teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (1285) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +1864 -1640
  4. teradataml/__init__.py +70 -60
  5. teradataml/_version.py +11 -11
  6. teradataml/analytics/Transformations.py +2995 -2995
  7. teradataml/analytics/__init__.py +81 -83
  8. teradataml/analytics/analytic_function_executor.py +2013 -2010
  9. teradataml/analytics/analytic_query_generator.py +958 -958
  10. teradataml/analytics/byom/H2OPredict.py +514 -514
  11. teradataml/analytics/byom/PMMLPredict.py +437 -437
  12. teradataml/analytics/byom/__init__.py +14 -14
  13. teradataml/analytics/json_parser/__init__.py +130 -130
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
  15. teradataml/analytics/json_parser/json_store.py +191 -191
  16. teradataml/analytics/json_parser/metadata.py +1637 -1637
  17. teradataml/analytics/json_parser/utils.py +804 -803
  18. teradataml/analytics/meta_class.py +196 -196
  19. teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
  21. teradataml/analytics/sqle/__init__.py +97 -110
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
  24. teradataml/analytics/table_operator/__init__.py +10 -10
  25. teradataml/analytics/uaf/__init__.py +63 -63
  26. teradataml/analytics/utils.py +693 -692
  27. teradataml/analytics/valib.py +1603 -1600
  28. teradataml/automl/__init__.py +1628 -0
  29. teradataml/automl/custom_json_utils.py +1270 -0
  30. teradataml/automl/data_preparation.py +993 -0
  31. teradataml/automl/data_transformation.py +727 -0
  32. teradataml/automl/feature_engineering.py +1648 -0
  33. teradataml/automl/feature_exploration.py +547 -0
  34. teradataml/automl/model_evaluation.py +163 -0
  35. teradataml/automl/model_training.py +887 -0
  36. teradataml/catalog/__init__.py +1 -3
  37. teradataml/catalog/byom.py +1759 -1716
  38. teradataml/catalog/function_argument_mapper.py +859 -861
  39. teradataml/catalog/model_cataloging_utils.py +491 -1510
  40. teradataml/clients/pkce_client.py +481 -481
  41. teradataml/common/aed_utils.py +6 -2
  42. teradataml/common/bulk_exposed_utils.py +111 -111
  43. teradataml/common/constants.py +1433 -1441
  44. teradataml/common/deprecations.py +160 -0
  45. teradataml/common/exceptions.py +73 -73
  46. teradataml/common/formula.py +742 -742
  47. teradataml/common/garbagecollector.py +592 -635
  48. teradataml/common/messagecodes.py +422 -431
  49. teradataml/common/messages.py +227 -231
  50. teradataml/common/sqlbundle.py +693 -693
  51. teradataml/common/td_coltype_code_to_tdtype.py +48 -48
  52. teradataml/common/utils.py +2418 -2500
  53. teradataml/common/warnings.py +25 -25
  54. teradataml/common/wrapper_utils.py +1 -110
  55. teradataml/config/dummy_file1.cfg +4 -4
  56. teradataml/config/dummy_file2.cfg +2 -2
  57. teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
  58. teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
  59. teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
  60. teradataml/context/aed_context.py +217 -217
  61. teradataml/context/context.py +1071 -999
  62. teradataml/data/A_loan.csv +19 -19
  63. teradataml/data/BINARY_REALS_LEFT.csv +11 -11
  64. teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
  65. teradataml/data/B_loan.csv +49 -49
  66. teradataml/data/BuoyData2.csv +17 -17
  67. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
  68. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
  69. teradataml/data/Convolve2RealsLeft.csv +5 -5
  70. teradataml/data/Convolve2RealsRight.csv +5 -5
  71. teradataml/data/Convolve2ValidLeft.csv +11 -11
  72. teradataml/data/Convolve2ValidRight.csv +11 -11
  73. teradataml/data/DFFTConv_Real_8_8.csv +65 -65
  74. teradataml/data/Orders1_12mf.csv +24 -24
  75. teradataml/data/Pi_loan.csv +7 -7
  76. teradataml/data/SMOOTHED_DATA.csv +7 -7
  77. teradataml/data/TestDFFT8.csv +9 -9
  78. teradataml/data/TestRiver.csv +109 -109
  79. teradataml/data/Traindata.csv +28 -28
  80. teradataml/data/acf.csv +17 -17
  81. teradataml/data/adaboost_example.json +34 -34
  82. teradataml/data/adaboostpredict_example.json +24 -24
  83. teradataml/data/additional_table.csv +10 -10
  84. teradataml/data/admissions_test.csv +21 -21
  85. teradataml/data/admissions_train.csv +41 -41
  86. teradataml/data/admissions_train_nulls.csv +41 -41
  87. teradataml/data/ageandheight.csv +13 -13
  88. teradataml/data/ageandpressure.csv +31 -31
  89. teradataml/data/antiselect_example.json +36 -36
  90. teradataml/data/antiselect_input.csv +8 -8
  91. teradataml/data/antiselect_input_mixed_case.csv +8 -8
  92. teradataml/data/applicant_external.csv +6 -6
  93. teradataml/data/applicant_reference.csv +6 -6
  94. teradataml/data/arima_example.json +9 -9
  95. teradataml/data/assortedtext_input.csv +8 -8
  96. teradataml/data/attribution_example.json +33 -33
  97. teradataml/data/attribution_sample_table.csv +27 -27
  98. teradataml/data/attribution_sample_table1.csv +6 -6
  99. teradataml/data/attribution_sample_table2.csv +11 -11
  100. teradataml/data/bank_churn.csv +10001 -0
  101. teradataml/data/bank_web_clicks1.csv +42 -42
  102. teradataml/data/bank_web_clicks2.csv +91 -91
  103. teradataml/data/bank_web_url.csv +85 -85
  104. teradataml/data/barrier.csv +2 -2
  105. teradataml/data/barrier_new.csv +3 -3
  106. teradataml/data/betweenness_example.json +13 -13
  107. teradataml/data/bin_breaks.csv +8 -8
  108. teradataml/data/bin_fit_ip.csv +3 -3
  109. teradataml/data/binary_complex_left.csv +11 -11
  110. teradataml/data/binary_complex_right.csv +11 -11
  111. teradataml/data/binary_matrix_complex_left.csv +21 -21
  112. teradataml/data/binary_matrix_complex_right.csv +21 -21
  113. teradataml/data/binary_matrix_real_left.csv +21 -21
  114. teradataml/data/binary_matrix_real_right.csv +21 -21
  115. teradataml/data/blood2ageandweight.csv +26 -26
  116. teradataml/data/bmi.csv +501 -0
  117. teradataml/data/boston.csv +507 -507
  118. teradataml/data/buoydata_mix.csv +11 -11
  119. teradataml/data/burst_data.csv +5 -5
  120. teradataml/data/burst_example.json +20 -20
  121. teradataml/data/byom_example.json +17 -17
  122. teradataml/data/bytes_table.csv +3 -3
  123. teradataml/data/cal_housing_ex_raw.csv +70 -70
  124. teradataml/data/callers.csv +7 -7
  125. teradataml/data/calls.csv +10 -10
  126. teradataml/data/cars_hist.csv +33 -33
  127. teradataml/data/cat_table.csv +24 -24
  128. teradataml/data/ccm_example.json +31 -31
  129. teradataml/data/ccm_input.csv +91 -91
  130. teradataml/data/ccm_input2.csv +13 -13
  131. teradataml/data/ccmexample.csv +101 -101
  132. teradataml/data/ccmprepare_example.json +8 -8
  133. teradataml/data/ccmprepare_input.csv +91 -91
  134. teradataml/data/cfilter_example.json +12 -12
  135. teradataml/data/changepointdetection_example.json +18 -18
  136. teradataml/data/changepointdetectionrt_example.json +8 -8
  137. teradataml/data/chi_sq.csv +2 -2
  138. teradataml/data/churn_data.csv +14 -14
  139. teradataml/data/churn_emission.csv +35 -35
  140. teradataml/data/churn_initial.csv +3 -3
  141. teradataml/data/churn_state_transition.csv +5 -5
  142. teradataml/data/citedges_2.csv +745 -745
  143. teradataml/data/citvertices_2.csv +1210 -1210
  144. teradataml/data/clicks2.csv +16 -16
  145. teradataml/data/clickstream.csv +12 -12
  146. teradataml/data/clickstream1.csv +11 -11
  147. teradataml/data/closeness_example.json +15 -15
  148. teradataml/data/complaints.csv +21 -21
  149. teradataml/data/complaints_mini.csv +3 -3
  150. teradataml/data/complaints_testtoken.csv +224 -224
  151. teradataml/data/complaints_tokens_test.csv +353 -353
  152. teradataml/data/complaints_traintoken.csv +472 -472
  153. teradataml/data/computers_category.csv +1001 -1001
  154. teradataml/data/computers_test1.csv +1252 -1252
  155. teradataml/data/computers_train1.csv +5009 -5009
  156. teradataml/data/computers_train1_clustered.csv +5009 -5009
  157. teradataml/data/confusionmatrix_example.json +9 -9
  158. teradataml/data/conversion_event_table.csv +3 -3
  159. teradataml/data/corr_input.csv +17 -17
  160. teradataml/data/correlation_example.json +11 -11
  161. teradataml/data/coxhazardratio_example.json +39 -39
  162. teradataml/data/coxph_example.json +15 -15
  163. teradataml/data/coxsurvival_example.json +28 -28
  164. teradataml/data/cpt.csv +41 -41
  165. teradataml/data/credit_ex_merged.csv +45 -45
  166. teradataml/data/customer_loyalty.csv +301 -301
  167. teradataml/data/customer_loyalty_newseq.csv +31 -31
  168. teradataml/data/dataframe_example.json +146 -146
  169. teradataml/data/decisionforest_example.json +37 -37
  170. teradataml/data/decisionforestpredict_example.json +38 -38
  171. teradataml/data/decisiontree_example.json +21 -21
  172. teradataml/data/decisiontreepredict_example.json +45 -45
  173. teradataml/data/dfft2_size4_real.csv +17 -17
  174. teradataml/data/dfft2_test_matrix16.csv +17 -17
  175. teradataml/data/dfft2conv_real_4_4.csv +65 -65
  176. teradataml/data/diabetes.csv +443 -443
  177. teradataml/data/diabetes_test.csv +89 -89
  178. teradataml/data/dict_table.csv +5 -5
  179. teradataml/data/docperterm_table.csv +4 -4
  180. teradataml/data/docs/__init__.py +1 -1
  181. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
  182. teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
  183. teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
  184. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
  185. teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
  186. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
  187. teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
  188. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
  189. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
  190. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
  191. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
  192. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
  193. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
  194. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
  195. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
  196. teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
  197. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
  198. teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
  199. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
  200. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
  201. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
  202. teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
  203. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
  204. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
  205. teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
  206. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
  207. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
  208. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
  209. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +132 -132
  210. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +103 -103
  211. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
  212. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +101 -101
  213. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
  214. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
  215. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
  216. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
  217. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
  218. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
  219. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
  220. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
  221. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
  222. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
  223. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
  224. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
  225. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
  226. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
  227. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
  228. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
  229. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
  230. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
  231. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
  232. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
  233. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
  234. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +126 -126
  235. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
  236. teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
  237. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
  238. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
  239. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
  240. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
  241. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
  242. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
  243. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +243 -243
  244. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
  245. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
  246. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
  247. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
  248. teradataml/data/docs/sqle/docs_17_20/FTest.py +160 -160
  249. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
  250. teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
  251. teradataml/data/docs/sqle/docs_17_20/GLM.py +380 -380
  252. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
  253. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
  254. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
  255. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +123 -123
  256. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
  257. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
  258. teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
  259. teradataml/data/docs/sqle/docs_17_20/KMeans.py +204 -204
  260. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
  261. teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
  262. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
  263. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
  264. teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
  265. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
  266. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
  267. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
  268. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +117 -117
  269. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
  270. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
  271. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
  272. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
  273. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +225 -225
  274. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +115 -115
  275. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
  276. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
  277. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
  278. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
  279. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
  280. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
  281. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
  282. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
  283. teradataml/data/docs/sqle/docs_17_20/ROC.py +163 -163
  284. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
  285. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
  286. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
  287. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
  288. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
  289. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
  290. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
  291. teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
  292. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +202 -202
  293. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
  294. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +197 -197
  295. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +110 -109
  296. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
  297. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
  298. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
  299. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
  300. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
  301. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
  302. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
  303. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
  304. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +171 -171
  305. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
  306. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
  307. teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
  308. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
  309. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
  310. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
  311. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
  312. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
  313. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
  314. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
  315. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
  316. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +353 -353
  317. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +275 -275
  318. teradataml/data/docs/sqle/docs_17_20/ZTest.py +155 -155
  319. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
  320. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
  321. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
  322. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
  323. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
  324. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
  325. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
  326. teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
  327. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
  328. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
  329. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
  330. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
  331. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
  332. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
  333. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
  334. teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
  335. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
  336. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
  337. teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
  338. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
  339. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
  340. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
  341. teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
  342. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
  343. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
  344. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
  345. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
  346. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
  347. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
  348. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
  349. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
  350. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
  351. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
  352. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
  353. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
  354. teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
  355. teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
  356. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
  357. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
  358. teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
  359. teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
  360. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
  361. teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
  362. teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
  363. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
  364. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
  365. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
  366. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
  367. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
  368. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
  369. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
  370. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
  371. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
  372. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
  373. teradataml/data/dtw_example.json +17 -17
  374. teradataml/data/dtw_t1.csv +11 -11
  375. teradataml/data/dtw_t2.csv +4 -4
  376. teradataml/data/dwt2d_example.json +15 -15
  377. teradataml/data/dwt_example.json +14 -14
  378. teradataml/data/dwt_filter_dim.csv +5 -5
  379. teradataml/data/emission.csv +9 -9
  380. teradataml/data/emp_table_by_dept.csv +19 -19
  381. teradataml/data/employee_info.csv +4 -4
  382. teradataml/data/employee_table.csv +6 -6
  383. teradataml/data/excluding_event_table.csv +2 -2
  384. teradataml/data/finance_data.csv +6 -6
  385. teradataml/data/finance_data2.csv +61 -61
  386. teradataml/data/finance_data3.csv +93 -93
  387. teradataml/data/fish.csv +160 -0
  388. teradataml/data/fm_blood2ageandweight.csv +26 -26
  389. teradataml/data/fmeasure_example.json +11 -11
  390. teradataml/data/followers_leaders.csv +10 -10
  391. teradataml/data/fpgrowth_example.json +12 -12
  392. teradataml/data/frequentpaths_example.json +29 -29
  393. teradataml/data/friends.csv +9 -9
  394. teradataml/data/fs_input.csv +33 -33
  395. teradataml/data/fs_input1.csv +33 -33
  396. teradataml/data/genData.csv +513 -513
  397. teradataml/data/geodataframe_example.json +39 -39
  398. teradataml/data/glass_types.csv +215 -0
  399. teradataml/data/glm_admissions_model.csv +12 -12
  400. teradataml/data/glm_example.json +29 -29
  401. teradataml/data/glml1l2_example.json +28 -28
  402. teradataml/data/glml1l2predict_example.json +54 -54
  403. teradataml/data/glmpredict_example.json +54 -54
  404. teradataml/data/gq_t1.csv +21 -21
  405. teradataml/data/hconvolve_complex_right.csv +5 -5
  406. teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
  407. teradataml/data/histogram_example.json +11 -11
  408. teradataml/data/hmmdecoder_example.json +78 -78
  409. teradataml/data/hmmevaluator_example.json +24 -24
  410. teradataml/data/hmmsupervised_example.json +10 -10
  411. teradataml/data/hmmunsupervised_example.json +7 -7
  412. teradataml/data/house_values.csv +12 -12
  413. teradataml/data/house_values2.csv +13 -13
  414. teradataml/data/housing_cat.csv +7 -7
  415. teradataml/data/housing_data.csv +9 -9
  416. teradataml/data/housing_test.csv +47 -47
  417. teradataml/data/housing_test_binary.csv +47 -47
  418. teradataml/data/housing_train.csv +493 -493
  419. teradataml/data/housing_train_attribute.csv +4 -4
  420. teradataml/data/housing_train_binary.csv +437 -437
  421. teradataml/data/housing_train_parameter.csv +2 -2
  422. teradataml/data/housing_train_response.csv +493 -493
  423. teradataml/data/ibm_stock.csv +370 -370
  424. teradataml/data/ibm_stock1.csv +370 -370
  425. teradataml/data/identitymatch_example.json +21 -21
  426. teradataml/data/idf_table.csv +4 -4
  427. teradataml/data/impressions.csv +101 -101
  428. teradataml/data/inflation.csv +21 -21
  429. teradataml/data/initial.csv +3 -3
  430. teradataml/data/insect_sprays.csv +12 -12
  431. teradataml/data/insurance.csv +1339 -1339
  432. teradataml/data/interpolator_example.json +12 -12
  433. teradataml/data/iris_altinput.csv +481 -481
  434. teradataml/data/iris_attribute_output.csv +8 -8
  435. teradataml/data/iris_attribute_test.csv +121 -121
  436. teradataml/data/iris_attribute_train.csv +481 -481
  437. teradataml/data/iris_category_expect_predict.csv +31 -31
  438. teradataml/data/iris_data.csv +151 -0
  439. teradataml/data/iris_input.csv +151 -151
  440. teradataml/data/iris_response_train.csv +121 -121
  441. teradataml/data/iris_test.csv +31 -31
  442. teradataml/data/iris_train.csv +121 -121
  443. teradataml/data/join_table1.csv +4 -4
  444. teradataml/data/join_table2.csv +4 -4
  445. teradataml/data/jsons/anly_function_name.json +6 -6
  446. teradataml/data/jsons/byom/dataikupredict.json +147 -147
  447. teradataml/data/jsons/byom/datarobotpredict.json +146 -146
  448. teradataml/data/jsons/byom/h2opredict.json +194 -194
  449. teradataml/data/jsons/byom/onnxpredict.json +186 -186
  450. teradataml/data/jsons/byom/pmmlpredict.json +146 -146
  451. teradataml/data/jsons/paired_functions.json +435 -435
  452. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
  453. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
  454. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
  455. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
  456. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
  457. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
  458. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
  459. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
  460. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
  461. teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
  462. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
  463. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
  464. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
  465. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
  466. teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
  467. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
  468. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
  469. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
  470. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
  471. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
  472. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
  473. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
  474. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
  475. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
  476. teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
  477. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
  478. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
  479. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
  480. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
  481. teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
  482. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
  483. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
  484. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
  485. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
  486. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
  487. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
  488. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
  489. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
  490. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
  491. teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
  492. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
  493. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
  494. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
  495. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
  496. teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
  497. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
  498. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
  499. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
  500. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
  501. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
  502. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
  503. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
  504. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
  505. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
  506. teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
  507. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
  508. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
  509. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
  510. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
  511. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
  512. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
  513. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
  514. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
  515. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
  516. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
  517. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
  518. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
  519. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
  520. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
  521. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
  522. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
  523. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
  524. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
  525. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
  526. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
  527. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
  528. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
  529. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
  530. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
  531. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
  532. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
  533. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
  534. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
  535. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
  536. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
  537. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
  538. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
  539. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
  540. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
  541. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
  542. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
  543. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
  544. teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
  545. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
  546. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
  547. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
  548. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
  549. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
  550. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
  551. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
  552. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
  553. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
  554. teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
  555. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
  556. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
  557. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
  558. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +76 -76
  559. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
  560. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
  561. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
  562. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
  563. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
  564. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
  565. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
  566. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
  567. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
  568. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
  569. teradataml/data/jsons/sqle/17.20/TD_FTest.json +186 -186
  570. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
  571. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
  572. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
  573. teradataml/data/jsons/sqle/17.20/TD_GLM.json +431 -431
  574. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +125 -125
  575. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
  576. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
  577. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +91 -91
  578. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
  579. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
  580. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
  581. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +211 -211
  582. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
  583. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
  584. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
  585. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +101 -101
  586. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
  587. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
  588. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
  589. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
  590. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
  591. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
  592. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
  593. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
  594. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
  595. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
  596. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
  597. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
  598. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
  599. teradataml/data/jsons/sqle/17.20/TD_ROC.json +177 -177
  600. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
  601. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
  602. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
  603. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
  604. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
  605. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
  606. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
  607. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
  608. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +124 -124
  609. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +156 -156
  610. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +70 -70
  611. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
  612. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
  613. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
  614. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
  615. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
  616. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
  617. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
  618. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
  619. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
  620. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
  621. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
  622. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
  623. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
  624. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
  625. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +312 -312
  626. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +182 -182
  627. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +170 -170
  628. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
  629. teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
  630. teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
  631. teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
  632. teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
  633. teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
  634. teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
  635. teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
  636. teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
  637. teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
  638. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
  639. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
  640. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
  641. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
  642. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
  643. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
  644. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
  645. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
  646. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
  647. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
  648. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
  649. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
  650. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
  651. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
  652. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
  653. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
  654. teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
  655. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
  656. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
  657. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
  658. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
  659. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
  660. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
  661. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
  662. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
  663. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
  664. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
  665. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
  666. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
  667. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
  668. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
  669. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
  670. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
  671. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
  672. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
  673. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
  674. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
  675. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
  676. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
  677. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
  678. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
  679. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
  680. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
  681. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
  682. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
  683. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
  684. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
  685. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
  686. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
  687. teradataml/data/kmeans_example.json +17 -17
  688. teradataml/data/kmeans_us_arrests_data.csv +0 -0
  689. teradataml/data/knn_example.json +18 -18
  690. teradataml/data/knnrecommender_example.json +6 -6
  691. teradataml/data/knnrecommenderpredict_example.json +12 -12
  692. teradataml/data/lar_example.json +17 -17
  693. teradataml/data/larpredict_example.json +30 -30
  694. teradataml/data/lc_new_predictors.csv +5 -5
  695. teradataml/data/lc_new_reference.csv +9 -9
  696. teradataml/data/lda_example.json +8 -8
  697. teradataml/data/ldainference_example.json +14 -14
  698. teradataml/data/ldatopicsummary_example.json +8 -8
  699. teradataml/data/levendist_input.csv +13 -13
  700. teradataml/data/levenshteindistance_example.json +10 -10
  701. teradataml/data/linreg_example.json +9 -9
  702. teradataml/data/load_example_data.py +326 -323
  703. teradataml/data/loan_prediction.csv +295 -295
  704. teradataml/data/lungcancer.csv +138 -138
  705. teradataml/data/mappingdata.csv +12 -12
  706. teradataml/data/milk_timeseries.csv +157 -157
  707. teradataml/data/min_max_titanic.csv +4 -4
  708. teradataml/data/minhash_example.json +6 -6
  709. teradataml/data/ml_ratings.csv +7547 -7547
  710. teradataml/data/ml_ratings_10.csv +2445 -2445
  711. teradataml/data/model1_table.csv +5 -5
  712. teradataml/data/model2_table.csv +5 -5
  713. teradataml/data/models/iris_db_glm_model.pmml +56 -56
  714. teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
  715. teradataml/data/modularity_example.json +12 -12
  716. teradataml/data/movavg_example.json +7 -7
  717. teradataml/data/mtx1.csv +7 -7
  718. teradataml/data/mtx2.csv +13 -13
  719. teradataml/data/multi_model_classification.csv +401 -0
  720. teradataml/data/multi_model_regression.csv +401 -0
  721. teradataml/data/mvdfft8.csv +9 -9
  722. teradataml/data/naivebayes_example.json +9 -9
  723. teradataml/data/naivebayespredict_example.json +19 -19
  724. teradataml/data/naivebayestextclassifier2_example.json +6 -6
  725. teradataml/data/naivebayestextclassifier_example.json +8 -8
  726. teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
  727. teradataml/data/name_Find_configure.csv +10 -10
  728. teradataml/data/namedentityfinder_example.json +14 -14
  729. teradataml/data/namedentityfinderevaluator_example.json +10 -10
  730. teradataml/data/namedentityfindertrainer_example.json +6 -6
  731. teradataml/data/nb_iris_input_test.csv +31 -31
  732. teradataml/data/nb_iris_input_train.csv +121 -121
  733. teradataml/data/nbp_iris_model.csv +13 -13
  734. teradataml/data/ner_extractor_text.csv +2 -2
  735. teradataml/data/ner_sports_test2.csv +29 -29
  736. teradataml/data/ner_sports_train.csv +501 -501
  737. teradataml/data/nerevaluator_example.json +5 -5
  738. teradataml/data/nerextractor_example.json +18 -18
  739. teradataml/data/nermem_sports_test.csv +17 -17
  740. teradataml/data/nermem_sports_train.csv +50 -50
  741. teradataml/data/nertrainer_example.json +6 -6
  742. teradataml/data/ngrams_example.json +6 -6
  743. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
  744. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
  745. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
  746. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
  747. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
  748. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
  749. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
  750. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
  751. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
  752. teradataml/data/npath_example.json +23 -23
  753. teradataml/data/ntree_example.json +14 -14
  754. teradataml/data/numeric_strings.csv +4 -4
  755. teradataml/data/numerics.csv +4 -4
  756. teradataml/data/ocean_buoy.csv +17 -17
  757. teradataml/data/ocean_buoy2.csv +17 -17
  758. teradataml/data/ocean_buoys.csv +27 -27
  759. teradataml/data/ocean_buoys2.csv +10 -10
  760. teradataml/data/ocean_buoys_nonpti.csv +28 -28
  761. teradataml/data/ocean_buoys_seq.csv +29 -29
  762. teradataml/data/openml_example.json +63 -0
  763. teradataml/data/optional_event_table.csv +4 -4
  764. teradataml/data/orders1.csv +11 -11
  765. teradataml/data/orders1_12.csv +12 -12
  766. teradataml/data/orders_ex.csv +4 -4
  767. teradataml/data/pack_example.json +8 -8
  768. teradataml/data/package_tracking.csv +19 -19
  769. teradataml/data/package_tracking_pti.csv +18 -18
  770. teradataml/data/pagerank_example.json +13 -13
  771. teradataml/data/paragraphs_input.csv +6 -6
  772. teradataml/data/pathanalyzer_example.json +7 -7
  773. teradataml/data/pathgenerator_example.json +7 -7
  774. teradataml/data/phrases.csv +7 -7
  775. teradataml/data/pivot_example.json +8 -8
  776. teradataml/data/pivot_input.csv +22 -22
  777. teradataml/data/playerRating.csv +31 -31
  778. teradataml/data/postagger_example.json +6 -6
  779. teradataml/data/posttagger_output.csv +44 -44
  780. teradataml/data/production_data.csv +16 -16
  781. teradataml/data/production_data2.csv +7 -7
  782. teradataml/data/randomsample_example.json +31 -31
  783. teradataml/data/randomwalksample_example.json +8 -8
  784. teradataml/data/rank_table.csv +6 -6
  785. teradataml/data/ref_mobile_data.csv +4 -4
  786. teradataml/data/ref_mobile_data_dense.csv +2 -2
  787. teradataml/data/ref_url.csv +17 -17
  788. teradataml/data/restaurant_reviews.csv +7 -7
  789. teradataml/data/river_data.csv +145 -145
  790. teradataml/data/roc_example.json +7 -7
  791. teradataml/data/roc_input.csv +101 -101
  792. teradataml/data/rule_inputs.csv +6 -6
  793. teradataml/data/rule_table.csv +2 -2
  794. teradataml/data/sales.csv +7 -7
  795. teradataml/data/sales_transaction.csv +501 -501
  796. teradataml/data/salesdata.csv +342 -342
  797. teradataml/data/sample_cities.csv +2 -2
  798. teradataml/data/sample_shapes.csv +10 -10
  799. teradataml/data/sample_streets.csv +2 -2
  800. teradataml/data/sampling_example.json +15 -15
  801. teradataml/data/sax_example.json +8 -8
  802. teradataml/data/scale_example.json +23 -23
  803. teradataml/data/scale_housing.csv +11 -11
  804. teradataml/data/scale_housing_test.csv +6 -6
  805. teradataml/data/scale_stat.csv +11 -11
  806. teradataml/data/scalebypartition_example.json +13 -13
  807. teradataml/data/scalemap_example.json +13 -13
  808. teradataml/data/scalesummary_example.json +12 -12
  809. teradataml/data/score_category.csv +101 -101
  810. teradataml/data/score_summary.csv +4 -4
  811. teradataml/data/script_example.json +9 -9
  812. teradataml/data/scripts/deploy_script.py +65 -0
  813. teradataml/data/scripts/mapper.R +20 -0
  814. teradataml/data/scripts/mapper.py +15 -15
  815. teradataml/data/scripts/mapper_replace.py +15 -15
  816. teradataml/data/scripts/sklearn/__init__.py +0 -0
  817. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  818. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  819. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  820. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  821. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  822. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  823. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  824. teradataml/data/seeds.csv +10 -10
  825. teradataml/data/sentenceextractor_example.json +6 -6
  826. teradataml/data/sentiment_extract_input.csv +11 -11
  827. teradataml/data/sentiment_train.csv +16 -16
  828. teradataml/data/sentiment_word.csv +20 -20
  829. teradataml/data/sentiment_word_input.csv +19 -19
  830. teradataml/data/sentimentextractor_example.json +24 -24
  831. teradataml/data/sentimenttrainer_example.json +8 -8
  832. teradataml/data/sequence_table.csv +10 -10
  833. teradataml/data/seriessplitter_example.json +7 -7
  834. teradataml/data/sessionize_example.json +17 -17
  835. teradataml/data/sessionize_table.csv +116 -116
  836. teradataml/data/setop_test1.csv +24 -24
  837. teradataml/data/setop_test2.csv +22 -22
  838. teradataml/data/soc_nw_edges.csv +10 -10
  839. teradataml/data/soc_nw_vertices.csv +7 -7
  840. teradataml/data/souvenir_timeseries.csv +167 -167
  841. teradataml/data/sparse_iris_attribute.csv +5 -5
  842. teradataml/data/sparse_iris_test.csv +121 -121
  843. teradataml/data/sparse_iris_train.csv +601 -601
  844. teradataml/data/star1.csv +6 -6
  845. teradataml/data/state_transition.csv +5 -5
  846. teradataml/data/stock_data.csv +53 -53
  847. teradataml/data/stock_movement.csv +11 -11
  848. teradataml/data/stock_vol.csv +76 -76
  849. teradataml/data/stop_words.csv +8 -8
  850. teradataml/data/store_sales.csv +37 -37
  851. teradataml/data/stringsimilarity_example.json +7 -7
  852. teradataml/data/strsimilarity_input.csv +13 -13
  853. teradataml/data/students.csv +101 -101
  854. teradataml/data/svm_iris_input_test.csv +121 -121
  855. teradataml/data/svm_iris_input_train.csv +481 -481
  856. teradataml/data/svm_iris_model.csv +7 -7
  857. teradataml/data/svmdense_example.json +9 -9
  858. teradataml/data/svmdensepredict_example.json +18 -18
  859. teradataml/data/svmsparse_example.json +7 -7
  860. teradataml/data/svmsparsepredict_example.json +13 -13
  861. teradataml/data/svmsparsesummary_example.json +7 -7
  862. teradataml/data/target_mobile_data.csv +13 -13
  863. teradataml/data/target_mobile_data_dense.csv +5 -5
  864. teradataml/data/templatedata.csv +1201 -1201
  865. teradataml/data/templates/open_source_ml.json +9 -0
  866. teradataml/data/teradataml_example.json +73 -1
  867. teradataml/data/test_classification.csv +101 -0
  868. teradataml/data/test_loan_prediction.csv +53 -53
  869. teradataml/data/test_pacf_12.csv +37 -37
  870. teradataml/data/test_prediction.csv +101 -0
  871. teradataml/data/test_regression.csv +101 -0
  872. teradataml/data/test_river2.csv +109 -109
  873. teradataml/data/text_inputs.csv +6 -6
  874. teradataml/data/textchunker_example.json +7 -7
  875. teradataml/data/textclassifier_example.json +6 -6
  876. teradataml/data/textclassifier_input.csv +7 -7
  877. teradataml/data/textclassifiertrainer_example.json +6 -6
  878. teradataml/data/textmorph_example.json +5 -5
  879. teradataml/data/textparser_example.json +15 -15
  880. teradataml/data/texttagger_example.json +11 -11
  881. teradataml/data/texttokenizer_example.json +6 -6
  882. teradataml/data/texttrainer_input.csv +11 -11
  883. teradataml/data/tf_example.json +6 -6
  884. teradataml/data/tfidf_example.json +13 -13
  885. teradataml/data/tfidf_input1.csv +201 -201
  886. teradataml/data/tfidf_train.csv +6 -6
  887. teradataml/data/time_table1.csv +535 -535
  888. teradataml/data/time_table2.csv +14 -14
  889. teradataml/data/timeseriesdata.csv +1601 -1601
  890. teradataml/data/timeseriesdatasetsd4.csv +105 -105
  891. teradataml/data/titanic.csv +892 -892
  892. teradataml/data/token_table.csv +696 -696
  893. teradataml/data/train_multiclass.csv +101 -0
  894. teradataml/data/train_regression.csv +101 -0
  895. teradataml/data/train_regression_multiple_labels.csv +101 -0
  896. teradataml/data/train_tracking.csv +27 -27
  897. teradataml/data/transformation_table.csv +5 -5
  898. teradataml/data/transformation_table_new.csv +1 -1
  899. teradataml/data/tv_spots.csv +16 -16
  900. teradataml/data/twod_climate_data.csv +117 -117
  901. teradataml/data/uaf_example.json +475 -475
  902. teradataml/data/univariatestatistics_example.json +8 -8
  903. teradataml/data/unpack_example.json +9 -9
  904. teradataml/data/unpivot_example.json +9 -9
  905. teradataml/data/unpivot_input.csv +8 -8
  906. teradataml/data/us_air_pass.csv +36 -36
  907. teradataml/data/us_population.csv +624 -624
  908. teradataml/data/us_states_shapes.csv +52 -52
  909. teradataml/data/varmax_example.json +17 -17
  910. teradataml/data/vectordistance_example.json +25 -25
  911. teradataml/data/ville_climatedata.csv +121 -121
  912. teradataml/data/ville_tempdata.csv +12 -12
  913. teradataml/data/ville_tempdata1.csv +12 -12
  914. teradataml/data/ville_temperature.csv +11 -11
  915. teradataml/data/waveletTable.csv +1605 -1605
  916. teradataml/data/waveletTable2.csv +1605 -1605
  917. teradataml/data/weightedmovavg_example.json +8 -8
  918. teradataml/data/wft_testing.csv +5 -5
  919. teradataml/data/wine_data.csv +1600 -0
  920. teradataml/data/word_embed_input_table1.csv +5 -5
  921. teradataml/data/word_embed_input_table2.csv +4 -4
  922. teradataml/data/word_embed_model.csv +22 -22
  923. teradataml/data/words_input.csv +13 -13
  924. teradataml/data/xconvolve_complex_left.csv +6 -6
  925. teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
  926. teradataml/data/xgboost_example.json +35 -35
  927. teradataml/data/xgboostpredict_example.json +31 -31
  928. teradataml/dataframe/copy_to.py +1764 -1698
  929. teradataml/dataframe/data_transfer.py +2753 -2745
  930. teradataml/dataframe/dataframe.py +17545 -16946
  931. teradataml/dataframe/dataframe_utils.py +1837 -1740
  932. teradataml/dataframe/fastload.py +611 -603
  933. teradataml/dataframe/indexer.py +424 -424
  934. teradataml/dataframe/setop.py +1179 -1166
  935. teradataml/dataframe/sql.py +10090 -6432
  936. teradataml/dataframe/sql_function_parameters.py +439 -388
  937. teradataml/dataframe/sql_functions.py +652 -652
  938. teradataml/dataframe/sql_interfaces.py +220 -220
  939. teradataml/dataframe/vantage_function_types.py +674 -630
  940. teradataml/dataframe/window.py +693 -692
  941. teradataml/dbutils/__init__.py +3 -3
  942. teradataml/dbutils/dbutils.py +1167 -1150
  943. teradataml/dbutils/filemgr.py +267 -267
  944. teradataml/gen_ai/__init__.py +2 -2
  945. teradataml/gen_ai/convAI.py +472 -472
  946. teradataml/geospatial/__init__.py +3 -3
  947. teradataml/geospatial/geodataframe.py +1105 -1094
  948. teradataml/geospatial/geodataframecolumn.py +392 -387
  949. teradataml/geospatial/geometry_types.py +925 -925
  950. teradataml/hyperparameter_tuner/__init__.py +1 -1
  951. teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
  952. teradataml/hyperparameter_tuner/utils.py +281 -187
  953. teradataml/lib/aed_0_1.dll +0 -0
  954. teradataml/lib/libaed_0_1.dylib +0 -0
  955. teradataml/lib/libaed_0_1.so +0 -0
  956. teradataml/libaed_0_1.dylib +0 -0
  957. teradataml/libaed_0_1.so +0 -0
  958. teradataml/opensource/__init__.py +1 -0
  959. teradataml/opensource/sklearn/__init__.py +1 -0
  960. teradataml/opensource/sklearn/_class.py +255 -0
  961. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  962. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  963. teradataml/opensource/sklearn/constants.py +54 -0
  964. teradataml/options/__init__.py +121 -124
  965. teradataml/options/configure.py +337 -336
  966. teradataml/options/display.py +176 -176
  967. teradataml/plot/__init__.py +2 -2
  968. teradataml/plot/axis.py +1388 -1388
  969. teradataml/plot/constants.py +15 -15
  970. teradataml/plot/figure.py +398 -398
  971. teradataml/plot/plot.py +760 -760
  972. teradataml/plot/query_generator.py +83 -83
  973. teradataml/plot/subplot.py +216 -216
  974. teradataml/scriptmgmt/UserEnv.py +3788 -3761
  975. teradataml/scriptmgmt/__init__.py +3 -3
  976. teradataml/scriptmgmt/lls_utils.py +1616 -1604
  977. teradataml/series/series.py +532 -532
  978. teradataml/series/series_utils.py +71 -71
  979. teradataml/table_operators/Apply.py +949 -917
  980. teradataml/table_operators/Script.py +1719 -1982
  981. teradataml/table_operators/TableOperator.py +1207 -1616
  982. teradataml/table_operators/__init__.py +2 -3
  983. teradataml/table_operators/apply_query_generator.py +262 -262
  984. teradataml/table_operators/query_generator.py +507 -507
  985. teradataml/table_operators/table_operator_query_generator.py +460 -460
  986. teradataml/table_operators/table_operator_util.py +631 -639
  987. teradataml/table_operators/templates/dataframe_apply.template +184 -184
  988. teradataml/table_operators/templates/dataframe_map.template +176 -176
  989. teradataml/table_operators/templates/script_executor.template +170 -170
  990. teradataml/utils/dtypes.py +684 -684
  991. teradataml/utils/internal_buffer.py +84 -84
  992. teradataml/utils/print_versions.py +205 -205
  993. teradataml/utils/utils.py +410 -410
  994. teradataml/utils/validators.py +2239 -2115
  995. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +270 -41
  996. teradataml-20.0.0.0.dist-info/RECORD +1038 -0
  997. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +1 -1
  998. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +1 -1
  999. teradataml/analytics/mle/AdaBoost.py +0 -651
  1000. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  1001. teradataml/analytics/mle/Antiselect.py +0 -342
  1002. teradataml/analytics/mle/Arima.py +0 -641
  1003. teradataml/analytics/mle/ArimaPredict.py +0 -477
  1004. teradataml/analytics/mle/Attribution.py +0 -1070
  1005. teradataml/analytics/mle/Betweenness.py +0 -658
  1006. teradataml/analytics/mle/Burst.py +0 -711
  1007. teradataml/analytics/mle/CCM.py +0 -600
  1008. teradataml/analytics/mle/CCMPrepare.py +0 -324
  1009. teradataml/analytics/mle/CFilter.py +0 -460
  1010. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  1011. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  1012. teradataml/analytics/mle/Closeness.py +0 -737
  1013. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  1014. teradataml/analytics/mle/Correlation.py +0 -477
  1015. teradataml/analytics/mle/Correlation2.py +0 -573
  1016. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  1017. teradataml/analytics/mle/CoxPH.py +0 -556
  1018. teradataml/analytics/mle/CoxSurvival.py +0 -478
  1019. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  1020. teradataml/analytics/mle/DTW.py +0 -623
  1021. teradataml/analytics/mle/DWT.py +0 -564
  1022. teradataml/analytics/mle/DWT2D.py +0 -599
  1023. teradataml/analytics/mle/DecisionForest.py +0 -716
  1024. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  1025. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  1026. teradataml/analytics/mle/DecisionTree.py +0 -830
  1027. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  1028. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  1029. teradataml/analytics/mle/FMeasure.py +0 -402
  1030. teradataml/analytics/mle/FPGrowth.py +0 -734
  1031. teradataml/analytics/mle/FrequentPaths.py +0 -695
  1032. teradataml/analytics/mle/GLM.py +0 -558
  1033. teradataml/analytics/mle/GLML1L2.py +0 -547
  1034. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  1035. teradataml/analytics/mle/GLMPredict.py +0 -529
  1036. teradataml/analytics/mle/HMMDecoder.py +0 -945
  1037. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  1038. teradataml/analytics/mle/HMMSupervised.py +0 -521
  1039. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  1040. teradataml/analytics/mle/Histogram.py +0 -561
  1041. teradataml/analytics/mle/IDWT.py +0 -476
  1042. teradataml/analytics/mle/IDWT2D.py +0 -493
  1043. teradataml/analytics/mle/IdentityMatch.py +0 -763
  1044. teradataml/analytics/mle/Interpolator.py +0 -918
  1045. teradataml/analytics/mle/KMeans.py +0 -485
  1046. teradataml/analytics/mle/KNN.py +0 -627
  1047. teradataml/analytics/mle/KNNRecommender.py +0 -488
  1048. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  1049. teradataml/analytics/mle/LAR.py +0 -439
  1050. teradataml/analytics/mle/LARPredict.py +0 -478
  1051. teradataml/analytics/mle/LDA.py +0 -548
  1052. teradataml/analytics/mle/LDAInference.py +0 -492
  1053. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  1054. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  1055. teradataml/analytics/mle/LinReg.py +0 -433
  1056. teradataml/analytics/mle/LinRegPredict.py +0 -438
  1057. teradataml/analytics/mle/MinHash.py +0 -544
  1058. teradataml/analytics/mle/Modularity.py +0 -587
  1059. teradataml/analytics/mle/NEREvaluator.py +0 -410
  1060. teradataml/analytics/mle/NERExtractor.py +0 -595
  1061. teradataml/analytics/mle/NERTrainer.py +0 -458
  1062. teradataml/analytics/mle/NGrams.py +0 -570
  1063. teradataml/analytics/mle/NPath.py +0 -634
  1064. teradataml/analytics/mle/NTree.py +0 -549
  1065. teradataml/analytics/mle/NaiveBayes.py +0 -462
  1066. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  1067. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  1068. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  1069. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  1070. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  1071. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  1072. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  1073. teradataml/analytics/mle/POSTagger.py +0 -417
  1074. teradataml/analytics/mle/Pack.py +0 -411
  1075. teradataml/analytics/mle/PageRank.py +0 -535
  1076. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  1077. teradataml/analytics/mle/PathGenerator.py +0 -367
  1078. teradataml/analytics/mle/PathStart.py +0 -464
  1079. teradataml/analytics/mle/PathSummarizer.py +0 -470
  1080. teradataml/analytics/mle/Pivot.py +0 -471
  1081. teradataml/analytics/mle/ROC.py +0 -425
  1082. teradataml/analytics/mle/RandomSample.py +0 -637
  1083. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  1084. teradataml/analytics/mle/SAX.py +0 -779
  1085. teradataml/analytics/mle/SVMDense.py +0 -677
  1086. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  1087. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  1088. teradataml/analytics/mle/SVMSparse.py +0 -557
  1089. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  1090. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  1091. teradataml/analytics/mle/Sampling.py +0 -549
  1092. teradataml/analytics/mle/Scale.py +0 -565
  1093. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  1094. teradataml/analytics/mle/ScaleMap.py +0 -378
  1095. teradataml/analytics/mle/ScaleSummary.py +0 -320
  1096. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  1097. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  1098. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  1099. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  1100. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  1101. teradataml/analytics/mle/Sessionize.py +0 -475
  1102. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  1103. teradataml/analytics/mle/StringSimilarity.py +0 -425
  1104. teradataml/analytics/mle/TF.py +0 -389
  1105. teradataml/analytics/mle/TFIDF.py +0 -504
  1106. teradataml/analytics/mle/TextChunker.py +0 -414
  1107. teradataml/analytics/mle/TextClassifier.py +0 -399
  1108. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  1109. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  1110. teradataml/analytics/mle/TextMorph.py +0 -494
  1111. teradataml/analytics/mle/TextParser.py +0 -623
  1112. teradataml/analytics/mle/TextTagger.py +0 -530
  1113. teradataml/analytics/mle/TextTokenizer.py +0 -502
  1114. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  1115. teradataml/analytics/mle/Unpack.py +0 -526
  1116. teradataml/analytics/mle/Unpivot.py +0 -438
  1117. teradataml/analytics/mle/VarMax.py +0 -776
  1118. teradataml/analytics/mle/VectorDistance.py +0 -762
  1119. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  1120. teradataml/analytics/mle/XGBoost.py +0 -842
  1121. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  1122. teradataml/analytics/mle/__init__.py +0 -123
  1123. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  1124. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  1125. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  1126. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  1127. teradataml/analytics/mle/json/arima_mle.json +0 -172
  1128. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  1129. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  1130. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  1131. teradataml/analytics/mle/json/burst_mle.json +0 -140
  1132. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  1133. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  1134. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  1135. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  1136. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  1137. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  1138. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  1139. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  1140. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  1141. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  1142. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  1143. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  1144. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  1145. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  1146. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  1147. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  1148. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  1149. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  1150. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  1151. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  1152. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  1153. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  1154. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  1155. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  1156. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  1157. teradataml/analytics/mle/json/glm_mle.json +0 -111
  1158. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  1159. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  1160. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  1161. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  1162. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  1163. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  1164. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  1165. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  1166. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  1167. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  1168. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  1169. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  1170. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  1171. teradataml/analytics/mle/json/knn_mle.json +0 -141
  1172. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  1173. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  1174. teradataml/analytics/mle/json/lar_mle.json +0 -78
  1175. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  1176. teradataml/analytics/mle/json/lda_mle.json +0 -130
  1177. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  1178. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  1179. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  1180. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  1181. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  1182. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  1183. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  1184. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  1185. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  1186. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  1187. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  1188. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  1189. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  1190. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  1191. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  1192. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  1193. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  1194. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  1195. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  1196. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  1197. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  1198. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  1199. teradataml/analytics/mle/json/pack_mle.json +0 -58
  1200. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  1201. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  1202. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  1203. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  1204. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  1205. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  1206. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  1207. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  1208. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  1209. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  1210. teradataml/analytics/mle/json/roc_mle.json +0 -73
  1211. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  1212. teradataml/analytics/mle/json/sax_mle.json +0 -154
  1213. teradataml/analytics/mle/json/scale_mle.json +0 -93
  1214. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  1215. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  1216. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  1217. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  1218. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  1219. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  1220. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  1221. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  1222. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  1223. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  1224. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  1225. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  1226. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  1227. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  1228. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  1229. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  1230. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  1231. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  1232. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  1233. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  1234. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  1235. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  1236. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  1237. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  1238. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  1239. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  1240. teradataml/analytics/mle/json/tf_mle.json +0 -33
  1241. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  1242. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  1243. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  1244. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  1245. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  1246. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  1247. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  1248. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  1249. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  1250. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  1251. teradataml/analytics/sqle/Antiselect.py +0 -321
  1252. teradataml/analytics/sqle/Attribution.py +0 -603
  1253. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  1254. teradataml/analytics/sqle/GLMPredict.py +0 -430
  1255. teradataml/analytics/sqle/MovingAverage.py +0 -543
  1256. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  1257. teradataml/analytics/sqle/NPath.py +0 -632
  1258. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  1259. teradataml/analytics/sqle/Pack.py +0 -388
  1260. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  1261. teradataml/analytics/sqle/Sessionize.py +0 -390
  1262. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  1263. teradataml/analytics/sqle/Unpack.py +0 -503
  1264. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  1265. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  1266. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  1267. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  1268. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  1269. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  1270. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  1271. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  1272. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  1273. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  1274. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  1275. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  1276. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  1277. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  1278. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  1279. teradataml/catalog/model_cataloging.py +0 -980
  1280. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  1281. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  1282. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  1283. teradataml/table_operators/sandbox_container_util.py +0 -643
  1284. teradataml-17.20.0.7.dist-info/RECORD +0 -1280
  1285. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
teradataml/README.md CHANGED
@@ -1,1640 +1,1864 @@
1
- ## Teradata Python package for Advanced Analytics.
2
-
3
- teradataml makes available to Python users a collection of analytic functions that reside on Teradata Vantage. This allows users to perform analytics on Teradata Vantage with no SQL coding. In addition, the teradataml library provides functions for scaling data manipulation and transformation, data filtering and sub-setting, and can be used in conjunction with other open-source python libraries.
4
-
5
- For community support, please visit the [Teradata Community](https://support.teradata.com/community?id=community_forum&sys_id=14fe131e1bf7f304682ca8233a4bcb1d).
6
-
7
- For Teradata customer support, please visit [Teradata Support](https://support.teradata.com/csm).
8
-
9
- Copyright 2023, Teradata. All Rights Reserved.
10
-
11
- ### Table of Contents
12
- * [Release Notes](#release-notes)
13
- * [Installation and Requirements](#installation-and-requirements)
14
- * [Using the Teradata Python Package](#using-the-teradata-python-package)
15
- * [Documentation](#documentation)
16
- * [License](#license)
17
-
18
- ## Release Notes:
19
- #### teradataml 17.20.00.07
20
- * ##### New Features/Functionality
21
- * ###### Open Analytics Framework (OpenAF) APIs:
22
- * Manage all user environments.
23
- * `create_env()`:
24
- * new argument `conda_env` is added to create a conda environment.
25
- * `list_user_envs()`:
26
- * User can list conda environment(s) by using filter with new argument `conda_env`.
27
- * Conda environment(s) can be managed using APIs for installing , updating, removing files/libraries.
28
- * ##### Bug Fixes
29
- * `columns` argument for `FillNa` function is made optional.
30
-
31
- ## Release Notes:
32
- #### teradataml 17.20.00.06
33
- * ##### New Features/Functionality
34
- * ###### teradataml DataFrameColumn a.k.a. ColumnExpression
35
- * `ColumnExpression.nulls_first()` - Displays NULL values at first.
36
- * `ColumnExpression.nulls_last()` - Displays NULL values at last.
37
- * _Bit Byte Manipulation Functions_
38
- * `DataFrameColumn.bit_and()` - Returns the logical AND operation on the bits from
39
- the column and corresponding bits from the argument.
40
- * `DataFrameColumn.bit_get()` - Returns the bit specified by input argument from the column and
41
- returns either 0 or 1 to indicate the value of that bit.
42
- * `DataFrameColumn.bit_or()` - Returns the logical OR operation on the bits from the column and
43
- corresponding bits from the argument.
44
- * `DataFrameColumn.bit_xor()` - Returns the bitwise XOR operation on the binary representation of the
45
- column and corresponding bits from the argument.
46
- * `DataFrameColumn.bitand()` - It is an alias for `DataFrameColumn.bit_and()` function.
47
- * `DataFrameColumn.bitnot()` - Returns a bitwise complement on the binary representation of the column.
48
- * `DataFrameColumn.bitor()` - It is an alias for `DataFrameColumn.bit_or()` function.
49
- * `DataFrameColumn.bitwise_not()` - It is an alias for `DataFrameColumn.bitnot()` function.
50
- * `DataFrameColumn.bitwiseNOT()` - It is an alias for `DataFrameColumn.bitnot()` function.
51
- * `DataFrameColumn.bitxor()` - It is an alias for `DataFrameColumn.bit_xor()` function.
52
- * `DataFrameColumn.countset()` - Returns the count of the binary bits within the column that are either set to 1
53
- or set to 0, depending on the input argument value.
54
- * `DataFrameColumn.getbit()` - It is an alias for `DataFrameColumn.bit_get()` function.
55
- * `DataFrameColumn.rotateleft()` - Returns an expression rotated to the left by the specified number of bits,
56
- with the most significant bits wrapping around to the right.
57
- * `DataFrameColumn.rotateright()` - Returns an expression rotated to the right by the specified number of bits,
58
- with the least significant bits wrapping around to the left.
59
- * `DataFrameColumn.setbit()` - Sets the value of the bit specified by input argument to the value
60
- of column.
61
- * `DataFrameColumn.shiftleft()` - Returns the expression when value in column is shifted by the specified
62
- number of bits to the left.
63
- * `DataFrameColumn.shiftright()` - Returns the expression when column expression is shifted by the specified
64
- number of bits to the right.
65
- * `DataFrameColumn.subbitstr()` - Extracts a bit substring from the column expression based on the specified
66
- bit position.
67
- * `DataFrameColumn.to_byte()` - Converts a numeric data type to the Vantage byte representation
68
- (byte value) of the column expression value.
69
-
70
- * _Regular Expression Functions_
71
- * `DataFrameColumn.regexp_instr()` - Searches string value in column for a match to value specified in argument.
72
- * `DataFrameColumn.regexp_replace()` - Replaces the portions of string value in a column that matches the value
73
- specified regex string and replaces with the replace string.
74
- * `DataFrameColumn.regexp_similar()` - Compares value in column to value in argument and returns integer value.
75
- * `DataFrameColumn.regexp_substr()` - Extracts a substring from column that matches a regular expression
76
- specified in the input argument.
77
-
78
- * ###### Open Analytics Framework (OpenAF) APIs:
79
- * Manage all user environments.
80
- * `create_env()`:
81
- * User can create one or more user environments using newly added argument `template` by providing specifications in template json file. New feature allows user to create complete user environment, including file and library installation, in just single function call.
82
- * UserEnv Class Manage individual user environment.
83
- * Properties:
84
- * `models` - Supports listing of models in user environment.
85
- * Methods:
86
- * `install_model()` - Install a model in user environment.
87
- * `uninstall_model()` - Uninstall a model from user environment.
88
- * `snapshot()`- Take the snapshot of the user environment.
89
-
90
- * ###### teradataml: Bring Your Own Model
91
- * _New Functions_
92
- * `DataRobotPredict()` - Score the data in Vantage using the model trained externally in datarobot and stored
93
- in Vantage.
94
-
95
- * ##### Updates
96
- * `DataFrame.describe()`
97
- * Method now accepts an argument `statistics`, which specifies the aggregate operation to be performed.
98
- * `DataFrame.sort()`
99
- * Method now accepts ColumnExpressions as well.
100
- * Enables sorting using NULLS FIRST and NULLS LAST.
101
- * `view_log()` downloads the Apply query logs based on query id.
102
- * Arguments which accepts floating numbers will accept integers also for `Analytics Database Analytic Functions`.
103
- * Argument `ignore_nulls` added to `DataFrame.plot()` to ignore the null values while plotting the data.
104
- * `Dataframe.sample()`
105
- * Method supports column stratification.
106
-
107
- * ##### Bug Fixes
108
- * `DataFrameColumn.cast()` accepts all teradatasqlalchemy types.
109
- * Minor bug fix related to `DataFrame.merge()`.
110
-
111
- #### teradataml 17.20.00.05
112
- * ##### New Features/Functionality
113
- * ###### teradataml: Hyperparameter-Tuning - Technique to identify best model parameters.
114
- Hyperparameter tuning is an optimization method to determine the optimal set of
115
- hyperparameters for the given dataset and learning model. teradataml hyperparameter tuning feature
116
- offers best model identification, parallel execution, early stopping feature, best data identification,
117
- model evaluation, model prediction, live logging, input data hyper-parameterization, input data sampling,
118
- numerous scoring functions, hyper-parameterization for non-model trainer functions.
119
- * `GridSearch`
120
- GridSearch is an exhaustive search algorithm that covers all possible
121
- parameter values to identify optimal hyperparameters.
122
- * Methods of GridSearch
123
- * `__init__()` - Instantiate an object of GridSearch for given model function and parameters.
124
- * `evaluate()` - Function to perform evaluation on the given teradataml DataFrame using default model.
125
- * `fit()` - Function to perform hyperparameter-tuning for given hyperparameters and model on teradataml DataFrame.
126
- * `get_error_log()` - Useful to get the error log if model execution failed, using the model identifier.
127
- * `get_input_data()` - Useful to get the input data using the data identifier, when input data is also parameterized.
128
- * `get_model()` - Returns the trained model for the given model identifier.
129
- * `get_parameter_grid()` - Returns the hyperparameter space used for hyperparameter optimization.
130
- * `is_running()` - Returns the execution status of hyperaparameter tuning.
131
- * `predict()` - Function to perform prediction on the given teradataml DataFrame using default model.
132
- * `set_model()` - Function to update the default model.
133
- * Properties of GridSearch
134
- * `best_data_id` - Returns the best data identifier used for model training.
135
- * `best_model` - Returns the best trained model.
136
- * `best_model_id` - Returns the identifier for best model.
137
- * `best_params_` - Returns the best set of hyperparameter.
138
- * `best_sampled_data_` - Returns the best sampled data used to train the best model.
139
- * `best_score_` - Returns the best trained model score.
140
- * `model_stats` - Returns the model evaluation reports.
141
- * `models` - Returns the metadata of all the models.
142
- * `RandomSearch`
143
- RandomSearch algorithm performs random sampling on hyperparameter
144
- space to identify optimal hyperparameters.
145
- * Methods of RandomSearch
146
- * `__init__()` - Instantiate an object of RandomSearch for given model function and parameters.
147
- * `evaluate()` - Function to perform evaluation on the given teradataml DataFrame using default model.
148
- * `fit()` - Function to perform hyperparameter-tuning for given hyperparameters and model on teradataml DataFrame.
149
- * `get_error_log()` - Useful to get the error log if model execution failed, using the model identifier.
150
- * `get_input_data()` - Useful to get the input data using the data identifier, when input data is also parameterized.
151
- * `get_model()` - Returns the trained model for the given model identifier.
152
- * `get_parameter_grid()` - Returns the hyperparameter space used for hyperparameter optimization.
153
- * `is_running()` - Returns the execution status of hyperaparameter tuning.
154
- * `predict()` - Function to perform prediction on the given teradataml DataFrame using default model.
155
- * `set_model()` - Function to update the default model.
156
- * Properties of GridSearch
157
- * `best_data_id` - Returns the best data identifier used for model training.
158
- * `best_model` - Returns the best trained model.
159
- * `best_model_id` - Returns the identifier for best model.
160
- * `best_params_` - Returns the best set of hyperparameter.
161
- * `best_sampled_data_` - Returns the best sampled data used to train the best model.
162
- * `best_score_` - Returns the best trained model score.
163
- * `model_stats` - Returns the model evaluation reports.
164
- * `models` - Returns the metadata of all the models.
165
-
166
- * ###### teradataml: Analytic Functions
167
- teradataml currently has different functions to generate a model, predict, transform and evaluate. All these functions are needed to be invoked individually, i.e., predict(), evaluate(), transform() cannot be invoked using the model trainer function output. Enhancement done to this feature now enables user to invoke these functions as methods of the model trainer function. Below is the list of functions, updated with this enhancement:
168
- * Analytics Database Analytic Functions
169
- * `BincodeFit()` - Supports `transform()` method.
170
- * `DecisionForest()` - Supports `predict()`, `evaluate()` methods.
171
- * `Fit()` - Supports `transform()` method.
172
- * `GLM()` - Supports `predict()`, `evaluate()` methods.
173
- * `GLMPerSegment()` - Supports `predict()`, `evaluate()` methods.
174
- * `KMeans()` - Supports `predict()` method.
175
- * `KNN()` - Supports `predict()`, `evaluate()` methods.
176
- * `NaiveBayesTextClassifierTrainer()` - Supports `predict()`, `evaluate()` methods.
177
- * `NonLinearCombineFit()` - Supports `transform()` method.
178
- * `OneClassSVM()` - Supports `predict()` method.
179
- * `OneHotEncodingFit()` - Supports `transform()` method.
180
- * `OrdinalEncodingFit()` - Supports `transform()` method.
181
- * `OutlierFilterFit()` - Supports `transform()` method.
182
- * `PolynomialFeaturesFit()` - Supports `transform()` method.
183
- * `RandomProjectionFit()` - Supports `transform()` method.
184
- * `RowNormalizeFit()` - Supports `transform()` method.
185
- * `ScaleFit()` - Supports `transform()` method.
186
- * `SimpleImputeFit()` - Supports `transform()` method.
187
- * `SVM()` - Supports `predict()`, `evaluate()` methods.
188
- * `TargetEncodingFit()` - Supports `transform()` method.
189
- * `XGBoost()` - Supports `predict()`, `evaluate()` methods.
190
- * Time Series Analytic (UAF) Functions
191
- * `ArimaEstimate()` - Supports `forecast()`, `validate()` methods.
192
- * `DFFT()` - Supports `convolve()`, `inverse()` methods.
193
- * `IDFFT()` - Supports `inverse()` method.
194
- * `DFFT2()` - Supports `convolve()`, `inverse()` methods.
195
- * `IDFFT2()` - Supports `inverse()` method.
196
- * `DIFF()` - Supports `inverse()` method.
197
- * `UNDIFF()` - Supports `inverse()` method.
198
- * `SeasonalNormalize()` - Supports `inverse()` method.
199
-
200
- * ###### teradataml: DataFrame
201
- * New Functions
202
- * `DataFrame.plot()` - Generates the below type of plots on teradataml DataFrame.
203
- * line - Generates line plot.
204
- * bar - Generates bar plot.
205
- * scatter - Generates scatter plot.
206
- * corr - Generates correlation plot.
207
- * wiggle - Generates a wiggle plot.
208
- * mesh - Generates a mesh plot.
209
- * `DataFrame.itertuples()` - iterate over teradataml DataFrame rows as namedtuples or list.
210
- * ###### teradataml: GeoDataFrame
211
- * New Functions
212
- * `GeoDataFrame.plot()` - Generate the below type of plots on teradataml GeoDataFrame.
213
- * line - Generates line plot.
214
- * bar - Generates bar plot.
215
- * scatter - Generates scatter plot.
216
- * corr - Generates correlation plot.
217
- * wiggle - Generates a wiggle plot.
218
- * mesh - Generates a mesh plot.
219
- * geometry - Generates plot on geospatial data.
220
- * Plot:
221
- * `Axis` - Genertes the axis for plot.
222
- * `Figure` - Generates the figure for plot.
223
- * `subplots` - Helps in generating multiple plots on a single `Figure`.
224
- * Bring Your Own Model (BYOM) Function:
225
- * `DataikuPredict` - Score the data in Vantage using the model trained externally in Dataiku UI and stored in Vantage.
226
- * `async_run_status()` - Function to check the status of asynchronous run(s) using unique run id(s).
227
-
228
- * ###### teradataml DataFrameColumn a.k.a. ColumnExpression
229
- * _Regular Arithmetic Functions_
230
- * `DataFrameColumn.abs()` - Computes the absolute value.
231
- * `DataFrameColumn.ceil()` - Returns the ceiling value of the column.
232
- * `DataFrameColumn.ceiling()` - It is an alias for `DataFrameColumn.ceil()` function.
233
- * `DataFrameColumn.degrees()` - Converts radians value from the column to degrees.
234
- * `DataFrameColumn.exp()` - Raises e (the base of natural logarithms) to the power of the value in the column, where e = 2.71828182845905.
235
- * `DataFrameColumn.floor()` - Returns the largest integer equal to or less than the value in the column.
236
- * `DataFrameColumn.ln()` - Computes the natural logarithm of values in column.
237
- * `DataFrameColumn.log10()` - Computes the base 10 logarithm.
238
- * `DataFrameColumn.mod()` - Returns the modulus of the column.
239
- * `DataFrameColumn.pmod()` - It is an alias for `DataFrameColumn.mod()` function.
240
- * `DataFrameColumn.nullifzero()` - Converts data from zero to null to avoid problems with division by zero.
241
- * `DataFrameColumn.pow()` - Computes the power of the column raised to expression or constant.
242
- * `DataFrameColumn.power()` - It is an alias for `DataFrameColumn.pow()` function.
243
- * `DataFrameColumn.radians()` - Converts degree value from the column to radians.
244
- * `DataFrameColumn.round()` - Returns the rounded off value.
245
- * `DataFrameColumn.sign()` - Returns the sign.
246
- * `DataFrameColumn.signum()` - It is an alias for `DataFrameColumn.sign()` function.
247
- * `DataFrameColumn.sqrt()` - Computes the square root of values in the column.
248
- * `DataFrameColumn.trunc()` - Provides the truncated value of columns.
249
- * `DataFrameColumn.width_bucket()` - Returns the number of the partition to which column is assigned.
250
- * `DataFrameColumn.zeroifnull()` - Converts data from null to zero to avoid problems with null.
251
- * _Trigonometric Functions_
252
- * `DataFrameColumn.acos()` - Returns the arc-cosine value.
253
- * `DataFrameColumn.asin()` - Returns the arc-sine value.
254
- * `DataFrameColumn.atan()` - Returns the arc-tangent value.
255
- * `DataFrameColumn.atan2()` - Returns the arc-tangent value based on x and y coordinates.
256
- * `DataFrameColumn.cos()` - Returns the cosine value.
257
- * `DataFrameColumn.sin()` - Returns the sine value.
258
- * `DataFrameColumn.tan()` - Returns the tangent value.
259
- * _Hyperbolic Functions_
260
- * `DataFrameColumn.acosh()` - Returns the inverse hyperbolic cosine value.
261
- * `DataFrameColumn.asinh()` - Returns the inverse hyperbolic sine value.
262
- * `DataFrameColumn.atanh()` - Returns the inverse hyperbolic tangent value.
263
- * `DataFrameColumn.cosh()` - Returns the hyperbolic cosine value.
264
- * `DataFrameColumn.sinh()` - Returns the hyperbolic sine value
265
- * `DataFrameColumn.tanh()` - Returns the hyperbolic tangent value.
266
- * _String Functions_
267
- * `DataFrameColumn.ascii()` - Returns the decimal representation of the first character in column.
268
- * `DataFrameColumn.char2hexint()` - Returns the hexadecimal representation for a character string in a column.
269
- * `DataFrameColumn.chr()` - Returns the Latin ASCII character of a given a numeric code value in column.
270
- * `DataFrameColumn.char()` - It is an alias for `DataFrameColumn.chr()` function.
271
- * `DataFrameColumn.character_length()` - Returns the number of characters in the column.
272
- * `DataFrameColumn.char_length()` - It is an alias for `DataFrameColumn.character_length()` function.
273
- * `DataFrameColumn.edit_distance()` - Returns the minimum number of edit operations required to
274
- transform string in a column into string specified in argument.
275
- * `DataFrameColumn.index()` - Returns the position of a string in a column where string specified in argument starts.
276
- * `DataFrameColumn.initcap()` - Modifies a string column and returns the string with the first character
277
- of each word in uppercase.
278
- * `DataFrameColumn.instr()` - Searches the string in a column for occurrences of search string passed as argument.
279
- * `DataFrameColumn.lcase()` - Returns a character string identical to string values in column,
280
- with all uppercase letters replaced with their lowercase equivalents.
281
- * `DataFrameColumn.left()` - Truncates string in a column to a specified number of characters desired from
282
- the left side of the string.
283
- * `DataFrameColumn.length()` - It is an alias for `DataFrameColumn.character_length()` function.
284
- * `DataFrameColumn.levenshtein()` - It is an alias for `DataFrameColumn.edit_distance()` function.
285
- * `DataFrameColumn.locate()` - Returns the position of the first occurrence of a string in a column within
286
- string in argument.
287
- * `DataFrameColumn.lower()` - It is an alias for `DataFrameColumn.character_lcase()` function.
288
- * `DataFrameColumn.lpad()` - Returns the string in a column padded to the left with the characters specified
289
- in argument so that the resulting string has length specified in argument.
290
- * `DataFrameColumn.ltrim()` - Returns the string in a column, with its left-most characters removed up
291
- to the first character that is not in the string specified in argument.
292
- * `DataFrameColumn.ngram()` - Returns the number of n-gram matches between string in a column,
293
- and string specified in argument.
294
- * `DataFrameColumn.nvp()` - Extracts the value of a name-value pair where the name in the pair matches
295
- the name and the number of the occurrence specified.
296
- * `DataFrameColumn.oreplace()` - Replaces every occurrence of search string in the column.
297
- * `DataFrameColumn.otranslate()` - Returns string in a column with every occurrence of each character in
298
- string in argument replaced with the corresponding character in another argument.
299
- * `DataFrameColumn.replace()` - It is an alias for `DataFrameColumn.oreplace()` function.
300
- * `DataFrameColumn.reverse()` - Returns the reverse of string in column.
301
- * `DataFrameColumn.right()` - Truncates input string to a specified number of characters desired from
302
- the right side of the string.
303
- * `DataFrameColumn.rpad()` - Returns the string in a column padded to the right with the characters specified
304
- in argument so the resulting string has length specified in argument.
305
- * `DataFrameColumn.rtrim()` - Returns the string in column, with its right-most characters removed up
306
- to the first character that is not in the string specified in argument.
307
- * `DataFrameColumn.soundex()` - Returns a character string that represents the Soundex code for
308
- string in a column.
309
- * `DataFrameColumn.string_cs()` - Returns a heuristically derived integer value that can be used to determine
310
- which KANJI1-compatible client character set was used to encode string in a column.
311
- * `DataFrameColumn.translate()` - It is an alias for `DataFrameColumn.otranslate()` function.
312
- * `DataFrameColumn.upper()` - Returns a character string with all lowercase letters in a column replaced
313
- with their uppercase equivalents.
314
-
315
- * ##### teradataml Options
316
- * Configuration Options
317
- * `configure.indb_install_location`
318
- Specifies the installation location of In-DB Python package.
319
-
320
- * ##### Updates
321
- * Open Analytics Framework (OpenAF) APIs:
322
- * `set_auth_token()`
323
- * `set_auth_token()` does not accept username and password anymore. Instead, function opens up a browser session and user should authenticate in browser.
324
- * After token expiry, teradataml will open a browser and user needs to authenticate again.
325
- * If client machine does not have browser, then user should copy the URL posted by teradataml and authenticate themselves.
326
- * Security fixes - `auth_token` is not set or retrieved from the `configure` option anymore.
327
- * Manage all user environments.
328
- * `create_env()` - supports creation of R environment.
329
- * `remove_env()` - Supports removal of remote R environment.
330
- * `remove_all_envs()` - Supports removal of all remote R environments.
331
- * `remove_env()` and `remove_all_envs()` supports asynchronous call.
332
- * UserEnv Class Supports managing of R remote environments.
333
- * Properties:
334
- * `libs` - Supports listing of libraries in R remote environment.
335
- * Methods:
336
- * `install_lib()` - Supports installing of libraries in remote R environment.
337
- * `uninstall_lib()` - Supports uninstalling of libraries in remote R environment.
338
- * `update_lib()` - Supports updating of libraries in remote R environment.
339
- * Unbounded Array Framework (UAF) Functions:
340
- * `ArimaEstimate()`
341
- * Added support for `CSS` algorithm via `algorithm` argument.
342
-
343
- * ##### Bug Fixes
344
- * Installation location of In-DB 2.0.0 package is changed. Script() will now work with both 2.0.0 and previous version.
345
-
346
- ## Release Notes:
347
- #### teradataml 17.20.00.04
348
- * ##### New Features/Functionality
349
- * teradataml is now compatible with SQLAlchemy 2.0.X
350
- * **Important notes** when user has sqlalchemy version >= 2.0:
351
- * Users will not be able to run the `execute()` method on SQLAlchemy engine object returned by
352
- `get_context()` and `create_context()` teradataml functions. This is due to the SQLAlchemy has
353
- removed the support for `execute()` method on the engine object. Thus, user scripts where
354
- `get_context().execute()` and `create_context().execute()`, is used, Teradata recommends to
355
- replace those with either `execute_sql()` function exposed by teradataml or `exec_driver_sql()`
356
- method on the `Connection` object returned by `get_connection()` function in teradataml.
357
- * Now `get_connection().execute()` accepts only executable sqlalchemy object. Refer to
358
- `sqlalchemy.engine.base.execute()` for more details.
359
- * Teradata recommends to use either `execute_sql()` function exposed by teradataml or
360
- `exec_driver_sql()` method on the `Connection` object returned by `get_connection()`
361
- function in teradataml, in such cases.
362
- * New utility function `execute_sql()` is added to execute the SQL.
363
- * Extending compatibility for MAC with ARM processors.
364
- * Added support for floor division (//) between two teradataml DataFrame Columns.
365
- * Analytics Database Analytic Functions:
366
- * `GLMPerSegment()`
367
- * `GLMPredictPerSegment()`
368
- * `OneClassSVM()`
369
- * `OneClassSVMPredict()`
370
- * `SVM()`
371
- * `SVMPredict()`
372
- * `TargetEncodingFit()`
373
- * `TargetEncodingTransform()`
374
- * `TrainTestSplit()`
375
- * `WordEmbeddings()`
376
- * `XGBoost()`
377
- * `XGBoostPredict()`
378
-
379
- * ###### teradataml Options
380
- * Display Options
381
- * `display.geometry_column_length`
382
- Option to display the default length of geometry column in GeoDataFrame.
383
-
384
- * ##### Updates
385
- * `set_auth_token()` function can generate the client id automatically based on org_id when user do not specify it.
386
- * Analytics Database Analytic Functions:
387
- * `ColumnTransformer()`
388
- * Does not allow list values for arguments - `onehotencoding_fit_data` and `ordinalencoding_fit_data`.
389
- * `OrdidnalEncodingFit()`
390
- * New arguments added - `category_data`, `target_column_names`, `categories_column`, `ordinal_values_column`.
391
- * Allows the list of values for arguments - `target_column`, `start_value`, `default_value`.
392
- * `OneHotEncodingFit()`
393
- * New arguments added - `category_data`, `approach`, `target_columns`, `categories_column`, `category_counts`.
394
- * Allows the list of values for arguments - `target_column`, `other_column`.
395
-
396
- * ##### Bug Fixes
397
- * `DataFrame.sample()` method output is now deterministic.
398
- * `copy_to_sql()` now preserves the rows of the table even when the view content is copied to the same table name.
399
- * `list_user_envs()` does not raise warning when no user environments found.
400
-
401
- ## Release Notes:
402
- #### teradataml 17.20.00.03
403
-
404
- * ##### Updates
405
- * DataFrame.join
406
- * New arguments `lprefix` and `rprefix` added.
407
- * Behavior of arguments `lsuffix` and `rsuffix` will be changed in future, use new arguments instead.
408
- * New and old affix arguments can now be used independently.
409
- * Analytic functions can be imported regardless of context creation.
410
- Import after create context constraint is now removed.
411
- * `ReadNOS` and `WriteNOS` now accept dictionary value for `authorization` and `row_format` arguments.
412
- * `WriteNOS` supports writing CSV files to external store.
413
- * Following model cataloging APIs will be deprecated in future:
414
- * describe_model
415
- * delete_model
416
- * list_models
417
- * publish_model
418
- * retrieve_model
419
- * save_model
420
-
421
- * ##### Bug Fixes
422
- * `copy_to_sql()` bug related to NaT value has been fixed.
423
- * Tooltip on PyCharm IDE now points to SQLE.
424
- * `value` argument of `FillNa()`, a Vantage Analytic Library function supports special characters.
425
- * `case` function accepts DataFrame column as value in `whens` argument.
426
-
427
- ## Release Notes:
428
- #### teradataml 17.20.00.02
429
- * ##### New Features/Functionality
430
- * ###### teradataml: Open Analytics
431
- * New Functions
432
- * `set_auth_token()` - Sets the JWT token automatically for using Open AF API's.
433
-
434
- * ###### teradataml Options
435
- * Display Options
436
- * `display.suppress_vantage_runtime_warnings`
437
- Suppresses the VantageRuntimeWarning raised by teradataml, when set to True.
438
-
439
- * ##### Updates
440
- * SimpleImputeFit function arguments `stats_columns` and `stats` are made to be optional.
441
- * New argument `table_format` is added to ReadNOS().
442
- * Argument `full_scan` is changed to `scan_pct` in ReadNOS().
443
-
444
- * ##### Bug Fixes
445
- * Minor bug fix related to read_csv.
446
- * APPLY and `DataFrame.apply()` supports hash by and local order by.
447
- * Output column names are changed for DataFrame.dtypes and DataFrame.tdtypes.
448
-
449
- ## Release Notes:
450
- #### teradataml 17.20.00.01
451
- * ##### New Features/Functionality
452
- * ###### teradataml: DataFrame
453
- * New Functions
454
- * `DataFrame.pivot()` - Rotate data from rows into columns to create easy-to-read DataFrames.
455
- * `DataFrame.unpivot()` - Rotate data from columns into rows to create easy-to-read DataFrames.
456
- * `DataFrame.drop_duplicate()` - Drop duplicate rows from teradataml DataFrame.
457
- * New properties
458
- * `Dataframe.is_art` - Check whether teradataml DataFrame is created on an Analytic Result Table, i.e., ART table or not.
459
-
460
- * ###### teradataml: Unbounded Array Framework (UAF) Functions:
461
- * New Functions
462
- * New Functions Supported on Database Versions: 17.20.x.x
463
- * MODEL PREPARATION AND PARAMETER ESTIMATION functions:
464
- 1. `ACF()`
465
- 2. `ArimaEstimate()`
466
- 3. `ArimaValidate()`
467
- 4. `DIFF()`
468
- 5. `LinearRegr()`
469
- 6. `MultivarRegr()`
470
- 7. `PACF()`
471
- 8. `PowerTransform()`
472
- 9. `SeasonalNormalize()`
473
- 10. `Smoothma()`
474
- 11. `UNDIFF()`
475
- 12. `Unnormalize()`
476
- * SERIES FORECASTING functions:
477
- 1. `ArimaForecast()`
478
- 2. `DTW()`
479
- 3. `HoltWintersForecaster()`
480
- 4. `MAMean()`
481
- 5. `SimpleExp()`
482
- * DATA PREPARATION functions:
483
- 1. `BinaryMatrixOp()`
484
- 2. `BinarySeriesOp()`
485
- 3. `GenseriesFormula()`
486
- 4. `MatrixMultiply()`
487
- 5. `Resample()`
488
- * DIAGNOSTIC STATISTICAL TEST functions:
489
- 1. `BreuschGodfrey()`
490
- 2. `BreuschPaganGodfrey()`
491
- 3. `CumulPeriodogram()`
492
- 4. `DickeyFuller()`
493
- 5. `DurbinWatson()`
494
- 6. `FitMetrics()`
495
- 7. `GoldfeldQuandt()`
496
- 8. `Portman()`
497
- 9. `SelectionCriteria()`
498
- 10. `SignifPeriodicities()`
499
- 11. `SignifResidmean()`
500
- 12. `WhitesGeneral()`
501
- * TEMPORAL AND SPATIAL functions:
502
- 1. `Convolve()`
503
- 2. `Convolve2()`
504
- 3. `DFFT()`
505
- 4. `DFFT2()`
506
- 5. `DFFT2Conv()`
507
- 6. `DFFTConv()`
508
- 7. `GenseriesSinusoids()`
509
- 8. `IDFFT()`
510
- 9. `IDFFT2()`
511
- 10. `LineSpec()`
512
- 11. `PowerSpec()`
513
- * GENERAL UTILITY functions:
514
- 1. `ExtractResults()`
515
- 2. `InputValidator()`
516
- 3. `MInfo()`
517
- 4. `SInfo()`
518
- 5. `TrackingOp()`
519
-
520
- * New Features: Inputs to Unbounded Array Framework (UAF) functions
521
- * `TDAnalyticResult()` - Allows to prepare function output generated by UAF functions to be passed.
522
- * `TDGenSeries()` - Allows to generate a series, that can be passed to a UAF function.
523
- * `TDMatrix()` - Represents a Matrix in time series, that can be created from a teradataml DataFrame.
524
- * `TDSeries()` - Represents a Series in time series, that can be created from a teradataml DataFrame.
525
-
526
- * ##### Updates
527
- * Native Object Store (NOS) functions support authorization by specifying authorization object.
528
- * `display_analytic_functions()` categorizes the analytic functions based on function type.
529
- * ColumnTransformer accepts multiple values for arguments nonlinearcombine_fit_data,
530
- onehotencoding_fit_data, ordinalencoding_fit_data.
531
-
532
- * ##### Bug Fixes
533
- * Redundant warnings thrown by teradataml are suppressed.
534
- * OpenAF supports when context is created with JWT Token.
535
- * New argument "match_column_order" added to copy_to_sql, that allows DataFrame loading with any column order.
536
- * `copy_to_sql` updated to map data type timezone(tzinfo) to TIMESTAMP(timezone=True), instead of VARCHAR.
537
- * Improved performance for DataFrame.sum and DataFrameColumn.sum functions.
538
-
539
- ## Release Notes:
540
- #### teradataml 17.20.00.00
541
- * ##### New Features/Functionality
542
- * ###### teradataml: Analytics Database Analytic Functions
543
- * _New Functions_
544
- * ###### New Functions Supported on Database Versions: 17.20.x.x
545
- * `ANOVA()`​
546
- * `ClassificationEvaluator()`​
547
- * `ColumnTransformer()`​
548
- * `DecisionForest()`
549
- * `GLM​()`
550
- * `GetFutileColumns()`
551
- * `KMeans()`​
552
- * `KMeansPredict()`​​
553
- * `NaiveBayesTextClassifierTrainer()`​
554
- * `NonLinearCombineFit()`​
555
- * `NonLinearCombineTransform()`​
556
- * `OrdinalEncodingFit​()`
557
- * `OrdinalEncodingTransform()`​
558
- * `RandomProjectionComponents​()`
559
- * `RandomProjectionFit​()`
560
- * `RandomProjectionTransform()`​
561
- * `RegressionEvaluator​()`
562
- * `ROC​()`
563
- * `SentimentExtractor()`​
564
- * `Silhouette​()`
565
- * `TDGLMPredict​()`
566
- * `TextParser​()`
567
- * `VectorDistance()`
568
- * _Updates_
569
- * `display_analytic_functions()` categorizes the analytic functions based on function type.
570
- * Users can provide range value for columns argument.
571
-
572
- * ###### teradataml: Open Analytics
573
- * Manage all user environments.
574
- * `list_base_envs()` - list the available python base versions.​
575
- * `create_env()` - create a new user environment.
576
- * `get_env()` - get existing user environment.
577
- * `list_user_envs()` - list the available user environments.​
578
- * `remove_env()` - delete user environment.​
579
- * `remove_all_envs()` - delete all the user environments.
580
- * UserEnv Class Manage individual user environment.
581
- * Properties
582
- * `files` - Get files in user environment.
583
- * `libs` - Get libraries in user environment.
584
- * Methods
585
- * `install_file()` - Install a file in user environment.​
586
- * `remove_file()` - Remove a file in user environment.​
587
- * `install_lib()` - Install a library in user environment.​
588
- * `update_lib()` - Update a library in user environment.​
589
- * `uninstall_lib()` - Uninstall a library in user environment.​
590
- * `status()` - Check the status of​
591
- * file installation​
592
- * library installation​
593
- * library update​
594
- * library uninstallation​
595
- * `refresh()` - Refresh the environment details in local client.
596
- * Apply Class – Execute a user script on VantageCloud Lake.​
597
- * `__init__()` - Instantiate an object of apply for script execution.​
598
- * `install_file()` - Install a file in user environment.​
599
- * `remove_file()` - Remove a file in user environment.​
600
- * `set_data()` – Reset data and related arguments.​
601
- * `execute_script()` – Executes Python script.
602
-
603
- * ###### teradataml: DataFrame
604
- * _New Functions_
605
- * `DataFrame.apply()` - Execute a user defined Python function on VantageLake Cloud.
606
-
607
- * ###### teradataml: Bring Your Own Model
608
- * _New Functions_
609
- * `ONNXPredict()` - Score using model trained externally on ONNX and stored in Vantage.
610
-
611
- * ###### teradataml: Options
612
- * _New Functions_
613
- * set_config_params() New API to set all config params in one go.
614
- * _New Configuration Options_
615
- * For Open Analytics support.​
616
- * ues_url – User Environment Service URL for VantageCloud Lake.​
617
- * auth_token Authentication token to connect to VantageCloud Lake.
618
- * certificate_file Path to a CA_BUNDLE file or directory with certificates of trusted CAs.
619
-
620
- * ##### Updates
621
- * `accumulate` argument is working for `ScaleTransform()`.
622
- * Following functions have `accumulate` argument added on Database Versions: 17.20.x.x
623
- * `ConvertTo()`
624
- * `GetRowsWithoutMissingValues()`
625
- * `GetRowsWithoutMissingValues()`
626
- * `OutlierFilterFit()` supports multiple output.
627
- * For `OutlierFilterFit()` function below arguments are optional in teradataml 17.20.x.x
628
- * `lower_percentile`
629
- * `upper_percentile`
630
- * `outlier_method`
631
- * `replacement_value`
632
- * `percentile_method`
633
- * Analytics Database analytic functions In line help, i.e., help() for the functions
634
- is available.​
635
-
636
- * ##### Bug Fixes
637
- * Vantage Analytic Library FillNa() function: Now `columns` argument is required.
638
- * `output_responses` argument in MLE function `DecisionTreePredict()`, does not allow empty string.
639
- * teradataml closes docker sandbox environment properly.
640
- * Users can create context using JWT token.
641
-
642
- #### teradataml 17.10.00.02
643
- * ##### New Features/Functionality
644
- * ###### Database Utility
645
- * `list_td_reserved_keywords()` - Validates if the specified string is Teradata reserved
646
- keyword or not, else lists down all the Teradata reserved keywords.
647
-
648
- * ##### Updates
649
- * ###### DataFrame
650
- * _Updates_
651
- * Multiple columns can be selected using slice operator ([]).
652
-
653
- * ###### Script
654
- * _Updates_
655
- * A warning will be raised, when Teradata reserved keyword is used in Script local mode.
656
-
657
- * ##### Bug Fixes
658
- * Numeric overflow issue observed for describe(), sum(), csum(), and mean() has been fixed.
659
- * Error messages are updated for SQLE function arguments accepting multiple datatypes.
660
- * Error messages are updated for SQLE function arguments volatile and persist arguments when
661
- non-boolean value is provided.
662
- * DataFrame sample() method can handle column names with special characters like space, hyphen,
663
- period etc.
664
- * In-DB SQLE functions can be loaded for any locale setting.
665
- * `create_context()` - Password containing special characters requires URL encoding as per
666
- https://docs.microfocus.com/OMi/10.62/Content/OMi/ExtGuide/ExtApps/URL_encoding.html.
667
- teradataml has added a fix to take care of the URL encoding of the password while creating a context.
668
- Also, a new argument is added to give a more control over the URL encoding to be done at the time of context creation.
669
-
670
- #### teradataml 17.10.00.01
671
- * ##### New Features/Functionality
672
- * ###### Geospatial
673
- The Geospatial feature in teradataml enables data manipulation, exploration and analysis on tables, views, and queries on Teradata Vantage that contains Geospatial data.
674
- * ###### Geomtery Types
675
- * Point
676
- * LineString
677
- * Polygon
678
- * MultiPoint
679
- * MultiLineString
680
- * MultiPolygon
681
- * GeometryCollection
682
- * GeoSequence
683
- * ###### teradataml GeoDataFrame
684
- * Properties
685
- * columns
686
- * dtypes
687
- * geometry
688
- * iloc
689
- * index
690
- * loc
691
- * shape
692
- * size
693
- * tdtypes
694
- * Geospatial Specific Properties
695
- * ###### Properties for all Types of Geometries
696
- * boundary
697
- * centroid
698
- * convex_hell
699
- * coord_dim
700
- * dimension
701
- * geom_type
702
- * is_3D
703
- * is_empty
704
- * is_simple
705
- * is_valid
706
- * max_x
707
- * max_y
708
- * max_z
709
- * min_x
710
- * min_y
711
- * min_z
712
- * srid
713
- * ###### Properties for Point Geometry
714
- * x
715
- * y
716
- * z
717
- * ###### Properties for LineString Geometry
718
- * is_closed_3D
719
- * is_closed
720
- * is_ring
721
- * ###### Properties for Polygon Geometry
722
- * area
723
- * exterior
724
- * perimeter
725
- * Methods
726
- * `__getattr__()`
727
- * `__getitem__()`
728
- * `__init__()`
729
- * `__repr__()`
730
- * `assign()`
731
- * `concat()`
732
- * `count()`
733
- * `drop()`
734
- * `dropna()`
735
- * `filter()`
736
- * `from_query()`
737
- * `from_table()`
738
- * `get()`
739
- * `get_values()`
740
- * `groupby()`
741
- * `head()`
742
- * `info()`
743
- * `join()`
744
- * `keys()`
745
- * `merge()`
746
- * `sample()`
747
- * `select()`
748
- * `set_index()`
749
- * `show_query()`
750
- * `sort()`
751
- * `sort_index()`
752
- * `squeeze()`
753
- * `tail()`
754
- * `to_csv()`
755
- * `to_pandas()`
756
- * `to_sql()`
757
- * Geospatial Specific Methods
758
- * ###### Methods for All Type of Geometry
759
- * `buffer()`
760
- * `contains()`
761
- * `crosses()`
762
- * `difference()`
763
- * `disjoint()`
764
- * `distance()`
765
- * `distance_3D()`
766
- * `envelope()`
767
- * `geom_equals()`
768
- * `intersection()`
769
- * `intersects()`
770
- * `make_2D()`
771
- * `mbb()`
772
- * `mbr()`
773
- * `overlaps()`
774
- * `relates()`
775
- * `set_exterior()`
776
- * `set_srid()`
777
- * `simplify()`
778
- * `sym_difference()`
779
- * `to_binary()`
780
- * `to_text()`
781
- * `touches()`
782
- * `transform()`
783
- * `union()`
784
- * `within()`
785
- * `wkb_geom_to_sql()`
786
- * `wkt_geom_to_sql()`
787
- * ###### Methods for Point Geometry
788
- * `spherical_buffer()`
789
- * `spherical_distance()`
790
- * `spheriodal_buffer()`
791
- * `spheriodal_distance()`
792
- * `set_x()`
793
- * `set_y()`
794
- * `set_z()`
795
- * ###### Methods for LineString Geometry
796
- * `end_point()`
797
- * `length()`
798
- * `length_3D()`
799
- * `line_interpolate_point()`
800
- * `num_points()`
801
- * `point()`
802
- * `start_point()`
803
- * ###### Methods for Polygon Geometry
804
- * `interiors()`
805
- * `num_interior_ring()`
806
- * `point_on_surface()`
807
- * ###### Methods for GeometryCollection Geometry
808
- * `geom_component()`
809
- * `num_geometry()`
810
- * ###### Methods for GeoSequence Geometry
811
- * `clip()`
812
- * `get_final_timestamp()`
813
- * `get_init_timestamp()`
814
- * `get_link()`
815
- * `get_user_field()`
816
- * `get_user_field_count()`
817
- * `point_heading()`
818
- * `set_link()`
819
- * `speed()`
820
- * ###### Filtering Functions and Methods
821
- * `intersects_mbb()`
822
- * `mbb_filter()`
823
- * `mbr_filter()`
824
- * `within_mbb()`
825
- * ###### teradataml GeoDataFrameColumn
826
- * Geospatial Specific Properties
827
- * ###### Properties for all Types of Geometries
828
- * boundary
829
- * centroid
830
- * convex_hell
831
- * coord_dim
832
- * dimension
833
- * geom_type
834
- * is_3D
835
- * is_empty
836
- * is_simple
837
- * is_valid
838
- * max_x
839
- * max_y
840
- * max_z
841
- * min_x
842
- * min_y
843
- * min_z
844
- * srid
845
- * ###### Properties for Point Geometry
846
- * x
847
- * y
848
- * z
849
- * ###### Properties for LineString Geometry
850
- * is_closed_3D
851
- * is_closed
852
- * is_ring
853
- * ###### Properties for Polygon Geometry
854
- * area
855
- * exterior
856
- * perimeter
857
- * Geospatial Specific Methods
858
- * ###### Methods for All Type of Geometry
859
- * `buffer()`
860
- * `contains()`
861
- * `crosses()`
862
- * `difference()`
863
- * `disjoint()`
864
- * `distance()`
865
- * `distance_3D()`
866
- * `envelope()`
867
- * `geom_equals()`
868
- * `intersection()`
869
- * `intersects()`
870
- * `make_2D()`
871
- * `mbb()`
872
- * `mbr()`
873
- * `overlaps()`
874
- * `relates()`
875
- * `set_exterior()`
876
- * `set_srid()`
877
- * `simplify()`
878
- * `sym_difference()`
879
- * `to_binary()`
880
- * `to_text()`
881
- * `touches()`
882
- * `transform()`
883
- * `union()`
884
- * `within()`
885
- * `wkb_geom_to_sql()`
886
- * `wkt_geom_to_sql()`
887
- * ###### Methods for Point Geometry
888
- * `spherical_buffer()`
889
- * `spherical_distance()`
890
- * `spheriodal_buffer()`
891
- * `spheriodal_distance()`
892
- * `set_x()`
893
- * `set_y()`
894
- * `set_z()`
895
- * ###### Methods for LineString Geometry
896
- * `endpoint()`
897
- * `length()`
898
- * `length_3D()`
899
- * `line_interpolate_point()`
900
- * `num_points()`
901
- * `point()`
902
- * `start_point()`
903
- * ###### Methods for Polygon Geometry
904
- * `interiors()`
905
- * `num_interior_ring()`
906
- * `point_on_surface()`
907
- * ###### Methods for GeometryCollection Geometry
908
- * `geom_component()`
909
- * `num_geometry()`
910
- * ###### Methods for GeoSequence Geometry
911
- * `clip()`
912
- * `get_final_timestamp()`
913
- * `get_init_timestamp()`
914
- * `get_link()`
915
- * `get_user_field()`
916
- * `get_user_field_count()`
917
- * `point_heading()`
918
- * `set_link()`
919
- * `speed()`
920
- * ###### Filtering Functions and Methods
921
- * `intersects_mbb()`
922
- * `mbb_filter()`
923
- * `mbr_filter()`
924
- * `within_mbb()`
925
-
926
- * ###### teradataml DataFrame
927
- * _New Functions_
928
- * `to_csv()`
929
-
930
- * ###### teradataml: SQLE Engine Analytic Functions
931
- * _New Functions_
932
- * Newly added SQLE functions are accessible only after establishing the connection to Vantage.
933
- * `display_analytic_functions()` API displays all the available SQLE Analytic functions based on database version.
934
- * ###### Functions Supported on DatabaseVersions: 16.20.x.x, 17.10.x.x, 17.05.x.x
935
- * `Antiselect()`
936
- * `Attribution()`
937
- * `DecisionForestPredict()`
938
- * `DecisionTreePredict()`
939
- * `GLMPredict()`
940
- * `MovingAverage()`
941
- * `NaiveBayesPredict()`
942
- * `NaiveBayesTextClassifierPredict()`
943
- * `NGramSplitter()`
944
- * `NPath()`
945
- * `Pack()`
946
- * `Sessionize()`
947
- * `StringSimilarity()`
948
- * `SVMParsePredict()`
949
- * `Unpack()`
950
- * ###### Functions Supported on DatabaseVersions: 17.10.x.x
951
- * `Antiselect()`
952
- * `Attribution()`
953
- * `BincoodeFit()`
954
- * `BncodeTransform()`
955
- * `CategoricalSummary()`
956
- * `ChiSq()`
957
- * `ColumnSummary()`
958
- * `ConvertTo()`
959
- * `DecisionForestPredict()`
960
- * `DecisionTreePredict()`
961
- * `GLMPredict()`
962
- * `FillRowId()`
963
- * `FTest()`
964
- * `Fit()`
965
- * `Transform()`
966
- * `GetRowsWithMissingValues()`
967
- * `GetRowsWithoutMissingValues()`
968
- * `MovingAverage()`
969
- * `Histogram()`
970
- * `NaiveBayesPredict()`
971
- * `NaiveBayesTextClassifierPredict()`
972
- * `NGramSplitter()`
973
- * `NPath()`
974
- * `NumApply()`
975
- * `OneHotEncodingFit()`
976
- * `OneHotEncodingTransform()`
977
- * `OutlierFilterFit()`
978
- * `OutlierFilterTransform()`
979
- * `Pack()`
980
- * `PolynomialFeatuesFit()`
981
- * `PolynomialFeatuesTransform()`
982
- * `QQNorm()`
983
- * `RoundColumns()`
984
- * `RowNormalizeFit()`
985
- * `RowNormalizeTransform()`
986
- * `ScaleFit()`
987
- * `ScaleTransform()`
988
- * `Sessionize()`
989
- * `SimpleImputeFit()`
990
- * `SimpleImputeTransform()`
991
- * `StrApply()`
992
- * `StringSimilarity()`
993
- * `SVMParsePredict()`
994
- * `UniVariateStatistics()`
995
- * `Unpack()`
996
- * `WhichMax()`
997
- * `WhichMin()`
998
- * `ZTest()`
999
-
1000
- * ###### teradataml: General Functions
1001
- * _New Functions_
1002
- * Data Transfer Utility
1003
- * `read_csv()`
1004
-
1005
- * ###### Operators
1006
- * _New Functions_
1007
- * Table Operators
1008
- * `read_nos()`
1009
- * `write_nos()`
1010
-
1011
- * ###### teradataml: Bring Your Own Model
1012
- * _New Functions_
1013
- * Model Cataloging
1014
- * `get_license()`
1015
- * `set_byom_catalog()`
1016
- * `set_license()`
1017
-
1018
- * ##### Updates
1019
- * ###### teradataml: General Functions
1020
- * Data Transfer Utility
1021
- * `copy_to_sql()` - New argument "chunksize" added to load data in chunks.
1022
- * Following Data Transfer Utility Functions updated to specify the number of Teradata sessions to open for data transfer using "open_session" argument:
1023
- * `fastexport()`
1024
- * `fastload()`
1025
- * `to_pandas()`
1026
-
1027
- * ###### Operators
1028
- * Following Set Operator Functions updated to work with Geospatial data:
1029
- * `concat()`
1030
- * `td_intersect()`
1031
- * `td_expect()`
1032
- * `td_minus()`
1033
-
1034
- * ###### teradataml: Bring Your Own Model
1035
- * Model cataloging APIs mentioned below are updated to use session level parameters set by `set_byom_catalog()` and `set_license()` such as table name, schema name and license details respectively.
1036
- * `delete_byom()`
1037
- * `list_byom()`
1038
- * `retrieve_byom()`
1039
- * `save_byom()`
1040
- * `view_log()` - Allows user to view BYOM logs.
1041
-
1042
- * ##### Bug Fixes
1043
- * CS0733758 - `db_python_package_details()` function is fixed to support latest STO release for pip and Python aliases used.
1044
- * DataFrame `print()` issue related to `Response Row size is greater than the 1MB allowed maximum.` has been fixed to print the data with lot of columns.
1045
- * New parameter "chunksize" is added to `DataFrame.to_sql()` and `copy_to_sql()` to fix the issue where the function was failing with error - "Request requires too many SPOOL files.". Reducing the chunksize than the default one will result in successful operation.
1046
- * `remove_context()` is fixed to remove the active connection from database.
1047
- * Support added to specify the number of Teradata data transfer sessions to open for data transfer using `fastexport()` and `fastload()` functions.
1048
- * `DataFrame.to_sql()` is fixed to support temporary table when default database differs from the username.
1049
- * `DataFrame.to_pandas()` now by default support data transfer using regular method. Change is carried out for user to allow the data transfer if utility throttles are configured, i.e., TASM configuration does not support data export using FastExport.
1050
- * `save_byom()` now notifies if VARCHAR column is trimmed out if data passed to the API is greater than the length of the VARCHAR column.
1051
- * Standard error can now be captured for `DataFrame.map_row()` and `DataFrame.map_parition()` when executed in LOCAL mode.
1052
- * Vantage Analytic Library - Underlying SQL can be retrieved using newly added arguments "gen_sql"/"gen_sql_only" for the functions. Query can be viewed with the help `show_query()`.
1053
- * Documentation example has been fixed for `fastexport()` to show the correct import statement.
1054
-
1055
-
1056
- #### teradataml 17.00.00.05
1057
- Fixed [CS0733758] db_python_package_details() fails on recent STO release due to changes in pip and python aliases.
1058
-
1059
-
1060
- #### teradataml 17.00.00.04
1061
- * ##### New Features/Functionality
1062
- * ###### Analytic Functions
1063
- * Bring Your Own Analytics Functions
1064
- The BYOM feature in Vantage provides flexibility to score the data in Vantage using external models using following BYOM functions:
1065
- * `H2OPredict()` - Score using model trained externally in H2O and stored in Vantage.
1066
- * `PMMLPredict()` - Score using model trained externally in PMML and stored in Vantage.
1067
- * BYOM Model Catalog APIs
1068
- * `save_byom()` - Save externally trained models in Teradata Vantage.
1069
- * `delete_byom()` - Delete a model from the user specified table in Teradata Vantage.
1070
- * `list_byom()` - List models.
1071
- * `retrieve_byom()` - Function to retrieve a saved model.
1072
- * Vantage Analytic Library Functions
1073
- * _New Functions_
1074
- * `XmlToHtmlReport()` - Transforms XML output of VAL functions to HTML.
1075
- * ###### teradataml DataFrame
1076
- * `DataFrame.window()` - Generates Window object on a teradataml DataFrame to run window aggregate functions.
1077
- * `DataFrame.csum()` - Returns column-wise cumulative sum for rows in the partition of the dataframe.
1078
- * `DataFrame.mavg()` - Returns moving average for the current row and the preceding rows.
1079
- * `DataFrame.mdiff()` - Returns moving difference for the current row and the preceding rows.
1080
- * `DataFrame.mlinreg()` - Returns moving linear regression for the current row and the preceding rows.
1081
- * `DataFrame.msum()` - Returns moving sum for the current row and the preceding rows.
1082
- * _Regular Aggregate Functions_
1083
- * `DataFrame.corr()` - Returns the Sample Pearson product moment correlation coefficient.
1084
- * `DataFrame.covar_pop()` - Returns the population covariance.
1085
- * `DataFrame.covar_samp()` - Returns the sample covariance.
1086
- * `DataFrame.regr_avgx()` - Returns the mean of the independent variable.
1087
- * `DataFrame.regr_avgy()` - Returns the mean of the dependent variable.
1088
- * `DataFrame.regr_count()` - Returns the count of the dependent and independent variable arguments.
1089
- * `DataFrame.rege_intercept()` - Returns the intercept of the univariate linear regression line.
1090
- * `DataFrame.regr_r2()` - Returns the coefficient of determination.
1091
- * `DataFrame.regr_slope()` - Returns the slope of the univariate linear regression line through.
1092
- * `DataFrame.regr_sxx()` - Returns the sum of the squares of the independent variable expression.
1093
- * `DataFrame.regr_sxy()` - Returns the sum of the products of the independent variable and the dependent variable.
1094
- * `DataFrame.regr_syy()` - Returns the sum of the squares of the dependent variable expression.
1095
- * ###### teradataml DataFrameColumn a.k.a. ColumnExpression
1096
- * `ColumnExpression.window()` - Generates Window object on a teradataml DataFrameColumn to run window aggregate functions.
1097
- * `ColumnExpression.desc()` - Sorts ColumnExpression in descending order.
1098
- * `ColumnExpression.asc()` - Sorts ColumnExpression in ascending order.
1099
- * `ColumnExpression.distinct()` - Removes duplicate value from ColumnExpression.
1100
- * _Regular Aggregate Functions_
1101
- * `ColumnExpression.corr()` - Returns the Sample Pearson product moment correlation coefficient.
1102
- * `ColumnExpression.count()` - Returns the column-wise count.
1103
- * `ColumnExpression.covar_pop()` - Returns the population covariance.
1104
- * `ColumnExpression.covar_samp()` - Returns the sample covariance.
1105
- * `ColumnExpression.kurtosis()` - Returns kurtosis value for a column.
1106
- * `ColumnExpression.median()` - Returns column-wise median value.
1107
- * `ColumnExpression.max()` - Returns the column-wise max value.
1108
- * `ColumnExpression.mean()` - Returns the column-wise average value.
1109
- * `ColumnExpression.min()` - Returns the column-wise min value.
1110
- * `ColumnExpression.regr_avgx()` - Returns the mean of the independent variable.
1111
- * `ColumnExpression.regr_avgy()` - Returns the mean of the dependent variable.
1112
- * `ColumnExpression.regr_count()` - Returns the count of the dependent and independent variable arguments.
1113
- * `ColumnExpression.rege_intercept()` - Returns the intercept of the univariate linear regression line.
1114
- * `ColumnExpression.regr_r2()` - Returns the coefficient of determination arguments.
1115
- * `ColumnExpression.regr_slope()` - Returns the slope of the univariate linear regression line.
1116
- * `ColumnExpression.regr_sxx()` - Returns the sum of the squares of the independent variable expression.
1117
- * `ColumnExpression.regr_sxy()` - Returns the sum of the products of the independent variable and the dependent variable.
1118
- * `ColumnExpression.regr_syy()` - Returns the sum of the squares of the dependent variable expression.
1119
- * `ColumnExpression.skew()` - Returns skew value for a column.
1120
- * `ColumnExpression.std()` - Returns the column-wise population/sample standard deviation.
1121
- * `ColumnExpression.sum()` - Returns the column-wise sum.
1122
- * `ColumnExpression.var()` - Returns the column-wise population/sample variance.
1123
- * `ColumnExpression.percentile()` - Returns the column-wise percentile.
1124
- * ###### teradataml Window - Window Aggregate Functions
1125
- Following set of _Window Aggregate Functions_ return the results over a specified window which can be of any type:
1126
- * Cumulative/Expanding window
1127
- * Moving/Rolling window
1128
- * Contracting/Remaining window
1129
- * Grouping window
1130
- _Window Aggregate Functions_
1131
- * `Window.corr()` - Returns the Sample Pearson product moment correlation coefficient.
1132
- * `Window.count()` - Returns the count.
1133
- * `Window.covar_pop()` - Returns the population covariance.
1134
- * `Window.covar_samp()` - Returns the sample covariance.
1135
- * `Window.cume_dist()` - Returns the cumulative distribution of values.
1136
- * `Window.dense_Rank()` - Returns the ordered ranking of all the rows.
1137
- * `Window.first_value()` - Returns the first value of an ordered set of values.
1138
- * `Window.lag()` - Returns data from the row preceding the current row at a specified offset value.
1139
- * `Window.last_value()` - Returns the last value of an ordered set of values.
1140
- * `Window.lead()` - Returns data from the row following the current row at a specified offset value.
1141
- * `Window.max()` - Returns the column-wise max value.
1142
- * `Window.mean()` - Returns the column-wise average value.
1143
- * `Window.min()` - Returns the column-wise min value.
1144
- * `Window.percent_rank()` - Returns the relative rank of all the rows.
1145
- * `Window.rank()` - Returns the rank (1 … n) of all the rows.
1146
- * `Window.regr_avgx()` - Returns the mean of the independent variable arguments.
1147
- * `Window.regr_avgy()` - Returns the mean of the dependent variable arguments.
1148
- * `Window.regr_count()` - Returns the count of the dependent and independent variable arguments.
1149
- * `Window.rege_intercept()` - Returns the intercept of the univariate linear regression line arguments.
1150
- * `Window.regr_r2()` - Returns the coefficient of determination arguments.
1151
- * `Window.regr_slope()` - Returns the slope of the univariate linear regression line.
1152
- * `Window.regr_sxx()` - Returns the sum of the squares of the independent variable expression.
1153
- * `Window.regr_sxy()` - Returns the sum of the products of the independent variable and the dependent variable.
1154
- * `Window.regr_syy()` - Returns the sum of the squares of the dependent variable expression.
1155
- * `Window.row_number()` - Returns the sequential row number.
1156
- * `Window.std()` - Returns the column-wise population/sample standard deviation.
1157
- * `Window.sum()` - Returns the column-wise sum.
1158
- * `Window.var()` - Returns the column-wise population/sample variance.
1159
- * ###### General functions
1160
- * _New functions_
1161
- * `fastexport()` - Exports teradataml DataFrame to Pandas DataFrame using FastExport data transfer protocol.
1162
- * ###### teradataml Options
1163
- * Display Options
1164
- * `display.blob_length`
1165
- Specifies default display length of BLOB column in teradataml DataFrame.
1166
- * Configuration Options
1167
- * `configure.temp_table_database`
1168
- Specifies database name for storing the tables created internally.
1169
- * `configure.temp_view_database`
1170
- Specifies database name for storing the views created internally.
1171
- * `configure.byom_install_location`
1172
- Specifies the install location for the BYOM functions.
1173
- * `configure.val_install_location`
1174
- Specifies the install location for the Vantage Analytic Library functions.
1175
- * ##### Updates
1176
- * ###### teradataml DataFrame
1177
- * `to_pandas()` -
1178
- * Support added to transfer data to Pandas DataFrame using fastexport protocol improving the performance.
1179
- * Support added for other arguments similar to Pandas `read_sql()`:
1180
- * `coerce_float`
1181
- * `parse_dates`
1182
- * ###### Analytic functions
1183
- * Vantage Analytic Library Functions
1184
- * Support added to accept datetime.date object for literals/values in
1185
- following transformation functions:
1186
- * `FillNa()`
1187
- * `Binning()`
1188
- * `OneHotEncoder()`
1189
- * `LabelEncoder()`
1190
- * All transformation functions now supports accepting
1191
- teradatasqlalchemy datatypes as input to "datatype" argument for
1192
- casting the result.
1193
- * ##### Bug Fixes.
1194
- * CS0249633 - Support added for teradataml to work with user/database/tablename
1195
- containing period (.).
1196
- * CS0086594 - Use of dbc.tablesvx versus dbc.tablesvx in teradatasqlalchemy.
1197
- * IPython integration to print the teradataml DataFrames in pretty format.
1198
- * teradataml DataFrame APIs now support column names same as that of Teradata
1199
- reserved keywords.
1200
- * Issue has been fixed for duplicate rows being loaded via teradataml
1201
- fastload() API.
1202
- * VAL - Empty string now can be passed as input for recoding values using
1203
- LabelEncoder.
1204
- * teradataml extension with SQLAlchemy functions:
1205
- * mod() function is fixed to return correct datatype.
1206
- * sum() function is fixed to return correct datatype.
1207
-
1208
-
1209
- #### teradataml 17.00.00.03
1210
- - New release of SQLAlchemy1.4.x introduced backward compatibility issue. A fix has been carried out so that teradataml can support latest SQLAlchemy changes.
1211
- - Other minor bug fixes.
1212
-
1213
- #### teradataml 17.00.00.02
1214
- Fixed the internal library load issue related to the GCC version discrepancies on CentOS platform.
1215
-
1216
- #### teradataml 17.00.00.01
1217
- * ##### New Features/Functionality
1218
- * ###### Analytic Functions
1219
- * Vantage Analytic Library
1220
- teradataml now supports executing analytic functions offered by Vantage Analytic Library.
1221
- These functions are available via new 'valib' sub-package of teradataml.
1222
- Following functions are added as part of this:
1223
- * Association Rules:
1224
- * `Association()`
1225
- * Descriptive Statistics:
1226
- * `AdaptiveHistogram()`
1227
- * `Explore()`
1228
- * `Frequency()`
1229
- * `Histogram()`
1230
- * `Overlaps()`
1231
- * `Statistics()`
1232
- * `TextAnalyzer()`
1233
- * `Values()`
1234
- * Decision Tree:
1235
- * `DecisionTree()`
1236
- * `DecisionTreePredict()`
1237
- * `DecisionTreeEvaluator()`
1238
- * Fast K-Means Clustering:
1239
- * `KMeans()`
1240
- * `KMeansPredict()`
1241
- * Linear Regression:
1242
- * `LinReg()`
1243
- * `LinRegPredict()`
1244
- * Logistic Regression:
1245
- * `LogReg()`
1246
- * `LogRegPredict()`
1247
- * `LogRegEvaluator()`
1248
- * Factor Analysis:
1249
- * `PCA()`
1250
- * `PCAPredict()`
1251
- * `PCAEvaluator()`
1252
- * Matrix Building:
1253
- * `Matrix()`
1254
- * Statistical Tests:
1255
- * `BinomialTest()`
1256
- * `ChiSquareTest()`
1257
- * `KSTest()`
1258
- * `ParametricTest()`
1259
- * `RankTest()`
1260
- * Variable Transformation:
1261
- * `Transform()`
1262
- * Transformation Techniques supported for variable transformation:
1263
- * `Binning()` - Perform bin coding to replaces continuous numeric column with a
1264
- categorical one to produce ordinal values.
1265
- * `Derive()` - Perform free-form transformation done using arithmetic formula.
1266
- * `FillNa()` - Perform missing value/null replacement transformations.
1267
- * `LabelEncoder()` - Re-express categorical column values into a new coding scheme.
1268
- * `MinMaxScalar()` - Rescale data limiting the upper and lower boundaries.
1269
- * `OneHotEncoder()` - Re-express a categorical data element as one or more
1270
- numeric data elements, creating a binary numeric field for each
1271
- categorical data value.
1272
- * `Retain()` - Copy one or more columns into the final analytic data set.
1273
- * `Sigmoid()` - Rescale data using sigmoid or s-shaped functions.
1274
- * `ZScore()` - Rescale data using Z-Score values.
1275
- * ML Engine Functions (mle)
1276
- * Correlation2
1277
- * NaiveBayesTextClassifier2
1278
- * ###### DataFrame
1279
- * _New Functions_
1280
- * `DataFrame.map_row()` - Function to apply a user defined function to each row in the
1281
- teradataml DataFrame.
1282
- * `DataFrame.map_partition()` - Function to apply a user defined function to a group or
1283
- partition of rows in the teradataml DataFrame.
1284
- * _New Property_
1285
- * `DataFrame.tdtypes` - Get the teradataml DataFrame metadata containing column names and
1286
- corresponding teradatasqlalchemy types.
1287
- * ###### General functions
1288
- * _New functions_
1289
- * Database Utility Functions
1290
- * `db_python_package_details()` - Lists the details of Python packages installed on Vantage.
1291
- * General Utility Functions
1292
- * `print_options()`
1293
- * `view_log()`
1294
- * `setup_sandbox_env()`
1295
- * `copy_files_from_container()`
1296
- * `cleanup_sandbox_env()`
1297
- * ##### Updates
1298
- * ###### `create_context()`
1299
- * Supports all connection parameters supported by teradatasql.connect().
1300
- * ###### Script
1301
- * `test_script()` can now be executed in 'local' mode, i.e., outside of the sandbox.
1302
- * `Script.setup_sto_env()` is deprecated. Use `setup_sandbox_env()` function instead.
1303
- * Added support for using "quotechar" argument.
1304
- * ###### Analytic functions
1305
- * _Updates_
1306
- * Visit teradataml User Guide to know more about the updates done to ML Engine analytic
1307
- functions. Following type of updates are done to several functions:
1308
- * New arguments are added, which are supported only on Vantage Version 1.3.
1309
- * Default value has been updated for few function arguments.
1310
- * Few arguments were required, but now they are optional.
1311
- * ##### Minor Bug Fixes.
1312
-
1313
- #### teradataml 17.00.00.00
1314
- * ##### New Features/Functionality
1315
- * ###### Model Cataloging - Functionality to catalog model metadata and related information in the Model Catalog.
1316
- * `save_model()` - Save a teradataml Analytic Function model.
1317
- * `retrieve_model()` - Retrieve a saved model.
1318
- * `list_model()` - List accessible models.
1319
- * `describe_model()` - List the details of a model.
1320
- * `delete_model()` - Remove a model from Model Catalog.
1321
- * `publish_model()` - Share a model.
1322
- * ###### Script - An interface to the SCRIPT table operator object in the Advanced SQL Engine.
1323
- Interface offers execution in two modes:
1324
- * Test/Debug - to test user scripts locally in a containerized environment.
1325
- Supporting methods:
1326
- * `setup_sto_env()` - Set up test environment.
1327
- * `test_script()` - Test user script in containerized environment.
1328
- * `set_data()` - Set test data parameters.
1329
- * In-Database Script Execution - to execute user scripts in database.
1330
- Supporting methods:
1331
- * `execute_script()` - Execute user script in Vantage.
1332
- * `install_file()` - Install or replace file in Database.
1333
- * `remove_file()` - Remove installed file from Database.
1334
- * `set_data()` - Set test data parameters.
1335
- * ###### DataFrame
1336
- * `DataFrame.show_query()` - Show underlying query for DataFrame.
1337
- * Regular Aggregates
1338
- * _New functions_
1339
- * `kurtosis()` - Calculate the kurtosis value.
1340
- * `skew()` - Calculate the skewness of the distribution.
1341
- * _Updates_\
1342
- New argument `distinct` is added to following aggregates to exclude duplicate values.
1343
- * `count()`
1344
- * `max()`
1345
- * `mean()`
1346
- * `min()`
1347
- * `sum()`
1348
- * `std()`
1349
- * New argument `population` is added to calculate the population standard deviation.
1350
- * `var()`
1351
- * New argument `population` is added to calculate the population variance.
1352
- * Time Series Aggregates
1353
- * _New functions_
1354
- * `kurtosis()` - Calculate the kurtosis value.
1355
- * `count()` - Get the total number of values.
1356
- * `max()` - Calculate the maximum value.
1357
- * `mean()` - Calculate the average value.
1358
- * `min()` - Calculate the minimum value.
1359
- * `percentile()` - Calculate the desired percentile.
1360
- * `skew()` - Calculate the skewness of the distribution.
1361
- * `sum()` - Calculate the column-wise sum value.
1362
- * `std()` - Calculate the sample and population standard deviation.
1363
- * `var()` - Calculate the sample and population standard variance.
1364
- * ###### General functions
1365
- * _New functions_
1366
- * Database Utility Functions
1367
- * `db_drop_table()`
1368
- * `db_drop_view()`
1369
- * `db_list_tables()`
1370
- * Vantage File Management Functions
1371
- * `install_file()` - Install a file in Database.
1372
- * `remove_file()` - Remove an installed file from Database.
1373
- * _Updates_
1374
- * `create_context()`
1375
- * Support added for Stored Password Protection feature.
1376
- * Kerberos authentication bug fix.
1377
- * New argument `database` added to `create_context()` API, that allows user to specify connecting database.
1378
- * ###### Analytic functions
1379
- * _New functions_
1380
- * `Betweenness`
1381
- * `Closeness`
1382
- * `FMeasure`
1383
- * `FrequentPaths`
1384
- * `IdentityMatch`
1385
- * `Interpolator`
1386
- * `ROC`
1387
- * _Updates_
1388
- * New methods are added to all analytic functions
1389
- * `show_query()`
1390
- * `get_build_time()`
1391
- * `get_prediction_type()`
1392
- * `get_target_column()`
1393
- * New properties are added to analytic function's Formula argument
1394
- * `response_column`
1395
- * `numeric_columns`
1396
- * `categorical_columns`
1397
- * `all_columns`
1398
-
1399
- #### teradataml 16.20.00.06
1400
- Fixed the DataFrame data display corruption issue observed with certain analytic functions.
1401
-
1402
- #### teradataml 16.20.00.05
1403
- Compatible with Vantage 1.1.1.\
1404
- The following ML Engine (`teradataml.analytics.mle`) functions have new and/or updated arguments to support the Vantage version:
1405
- * `AdaBoostPredict`
1406
- * `DecisionForestPredict`
1407
- * `DecisionTreePredict`
1408
- * `GLMPredict`
1409
- * `LDA`
1410
- * `NaiveBayesPredict`
1411
- * `NaiveBayesTextClassifierPredict`
1412
- * `SVMDensePredict`
1413
- * `SVMSparse`
1414
- * `SVMSparsePredict`
1415
- * `XGBoostPredict`
1416
-
1417
- #### teradataml 16.20.00.04
1418
- * ##### Improvements
1419
- * DataFrame creation is now quicker, impacting many APIs and Analytic functions.
1420
- * Improved performance by reducing the number of intermediate queries issued to Teradata Vantage when not required.
1421
- * The number of queries reduced by combining multiple operations into a single step whenever possible and unless the user expects or demands to see the intermediate results.
1422
- * The performance improvement is almost proportional to the number of chained and unexecuted operations on a teradataml DataFrame.
1423
- * Reduced number of intermediate internal objects created on Vantage.
1424
- * ##### New Features/Functionality
1425
- * ###### General functions
1426
- * _New functions_
1427
- * `show_versions()` - to list the version of teradataml and dependencies installed.
1428
- * `fastload()` - for high performance data loading of large amounts of data into a table on Vantage. Requires `teradatasql` version `16.20.0.48` or above.
1429
- * Set operators:
1430
- * `concat`
1431
- * `td_intersect`
1432
- * `td_except`
1433
- * `td_minus`
1434
- * `case()` - to help construct SQL CASE based expressions.
1435
- * _Updates_
1436
- * `copy_to_sql`
1437
- * Added support to `copy_to_sql` to save multi-level index.
1438
- * Corrected the type mapping for index when being saved.
1439
- * `create_context()` updated to support 'JWT' logon mechanism.
1440
- * ###### Analytic functions
1441
- * _New functions_
1442
- * `NERTrainer`
1443
- * `NERExtractor`
1444
- * `NEREvaluator`
1445
- * `GLML1L2`
1446
- * `GLML1L2Predict`
1447
- * _Updates_
1448
- * Added support to categorize numeric columns as categorical while using formula - `as_categorical()` in the `teradataml.common.formula` module.
1449
- * ###### DataFrame
1450
- * Added support to create DataFrame from Volatile and Primary Time Index tables.
1451
- * `DataFrame.sample()` - to sample data.
1452
- * `DataFrame.index` - Property to access `index_label` of DataFrame.
1453
- * Functionality to process Time Series Data
1454
- * Grouping/Resampling time series data:
1455
- * `groupby_time()`
1456
- * `resample()`
1457
- * Time Series Aggregates:
1458
- * `bottom()`
1459
- * `count()`
1460
- * `describe()`
1461
- * `delta_t()`
1462
- * `mad()`
1463
- * `median()`
1464
- * `mode()`
1465
- * `first()`
1466
- * `last()`
1467
- * `top()`
1468
- * DataFrame API and method argument validation added.
1469
- * `DataFrame.info()` - Default value for `null_counts` argument updated from `None` to `False`.
1470
- * `Dataframe.merge()` updated to accept columns expressions along with column names to `on`, `left_on`, `right_on` arguments.
1471
- * ###### DataFrame Column/ColumnExpression methods
1472
- * `cast()` - to help cast the column to a specified type.
1473
- * `isin()` and `~isin()` - to check the presence of values in a column.
1474
- * ##### Removed deprecated Analytic functions
1475
- * All the deprecated Analytic functions under the `teradataml.analytics module` have been removed.
1476
- Newer versions of the functions are available under the `teradataml.analytics.mle` and the `teradataml.analytics.sqle` modules.
1477
- The modules removed are:
1478
- * `teradataml.analytics.Antiselect`
1479
- * `teradataml.analytics.Arima`
1480
- * `teradataml.analytics.ArimaPredictor`
1481
- * `teradataml.analytics.Attribution`
1482
- * `teradataml.analytics.ConfusionMatrix`
1483
- * `teradataml.analytics.CoxHazardRatio`
1484
- * `teradataml.analytics.CoxPH`
1485
- * `teradataml.analytics.CoxSurvival`
1486
- * `teradataml.analytics.DecisionForest`
1487
- * `teradataml.analytics.DecisionForestEvaluator`
1488
- * `teradataml.analytics.DecisionForestPredict`
1489
- * `teradataml.analytics.DecisionTree`
1490
- * `teradataml.analytics.DecisionTreePredict`
1491
- * `teradataml.analytics.GLM`
1492
- * `teradataml.analytics.GLMPredict`
1493
- * `teradataml.analytics.KMeans`
1494
- * `teradataml.analytics.NGrams`
1495
- * `teradataml.analytics.NPath`
1496
- * `teradataml.analytics.NaiveBayes`
1497
- * `teradataml.analytics.NaiveBayesPredict`
1498
- * `teradataml.analytics.NaiveBayesTextClassifier`
1499
- * `teradataml.analytics.NaiveBayesTextClassifierPredict`
1500
- * `teradataml.analytics.Pack`
1501
- * `teradataml.analytics.SVMSparse`
1502
- * `teradataml.analytics.SVMSparsePredict`
1503
- * `teradataml.analytics.SentenceExtractor`
1504
- * `teradataml.analytics.Sessionize`
1505
- * `teradataml.analytics.TF`
1506
- * `teradataml.analytics.TFIDF`
1507
- * `teradataml.analytics.TextTagger`
1508
- * `teradataml.analytics.TextTokenizer`
1509
- * `teradataml.analytics.Unpack`
1510
- * `teradataml.analytics.VarMax`
1511
-
1512
- #### teradataml 16.20.00.03
1513
- * Fixed the garbage collection issue observed with `remove_context()` when context is created using a SQLAlchemy engine.
1514
- * Added 4 new Advanced SQL Engine (was NewSQL Engine) analytic functions supported only on Vantage 1.1:
1515
- * `Antiselect`, `Pack`, `StringSimilarity`, and `Unpack`.
1516
- * Updated the Machine Learning Engine `NGrams` function to work with Vantage 1.1.
1517
-
1518
- #### teradataml 16.20.00.02
1519
- * Python version 3.4.x will no longer be supported. The Python versions supported are 3.5.x, 3.6.x, and 3.7.x.
1520
- * Major issue with the usage of formula argument in analytic functions with Python3.7 has been fixed, allowing this package to be used with Python3.7 or later.
1521
- * Configurable alias name support for analytic functions has been added.
1522
- * Support added to create_context (connect to Teradata Vantage) with different logon mechanisms.
1523
- Logon mechanisms supported are: 'TD2', 'TDNEGO', 'LDAP' & 'KRB5'.
1524
- * copy_to_sql function and DataFrame 'to_sql' methods now provide following additional functionality:
1525
- * Create Primary Time Index tables.
1526
- * Create set/multiset tables.
1527
- * New DataFrame methods are added: 'median', 'var', 'squeeze', 'sort_index', 'concat'.
1528
- * DataFrame method 'join' is now updated to make use of ColumnExpressions (df.column_name) for the 'on' clause as opposed to strings.
1529
- * Series is supported as a first class object by calling squeeze on DataFrame.
1530
- * Methods supported by teradataml Series are: 'head', 'unique', 'name', '\_\_repr__'.
1531
- * Binary operations with teradataml Series is not yet supported. Try using Columns from teradataml.DataFrames.
1532
- * Sample datasets and commands to load the same have been provided in the function examples.
1533
- * New configuration property has been added 'column_casesenitive_handler'. Useful when one needs to play with case sensitive columns.
1534
-
1535
- #### teradataml 16.20.00.01
1536
- * New support has been added for Linux distributions: Red Hat 7+, Ubuntu 16.04+, CentOS 7+, SLES12+.
1537
- * 16.20.00.01 now has over 100 analytic functions. These functions have been organized into their own packages for better control over which engine to execute the analytic function on. Due to these namespace changes, the old analytic functions have been deprecated and will be removed in a future release. See the Deprecations section in the Teradata Python Package User Guide for more information.
1538
- * New DataFrame methods `shape`, `iloc`, `describe`, `get_values`, `merge`, and `tail`.
1539
- * New Series methods for NA checking (`isnull`, `notnull`) and string processing (`lower`, `strip`, `contains`).
1540
-
1541
- #### teradataml 16.20.00.00
1542
- * `teradataml 16.20.00.00` is the first release version. Please refer to the _Teradata Python Package User Guide_ for a list of Limitations and Usage Considerations.
1543
-
1544
- ## Installation and Requirements
1545
-
1546
- ### Package Requirements:
1547
- * Python 3.5 or later
1548
-
1549
- Note: 32-bit Python is not supported.
1550
-
1551
- ### Minimum System Requirements:
1552
- * Windows 7 (64Bit) or later
1553
- * macOS 10.9 (64Bit) or later
1554
- * Red Hat 7 or later versions
1555
- * Ubuntu 16.04 or later versions
1556
- * CentOS 7 or later versions
1557
- * SLES 12 or later versions
1558
- * Teradata Vantage Advanced SQL Engine:
1559
- * Advanced SQL Engine 16.20 Feature Update 1 or later
1560
- * For a Teradata Vantage system with the ML Engine:
1561
- * Teradata Machine Learning Engine 08.00.03.01 or later
1562
-
1563
- ### Installation
1564
-
1565
- Use pip to install the Teradata Python Package for Advanced Analytics.
1566
-
1567
- Platform | Command
1568
- -------------- | ---
1569
- macOS/Linux | `pip install teradataml`
1570
- Windows | `py -3 -m pip install teradataml`
1571
-
1572
- When upgrading to a new version of the Teradata Python Package, you may need to use pip install's `--no-cache-dir` option to force the download of the new version.
1573
-
1574
- Platform | Command
1575
- -------------- | ---
1576
- macOS/Linux | `pip install --no-cache-dir -U teradataml`
1577
- Windows | `py -3 -m pip install --no-cache-dir -U teradataml`
1578
-
1579
- ## Using the Teradata Python Package
1580
-
1581
- Your Python script must import the `teradataml` package in order to use the Teradata Python Package:
1582
-
1583
- ```
1584
- >>> import teradataml as tdml
1585
- >>> from teradataml import create_context, remove_context
1586
- >>> create_context(host = 'hostname', username = 'user', password = 'password')
1587
- >>> df = tdml.DataFrame('iris')
1588
- >>> df
1589
-
1590
- SepalLength SepalWidth PetalLength PetalWidth Name
1591
- 0 5.1 3.8 1.5 0.3 Iris-setosa
1592
- 1 6.9 3.1 5.1 2.3 Iris-virginica
1593
- 2 5.1 3.5 1.4 0.3 Iris-setosa
1594
- 3 5.9 3.0 4.2 1.5 Iris-versicolor
1595
- 4 6.0 2.9 4.5 1.5 Iris-versicolor
1596
- 5 5.0 3.5 1.3 0.3 Iris-setosa
1597
- 6 5.5 2.4 3.8 1.1 Iris-versicolor
1598
- 7 6.9 3.2 5.7 2.3 Iris-virginica
1599
- 8 4.4 3.0 1.3 0.2 Iris-setosa
1600
- 9 5.8 2.7 5.1 1.9 Iris-virginica
1601
-
1602
- >>> df = df.select(['Name', 'SepalLength', 'PetalLength'])
1603
- >>> df
1604
-
1605
- Name SepalLength PetalLength
1606
- 0 Iris-versicolor 6.0 4.5
1607
- 1 Iris-versicolor 5.5 3.8
1608
- 2 Iris-virginica 6.9 5.7
1609
- 3 Iris-setosa 5.1 1.4
1610
- 4 Iris-setosa 5.1 1.5
1611
- 5 Iris-virginica 5.8 5.1
1612
- 6 Iris-virginica 6.9 5.1
1613
- 7 Iris-setosa 5.1 1.4
1614
- 8 Iris-virginica 7.7 6.7
1615
- 9 Iris-setosa 5.0 1.3
1616
-
1617
- >>> df = df[(df.Name == 'Iris-setosa') & (df.PetalLength > 1.5)]
1618
- >>> df
1619
-
1620
- Name SepalLength PetalLength
1621
- 0 Iris-setosa 4.8 1.9
1622
- 1 Iris-setosa 5.4 1.7
1623
- 2 Iris-setosa 5.7 1.7
1624
- 3 Iris-setosa 5.0 1.6
1625
- 4 Iris-setosa 5.1 1.9
1626
- 5 Iris-setosa 4.8 1.6
1627
- 6 Iris-setosa 4.7 1.6
1628
- 7 Iris-setosa 5.1 1.6
1629
- 8 Iris-setosa 5.1 1.7
1630
- 9 Iris-setosa 4.8 1.6
1631
- ```
1632
-
1633
- ## Documentation
1634
-
1635
- General product information, including installation instructions, is available in the [Teradata Documentation website](https://docs.teradata.com/search/documents?query=package+python+-lake&filters=category~%2522Programming+Reference%2522_%2522User+Guide%2522*prodname~%2522Teradata+Package+for+Python%2522_%2522Teradata+Python+Package%2522&sort=last_update&virtual-field=title_only&content-lang=)
1636
-
1637
- ## License
1638
-
1639
- Use of the Teradata Python Package is governed by the *License Agreement for the Teradata Python Package for Advanced Analytics*.
1640
- After installation, the `LICENSE` and `LICENSE-3RD-PARTY` files are located in the `teradataml` directory of the Python installation directory.
1
+ ## Teradata Python package for Advanced Analytics.
2
+
3
+ teradataml makes available to Python users a collection of analytic functions that reside on Teradata Vantage. This allows users to perform analytics on Teradata Vantage with no SQL coding. In addition, the teradataml library provides functions for scaling data manipulation and transformation, data filtering and sub-setting, and can be used in conjunction with other open-source python libraries.
4
+
5
+ For community support, please visit the [Teradata Community](https://support.teradata.com/community?id=community_forum&sys_id=14fe131e1bf7f304682ca8233a4bcb1d).
6
+
7
+ For Teradata customer support, please visit [Teradata Support](https://support.teradata.com/csm).
8
+
9
+ Copyright 2024, Teradata. All Rights Reserved.
10
+
11
+ ### Table of Contents
12
+ * [Release Notes](#release-notes)
13
+ * [Installation and Requirements](#installation-and-requirements)
14
+ * [Using the Teradata Python Package](#using-the-teradata-python-package)
15
+ * [Documentation](#documentation)
16
+ * [License](#license)
17
+
18
+ ## Release Notes:
19
+ #### teradataml 20.00.00.00
20
+ * ##### New Features/Functionality
21
+ * ###### teradataml OpenML: Run Opensource packages through Teradata Vantage
22
+ `OpenML` dynamically exposes opensource packages through Teradata Vantage. `OpenML` provides an
23
+ interface object through which exposed classes and functions of opensource packages can be accessed
24
+ with the same syntax and arguments.
25
+ The following functionality is added in the current release:
26
+ * `td_sklearn` - Interface object to run scikit-learn functions and classes through Teradata Vantage.
27
+ Example usage below:
28
+ ```
29
+ from teradataml import td_sklearn, DataFrame
30
+
31
+ df_train = DataFrame("multi_model_classification")
32
+
33
+ feature_columns = ["col1", "col2", "col3", "col4"]
34
+ label_columns = ["label"]
35
+ part_columns = ["partition_column_1", "partition_column_2"]
36
+
37
+ linear_svc = td_sklearn.LinearSVC()
38
+ ```
39
+ * `OpenML` is supported in both Teradata Vantage Enterprise and Teradata Vantage Lake.
40
+ * Argument Support:
41
+ * `Use of X and y arguments` - Scikit-learn users are familiar with using `X` and `y` as argument names
42
+ which take data as pandas DataFrames, numpy arrays or lists etc. However, in OpenML, we pass
43
+ teradataml DataFrames for arguments `X` and `y`.
44
+ ```
45
+ df_x = df_train.select(feature_columns)
46
+ df_y = df_train.select(label_columns)
47
+
48
+ linear_svc = linear_svc.fit(X=df_x, y=df_y)
49
+ ```
50
+ * `Additional support for data, feature_columns, label_columns and group_columns arguments` -
51
+ Apart from traditional arguments, OpenML supports additional arguments - `data`,
52
+ `feature_columns`, `label_columns` and `group_columns`. These are used as alternatives to `X`, `y`
53
+ and `groups`.
54
+ ```
55
+ linear_svc = linear_svc.fit(data=df_train, feature_columns=feature_columns, label_colums=label_columns)
56
+ ```
57
+ * `Support for classification and regression metrics` - Metrics functions for classification and
58
+ regression in `sklearn.metrics` module are supported. Other metrics functions' support will be added
59
+ in future releases.
60
+ * `Distributed Modeling and partition_columns argument support` - Existing scikit-learn supports
61
+ only single model generation. However, OpenML supports both single model use case and distributed
62
+ (multi) model use case. For this, user has to additionally pass `partition_columns` argument to
63
+ existing `fit()`, `predict()` or any other function to be run. This will generate multiple models
64
+ for multiple partitions, using the data in corresponding partition.
65
+ ```
66
+ df_x_1 = df_train.select(feature_columns + part_columns)
67
+ linear_svc = linear_svc.fit(X=df_x_1, y=df_y, partition_columns=part_columns)
68
+ ```
69
+ * `Support for load and deploy models` - OpenML provides additional support for saving (deploying) the
70
+ trained models. These models can be loaded later to perform operations like prediction, score etc. The
71
+ following functions are provided by OpenML:
72
+ * `<obj>.deploy()` - Used to deploy/save the model created and/or trained by OpenML.
73
+ * `td_sklearn.deploy()` - Used to deploy/save the model created and/or trained outside teradataml.
74
+ * `td_sklearn.load()` - Used to load the saved models.
75
+
76
+ <br>Refer Teradata Python Package User Guide for more details of this feature, arguments, usage, examples and supportability in both VantageCloud Enterprise and VantageCloud Lake.
77
+
78
+ * ###### teradataml: AutoML - Automated end to end Machine Learning flow.
79
+ AutoML is an approach to automate the process of building, training, and validating machine learning models.
80
+ It involves automation of various aspects of the machine learning workflow, such as feature exploration,
81
+ feature engineering, data preparation, model training and evaluation for given dataset.
82
+ teradataml AutoML feature offers best model identification, model leaderboard generation, parallel execution,
83
+ early stopping feature, model evaluation, model prediction, live logging, customization on default process.
84
+ * `AutoML`
85
+ AutoML is a generic algorithm that supports all three tasks, i.e. 'Regression',
86
+ 'Binary Classification' and 'Multiclass Classification'.
87
+ * Methods of AutoML
88
+ * `__init__()` - Instantiate an object of AutoML with given parameters.
89
+ * `fit()` - Perform fit on specified data and target column.
90
+ * `leaderboard()` - Get the leaderboard for the AutoML. Presents diverse models, feature
91
+ selection method, and performance metrics.
92
+ * `leader()` - Show best performing model and its details such as feature
93
+ selection method, and performance metrics.
94
+ * `predict()` - Perform prediction on the data using the best model or the model of users
95
+ choice from the leaderboard.
96
+ * `generate_custom_config()` - Generate custom config JSON file required for customized
97
+ run of AutoML.
98
+ * `AutoRegressor`
99
+ AutoRegressor is a special purpose AutoML feature to run regression specific tasks.
100
+ * Methods of AutoRegressor
101
+ * `__init__()` - Instantiate an object of AutoRegressor with given parameters.
102
+ * `fit()` - Perform fit on specified data and target column.
103
+ * `leaderboard()` - Get the leaderboard for the AutoRegressor. Presents diverse models, feature
104
+ selection method, and performance metrics.
105
+ * `leader()` - Show best performing model and its details such as feature
106
+ selection method, and performance metrics.
107
+ * `predict()` - Perform prediction on the data using the best model or the model of users
108
+ choice from the leaderboard.
109
+ * `generate_custom_config()` - Generate custom config JSON file required for customized
110
+ run of AutoRegressor.
111
+ * `AutoClassifier`
112
+ AutoClassifier is a special purpose AutoML feature to run classification specific tasks.
113
+ * Methods of AutoClassifier
114
+ * `__init__()` - Instantiate an object of AutoClassifier with given parameters.
115
+ * `fit()` - Perform fit on specified data and target column.
116
+ * `leaderboard()` - Get the leaderboard for the AutoClassifier. Presents diverse models, feature
117
+ selection method, and performance metrics.
118
+ * `leader()` - Show best performing model and its details such as feature
119
+ selection method, and performance metrics.
120
+ * `predict()` - Perform prediction on the data using the best model or the model of users
121
+ choice from the leaderboard.
122
+ * `generate_custom_config()` - Generate custom config JSON file required for customized
123
+ run of AutoClassifier.
124
+
125
+ * ###### teradataml: DataFrame
126
+ * `fillna` - Replace the null values in a column with the value specified.
127
+ * Data Manipulation
128
+ * `cube()`- Analyzes data by grouping it into multiple dimensions.
129
+ * `rollup()` - Analyzes a set of data across a single dimension with more than one level of detail.
130
+ * `replace()` - Replaces the values for columns.
131
+
132
+ * ###### teradataml: Script and Apply
133
+ * `deploy()` - Function deploys the model, generated after `execute_script()`, in database or user
134
+ environment in lake. The function is available in both Script and Apply.
135
+
136
+ * ###### teradataml: DataFrameColumn
137
+ * `fillna` - Replaces every occurrence of null value in column with the value specified.
138
+
139
+ * ###### teradataml DataFrameColumn a.k.a. ColumnExpression
140
+ * _Date Time Functions_
141
+ * `DataFrameColumn.week_start()` - Returns the first date or timestamp of the week that begins immediately before the specified date or timestamp value in a column as a literal.
142
+ * `DataFrameColumn.week_begin()` - It is an alias for `DataFrameColumn.week_start()` function.
143
+ * `DataFrameColumn.week_end()` - Returns the last date or timestamp of the week that ends immediately after the specified date or timestamp value in a column as a literal.
144
+ * `DataFrameColumn.month_start()` - Returns the first date or timestamp of the month that begins immediately before the specified date or timestamp value in a column or as a literal.
145
+ * `DataFrameColumn.month_begin()` - It is an alias for `DataFrameColumn.month_start()` function.
146
+ * `DataFrameColumn.month_end()` - Returns the last date or timestamp of the month that ends immediately after the specified date or timestamp value in a column or as a literal.
147
+ * `DataFrameColumn.year_start()` - Returns the first date or timestamp of the year that begins immediately before the specified date or timestamp value in a column or as a literal.
148
+ * `DataFrameColumn.year_begin()` - It is an alias for `DataFrameColumn.year_start()` function.
149
+ * `DataFrameColumn.year_end()` - Returns the last date or timestamp of the year that ends immediately after the specified date or timestamp value in a column or as a literal.
150
+ * `DataFrameColumn.quarter_start()` - Returns the first date or timestamp of the quarter that begins immediately before the specified date or timestamp value in a column as a literal.
151
+ * `DataFrameColumn.quarter_begin()` - It is an alias for `DataFrameColumn.quarter_start()` function.
152
+ * `DataFrameColumn.quarter_end()` - Returns the last date or timestamp of the quarter that ends immediately after the specified date or timestamp value in a column as a literal.
153
+ * `DataFrameColumn.last_sunday()` - Returns the date or timestamp of Sunday that falls immediately before the specified date or timestamp value in a column as a literal.
154
+ * `DataFrameColumn.last_monday()` - Returns the date or timestamp of Monday that falls immediately before the specified date or timestamp value in a column as a literal.
155
+ * `DataFrameColumn.last_tuesday()` - Returns the date or timestamp of Tuesday that falls immediately before the specified date or timestamp value in a column as a literal.
156
+ * `DataFrameColumn.last_wednesday()` - Returns the date or timestamp of Wednesday that falls immediately before specified date or timestamp value in a column as a literal.
157
+ * `DataFrameColumn.last_thursday()`- Returns the date or timestamp of Thursday that falls immediately before specified date or timestamp value in a column as a literal.
158
+ * `DataFrameColumn.last_friday()` - Returns the date or timestamp of Friday that falls immediately before specified date or timestamp value in a column as a literal.
159
+ * `DataFrameColumn.last_saturday()` - Returns the date or timestamp of Saturday that falls immediately before specified date or timestamp value in a column as a literal.
160
+ * `DataFrameColumn.day_of_week()` - Returns the number of days from the beginning of the week to the specified date or timestamp value in a column as a literal.
161
+ * `DataFrameColumn.day_of_month()` - Returns the number of days from the beginning of the month to the specified date or timestamp value in a column as a literal.
162
+ * `DataFrameColumn.day_of_year()` - Returns the number of days from the beginning of the year to the specified date or timestamp value in a column as a literal.
163
+ * `DataFrameColumn.day_of_calendar()` - Returns the number of days from the beginning of the business calendar to the specified date or timestamp value in a column as a literal.
164
+ * `DataFrameColumn.week_of_month()` - Returns the number of weeks from the beginning of the month to the specified date or timestamp value in a column as a literal.
165
+ * `DataFrameColumn.week_of_quarter()` - Returns the number of weeks from the beginning of the quarter to the specified date or timestamp value in a column as a literal.
166
+ * `DataFrameColumn.week_of_year()` - Returns the number of weeks from the beginning of the year to the specified date or timestamp value in a column as a literal.
167
+ * `DataFrameColumn.week_of_calendar()` - Returns the number of weeks from the beginning of the calendar to the specified date or timestamp value in a column as a literal.
168
+ * `DataFrameColumn.month_of_year()` - Returns the number of months from the beginning of the year to the specified date or timestamp value in a column as a literal.
169
+ * `DataFrameColumn.month_of_calendar()` - Returns the number of months from the beginning of the calendar to the specified date or timestamp value in a column as a literal.
170
+ * `DataFrameColumn.month_of_quarter()` - Returns the number of months from the beginning of the quarter to the specified date or timestamp value in a column as a literal.
171
+ * `DataFrameColumn.quarter_of_year()` - Returns the number of quarters from the beginning of the year to the specified date or timestamp value in a column as a literal.
172
+ * `DataFrameColumn.quarter_of_calendar()` - Returns the number of quarters from the beginning of the calendar to the specified date or timestamp value in a column as a literal.
173
+ * `DataFrameColumn.year_of_calendar()` - Returns the year of the specified date or timestamp value in a column as a literal.
174
+ * `DataFrameColumn.day_occurrence_of_month()` - Returns the nth occurrence of the weekday in the month for the date to the specified date or timestamp value in a column as a literal.
175
+ * `DataFrameColumn.year()` - Returns the integer value for year in the specified date or timestamp value in a column as a literal.
176
+ * `DataFrameColumn.month()` - Returns the integer value for month in the specified date or timestamp value in a column as a literal.
177
+ * `DataFrameColumn.hour()` - Returns the integer value for hour in the specified timestamp value in a column as a literal.
178
+ * `DataFrameColumn.minute()` - Returns the integer value for minute in the specified timestamp value in a column as a literal.
179
+ * `DataFrameColumn.second()` - Returns the integer value for seconds in the specified timestamp value in a column as a literal.
180
+ * `DataFrameColumn.week()` - Returns the number of weeks from the beginning of the year to the specified date or timestamp value in a column as a literal.
181
+ * `DataFrameColumn.next_day()` - Returns the date of the first weekday specified as 'day_value' that is later than the specified date or timestamp value in a column as a literal.
182
+ * `DataFrameColumn.months_between()` - Returns the number of months between value in specified date or timestamp value in a column as a literal and date or timestamp value in argument.
183
+ * `DataFrameColumn.add_months()` - Adds an integer number of months to specified date or timestamp value in a column as a literal.
184
+ * `DataFrameColumn.oadd_months()` - Adds an integer number of months, date or timestamp value in specified date or timestamp value in a column as a literal.
185
+ * `DataFrameColumn.to_date()` - Function converts a string-like representation of a DATE or PERIOD type to Date type.
186
+ * _String Functions_
187
+ * `DataFrameColumn.concat()` - Function to concatenate the columns with a separator.
188
+ * `DataFrameColumn.like()` - Function to match the string pattern. String match is case sensitive.
189
+ * `DataFrameColumn.ilike()` - Function to match the string pattern. String match is not case sensitive.
190
+ * `DataFrameColumn.substr()` - Returns the substring from a string column.
191
+ * `DataFrameColumn.startswith()` - Function to check if the column value starts with the specified value or not.
192
+ * `DataFrameColumn.endswith()` - Function to check if the column value ends with the specified value or not.
193
+ * `DataFrameColumn.format()` - Function to format the values in column based on formatter.
194
+ * `DataFrameColumn.to_char()` - Function converts numeric type or datetype to character type.
195
+ * `DataFrameColumn.trim()` - Function trims the string values in the column.
196
+ * _Regular Arithmetic Functions_
197
+ * `DataFrameColumn.cbrt()` - Computes the cube root of values in the column.
198
+ * `DataFrameColumn.hex()` - Computes the Hexadecimal from decimal for the values in the column.
199
+ * `DataframeColumn.hypot()` - Computes the decimal from Hexadecimal for the values in the column.
200
+ * `DataFrameColumn.unhex()` - computes the hypotenuse for the values between two columns.
201
+ * _Bit Byte Manipulation Functions_
202
+ * `DataFrameColumn.from_byte()` - Encodes a sequence of bits into a sequence of characters.
203
+ * _Comparison Functions_
204
+ * `DataFrameColumn.greatest()` - Returns the greatest values from columns.
205
+ * `DataFrameColumn.least()` - Returns the least values from columns.
206
+ * Behaviour of `DataFrameColumn.replace()` is changed.
207
+ * Behaviour of `DataFrameColumn.to_byte()` is changed. It now decodes a sequence of characters in a given encoding into a sequence of bits.
208
+ * Behaviour of `DataFrameColumn.trunc()` is changed. It now accepts Date type columns.
209
+
210
+ * ##### Bug Fixes
211
+ * Argument `url_encode` is no longer used in `create_context()` and is deprecated.
212
+ * **Important notes**
213
+ * Users do not need to encode password even if password contain special characters.
214
+ * Pass the password to the `create_context()` function argument `password` as it is without changing special characters.
215
+ * `fillna()` in VAL transformation allows to replace NULL values with empty string.
216
+
217
+ * ##### Updates
218
+ * Support for following deprecated functionality is removed:
219
+ * ML Engine functions
220
+ * STO and APPLY sandbox feature support for testing the script.
221
+ * sandbox_container_utils is removed. Following methods can no longer be used:
222
+ * `setup_sandbox_env()`
223
+ * `copy_files_from_container()`
224
+ * `cleanup_sandbox_env()`
225
+ * Model Cataloging APIs can no longer be used:
226
+ * `describe_model()`
227
+ * `delete_model()`
228
+ * `list_models()`
229
+ * `publish_model()`
230
+ * `retrieve_model()`
231
+ * `save_model()`
232
+ * `DataFrame.join()`
233
+ * Arguments `lsuffix` and `rsuffix` now add suffixes to new column names for join operation.
234
+ * `DataFrame.describe()`
235
+ * New argument `columns` is added to generate statistics on only those columns instead of all applicable columns.
236
+ * `DataFrame.groupby()`
237
+ * Supports `CUBE` and `ROLLUP` with additional optional argument `option`.
238
+ * `DataFrame.column.window()`
239
+ * Supports ColumnExpressions for `partition_columns` and `order_columns` arguments.
240
+ * `DataFrame.column.contains()` allows ColumnExpressions for `pattern` argument.
241
+ * `DataFrame.window()`
242
+ * Supports ColumnExpressions for `partition_columns` and `order_columns` arguments.
243
+
244
+ #### teradataml 17.20.00.07
245
+ * ##### New Features/Functionality
246
+ * ###### Open Analytics Framework (OpenAF) APIs:
247
+ * Manage all user environments.
248
+ * `create_env()`:
249
+ * new argument `conda_env` is added to create a conda environment.
250
+ * `list_user_envs()`:
251
+ * User can list conda environment(s) by using filter with new argument `conda_env`.
252
+ * Conda environment(s) can be managed using APIs for installing , updating, removing files/libraries.
253
+ * ##### Bug Fixes
254
+ * `columns` argument for `FillNa` function is made optional.
255
+
256
+ #### teradataml 17.20.00.06
257
+ * ##### New Features/Functionality
258
+ * ###### teradataml DataFrameColumn a.k.a. ColumnExpression
259
+ * `ColumnExpression.nulls_first()` - Displays NULL values at first.
260
+ * `ColumnExpression.nulls_last()` - Displays NULL values at last.
261
+ * _Bit Byte Manipulation Functions_
262
+ * `DataFrameColumn.bit_and()` - Returns the logical AND operation on the bits from
263
+ the column and corresponding bits from the argument.
264
+ * `DataFrameColumn.bit_get()` - Returns the bit specified by input argument from the column and
265
+ returns either 0 or 1 to indicate the value of that bit.
266
+ * `DataFrameColumn.bit_or()` - Returns the logical OR operation on the bits from the column and
267
+ corresponding bits from the argument.
268
+ * `DataFrameColumn.bit_xor()` - Returns the bitwise XOR operation on the binary representation of the
269
+ column and corresponding bits from the argument.
270
+ * `DataFrameColumn.bitand()` - It is an alias for `DataFrameColumn.bit_and()` function.
271
+ * `DataFrameColumn.bitnot()` - Returns a bitwise complement on the binary representation of the column.
272
+ * `DataFrameColumn.bitor()` - It is an alias for `DataFrameColumn.bit_or()` function.
273
+ * `DataFrameColumn.bitwise_not()` - It is an alias for `DataFrameColumn.bitnot()` function.
274
+ * `DataFrameColumn.bitwiseNOT()` - It is an alias for `DataFrameColumn.bitnot()` function.
275
+ * `DataFrameColumn.bitxor()` - It is an alias for `DataFrameColumn.bit_xor()` function.
276
+ * `DataFrameColumn.countset()` - Returns the count of the binary bits within the column that are either set to 1
277
+ or set to 0, depending on the input argument value.
278
+ * `DataFrameColumn.getbit()` - It is an alias for `DataFrameColumn.bit_get()` function.
279
+ * `DataFrameColumn.rotateleft()` - Returns an expression rotated to the left by the specified number of bits,
280
+ with the most significant bits wrapping around to the right.
281
+ * `DataFrameColumn.rotateright()` - Returns an expression rotated to the right by the specified number of bits,
282
+ with the least significant bits wrapping around to the left.
283
+ * `DataFrameColumn.setbit()` - Sets the value of the bit specified by input argument to the value
284
+ of column.
285
+ * `DataFrameColumn.shiftleft()` - Returns the expression when value in column is shifted by the specified
286
+ number of bits to the left.
287
+ * `DataFrameColumn.shiftright()` - Returns the expression when column expression is shifted by the specified
288
+ number of bits to the right.
289
+ * `DataFrameColumn.subbitstr()` - Extracts a bit substring from the column expression based on the specified
290
+ bit position.
291
+ * `DataFrameColumn.to_byte()` - Converts a numeric data type to the Vantage byte representation
292
+ (byte value) of the column expression value.
293
+
294
+ * _Regular Expression Functions_
295
+ * `DataFrameColumn.regexp_instr()` - Searches string value in column for a match to value specified in argument.
296
+ * `DataFrameColumn.regexp_replace()` - Replaces the portions of string value in a column that matches the value
297
+ specified regex string and replaces with the replace string.
298
+ * `DataFrameColumn.regexp_similar()` - Compares value in column to value in argument and returns integer value.
299
+ * `DataFrameColumn.regexp_substr()` - Extracts a substring from column that matches a regular expression
300
+ specified in the input argument.
301
+
302
+ * ###### Open Analytics Framework (OpenAF) APIs:
303
+ * Manage all user environments.
304
+ * `create_env()`:
305
+ * User can create one or more user environments using newly added argument `template` by providing specifications in template json file. New feature allows user to create complete user environment, including file and library installation, in just single function call.
306
+ * UserEnv Class Manage individual user environment.
307
+ * Properties:
308
+ * `models` - Supports listing of models in user environment.
309
+ * Methods:
310
+ * `install_model()` - Install a model in user environment.
311
+ * `uninstall_model()` - Uninstall a model from user environment.
312
+ * `snapshot()`- Take the snapshot of the user environment.
313
+
314
+ * ###### teradataml: Bring Your Own Model
315
+ * _New Functions_
316
+ * `DataRobotPredict()` - Score the data in Vantage using the model trained externally in datarobot and stored
317
+ in Vantage.
318
+
319
+ * ##### Updates
320
+ * `DataFrame.describe()`
321
+ * Method now accepts an argument `statistics`, which specifies the aggregate operation to be performed.
322
+ * `DataFrame.sort()`
323
+ * Method now accepts ColumnExpressions as well.
324
+ * Enables sorting using NULLS FIRST and NULLS LAST.
325
+ * `view_log()` downloads the Apply query logs based on query id.
326
+ * Arguments which accepts floating numbers will accept integers also for `Analytics Database Analytic Functions`.
327
+ * Argument `ignore_nulls` added to `DataFrame.plot()` to ignore the null values while plotting the data.
328
+ * `Dataframe.sample()`
329
+ * Method supports column stratification.
330
+
331
+ * ##### Bug Fixes
332
+ * `DataFrameColumn.cast()` accepts all teradatasqlalchemy types.
333
+ * Minor bug fix related to `DataFrame.merge()`.
334
+
335
+ #### teradataml 17.20.00.05
336
+ * ##### New Features/Functionality
337
+ * ###### teradataml: Hyperparameter-Tuning - Technique to identify best model parameters.
338
+ Hyperparameter tuning is an optimization method to determine the optimal set of
339
+ hyperparameters for the given dataset and learning model. teradataml hyperparameter tuning feature
340
+ offers best model identification, parallel execution, early stopping feature, best data identification,
341
+ model evaluation, model prediction, live logging, input data hyper-parameterization, input data sampling,
342
+ numerous scoring functions, hyper-parameterization for non-model trainer functions.
343
+ * `GridSearch`
344
+ GridSearch is an exhaustive search algorithm that covers all possible
345
+ parameter values to identify optimal hyperparameters.
346
+ * Methods of GridSearch
347
+ * `__init__()` - Instantiate an object of GridSearch for given model function and parameters.
348
+ * `evaluate()` - Function to perform evaluation on the given teradataml DataFrame using default model.
349
+ * `fit()` - Function to perform hyperparameter-tuning for given hyperparameters and model on teradataml DataFrame.
350
+ * `get_error_log()` - Useful to get the error log if model execution failed, using the model identifier.
351
+ * `get_input_data()` - Useful to get the input data using the data identifier, when input data is also parameterized.
352
+ * `get_model()` - Returns the trained model for the given model identifier.
353
+ * `get_parameter_grid()` - Returns the hyperparameter space used for hyperparameter optimization.
354
+ * `is_running()` - Returns the execution status of hyperaparameter tuning.
355
+ * `predict()` - Function to perform prediction on the given teradataml DataFrame using default model.
356
+ * `set_model()` - Function to update the default model.
357
+ * Properties of GridSearch
358
+ * `best_data_id` - Returns the best data identifier used for model training.
359
+ * `best_model` - Returns the best trained model.
360
+ * `best_model_id` - Returns the identifier for best model.
361
+ * `best_params_` - Returns the best set of hyperparameter.
362
+ * `best_sampled_data_` - Returns the best sampled data used to train the best model.
363
+ * `best_score_` - Returns the best trained model score.
364
+ * `model_stats` - Returns the model evaluation reports.
365
+ * `models` - Returns the metadata of all the models.
366
+ * `RandomSearch`
367
+ RandomSearch algorithm performs random sampling on hyperparameter
368
+ space to identify optimal hyperparameters.
369
+ * Methods of RandomSearch
370
+ * `__init__()` - Instantiate an object of RandomSearch for given model function and parameters.
371
+ * `evaluate()` - Function to perform evaluation on the given teradataml DataFrame using default model.
372
+ * `fit()` - Function to perform hyperparameter-tuning for given hyperparameters and model on teradataml DataFrame.
373
+ * `get_error_log()` - Useful to get the error log if model execution failed, using the model identifier.
374
+ * `get_input_data()` - Useful to get the input data using the data identifier, when input data is also parameterized.
375
+ * `get_model()` - Returns the trained model for the given model identifier.
376
+ * `get_parameter_grid()` - Returns the hyperparameter space used for hyperparameter optimization.
377
+ * `is_running()` - Returns the execution status of hyperaparameter tuning.
378
+ * `predict()` - Function to perform prediction on the given teradataml DataFrame using default model.
379
+ * `set_model()` - Function to update the default model.
380
+ * Properties of GridSearch
381
+ * `best_data_id` - Returns the best data identifier used for model training.
382
+ * `best_model` - Returns the best trained model.
383
+ * `best_model_id` - Returns the identifier for best model.
384
+ * `best_params_` - Returns the best set of hyperparameter.
385
+ * `best_sampled_data_` - Returns the best sampled data used to train the best model.
386
+ * `best_score_` - Returns the best trained model score.
387
+ * `model_stats` - Returns the model evaluation reports.
388
+ * `models` - Returns the metadata of all the models.
389
+
390
+ * ###### teradataml: Analytic Functions
391
+ teradataml currently has different functions to generate a model, predict, transform and evaluate. All these functions are needed to be invoked individually, i.e., predict(), evaluate(), transform() cannot be invoked using the model trainer function output. Enhancement done to this feature now enables user to invoke these functions as methods of the model trainer function. Below is the list of functions, updated with this enhancement:
392
+ * Analytics Database Analytic Functions
393
+ * `BincodeFit()` - Supports `transform()` method.
394
+ * `DecisionForest()` - Supports `predict()`, `evaluate()` methods.
395
+ * `Fit()` - Supports `transform()` method.
396
+ * `GLM()` - Supports `predict()`, `evaluate()` methods.
397
+ * `GLMPerSegment()` - Supports `predict()`, `evaluate()` methods.
398
+ * `KMeans()` - Supports `predict()` method.
399
+ * `KNN()` - Supports `predict()`, `evaluate()` methods.
400
+ * `NaiveBayesTextClassifierTrainer()` - Supports `predict()`, `evaluate()` methods.
401
+ * `NonLinearCombineFit()` - Supports `transform()` method.
402
+ * `OneClassSVM()` - Supports `predict()` method.
403
+ * `OneHotEncodingFit()` - Supports `transform()` method.
404
+ * `OrdinalEncodingFit()` - Supports `transform()` method.
405
+ * `OutlierFilterFit()` - Supports `transform()` method.
406
+ * `PolynomialFeaturesFit()` - Supports `transform()` method.
407
+ * `RandomProjectionFit()` - Supports `transform()` method.
408
+ * `RowNormalizeFit()` - Supports `transform()` method.
409
+ * `ScaleFit()` - Supports `transform()` method.
410
+ * `SimpleImputeFit()` - Supports `transform()` method.
411
+ * `SVM()` - Supports `predict()`, `evaluate()` methods.
412
+ * `TargetEncodingFit()` - Supports `transform()` method.
413
+ * `XGBoost()` - Supports `predict()`, `evaluate()` methods.
414
+ * Time Series Analytic (UAF) Functions
415
+ * `ArimaEstimate()` - Supports `forecast()`, `validate()` methods.
416
+ * `DFFT()` - Supports `convolve()`, `inverse()` methods.
417
+ * `IDFFT()` - Supports `inverse()` method.
418
+ * `DFFT2()` - Supports `convolve()`, `inverse()` methods.
419
+ * `IDFFT2()` - Supports `inverse()` method.
420
+ * `DIFF()` - Supports `inverse()` method.
421
+ * `UNDIFF()` - Supports `inverse()` method.
422
+ * `SeasonalNormalize()` - Supports `inverse()` method.
423
+
424
+ * ###### teradataml: DataFrame
425
+ * New Functions
426
+ * `DataFrame.plot()` - Generates the below type of plots on teradataml DataFrame.
427
+ * line - Generates line plot.
428
+ * bar - Generates bar plot.
429
+ * scatter - Generates scatter plot.
430
+ * corr - Generates correlation plot.
431
+ * wiggle - Generates a wiggle plot.
432
+ * mesh - Generates a mesh plot.
433
+ * `DataFrame.itertuples()` - iterate over teradataml DataFrame rows as namedtuples or list.
434
+ * ###### teradataml: GeoDataFrame
435
+ * New Functions
436
+ * `GeoDataFrame.plot()` - Generate the below type of plots on teradataml GeoDataFrame.
437
+ * line - Generates line plot.
438
+ * bar - Generates bar plot.
439
+ * scatter - Generates scatter plot.
440
+ * corr - Generates correlation plot.
441
+ * wiggle - Generates a wiggle plot.
442
+ * mesh - Generates a mesh plot.
443
+ * geometry - Generates plot on geospatial data.
444
+ * Plot:
445
+ * `Axis` - Genertes the axis for plot.
446
+ * `Figure` - Generates the figure for plot.
447
+ * `subplots` - Helps in generating multiple plots on a single `Figure`.
448
+ * Bring Your Own Model (BYOM) Function:
449
+ * `DataikuPredict` - Score the data in Vantage using the model trained externally in Dataiku UI and stored in Vantage.
450
+ * `async_run_status()` - Function to check the status of asynchronous run(s) using unique run id(s).
451
+
452
+ * ###### teradataml DataFrameColumn a.k.a. ColumnExpression
453
+ * _Regular Arithmetic Functions_
454
+ * `DataFrameColumn.abs()` - Computes the absolute value.
455
+ * `DataFrameColumn.ceil()` - Returns the ceiling value of the column.
456
+ * `DataFrameColumn.ceiling()` - It is an alias for `DataFrameColumn.ceil()` function.
457
+ * `DataFrameColumn.degrees()` - Converts radians value from the column to degrees.
458
+ * `DataFrameColumn.exp()` - Raises e (the base of natural logarithms) to the power of the value in the column, where e = 2.71828182845905.
459
+ * `DataFrameColumn.floor()` - Returns the largest integer equal to or less than the value in the column.
460
+ * `DataFrameColumn.ln()` - Computes the natural logarithm of values in column.
461
+ * `DataFrameColumn.log10()` - Computes the base 10 logarithm.
462
+ * `DataFrameColumn.mod()` - Returns the modulus of the column.
463
+ * `DataFrameColumn.pmod()` - It is an alias for `DataFrameColumn.mod()` function.
464
+ * `DataFrameColumn.nullifzero()` - Converts data from zero to null to avoid problems with division by zero.
465
+ * `DataFrameColumn.pow()` - Computes the power of the column raised to expression or constant.
466
+ * `DataFrameColumn.power()` - It is an alias for `DataFrameColumn.pow()` function.
467
+ * `DataFrameColumn.radians()` - Converts degree value from the column to radians.
468
+ * `DataFrameColumn.round()` - Returns the rounded off value.
469
+ * `DataFrameColumn.sign()` - Returns the sign.
470
+ * `DataFrameColumn.signum()` - It is an alias for `DataFrameColumn.sign()` function.
471
+ * `DataFrameColumn.sqrt()` - Computes the square root of values in the column.
472
+ * `DataFrameColumn.trunc()` - Provides the truncated value of columns.
473
+ * `DataFrameColumn.width_bucket()` - Returns the number of the partition to which column is assigned.
474
+ * `DataFrameColumn.zeroifnull()` - Converts data from null to zero to avoid problems with null.
475
+ * _Trigonometric Functions_
476
+ * `DataFrameColumn.acos()` - Returns the arc-cosine value.
477
+ * `DataFrameColumn.asin()` - Returns the arc-sine value.
478
+ * `DataFrameColumn.atan()` - Returns the arc-tangent value.
479
+ * `DataFrameColumn.atan2()` - Returns the arc-tangent value based on x and y coordinates.
480
+ * `DataFrameColumn.cos()` - Returns the cosine value.
481
+ * `DataFrameColumn.sin()` - Returns the sine value.
482
+ * `DataFrameColumn.tan()` - Returns the tangent value.
483
+ * _Hyperbolic Functions_
484
+ * `DataFrameColumn.acosh()` - Returns the inverse hyperbolic cosine value.
485
+ * `DataFrameColumn.asinh()` - Returns the inverse hyperbolic sine value.
486
+ * `DataFrameColumn.atanh()` - Returns the inverse hyperbolic tangent value.
487
+ * `DataFrameColumn.cosh()` - Returns the hyperbolic cosine value.
488
+ * `DataFrameColumn.sinh()` - Returns the hyperbolic sine value
489
+ * `DataFrameColumn.tanh()` - Returns the hyperbolic tangent value.
490
+ * _String Functions_
491
+ * `DataFrameColumn.ascii()` - Returns the decimal representation of the first character in column.
492
+ * `DataFrameColumn.char2hexint()` - Returns the hexadecimal representation for a character string in a column.
493
+ * `DataFrameColumn.chr()` - Returns the Latin ASCII character of a given a numeric code value in column.
494
+ * `DataFrameColumn.char()` - It is an alias for `DataFrameColumn.chr()` function.
495
+ * `DataFrameColumn.character_length()` - Returns the number of characters in the column.
496
+ * `DataFrameColumn.char_length()` - It is an alias for `DataFrameColumn.character_length()` function.
497
+ * `DataFrameColumn.edit_distance()` - Returns the minimum number of edit operations required to
498
+ transform string in a column into string specified in argument.
499
+ * `DataFrameColumn.index()` - Returns the position of a string in a column where string specified in argument starts.
500
+ * `DataFrameColumn.initcap()` - Modifies a string column and returns the string with the first character
501
+ of each word in uppercase.
502
+ * `DataFrameColumn.instr()` - Searches the string in a column for occurrences of search string passed as argument.
503
+ * `DataFrameColumn.lcase()` - Returns a character string identical to string values in column,
504
+ with all uppercase letters replaced with their lowercase equivalents.
505
+ * `DataFrameColumn.left()` - Truncates string in a column to a specified number of characters desired from
506
+ the left side of the string.
507
+ * `DataFrameColumn.length()` - It is an alias for `DataFrameColumn.character_length()` function.
508
+ * `DataFrameColumn.levenshtein()` - It is an alias for `DataFrameColumn.edit_distance()` function.
509
+ * `DataFrameColumn.locate()` - Returns the position of the first occurrence of a string in a column within
510
+ string in argument.
511
+ * `DataFrameColumn.lower()` - It is an alias for `DataFrameColumn.character_lcase()` function.
512
+ * `DataFrameColumn.lpad()` - Returns the string in a column padded to the left with the characters specified
513
+ in argument so that the resulting string has length specified in argument.
514
+ * `DataFrameColumn.ltrim()` - Returns the string in a column, with its left-most characters removed up
515
+ to the first character that is not in the string specified in argument.
516
+ * `DataFrameColumn.ngram()` - Returns the number of n-gram matches between string in a column,
517
+ and string specified in argument.
518
+ * `DataFrameColumn.nvp()` - Extracts the value of a name-value pair where the name in the pair matches
519
+ the name and the number of the occurrence specified.
520
+ * `DataFrameColumn.oreplace()` - Replaces every occurrence of search string in the column.
521
+ * `DataFrameColumn.otranslate()` - Returns string in a column with every occurrence of each character in
522
+ string in argument replaced with the corresponding character in another argument.
523
+ * `DataFrameColumn.replace()` - It is an alias for `DataFrameColumn.oreplace()` function.
524
+ * `DataFrameColumn.reverse()` - Returns the reverse of string in column.
525
+ * `DataFrameColumn.right()` - Truncates input string to a specified number of characters desired from
526
+ the right side of the string.
527
+ * `DataFrameColumn.rpad()` - Returns the string in a column padded to the right with the characters specified
528
+ in argument so the resulting string has length specified in argument.
529
+ * `DataFrameColumn.rtrim()` - Returns the string in column, with its right-most characters removed up
530
+ to the first character that is not in the string specified in argument.
531
+ * `DataFrameColumn.soundex()` - Returns a character string that represents the Soundex code for
532
+ string in a column.
533
+ * `DataFrameColumn.string_cs()` - Returns a heuristically derived integer value that can be used to determine
534
+ which KANJI1-compatible client character set was used to encode string in a column.
535
+ * `DataFrameColumn.translate()` - It is an alias for `DataFrameColumn.otranslate()` function.
536
+ * `DataFrameColumn.upper()` - Returns a character string with all lowercase letters in a column replaced
537
+ with their uppercase equivalents.
538
+
539
+ * ##### teradataml Options
540
+ * Configuration Options
541
+ * `configure.indb_install_location`
542
+ Specifies the installation location of In-DB Python package.
543
+
544
+ * ##### Updates
545
+ * Open Analytics Framework (OpenAF) APIs:
546
+ * `set_auth_token()`
547
+ * `set_auth_token()` does not accept username and password anymore. Instead, function opens up a browser session and user should authenticate in browser.
548
+ * After token expiry, teradataml will open a browser and user needs to authenticate again.
549
+ * If client machine does not have browser, then user should copy the URL posted by teradataml and authenticate themselves.
550
+ * Security fixes - `auth_token` is not set or retrieved from the `configure` option anymore.
551
+ * Manage all user environments.
552
+ * `create_env()` - supports creation of R environment.
553
+ * `remove_env()` - Supports removal of remote R environment.
554
+ * `remove_all_envs()` - Supports removal of all remote R environments.
555
+ * `remove_env()` and `remove_all_envs()` supports asynchronous call.
556
+ * UserEnv Class – Supports managing of R remote environments.
557
+ * Properties:
558
+ * `libs` - Supports listing of libraries in R remote environment.
559
+ * Methods:
560
+ * `install_lib()` - Supports installing of libraries in remote R environment.
561
+ * `uninstall_lib()` - Supports uninstalling of libraries in remote R environment.
562
+ * `update_lib()` - Supports updating of libraries in remote R environment.
563
+ * Unbounded Array Framework (UAF) Functions:
564
+ * `ArimaEstimate()`
565
+ * Added support for `CSS` algorithm via `algorithm` argument.
566
+
567
+ * ##### Bug Fixes
568
+ * Installation location of In-DB 2.0.0 package is changed. Script() will now work with both 2.0.0 and previous version.
569
+
570
+ ## Release Notes:
571
+ #### teradataml 17.20.00.04
572
+ * ##### New Features/Functionality
573
+ * teradataml is now compatible with SQLAlchemy 2.0.X
574
+ * **Important notes** when user has sqlalchemy version >= 2.0:
575
+ * Users will not be able to run the `execute()` method on SQLAlchemy engine object returned by
576
+ `get_context()` and `create_context()` teradataml functions. This is due to the SQLAlchemy has
577
+ removed the support for `execute()` method on the engine object. Thus, user scripts where
578
+ `get_context().execute()` and `create_context().execute()`, is used, Teradata recommends to
579
+ replace those with either `execute_sql()` function exposed by teradataml or `exec_driver_sql()`
580
+ method on the `Connection` object returned by `get_connection()` function in teradataml.
581
+ * Now `get_connection().execute()` accepts only executable sqlalchemy object. Refer to
582
+ `sqlalchemy.engine.base.execute()` for more details.
583
+ * Teradata recommends to use either `execute_sql()` function exposed by teradataml or
584
+ `exec_driver_sql()` method on the `Connection` object returned by `get_connection()`
585
+ function in teradataml, in such cases.
586
+ * New utility function `execute_sql()` is added to execute the SQL.
587
+ * Extending compatibility for MAC with ARM processors.
588
+ * Added support for floor division (//) between two teradataml DataFrame Columns.
589
+ * Analytics Database Analytic Functions:
590
+ * `GLMPerSegment()`
591
+ * `GLMPredictPerSegment()`
592
+ * `OneClassSVM()`
593
+ * `OneClassSVMPredict()`
594
+ * `SVM()`
595
+ * `SVMPredict()`
596
+ * `TargetEncodingFit()`
597
+ * `TargetEncodingTransform()`
598
+ * `TrainTestSplit()`
599
+ * `WordEmbeddings()`
600
+ * `XGBoost()`
601
+ * `XGBoostPredict()`
602
+
603
+ * ###### teradataml Options
604
+ * Display Options
605
+ * `display.geometry_column_length`
606
+ Option to display the default length of geometry column in GeoDataFrame.
607
+
608
+ * ##### Updates
609
+ * `set_auth_token()` function can generate the client id automatically based on org_id when user do not specify it.
610
+ * Analytics Database Analytic Functions:
611
+ * `ColumnTransformer()`
612
+ * Does not allow list values for arguments - `onehotencoding_fit_data` and `ordinalencoding_fit_data`.
613
+ * `OrdidnalEncodingFit()`
614
+ * New arguments added - `category_data`, `target_column_names`, `categories_column`, `ordinal_values_column`.
615
+ * Allows the list of values for arguments - `target_column`, `start_value`, `default_value`.
616
+ * `OneHotEncodingFit()`
617
+ * New arguments added - `category_data`, `approach`, `target_columns`, `categories_column`, `category_counts`.
618
+ * Allows the list of values for arguments - `target_column`, `other_column`.
619
+
620
+ * ##### Bug Fixes
621
+ * `DataFrame.sample()` method output is now deterministic.
622
+ * `copy_to_sql()` now preserves the rows of the table even when the view content is copied to the same table name.
623
+ * `list_user_envs()` does not raise warning when no user environments found.
624
+
625
+ ## Release Notes:
626
+ #### teradataml 17.20.00.03
627
+
628
+ * ##### Updates
629
+ * DataFrame.join
630
+ * New arguments `lprefix` and `rprefix` added.
631
+ * Behavior of arguments `lsuffix` and `rsuffix` will be changed in future, use new arguments instead.
632
+ * New and old affix arguments can now be used independently.
633
+ * Analytic functions can be imported regardless of context creation.
634
+ Import after create context constraint is now removed.
635
+ * `ReadNOS` and `WriteNOS` now accept dictionary value for `authorization` and `row_format` arguments.
636
+ * `WriteNOS` supports writing CSV files to external store.
637
+ * Following model cataloging APIs will be deprecated in future:
638
+ * describe_model
639
+ * delete_model
640
+ * list_models
641
+ * publish_model
642
+ * retrieve_model
643
+ * save_model
644
+
645
+ * ##### Bug Fixes
646
+ * `copy_to_sql()` bug related to NaT value has been fixed.
647
+ * Tooltip on PyCharm IDE now points to SQLE.
648
+ * `value` argument of `FillNa()`, a Vantage Analytic Library function supports special characters.
649
+ * `case` function accepts DataFrame column as value in `whens` argument.
650
+
651
+ ## Release Notes:
652
+ #### teradataml 17.20.00.02
653
+ * ##### New Features/Functionality
654
+ * ###### teradataml: Open Analytics
655
+ * New Functions
656
+ * `set_auth_token()` - Sets the JWT token automatically for using Open AF API's.
657
+
658
+ * ###### teradataml Options
659
+ * Display Options
660
+ * `display.suppress_vantage_runtime_warnings`
661
+ Suppresses the VantageRuntimeWarning raised by teradataml, when set to True.
662
+
663
+ * ##### Updates
664
+ * SimpleImputeFit function arguments `stats_columns` and `stats` are made to be optional.
665
+ * New argument `table_format` is added to ReadNOS().
666
+ * Argument `full_scan` is changed to `scan_pct` in ReadNOS().
667
+
668
+ * ##### Bug Fixes
669
+ * Minor bug fix related to read_csv.
670
+ * APPLY and `DataFrame.apply()` supports hash by and local order by.
671
+ * Output column names are changed for DataFrame.dtypes and DataFrame.tdtypes.
672
+
673
+ ## Release Notes:
674
+ #### teradataml 17.20.00.01
675
+ * ##### New Features/Functionality
676
+ * ###### teradataml: DataFrame
677
+ * New Functions
678
+ * `DataFrame.pivot()` - Rotate data from rows into columns to create easy-to-read DataFrames.
679
+ * `DataFrame.unpivot()` - Rotate data from columns into rows to create easy-to-read DataFrames.
680
+ * `DataFrame.drop_duplicate()` - Drop duplicate rows from teradataml DataFrame.
681
+ * New properties
682
+ * `Dataframe.is_art` - Check whether teradataml DataFrame is created on an Analytic Result Table, i.e., ART table or not.
683
+
684
+ * ###### teradataml: Unbounded Array Framework (UAF) Functions:
685
+ * New Functions
686
+ * New Functions Supported on Database Versions: 17.20.x.x
687
+ * MODEL PREPARATION AND PARAMETER ESTIMATION functions:
688
+ 1. `ACF()`
689
+ 2. `ArimaEstimate()`
690
+ 3. `ArimaValidate()`
691
+ 4. `DIFF()`
692
+ 5. `LinearRegr()`
693
+ 6. `MultivarRegr()`
694
+ 7. `PACF()`
695
+ 8. `PowerTransform()`
696
+ 9. `SeasonalNormalize()`
697
+ 10. `Smoothma()`
698
+ 11. `UNDIFF()`
699
+ 12. `Unnormalize()`
700
+ * SERIES FORECASTING functions:
701
+ 1. `ArimaForecast()`
702
+ 2. `DTW()`
703
+ 3. `HoltWintersForecaster()`
704
+ 4. `MAMean()`
705
+ 5. `SimpleExp()`
706
+ * DATA PREPARATION functions:
707
+ 1. `BinaryMatrixOp()`
708
+ 2. `BinarySeriesOp()`
709
+ 3. `GenseriesFormula()`
710
+ 4. `MatrixMultiply()`
711
+ 5. `Resample()`
712
+ * DIAGNOSTIC STATISTICAL TEST functions:
713
+ 1. `BreuschGodfrey()`
714
+ 2. `BreuschPaganGodfrey()`
715
+ 3. `CumulPeriodogram()`
716
+ 4. `DickeyFuller()`
717
+ 5. `DurbinWatson()`
718
+ 6. `FitMetrics()`
719
+ 7. `GoldfeldQuandt()`
720
+ 8. `Portman()`
721
+ 9. `SelectionCriteria()`
722
+ 10. `SignifPeriodicities()`
723
+ 11. `SignifResidmean()`
724
+ 12. `WhitesGeneral()`
725
+ * TEMPORAL AND SPATIAL functions:
726
+ 1. `Convolve()`
727
+ 2. `Convolve2()`
728
+ 3. `DFFT()`
729
+ 4. `DFFT2()`
730
+ 5. `DFFT2Conv()`
731
+ 6. `DFFTConv()`
732
+ 7. `GenseriesSinusoids()`
733
+ 8. `IDFFT()`
734
+ 9. `IDFFT2()`
735
+ 10. `LineSpec()`
736
+ 11. `PowerSpec()`
737
+ * GENERAL UTILITY functions:
738
+ 1. `ExtractResults()`
739
+ 2. `InputValidator()`
740
+ 3. `MInfo()`
741
+ 4. `SInfo()`
742
+ 5. `TrackingOp()`
743
+
744
+ * New Features: Inputs to Unbounded Array Framework (UAF) functions
745
+ * `TDAnalyticResult()` - Allows to prepare function output generated by UAF functions to be passed.
746
+ * `TDGenSeries()` - Allows to generate a series, that can be passed to a UAF function.
747
+ * `TDMatrix()` - Represents a Matrix in time series, that can be created from a teradataml DataFrame.
748
+ * `TDSeries()` - Represents a Series in time series, that can be created from a teradataml DataFrame.
749
+
750
+ * ##### Updates
751
+ * Native Object Store (NOS) functions support authorization by specifying authorization object.
752
+ * `display_analytic_functions()` categorizes the analytic functions based on function type.
753
+ * ColumnTransformer accepts multiple values for arguments nonlinearcombine_fit_data,
754
+ onehotencoding_fit_data, ordinalencoding_fit_data.
755
+
756
+ * ##### Bug Fixes
757
+ * Redundant warnings thrown by teradataml are suppressed.
758
+ * OpenAF supports when context is created with JWT Token.
759
+ * New argument "match_column_order" added to copy_to_sql, that allows DataFrame loading with any column order.
760
+ * `copy_to_sql` updated to map data type timezone(tzinfo) to TIMESTAMP(timezone=True), instead of VARCHAR.
761
+ * Improved performance for DataFrame.sum and DataFrameColumn.sum functions.
762
+
763
+ ## Release Notes:
764
+ #### teradataml 17.20.00.00
765
+ * ##### New Features/Functionality
766
+ * ###### teradataml: Analytics Database Analytic Functions
767
+ * _New Functions_
768
+ * ###### New Functions Supported on Database Versions: 17.20.x.x
769
+ * `ANOVA()`​
770
+ * `ClassificationEvaluator()`​
771
+ * `ColumnTransformer()`​
772
+ * `DecisionForest()`
773
+ * `GLM​()`
774
+ * `GetFutileColumns()`
775
+ * `KMeans()`​
776
+ * `KMeansPredict()`​​
777
+ * `NaiveBayesTextClassifierTrainer()`​
778
+ * `NonLinearCombineFit()`​
779
+ * `NonLinearCombineTransform()`​
780
+ * `OrdinalEncodingFit​()`
781
+ * `OrdinalEncodingTransform()`​
782
+ * `RandomProjectionComponents​()`
783
+ * `RandomProjectionFit​()`
784
+ * `RandomProjectionTransform()`​
785
+ * `RegressionEvaluator​()`
786
+ * `ROC​()`
787
+ * `SentimentExtractor()`​
788
+ * `Silhouette​()`
789
+ * `TDGLMPredict​()`
790
+ * `TextParser​()`
791
+ * `VectorDistance()`
792
+ * _Updates_
793
+ * `display_analytic_functions()` categorizes the analytic functions based on function type.
794
+ * Users can provide range value for columns argument.
795
+
796
+ * ###### teradataml: Open Analytics
797
+ * Manage all user environments.
798
+ * `list_base_envs()` - list the available python base versions.​
799
+ * `create_env()` - create a new user environment. ​
800
+ * `get_env()` - get existing user environment.
801
+ * `list_user_envs()` - list the available user environments.​
802
+ * `remove_env()` - delete user environment.​
803
+ * `remove_all_envs()` - delete all the user environments.
804
+ * UserEnv Class – Manage individual user environment.
805
+ * Properties
806
+ * `files` - Get files in user environment.
807
+ * `libs` - Get libraries in user environment.
808
+ * Methods
809
+ * `install_file()` - Install a file in user environment.​
810
+ * `remove_file()` - Remove a file in user environment.​
811
+ * `install_lib()` - Install a library in user environment.​
812
+ * `update_lib()` - Update a library in user environment.​
813
+ * `uninstall_lib()` - Uninstall a library in user environment.​
814
+ * `status()` - Check the status of​
815
+ * file installation​
816
+ * library installation​
817
+ * library update​
818
+ * library uninstallation​
819
+ * `refresh()` - Refresh the environment details in local client.
820
+ * Apply Class Execute a user script on VantageCloud Lake.​
821
+ * `__init__()` - Instantiate an object of apply for script execution.​
822
+ * `install_file()` - Install a file in user environment.​
823
+ * `remove_file()` - Remove a file in user environment.​
824
+ * `set_data()` – Reset data and related arguments.​
825
+ * `execute_script()` Executes Python script.
826
+
827
+ * ###### teradataml: DataFrame
828
+ * _New Functions_
829
+ * `DataFrame.apply()` - Execute a user defined Python function on VantageLake Cloud.
830
+
831
+ * ###### teradataml: Bring Your Own Model
832
+ * _New Functions_
833
+ * `ONNXPredict()` - Score using model trained externally on ONNX and stored in Vantage.
834
+
835
+ * ###### teradataml: Options
836
+ * _New Functions_
837
+ * set_config_params() New API to set all config params in one go.
838
+ * _New Configuration Options_
839
+ * For Open Analytics support.​
840
+ * ues_url – User Environment Service URL for VantageCloud Lake.​
841
+ * auth_token – Authentication token to connect to VantageCloud Lake.
842
+ * certificate_file – Path to a CA_BUNDLE file or directory with certificates of trusted CAs.
843
+
844
+ * ##### Updates
845
+ * `accumulate` argument is working for `ScaleTransform()`.
846
+ * Following functions have `accumulate` argument added on Database Versions: 17.20.x.x
847
+ * `ConvertTo()`
848
+ * `GetRowsWithoutMissingValues()`
849
+ * `GetRowsWithoutMissingValues()`
850
+ * `OutlierFilterFit()` supports multiple output.
851
+ * For `OutlierFilterFit()` function below arguments are optional in teradataml 17.20.x.x
852
+ * `lower_percentile`
853
+ * `upper_percentile`
854
+ * `outlier_method`
855
+ * `replacement_value`
856
+ * `percentile_method`
857
+ * Analytics Database analytic functions – In line help, i.e., help() for the functions
858
+ is available.​
859
+
860
+ * ##### Bug Fixes
861
+ * Vantage Analytic Library FillNa() function: Now `columns` argument is required.
862
+ * `output_responses` argument in MLE function `DecisionTreePredict()`, does not allow empty string.
863
+ * teradataml closes docker sandbox environment properly.
864
+ * Users can create context using JWT token.
865
+
866
+ #### teradataml 17.10.00.02
867
+ * ##### New Features/Functionality
868
+ * ###### Database Utility
869
+ * `list_td_reserved_keywords()` - Validates if the specified string is Teradata reserved
870
+ keyword or not, else lists down all the Teradata reserved keywords.
871
+
872
+ * ##### Updates
873
+ * ###### DataFrame
874
+ * _Updates_
875
+ * Multiple columns can be selected using slice operator ([]).
876
+
877
+ * ###### Script
878
+ * _Updates_
879
+ * A warning will be raised, when Teradata reserved keyword is used in Script local mode.
880
+
881
+ * ##### Bug Fixes
882
+ * Numeric overflow issue observed for describe(), sum(), csum(), and mean() has been fixed.
883
+ * Error messages are updated for SQLE function arguments accepting multiple datatypes.
884
+ * Error messages are updated for SQLE function arguments volatile and persist arguments when
885
+ non-boolean value is provided.
886
+ * DataFrame sample() method can handle column names with special characters like space, hyphen,
887
+ period etc.
888
+ * In-DB SQLE functions can be loaded for any locale setting.
889
+ * `create_context()` - Password containing special characters requires URL encoding as per
890
+ https://docs.microfocus.com/OMi/10.62/Content/OMi/ExtGuide/ExtApps/URL_encoding.html.
891
+ teradataml has added a fix to take care of the URL encoding of the password while creating a context.
892
+ Also, a new argument is added to give a more control over the URL encoding to be done at the time of context creation.
893
+
894
+ #### teradataml 17.10.00.01
895
+ * ##### New Features/Functionality
896
+ * ###### Geospatial
897
+ The Geospatial feature in teradataml enables data manipulation, exploration and analysis on tables, views, and queries on Teradata Vantage that contains Geospatial data.
898
+ * ###### Geomtery Types
899
+ * Point
900
+ * LineString
901
+ * Polygon
902
+ * MultiPoint
903
+ * MultiLineString
904
+ * MultiPolygon
905
+ * GeometryCollection
906
+ * GeoSequence
907
+ * ###### teradataml GeoDataFrame
908
+ * Properties
909
+ * columns
910
+ * dtypes
911
+ * geometry
912
+ * iloc
913
+ * index
914
+ * loc
915
+ * shape
916
+ * size
917
+ * tdtypes
918
+ * Geospatial Specific Properties
919
+ * ###### Properties for all Types of Geometries
920
+ * boundary
921
+ * centroid
922
+ * convex_hell
923
+ * coord_dim
924
+ * dimension
925
+ * geom_type
926
+ * is_3D
927
+ * is_empty
928
+ * is_simple
929
+ * is_valid
930
+ * max_x
931
+ * max_y
932
+ * max_z
933
+ * min_x
934
+ * min_y
935
+ * min_z
936
+ * srid
937
+ * ###### Properties for Point Geometry
938
+ * x
939
+ * y
940
+ * z
941
+ * ###### Properties for LineString Geometry
942
+ * is_closed_3D
943
+ * is_closed
944
+ * is_ring
945
+ * ###### Properties for Polygon Geometry
946
+ * area
947
+ * exterior
948
+ * perimeter
949
+ * Methods
950
+ * `__getattr__()`
951
+ * `__getitem__()`
952
+ * `__init__()`
953
+ * `__repr__()`
954
+ * `assign()`
955
+ * `concat()`
956
+ * `count()`
957
+ * `drop()`
958
+ * `dropna()`
959
+ * `filter()`
960
+ * `from_query()`
961
+ * `from_table()`
962
+ * `get()`
963
+ * `get_values()`
964
+ * `groupby()`
965
+ * `head()`
966
+ * `info()`
967
+ * `join()`
968
+ * `keys()`
969
+ * `merge()`
970
+ * `sample()`
971
+ * `select()`
972
+ * `set_index()`
973
+ * `show_query()`
974
+ * `sort()`
975
+ * `sort_index()`
976
+ * `squeeze()`
977
+ * `tail()`
978
+ * `to_csv()`
979
+ * `to_pandas()`
980
+ * `to_sql()`
981
+ * Geospatial Specific Methods
982
+ * ###### Methods for All Type of Geometry
983
+ * `buffer()`
984
+ * `contains()`
985
+ * `crosses()`
986
+ * `difference()`
987
+ * `disjoint()`
988
+ * `distance()`
989
+ * `distance_3D()`
990
+ * `envelope()`
991
+ * `geom_equals()`
992
+ * `intersection()`
993
+ * `intersects()`
994
+ * `make_2D()`
995
+ * `mbb()`
996
+ * `mbr()`
997
+ * `overlaps()`
998
+ * `relates()`
999
+ * `set_exterior()`
1000
+ * `set_srid()`
1001
+ * `simplify()`
1002
+ * `sym_difference()`
1003
+ * `to_binary()`
1004
+ * `to_text()`
1005
+ * `touches()`
1006
+ * `transform()`
1007
+ * `union()`
1008
+ * `within()`
1009
+ * `wkb_geom_to_sql()`
1010
+ * `wkt_geom_to_sql()`
1011
+ * ###### Methods for Point Geometry
1012
+ * `spherical_buffer()`
1013
+ * `spherical_distance()`
1014
+ * `spheriodal_buffer()`
1015
+ * `spheriodal_distance()`
1016
+ * `set_x()`
1017
+ * `set_y()`
1018
+ * `set_z()`
1019
+ * ###### Methods for LineString Geometry
1020
+ * `end_point()`
1021
+ * `length()`
1022
+ * `length_3D()`
1023
+ * `line_interpolate_point()`
1024
+ * `num_points()`
1025
+ * `point()`
1026
+ * `start_point()`
1027
+ * ###### Methods for Polygon Geometry
1028
+ * `interiors()`
1029
+ * `num_interior_ring()`
1030
+ * `point_on_surface()`
1031
+ * ###### Methods for GeometryCollection Geometry
1032
+ * `geom_component()`
1033
+ * `num_geometry()`
1034
+ * ###### Methods for GeoSequence Geometry
1035
+ * `clip()`
1036
+ * `get_final_timestamp()`
1037
+ * `get_init_timestamp()`
1038
+ * `get_link()`
1039
+ * `get_user_field()`
1040
+ * `get_user_field_count()`
1041
+ * `point_heading()`
1042
+ * `set_link()`
1043
+ * `speed()`
1044
+ * ###### Filtering Functions and Methods
1045
+ * `intersects_mbb()`
1046
+ * `mbb_filter()`
1047
+ * `mbr_filter()`
1048
+ * `within_mbb()`
1049
+ * ###### teradataml GeoDataFrameColumn
1050
+ * Geospatial Specific Properties
1051
+ * ###### Properties for all Types of Geometries
1052
+ * boundary
1053
+ * centroid
1054
+ * convex_hell
1055
+ * coord_dim
1056
+ * dimension
1057
+ * geom_type
1058
+ * is_3D
1059
+ * is_empty
1060
+ * is_simple
1061
+ * is_valid
1062
+ * max_x
1063
+ * max_y
1064
+ * max_z
1065
+ * min_x
1066
+ * min_y
1067
+ * min_z
1068
+ * srid
1069
+ * ###### Properties for Point Geometry
1070
+ * x
1071
+ * y
1072
+ * z
1073
+ * ###### Properties for LineString Geometry
1074
+ * is_closed_3D
1075
+ * is_closed
1076
+ * is_ring
1077
+ * ###### Properties for Polygon Geometry
1078
+ * area
1079
+ * exterior
1080
+ * perimeter
1081
+ * Geospatial Specific Methods
1082
+ * ###### Methods for All Type of Geometry
1083
+ * `buffer()`
1084
+ * `contains()`
1085
+ * `crosses()`
1086
+ * `difference()`
1087
+ * `disjoint()`
1088
+ * `distance()`
1089
+ * `distance_3D()`
1090
+ * `envelope()`
1091
+ * `geom_equals()`
1092
+ * `intersection()`
1093
+ * `intersects()`
1094
+ * `make_2D()`
1095
+ * `mbb()`
1096
+ * `mbr()`
1097
+ * `overlaps()`
1098
+ * `relates()`
1099
+ * `set_exterior()`
1100
+ * `set_srid()`
1101
+ * `simplify()`
1102
+ * `sym_difference()`
1103
+ * `to_binary()`
1104
+ * `to_text()`
1105
+ * `touches()`
1106
+ * `transform()`
1107
+ * `union()`
1108
+ * `within()`
1109
+ * `wkb_geom_to_sql()`
1110
+ * `wkt_geom_to_sql()`
1111
+ * ###### Methods for Point Geometry
1112
+ * `spherical_buffer()`
1113
+ * `spherical_distance()`
1114
+ * `spheriodal_buffer()`
1115
+ * `spheriodal_distance()`
1116
+ * `set_x()`
1117
+ * `set_y()`
1118
+ * `set_z()`
1119
+ * ###### Methods for LineString Geometry
1120
+ * `endpoint()`
1121
+ * `length()`
1122
+ * `length_3D()`
1123
+ * `line_interpolate_point()`
1124
+ * `num_points()`
1125
+ * `point()`
1126
+ * `start_point()`
1127
+ * ###### Methods for Polygon Geometry
1128
+ * `interiors()`
1129
+ * `num_interior_ring()`
1130
+ * `point_on_surface()`
1131
+ * ###### Methods for GeometryCollection Geometry
1132
+ * `geom_component()`
1133
+ * `num_geometry()`
1134
+ * ###### Methods for GeoSequence Geometry
1135
+ * `clip()`
1136
+ * `get_final_timestamp()`
1137
+ * `get_init_timestamp()`
1138
+ * `get_link()`
1139
+ * `get_user_field()`
1140
+ * `get_user_field_count()`
1141
+ * `point_heading()`
1142
+ * `set_link()`
1143
+ * `speed()`
1144
+ * ###### Filtering Functions and Methods
1145
+ * `intersects_mbb()`
1146
+ * `mbb_filter()`
1147
+ * `mbr_filter()`
1148
+ * `within_mbb()`
1149
+
1150
+ * ###### teradataml DataFrame
1151
+ * _New Functions_
1152
+ * `to_csv()`
1153
+
1154
+ * ###### teradataml: SQLE Engine Analytic Functions
1155
+ * _New Functions_
1156
+ * Newly added SQLE functions are accessible only after establishing the connection to Vantage.
1157
+ * `display_analytic_functions()` API displays all the available SQLE Analytic functions based on database version.
1158
+ * ###### Functions Supported on DatabaseVersions: 16.20.x.x, 17.10.x.x, 17.05.x.x
1159
+ * `Antiselect()`
1160
+ * `Attribution()`
1161
+ * `DecisionForestPredict()`
1162
+ * `DecisionTreePredict()`
1163
+ * `GLMPredict()`
1164
+ * `MovingAverage()`
1165
+ * `NaiveBayesPredict()`
1166
+ * `NaiveBayesTextClassifierPredict()`
1167
+ * `NGramSplitter()`
1168
+ * `NPath()`
1169
+ * `Pack()`
1170
+ * `Sessionize()`
1171
+ * `StringSimilarity()`
1172
+ * `SVMParsePredict()`
1173
+ * `Unpack()`
1174
+ * ###### Functions Supported on DatabaseVersions: 17.10.x.x
1175
+ * `Antiselect()`
1176
+ * `Attribution()`
1177
+ * `BincoodeFit()`
1178
+ * `BncodeTransform()`
1179
+ * `CategoricalSummary()`
1180
+ * `ChiSq()`
1181
+ * `ColumnSummary()`
1182
+ * `ConvertTo()`
1183
+ * `DecisionForestPredict()`
1184
+ * `DecisionTreePredict()`
1185
+ * `GLMPredict()`
1186
+ * `FillRowId()`
1187
+ * `FTest()`
1188
+ * `Fit()`
1189
+ * `Transform()`
1190
+ * `GetRowsWithMissingValues()`
1191
+ * `GetRowsWithoutMissingValues()`
1192
+ * `MovingAverage()`
1193
+ * `Histogram()`
1194
+ * `NaiveBayesPredict()`
1195
+ * `NaiveBayesTextClassifierPredict()`
1196
+ * `NGramSplitter()`
1197
+ * `NPath()`
1198
+ * `NumApply()`
1199
+ * `OneHotEncodingFit()`
1200
+ * `OneHotEncodingTransform()`
1201
+ * `OutlierFilterFit()`
1202
+ * `OutlierFilterTransform()`
1203
+ * `Pack()`
1204
+ * `PolynomialFeatuesFit()`
1205
+ * `PolynomialFeatuesTransform()`
1206
+ * `QQNorm()`
1207
+ * `RoundColumns()`
1208
+ * `RowNormalizeFit()`
1209
+ * `RowNormalizeTransform()`
1210
+ * `ScaleFit()`
1211
+ * `ScaleTransform()`
1212
+ * `Sessionize()`
1213
+ * `SimpleImputeFit()`
1214
+ * `SimpleImputeTransform()`
1215
+ * `StrApply()`
1216
+ * `StringSimilarity()`
1217
+ * `SVMParsePredict()`
1218
+ * `UniVariateStatistics()`
1219
+ * `Unpack()`
1220
+ * `WhichMax()`
1221
+ * `WhichMin()`
1222
+ * `ZTest()`
1223
+
1224
+ * ###### teradataml: General Functions
1225
+ * _New Functions_
1226
+ * Data Transfer Utility
1227
+ * `read_csv()`
1228
+
1229
+ * ###### Operators
1230
+ * _New Functions_
1231
+ * Table Operators
1232
+ * `read_nos()`
1233
+ * `write_nos()`
1234
+
1235
+ * ###### teradataml: Bring Your Own Model
1236
+ * _New Functions_
1237
+ * Model Cataloging
1238
+ * `get_license()`
1239
+ * `set_byom_catalog()`
1240
+ * `set_license()`
1241
+
1242
+ * ##### Updates
1243
+ * ###### teradataml: General Functions
1244
+ * Data Transfer Utility
1245
+ * `copy_to_sql()` - New argument "chunksize" added to load data in chunks.
1246
+ * Following Data Transfer Utility Functions updated to specify the number of Teradata sessions to open for data transfer using "open_session" argument:
1247
+ * `fastexport()`
1248
+ * `fastload()`
1249
+ * `to_pandas()`
1250
+
1251
+ * ###### Operators
1252
+ * Following Set Operator Functions updated to work with Geospatial data:
1253
+ * `concat()`
1254
+ * `td_intersect()`
1255
+ * `td_expect()`
1256
+ * `td_minus()`
1257
+
1258
+ * ###### teradataml: Bring Your Own Model
1259
+ * Model cataloging APIs mentioned below are updated to use session level parameters set by `set_byom_catalog()` and `set_license()` such as table name, schema name and license details respectively.
1260
+ * `delete_byom()`
1261
+ * `list_byom()`
1262
+ * `retrieve_byom()`
1263
+ * `save_byom()`
1264
+ * `view_log()` - Allows user to view BYOM logs.
1265
+
1266
+ * ##### Bug Fixes
1267
+ * CS0733758 - `db_python_package_details()` function is fixed to support latest STO release for pip and Python aliases used.
1268
+ * DataFrame `print()` issue related to `Response Row size is greater than the 1MB allowed maximum.` has been fixed to print the data with lot of columns.
1269
+ * New parameter "chunksize" is added to `DataFrame.to_sql()` and `copy_to_sql()` to fix the issue where the function was failing with error - "Request requires too many SPOOL files.". Reducing the chunksize than the default one will result in successful operation.
1270
+ * `remove_context()` is fixed to remove the active connection from database.
1271
+ * Support added to specify the number of Teradata data transfer sessions to open for data transfer using `fastexport()` and `fastload()` functions.
1272
+ * `DataFrame.to_sql()` is fixed to support temporary table when default database differs from the username.
1273
+ * `DataFrame.to_pandas()` now by default support data transfer using regular method. Change is carried out for user to allow the data transfer if utility throttles are configured, i.e., TASM configuration does not support data export using FastExport.
1274
+ * `save_byom()` now notifies if VARCHAR column is trimmed out if data passed to the API is greater than the length of the VARCHAR column.
1275
+ * Standard error can now be captured for `DataFrame.map_row()` and `DataFrame.map_parition()` when executed in LOCAL mode.
1276
+ * Vantage Analytic Library - Underlying SQL can be retrieved using newly added arguments "gen_sql"/"gen_sql_only" for the functions. Query can be viewed with the help `show_query()`.
1277
+ * Documentation example has been fixed for `fastexport()` to show the correct import statement.
1278
+
1279
+
1280
+ #### teradataml 17.00.00.05
1281
+ Fixed [CS0733758] db_python_package_details() fails on recent STO release due to changes in pip and python aliases.
1282
+
1283
+
1284
+ #### teradataml 17.00.00.04
1285
+ * ##### New Features/Functionality
1286
+ * ###### Analytic Functions
1287
+ * Bring Your Own Analytics Functions
1288
+ The BYOM feature in Vantage provides flexibility to score the data in Vantage using external models using following BYOM functions:
1289
+ * `H2OPredict()` - Score using model trained externally in H2O and stored in Vantage.
1290
+ * `PMMLPredict()` - Score using model trained externally in PMML and stored in Vantage.
1291
+ * BYOM Model Catalog APIs
1292
+ * `save_byom()` - Save externally trained models in Teradata Vantage.
1293
+ * `delete_byom()` - Delete a model from the user specified table in Teradata Vantage.
1294
+ * `list_byom()` - List models.
1295
+ * `retrieve_byom()` - Function to retrieve a saved model.
1296
+ * Vantage Analytic Library Functions
1297
+ * _New Functions_
1298
+ * `XmlToHtmlReport()` - Transforms XML output of VAL functions to HTML.
1299
+ * ###### teradataml DataFrame
1300
+ * `DataFrame.window()` - Generates Window object on a teradataml DataFrame to run window aggregate functions.
1301
+ * `DataFrame.csum()` - Returns column-wise cumulative sum for rows in the partition of the dataframe.
1302
+ * `DataFrame.mavg()` - Returns moving average for the current row and the preceding rows.
1303
+ * `DataFrame.mdiff()` - Returns moving difference for the current row and the preceding rows.
1304
+ * `DataFrame.mlinreg()` - Returns moving linear regression for the current row and the preceding rows.
1305
+ * `DataFrame.msum()` - Returns moving sum for the current row and the preceding rows.
1306
+ * _Regular Aggregate Functions_
1307
+ * `DataFrame.corr()` - Returns the Sample Pearson product moment correlation coefficient.
1308
+ * `DataFrame.covar_pop()` - Returns the population covariance.
1309
+ * `DataFrame.covar_samp()` - Returns the sample covariance.
1310
+ * `DataFrame.regr_avgx()` - Returns the mean of the independent variable.
1311
+ * `DataFrame.regr_avgy()` - Returns the mean of the dependent variable.
1312
+ * `DataFrame.regr_count()` - Returns the count of the dependent and independent variable arguments.
1313
+ * `DataFrame.rege_intercept()` - Returns the intercept of the univariate linear regression line.
1314
+ * `DataFrame.regr_r2()` - Returns the coefficient of determination.
1315
+ * `DataFrame.regr_slope()` - Returns the slope of the univariate linear regression line through.
1316
+ * `DataFrame.regr_sxx()` - Returns the sum of the squares of the independent variable expression.
1317
+ * `DataFrame.regr_sxy()` - Returns the sum of the products of the independent variable and the dependent variable.
1318
+ * `DataFrame.regr_syy()` - Returns the sum of the squares of the dependent variable expression.
1319
+ * ###### teradataml DataFrameColumn a.k.a. ColumnExpression
1320
+ * `ColumnExpression.window()` - Generates Window object on a teradataml DataFrameColumn to run window aggregate functions.
1321
+ * `ColumnExpression.desc()` - Sorts ColumnExpression in descending order.
1322
+ * `ColumnExpression.asc()` - Sorts ColumnExpression in ascending order.
1323
+ * `ColumnExpression.distinct()` - Removes duplicate value from ColumnExpression.
1324
+ * _Regular Aggregate Functions_
1325
+ * `ColumnExpression.corr()` - Returns the Sample Pearson product moment correlation coefficient.
1326
+ * `ColumnExpression.count()` - Returns the column-wise count.
1327
+ * `ColumnExpression.covar_pop()` - Returns the population covariance.
1328
+ * `ColumnExpression.covar_samp()` - Returns the sample covariance.
1329
+ * `ColumnExpression.kurtosis()` - Returns kurtosis value for a column.
1330
+ * `ColumnExpression.median()` - Returns column-wise median value.
1331
+ * `ColumnExpression.max()` - Returns the column-wise max value.
1332
+ * `ColumnExpression.mean()` - Returns the column-wise average value.
1333
+ * `ColumnExpression.min()` - Returns the column-wise min value.
1334
+ * `ColumnExpression.regr_avgx()` - Returns the mean of the independent variable.
1335
+ * `ColumnExpression.regr_avgy()` - Returns the mean of the dependent variable.
1336
+ * `ColumnExpression.regr_count()` - Returns the count of the dependent and independent variable arguments.
1337
+ * `ColumnExpression.rege_intercept()` - Returns the intercept of the univariate linear regression line.
1338
+ * `ColumnExpression.regr_r2()` - Returns the coefficient of determination arguments.
1339
+ * `ColumnExpression.regr_slope()` - Returns the slope of the univariate linear regression line.
1340
+ * `ColumnExpression.regr_sxx()` - Returns the sum of the squares of the independent variable expression.
1341
+ * `ColumnExpression.regr_sxy()` - Returns the sum of the products of the independent variable and the dependent variable.
1342
+ * `ColumnExpression.regr_syy()` - Returns the sum of the squares of the dependent variable expression.
1343
+ * `ColumnExpression.skew()` - Returns skew value for a column.
1344
+ * `ColumnExpression.std()` - Returns the column-wise population/sample standard deviation.
1345
+ * `ColumnExpression.sum()` - Returns the column-wise sum.
1346
+ * `ColumnExpression.var()` - Returns the column-wise population/sample variance.
1347
+ * `ColumnExpression.percentile()` - Returns the column-wise percentile.
1348
+ * ###### teradataml Window - Window Aggregate Functions
1349
+ Following set of _Window Aggregate Functions_ return the results over a specified window which can be of any type:
1350
+ * Cumulative/Expanding window
1351
+ * Moving/Rolling window
1352
+ * Contracting/Remaining window
1353
+ * Grouping window
1354
+ _Window Aggregate Functions_
1355
+ * `Window.corr()` - Returns the Sample Pearson product moment correlation coefficient.
1356
+ * `Window.count()` - Returns the count.
1357
+ * `Window.covar_pop()` - Returns the population covariance.
1358
+ * `Window.covar_samp()` - Returns the sample covariance.
1359
+ * `Window.cume_dist()` - Returns the cumulative distribution of values.
1360
+ * `Window.dense_Rank()` - Returns the ordered ranking of all the rows.
1361
+ * `Window.first_value()` - Returns the first value of an ordered set of values.
1362
+ * `Window.lag()` - Returns data from the row preceding the current row at a specified offset value.
1363
+ * `Window.last_value()` - Returns the last value of an ordered set of values.
1364
+ * `Window.lead()` - Returns data from the row following the current row at a specified offset value.
1365
+ * `Window.max()` - Returns the column-wise max value.
1366
+ * `Window.mean()` - Returns the column-wise average value.
1367
+ * `Window.min()` - Returns the column-wise min value.
1368
+ * `Window.percent_rank()` - Returns the relative rank of all the rows.
1369
+ * `Window.rank()` - Returns the rank (1 … n) of all the rows.
1370
+ * `Window.regr_avgx()` - Returns the mean of the independent variable arguments.
1371
+ * `Window.regr_avgy()` - Returns the mean of the dependent variable arguments.
1372
+ * `Window.regr_count()` - Returns the count of the dependent and independent variable arguments.
1373
+ * `Window.rege_intercept()` - Returns the intercept of the univariate linear regression line arguments.
1374
+ * `Window.regr_r2()` - Returns the coefficient of determination arguments.
1375
+ * `Window.regr_slope()` - Returns the slope of the univariate linear regression line.
1376
+ * `Window.regr_sxx()` - Returns the sum of the squares of the independent variable expression.
1377
+ * `Window.regr_sxy()` - Returns the sum of the products of the independent variable and the dependent variable.
1378
+ * `Window.regr_syy()` - Returns the sum of the squares of the dependent variable expression.
1379
+ * `Window.row_number()` - Returns the sequential row number.
1380
+ * `Window.std()` - Returns the column-wise population/sample standard deviation.
1381
+ * `Window.sum()` - Returns the column-wise sum.
1382
+ * `Window.var()` - Returns the column-wise population/sample variance.
1383
+ * ###### General functions
1384
+ * _New functions_
1385
+ * `fastexport()` - Exports teradataml DataFrame to Pandas DataFrame using FastExport data transfer protocol.
1386
+ * ###### teradataml Options
1387
+ * Display Options
1388
+ * `display.blob_length`
1389
+ Specifies default display length of BLOB column in teradataml DataFrame.
1390
+ * Configuration Options
1391
+ * `configure.temp_table_database`
1392
+ Specifies database name for storing the tables created internally.
1393
+ * `configure.temp_view_database`
1394
+ Specifies database name for storing the views created internally.
1395
+ * `configure.byom_install_location`
1396
+ Specifies the install location for the BYOM functions.
1397
+ * `configure.val_install_location`
1398
+ Specifies the install location for the Vantage Analytic Library functions.
1399
+ * ##### Updates
1400
+ * ###### teradataml DataFrame
1401
+ * `to_pandas()` -
1402
+ * Support added to transfer data to Pandas DataFrame using fastexport protocol improving the performance.
1403
+ * Support added for other arguments similar to Pandas `read_sql()`:
1404
+ * `coerce_float`
1405
+ * `parse_dates`
1406
+ * ###### Analytic functions
1407
+ * Vantage Analytic Library Functions
1408
+ * Support added to accept datetime.date object for literals/values in
1409
+ following transformation functions:
1410
+ * `FillNa()`
1411
+ * `Binning()`
1412
+ * `OneHotEncoder()`
1413
+ * `LabelEncoder()`
1414
+ * All transformation functions now supports accepting
1415
+ teradatasqlalchemy datatypes as input to "datatype" argument for
1416
+ casting the result.
1417
+ * ##### Bug Fixes.
1418
+ * CS0249633 - Support added for teradataml to work with user/database/tablename
1419
+ containing period (.).
1420
+ * CS0086594 - Use of dbc.tablesvx versus dbc.tablesvx in teradatasqlalchemy.
1421
+ * IPython integration to print the teradataml DataFrames in pretty format.
1422
+ * teradataml DataFrame APIs now support column names same as that of Teradata
1423
+ reserved keywords.
1424
+ * Issue has been fixed for duplicate rows being loaded via teradataml
1425
+ fastload() API.
1426
+ * VAL - Empty string now can be passed as input for recoding values using
1427
+ LabelEncoder.
1428
+ * teradataml extension with SQLAlchemy functions:
1429
+ * mod() function is fixed to return correct datatype.
1430
+ * sum() function is fixed to return correct datatype.
1431
+
1432
+
1433
+ #### teradataml 17.00.00.03
1434
+ - New release of SQLAlchemy1.4.x introduced backward compatibility issue. A fix has been carried out so that teradataml can support latest SQLAlchemy changes.
1435
+ - Other minor bug fixes.
1436
+
1437
+ #### teradataml 17.00.00.02
1438
+ Fixed the internal library load issue related to the GCC version discrepancies on CentOS platform.
1439
+
1440
+ #### teradataml 17.00.00.01
1441
+ * ##### New Features/Functionality
1442
+ * ###### Analytic Functions
1443
+ * Vantage Analytic Library
1444
+ teradataml now supports executing analytic functions offered by Vantage Analytic Library.
1445
+ These functions are available via new 'valib' sub-package of teradataml.
1446
+ Following functions are added as part of this:
1447
+ * Association Rules:
1448
+ * `Association()`
1449
+ * Descriptive Statistics:
1450
+ * `AdaptiveHistogram()`
1451
+ * `Explore()`
1452
+ * `Frequency()`
1453
+ * `Histogram()`
1454
+ * `Overlaps()`
1455
+ * `Statistics()`
1456
+ * `TextAnalyzer()`
1457
+ * `Values()`
1458
+ * Decision Tree:
1459
+ * `DecisionTree()`
1460
+ * `DecisionTreePredict()`
1461
+ * `DecisionTreeEvaluator()`
1462
+ * Fast K-Means Clustering:
1463
+ * `KMeans()`
1464
+ * `KMeansPredict()`
1465
+ * Linear Regression:
1466
+ * `LinReg()`
1467
+ * `LinRegPredict()`
1468
+ * Logistic Regression:
1469
+ * `LogReg()`
1470
+ * `LogRegPredict()`
1471
+ * `LogRegEvaluator()`
1472
+ * Factor Analysis:
1473
+ * `PCA()`
1474
+ * `PCAPredict()`
1475
+ * `PCAEvaluator()`
1476
+ * Matrix Building:
1477
+ * `Matrix()`
1478
+ * Statistical Tests:
1479
+ * `BinomialTest()`
1480
+ * `ChiSquareTest()`
1481
+ * `KSTest()`
1482
+ * `ParametricTest()`
1483
+ * `RankTest()`
1484
+ * Variable Transformation:
1485
+ * `Transform()`
1486
+ * Transformation Techniques supported for variable transformation:
1487
+ * `Binning()` - Perform bin coding to replaces continuous numeric column with a
1488
+ categorical one to produce ordinal values.
1489
+ * `Derive()` - Perform free-form transformation done using arithmetic formula.
1490
+ * `FillNa()` - Perform missing value/null replacement transformations.
1491
+ * `LabelEncoder()` - Re-express categorical column values into a new coding scheme.
1492
+ * `MinMaxScalar()` - Rescale data limiting the upper and lower boundaries.
1493
+ * `OneHotEncoder()` - Re-express a categorical data element as one or more
1494
+ numeric data elements, creating a binary numeric field for each
1495
+ categorical data value.
1496
+ * `Retain()` - Copy one or more columns into the final analytic data set.
1497
+ * `Sigmoid()` - Rescale data using sigmoid or s-shaped functions.
1498
+ * `ZScore()` - Rescale data using Z-Score values.
1499
+ * ML Engine Functions (mle)
1500
+ * Correlation2
1501
+ * NaiveBayesTextClassifier2
1502
+ * ###### DataFrame
1503
+ * _New Functions_
1504
+ * `DataFrame.map_row()` - Function to apply a user defined function to each row in the
1505
+ teradataml DataFrame.
1506
+ * `DataFrame.map_partition()` - Function to apply a user defined function to a group or
1507
+ partition of rows in the teradataml DataFrame.
1508
+ * _New Property_
1509
+ * `DataFrame.tdtypes` - Get the teradataml DataFrame metadata containing column names and
1510
+ corresponding teradatasqlalchemy types.
1511
+ * ###### General functions
1512
+ * _New functions_
1513
+ * Database Utility Functions
1514
+ * `db_python_package_details()` - Lists the details of Python packages installed on Vantage.
1515
+ * General Utility Functions
1516
+ * `print_options()`
1517
+ * `view_log()`
1518
+ * `setup_sandbox_env()`
1519
+ * `copy_files_from_container()`
1520
+ * `cleanup_sandbox_env()`
1521
+ * ##### Updates
1522
+ * ###### `create_context()`
1523
+ * Supports all connection parameters supported by teradatasql.connect().
1524
+ * ###### Script
1525
+ * `test_script()` can now be executed in 'local' mode, i.e., outside of the sandbox.
1526
+ * `Script.setup_sto_env()` is deprecated. Use `setup_sandbox_env()` function instead.
1527
+ * Added support for using "quotechar" argument.
1528
+ * ###### Analytic functions
1529
+ * _Updates_
1530
+ * Visit teradataml User Guide to know more about the updates done to ML Engine analytic
1531
+ functions. Following type of updates are done to several functions:
1532
+ * New arguments are added, which are supported only on Vantage Version 1.3.
1533
+ * Default value has been updated for few function arguments.
1534
+ * Few arguments were required, but now they are optional.
1535
+ * ##### Minor Bug Fixes.
1536
+
1537
+ #### teradataml 17.00.00.00
1538
+ * ##### New Features/Functionality
1539
+ * ###### Model Cataloging - Functionality to catalog model metadata and related information in the Model Catalog.
1540
+ * `save_model()` - Save a teradataml Analytic Function model.
1541
+ * `retrieve_model()` - Retrieve a saved model.
1542
+ * `list_model()` - List accessible models.
1543
+ * `describe_model()` - List the details of a model.
1544
+ * `delete_model()` - Remove a model from Model Catalog.
1545
+ * `publish_model()` - Share a model.
1546
+ * ###### Script - An interface to the SCRIPT table operator object in the Advanced SQL Engine.
1547
+ Interface offers execution in two modes:
1548
+ * Test/Debug - to test user scripts locally in a containerized environment.
1549
+ Supporting methods:
1550
+ * `setup_sto_env()` - Set up test environment.
1551
+ * `test_script()` - Test user script in containerized environment.
1552
+ * `set_data()` - Set test data parameters.
1553
+ * In-Database Script Execution - to execute user scripts in database.
1554
+ Supporting methods:
1555
+ * `execute_script()` - Execute user script in Vantage.
1556
+ * `install_file()` - Install or replace file in Database.
1557
+ * `remove_file()` - Remove installed file from Database.
1558
+ * `set_data()` - Set test data parameters.
1559
+ * ###### DataFrame
1560
+ * `DataFrame.show_query()` - Show underlying query for DataFrame.
1561
+ * Regular Aggregates
1562
+ * _New functions_
1563
+ * `kurtosis()` - Calculate the kurtosis value.
1564
+ * `skew()` - Calculate the skewness of the distribution.
1565
+ * _Updates_\
1566
+ New argument `distinct` is added to following aggregates to exclude duplicate values.
1567
+ * `count()`
1568
+ * `max()`
1569
+ * `mean()`
1570
+ * `min()`
1571
+ * `sum()`
1572
+ * `std()`
1573
+ * New argument `population` is added to calculate the population standard deviation.
1574
+ * `var()`
1575
+ * New argument `population` is added to calculate the population variance.
1576
+ * Time Series Aggregates
1577
+ * _New functions_
1578
+ * `kurtosis()` - Calculate the kurtosis value.
1579
+ * `count()` - Get the total number of values.
1580
+ * `max()` - Calculate the maximum value.
1581
+ * `mean()` - Calculate the average value.
1582
+ * `min()` - Calculate the minimum value.
1583
+ * `percentile()` - Calculate the desired percentile.
1584
+ * `skew()` - Calculate the skewness of the distribution.
1585
+ * `sum()` - Calculate the column-wise sum value.
1586
+ * `std()` - Calculate the sample and population standard deviation.
1587
+ * `var()` - Calculate the sample and population standard variance.
1588
+ * ###### General functions
1589
+ * _New functions_
1590
+ * Database Utility Functions
1591
+ * `db_drop_table()`
1592
+ * `db_drop_view()`
1593
+ * `db_list_tables()`
1594
+ * Vantage File Management Functions
1595
+ * `install_file()` - Install a file in Database.
1596
+ * `remove_file()` - Remove an installed file from Database.
1597
+ * _Updates_
1598
+ * `create_context()`
1599
+ * Support added for Stored Password Protection feature.
1600
+ * Kerberos authentication bug fix.
1601
+ * New argument `database` added to `create_context()` API, that allows user to specify connecting database.
1602
+ * ###### Analytic functions
1603
+ * _New functions_
1604
+ * `Betweenness`
1605
+ * `Closeness`
1606
+ * `FMeasure`
1607
+ * `FrequentPaths`
1608
+ * `IdentityMatch`
1609
+ * `Interpolator`
1610
+ * `ROC`
1611
+ * _Updates_
1612
+ * New methods are added to all analytic functions
1613
+ * `show_query()`
1614
+ * `get_build_time()`
1615
+ * `get_prediction_type()`
1616
+ * `get_target_column()`
1617
+ * New properties are added to analytic function's Formula argument
1618
+ * `response_column`
1619
+ * `numeric_columns`
1620
+ * `categorical_columns`
1621
+ * `all_columns`
1622
+
1623
+ #### teradataml 16.20.00.06
1624
+ Fixed the DataFrame data display corruption issue observed with certain analytic functions.
1625
+
1626
+ #### teradataml 16.20.00.05
1627
+ Compatible with Vantage 1.1.1.\
1628
+ The following ML Engine (`teradataml.analytics.mle`) functions have new and/or updated arguments to support the Vantage version:
1629
+ * `AdaBoostPredict`
1630
+ * `DecisionForestPredict`
1631
+ * `DecisionTreePredict`
1632
+ * `GLMPredict`
1633
+ * `LDA`
1634
+ * `NaiveBayesPredict`
1635
+ * `NaiveBayesTextClassifierPredict`
1636
+ * `SVMDensePredict`
1637
+ * `SVMSparse`
1638
+ * `SVMSparsePredict`
1639
+ * `XGBoostPredict`
1640
+
1641
+ #### teradataml 16.20.00.04
1642
+ * ##### Improvements
1643
+ * DataFrame creation is now quicker, impacting many APIs and Analytic functions.
1644
+ * Improved performance by reducing the number of intermediate queries issued to Teradata Vantage when not required.
1645
+ * The number of queries reduced by combining multiple operations into a single step whenever possible and unless the user expects or demands to see the intermediate results.
1646
+ * The performance improvement is almost proportional to the number of chained and unexecuted operations on a teradataml DataFrame.
1647
+ * Reduced number of intermediate internal objects created on Vantage.
1648
+ * ##### New Features/Functionality
1649
+ * ###### General functions
1650
+ * _New functions_
1651
+ * `show_versions()` - to list the version of teradataml and dependencies installed.
1652
+ * `fastload()` - for high performance data loading of large amounts of data into a table on Vantage. Requires `teradatasql` version `16.20.0.48` or above.
1653
+ * Set operators:
1654
+ * `concat`
1655
+ * `td_intersect`
1656
+ * `td_except`
1657
+ * `td_minus`
1658
+ * `case()` - to help construct SQL CASE based expressions.
1659
+ * _Updates_
1660
+ * `copy_to_sql`
1661
+ * Added support to `copy_to_sql` to save multi-level index.
1662
+ * Corrected the type mapping for index when being saved.
1663
+ * `create_context()` updated to support 'JWT' logon mechanism.
1664
+ * ###### Analytic functions
1665
+ * _New functions_
1666
+ * `NERTrainer`
1667
+ * `NERExtractor`
1668
+ * `NEREvaluator`
1669
+ * `GLML1L2`
1670
+ * `GLML1L2Predict`
1671
+ * _Updates_
1672
+ * Added support to categorize numeric columns as categorical while using formula - `as_categorical()` in the `teradataml.common.formula` module.
1673
+ * ###### DataFrame
1674
+ * Added support to create DataFrame from Volatile and Primary Time Index tables.
1675
+ * `DataFrame.sample()` - to sample data.
1676
+ * `DataFrame.index` - Property to access `index_label` of DataFrame.
1677
+ * Functionality to process Time Series Data
1678
+ * Grouping/Resampling time series data:
1679
+ * `groupby_time()`
1680
+ * `resample()`
1681
+ * Time Series Aggregates:
1682
+ * `bottom()`
1683
+ * `count()`
1684
+ * `describe()`
1685
+ * `delta_t()`
1686
+ * `mad()`
1687
+ * `median()`
1688
+ * `mode()`
1689
+ * `first()`
1690
+ * `last()`
1691
+ * `top()`
1692
+ * DataFrame API and method argument validation added.
1693
+ * `DataFrame.info()` - Default value for `null_counts` argument updated from `None` to `False`.
1694
+ * `Dataframe.merge()` updated to accept columns expressions along with column names to `on`, `left_on`, `right_on` arguments.
1695
+ * ###### DataFrame Column/ColumnExpression methods
1696
+ * `cast()` - to help cast the column to a specified type.
1697
+ * `isin()` and `~isin()` - to check the presence of values in a column.
1698
+ * ##### Removed deprecated Analytic functions
1699
+ * All the deprecated Analytic functions under the `teradataml.analytics module` have been removed.
1700
+ Newer versions of the functions are available under the `teradataml.analytics.mle` and the `teradataml.analytics.sqle` modules.
1701
+ The modules removed are:
1702
+ * `teradataml.analytics.Antiselect`
1703
+ * `teradataml.analytics.Arima`
1704
+ * `teradataml.analytics.ArimaPredictor`
1705
+ * `teradataml.analytics.Attribution`
1706
+ * `teradataml.analytics.ConfusionMatrix`
1707
+ * `teradataml.analytics.CoxHazardRatio`
1708
+ * `teradataml.analytics.CoxPH`
1709
+ * `teradataml.analytics.CoxSurvival`
1710
+ * `teradataml.analytics.DecisionForest`
1711
+ * `teradataml.analytics.DecisionForestEvaluator`
1712
+ * `teradataml.analytics.DecisionForestPredict`
1713
+ * `teradataml.analytics.DecisionTree`
1714
+ * `teradataml.analytics.DecisionTreePredict`
1715
+ * `teradataml.analytics.GLM`
1716
+ * `teradataml.analytics.GLMPredict`
1717
+ * `teradataml.analytics.KMeans`
1718
+ * `teradataml.analytics.NGrams`
1719
+ * `teradataml.analytics.NPath`
1720
+ * `teradataml.analytics.NaiveBayes`
1721
+ * `teradataml.analytics.NaiveBayesPredict`
1722
+ * `teradataml.analytics.NaiveBayesTextClassifier`
1723
+ * `teradataml.analytics.NaiveBayesTextClassifierPredict`
1724
+ * `teradataml.analytics.Pack`
1725
+ * `teradataml.analytics.SVMSparse`
1726
+ * `teradataml.analytics.SVMSparsePredict`
1727
+ * `teradataml.analytics.SentenceExtractor`
1728
+ * `teradataml.analytics.Sessionize`
1729
+ * `teradataml.analytics.TF`
1730
+ * `teradataml.analytics.TFIDF`
1731
+ * `teradataml.analytics.TextTagger`
1732
+ * `teradataml.analytics.TextTokenizer`
1733
+ * `teradataml.analytics.Unpack`
1734
+ * `teradataml.analytics.VarMax`
1735
+
1736
+ #### teradataml 16.20.00.03
1737
+ * Fixed the garbage collection issue observed with `remove_context()` when context is created using a SQLAlchemy engine.
1738
+ * Added 4 new Advanced SQL Engine (was NewSQL Engine) analytic functions supported only on Vantage 1.1:
1739
+ * `Antiselect`, `Pack`, `StringSimilarity`, and `Unpack`.
1740
+ * Updated the Machine Learning Engine `NGrams` function to work with Vantage 1.1.
1741
+
1742
+ #### teradataml 16.20.00.02
1743
+ * Python version 3.4.x will no longer be supported. The Python versions supported are 3.5.x, 3.6.x, and 3.7.x.
1744
+ * Major issue with the usage of formula argument in analytic functions with Python3.7 has been fixed, allowing this package to be used with Python3.7 or later.
1745
+ * Configurable alias name support for analytic functions has been added.
1746
+ * Support added to create_context (connect to Teradata Vantage) with different logon mechanisms.
1747
+ Logon mechanisms supported are: 'TD2', 'TDNEGO', 'LDAP' & 'KRB5'.
1748
+ * copy_to_sql function and DataFrame 'to_sql' methods now provide following additional functionality:
1749
+ * Create Primary Time Index tables.
1750
+ * Create set/multiset tables.
1751
+ * New DataFrame methods are added: 'median', 'var', 'squeeze', 'sort_index', 'concat'.
1752
+ * DataFrame method 'join' is now updated to make use of ColumnExpressions (df.column_name) for the 'on' clause as opposed to strings.
1753
+ * Series is supported as a first class object by calling squeeze on DataFrame.
1754
+ * Methods supported by teradataml Series are: 'head', 'unique', 'name', '\_\_repr__'.
1755
+ * Binary operations with teradataml Series is not yet supported. Try using Columns from teradataml.DataFrames.
1756
+ * Sample datasets and commands to load the same have been provided in the function examples.
1757
+ * New configuration property has been added 'column_casesenitive_handler'. Useful when one needs to play with case sensitive columns.
1758
+
1759
+ #### teradataml 16.20.00.01
1760
+ * New support has been added for Linux distributions: Red Hat 7+, Ubuntu 16.04+, CentOS 7+, SLES12+.
1761
+ * 16.20.00.01 now has over 100 analytic functions. These functions have been organized into their own packages for better control over which engine to execute the analytic function on. Due to these namespace changes, the old analytic functions have been deprecated and will be removed in a future release. See the Deprecations section in the Teradata Python Package User Guide for more information.
1762
+ * New DataFrame methods `shape`, `iloc`, `describe`, `get_values`, `merge`, and `tail`.
1763
+ * New Series methods for NA checking (`isnull`, `notnull`) and string processing (`lower`, `strip`, `contains`).
1764
+
1765
+ #### teradataml 16.20.00.00
1766
+ * `teradataml 16.20.00.00` is the first release version. Please refer to the _Teradata Python Package User Guide_ for a list of Limitations and Usage Considerations.
1767
+
1768
+ ## Installation and Requirements
1769
+
1770
+ ### Package Requirements:
1771
+ * Python 3.5 or later
1772
+
1773
+ Note: 32-bit Python is not supported.
1774
+
1775
+ ### Minimum System Requirements:
1776
+ * Windows 7 (64Bit) or later
1777
+ * macOS 10.9 (64Bit) or later
1778
+ * Red Hat 7 or later versions
1779
+ * Ubuntu 16.04 or later versions
1780
+ * CentOS 7 or later versions
1781
+ * SLES 12 or later versions
1782
+ * Teradata Vantage Advanced SQL Engine:
1783
+ * Advanced SQL Engine 16.20 Feature Update 1 or later
1784
+ * For a Teradata Vantage system with the ML Engine:
1785
+ * Teradata Machine Learning Engine 08.00.03.01 or later
1786
+
1787
+ ### Installation
1788
+
1789
+ Use pip to install the Teradata Python Package for Advanced Analytics.
1790
+
1791
+ Platform | Command
1792
+ -------------- | ---
1793
+ macOS/Linux | `pip install teradataml`
1794
+ Windows | `py -3 -m pip install teradataml`
1795
+
1796
+ When upgrading to a new version of the Teradata Python Package, you may need to use pip install's `--no-cache-dir` option to force the download of the new version.
1797
+
1798
+ Platform | Command
1799
+ -------------- | ---
1800
+ macOS/Linux | `pip install --no-cache-dir -U teradataml`
1801
+ Windows | `py -3 -m pip install --no-cache-dir -U teradataml`
1802
+
1803
+ ## Using the Teradata Python Package
1804
+
1805
+ Your Python script must import the `teradataml` package in order to use the Teradata Python Package:
1806
+
1807
+ ```
1808
+ >>> import teradataml as tdml
1809
+ >>> from teradataml import create_context, remove_context
1810
+ >>> create_context(host = 'hostname', username = 'user', password = 'password')
1811
+ >>> df = tdml.DataFrame('iris')
1812
+ >>> df
1813
+
1814
+ SepalLength SepalWidth PetalLength PetalWidth Name
1815
+ 0 5.1 3.8 1.5 0.3 Iris-setosa
1816
+ 1 6.9 3.1 5.1 2.3 Iris-virginica
1817
+ 2 5.1 3.5 1.4 0.3 Iris-setosa
1818
+ 3 5.9 3.0 4.2 1.5 Iris-versicolor
1819
+ 4 6.0 2.9 4.5 1.5 Iris-versicolor
1820
+ 5 5.0 3.5 1.3 0.3 Iris-setosa
1821
+ 6 5.5 2.4 3.8 1.1 Iris-versicolor
1822
+ 7 6.9 3.2 5.7 2.3 Iris-virginica
1823
+ 8 4.4 3.0 1.3 0.2 Iris-setosa
1824
+ 9 5.8 2.7 5.1 1.9 Iris-virginica
1825
+
1826
+ >>> df = df.select(['Name', 'SepalLength', 'PetalLength'])
1827
+ >>> df
1828
+
1829
+ Name SepalLength PetalLength
1830
+ 0 Iris-versicolor 6.0 4.5
1831
+ 1 Iris-versicolor 5.5 3.8
1832
+ 2 Iris-virginica 6.9 5.7
1833
+ 3 Iris-setosa 5.1 1.4
1834
+ 4 Iris-setosa 5.1 1.5
1835
+ 5 Iris-virginica 5.8 5.1
1836
+ 6 Iris-virginica 6.9 5.1
1837
+ 7 Iris-setosa 5.1 1.4
1838
+ 8 Iris-virginica 7.7 6.7
1839
+ 9 Iris-setosa 5.0 1.3
1840
+
1841
+ >>> df = df[(df.Name == 'Iris-setosa') & (df.PetalLength > 1.5)]
1842
+ >>> df
1843
+
1844
+ Name SepalLength PetalLength
1845
+ 0 Iris-setosa 4.8 1.9
1846
+ 1 Iris-setosa 5.4 1.7
1847
+ 2 Iris-setosa 5.7 1.7
1848
+ 3 Iris-setosa 5.0 1.6
1849
+ 4 Iris-setosa 5.1 1.9
1850
+ 5 Iris-setosa 4.8 1.6
1851
+ 6 Iris-setosa 4.7 1.6
1852
+ 7 Iris-setosa 5.1 1.6
1853
+ 8 Iris-setosa 5.1 1.7
1854
+ 9 Iris-setosa 4.8 1.6
1855
+ ```
1856
+
1857
+ ## Documentation
1858
+
1859
+ General product information, including installation instructions, is available in the [Teradata Documentation website](https://docs.teradata.com/search/documents?query=package+python+-lake&filters=category~%2522Programming+Reference%2522_%2522User+Guide%2522*prodname~%2522Teradata+Package+for+Python%2522_%2522Teradata+Python+Package%2522&sort=last_update&virtual-field=title_only&content-lang=)
1860
+
1861
+ ## License
1862
+
1863
+ Use of the Teradata Python Package is governed by the *License Agreement for the Teradata Python Package for Advanced Analytics*.
1864
+ After installation, the `LICENSE` and `LICENSE-3RD-PARTY` files are located in the `teradataml` directory of the Python installation directory.