teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (1285) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +1864 -1640
  4. teradataml/__init__.py +70 -60
  5. teradataml/_version.py +11 -11
  6. teradataml/analytics/Transformations.py +2995 -2995
  7. teradataml/analytics/__init__.py +81 -83
  8. teradataml/analytics/analytic_function_executor.py +2013 -2010
  9. teradataml/analytics/analytic_query_generator.py +958 -958
  10. teradataml/analytics/byom/H2OPredict.py +514 -514
  11. teradataml/analytics/byom/PMMLPredict.py +437 -437
  12. teradataml/analytics/byom/__init__.py +14 -14
  13. teradataml/analytics/json_parser/__init__.py +130 -130
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
  15. teradataml/analytics/json_parser/json_store.py +191 -191
  16. teradataml/analytics/json_parser/metadata.py +1637 -1637
  17. teradataml/analytics/json_parser/utils.py +804 -803
  18. teradataml/analytics/meta_class.py +196 -196
  19. teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
  21. teradataml/analytics/sqle/__init__.py +97 -110
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
  24. teradataml/analytics/table_operator/__init__.py +10 -10
  25. teradataml/analytics/uaf/__init__.py +63 -63
  26. teradataml/analytics/utils.py +693 -692
  27. teradataml/analytics/valib.py +1603 -1600
  28. teradataml/automl/__init__.py +1628 -0
  29. teradataml/automl/custom_json_utils.py +1270 -0
  30. teradataml/automl/data_preparation.py +993 -0
  31. teradataml/automl/data_transformation.py +727 -0
  32. teradataml/automl/feature_engineering.py +1648 -0
  33. teradataml/automl/feature_exploration.py +547 -0
  34. teradataml/automl/model_evaluation.py +163 -0
  35. teradataml/automl/model_training.py +887 -0
  36. teradataml/catalog/__init__.py +1 -3
  37. teradataml/catalog/byom.py +1759 -1716
  38. teradataml/catalog/function_argument_mapper.py +859 -861
  39. teradataml/catalog/model_cataloging_utils.py +491 -1510
  40. teradataml/clients/pkce_client.py +481 -481
  41. teradataml/common/aed_utils.py +6 -2
  42. teradataml/common/bulk_exposed_utils.py +111 -111
  43. teradataml/common/constants.py +1433 -1441
  44. teradataml/common/deprecations.py +160 -0
  45. teradataml/common/exceptions.py +73 -73
  46. teradataml/common/formula.py +742 -742
  47. teradataml/common/garbagecollector.py +592 -635
  48. teradataml/common/messagecodes.py +422 -431
  49. teradataml/common/messages.py +227 -231
  50. teradataml/common/sqlbundle.py +693 -693
  51. teradataml/common/td_coltype_code_to_tdtype.py +48 -48
  52. teradataml/common/utils.py +2418 -2500
  53. teradataml/common/warnings.py +25 -25
  54. teradataml/common/wrapper_utils.py +1 -110
  55. teradataml/config/dummy_file1.cfg +4 -4
  56. teradataml/config/dummy_file2.cfg +2 -2
  57. teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
  58. teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
  59. teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
  60. teradataml/context/aed_context.py +217 -217
  61. teradataml/context/context.py +1071 -999
  62. teradataml/data/A_loan.csv +19 -19
  63. teradataml/data/BINARY_REALS_LEFT.csv +11 -11
  64. teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
  65. teradataml/data/B_loan.csv +49 -49
  66. teradataml/data/BuoyData2.csv +17 -17
  67. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
  68. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
  69. teradataml/data/Convolve2RealsLeft.csv +5 -5
  70. teradataml/data/Convolve2RealsRight.csv +5 -5
  71. teradataml/data/Convolve2ValidLeft.csv +11 -11
  72. teradataml/data/Convolve2ValidRight.csv +11 -11
  73. teradataml/data/DFFTConv_Real_8_8.csv +65 -65
  74. teradataml/data/Orders1_12mf.csv +24 -24
  75. teradataml/data/Pi_loan.csv +7 -7
  76. teradataml/data/SMOOTHED_DATA.csv +7 -7
  77. teradataml/data/TestDFFT8.csv +9 -9
  78. teradataml/data/TestRiver.csv +109 -109
  79. teradataml/data/Traindata.csv +28 -28
  80. teradataml/data/acf.csv +17 -17
  81. teradataml/data/adaboost_example.json +34 -34
  82. teradataml/data/adaboostpredict_example.json +24 -24
  83. teradataml/data/additional_table.csv +10 -10
  84. teradataml/data/admissions_test.csv +21 -21
  85. teradataml/data/admissions_train.csv +41 -41
  86. teradataml/data/admissions_train_nulls.csv +41 -41
  87. teradataml/data/ageandheight.csv +13 -13
  88. teradataml/data/ageandpressure.csv +31 -31
  89. teradataml/data/antiselect_example.json +36 -36
  90. teradataml/data/antiselect_input.csv +8 -8
  91. teradataml/data/antiselect_input_mixed_case.csv +8 -8
  92. teradataml/data/applicant_external.csv +6 -6
  93. teradataml/data/applicant_reference.csv +6 -6
  94. teradataml/data/arima_example.json +9 -9
  95. teradataml/data/assortedtext_input.csv +8 -8
  96. teradataml/data/attribution_example.json +33 -33
  97. teradataml/data/attribution_sample_table.csv +27 -27
  98. teradataml/data/attribution_sample_table1.csv +6 -6
  99. teradataml/data/attribution_sample_table2.csv +11 -11
  100. teradataml/data/bank_churn.csv +10001 -0
  101. teradataml/data/bank_web_clicks1.csv +42 -42
  102. teradataml/data/bank_web_clicks2.csv +91 -91
  103. teradataml/data/bank_web_url.csv +85 -85
  104. teradataml/data/barrier.csv +2 -2
  105. teradataml/data/barrier_new.csv +3 -3
  106. teradataml/data/betweenness_example.json +13 -13
  107. teradataml/data/bin_breaks.csv +8 -8
  108. teradataml/data/bin_fit_ip.csv +3 -3
  109. teradataml/data/binary_complex_left.csv +11 -11
  110. teradataml/data/binary_complex_right.csv +11 -11
  111. teradataml/data/binary_matrix_complex_left.csv +21 -21
  112. teradataml/data/binary_matrix_complex_right.csv +21 -21
  113. teradataml/data/binary_matrix_real_left.csv +21 -21
  114. teradataml/data/binary_matrix_real_right.csv +21 -21
  115. teradataml/data/blood2ageandweight.csv +26 -26
  116. teradataml/data/bmi.csv +501 -0
  117. teradataml/data/boston.csv +507 -507
  118. teradataml/data/buoydata_mix.csv +11 -11
  119. teradataml/data/burst_data.csv +5 -5
  120. teradataml/data/burst_example.json +20 -20
  121. teradataml/data/byom_example.json +17 -17
  122. teradataml/data/bytes_table.csv +3 -3
  123. teradataml/data/cal_housing_ex_raw.csv +70 -70
  124. teradataml/data/callers.csv +7 -7
  125. teradataml/data/calls.csv +10 -10
  126. teradataml/data/cars_hist.csv +33 -33
  127. teradataml/data/cat_table.csv +24 -24
  128. teradataml/data/ccm_example.json +31 -31
  129. teradataml/data/ccm_input.csv +91 -91
  130. teradataml/data/ccm_input2.csv +13 -13
  131. teradataml/data/ccmexample.csv +101 -101
  132. teradataml/data/ccmprepare_example.json +8 -8
  133. teradataml/data/ccmprepare_input.csv +91 -91
  134. teradataml/data/cfilter_example.json +12 -12
  135. teradataml/data/changepointdetection_example.json +18 -18
  136. teradataml/data/changepointdetectionrt_example.json +8 -8
  137. teradataml/data/chi_sq.csv +2 -2
  138. teradataml/data/churn_data.csv +14 -14
  139. teradataml/data/churn_emission.csv +35 -35
  140. teradataml/data/churn_initial.csv +3 -3
  141. teradataml/data/churn_state_transition.csv +5 -5
  142. teradataml/data/citedges_2.csv +745 -745
  143. teradataml/data/citvertices_2.csv +1210 -1210
  144. teradataml/data/clicks2.csv +16 -16
  145. teradataml/data/clickstream.csv +12 -12
  146. teradataml/data/clickstream1.csv +11 -11
  147. teradataml/data/closeness_example.json +15 -15
  148. teradataml/data/complaints.csv +21 -21
  149. teradataml/data/complaints_mini.csv +3 -3
  150. teradataml/data/complaints_testtoken.csv +224 -224
  151. teradataml/data/complaints_tokens_test.csv +353 -353
  152. teradataml/data/complaints_traintoken.csv +472 -472
  153. teradataml/data/computers_category.csv +1001 -1001
  154. teradataml/data/computers_test1.csv +1252 -1252
  155. teradataml/data/computers_train1.csv +5009 -5009
  156. teradataml/data/computers_train1_clustered.csv +5009 -5009
  157. teradataml/data/confusionmatrix_example.json +9 -9
  158. teradataml/data/conversion_event_table.csv +3 -3
  159. teradataml/data/corr_input.csv +17 -17
  160. teradataml/data/correlation_example.json +11 -11
  161. teradataml/data/coxhazardratio_example.json +39 -39
  162. teradataml/data/coxph_example.json +15 -15
  163. teradataml/data/coxsurvival_example.json +28 -28
  164. teradataml/data/cpt.csv +41 -41
  165. teradataml/data/credit_ex_merged.csv +45 -45
  166. teradataml/data/customer_loyalty.csv +301 -301
  167. teradataml/data/customer_loyalty_newseq.csv +31 -31
  168. teradataml/data/dataframe_example.json +146 -146
  169. teradataml/data/decisionforest_example.json +37 -37
  170. teradataml/data/decisionforestpredict_example.json +38 -38
  171. teradataml/data/decisiontree_example.json +21 -21
  172. teradataml/data/decisiontreepredict_example.json +45 -45
  173. teradataml/data/dfft2_size4_real.csv +17 -17
  174. teradataml/data/dfft2_test_matrix16.csv +17 -17
  175. teradataml/data/dfft2conv_real_4_4.csv +65 -65
  176. teradataml/data/diabetes.csv +443 -443
  177. teradataml/data/diabetes_test.csv +89 -89
  178. teradataml/data/dict_table.csv +5 -5
  179. teradataml/data/docperterm_table.csv +4 -4
  180. teradataml/data/docs/__init__.py +1 -1
  181. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
  182. teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
  183. teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
  184. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
  185. teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
  186. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
  187. teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
  188. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
  189. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
  190. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
  191. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
  192. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
  193. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
  194. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
  195. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
  196. teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
  197. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
  198. teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
  199. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
  200. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
  201. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
  202. teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
  203. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
  204. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
  205. teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
  206. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
  207. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
  208. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
  209. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +132 -132
  210. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +103 -103
  211. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
  212. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +101 -101
  213. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
  214. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
  215. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
  216. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
  217. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
  218. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
  219. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
  220. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
  221. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
  222. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
  223. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
  224. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
  225. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
  226. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
  227. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
  228. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
  229. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
  230. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
  231. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
  232. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
  233. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
  234. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +126 -126
  235. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
  236. teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
  237. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
  238. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
  239. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
  240. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
  241. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
  242. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
  243. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +243 -243
  244. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
  245. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
  246. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
  247. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
  248. teradataml/data/docs/sqle/docs_17_20/FTest.py +160 -160
  249. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
  250. teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
  251. teradataml/data/docs/sqle/docs_17_20/GLM.py +380 -380
  252. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
  253. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
  254. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
  255. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +123 -123
  256. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
  257. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
  258. teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
  259. teradataml/data/docs/sqle/docs_17_20/KMeans.py +204 -204
  260. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
  261. teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
  262. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
  263. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
  264. teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
  265. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
  266. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
  267. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
  268. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +117 -117
  269. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
  270. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
  271. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
  272. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
  273. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +225 -225
  274. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +115 -115
  275. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
  276. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
  277. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
  278. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
  279. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
  280. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
  281. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
  282. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
  283. teradataml/data/docs/sqle/docs_17_20/ROC.py +163 -163
  284. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
  285. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
  286. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
  287. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
  288. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
  289. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
  290. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
  291. teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
  292. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +202 -202
  293. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
  294. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +197 -197
  295. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +110 -109
  296. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
  297. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
  298. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
  299. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
  300. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
  301. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
  302. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
  303. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
  304. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +171 -171
  305. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
  306. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
  307. teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
  308. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
  309. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
  310. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
  311. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
  312. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
  313. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
  314. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
  315. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
  316. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +353 -353
  317. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +275 -275
  318. teradataml/data/docs/sqle/docs_17_20/ZTest.py +155 -155
  319. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
  320. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
  321. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
  322. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
  323. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
  324. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
  325. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
  326. teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
  327. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
  328. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
  329. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
  330. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
  331. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
  332. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
  333. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
  334. teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
  335. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
  336. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
  337. teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
  338. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
  339. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
  340. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
  341. teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
  342. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
  343. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
  344. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
  345. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
  346. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
  347. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
  348. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
  349. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
  350. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
  351. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
  352. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
  353. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
  354. teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
  355. teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
  356. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
  357. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
  358. teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
  359. teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
  360. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
  361. teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
  362. teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
  363. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
  364. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
  365. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
  366. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
  367. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
  368. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
  369. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
  370. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
  371. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
  372. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
  373. teradataml/data/dtw_example.json +17 -17
  374. teradataml/data/dtw_t1.csv +11 -11
  375. teradataml/data/dtw_t2.csv +4 -4
  376. teradataml/data/dwt2d_example.json +15 -15
  377. teradataml/data/dwt_example.json +14 -14
  378. teradataml/data/dwt_filter_dim.csv +5 -5
  379. teradataml/data/emission.csv +9 -9
  380. teradataml/data/emp_table_by_dept.csv +19 -19
  381. teradataml/data/employee_info.csv +4 -4
  382. teradataml/data/employee_table.csv +6 -6
  383. teradataml/data/excluding_event_table.csv +2 -2
  384. teradataml/data/finance_data.csv +6 -6
  385. teradataml/data/finance_data2.csv +61 -61
  386. teradataml/data/finance_data3.csv +93 -93
  387. teradataml/data/fish.csv +160 -0
  388. teradataml/data/fm_blood2ageandweight.csv +26 -26
  389. teradataml/data/fmeasure_example.json +11 -11
  390. teradataml/data/followers_leaders.csv +10 -10
  391. teradataml/data/fpgrowth_example.json +12 -12
  392. teradataml/data/frequentpaths_example.json +29 -29
  393. teradataml/data/friends.csv +9 -9
  394. teradataml/data/fs_input.csv +33 -33
  395. teradataml/data/fs_input1.csv +33 -33
  396. teradataml/data/genData.csv +513 -513
  397. teradataml/data/geodataframe_example.json +39 -39
  398. teradataml/data/glass_types.csv +215 -0
  399. teradataml/data/glm_admissions_model.csv +12 -12
  400. teradataml/data/glm_example.json +29 -29
  401. teradataml/data/glml1l2_example.json +28 -28
  402. teradataml/data/glml1l2predict_example.json +54 -54
  403. teradataml/data/glmpredict_example.json +54 -54
  404. teradataml/data/gq_t1.csv +21 -21
  405. teradataml/data/hconvolve_complex_right.csv +5 -5
  406. teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
  407. teradataml/data/histogram_example.json +11 -11
  408. teradataml/data/hmmdecoder_example.json +78 -78
  409. teradataml/data/hmmevaluator_example.json +24 -24
  410. teradataml/data/hmmsupervised_example.json +10 -10
  411. teradataml/data/hmmunsupervised_example.json +7 -7
  412. teradataml/data/house_values.csv +12 -12
  413. teradataml/data/house_values2.csv +13 -13
  414. teradataml/data/housing_cat.csv +7 -7
  415. teradataml/data/housing_data.csv +9 -9
  416. teradataml/data/housing_test.csv +47 -47
  417. teradataml/data/housing_test_binary.csv +47 -47
  418. teradataml/data/housing_train.csv +493 -493
  419. teradataml/data/housing_train_attribute.csv +4 -4
  420. teradataml/data/housing_train_binary.csv +437 -437
  421. teradataml/data/housing_train_parameter.csv +2 -2
  422. teradataml/data/housing_train_response.csv +493 -493
  423. teradataml/data/ibm_stock.csv +370 -370
  424. teradataml/data/ibm_stock1.csv +370 -370
  425. teradataml/data/identitymatch_example.json +21 -21
  426. teradataml/data/idf_table.csv +4 -4
  427. teradataml/data/impressions.csv +101 -101
  428. teradataml/data/inflation.csv +21 -21
  429. teradataml/data/initial.csv +3 -3
  430. teradataml/data/insect_sprays.csv +12 -12
  431. teradataml/data/insurance.csv +1339 -1339
  432. teradataml/data/interpolator_example.json +12 -12
  433. teradataml/data/iris_altinput.csv +481 -481
  434. teradataml/data/iris_attribute_output.csv +8 -8
  435. teradataml/data/iris_attribute_test.csv +121 -121
  436. teradataml/data/iris_attribute_train.csv +481 -481
  437. teradataml/data/iris_category_expect_predict.csv +31 -31
  438. teradataml/data/iris_data.csv +151 -0
  439. teradataml/data/iris_input.csv +151 -151
  440. teradataml/data/iris_response_train.csv +121 -121
  441. teradataml/data/iris_test.csv +31 -31
  442. teradataml/data/iris_train.csv +121 -121
  443. teradataml/data/join_table1.csv +4 -4
  444. teradataml/data/join_table2.csv +4 -4
  445. teradataml/data/jsons/anly_function_name.json +6 -6
  446. teradataml/data/jsons/byom/dataikupredict.json +147 -147
  447. teradataml/data/jsons/byom/datarobotpredict.json +146 -146
  448. teradataml/data/jsons/byom/h2opredict.json +194 -194
  449. teradataml/data/jsons/byom/onnxpredict.json +186 -186
  450. teradataml/data/jsons/byom/pmmlpredict.json +146 -146
  451. teradataml/data/jsons/paired_functions.json +435 -435
  452. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
  453. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
  454. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
  455. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
  456. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
  457. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
  458. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
  459. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
  460. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
  461. teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
  462. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
  463. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
  464. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
  465. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
  466. teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
  467. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
  468. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
  469. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
  470. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
  471. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
  472. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
  473. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
  474. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
  475. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
  476. teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
  477. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
  478. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
  479. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
  480. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
  481. teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
  482. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
  483. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
  484. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
  485. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
  486. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
  487. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
  488. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
  489. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
  490. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
  491. teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
  492. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
  493. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
  494. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
  495. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
  496. teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
  497. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
  498. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
  499. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
  500. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
  501. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
  502. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
  503. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
  504. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
  505. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
  506. teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
  507. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
  508. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
  509. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
  510. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
  511. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
  512. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
  513. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
  514. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
  515. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
  516. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
  517. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
  518. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
  519. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
  520. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
  521. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
  522. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
  523. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
  524. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
  525. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
  526. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
  527. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
  528. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
  529. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
  530. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
  531. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
  532. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
  533. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
  534. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
  535. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
  536. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
  537. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
  538. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
  539. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
  540. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
  541. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
  542. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
  543. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
  544. teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
  545. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
  546. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
  547. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
  548. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
  549. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
  550. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
  551. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
  552. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
  553. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
  554. teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
  555. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
  556. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
  557. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
  558. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +76 -76
  559. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
  560. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
  561. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
  562. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
  563. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
  564. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
  565. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
  566. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
  567. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
  568. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
  569. teradataml/data/jsons/sqle/17.20/TD_FTest.json +186 -186
  570. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
  571. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
  572. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
  573. teradataml/data/jsons/sqle/17.20/TD_GLM.json +431 -431
  574. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +125 -125
  575. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
  576. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
  577. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +91 -91
  578. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
  579. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
  580. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
  581. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +211 -211
  582. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
  583. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
  584. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
  585. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +101 -101
  586. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
  587. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
  588. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
  589. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
  590. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
  591. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
  592. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
  593. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
  594. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
  595. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
  596. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
  597. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
  598. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
  599. teradataml/data/jsons/sqle/17.20/TD_ROC.json +177 -177
  600. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
  601. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
  602. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
  603. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
  604. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
  605. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
  606. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
  607. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
  608. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +124 -124
  609. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +156 -156
  610. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +70 -70
  611. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
  612. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
  613. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
  614. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
  615. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
  616. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
  617. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
  618. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
  619. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
  620. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
  621. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
  622. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
  623. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
  624. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
  625. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +312 -312
  626. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +182 -182
  627. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +170 -170
  628. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
  629. teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
  630. teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
  631. teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
  632. teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
  633. teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
  634. teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
  635. teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
  636. teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
  637. teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
  638. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
  639. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
  640. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
  641. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
  642. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
  643. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
  644. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
  645. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
  646. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
  647. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
  648. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
  649. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
  650. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
  651. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
  652. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
  653. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
  654. teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
  655. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
  656. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
  657. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
  658. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
  659. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
  660. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
  661. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
  662. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
  663. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
  664. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
  665. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
  666. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
  667. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
  668. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
  669. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
  670. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
  671. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
  672. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
  673. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
  674. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
  675. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
  676. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
  677. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
  678. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
  679. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
  680. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
  681. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
  682. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
  683. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
  684. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
  685. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
  686. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
  687. teradataml/data/kmeans_example.json +17 -17
  688. teradataml/data/kmeans_us_arrests_data.csv +0 -0
  689. teradataml/data/knn_example.json +18 -18
  690. teradataml/data/knnrecommender_example.json +6 -6
  691. teradataml/data/knnrecommenderpredict_example.json +12 -12
  692. teradataml/data/lar_example.json +17 -17
  693. teradataml/data/larpredict_example.json +30 -30
  694. teradataml/data/lc_new_predictors.csv +5 -5
  695. teradataml/data/lc_new_reference.csv +9 -9
  696. teradataml/data/lda_example.json +8 -8
  697. teradataml/data/ldainference_example.json +14 -14
  698. teradataml/data/ldatopicsummary_example.json +8 -8
  699. teradataml/data/levendist_input.csv +13 -13
  700. teradataml/data/levenshteindistance_example.json +10 -10
  701. teradataml/data/linreg_example.json +9 -9
  702. teradataml/data/load_example_data.py +326 -323
  703. teradataml/data/loan_prediction.csv +295 -295
  704. teradataml/data/lungcancer.csv +138 -138
  705. teradataml/data/mappingdata.csv +12 -12
  706. teradataml/data/milk_timeseries.csv +157 -157
  707. teradataml/data/min_max_titanic.csv +4 -4
  708. teradataml/data/minhash_example.json +6 -6
  709. teradataml/data/ml_ratings.csv +7547 -7547
  710. teradataml/data/ml_ratings_10.csv +2445 -2445
  711. teradataml/data/model1_table.csv +5 -5
  712. teradataml/data/model2_table.csv +5 -5
  713. teradataml/data/models/iris_db_glm_model.pmml +56 -56
  714. teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
  715. teradataml/data/modularity_example.json +12 -12
  716. teradataml/data/movavg_example.json +7 -7
  717. teradataml/data/mtx1.csv +7 -7
  718. teradataml/data/mtx2.csv +13 -13
  719. teradataml/data/multi_model_classification.csv +401 -0
  720. teradataml/data/multi_model_regression.csv +401 -0
  721. teradataml/data/mvdfft8.csv +9 -9
  722. teradataml/data/naivebayes_example.json +9 -9
  723. teradataml/data/naivebayespredict_example.json +19 -19
  724. teradataml/data/naivebayestextclassifier2_example.json +6 -6
  725. teradataml/data/naivebayestextclassifier_example.json +8 -8
  726. teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
  727. teradataml/data/name_Find_configure.csv +10 -10
  728. teradataml/data/namedentityfinder_example.json +14 -14
  729. teradataml/data/namedentityfinderevaluator_example.json +10 -10
  730. teradataml/data/namedentityfindertrainer_example.json +6 -6
  731. teradataml/data/nb_iris_input_test.csv +31 -31
  732. teradataml/data/nb_iris_input_train.csv +121 -121
  733. teradataml/data/nbp_iris_model.csv +13 -13
  734. teradataml/data/ner_extractor_text.csv +2 -2
  735. teradataml/data/ner_sports_test2.csv +29 -29
  736. teradataml/data/ner_sports_train.csv +501 -501
  737. teradataml/data/nerevaluator_example.json +5 -5
  738. teradataml/data/nerextractor_example.json +18 -18
  739. teradataml/data/nermem_sports_test.csv +17 -17
  740. teradataml/data/nermem_sports_train.csv +50 -50
  741. teradataml/data/nertrainer_example.json +6 -6
  742. teradataml/data/ngrams_example.json +6 -6
  743. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
  744. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
  745. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
  746. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
  747. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
  748. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
  749. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
  750. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
  751. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
  752. teradataml/data/npath_example.json +23 -23
  753. teradataml/data/ntree_example.json +14 -14
  754. teradataml/data/numeric_strings.csv +4 -4
  755. teradataml/data/numerics.csv +4 -4
  756. teradataml/data/ocean_buoy.csv +17 -17
  757. teradataml/data/ocean_buoy2.csv +17 -17
  758. teradataml/data/ocean_buoys.csv +27 -27
  759. teradataml/data/ocean_buoys2.csv +10 -10
  760. teradataml/data/ocean_buoys_nonpti.csv +28 -28
  761. teradataml/data/ocean_buoys_seq.csv +29 -29
  762. teradataml/data/openml_example.json +63 -0
  763. teradataml/data/optional_event_table.csv +4 -4
  764. teradataml/data/orders1.csv +11 -11
  765. teradataml/data/orders1_12.csv +12 -12
  766. teradataml/data/orders_ex.csv +4 -4
  767. teradataml/data/pack_example.json +8 -8
  768. teradataml/data/package_tracking.csv +19 -19
  769. teradataml/data/package_tracking_pti.csv +18 -18
  770. teradataml/data/pagerank_example.json +13 -13
  771. teradataml/data/paragraphs_input.csv +6 -6
  772. teradataml/data/pathanalyzer_example.json +7 -7
  773. teradataml/data/pathgenerator_example.json +7 -7
  774. teradataml/data/phrases.csv +7 -7
  775. teradataml/data/pivot_example.json +8 -8
  776. teradataml/data/pivot_input.csv +22 -22
  777. teradataml/data/playerRating.csv +31 -31
  778. teradataml/data/postagger_example.json +6 -6
  779. teradataml/data/posttagger_output.csv +44 -44
  780. teradataml/data/production_data.csv +16 -16
  781. teradataml/data/production_data2.csv +7 -7
  782. teradataml/data/randomsample_example.json +31 -31
  783. teradataml/data/randomwalksample_example.json +8 -8
  784. teradataml/data/rank_table.csv +6 -6
  785. teradataml/data/ref_mobile_data.csv +4 -4
  786. teradataml/data/ref_mobile_data_dense.csv +2 -2
  787. teradataml/data/ref_url.csv +17 -17
  788. teradataml/data/restaurant_reviews.csv +7 -7
  789. teradataml/data/river_data.csv +145 -145
  790. teradataml/data/roc_example.json +7 -7
  791. teradataml/data/roc_input.csv +101 -101
  792. teradataml/data/rule_inputs.csv +6 -6
  793. teradataml/data/rule_table.csv +2 -2
  794. teradataml/data/sales.csv +7 -7
  795. teradataml/data/sales_transaction.csv +501 -501
  796. teradataml/data/salesdata.csv +342 -342
  797. teradataml/data/sample_cities.csv +2 -2
  798. teradataml/data/sample_shapes.csv +10 -10
  799. teradataml/data/sample_streets.csv +2 -2
  800. teradataml/data/sampling_example.json +15 -15
  801. teradataml/data/sax_example.json +8 -8
  802. teradataml/data/scale_example.json +23 -23
  803. teradataml/data/scale_housing.csv +11 -11
  804. teradataml/data/scale_housing_test.csv +6 -6
  805. teradataml/data/scale_stat.csv +11 -11
  806. teradataml/data/scalebypartition_example.json +13 -13
  807. teradataml/data/scalemap_example.json +13 -13
  808. teradataml/data/scalesummary_example.json +12 -12
  809. teradataml/data/score_category.csv +101 -101
  810. teradataml/data/score_summary.csv +4 -4
  811. teradataml/data/script_example.json +9 -9
  812. teradataml/data/scripts/deploy_script.py +65 -0
  813. teradataml/data/scripts/mapper.R +20 -0
  814. teradataml/data/scripts/mapper.py +15 -15
  815. teradataml/data/scripts/mapper_replace.py +15 -15
  816. teradataml/data/scripts/sklearn/__init__.py +0 -0
  817. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  818. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  819. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  820. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  821. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  822. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  823. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  824. teradataml/data/seeds.csv +10 -10
  825. teradataml/data/sentenceextractor_example.json +6 -6
  826. teradataml/data/sentiment_extract_input.csv +11 -11
  827. teradataml/data/sentiment_train.csv +16 -16
  828. teradataml/data/sentiment_word.csv +20 -20
  829. teradataml/data/sentiment_word_input.csv +19 -19
  830. teradataml/data/sentimentextractor_example.json +24 -24
  831. teradataml/data/sentimenttrainer_example.json +8 -8
  832. teradataml/data/sequence_table.csv +10 -10
  833. teradataml/data/seriessplitter_example.json +7 -7
  834. teradataml/data/sessionize_example.json +17 -17
  835. teradataml/data/sessionize_table.csv +116 -116
  836. teradataml/data/setop_test1.csv +24 -24
  837. teradataml/data/setop_test2.csv +22 -22
  838. teradataml/data/soc_nw_edges.csv +10 -10
  839. teradataml/data/soc_nw_vertices.csv +7 -7
  840. teradataml/data/souvenir_timeseries.csv +167 -167
  841. teradataml/data/sparse_iris_attribute.csv +5 -5
  842. teradataml/data/sparse_iris_test.csv +121 -121
  843. teradataml/data/sparse_iris_train.csv +601 -601
  844. teradataml/data/star1.csv +6 -6
  845. teradataml/data/state_transition.csv +5 -5
  846. teradataml/data/stock_data.csv +53 -53
  847. teradataml/data/stock_movement.csv +11 -11
  848. teradataml/data/stock_vol.csv +76 -76
  849. teradataml/data/stop_words.csv +8 -8
  850. teradataml/data/store_sales.csv +37 -37
  851. teradataml/data/stringsimilarity_example.json +7 -7
  852. teradataml/data/strsimilarity_input.csv +13 -13
  853. teradataml/data/students.csv +101 -101
  854. teradataml/data/svm_iris_input_test.csv +121 -121
  855. teradataml/data/svm_iris_input_train.csv +481 -481
  856. teradataml/data/svm_iris_model.csv +7 -7
  857. teradataml/data/svmdense_example.json +9 -9
  858. teradataml/data/svmdensepredict_example.json +18 -18
  859. teradataml/data/svmsparse_example.json +7 -7
  860. teradataml/data/svmsparsepredict_example.json +13 -13
  861. teradataml/data/svmsparsesummary_example.json +7 -7
  862. teradataml/data/target_mobile_data.csv +13 -13
  863. teradataml/data/target_mobile_data_dense.csv +5 -5
  864. teradataml/data/templatedata.csv +1201 -1201
  865. teradataml/data/templates/open_source_ml.json +9 -0
  866. teradataml/data/teradataml_example.json +73 -1
  867. teradataml/data/test_classification.csv +101 -0
  868. teradataml/data/test_loan_prediction.csv +53 -53
  869. teradataml/data/test_pacf_12.csv +37 -37
  870. teradataml/data/test_prediction.csv +101 -0
  871. teradataml/data/test_regression.csv +101 -0
  872. teradataml/data/test_river2.csv +109 -109
  873. teradataml/data/text_inputs.csv +6 -6
  874. teradataml/data/textchunker_example.json +7 -7
  875. teradataml/data/textclassifier_example.json +6 -6
  876. teradataml/data/textclassifier_input.csv +7 -7
  877. teradataml/data/textclassifiertrainer_example.json +6 -6
  878. teradataml/data/textmorph_example.json +5 -5
  879. teradataml/data/textparser_example.json +15 -15
  880. teradataml/data/texttagger_example.json +11 -11
  881. teradataml/data/texttokenizer_example.json +6 -6
  882. teradataml/data/texttrainer_input.csv +11 -11
  883. teradataml/data/tf_example.json +6 -6
  884. teradataml/data/tfidf_example.json +13 -13
  885. teradataml/data/tfidf_input1.csv +201 -201
  886. teradataml/data/tfidf_train.csv +6 -6
  887. teradataml/data/time_table1.csv +535 -535
  888. teradataml/data/time_table2.csv +14 -14
  889. teradataml/data/timeseriesdata.csv +1601 -1601
  890. teradataml/data/timeseriesdatasetsd4.csv +105 -105
  891. teradataml/data/titanic.csv +892 -892
  892. teradataml/data/token_table.csv +696 -696
  893. teradataml/data/train_multiclass.csv +101 -0
  894. teradataml/data/train_regression.csv +101 -0
  895. teradataml/data/train_regression_multiple_labels.csv +101 -0
  896. teradataml/data/train_tracking.csv +27 -27
  897. teradataml/data/transformation_table.csv +5 -5
  898. teradataml/data/transformation_table_new.csv +1 -1
  899. teradataml/data/tv_spots.csv +16 -16
  900. teradataml/data/twod_climate_data.csv +117 -117
  901. teradataml/data/uaf_example.json +475 -475
  902. teradataml/data/univariatestatistics_example.json +8 -8
  903. teradataml/data/unpack_example.json +9 -9
  904. teradataml/data/unpivot_example.json +9 -9
  905. teradataml/data/unpivot_input.csv +8 -8
  906. teradataml/data/us_air_pass.csv +36 -36
  907. teradataml/data/us_population.csv +624 -624
  908. teradataml/data/us_states_shapes.csv +52 -52
  909. teradataml/data/varmax_example.json +17 -17
  910. teradataml/data/vectordistance_example.json +25 -25
  911. teradataml/data/ville_climatedata.csv +121 -121
  912. teradataml/data/ville_tempdata.csv +12 -12
  913. teradataml/data/ville_tempdata1.csv +12 -12
  914. teradataml/data/ville_temperature.csv +11 -11
  915. teradataml/data/waveletTable.csv +1605 -1605
  916. teradataml/data/waveletTable2.csv +1605 -1605
  917. teradataml/data/weightedmovavg_example.json +8 -8
  918. teradataml/data/wft_testing.csv +5 -5
  919. teradataml/data/wine_data.csv +1600 -0
  920. teradataml/data/word_embed_input_table1.csv +5 -5
  921. teradataml/data/word_embed_input_table2.csv +4 -4
  922. teradataml/data/word_embed_model.csv +22 -22
  923. teradataml/data/words_input.csv +13 -13
  924. teradataml/data/xconvolve_complex_left.csv +6 -6
  925. teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
  926. teradataml/data/xgboost_example.json +35 -35
  927. teradataml/data/xgboostpredict_example.json +31 -31
  928. teradataml/dataframe/copy_to.py +1764 -1698
  929. teradataml/dataframe/data_transfer.py +2753 -2745
  930. teradataml/dataframe/dataframe.py +17545 -16946
  931. teradataml/dataframe/dataframe_utils.py +1837 -1740
  932. teradataml/dataframe/fastload.py +611 -603
  933. teradataml/dataframe/indexer.py +424 -424
  934. teradataml/dataframe/setop.py +1179 -1166
  935. teradataml/dataframe/sql.py +10090 -6432
  936. teradataml/dataframe/sql_function_parameters.py +439 -388
  937. teradataml/dataframe/sql_functions.py +652 -652
  938. teradataml/dataframe/sql_interfaces.py +220 -220
  939. teradataml/dataframe/vantage_function_types.py +674 -630
  940. teradataml/dataframe/window.py +693 -692
  941. teradataml/dbutils/__init__.py +3 -3
  942. teradataml/dbutils/dbutils.py +1167 -1150
  943. teradataml/dbutils/filemgr.py +267 -267
  944. teradataml/gen_ai/__init__.py +2 -2
  945. teradataml/gen_ai/convAI.py +472 -472
  946. teradataml/geospatial/__init__.py +3 -3
  947. teradataml/geospatial/geodataframe.py +1105 -1094
  948. teradataml/geospatial/geodataframecolumn.py +392 -387
  949. teradataml/geospatial/geometry_types.py +925 -925
  950. teradataml/hyperparameter_tuner/__init__.py +1 -1
  951. teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
  952. teradataml/hyperparameter_tuner/utils.py +281 -187
  953. teradataml/lib/aed_0_1.dll +0 -0
  954. teradataml/lib/libaed_0_1.dylib +0 -0
  955. teradataml/lib/libaed_0_1.so +0 -0
  956. teradataml/libaed_0_1.dylib +0 -0
  957. teradataml/libaed_0_1.so +0 -0
  958. teradataml/opensource/__init__.py +1 -0
  959. teradataml/opensource/sklearn/__init__.py +1 -0
  960. teradataml/opensource/sklearn/_class.py +255 -0
  961. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  962. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  963. teradataml/opensource/sklearn/constants.py +54 -0
  964. teradataml/options/__init__.py +121 -124
  965. teradataml/options/configure.py +337 -336
  966. teradataml/options/display.py +176 -176
  967. teradataml/plot/__init__.py +2 -2
  968. teradataml/plot/axis.py +1388 -1388
  969. teradataml/plot/constants.py +15 -15
  970. teradataml/plot/figure.py +398 -398
  971. teradataml/plot/plot.py +760 -760
  972. teradataml/plot/query_generator.py +83 -83
  973. teradataml/plot/subplot.py +216 -216
  974. teradataml/scriptmgmt/UserEnv.py +3788 -3761
  975. teradataml/scriptmgmt/__init__.py +3 -3
  976. teradataml/scriptmgmt/lls_utils.py +1616 -1604
  977. teradataml/series/series.py +532 -532
  978. teradataml/series/series_utils.py +71 -71
  979. teradataml/table_operators/Apply.py +949 -917
  980. teradataml/table_operators/Script.py +1719 -1982
  981. teradataml/table_operators/TableOperator.py +1207 -1616
  982. teradataml/table_operators/__init__.py +2 -3
  983. teradataml/table_operators/apply_query_generator.py +262 -262
  984. teradataml/table_operators/query_generator.py +507 -507
  985. teradataml/table_operators/table_operator_query_generator.py +460 -460
  986. teradataml/table_operators/table_operator_util.py +631 -639
  987. teradataml/table_operators/templates/dataframe_apply.template +184 -184
  988. teradataml/table_operators/templates/dataframe_map.template +176 -176
  989. teradataml/table_operators/templates/script_executor.template +170 -170
  990. teradataml/utils/dtypes.py +684 -684
  991. teradataml/utils/internal_buffer.py +84 -84
  992. teradataml/utils/print_versions.py +205 -205
  993. teradataml/utils/utils.py +410 -410
  994. teradataml/utils/validators.py +2239 -2115
  995. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +270 -41
  996. teradataml-20.0.0.0.dist-info/RECORD +1038 -0
  997. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +1 -1
  998. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +1 -1
  999. teradataml/analytics/mle/AdaBoost.py +0 -651
  1000. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  1001. teradataml/analytics/mle/Antiselect.py +0 -342
  1002. teradataml/analytics/mle/Arima.py +0 -641
  1003. teradataml/analytics/mle/ArimaPredict.py +0 -477
  1004. teradataml/analytics/mle/Attribution.py +0 -1070
  1005. teradataml/analytics/mle/Betweenness.py +0 -658
  1006. teradataml/analytics/mle/Burst.py +0 -711
  1007. teradataml/analytics/mle/CCM.py +0 -600
  1008. teradataml/analytics/mle/CCMPrepare.py +0 -324
  1009. teradataml/analytics/mle/CFilter.py +0 -460
  1010. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  1011. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  1012. teradataml/analytics/mle/Closeness.py +0 -737
  1013. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  1014. teradataml/analytics/mle/Correlation.py +0 -477
  1015. teradataml/analytics/mle/Correlation2.py +0 -573
  1016. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  1017. teradataml/analytics/mle/CoxPH.py +0 -556
  1018. teradataml/analytics/mle/CoxSurvival.py +0 -478
  1019. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  1020. teradataml/analytics/mle/DTW.py +0 -623
  1021. teradataml/analytics/mle/DWT.py +0 -564
  1022. teradataml/analytics/mle/DWT2D.py +0 -599
  1023. teradataml/analytics/mle/DecisionForest.py +0 -716
  1024. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  1025. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  1026. teradataml/analytics/mle/DecisionTree.py +0 -830
  1027. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  1028. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  1029. teradataml/analytics/mle/FMeasure.py +0 -402
  1030. teradataml/analytics/mle/FPGrowth.py +0 -734
  1031. teradataml/analytics/mle/FrequentPaths.py +0 -695
  1032. teradataml/analytics/mle/GLM.py +0 -558
  1033. teradataml/analytics/mle/GLML1L2.py +0 -547
  1034. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  1035. teradataml/analytics/mle/GLMPredict.py +0 -529
  1036. teradataml/analytics/mle/HMMDecoder.py +0 -945
  1037. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  1038. teradataml/analytics/mle/HMMSupervised.py +0 -521
  1039. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  1040. teradataml/analytics/mle/Histogram.py +0 -561
  1041. teradataml/analytics/mle/IDWT.py +0 -476
  1042. teradataml/analytics/mle/IDWT2D.py +0 -493
  1043. teradataml/analytics/mle/IdentityMatch.py +0 -763
  1044. teradataml/analytics/mle/Interpolator.py +0 -918
  1045. teradataml/analytics/mle/KMeans.py +0 -485
  1046. teradataml/analytics/mle/KNN.py +0 -627
  1047. teradataml/analytics/mle/KNNRecommender.py +0 -488
  1048. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  1049. teradataml/analytics/mle/LAR.py +0 -439
  1050. teradataml/analytics/mle/LARPredict.py +0 -478
  1051. teradataml/analytics/mle/LDA.py +0 -548
  1052. teradataml/analytics/mle/LDAInference.py +0 -492
  1053. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  1054. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  1055. teradataml/analytics/mle/LinReg.py +0 -433
  1056. teradataml/analytics/mle/LinRegPredict.py +0 -438
  1057. teradataml/analytics/mle/MinHash.py +0 -544
  1058. teradataml/analytics/mle/Modularity.py +0 -587
  1059. teradataml/analytics/mle/NEREvaluator.py +0 -410
  1060. teradataml/analytics/mle/NERExtractor.py +0 -595
  1061. teradataml/analytics/mle/NERTrainer.py +0 -458
  1062. teradataml/analytics/mle/NGrams.py +0 -570
  1063. teradataml/analytics/mle/NPath.py +0 -634
  1064. teradataml/analytics/mle/NTree.py +0 -549
  1065. teradataml/analytics/mle/NaiveBayes.py +0 -462
  1066. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  1067. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  1068. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  1069. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  1070. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  1071. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  1072. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  1073. teradataml/analytics/mle/POSTagger.py +0 -417
  1074. teradataml/analytics/mle/Pack.py +0 -411
  1075. teradataml/analytics/mle/PageRank.py +0 -535
  1076. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  1077. teradataml/analytics/mle/PathGenerator.py +0 -367
  1078. teradataml/analytics/mle/PathStart.py +0 -464
  1079. teradataml/analytics/mle/PathSummarizer.py +0 -470
  1080. teradataml/analytics/mle/Pivot.py +0 -471
  1081. teradataml/analytics/mle/ROC.py +0 -425
  1082. teradataml/analytics/mle/RandomSample.py +0 -637
  1083. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  1084. teradataml/analytics/mle/SAX.py +0 -779
  1085. teradataml/analytics/mle/SVMDense.py +0 -677
  1086. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  1087. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  1088. teradataml/analytics/mle/SVMSparse.py +0 -557
  1089. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  1090. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  1091. teradataml/analytics/mle/Sampling.py +0 -549
  1092. teradataml/analytics/mle/Scale.py +0 -565
  1093. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  1094. teradataml/analytics/mle/ScaleMap.py +0 -378
  1095. teradataml/analytics/mle/ScaleSummary.py +0 -320
  1096. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  1097. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  1098. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  1099. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  1100. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  1101. teradataml/analytics/mle/Sessionize.py +0 -475
  1102. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  1103. teradataml/analytics/mle/StringSimilarity.py +0 -425
  1104. teradataml/analytics/mle/TF.py +0 -389
  1105. teradataml/analytics/mle/TFIDF.py +0 -504
  1106. teradataml/analytics/mle/TextChunker.py +0 -414
  1107. teradataml/analytics/mle/TextClassifier.py +0 -399
  1108. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  1109. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  1110. teradataml/analytics/mle/TextMorph.py +0 -494
  1111. teradataml/analytics/mle/TextParser.py +0 -623
  1112. teradataml/analytics/mle/TextTagger.py +0 -530
  1113. teradataml/analytics/mle/TextTokenizer.py +0 -502
  1114. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  1115. teradataml/analytics/mle/Unpack.py +0 -526
  1116. teradataml/analytics/mle/Unpivot.py +0 -438
  1117. teradataml/analytics/mle/VarMax.py +0 -776
  1118. teradataml/analytics/mle/VectorDistance.py +0 -762
  1119. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  1120. teradataml/analytics/mle/XGBoost.py +0 -842
  1121. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  1122. teradataml/analytics/mle/__init__.py +0 -123
  1123. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  1124. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  1125. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  1126. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  1127. teradataml/analytics/mle/json/arima_mle.json +0 -172
  1128. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  1129. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  1130. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  1131. teradataml/analytics/mle/json/burst_mle.json +0 -140
  1132. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  1133. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  1134. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  1135. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  1136. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  1137. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  1138. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  1139. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  1140. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  1141. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  1142. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  1143. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  1144. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  1145. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  1146. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  1147. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  1148. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  1149. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  1150. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  1151. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  1152. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  1153. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  1154. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  1155. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  1156. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  1157. teradataml/analytics/mle/json/glm_mle.json +0 -111
  1158. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  1159. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  1160. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  1161. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  1162. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  1163. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  1164. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  1165. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  1166. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  1167. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  1168. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  1169. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  1170. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  1171. teradataml/analytics/mle/json/knn_mle.json +0 -141
  1172. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  1173. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  1174. teradataml/analytics/mle/json/lar_mle.json +0 -78
  1175. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  1176. teradataml/analytics/mle/json/lda_mle.json +0 -130
  1177. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  1178. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  1179. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  1180. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  1181. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  1182. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  1183. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  1184. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  1185. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  1186. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  1187. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  1188. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  1189. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  1190. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  1191. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  1192. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  1193. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  1194. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  1195. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  1196. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  1197. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  1198. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  1199. teradataml/analytics/mle/json/pack_mle.json +0 -58
  1200. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  1201. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  1202. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  1203. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  1204. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  1205. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  1206. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  1207. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  1208. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  1209. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  1210. teradataml/analytics/mle/json/roc_mle.json +0 -73
  1211. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  1212. teradataml/analytics/mle/json/sax_mle.json +0 -154
  1213. teradataml/analytics/mle/json/scale_mle.json +0 -93
  1214. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  1215. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  1216. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  1217. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  1218. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  1219. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  1220. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  1221. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  1222. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  1223. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  1224. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  1225. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  1226. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  1227. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  1228. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  1229. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  1230. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  1231. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  1232. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  1233. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  1234. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  1235. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  1236. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  1237. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  1238. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  1239. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  1240. teradataml/analytics/mle/json/tf_mle.json +0 -33
  1241. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  1242. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  1243. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  1244. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  1245. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  1246. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  1247. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  1248. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  1249. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  1250. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  1251. teradataml/analytics/sqle/Antiselect.py +0 -321
  1252. teradataml/analytics/sqle/Attribution.py +0 -603
  1253. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  1254. teradataml/analytics/sqle/GLMPredict.py +0 -430
  1255. teradataml/analytics/sqle/MovingAverage.py +0 -543
  1256. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  1257. teradataml/analytics/sqle/NPath.py +0 -632
  1258. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  1259. teradataml/analytics/sqle/Pack.py +0 -388
  1260. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  1261. teradataml/analytics/sqle/Sessionize.py +0 -390
  1262. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  1263. teradataml/analytics/sqle/Unpack.py +0 -503
  1264. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  1265. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  1266. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  1267. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  1268. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  1269. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  1270. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  1271. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  1272. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  1273. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  1274. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  1275. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  1276. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  1277. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  1278. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  1279. teradataml/catalog/model_cataloging.py +0 -980
  1280. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  1281. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  1282. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  1283. teradataml/table_operators/sandbox_container_util.py +0 -643
  1284. teradataml-17.20.0.7.dist-info/RECORD +0 -1280
  1285. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
teradataml/plot/plot.py CHANGED
@@ -1,760 +1,760 @@
1
- # ##################################################################
2
- #
3
- # Copyright 2023 Teradata. All rights reserved.
4
- # TERADATA CONFIDENTIAL AND TRADE SECRET
5
- #
6
- # Primary Owner: Pradeep Garre (pradeep.garre@teradata.com)
7
- # Secondary Owner:
8
- #
9
- # This file implements _Plot, which is used to generate plot's on
10
- # teradataml DataFrames.
11
- #
12
- # ##################################################################
13
- import os
14
- from sqlalchemy import text
15
- from teradataml.common.exceptions import TeradataMlException
16
- from teradataml.common.messages import Messages
17
- from teradataml.common.messagecodes import MessageCodes
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import get_connection
20
- from teradataml.dataframe.sql import ColumnExpression
21
- from teradataml.options.configure import configure
22
- from teradataml.utils.validators import _Validators
23
- from teradataml.options.display import display
24
- from teradataml.plot.axis import Axis
25
- from teradataml.plot.figure import Figure
26
-
27
-
28
- class _Plot:
29
- def __init__(self, x, y, scale=None, kind='line', **kwargs):
30
- """
31
- DESCRIPTION:
32
- Generate plots on teradataml DataFrame. Following type of plots
33
- are supported, which can be specified using argument "kind":
34
- * bar plot
35
- * corr plot
36
- * line plot
37
- * mesh plot
38
- * scatter plot
39
- * wiggle plot
40
-
41
- PARAMETERS:
42
- x:
43
- Required Argument.
44
- Specifies a DataFrame column to use for the x-axis data.
45
- Types: teradataml DataFrame Column
46
-
47
- y:
48
- Required Argument.
49
- Specifies DataFrame column(s) to use for the y-axis data.
50
- Types: teradataml DataFrame Column OR list of teradataml DataFrame Columns.
51
-
52
- scale:
53
- Optional Argument.
54
- Specifies DataFrame column(s) to use for scale data to
55
- wiggle and mesh plots.
56
- Note:
57
- "scale" is significant for wiggle and mesh plots. Ignored for other
58
- type of plots.
59
- Types: teradataml DataFrame Column OR list of teradataml DataFrame Columns.
60
-
61
- kind:
62
- Optional Argument.
63
- Specifies the kind of plot.
64
- Permitted Values:
65
- * 'line'
66
- * 'bar'
67
- * 'scatter'
68
- * 'corr'
69
- * 'wiggle'
70
- * 'mesh'
71
- Default Value: line
72
- Types: str
73
-
74
- ax:
75
- Optional Argument.
76
- Specifies the axis for the plot.
77
- Types: Axis
78
-
79
- cmap:
80
- Optional Argument.
81
- Specifies the name of the colormap to be used for plotting.
82
- Note:
83
- * Significant only when corresponding type of plot is mesh or geometry.
84
- * Ignored for other type of plots.
85
- Permitted Values:
86
- * All the colormaps mentioned in below URLs are supported.
87
- * https://matplotlib.org/stable/tutorials/colors/colormaps.html
88
- * https://matplotlib.org/cmocean/
89
- Types: str
90
-
91
- color:
92
- Optional Argument.
93
- Specifies the color for the plot.
94
- Note:
95
- Hexadecimal color codes are not supported.
96
- Permitted Values:
97
- * 'blue'
98
- * 'orange'
99
- * 'green'
100
- * 'red'
101
- * 'purple'
102
- * 'brown'
103
- * 'pink'
104
- * 'gray'
105
- * 'olive'
106
- * 'cyan'
107
- * Apart from above mentioned colors, the colors mentioned in
108
- https://xkcd.com/color/rgb are also supported.
109
- Types: str
110
-
111
- figure:
112
- Optional Argument.
113
- Specifies the figure for the plot.
114
- Types: Figure
115
-
116
- figsize:
117
- Optional Argument.
118
- Specifies the size of the figure in a tuple of 2 elements. First
119
- element represents width of plot image in pixels and second
120
- element represents height of plot image in pixels.
121
- Default Value: (640, 480)
122
- Types: tuple
123
-
124
- figtype:
125
- Optional Argument.
126
- Specifies the type of the image to generate.
127
- Permitted Values:
128
- * 'png'
129
- * 'jpg'
130
- * 'svg'
131
- Default Value: 'png'
132
- Types: str
133
-
134
- figdpi:
135
- Optional Argument.
136
- Specifies the dots per inch for the plot image.
137
- Note:
138
- * Valid range for "dpi" is: 72 <= dpi <= 300.
139
- * This argument is not applicable for SVG Type image.
140
- Default Value: 100 for PNG and JPG Type image.
141
- Types: int
142
-
143
- grid_color:
144
- Optional Argument.
145
- Specifies the color of the grid. By default, grid is generated with
146
- Gray color.
147
- Note:
148
- Hexadecimal color codes are not supported.
149
- Permitted Values:
150
- * 'blue'
151
- * 'orange'
152
- * 'green'
153
- * 'red'
154
- * 'purple'
155
- * 'brown'
156
- * 'pink'
157
- * 'gray'
158
- * 'olive'
159
- * 'cyan'
160
- * Apart from above mentioned colors, the colors mentioned in
161
- https://xkcd.com/color/rgb are also supported.
162
- Types: str
163
-
164
- grid_format:
165
- Optional Argument.
166
- Specifies the format for the grid.
167
- Types: str
168
-
169
- grid_linestyle:
170
- Optional Argument.
171
- Specifies the line style of the grid.
172
- Permitted Values:
173
- * -
174
- * --
175
- * -.
176
- Default Value: -
177
- Types: str
178
-
179
- grid_linewidth:
180
- Optional Argument.
181
- Specifies the line width of the grid.
182
- Note:
183
- Valid range for "grid_linewidth" is: 0.5 <= grid_linewidth <= 10.
184
- Default Value: 0.8
185
- Types: int OR float
186
-
187
- heading:
188
- Optional Argument.
189
- Specifies the heading for the plot.
190
- Types: str
191
-
192
- legend:
193
- Optional Argument.
194
- Specifies the legend(s) for the Plot.
195
- Types: str OR list of str
196
-
197
- legend_style:
198
- Optional Argument.
199
- Specifies the location for legend to display on Plot image.
200
- Permitted Values:
201
- * 'upper right'
202
- * 'upper left'
203
- * 'lower right'
204
- * 'lower left'
205
- * 'right'
206
- * 'center left'
207
- * 'center right'
208
- * 'lower center'
209
- * 'upper center'
210
- * 'center'
211
- Default Value: 'upper right'
212
- Types: str
213
-
214
- linestyle:
215
- Optional Argument.
216
- Specifies the line style for the plot.
217
- Permitted Values:
218
- * -
219
- * --
220
- * -.
221
- * :
222
- Default Value: -
223
- Types: str
224
-
225
- linewidth:
226
- Optional Argument.
227
- Specifies the line width for the plot.
228
- Note:
229
- Valid range for "linewidth" is: 0.5 <= linewidth <= 10.
230
- Default Value: 0.8
231
- Types: int OR float
232
-
233
- marker:
234
- Optional Argument.
235
- Specifies the type of the marker to be used.
236
- Permitted Values:
237
- All the markers mentioned in https://matplotlib.org/stable/api/markers_api.html
238
- are supported.
239
- Types: str
240
-
241
- markersize:
242
- Optional Argument.
243
- Specifies the size of the marker.
244
- Note:
245
- Valid range for "markersize" is: 1 <= markersize <= 20.
246
- Default Value: 6
247
- Types: int OR float
248
-
249
- position:
250
- Optional Argument.
251
- Specifies the position of the axis in the figure. Accepts a tuple
252
- of two elements where first element represents the row and second
253
- element represents column.
254
- Default Value: (1, 1)
255
- Types: tuple
256
-
257
- span:
258
- Optional Argument.
259
- Specifies the span of the axis in the figure. Accepts a tuple
260
- of two elements where first element represents the row and second
261
- element represents column.
262
- For Example,
263
- Span of (2, 1) specifies the Axis occupies 2 rows and 1 column
264
- in Figure.
265
- Default Value: (1, 1)
266
- Types: tuple
267
-
268
- reverse_xaxis:
269
- Optional Argument.
270
- Specifies whether to reverse tick values on x-axis or not.
271
- Default Value: False
272
- Types: bool
273
-
274
- reverse_yaxis:
275
- Optional Argument.
276
- Specifies whether to reverse tick values on y-axis or not.
277
- Default Value: False
278
- Types: bool
279
-
280
- series_identifier:
281
- Optional Argument.
282
- Specifies the teradataml DataFrame Column which represents the
283
- identifier for the data. As many plots as distinct "series_identifier"
284
- are generated in a single Axis.
285
- For example:
286
- consider the below data in teradataml DataFrame.
287
- ID x y
288
- 0 1 1 1
289
- 1 1 2 2
290
- 2 2 10 10
291
- 3 2 20 20
292
- If "series_identifier" is not specified, simple plot is
293
- generated where every 'y' is plotted against 'x' in a
294
- single plot. However, specifying "series_identifier" as 'ID'
295
- generates two plots in a single axis. One plot is for ID 1
296
- and another plot is for ID 2.
297
- Types: teradataml DataFrame Column.
298
-
299
- title:
300
- Optional Argument.
301
- Specifies the title for the Axis.
302
- Types: str
303
-
304
- xlabel:
305
- Optional Argument.
306
- Specifies the label for x-axis.
307
- Notes:
308
- * When set to empty string, label is not displayed for x-axis.
309
- * When set to None, name of the x-axis column is displayed as
310
- label.
311
- Types: str
312
-
313
- xlim:
314
- Optional Argument.
315
- Specifies the range for xtick values.
316
- Types: tuple
317
-
318
- xtick_format:
319
- Optional Argument.
320
- Specifies how to format tick values for x-axis.
321
- Types: str
322
-
323
- ylabel:
324
- Optional Argument.
325
- Specifies the label for y-axis.
326
- Notes:
327
- * When set to empty string, label is not displayed for y-axis.
328
- * When set to None, name of the y-axis column(s) is displayed as
329
- label.
330
- Types: str
331
-
332
- ylim:
333
- Optional Argument.
334
- Specifies the range for ytick values.
335
- Types: tuple
336
-
337
- ytick_format:
338
- Optional Argument.
339
- Specifies how to format tick values for y-axis.
340
- Types: str
341
-
342
- vmin:
343
- Optional Argument.
344
- Specifies the lower range of the color map. By default, the range
345
- is derived from data and color codes are assigned accordingly.
346
- Note:
347
- "vmin" Significant only for Mesh and Geometry Plot.
348
- Types: int OR float
349
-
350
- vmax:
351
- Optional Argument.
352
- Specifies the upper range of the color map. By default, the range is
353
- derived from data and color codes are assigned accordingly.
354
- Note:
355
- "vmax" Significant only for Mesh and Geometry Plot.
356
- For example:
357
- Assuming user wants to use colormap 'matter' and derive the colors for
358
- values which are in between 1 and 100.
359
- Note: colormap 'matter' starts with Pale Yellow and ends with Violet.
360
- * If "colormap_range" is not specified, then range is derived from
361
- existing values. Thus, colors are represented as below in the whole range:
362
- * 1 as Pale Yellow.
363
- * 100 as Violet.
364
- * If "colormap_range" is specified as -100 and 100, the value 1 is at middle of
365
- the specified range. Thus, colors are represented as below in the whole range:
366
- * -100 as Pale Yellow.
367
- * 1 as Orange.
368
- * 100 as Violet.
369
- Types: int OR float
370
-
371
- wiggle_fill:
372
- Optional Argument.
373
- Specifies whether to fill the wiggle area or not. By default, the right
374
- positive half of the wiggle is not filled. If specified as True, wiggle
375
- area is filled.
376
- Note:
377
- Applicable only for the wiggle plot.
378
- Default Value: False
379
- Types: bool
380
-
381
- wiggle_scale:
382
- Optional Argument.
383
- Specifies the scale of the wiggle. By default, the amplitude of wiggle is scaled
384
- relative to RMS of the first payload. In certain cases, it can lead to excessively
385
- large wiggles. Use SCALE to adjust the relative size of the wiggle.
386
- Note:
387
- Applicable only for the wiggle and mesh plots.
388
- Types: int OR float
389
-
390
- ignore_nulls:
391
- Optional Argument.
392
- Specifies whether to delete rows with null values or not present in 'x', 'y' and
393
- 'scale' params.
394
- Default Value: False
395
- Types: bool
396
-
397
-
398
- RAISES:
399
- TeradataMlException
400
-
401
- EXAMPLES:
402
- # Examples added in DataFrame.plot().
403
- """
404
- self.x = x
405
- self.y = y
406
- self.scale = scale
407
- self.kind = kind
408
-
409
- arg_info_matrix = []
410
-
411
- if self.kind != "geometry":
412
- arg_info_matrix.append(["x", self.x, False, (ColumnExpression), True])
413
-
414
- arg_info_matrix.append(["y", self.y, False, (ColumnExpression, list, tuple), True])
415
- arg_info_matrix.append(["scale", self.scale, True, ColumnExpression, True])
416
-
417
- # Permitted values for kind.
418
- kind_permitted_values = ["bar", "corr", "line", "mesh", "scatter", "wiggle",
419
- "geometry"]
420
-
421
- arg_info_matrix.append(["kind", self.kind, True, (str),
422
- True, kind_permitted_values])
423
-
424
- # Extract figure and figure related arguments from kwargs.
425
- self.figure = kwargs.get("figure")
426
- self.figsize = kwargs.get("figsize", (640, 480))
427
- self.figtype = kwargs.get("figtype", "png")
428
- self.figdpi = kwargs.get("figdpi", None)
429
-
430
- # Default value for 'figdpi' is 100 for figtype='png' and figtype='jpg'.
431
- if self.figtype in ["png", "jpg"] and self.figdpi is None:
432
- self.figdpi = 100
433
-
434
- arg_info_matrix.append(["figure", self.figure, True, (Figure), False])
435
-
436
- figtype_permitted_values = ["png", "jpg", "svg"]
437
- arg_info_matrix.append(["figtype", self.figtype, True,
438
- (str), True, figtype_permitted_values])
439
- arg_info_matrix.append(["figsize", self.figsize, True, (tuple), True])
440
- arg_info_matrix.append(["figdpi", self.figdpi, True, (int), True])
441
-
442
- # Extract wiggle_fill and wiggle_scale from parameters.
443
- self.wiggle_fill = kwargs.pop("wiggle_fill", None)
444
- self.wiggle_scale = kwargs.pop("wiggle_scale", None)
445
-
446
- arg_info_matrix.append((["wiggle_fill", self.wiggle_fill, True, (bool)]))
447
- arg_info_matrix.append((["wiggle_scale", self.wiggle_scale, True, (int, float)]))
448
-
449
- # 'wiggle_scale' is applicable only for Mesh and Wiggle plot.
450
- _Validators._validate_dependent_argument("wiggle_scale", self.wiggle_scale,
451
- "kind", None if self.kind not in ['wiggle', 'mesh'] else self.kind, "kind='wiggle' or kind='mesh'")
452
-
453
- # 'wiggle_fill' is applicable only for wiggle plot.
454
- _Validators._validate_dependent_argument("wiggle_fill", self.wiggle_fill,
455
- "kind", None if self.kind != "wiggle" else self.kind, "kind='wiggle'")
456
-
457
- # Argument validations.
458
- _Validators._validate_function_arguments(arg_info_matrix)
459
-
460
- # 'figdpi' is applicable only for "png" and "jpg" type only.
461
- _Validators._validate_dependent_argument("figdpi", self.figdpi,
462
- "figtype", None if self.figtype not in ["png", "jpg"] else self.figtype, "figtype='png' or figtype='jpg'")
463
-
464
- # Argument range check.
465
- _Validators._validate_argument_range(self.figdpi, "figdpi",
466
- lbound=72, lbound_inclusive=True,
467
- ubound=300, ubound_inclusive=True)
468
-
469
- # Get figure. If user did not pass, create a default one.
470
- # self.figure = kwargs.get("figure")
471
- if self.figure is None:
472
- self.figure = Figure()
473
- self._figure = self.figure
474
-
475
- axis = kwargs.get("ax")
476
- # If axis is not passed, generate a default one.
477
- if axis is None:
478
- axis = Axis(kind=kind, **kwargs)
479
- else:
480
- # If user passes axes, i.e., for subplot, add additional params
481
- # which is passed as kwargs.
482
- axis.set_params(kind=kind, **kwargs)
483
-
484
- # Set the axis data.
485
- axis._set_data(x, y, scale=scale)
486
-
487
- # Add the axis to figure.
488
- self._figure._add_axis(axis)
489
- self._query = None
490
- self._plot_image_data = None
491
- self.__heading = kwargs.get("heading")
492
- _Validators._validate_input_columns_not_empty(self.__heading, "heading")
493
- self.__params = kwargs
494
-
495
- def _execute_query(self):
496
- """
497
- DESCRIPTION:
498
- Internal function to execute the Plot Query.
499
-
500
- EXAMPLES:
501
- >>> _plot._execute_query()
502
- """
503
- if self._plot_image_data is None:
504
- query = self._get_query()
505
-
506
- res = get_connection().execute(text(query))
507
-
508
- self._plot_image_data = res.fetchone().IMAGE
509
-
510
- def show_query(self):
511
- """
512
- DESCRIPTION:
513
- Function to display the query used to generate Plot.
514
-
515
- EXAMPLES:
516
- # Example - Create a DataFrame and plot the data using DataFrame.plot.
517
- # And, display the query.
518
- # Load the data.
519
- >>> load_example_data("movavg", "ibm_stock")
520
- # Create DataFrame.
521
- >>> ibm_stock = DataFrame("ibm_stock")
522
- # Display the query.
523
- >>> plot = ibm_stock.plot(x=ibm_stock.period, y=ibm_stock.stockprice)
524
- >>> plot.show_query()
525
- """
526
- return self._get_query()
527
-
528
- def show(self):
529
- """
530
- DESCRIPTION:
531
- Function to show the plot in the console. The function displays plot
532
- in either on the console or in a new window based on the option 'inline_plot'.
533
- * If the console is IPython console, the plot is displayed on the console
534
- when the option 'inline_plot' is set to True. If the option 'inline_plot'
535
- is set to False, plot is displayed on new window.
536
- * If the console is regular Python console and not an IPython console,
537
- then plot is displayed on a new window irrespective of option 'inline_plot'.
538
- Note:
539
- Displaying the plot in a new window requires an additional Python module
540
- tkinter. One needs to install it manually since teradataml does not install
541
- it by default.
542
-
543
- EXAMPLES:
544
- # Example 1 - Generate a line plot and display it in the console.
545
- >>> load_example_data("movavg", "ibm_stock")
546
- # Set the option to display the plot in the console.
547
- >>> from teradataml import configure
548
- >>> configure.inline_plot = True
549
- # Create DataFrame.
550
- >>> ibm_stock = DataFrame("ibm_stock")
551
- # Generate the plot
552
- >>> plot = ibm_stock.plot(x=ibm_stock.period, y=ibm_stock.stockprice)
553
- >>> plot.show()
554
-
555
- # Example 2 - Generate a bar plot and display it in a new window.
556
- >>> load_example_data("movavg", "ibm_stock")
557
- # Set the option to display the plot in a new window.
558
- >>> from teradataml import configure
559
- >>> configure.inline_plot = False
560
- # Create DataFrame.
561
- >>> ibm_stock = DataFrame("ibm_stock")
562
- # Generate the plot
563
- >>> plot = ibm_stock.plot(x=ibm_stock.period, y=ibm_stock.stockprice, kind="bar")
564
- >>> plot.show()
565
- """
566
- query = self._get_query()
567
-
568
- self._execute_query()
569
-
570
- # If user choose for inline plot, then check if Python console supports
571
- # inline plotting or not. If not supports, then go for outline plot.
572
- if configure.inline_plot is None:
573
- try:
574
- if __IPYTHON__:
575
- self._show_inline_plot()
576
- except NameError:
577
- self._show_outline_plot()
578
- else:
579
- self._show_inline_plot() if configure.inline_plot else self._show_outline_plot()
580
-
581
- def _repr_html_(self):
582
- """
583
- DESCRIPTION:
584
- Function to display the Plot in for iPython rich display.
585
- """
586
- self.show()
587
-
588
- def _show_inline_plot(self):
589
- """
590
- DESCRIPTION:
591
- Internal function to display the plot in the console.
592
-
593
- EXAMPLES:
594
- # Example - Create a DataFrame and plot the data using DataFrame.plot.
595
- # And, display it in same console.
596
- # Load the data.
597
- >>> load_example_data("movavg", "ibm_stock")
598
- # Create DataFrame.
599
- >>> ibm_stock = DataFrame("ibm_stock")
600
- # Generate plot and display it in console.
601
- >>> plot = ibm_stock.plot(x=ibm_stock.period, y=ibm_stock.stockprice)
602
- >>> plot._show_inline_plot()
603
- """
604
- from IPython.display import display as dsp, Image
605
- dsp(Image(data=self._plot_image_data))
606
-
607
- def _show_outline_plot(self):
608
- """
609
- DESCRIPTION:
610
- Internal function to display the plot in a new window.
611
-
612
- EXAMPLES:
613
- # Example - Create a DataFrame and plot the data using DataFrame.plot.
614
- # And, display it in a new window.
615
- # Load the data.
616
- >>> load_example_data("movavg", "ibm_stock")
617
- # Create DataFrame.
618
- >>> ibm_stock = DataFrame("ibm_stock")
619
- # Generate plot and display it in console.
620
- >>> plot = ibm_stock.plot(x=ibm_stock.period, y=ibm_stock.stockprice)
621
- >>> plot._show_outline_plot()
622
- """
623
- try:
624
- import tkinter as tk
625
- root = tk.Tk()
626
- file_format = self._figure.image_type
627
- canvas = tk.Canvas(width=self._figure.width, height=self._figure.height)
628
- canvas.pack()
629
- img = tk.PhotoImage(data=self._plot_image_data, format=file_format)
630
- canvas.create_image(0, 0, anchor=tk.NW, image=img)
631
- root.wm_iconbitmap(os.path.join(UtilFuncs._get_tdml_directory(), "data", "teradata_icon.ico"))
632
- root.wm_title('teradataml plot')
633
- root.mainloop()
634
- except ModuleNotFoundError:
635
- print("Install module 'tkinter' to display the plot.")
636
-
637
- def _get_query(self):
638
- """
639
- DESCRIPTION:
640
- Internal function to get the query.
641
-
642
- EXAMPLES:
643
- >>> plot._get_query()
644
- """
645
-
646
- if not self._query:
647
-
648
- from teradataml.plot.query_generator import PlotQueryGenerator
649
- _series_spec = []
650
- _plot_params = []
651
- func_other_args = {}
652
-
653
- _id = 1
654
- # Every figure has one or more axis. And, every axis contains
655
- # plot data and axis parameters.
656
- for axis in self._figure.get_axes():
657
-
658
- if axis._has_data():
659
- _virtual_table, _spec, _plot_param = axis._get_plot_data()
660
- _plot_param["ID"] = _id
661
- _series_spec.append(_spec)
662
-
663
- # Update the wiggle parameters.
664
- if self.kind.lower() == "wiggle":
665
- _wiggle_params = {}
666
- if self.wiggle_fill is not None:
667
- _wiggle_params["FILL"] = 1 if self.wiggle_fill else 0
668
-
669
- if self.wiggle_scale is not None:
670
- _wiggle_params["SCALE"] = self.wiggle_scale
671
-
672
- if _wiggle_params:
673
- _plot_param["WIGGLE"] = _wiggle_params
674
-
675
- _plot_params.append(_plot_param)
676
- _id = _id + 1
677
-
678
- dpi = self.__params.get("figdpi") if self.__params.get("figdpi") else self._figure.dpi
679
- height = self.__params.get("figsize")[1] if self.__params.get("figsize") else self._figure.height
680
- width = self.__params.get("figsize")[0] if self.__params.get("figsize") else self._figure.width
681
- type_ = self.__params.get("figtype") if self.__params.get("figtype") else self._figure.image_type
682
-
683
- # teradataml maintains layout as rows and columns. However,
684
- # SQL maintains it as columns and rows. Hence, reverse the layout.
685
- layout = self._figure.layout[::-1]
686
- func_other_args.update({"LAYOUT": layout,
687
- "PLOTS": _plot_params,
688
- "DPI": dpi,
689
- "IMAGE": "'{}'".format(type_),
690
- "WIDTH": width,
691
- "HEIGHT": height
692
- })
693
-
694
- heading = self.__heading if self.__heading is not None else self._figure.heading
695
- if heading:
696
- func_other_args["TITLE"] = "'{}'".format(heading)
697
-
698
- query_generator = PlotQueryGenerator(function_name="TD_PLOT",
699
- func_input_args=", \n".join(_series_spec),
700
- func_input_filter_expr_args=None,
701
- func_output_args=None,
702
- func_other_args=func_other_args)
703
-
704
- self._query = query_generator._get_display_uaf()
705
-
706
- return self._query
707
-
708
- def save(self, file_name, dir=None):
709
- """
710
- Function to save the plot to an image.
711
-
712
- PARAMETERS:
713
- file_name:
714
- Required Argument.
715
- Specifies the name of the image file.
716
- Note:
717
- Do not mention the extension for the filename.
718
- Types: str
719
-
720
- dir:
721
- Optional Argument.
722
- Specifies the absolute path of the directory to store the plot image.
723
- Types: str
724
-
725
- RAISES:
726
- TeradataMlException
727
-
728
- EXAMPLES:
729
- # Example 1: Generate a scatter plot and store it in current directory.
730
- # Load the data.
731
- >>> load_example_data("movavg", "ibm_stock")
732
- # Create DataFrame.
733
- >>> ibm_stock = DataFrame("ibm_stock")
734
- # Generate plot.
735
- >>> plot = ibm_stock.plot(x=ibm_stock.period, y=ibm_stock.stockprice)
736
- >>> plot.save("example1")
737
-
738
- # Example 2: Generate a scatter plot and store it in temp directory.
739
- # Load the data.
740
- >>> load_example_data("movavg", "ibm_stock")
741
- # Create DataFrame.
742
- >>> ibm_stock = DataFrame("ibm_stock")
743
- # Generate plot.
744
- >>> plot = ibm_stock.plot(x=ibm_stock.period, y=ibm_stock.stockprice)
745
- >>> # Store in temp directory.
746
- >>> from tempfile import gettempdir
747
- >>> plot.save("example2", dir=gettempdir())
748
- """
749
- # TODO: Check for the existance of 'dir'.
750
- type_ = self.__params.get("figtype") if self.__params.get("figtype") else self._figure.image_type
751
- file_name = "{}.{}".format(file_name, type_)
752
- if dir:
753
- file_name = os.path.join(dir, file_name)
754
-
755
- # Execute the query if it is not executed already.
756
- self._execute_query()
757
-
758
- # Store the image.
759
- with open(file_name, "wb") as fp:
760
- fp.write(self._plot_image_data)
1
+ # ##################################################################
2
+ #
3
+ # Copyright 2023 Teradata. All rights reserved.
4
+ # TERADATA CONFIDENTIAL AND TRADE SECRET
5
+ #
6
+ # Primary Owner: Pradeep Garre (pradeep.garre@teradata.com)
7
+ # Secondary Owner:
8
+ #
9
+ # This file implements _Plot, which is used to generate plot's on
10
+ # teradataml DataFrames.
11
+ #
12
+ # ##################################################################
13
+ import os
14
+ from sqlalchemy import text
15
+ from teradataml.common.exceptions import TeradataMlException
16
+ from teradataml.common.messages import Messages
17
+ from teradataml.common.messagecodes import MessageCodes
18
+ from teradataml.common.utils import UtilFuncs
19
+ from teradataml.context.context import get_connection
20
+ from teradataml.dataframe.sql import ColumnExpression
21
+ from teradataml.options.configure import configure
22
+ from teradataml.utils.validators import _Validators
23
+ from teradataml.options.display import display
24
+ from teradataml.plot.axis import Axis
25
+ from teradataml.plot.figure import Figure
26
+
27
+
28
+ class _Plot:
29
+ def __init__(self, x, y, scale=None, kind='line', **kwargs):
30
+ """
31
+ DESCRIPTION:
32
+ Generate plots on teradataml DataFrame. Following type of plots
33
+ are supported, which can be specified using argument "kind":
34
+ * bar plot
35
+ * corr plot
36
+ * line plot
37
+ * mesh plot
38
+ * scatter plot
39
+ * wiggle plot
40
+
41
+ PARAMETERS:
42
+ x:
43
+ Required Argument.
44
+ Specifies a DataFrame column to use for the x-axis data.
45
+ Types: teradataml DataFrame Column
46
+
47
+ y:
48
+ Required Argument.
49
+ Specifies DataFrame column(s) to use for the y-axis data.
50
+ Types: teradataml DataFrame Column OR list of teradataml DataFrame Columns.
51
+
52
+ scale:
53
+ Optional Argument.
54
+ Specifies DataFrame column(s) to use for scale data to
55
+ wiggle and mesh plots.
56
+ Note:
57
+ "scale" is significant for wiggle and mesh plots. Ignored for other
58
+ type of plots.
59
+ Types: teradataml DataFrame Column OR list of teradataml DataFrame Columns.
60
+
61
+ kind:
62
+ Optional Argument.
63
+ Specifies the kind of plot.
64
+ Permitted Values:
65
+ * 'line'
66
+ * 'bar'
67
+ * 'scatter'
68
+ * 'corr'
69
+ * 'wiggle'
70
+ * 'mesh'
71
+ Default Value: line
72
+ Types: str
73
+
74
+ ax:
75
+ Optional Argument.
76
+ Specifies the axis for the plot.
77
+ Types: Axis
78
+
79
+ cmap:
80
+ Optional Argument.
81
+ Specifies the name of the colormap to be used for plotting.
82
+ Note:
83
+ * Significant only when corresponding type of plot is mesh or geometry.
84
+ * Ignored for other type of plots.
85
+ Permitted Values:
86
+ * All the colormaps mentioned in below URLs are supported.
87
+ * https://matplotlib.org/stable/tutorials/colors/colormaps.html
88
+ * https://matplotlib.org/cmocean/
89
+ Types: str
90
+
91
+ color:
92
+ Optional Argument.
93
+ Specifies the color for the plot.
94
+ Note:
95
+ Hexadecimal color codes are not supported.
96
+ Permitted Values:
97
+ * 'blue'
98
+ * 'orange'
99
+ * 'green'
100
+ * 'red'
101
+ * 'purple'
102
+ * 'brown'
103
+ * 'pink'
104
+ * 'gray'
105
+ * 'olive'
106
+ * 'cyan'
107
+ * Apart from above mentioned colors, the colors mentioned in
108
+ https://xkcd.com/color/rgb are also supported.
109
+ Types: str
110
+
111
+ figure:
112
+ Optional Argument.
113
+ Specifies the figure for the plot.
114
+ Types: Figure
115
+
116
+ figsize:
117
+ Optional Argument.
118
+ Specifies the size of the figure in a tuple of 2 elements. First
119
+ element represents width of plot image in pixels and second
120
+ element represents height of plot image in pixels.
121
+ Default Value: (640, 480)
122
+ Types: tuple
123
+
124
+ figtype:
125
+ Optional Argument.
126
+ Specifies the type of the image to generate.
127
+ Permitted Values:
128
+ * 'png'
129
+ * 'jpg'
130
+ * 'svg'
131
+ Default Value: 'png'
132
+ Types: str
133
+
134
+ figdpi:
135
+ Optional Argument.
136
+ Specifies the dots per inch for the plot image.
137
+ Note:
138
+ * Valid range for "dpi" is: 72 <= dpi <= 300.
139
+ * This argument is not applicable for SVG Type image.
140
+ Default Value: 100 for PNG and JPG Type image.
141
+ Types: int
142
+
143
+ grid_color:
144
+ Optional Argument.
145
+ Specifies the color of the grid. By default, grid is generated with
146
+ Gray color.
147
+ Note:
148
+ Hexadecimal color codes are not supported.
149
+ Permitted Values:
150
+ * 'blue'
151
+ * 'orange'
152
+ * 'green'
153
+ * 'red'
154
+ * 'purple'
155
+ * 'brown'
156
+ * 'pink'
157
+ * 'gray'
158
+ * 'olive'
159
+ * 'cyan'
160
+ * Apart from above mentioned colors, the colors mentioned in
161
+ https://xkcd.com/color/rgb are also supported.
162
+ Types: str
163
+
164
+ grid_format:
165
+ Optional Argument.
166
+ Specifies the format for the grid.
167
+ Types: str
168
+
169
+ grid_linestyle:
170
+ Optional Argument.
171
+ Specifies the line style of the grid.
172
+ Permitted Values:
173
+ * -
174
+ * --
175
+ * -.
176
+ Default Value: -
177
+ Types: str
178
+
179
+ grid_linewidth:
180
+ Optional Argument.
181
+ Specifies the line width of the grid.
182
+ Note:
183
+ Valid range for "grid_linewidth" is: 0.5 <= grid_linewidth <= 10.
184
+ Default Value: 0.8
185
+ Types: int OR float
186
+
187
+ heading:
188
+ Optional Argument.
189
+ Specifies the heading for the plot.
190
+ Types: str
191
+
192
+ legend:
193
+ Optional Argument.
194
+ Specifies the legend(s) for the Plot.
195
+ Types: str OR list of str
196
+
197
+ legend_style:
198
+ Optional Argument.
199
+ Specifies the location for legend to display on Plot image.
200
+ Permitted Values:
201
+ * 'upper right'
202
+ * 'upper left'
203
+ * 'lower right'
204
+ * 'lower left'
205
+ * 'right'
206
+ * 'center left'
207
+ * 'center right'
208
+ * 'lower center'
209
+ * 'upper center'
210
+ * 'center'
211
+ Default Value: 'upper right'
212
+ Types: str
213
+
214
+ linestyle:
215
+ Optional Argument.
216
+ Specifies the line style for the plot.
217
+ Permitted Values:
218
+ * -
219
+ * --
220
+ * -.
221
+ * :
222
+ Default Value: -
223
+ Types: str
224
+
225
+ linewidth:
226
+ Optional Argument.
227
+ Specifies the line width for the plot.
228
+ Note:
229
+ Valid range for "linewidth" is: 0.5 <= linewidth <= 10.
230
+ Default Value: 0.8
231
+ Types: int OR float
232
+
233
+ marker:
234
+ Optional Argument.
235
+ Specifies the type of the marker to be used.
236
+ Permitted Values:
237
+ All the markers mentioned in https://matplotlib.org/stable/api/markers_api.html
238
+ are supported.
239
+ Types: str
240
+
241
+ markersize:
242
+ Optional Argument.
243
+ Specifies the size of the marker.
244
+ Note:
245
+ Valid range for "markersize" is: 1 <= markersize <= 20.
246
+ Default Value: 6
247
+ Types: int OR float
248
+
249
+ position:
250
+ Optional Argument.
251
+ Specifies the position of the axis in the figure. Accepts a tuple
252
+ of two elements where first element represents the row and second
253
+ element represents column.
254
+ Default Value: (1, 1)
255
+ Types: tuple
256
+
257
+ span:
258
+ Optional Argument.
259
+ Specifies the span of the axis in the figure. Accepts a tuple
260
+ of two elements where first element represents the row and second
261
+ element represents column.
262
+ For Example,
263
+ Span of (2, 1) specifies the Axis occupies 2 rows and 1 column
264
+ in Figure.
265
+ Default Value: (1, 1)
266
+ Types: tuple
267
+
268
+ reverse_xaxis:
269
+ Optional Argument.
270
+ Specifies whether to reverse tick values on x-axis or not.
271
+ Default Value: False
272
+ Types: bool
273
+
274
+ reverse_yaxis:
275
+ Optional Argument.
276
+ Specifies whether to reverse tick values on y-axis or not.
277
+ Default Value: False
278
+ Types: bool
279
+
280
+ series_identifier:
281
+ Optional Argument.
282
+ Specifies the teradataml DataFrame Column which represents the
283
+ identifier for the data. As many plots as distinct "series_identifier"
284
+ are generated in a single Axis.
285
+ For example:
286
+ consider the below data in teradataml DataFrame.
287
+ ID x y
288
+ 0 1 1 1
289
+ 1 1 2 2
290
+ 2 2 10 10
291
+ 3 2 20 20
292
+ If "series_identifier" is not specified, simple plot is
293
+ generated where every 'y' is plotted against 'x' in a
294
+ single plot. However, specifying "series_identifier" as 'ID'
295
+ generates two plots in a single axis. One plot is for ID 1
296
+ and another plot is for ID 2.
297
+ Types: teradataml DataFrame Column.
298
+
299
+ title:
300
+ Optional Argument.
301
+ Specifies the title for the Axis.
302
+ Types: str
303
+
304
+ xlabel:
305
+ Optional Argument.
306
+ Specifies the label for x-axis.
307
+ Notes:
308
+ * When set to empty string, label is not displayed for x-axis.
309
+ * When set to None, name of the x-axis column is displayed as
310
+ label.
311
+ Types: str
312
+
313
+ xlim:
314
+ Optional Argument.
315
+ Specifies the range for xtick values.
316
+ Types: tuple
317
+
318
+ xtick_format:
319
+ Optional Argument.
320
+ Specifies how to format tick values for x-axis.
321
+ Types: str
322
+
323
+ ylabel:
324
+ Optional Argument.
325
+ Specifies the label for y-axis.
326
+ Notes:
327
+ * When set to empty string, label is not displayed for y-axis.
328
+ * When set to None, name of the y-axis column(s) is displayed as
329
+ label.
330
+ Types: str
331
+
332
+ ylim:
333
+ Optional Argument.
334
+ Specifies the range for ytick values.
335
+ Types: tuple
336
+
337
+ ytick_format:
338
+ Optional Argument.
339
+ Specifies how to format tick values for y-axis.
340
+ Types: str
341
+
342
+ vmin:
343
+ Optional Argument.
344
+ Specifies the lower range of the color map. By default, the range
345
+ is derived from data and color codes are assigned accordingly.
346
+ Note:
347
+ "vmin" Significant only for Mesh and Geometry Plot.
348
+ Types: int OR float
349
+
350
+ vmax:
351
+ Optional Argument.
352
+ Specifies the upper range of the color map. By default, the range is
353
+ derived from data and color codes are assigned accordingly.
354
+ Note:
355
+ "vmax" Significant only for Mesh and Geometry Plot.
356
+ For example:
357
+ Assuming user wants to use colormap 'matter' and derive the colors for
358
+ values which are in between 1 and 100.
359
+ Note: colormap 'matter' starts with Pale Yellow and ends with Violet.
360
+ * If "colormap_range" is not specified, then range is derived from
361
+ existing values. Thus, colors are represented as below in the whole range:
362
+ * 1 as Pale Yellow.
363
+ * 100 as Violet.
364
+ * If "colormap_range" is specified as -100 and 100, the value 1 is at middle of
365
+ the specified range. Thus, colors are represented as below in the whole range:
366
+ * -100 as Pale Yellow.
367
+ * 1 as Orange.
368
+ * 100 as Violet.
369
+ Types: int OR float
370
+
371
+ wiggle_fill:
372
+ Optional Argument.
373
+ Specifies whether to fill the wiggle area or not. By default, the right
374
+ positive half of the wiggle is not filled. If specified as True, wiggle
375
+ area is filled.
376
+ Note:
377
+ Applicable only for the wiggle plot.
378
+ Default Value: False
379
+ Types: bool
380
+
381
+ wiggle_scale:
382
+ Optional Argument.
383
+ Specifies the scale of the wiggle. By default, the amplitude of wiggle is scaled
384
+ relative to RMS of the first payload. In certain cases, it can lead to excessively
385
+ large wiggles. Use SCALE to adjust the relative size of the wiggle.
386
+ Note:
387
+ Applicable only for the wiggle and mesh plots.
388
+ Types: int OR float
389
+
390
+ ignore_nulls:
391
+ Optional Argument.
392
+ Specifies whether to delete rows with null values or not present in 'x', 'y' and
393
+ 'scale' params.
394
+ Default Value: False
395
+ Types: bool
396
+
397
+
398
+ RAISES:
399
+ TeradataMlException
400
+
401
+ EXAMPLES:
402
+ # Examples added in DataFrame.plot().
403
+ """
404
+ self.x = x
405
+ self.y = y
406
+ self.scale = scale
407
+ self.kind = kind
408
+
409
+ arg_info_matrix = []
410
+
411
+ if self.kind != "geometry":
412
+ arg_info_matrix.append(["x", self.x, False, (ColumnExpression), True])
413
+
414
+ arg_info_matrix.append(["y", self.y, False, (ColumnExpression, list, tuple), True])
415
+ arg_info_matrix.append(["scale", self.scale, True, ColumnExpression, True])
416
+
417
+ # Permitted values for kind.
418
+ kind_permitted_values = ["bar", "corr", "line", "mesh", "scatter", "wiggle",
419
+ "geometry"]
420
+
421
+ arg_info_matrix.append(["kind", self.kind, True, (str),
422
+ True, kind_permitted_values])
423
+
424
+ # Extract figure and figure related arguments from kwargs.
425
+ self.figure = kwargs.get("figure")
426
+ self.figsize = kwargs.get("figsize", (640, 480))
427
+ self.figtype = kwargs.get("figtype", "png")
428
+ self.figdpi = kwargs.get("figdpi", None)
429
+
430
+ # Default value for 'figdpi' is 100 for figtype='png' and figtype='jpg'.
431
+ if self.figtype in ["png", "jpg"] and self.figdpi is None:
432
+ self.figdpi = 100
433
+
434
+ arg_info_matrix.append(["figure", self.figure, True, (Figure), False])
435
+
436
+ figtype_permitted_values = ["png", "jpg", "svg"]
437
+ arg_info_matrix.append(["figtype", self.figtype, True,
438
+ (str), True, figtype_permitted_values])
439
+ arg_info_matrix.append(["figsize", self.figsize, True, (tuple), True])
440
+ arg_info_matrix.append(["figdpi", self.figdpi, True, (int), True])
441
+
442
+ # Extract wiggle_fill and wiggle_scale from parameters.
443
+ self.wiggle_fill = kwargs.pop("wiggle_fill", None)
444
+ self.wiggle_scale = kwargs.pop("wiggle_scale", None)
445
+
446
+ arg_info_matrix.append((["wiggle_fill", self.wiggle_fill, True, (bool)]))
447
+ arg_info_matrix.append((["wiggle_scale", self.wiggle_scale, True, (int, float)]))
448
+
449
+ # 'wiggle_scale' is applicable only for Mesh and Wiggle plot.
450
+ _Validators._validate_dependent_argument("wiggle_scale", self.wiggle_scale,
451
+ "kind", None if self.kind not in ['wiggle', 'mesh'] else self.kind, "kind='wiggle' or kind='mesh'")
452
+
453
+ # 'wiggle_fill' is applicable only for wiggle plot.
454
+ _Validators._validate_dependent_argument("wiggle_fill", self.wiggle_fill,
455
+ "kind", None if self.kind != "wiggle" else self.kind, "kind='wiggle'")
456
+
457
+ # Argument validations.
458
+ _Validators._validate_function_arguments(arg_info_matrix)
459
+
460
+ # 'figdpi' is applicable only for "png" and "jpg" type only.
461
+ _Validators._validate_dependent_argument("figdpi", self.figdpi,
462
+ "figtype", None if self.figtype not in ["png", "jpg"] else self.figtype, "figtype='png' or figtype='jpg'")
463
+
464
+ # Argument range check.
465
+ _Validators._validate_argument_range(self.figdpi, "figdpi",
466
+ lbound=72, lbound_inclusive=True,
467
+ ubound=300, ubound_inclusive=True)
468
+
469
+ # Get figure. If user did not pass, create a default one.
470
+ # self.figure = kwargs.get("figure")
471
+ if self.figure is None:
472
+ self.figure = Figure()
473
+ self._figure = self.figure
474
+
475
+ axis = kwargs.get("ax")
476
+ # If axis is not passed, generate a default one.
477
+ if axis is None:
478
+ axis = Axis(kind=kind, **kwargs)
479
+ else:
480
+ # If user passes axes, i.e., for subplot, add additional params
481
+ # which is passed as kwargs.
482
+ axis.set_params(kind=kind, **kwargs)
483
+
484
+ # Set the axis data.
485
+ axis._set_data(x, y, scale=scale)
486
+
487
+ # Add the axis to figure.
488
+ self._figure._add_axis(axis)
489
+ self._query = None
490
+ self._plot_image_data = None
491
+ self.__heading = kwargs.get("heading")
492
+ _Validators._validate_input_columns_not_empty(self.__heading, "heading")
493
+ self.__params = kwargs
494
+
495
+ def _execute_query(self):
496
+ """
497
+ DESCRIPTION:
498
+ Internal function to execute the Plot Query.
499
+
500
+ EXAMPLES:
501
+ >>> _plot._execute_query()
502
+ """
503
+ if self._plot_image_data is None:
504
+ query = self._get_query()
505
+
506
+ res = get_connection().execute(text(query))
507
+
508
+ self._plot_image_data = res.fetchone().IMAGE
509
+
510
+ def show_query(self):
511
+ """
512
+ DESCRIPTION:
513
+ Function to display the query used to generate Plot.
514
+
515
+ EXAMPLES:
516
+ # Example - Create a DataFrame and plot the data using DataFrame.plot.
517
+ # And, display the query.
518
+ # Load the data.
519
+ >>> load_example_data("movavg", "ibm_stock")
520
+ # Create DataFrame.
521
+ >>> ibm_stock = DataFrame("ibm_stock")
522
+ # Display the query.
523
+ >>> plot = ibm_stock.plot(x=ibm_stock.period, y=ibm_stock.stockprice)
524
+ >>> plot.show_query()
525
+ """
526
+ return self._get_query()
527
+
528
+ def show(self):
529
+ """
530
+ DESCRIPTION:
531
+ Function to show the plot in the console. The function displays plot
532
+ in either on the console or in a new window based on the option 'inline_plot'.
533
+ * If the console is IPython console, the plot is displayed on the console
534
+ when the option 'inline_plot' is set to True. If the option 'inline_plot'
535
+ is set to False, plot is displayed on new window.
536
+ * If the console is regular Python console and not an IPython console,
537
+ then plot is displayed on a new window irrespective of option 'inline_plot'.
538
+ Note:
539
+ Displaying the plot in a new window requires an additional Python module
540
+ tkinter. One needs to install it manually since teradataml does not install
541
+ it by default.
542
+
543
+ EXAMPLES:
544
+ # Example 1 - Generate a line plot and display it in the console.
545
+ >>> load_example_data("movavg", "ibm_stock")
546
+ # Set the option to display the plot in the console.
547
+ >>> from teradataml import configure
548
+ >>> configure.inline_plot = True
549
+ # Create DataFrame.
550
+ >>> ibm_stock = DataFrame("ibm_stock")
551
+ # Generate the plot
552
+ >>> plot = ibm_stock.plot(x=ibm_stock.period, y=ibm_stock.stockprice)
553
+ >>> plot.show()
554
+
555
+ # Example 2 - Generate a bar plot and display it in a new window.
556
+ >>> load_example_data("movavg", "ibm_stock")
557
+ # Set the option to display the plot in a new window.
558
+ >>> from teradataml import configure
559
+ >>> configure.inline_plot = False
560
+ # Create DataFrame.
561
+ >>> ibm_stock = DataFrame("ibm_stock")
562
+ # Generate the plot
563
+ >>> plot = ibm_stock.plot(x=ibm_stock.period, y=ibm_stock.stockprice, kind="bar")
564
+ >>> plot.show()
565
+ """
566
+ query = self._get_query()
567
+
568
+ self._execute_query()
569
+
570
+ # If user choose for inline plot, then check if Python console supports
571
+ # inline plotting or not. If not supports, then go for outline plot.
572
+ if configure.inline_plot is None:
573
+ try:
574
+ if __IPYTHON__:
575
+ self._show_inline_plot()
576
+ except NameError:
577
+ self._show_outline_plot()
578
+ else:
579
+ self._show_inline_plot() if configure.inline_plot else self._show_outline_plot()
580
+
581
+ def _repr_html_(self):
582
+ """
583
+ DESCRIPTION:
584
+ Function to display the Plot in for iPython rich display.
585
+ """
586
+ self.show()
587
+
588
+ def _show_inline_plot(self):
589
+ """
590
+ DESCRIPTION:
591
+ Internal function to display the plot in the console.
592
+
593
+ EXAMPLES:
594
+ # Example - Create a DataFrame and plot the data using DataFrame.plot.
595
+ # And, display it in same console.
596
+ # Load the data.
597
+ >>> load_example_data("movavg", "ibm_stock")
598
+ # Create DataFrame.
599
+ >>> ibm_stock = DataFrame("ibm_stock")
600
+ # Generate plot and display it in console.
601
+ >>> plot = ibm_stock.plot(x=ibm_stock.period, y=ibm_stock.stockprice)
602
+ >>> plot._show_inline_plot()
603
+ """
604
+ from IPython.display import display as dsp, Image
605
+ dsp(Image(data=self._plot_image_data))
606
+
607
+ def _show_outline_plot(self):
608
+ """
609
+ DESCRIPTION:
610
+ Internal function to display the plot in a new window.
611
+
612
+ EXAMPLES:
613
+ # Example - Create a DataFrame and plot the data using DataFrame.plot.
614
+ # And, display it in a new window.
615
+ # Load the data.
616
+ >>> load_example_data("movavg", "ibm_stock")
617
+ # Create DataFrame.
618
+ >>> ibm_stock = DataFrame("ibm_stock")
619
+ # Generate plot and display it in console.
620
+ >>> plot = ibm_stock.plot(x=ibm_stock.period, y=ibm_stock.stockprice)
621
+ >>> plot._show_outline_plot()
622
+ """
623
+ try:
624
+ import tkinter as tk
625
+ root = tk.Tk()
626
+ file_format = self._figure.image_type
627
+ canvas = tk.Canvas(width=self._figure.width, height=self._figure.height)
628
+ canvas.pack()
629
+ img = tk.PhotoImage(data=self._plot_image_data, format=file_format)
630
+ canvas.create_image(0, 0, anchor=tk.NW, image=img)
631
+ root.wm_iconbitmap(os.path.join(UtilFuncs._get_tdml_directory(), "data", "teradata_icon.ico"))
632
+ root.wm_title('teradataml plot')
633
+ root.mainloop()
634
+ except ModuleNotFoundError:
635
+ print("Install module 'tkinter' to display the plot.")
636
+
637
+ def _get_query(self):
638
+ """
639
+ DESCRIPTION:
640
+ Internal function to get the query.
641
+
642
+ EXAMPLES:
643
+ >>> plot._get_query()
644
+ """
645
+
646
+ if not self._query:
647
+
648
+ from teradataml.plot.query_generator import PlotQueryGenerator
649
+ _series_spec = []
650
+ _plot_params = []
651
+ func_other_args = {}
652
+
653
+ _id = 1
654
+ # Every figure has one or more axis. And, every axis contains
655
+ # plot data and axis parameters.
656
+ for axis in self._figure.get_axes():
657
+
658
+ if axis._has_data():
659
+ _virtual_table, _spec, _plot_param = axis._get_plot_data()
660
+ _plot_param["ID"] = _id
661
+ _series_spec.append(_spec)
662
+
663
+ # Update the wiggle parameters.
664
+ if self.kind.lower() == "wiggle":
665
+ _wiggle_params = {}
666
+ if self.wiggle_fill is not None:
667
+ _wiggle_params["FILL"] = 1 if self.wiggle_fill else 0
668
+
669
+ if self.wiggle_scale is not None:
670
+ _wiggle_params["SCALE"] = self.wiggle_scale
671
+
672
+ if _wiggle_params:
673
+ _plot_param["WIGGLE"] = _wiggle_params
674
+
675
+ _plot_params.append(_plot_param)
676
+ _id = _id + 1
677
+
678
+ dpi = self.__params.get("figdpi") if self.__params.get("figdpi") else self._figure.dpi
679
+ height = self.__params.get("figsize")[1] if self.__params.get("figsize") else self._figure.height
680
+ width = self.__params.get("figsize")[0] if self.__params.get("figsize") else self._figure.width
681
+ type_ = self.__params.get("figtype") if self.__params.get("figtype") else self._figure.image_type
682
+
683
+ # teradataml maintains layout as rows and columns. However,
684
+ # SQL maintains it as columns and rows. Hence, reverse the layout.
685
+ layout = self._figure.layout[::-1]
686
+ func_other_args.update({"LAYOUT": layout,
687
+ "PLOTS": _plot_params,
688
+ "DPI": dpi,
689
+ "IMAGE": "'{}'".format(type_),
690
+ "WIDTH": width,
691
+ "HEIGHT": height
692
+ })
693
+
694
+ heading = self.__heading if self.__heading is not None else self._figure.heading
695
+ if heading:
696
+ func_other_args["TITLE"] = "'{}'".format(heading)
697
+
698
+ query_generator = PlotQueryGenerator(function_name="TD_PLOT",
699
+ func_input_args=", \n".join(_series_spec),
700
+ func_input_filter_expr_args=None,
701
+ func_output_args=None,
702
+ func_other_args=func_other_args)
703
+
704
+ self._query = query_generator._get_display_uaf()
705
+
706
+ return self._query
707
+
708
+ def save(self, file_name, dir=None):
709
+ """
710
+ Function to save the plot to an image.
711
+
712
+ PARAMETERS:
713
+ file_name:
714
+ Required Argument.
715
+ Specifies the name of the image file.
716
+ Note:
717
+ Do not mention the extension for the filename.
718
+ Types: str
719
+
720
+ dir:
721
+ Optional Argument.
722
+ Specifies the absolute path of the directory to store the plot image.
723
+ Types: str
724
+
725
+ RAISES:
726
+ TeradataMlException
727
+
728
+ EXAMPLES:
729
+ # Example 1: Generate a scatter plot and store it in current directory.
730
+ # Load the data.
731
+ >>> load_example_data("movavg", "ibm_stock")
732
+ # Create DataFrame.
733
+ >>> ibm_stock = DataFrame("ibm_stock")
734
+ # Generate plot.
735
+ >>> plot = ibm_stock.plot(x=ibm_stock.period, y=ibm_stock.stockprice)
736
+ >>> plot.save("example1")
737
+
738
+ # Example 2: Generate a scatter plot and store it in temp directory.
739
+ # Load the data.
740
+ >>> load_example_data("movavg", "ibm_stock")
741
+ # Create DataFrame.
742
+ >>> ibm_stock = DataFrame("ibm_stock")
743
+ # Generate plot.
744
+ >>> plot = ibm_stock.plot(x=ibm_stock.period, y=ibm_stock.stockprice)
745
+ >>> # Store in temp directory.
746
+ >>> from tempfile import gettempdir
747
+ >>> plot.save("example2", dir=gettempdir())
748
+ """
749
+ # TODO: Check for the existance of 'dir'.
750
+ type_ = self.__params.get("figtype") if self.__params.get("figtype") else self._figure.image_type
751
+ file_name = "{}.{}".format(file_name, type_)
752
+ if dir:
753
+ file_name = os.path.join(dir, file_name)
754
+
755
+ # Execute the query if it is not executed already.
756
+ self._execute_query()
757
+
758
+ # Store the image.
759
+ with open(file_name, "wb") as fp:
760
+ fp.write(self._plot_image_data)