for key in keys_to_remove:
931
+ if key in self.data:
932
+ del self.data[key]
933
+
934
+
935
+ print("\nCustomizing Outlier Handling ...")
936
+ # Setting indicator for outlier handling
937
+ self.data['OutlierFilterIndicator'] = True
938
+ outlier_methods = {1: 'percentile',
939
+ 2: 'tukey',
940
+ 3: 'carling'}
941
+ print("\nAvailable outlier detection methods with corresponding indices:")
942
+ for index, method in outlier_methods.items():
943
+ print(f"Index {index}: {method}")
944
+
945
+ # Setting parameters for outlier handling
946
+ outlier_mthd_idx = self._process_single_input(
947
+ input("\nEnter the corresponding index oulier handling method: "),
948
+ 'int', list(outlier_methods.keys()))
949
+
950
+ self.data['OutlierFilterMethod'] = outlier_methods[outlier_mthd_idx]
951
+ # Setting parameters specific to method 'percentile'
952
+ if outlier_mthd_idx == 1:
953
+ self.data['OutlierLowerPercentile'] = self._process_single_input(
954
+ input("\nEnter the lower percentile value for outlier handling: "), 'float')
955
+ self.data['OutlierUpperPercentile'] = self._process_single_input(
956
+ input("\nEnter the upper percentile value for outlier handling: "), 'float')
957
+
958
+ # Setting parameters for outlier filteration
959
+ self.data['OutlierFilterParam'] = {}
960
+ outlier_list = self._process_list_input(
961
+ input("\nEnter the feature or list of features for outlier handling: "))
962
+
963
+ replacement_method = {
964
+ 1: 'delete',
965
+ 2: 'median',
966
+ 3: 'Any Numeric Value'
967
+ }
968
+
969
+ print("\nAvailable outlier replacement methods with corresponding indices:")
970
+ for index, value in replacement_method.items():
971
+ print(f"Index {index}: {value}")
972
+
973
+ # Setting parameters specific to each feature
974
+ for feature in outlier_list:
975
+ self.data['OutlierFilterParam'][feature] = {}
976
+ replacement_method_idx = self._process_single_input(
977
+ input(f"\nEnter the index of corresponding replacement method for feature {feature}: "),
978
+ 'int', list(replacement_method.keys()))
979
+
980
+ if replacement_method_idx != 3:
981
+ # Setting replacement method specific to each feature
982
+ self.data['OutlierFilterParam'][feature]["replacement_value"] = replacement_method[replacement_method_idx]
983
+ else:
984
+ replacement_value_types = {1: 'int',
985
+ 2: 'float'}
986
+ print("\nAvailable outlier replacement value types with corresponding indices:")
987
+ for index, value in replacement_value_types.items():
988
+ print(f"Index {index}: {value}")
989
+
990
+ replacement_value = input(f"\nEnter the replacement value for handling outlier for feature {feature}: ")
991
+
992
+ value_type_idx = self._process_single_input(
993
+ input(f"\nEnter the index of corresponding replacement value type for feature {feature}: "),
994
+ 'int', list(replacement_value_types.keys()))
995
+
996
+ # Setting replacement_value specific to each feature
997
+ self.data['OutlierFilterParam'][feature]["replacement_value"] = \
998
+ self._process_single_input(replacement_value, replacement_value_types[value_type_idx])
999
+
1000
+ print("\nCustomization of outlier handling has been completed successfully.")
1001
+
1002
+ def _get_customize_input_feature_scaling(self,
1003
+ first_execution_flag=False):
1004
+ """
1005
+ DESCRIPTION:
1006
+ Function takes user input to generate custom json paramaters for feature scaling.
1007
+
1008
+ PARAMETERS:
1009
+ first_execution_flag:
1010
+ Optional Argument.
1011
+ Specifies the flag to check if the function is called for the first time.
1012
+ Default Value: False
1013
+ Types: bool
1014
+
1015
+ """
1016
+ if first_execution_flag:
1017
+ print("\nWARNING : Reinitiated feature scaling customization. "
1018
+ "Overwriting the previous input.")
1019
+
1020
+ # Setting indicator for feature scaling
1021
+ self.data['FeatureScalingIndicator'] = True
1022
+ scaling_methods = {1: 'maxabs',
1023
+ 2: 'mean',
1024
+ 3: 'midrange',
1025
+ 4: 'range',
1026
+ 5: 'rescale',
1027
+ 6: 'std',
1028
+ 7: 'sum',
1029
+ 8: 'ustd'}
1030
+ # Displaying available methods for scaling
1031
+ print("\nAvailable feature scaling methods with corresponding indices:")
1032
+ for index, value in scaling_methods.items():
1033
+ print(f"Index {index}: {value}")
1034
+
1035
+ # Setting parameters for feature scaling
1036
+ scaling_methods_idx = self._process_single_input(
1037
+ input("\nEnter the corresponding index feature scaling method: "),
1038
+ 'int', list(scaling_methods.keys()))
1039
+
1040
+ # Handling for 'rescale' method
1041
+ if scaling_methods_idx != 5:
1042
+ self.data['FeatureScalingMethod'] = scaling_methods[scaling_methods_idx]
1043
+ else:
1044
+ rescaling_params = {
1045
+ 1: 'lower-bound',
1046
+ 2: 'upper-bound'
1047
+ }
1048
+ # Displaying available params for rescaling
1049
+ print("\nAvailable parameters required for rescaling with corresponding indices :")
1050
+ for index, value in rescaling_params.items():
1051
+ print(f"Index {index}: {value}")
1052
+
1053
+ rescaling_params_type = {1: 'int',
1054
+ 2: 'float'}
1055
+ # Displaying available params types for rescaling
1056
+ print("\nAvailable value types for rescaling params with corresponding indices:")
1057
+ for index, param_type in rescaling_params_type.items():
1058
+ print(f"Index {index}: {param_type}")
1059
+ scaling_param_idx_list = self._process_list_input(
1060
+ input("\nEnter the list of parameter indices for performing rescaling : "),
1061
+ 'int', list(rescaling_params.keys()))
1062
+ # Setting parameters for lower bound and upper bound
1063
+ lb = 0
1064
+ ub = 0
1065
+ for param_idx in scaling_param_idx_list:
1066
+ # Taking required input for lower bound
1067
+ if param_idx == 1:
1068
+ lower_bound = input("\nEnter value for lower bound :")
1069
+ value_type_idx = self._process_single_input(
1070
+ input("\nEnter the index of corresponding value type of lower bound :"),
1071
+ 'int', list(rescaling_params_type.keys()))
1072
+ lb = self._process_single_input(lower_bound, rescaling_params_type[value_type_idx])
1073
+ # Taking required input for upper bound
1074
+ elif param_idx == 2:
1075
+ upper_bound = input("\nEnter value for upper bound :")
1076
+ value_type_idx = self._process_single_input(
1077
+ input("\nEnter the index of corresponding value type of upper bound :"),
1078
+ 'int', list(rescaling_params_type.keys()))
1079
+ ub = self._process_single_input(upper_bound, rescaling_params_type[value_type_idx])
1080
+ # Creating string structure of 'rescale' method as per user input
1081
+ if lb and ub:
1082
+ scale_method = f'rescale(lb={lb}, ub={ub})'
1083
+ elif lb:
1084
+ scale_method = f'rescale(lb={lb})'
1085
+ elif ub:
1086
+ scale_method = f'rescale(ub={ub})'
1087
+ # Setting parameters for feature scaling
1088
+ self.data['FeatureScalingMethod'] = scale_method
1089
+
1090
+ print("\nCustomization of feature scaling has been completed successfully.")
1091
+
1092
+ def _get_allowed_hyperparameters(self, model_name):
1093
+ """
1094
+ DESCRIPTION:
1095
+ Function to get allowed hyperparameters for different models.
1096
+
1097
+ PARAMETERS:
1098
+ model_name:
1099
+ Required Argument.
1100
+ Specifies the model for which allowed hyperparameters are required.
1101
+ Types: str.
1102
+
1103
+ RETURNS:
1104
+ Allowed hyperparameters for model.
1105
+ """
1106
+ # Setting allowed common hyperparameters for tree like model
1107
+ allowed_common_hyperparameters_tree_model ={
1108
+ 1 : 'min_impurity',
1109
+ 2 : 'max_depth',
1110
+ 3 : 'min_node_size',
1111
+ }
1112
+ # Setting allowed hyperparameters for xgbooost model
1113
+ allowed_hyperparameters_xgboost = {
1114
+ **allowed_common_hyperparameters_tree_model,
1115
+ 4 : 'shrinkage_factor',
1116
+ 5 : 'iter_num'
1117
+ }
1118
+ # Setting allowed hyperparameters for decision forest model
1119
+ allowed_hyperparameters_decision_forest = {
1120
+ **allowed_common_hyperparameters_tree_model,
1121
+ 4 : 'num_trees'
1122
+ }
1123
+ # Setting allowed hyperparameters for knn model
1124
+ allowed_hyperparameters_knn = {
1125
+ 0 : 'k'
1126
+ }
1127
+ # Setting allowed hyperparameters for svm model
1128
+ allowed_hyperparameters_svm = {
1129
+ 1 : 'alpha',
1130
+ 2 : 'learning_rate',
1131
+ 3 : 'initial_eta',
1132
+ 4 : 'momentum',
1133
+ 5 : 'iter_num_no_change',
1134
+ 6 : 'iter_max',
1135
+ 7 : 'batch_size'
1136
+ }
1137
+ # Setting allowed hyperparameters for glm model
1138
+ allowed_hyperparameters_glm = {
1139
+ **allowed_hyperparameters_svm,
1140
+ 8 : 'tolerance',
1141
+ 9 : 'nesterov',
1142
+ 10 : 'intercept',
1143
+ 11 : 'local_sgd_iterations'
1144
+ }
1145
+ # Setting allowed hyperparameters for different models
1146
+ allowed_hyperparameters = {
1147
+ 'xgboost' : allowed_hyperparameters_xgboost,
1148
+ 'decision_forest' : allowed_hyperparameters_decision_forest,
1149
+ 'knn' : allowed_hyperparameters_knn,
1150
+ 'svm' : allowed_hyperparameters_svm,
1151
+ 'glm' : allowed_hyperparameters_glm
1152
+ }
1153
+ return allowed_hyperparameters[model_name]
1154
+
1155
+ def _get_allowed_hyperparameters_types(self, hyperparameter):
1156
+ """
1157
+ DESCRIPTION:
1158
+ Function to map allowed hyperparameter types for different hyperparameters.
1159
+
1160
+ PARAMETERS:
1161
+ hyperparameter:
1162
+ Required Argument.
1163
+ Specifies the hyperparamter for which allowed types are required.
1164
+ Types: str.
1165
+
1166
+ RETURNS:
1167
+ Allowed hyperparameters types for hyperparameter.
1168
+ """
1169
+ # Setting allowed hyperparameters types for different hyperparameters
1170
+ allowed_hyperparameters_types = {
1171
+ 'min_impurity' : 'float',
1172
+ 'max_depth' : 'int',
1173
+ 'min_node_size' : 'int',
1174
+ 'shrinkage_factor' : 'float',
1175
+ 'iter_num' : 'int',
1176
+ 'num_trees' : 'int',
1177
+ 'k' : 'int',
1178
+ 'alpha' : 'float',
1179
+ 'learning_rate' : 'str',
1180
+ 'initial_eta' : 'float',
1181
+ 'momentum' : 'float',
1182
+ 'iter_num_no_change' : 'int',
1183
+ 'iter_max' : 'int',
1184
+ 'batch_size' : 'int',
1185
+ 'tolerance' : 'float',
1186
+ 'nesterov' : 'bool',
1187
+ 'intercept' : 'bool',
1188
+ 'local_sgd_iterations' : 'int'
1189
+ }
1190
+ return allowed_hyperparameters_types[hyperparameter]
1191
+
1192
+ def _get_customize_input_model_hyperparameter(self,
1193
+ first_execution_flag):
1194
+ """
1195
+ DESCRIPTION:
1196
+ Function takes user input to generate custom json paramaters for model hyperparameter.
1197
+
1198
+ PARAMETERS:
1199
+ first_execution_flag:
1200
+ Required Argument.
1201
+ Specifies the flag to check if the function is called for the first time.
1202
+ Types: bool.
1203
+
1204
+ """
1205
+ if first_execution_flag:
1206
+ print("\nWARNING : Reinitiated model hyperparameter customization. "
1207
+ "Overwriting the previous input.")
1208
+
1209
+ print("\nCustomizing Model Hyperparameter ...")
1210
+ # Setting indicator for model hyperparameter tuning
1211
+ self.data['HyperparameterTuningIndicator'] = True
1212
+ self.data['HyperparameterTuningParam'] = {}
1213
+ all_models = {1: 'decision_forest',
1214
+ 2: 'xgboost',
1215
+ 3: 'knn',
1216
+ 4: 'glm',
1217
+ 5: 'svm'}
1218
+ # Displaying available models for hyperparameter tuning
1219
+ print("\nAvailable models for hyperparameter tuning with corresponding indices:")
1220
+ for index, model in all_models.items():
1221
+ print(f"Index {index}: {model}")
1222
+
1223
+ update_methods = {1: 'ADD',
1224
+ 2: 'REPLACE'}
1225
+ # Displaying available update methods for hyperparameter tuning
1226
+ print("\nAvailable hyperparamters update methods with corresponding indices:")
1227
+ for index, method in update_methods.items():
1228
+ print(f"Index {index}: {method}")
1229
+
1230
+ # Getting list of models for hyperparameter tuning
1231
+ model_idx_list = self._process_list_input(
1232
+ input("\nEnter the list of model indices for performing hyperparameter tuning: "),
1233
+ 'int', list(all_models.keys()))
1234
+
1235
+ for model_index in model_idx_list:
1236
+ # Setting parameters for hyperparameter tuning specific to each model
1237
+ model_name = all_models[model_index]
1238
+ self.data['HyperparameterTuningParam'][model_name] = {}
1239
+
1240
+ # Getting list of hyperparameters for each model
1241
+ allowed_hyperparameters = self._get_allowed_hyperparameters(model_name)
1242
+ print(f"\nAvailable hyperparameters for model '{model_name}' with corresponding indices:")
1243
+ for index, hyperparameter in allowed_hyperparameters.items():
1244
+ print(f"Index {index}: {hyperparameter}")
1245
+
1246
+ model_hyperparameter_list_idx = self._process_list_input(
1247
+ input(f"\nEnter the list of hyperparameter indices for model '{model_name}': "),
1248
+ 'int', list(allowed_hyperparameters.keys()))
1249
+
1250
+ # Setting parameters for each hyperparameter of model
1251
+ for hyperparameter in model_hyperparameter_list_idx:
1252
+ hyperparameter_name = allowed_hyperparameters[hyperparameter]
1253
+ self.data['HyperparameterTuningParam'][model_name][hyperparameter_name] = {}
1254
+ method_idx = self._process_single_input(
1255
+ input(f"\nEnter the index of corresponding update method for hyperparameters "
1256
+ f"'{hyperparameter_name}' for model '{model_name}': "), 'int', list(update_methods.keys()))
1257
+ # Setting update method for hyperparameter
1258
+ self.data['HyperparameterTuningParam'][model_name][hyperparameter_name]["Method"] = \
1259
+ update_methods[method_idx]
1260
+
1261
+ hyperparameter_value = input(f"\nEnter the list of value for hyperparameter "
1262
+ f"'{hyperparameter_name}' for model '{model_name}': ")
1263
+
1264
+ hyperparameter_type = self._get_allowed_hyperparameters_types(hyperparameter_name)
1265
+
1266
+ # Setting hyperparameter value specific to each hyperparameter
1267
+ self.data['HyperparameterTuningParam'][model_name][hyperparameter_name]["Value"] = \
1268
+ self._process_list_input(hyperparameter_value, hyperparameter_type)
1269
+
1270
+ print("\nCustomization of model hyperparameter has been completed successfully.")