teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (1285) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +1864 -1640
  4. teradataml/__init__.py +70 -60
  5. teradataml/_version.py +11 -11
  6. teradataml/analytics/Transformations.py +2995 -2995
  7. teradataml/analytics/__init__.py +81 -83
  8. teradataml/analytics/analytic_function_executor.py +2013 -2010
  9. teradataml/analytics/analytic_query_generator.py +958 -958
  10. teradataml/analytics/byom/H2OPredict.py +514 -514
  11. teradataml/analytics/byom/PMMLPredict.py +437 -437
  12. teradataml/analytics/byom/__init__.py +14 -14
  13. teradataml/analytics/json_parser/__init__.py +130 -130
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
  15. teradataml/analytics/json_parser/json_store.py +191 -191
  16. teradataml/analytics/json_parser/metadata.py +1637 -1637
  17. teradataml/analytics/json_parser/utils.py +804 -803
  18. teradataml/analytics/meta_class.py +196 -196
  19. teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
  21. teradataml/analytics/sqle/__init__.py +97 -110
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
  24. teradataml/analytics/table_operator/__init__.py +10 -10
  25. teradataml/analytics/uaf/__init__.py +63 -63
  26. teradataml/analytics/utils.py +693 -692
  27. teradataml/analytics/valib.py +1603 -1600
  28. teradataml/automl/__init__.py +1628 -0
  29. teradataml/automl/custom_json_utils.py +1270 -0
  30. teradataml/automl/data_preparation.py +993 -0
  31. teradataml/automl/data_transformation.py +727 -0
  32. teradataml/automl/feature_engineering.py +1648 -0
  33. teradataml/automl/feature_exploration.py +547 -0
  34. teradataml/automl/model_evaluation.py +163 -0
  35. teradataml/automl/model_training.py +887 -0
  36. teradataml/catalog/__init__.py +1 -3
  37. teradataml/catalog/byom.py +1759 -1716
  38. teradataml/catalog/function_argument_mapper.py +859 -861
  39. teradataml/catalog/model_cataloging_utils.py +491 -1510
  40. teradataml/clients/pkce_client.py +481 -481
  41. teradataml/common/aed_utils.py +6 -2
  42. teradataml/common/bulk_exposed_utils.py +111 -111
  43. teradataml/common/constants.py +1433 -1441
  44. teradataml/common/deprecations.py +160 -0
  45. teradataml/common/exceptions.py +73 -73
  46. teradataml/common/formula.py +742 -742
  47. teradataml/common/garbagecollector.py +592 -635
  48. teradataml/common/messagecodes.py +422 -431
  49. teradataml/common/messages.py +227 -231
  50. teradataml/common/sqlbundle.py +693 -693
  51. teradataml/common/td_coltype_code_to_tdtype.py +48 -48
  52. teradataml/common/utils.py +2418 -2500
  53. teradataml/common/warnings.py +25 -25
  54. teradataml/common/wrapper_utils.py +1 -110
  55. teradataml/config/dummy_file1.cfg +4 -4
  56. teradataml/config/dummy_file2.cfg +2 -2
  57. teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
  58. teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
  59. teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
  60. teradataml/context/aed_context.py +217 -217
  61. teradataml/context/context.py +1071 -999
  62. teradataml/data/A_loan.csv +19 -19
  63. teradataml/data/BINARY_REALS_LEFT.csv +11 -11
  64. teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
  65. teradataml/data/B_loan.csv +49 -49
  66. teradataml/data/BuoyData2.csv +17 -17
  67. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
  68. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
  69. teradataml/data/Convolve2RealsLeft.csv +5 -5
  70. teradataml/data/Convolve2RealsRight.csv +5 -5
  71. teradataml/data/Convolve2ValidLeft.csv +11 -11
  72. teradataml/data/Convolve2ValidRight.csv +11 -11
  73. teradataml/data/DFFTConv_Real_8_8.csv +65 -65
  74. teradataml/data/Orders1_12mf.csv +24 -24
  75. teradataml/data/Pi_loan.csv +7 -7
  76. teradataml/data/SMOOTHED_DATA.csv +7 -7
  77. teradataml/data/TestDFFT8.csv +9 -9
  78. teradataml/data/TestRiver.csv +109 -109
  79. teradataml/data/Traindata.csv +28 -28
  80. teradataml/data/acf.csv +17 -17
  81. teradataml/data/adaboost_example.json +34 -34
  82. teradataml/data/adaboostpredict_example.json +24 -24
  83. teradataml/data/additional_table.csv +10 -10
  84. teradataml/data/admissions_test.csv +21 -21
  85. teradataml/data/admissions_train.csv +41 -41
  86. teradataml/data/admissions_train_nulls.csv +41 -41
  87. teradataml/data/ageandheight.csv +13 -13
  88. teradataml/data/ageandpressure.csv +31 -31
  89. teradataml/data/antiselect_example.json +36 -36
  90. teradataml/data/antiselect_input.csv +8 -8
  91. teradataml/data/antiselect_input_mixed_case.csv +8 -8
  92. teradataml/data/applicant_external.csv +6 -6
  93. teradataml/data/applicant_reference.csv +6 -6
  94. teradataml/data/arima_example.json +9 -9
  95. teradataml/data/assortedtext_input.csv +8 -8
  96. teradataml/data/attribution_example.json +33 -33
  97. teradataml/data/attribution_sample_table.csv +27 -27
  98. teradataml/data/attribution_sample_table1.csv +6 -6
  99. teradataml/data/attribution_sample_table2.csv +11 -11
  100. teradataml/data/bank_churn.csv +10001 -0
  101. teradataml/data/bank_web_clicks1.csv +42 -42
  102. teradataml/data/bank_web_clicks2.csv +91 -91
  103. teradataml/data/bank_web_url.csv +85 -85
  104. teradataml/data/barrier.csv +2 -2
  105. teradataml/data/barrier_new.csv +3 -3
  106. teradataml/data/betweenness_example.json +13 -13
  107. teradataml/data/bin_breaks.csv +8 -8
  108. teradataml/data/bin_fit_ip.csv +3 -3
  109. teradataml/data/binary_complex_left.csv +11 -11
  110. teradataml/data/binary_complex_right.csv +11 -11
  111. teradataml/data/binary_matrix_complex_left.csv +21 -21
  112. teradataml/data/binary_matrix_complex_right.csv +21 -21
  113. teradataml/data/binary_matrix_real_left.csv +21 -21
  114. teradataml/data/binary_matrix_real_right.csv +21 -21
  115. teradataml/data/blood2ageandweight.csv +26 -26
  116. teradataml/data/bmi.csv +501 -0
  117. teradataml/data/boston.csv +507 -507
  118. teradataml/data/buoydata_mix.csv +11 -11
  119. teradataml/data/burst_data.csv +5 -5
  120. teradataml/data/burst_example.json +20 -20
  121. teradataml/data/byom_example.json +17 -17
  122. teradataml/data/bytes_table.csv +3 -3
  123. teradataml/data/cal_housing_ex_raw.csv +70 -70
  124. teradataml/data/callers.csv +7 -7
  125. teradataml/data/calls.csv +10 -10
  126. teradataml/data/cars_hist.csv +33 -33
  127. teradataml/data/cat_table.csv +24 -24
  128. teradataml/data/ccm_example.json +31 -31
  129. teradataml/data/ccm_input.csv +91 -91
  130. teradataml/data/ccm_input2.csv +13 -13
  131. teradataml/data/ccmexample.csv +101 -101
  132. teradataml/data/ccmprepare_example.json +8 -8
  133. teradataml/data/ccmprepare_input.csv +91 -91
  134. teradataml/data/cfilter_example.json +12 -12
  135. teradataml/data/changepointdetection_example.json +18 -18
  136. teradataml/data/changepointdetectionrt_example.json +8 -8
  137. teradataml/data/chi_sq.csv +2 -2
  138. teradataml/data/churn_data.csv +14 -14
  139. teradataml/data/churn_emission.csv +35 -35
  140. teradataml/data/churn_initial.csv +3 -3
  141. teradataml/data/churn_state_transition.csv +5 -5
  142. teradataml/data/citedges_2.csv +745 -745
  143. teradataml/data/citvertices_2.csv +1210 -1210
  144. teradataml/data/clicks2.csv +16 -16
  145. teradataml/data/clickstream.csv +12 -12
  146. teradataml/data/clickstream1.csv +11 -11
  147. teradataml/data/closeness_example.json +15 -15
  148. teradataml/data/complaints.csv +21 -21
  149. teradataml/data/complaints_mini.csv +3 -3
  150. teradataml/data/complaints_testtoken.csv +224 -224
  151. teradataml/data/complaints_tokens_test.csv +353 -353
  152. teradataml/data/complaints_traintoken.csv +472 -472
  153. teradataml/data/computers_category.csv +1001 -1001
  154. teradataml/data/computers_test1.csv +1252 -1252
  155. teradataml/data/computers_train1.csv +5009 -5009
  156. teradataml/data/computers_train1_clustered.csv +5009 -5009
  157. teradataml/data/confusionmatrix_example.json +9 -9
  158. teradataml/data/conversion_event_table.csv +3 -3
  159. teradataml/data/corr_input.csv +17 -17
  160. teradataml/data/correlation_example.json +11 -11
  161. teradataml/data/coxhazardratio_example.json +39 -39
  162. teradataml/data/coxph_example.json +15 -15
  163. teradataml/data/coxsurvival_example.json +28 -28
  164. teradataml/data/cpt.csv +41 -41
  165. teradataml/data/credit_ex_merged.csv +45 -45
  166. teradataml/data/customer_loyalty.csv +301 -301
  167. teradataml/data/customer_loyalty_newseq.csv +31 -31
  168. teradataml/data/dataframe_example.json +146 -146
  169. teradataml/data/decisionforest_example.json +37 -37
  170. teradataml/data/decisionforestpredict_example.json +38 -38
  171. teradataml/data/decisiontree_example.json +21 -21
  172. teradataml/data/decisiontreepredict_example.json +45 -45
  173. teradataml/data/dfft2_size4_real.csv +17 -17
  174. teradataml/data/dfft2_test_matrix16.csv +17 -17
  175. teradataml/data/dfft2conv_real_4_4.csv +65 -65
  176. teradataml/data/diabetes.csv +443 -443
  177. teradataml/data/diabetes_test.csv +89 -89
  178. teradataml/data/dict_table.csv +5 -5
  179. teradataml/data/docperterm_table.csv +4 -4
  180. teradataml/data/docs/__init__.py +1 -1
  181. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
  182. teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
  183. teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
  184. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
  185. teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
  186. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
  187. teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
  188. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
  189. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
  190. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
  191. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
  192. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
  193. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
  194. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
  195. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
  196. teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
  197. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
  198. teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
  199. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
  200. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
  201. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
  202. teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
  203. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
  204. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
  205. teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
  206. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
  207. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
  208. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
  209. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +132 -132
  210. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +103 -103
  211. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
  212. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +101 -101
  213. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
  214. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
  215. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
  216. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
  217. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
  218. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
  219. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
  220. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
  221. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
  222. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
  223. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
  224. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
  225. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
  226. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
  227. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
  228. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
  229. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
  230. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
  231. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
  232. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
  233. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
  234. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +126 -126
  235. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
  236. teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
  237. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
  238. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
  239. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
  240. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
  241. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
  242. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
  243. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +243 -243
  244. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
  245. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
  246. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
  247. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
  248. teradataml/data/docs/sqle/docs_17_20/FTest.py +160 -160
  249. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
  250. teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
  251. teradataml/data/docs/sqle/docs_17_20/GLM.py +380 -380
  252. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
  253. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
  254. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
  255. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +123 -123
  256. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
  257. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
  258. teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
  259. teradataml/data/docs/sqle/docs_17_20/KMeans.py +204 -204
  260. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
  261. teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
  262. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
  263. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
  264. teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
  265. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
  266. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
  267. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
  268. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +117 -117
  269. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
  270. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
  271. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
  272. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
  273. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +225 -225
  274. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +115 -115
  275. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
  276. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
  277. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
  278. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
  279. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
  280. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
  281. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
  282. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
  283. teradataml/data/docs/sqle/docs_17_20/ROC.py +163 -163
  284. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
  285. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
  286. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
  287. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
  288. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
  289. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
  290. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
  291. teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
  292. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +202 -202
  293. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
  294. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +197 -197
  295. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +110 -109
  296. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
  297. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
  298. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
  299. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
  300. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
  301. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
  302. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
  303. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
  304. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +171 -171
  305. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
  306. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
  307. teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
  308. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
  309. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
  310. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
  311. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
  312. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
  313. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
  314. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
  315. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
  316. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +353 -353
  317. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +275 -275
  318. teradataml/data/docs/sqle/docs_17_20/ZTest.py +155 -155
  319. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
  320. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
  321. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
  322. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
  323. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
  324. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
  325. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
  326. teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
  327. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
  328. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
  329. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
  330. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
  331. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
  332. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
  333. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
  334. teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
  335. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
  336. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
  337. teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
  338. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
  339. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
  340. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
  341. teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
  342. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
  343. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
  344. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
  345. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
  346. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
  347. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
  348. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
  349. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
  350. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
  351. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
  352. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
  353. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
  354. teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
  355. teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
  356. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
  357. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
  358. teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
  359. teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
  360. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
  361. teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
  362. teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
  363. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
  364. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
  365. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
  366. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
  367. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
  368. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
  369. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
  370. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
  371. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
  372. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
  373. teradataml/data/dtw_example.json +17 -17
  374. teradataml/data/dtw_t1.csv +11 -11
  375. teradataml/data/dtw_t2.csv +4 -4
  376. teradataml/data/dwt2d_example.json +15 -15
  377. teradataml/data/dwt_example.json +14 -14
  378. teradataml/data/dwt_filter_dim.csv +5 -5
  379. teradataml/data/emission.csv +9 -9
  380. teradataml/data/emp_table_by_dept.csv +19 -19
  381. teradataml/data/employee_info.csv +4 -4
  382. teradataml/data/employee_table.csv +6 -6
  383. teradataml/data/excluding_event_table.csv +2 -2
  384. teradataml/data/finance_data.csv +6 -6
  385. teradataml/data/finance_data2.csv +61 -61
  386. teradataml/data/finance_data3.csv +93 -93
  387. teradataml/data/fish.csv +160 -0
  388. teradataml/data/fm_blood2ageandweight.csv +26 -26
  389. teradataml/data/fmeasure_example.json +11 -11
  390. teradataml/data/followers_leaders.csv +10 -10
  391. teradataml/data/fpgrowth_example.json +12 -12
  392. teradataml/data/frequentpaths_example.json +29 -29
  393. teradataml/data/friends.csv +9 -9
  394. teradataml/data/fs_input.csv +33 -33
  395. teradataml/data/fs_input1.csv +33 -33
  396. teradataml/data/genData.csv +513 -513
  397. teradataml/data/geodataframe_example.json +39 -39
  398. teradataml/data/glass_types.csv +215 -0
  399. teradataml/data/glm_admissions_model.csv +12 -12
  400. teradataml/data/glm_example.json +29 -29
  401. teradataml/data/glml1l2_example.json +28 -28
  402. teradataml/data/glml1l2predict_example.json +54 -54
  403. teradataml/data/glmpredict_example.json +54 -54
  404. teradataml/data/gq_t1.csv +21 -21
  405. teradataml/data/hconvolve_complex_right.csv +5 -5
  406. teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
  407. teradataml/data/histogram_example.json +11 -11
  408. teradataml/data/hmmdecoder_example.json +78 -78
  409. teradataml/data/hmmevaluator_example.json +24 -24
  410. teradataml/data/hmmsupervised_example.json +10 -10
  411. teradataml/data/hmmunsupervised_example.json +7 -7
  412. teradataml/data/house_values.csv +12 -12
  413. teradataml/data/house_values2.csv +13 -13
  414. teradataml/data/housing_cat.csv +7 -7
  415. teradataml/data/housing_data.csv +9 -9
  416. teradataml/data/housing_test.csv +47 -47
  417. teradataml/data/housing_test_binary.csv +47 -47
  418. teradataml/data/housing_train.csv +493 -493
  419. teradataml/data/housing_train_attribute.csv +4 -4
  420. teradataml/data/housing_train_binary.csv +437 -437
  421. teradataml/data/housing_train_parameter.csv +2 -2
  422. teradataml/data/housing_train_response.csv +493 -493
  423. teradataml/data/ibm_stock.csv +370 -370
  424. teradataml/data/ibm_stock1.csv +370 -370
  425. teradataml/data/identitymatch_example.json +21 -21
  426. teradataml/data/idf_table.csv +4 -4
  427. teradataml/data/impressions.csv +101 -101
  428. teradataml/data/inflation.csv +21 -21
  429. teradataml/data/initial.csv +3 -3
  430. teradataml/data/insect_sprays.csv +12 -12
  431. teradataml/data/insurance.csv +1339 -1339
  432. teradataml/data/interpolator_example.json +12 -12
  433. teradataml/data/iris_altinput.csv +481 -481
  434. teradataml/data/iris_attribute_output.csv +8 -8
  435. teradataml/data/iris_attribute_test.csv +121 -121
  436. teradataml/data/iris_attribute_train.csv +481 -481
  437. teradataml/data/iris_category_expect_predict.csv +31 -31
  438. teradataml/data/iris_data.csv +151 -0
  439. teradataml/data/iris_input.csv +151 -151
  440. teradataml/data/iris_response_train.csv +121 -121
  441. teradataml/data/iris_test.csv +31 -31
  442. teradataml/data/iris_train.csv +121 -121
  443. teradataml/data/join_table1.csv +4 -4
  444. teradataml/data/join_table2.csv +4 -4
  445. teradataml/data/jsons/anly_function_name.json +6 -6
  446. teradataml/data/jsons/byom/dataikupredict.json +147 -147
  447. teradataml/data/jsons/byom/datarobotpredict.json +146 -146
  448. teradataml/data/jsons/byom/h2opredict.json +194 -194
  449. teradataml/data/jsons/byom/onnxpredict.json +186 -186
  450. teradataml/data/jsons/byom/pmmlpredict.json +146 -146
  451. teradataml/data/jsons/paired_functions.json +435 -435
  452. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
  453. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
  454. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
  455. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
  456. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
  457. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
  458. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
  459. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
  460. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
  461. teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
  462. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
  463. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
  464. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
  465. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
  466. teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
  467. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
  468. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
  469. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
  470. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
  471. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
  472. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
  473. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
  474. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
  475. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
  476. teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
  477. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
  478. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
  479. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
  480. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
  481. teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
  482. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
  483. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
  484. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
  485. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
  486. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
  487. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
  488. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
  489. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
  490. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
  491. teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
  492. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
  493. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
  494. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
  495. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
  496. teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
  497. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
  498. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
  499. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
  500. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
  501. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
  502. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
  503. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
  504. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
  505. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
  506. teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
  507. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
  508. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
  509. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
  510. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
  511. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
  512. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
  513. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
  514. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
  515. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
  516. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
  517. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
  518. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
  519. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
  520. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
  521. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
  522. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
  523. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
  524. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
  525. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
  526. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
  527. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
  528. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
  529. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
  530. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
  531. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
  532. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
  533. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
  534. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
  535. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
  536. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
  537. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
  538. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
  539. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
  540. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
  541. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
  542. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
  543. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
  544. teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
  545. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
  546. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
  547. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
  548. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
  549. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
  550. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
  551. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
  552. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
  553. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
  554. teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
  555. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
  556. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
  557. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
  558. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +76 -76
  559. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
  560. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
  561. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
  562. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
  563. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
  564. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
  565. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
  566. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
  567. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
  568. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
  569. teradataml/data/jsons/sqle/17.20/TD_FTest.json +186 -186
  570. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
  571. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
  572. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
  573. teradataml/data/jsons/sqle/17.20/TD_GLM.json +431 -431
  574. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +125 -125
  575. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
  576. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
  577. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +91 -91
  578. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
  579. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
  580. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
  581. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +211 -211
  582. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
  583. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
  584. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
  585. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +101 -101
  586. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
  587. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
  588. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
  589. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
  590. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
  591. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
  592. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
  593. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
  594. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
  595. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
  596. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
  597. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
  598. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
  599. teradataml/data/jsons/sqle/17.20/TD_ROC.json +177 -177
  600. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
  601. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
  602. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
  603. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
  604. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
  605. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
  606. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
  607. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
  608. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +124 -124
  609. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +156 -156
  610. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +70 -70
  611. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
  612. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
  613. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
  614. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
  615. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
  616. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
  617. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
  618. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
  619. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
  620. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
  621. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
  622. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
  623. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
  624. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
  625. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +312 -312
  626. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +182 -182
  627. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +170 -170
  628. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
  629. teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
  630. teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
  631. teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
  632. teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
  633. teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
  634. teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
  635. teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
  636. teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
  637. teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
  638. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
  639. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
  640. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
  641. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
  642. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
  643. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
  644. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
  645. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
  646. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
  647. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
  648. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
  649. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
  650. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
  651. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
  652. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
  653. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
  654. teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
  655. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
  656. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
  657. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
  658. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
  659. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
  660. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
  661. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
  662. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
  663. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
  664. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
  665. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
  666. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
  667. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
  668. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
  669. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
  670. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
  671. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
  672. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
  673. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
  674. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
  675. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
  676. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
  677. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
  678. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
  679. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
  680. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
  681. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
  682. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
  683. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
  684. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
  685. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
  686. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
  687. teradataml/data/kmeans_example.json +17 -17
  688. teradataml/data/kmeans_us_arrests_data.csv +0 -0
  689. teradataml/data/knn_example.json +18 -18
  690. teradataml/data/knnrecommender_example.json +6 -6
  691. teradataml/data/knnrecommenderpredict_example.json +12 -12
  692. teradataml/data/lar_example.json +17 -17
  693. teradataml/data/larpredict_example.json +30 -30
  694. teradataml/data/lc_new_predictors.csv +5 -5
  695. teradataml/data/lc_new_reference.csv +9 -9
  696. teradataml/data/lda_example.json +8 -8
  697. teradataml/data/ldainference_example.json +14 -14
  698. teradataml/data/ldatopicsummary_example.json +8 -8
  699. teradataml/data/levendist_input.csv +13 -13
  700. teradataml/data/levenshteindistance_example.json +10 -10
  701. teradataml/data/linreg_example.json +9 -9
  702. teradataml/data/load_example_data.py +326 -323
  703. teradataml/data/loan_prediction.csv +295 -295
  704. teradataml/data/lungcancer.csv +138 -138
  705. teradataml/data/mappingdata.csv +12 -12
  706. teradataml/data/milk_timeseries.csv +157 -157
  707. teradataml/data/min_max_titanic.csv +4 -4
  708. teradataml/data/minhash_example.json +6 -6
  709. teradataml/data/ml_ratings.csv +7547 -7547
  710. teradataml/data/ml_ratings_10.csv +2445 -2445
  711. teradataml/data/model1_table.csv +5 -5
  712. teradataml/data/model2_table.csv +5 -5
  713. teradataml/data/models/iris_db_glm_model.pmml +56 -56
  714. teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
  715. teradataml/data/modularity_example.json +12 -12
  716. teradataml/data/movavg_example.json +7 -7
  717. teradataml/data/mtx1.csv +7 -7
  718. teradataml/data/mtx2.csv +13 -13
  719. teradataml/data/multi_model_classification.csv +401 -0
  720. teradataml/data/multi_model_regression.csv +401 -0
  721. teradataml/data/mvdfft8.csv +9 -9
  722. teradataml/data/naivebayes_example.json +9 -9
  723. teradataml/data/naivebayespredict_example.json +19 -19
  724. teradataml/data/naivebayestextclassifier2_example.json +6 -6
  725. teradataml/data/naivebayestextclassifier_example.json +8 -8
  726. teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
  727. teradataml/data/name_Find_configure.csv +10 -10
  728. teradataml/data/namedentityfinder_example.json +14 -14
  729. teradataml/data/namedentityfinderevaluator_example.json +10 -10
  730. teradataml/data/namedentityfindertrainer_example.json +6 -6
  731. teradataml/data/nb_iris_input_test.csv +31 -31
  732. teradataml/data/nb_iris_input_train.csv +121 -121
  733. teradataml/data/nbp_iris_model.csv +13 -13
  734. teradataml/data/ner_extractor_text.csv +2 -2
  735. teradataml/data/ner_sports_test2.csv +29 -29
  736. teradataml/data/ner_sports_train.csv +501 -501
  737. teradataml/data/nerevaluator_example.json +5 -5
  738. teradataml/data/nerextractor_example.json +18 -18
  739. teradataml/data/nermem_sports_test.csv +17 -17
  740. teradataml/data/nermem_sports_train.csv +50 -50
  741. teradataml/data/nertrainer_example.json +6 -6
  742. teradataml/data/ngrams_example.json +6 -6
  743. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
  744. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
  745. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
  746. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
  747. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
  748. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
  749. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
  750. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
  751. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
  752. teradataml/data/npath_example.json +23 -23
  753. teradataml/data/ntree_example.json +14 -14
  754. teradataml/data/numeric_strings.csv +4 -4
  755. teradataml/data/numerics.csv +4 -4
  756. teradataml/data/ocean_buoy.csv +17 -17
  757. teradataml/data/ocean_buoy2.csv +17 -17
  758. teradataml/data/ocean_buoys.csv +27 -27
  759. teradataml/data/ocean_buoys2.csv +10 -10
  760. teradataml/data/ocean_buoys_nonpti.csv +28 -28
  761. teradataml/data/ocean_buoys_seq.csv +29 -29
  762. teradataml/data/openml_example.json +63 -0
  763. teradataml/data/optional_event_table.csv +4 -4
  764. teradataml/data/orders1.csv +11 -11
  765. teradataml/data/orders1_12.csv +12 -12
  766. teradataml/data/orders_ex.csv +4 -4
  767. teradataml/data/pack_example.json +8 -8
  768. teradataml/data/package_tracking.csv +19 -19
  769. teradataml/data/package_tracking_pti.csv +18 -18
  770. teradataml/data/pagerank_example.json +13 -13
  771. teradataml/data/paragraphs_input.csv +6 -6
  772. teradataml/data/pathanalyzer_example.json +7 -7
  773. teradataml/data/pathgenerator_example.json +7 -7
  774. teradataml/data/phrases.csv +7 -7
  775. teradataml/data/pivot_example.json +8 -8
  776. teradataml/data/pivot_input.csv +22 -22
  777. teradataml/data/playerRating.csv +31 -31
  778. teradataml/data/postagger_example.json +6 -6
  779. teradataml/data/posttagger_output.csv +44 -44
  780. teradataml/data/production_data.csv +16 -16
  781. teradataml/data/production_data2.csv +7 -7
  782. teradataml/data/randomsample_example.json +31 -31
  783. teradataml/data/randomwalksample_example.json +8 -8
  784. teradataml/data/rank_table.csv +6 -6
  785. teradataml/data/ref_mobile_data.csv +4 -4
  786. teradataml/data/ref_mobile_data_dense.csv +2 -2
  787. teradataml/data/ref_url.csv +17 -17
  788. teradataml/data/restaurant_reviews.csv +7 -7
  789. teradataml/data/river_data.csv +145 -145
  790. teradataml/data/roc_example.json +7 -7
  791. teradataml/data/roc_input.csv +101 -101
  792. teradataml/data/rule_inputs.csv +6 -6
  793. teradataml/data/rule_table.csv +2 -2
  794. teradataml/data/sales.csv +7 -7
  795. teradataml/data/sales_transaction.csv +501 -501
  796. teradataml/data/salesdata.csv +342 -342
  797. teradataml/data/sample_cities.csv +2 -2
  798. teradataml/data/sample_shapes.csv +10 -10
  799. teradataml/data/sample_streets.csv +2 -2
  800. teradataml/data/sampling_example.json +15 -15
  801. teradataml/data/sax_example.json +8 -8
  802. teradataml/data/scale_example.json +23 -23
  803. teradataml/data/scale_housing.csv +11 -11
  804. teradataml/data/scale_housing_test.csv +6 -6
  805. teradataml/data/scale_stat.csv +11 -11
  806. teradataml/data/scalebypartition_example.json +13 -13
  807. teradataml/data/scalemap_example.json +13 -13
  808. teradataml/data/scalesummary_example.json +12 -12
  809. teradataml/data/score_category.csv +101 -101
  810. teradataml/data/score_summary.csv +4 -4
  811. teradataml/data/script_example.json +9 -9
  812. teradataml/data/scripts/deploy_script.py +65 -0
  813. teradataml/data/scripts/mapper.R +20 -0
  814. teradataml/data/scripts/mapper.py +15 -15
  815. teradataml/data/scripts/mapper_replace.py +15 -15
  816. teradataml/data/scripts/sklearn/__init__.py +0 -0
  817. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  818. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  819. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  820. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  821. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  822. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  823. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  824. teradataml/data/seeds.csv +10 -10
  825. teradataml/data/sentenceextractor_example.json +6 -6
  826. teradataml/data/sentiment_extract_input.csv +11 -11
  827. teradataml/data/sentiment_train.csv +16 -16
  828. teradataml/data/sentiment_word.csv +20 -20
  829. teradataml/data/sentiment_word_input.csv +19 -19
  830. teradataml/data/sentimentextractor_example.json +24 -24
  831. teradataml/data/sentimenttrainer_example.json +8 -8
  832. teradataml/data/sequence_table.csv +10 -10
  833. teradataml/data/seriessplitter_example.json +7 -7
  834. teradataml/data/sessionize_example.json +17 -17
  835. teradataml/data/sessionize_table.csv +116 -116
  836. teradataml/data/setop_test1.csv +24 -24
  837. teradataml/data/setop_test2.csv +22 -22
  838. teradataml/data/soc_nw_edges.csv +10 -10
  839. teradataml/data/soc_nw_vertices.csv +7 -7
  840. teradataml/data/souvenir_timeseries.csv +167 -167
  841. teradataml/data/sparse_iris_attribute.csv +5 -5
  842. teradataml/data/sparse_iris_test.csv +121 -121
  843. teradataml/data/sparse_iris_train.csv +601 -601
  844. teradataml/data/star1.csv +6 -6
  845. teradataml/data/state_transition.csv +5 -5
  846. teradataml/data/stock_data.csv +53 -53
  847. teradataml/data/stock_movement.csv +11 -11
  848. teradataml/data/stock_vol.csv +76 -76
  849. teradataml/data/stop_words.csv +8 -8
  850. teradataml/data/store_sales.csv +37 -37
  851. teradataml/data/stringsimilarity_example.json +7 -7
  852. teradataml/data/strsimilarity_input.csv +13 -13
  853. teradataml/data/students.csv +101 -101
  854. teradataml/data/svm_iris_input_test.csv +121 -121
  855. teradataml/data/svm_iris_input_train.csv +481 -481
  856. teradataml/data/svm_iris_model.csv +7 -7
  857. teradataml/data/svmdense_example.json +9 -9
  858. teradataml/data/svmdensepredict_example.json +18 -18
  859. teradataml/data/svmsparse_example.json +7 -7
  860. teradataml/data/svmsparsepredict_example.json +13 -13
  861. teradataml/data/svmsparsesummary_example.json +7 -7
  862. teradataml/data/target_mobile_data.csv +13 -13
  863. teradataml/data/target_mobile_data_dense.csv +5 -5
  864. teradataml/data/templatedata.csv +1201 -1201
  865. teradataml/data/templates/open_source_ml.json +9 -0
  866. teradataml/data/teradataml_example.json +73 -1
  867. teradataml/data/test_classification.csv +101 -0
  868. teradataml/data/test_loan_prediction.csv +53 -53
  869. teradataml/data/test_pacf_12.csv +37 -37
  870. teradataml/data/test_prediction.csv +101 -0
  871. teradataml/data/test_regression.csv +101 -0
  872. teradataml/data/test_river2.csv +109 -109
  873. teradataml/data/text_inputs.csv +6 -6
  874. teradataml/data/textchunker_example.json +7 -7
  875. teradataml/data/textclassifier_example.json +6 -6
  876. teradataml/data/textclassifier_input.csv +7 -7
  877. teradataml/data/textclassifiertrainer_example.json +6 -6
  878. teradataml/data/textmorph_example.json +5 -5
  879. teradataml/data/textparser_example.json +15 -15
  880. teradataml/data/texttagger_example.json +11 -11
  881. teradataml/data/texttokenizer_example.json +6 -6
  882. teradataml/data/texttrainer_input.csv +11 -11
  883. teradataml/data/tf_example.json +6 -6
  884. teradataml/data/tfidf_example.json +13 -13
  885. teradataml/data/tfidf_input1.csv +201 -201
  886. teradataml/data/tfidf_train.csv +6 -6
  887. teradataml/data/time_table1.csv +535 -535
  888. teradataml/data/time_table2.csv +14 -14
  889. teradataml/data/timeseriesdata.csv +1601 -1601
  890. teradataml/data/timeseriesdatasetsd4.csv +105 -105
  891. teradataml/data/titanic.csv +892 -892
  892. teradataml/data/token_table.csv +696 -696
  893. teradataml/data/train_multiclass.csv +101 -0
  894. teradataml/data/train_regression.csv +101 -0
  895. teradataml/data/train_regression_multiple_labels.csv +101 -0
  896. teradataml/data/train_tracking.csv +27 -27
  897. teradataml/data/transformation_table.csv +5 -5
  898. teradataml/data/transformation_table_new.csv +1 -1
  899. teradataml/data/tv_spots.csv +16 -16
  900. teradataml/data/twod_climate_data.csv +117 -117
  901. teradataml/data/uaf_example.json +475 -475
  902. teradataml/data/univariatestatistics_example.json +8 -8
  903. teradataml/data/unpack_example.json +9 -9
  904. teradataml/data/unpivot_example.json +9 -9
  905. teradataml/data/unpivot_input.csv +8 -8
  906. teradataml/data/us_air_pass.csv +36 -36
  907. teradataml/data/us_population.csv +624 -624
  908. teradataml/data/us_states_shapes.csv +52 -52
  909. teradataml/data/varmax_example.json +17 -17
  910. teradataml/data/vectordistance_example.json +25 -25
  911. teradataml/data/ville_climatedata.csv +121 -121
  912. teradataml/data/ville_tempdata.csv +12 -12
  913. teradataml/data/ville_tempdata1.csv +12 -12
  914. teradataml/data/ville_temperature.csv +11 -11
  915. teradataml/data/waveletTable.csv +1605 -1605
  916. teradataml/data/waveletTable2.csv +1605 -1605
  917. teradataml/data/weightedmovavg_example.json +8 -8
  918. teradataml/data/wft_testing.csv +5 -5
  919. teradataml/data/wine_data.csv +1600 -0
  920. teradataml/data/word_embed_input_table1.csv +5 -5
  921. teradataml/data/word_embed_input_table2.csv +4 -4
  922. teradataml/data/word_embed_model.csv +22 -22
  923. teradataml/data/words_input.csv +13 -13
  924. teradataml/data/xconvolve_complex_left.csv +6 -6
  925. teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
  926. teradataml/data/xgboost_example.json +35 -35
  927. teradataml/data/xgboostpredict_example.json +31 -31
  928. teradataml/dataframe/copy_to.py +1764 -1698
  929. teradataml/dataframe/data_transfer.py +2753 -2745
  930. teradataml/dataframe/dataframe.py +17545 -16946
  931. teradataml/dataframe/dataframe_utils.py +1837 -1740
  932. teradataml/dataframe/fastload.py +611 -603
  933. teradataml/dataframe/indexer.py +424 -424
  934. teradataml/dataframe/setop.py +1179 -1166
  935. teradataml/dataframe/sql.py +10090 -6432
  936. teradataml/dataframe/sql_function_parameters.py +439 -388
  937. teradataml/dataframe/sql_functions.py +652 -652
  938. teradataml/dataframe/sql_interfaces.py +220 -220
  939. teradataml/dataframe/vantage_function_types.py +674 -630
  940. teradataml/dataframe/window.py +693 -692
  941. teradataml/dbutils/__init__.py +3 -3
  942. teradataml/dbutils/dbutils.py +1167 -1150
  943. teradataml/dbutils/filemgr.py +267 -267
  944. teradataml/gen_ai/__init__.py +2 -2
  945. teradataml/gen_ai/convAI.py +472 -472
  946. teradataml/geospatial/__init__.py +3 -3
  947. teradataml/geospatial/geodataframe.py +1105 -1094
  948. teradataml/geospatial/geodataframecolumn.py +392 -387
  949. teradataml/geospatial/geometry_types.py +925 -925
  950. teradataml/hyperparameter_tuner/__init__.py +1 -1
  951. teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
  952. teradataml/hyperparameter_tuner/utils.py +281 -187
  953. teradataml/lib/aed_0_1.dll +0 -0
  954. teradataml/lib/libaed_0_1.dylib +0 -0
  955. teradataml/lib/libaed_0_1.so +0 -0
  956. teradataml/libaed_0_1.dylib +0 -0
  957. teradataml/libaed_0_1.so +0 -0
  958. teradataml/opensource/__init__.py +1 -0
  959. teradataml/opensource/sklearn/__init__.py +1 -0
  960. teradataml/opensource/sklearn/_class.py +255 -0
  961. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  962. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  963. teradataml/opensource/sklearn/constants.py +54 -0
  964. teradataml/options/__init__.py +121 -124
  965. teradataml/options/configure.py +337 -336
  966. teradataml/options/display.py +176 -176
  967. teradataml/plot/__init__.py +2 -2
  968. teradataml/plot/axis.py +1388 -1388
  969. teradataml/plot/constants.py +15 -15
  970. teradataml/plot/figure.py +398 -398
  971. teradataml/plot/plot.py +760 -760
  972. teradataml/plot/query_generator.py +83 -83
  973. teradataml/plot/subplot.py +216 -216
  974. teradataml/scriptmgmt/UserEnv.py +3788 -3761
  975. teradataml/scriptmgmt/__init__.py +3 -3
  976. teradataml/scriptmgmt/lls_utils.py +1616 -1604
  977. teradataml/series/series.py +532 -532
  978. teradataml/series/series_utils.py +71 -71
  979. teradataml/table_operators/Apply.py +949 -917
  980. teradataml/table_operators/Script.py +1719 -1982
  981. teradataml/table_operators/TableOperator.py +1207 -1616
  982. teradataml/table_operators/__init__.py +2 -3
  983. teradataml/table_operators/apply_query_generator.py +262 -262
  984. teradataml/table_operators/query_generator.py +507 -507
  985. teradataml/table_operators/table_operator_query_generator.py +460 -460
  986. teradataml/table_operators/table_operator_util.py +631 -639
  987. teradataml/table_operators/templates/dataframe_apply.template +184 -184
  988. teradataml/table_operators/templates/dataframe_map.template +176 -176
  989. teradataml/table_operators/templates/script_executor.template +170 -170
  990. teradataml/utils/dtypes.py +684 -684
  991. teradataml/utils/internal_buffer.py +84 -84
  992. teradataml/utils/print_versions.py +205 -205
  993. teradataml/utils/utils.py +410 -410
  994. teradataml/utils/validators.py +2239 -2115
  995. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +270 -41
  996. teradataml-20.0.0.0.dist-info/RECORD +1038 -0
  997. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +1 -1
  998. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +1 -1
  999. teradataml/analytics/mle/AdaBoost.py +0 -651
  1000. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  1001. teradataml/analytics/mle/Antiselect.py +0 -342
  1002. teradataml/analytics/mle/Arima.py +0 -641
  1003. teradataml/analytics/mle/ArimaPredict.py +0 -477
  1004. teradataml/analytics/mle/Attribution.py +0 -1070
  1005. teradataml/analytics/mle/Betweenness.py +0 -658
  1006. teradataml/analytics/mle/Burst.py +0 -711
  1007. teradataml/analytics/mle/CCM.py +0 -600
  1008. teradataml/analytics/mle/CCMPrepare.py +0 -324
  1009. teradataml/analytics/mle/CFilter.py +0 -460
  1010. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  1011. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  1012. teradataml/analytics/mle/Closeness.py +0 -737
  1013. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  1014. teradataml/analytics/mle/Correlation.py +0 -477
  1015. teradataml/analytics/mle/Correlation2.py +0 -573
  1016. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  1017. teradataml/analytics/mle/CoxPH.py +0 -556
  1018. teradataml/analytics/mle/CoxSurvival.py +0 -478
  1019. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  1020. teradataml/analytics/mle/DTW.py +0 -623
  1021. teradataml/analytics/mle/DWT.py +0 -564
  1022. teradataml/analytics/mle/DWT2D.py +0 -599
  1023. teradataml/analytics/mle/DecisionForest.py +0 -716
  1024. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  1025. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  1026. teradataml/analytics/mle/DecisionTree.py +0 -830
  1027. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  1028. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  1029. teradataml/analytics/mle/FMeasure.py +0 -402
  1030. teradataml/analytics/mle/FPGrowth.py +0 -734
  1031. teradataml/analytics/mle/FrequentPaths.py +0 -695
  1032. teradataml/analytics/mle/GLM.py +0 -558
  1033. teradataml/analytics/mle/GLML1L2.py +0 -547
  1034. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  1035. teradataml/analytics/mle/GLMPredict.py +0 -529
  1036. teradataml/analytics/mle/HMMDecoder.py +0 -945
  1037. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  1038. teradataml/analytics/mle/HMMSupervised.py +0 -521
  1039. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  1040. teradataml/analytics/mle/Histogram.py +0 -561
  1041. teradataml/analytics/mle/IDWT.py +0 -476
  1042. teradataml/analytics/mle/IDWT2D.py +0 -493
  1043. teradataml/analytics/mle/IdentityMatch.py +0 -763
  1044. teradataml/analytics/mle/Interpolator.py +0 -918
  1045. teradataml/analytics/mle/KMeans.py +0 -485
  1046. teradataml/analytics/mle/KNN.py +0 -627
  1047. teradataml/analytics/mle/KNNRecommender.py +0 -488
  1048. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  1049. teradataml/analytics/mle/LAR.py +0 -439
  1050. teradataml/analytics/mle/LARPredict.py +0 -478
  1051. teradataml/analytics/mle/LDA.py +0 -548
  1052. teradataml/analytics/mle/LDAInference.py +0 -492
  1053. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  1054. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  1055. teradataml/analytics/mle/LinReg.py +0 -433
  1056. teradataml/analytics/mle/LinRegPredict.py +0 -438
  1057. teradataml/analytics/mle/MinHash.py +0 -544
  1058. teradataml/analytics/mle/Modularity.py +0 -587
  1059. teradataml/analytics/mle/NEREvaluator.py +0 -410
  1060. teradataml/analytics/mle/NERExtractor.py +0 -595
  1061. teradataml/analytics/mle/NERTrainer.py +0 -458
  1062. teradataml/analytics/mle/NGrams.py +0 -570
  1063. teradataml/analytics/mle/NPath.py +0 -634
  1064. teradataml/analytics/mle/NTree.py +0 -549
  1065. teradataml/analytics/mle/NaiveBayes.py +0 -462
  1066. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  1067. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  1068. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  1069. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  1070. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  1071. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  1072. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  1073. teradataml/analytics/mle/POSTagger.py +0 -417
  1074. teradataml/analytics/mle/Pack.py +0 -411
  1075. teradataml/analytics/mle/PageRank.py +0 -535
  1076. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  1077. teradataml/analytics/mle/PathGenerator.py +0 -367
  1078. teradataml/analytics/mle/PathStart.py +0 -464
  1079. teradataml/analytics/mle/PathSummarizer.py +0 -470
  1080. teradataml/analytics/mle/Pivot.py +0 -471
  1081. teradataml/analytics/mle/ROC.py +0 -425
  1082. teradataml/analytics/mle/RandomSample.py +0 -637
  1083. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  1084. teradataml/analytics/mle/SAX.py +0 -779
  1085. teradataml/analytics/mle/SVMDense.py +0 -677
  1086. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  1087. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  1088. teradataml/analytics/mle/SVMSparse.py +0 -557
  1089. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  1090. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  1091. teradataml/analytics/mle/Sampling.py +0 -549
  1092. teradataml/analytics/mle/Scale.py +0 -565
  1093. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  1094. teradataml/analytics/mle/ScaleMap.py +0 -378
  1095. teradataml/analytics/mle/ScaleSummary.py +0 -320
  1096. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  1097. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  1098. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  1099. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  1100. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  1101. teradataml/analytics/mle/Sessionize.py +0 -475
  1102. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  1103. teradataml/analytics/mle/StringSimilarity.py +0 -425
  1104. teradataml/analytics/mle/TF.py +0 -389
  1105. teradataml/analytics/mle/TFIDF.py +0 -504
  1106. teradataml/analytics/mle/TextChunker.py +0 -414
  1107. teradataml/analytics/mle/TextClassifier.py +0 -399
  1108. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  1109. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  1110. teradataml/analytics/mle/TextMorph.py +0 -494
  1111. teradataml/analytics/mle/TextParser.py +0 -623
  1112. teradataml/analytics/mle/TextTagger.py +0 -530
  1113. teradataml/analytics/mle/TextTokenizer.py +0 -502
  1114. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  1115. teradataml/analytics/mle/Unpack.py +0 -526
  1116. teradataml/analytics/mle/Unpivot.py +0 -438
  1117. teradataml/analytics/mle/VarMax.py +0 -776
  1118. teradataml/analytics/mle/VectorDistance.py +0 -762
  1119. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  1120. teradataml/analytics/mle/XGBoost.py +0 -842
  1121. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  1122. teradataml/analytics/mle/__init__.py +0 -123
  1123. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  1124. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  1125. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  1126. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  1127. teradataml/analytics/mle/json/arima_mle.json +0 -172
  1128. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  1129. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  1130. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  1131. teradataml/analytics/mle/json/burst_mle.json +0 -140
  1132. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  1133. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  1134. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  1135. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  1136. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  1137. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  1138. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  1139. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  1140. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  1141. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  1142. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  1143. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  1144. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  1145. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  1146. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  1147. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  1148. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  1149. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  1150. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  1151. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  1152. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  1153. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  1154. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  1155. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  1156. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  1157. teradataml/analytics/mle/json/glm_mle.json +0 -111
  1158. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  1159. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  1160. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  1161. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  1162. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  1163. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  1164. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  1165. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  1166. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  1167. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  1168. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  1169. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  1170. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  1171. teradataml/analytics/mle/json/knn_mle.json +0 -141
  1172. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  1173. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  1174. teradataml/analytics/mle/json/lar_mle.json +0 -78
  1175. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  1176. teradataml/analytics/mle/json/lda_mle.json +0 -130
  1177. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  1178. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  1179. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  1180. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  1181. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  1182. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  1183. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  1184. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  1185. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  1186. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  1187. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  1188. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  1189. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  1190. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  1191. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  1192. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  1193. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  1194. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  1195. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  1196. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  1197. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  1198. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  1199. teradataml/analytics/mle/json/pack_mle.json +0 -58
  1200. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  1201. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  1202. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  1203. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  1204. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  1205. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  1206. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  1207. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  1208. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  1209. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  1210. teradataml/analytics/mle/json/roc_mle.json +0 -73
  1211. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  1212. teradataml/analytics/mle/json/sax_mle.json +0 -154
  1213. teradataml/analytics/mle/json/scale_mle.json +0 -93
  1214. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  1215. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  1216. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  1217. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  1218. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  1219. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  1220. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  1221. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  1222. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  1223. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  1224. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  1225. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  1226. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  1227. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  1228. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  1229. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  1230. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  1231. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  1232. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  1233. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  1234. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  1235. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  1236. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  1237. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  1238. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  1239. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  1240. teradataml/analytics/mle/json/tf_mle.json +0 -33
  1241. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  1242. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  1243. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  1244. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  1245. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  1246. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  1247. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  1248. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  1249. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  1250. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  1251. teradataml/analytics/sqle/Antiselect.py +0 -321
  1252. teradataml/analytics/sqle/Attribution.py +0 -603
  1253. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  1254. teradataml/analytics/sqle/GLMPredict.py +0 -430
  1255. teradataml/analytics/sqle/MovingAverage.py +0 -543
  1256. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  1257. teradataml/analytics/sqle/NPath.py +0 -632
  1258. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  1259. teradataml/analytics/sqle/Pack.py +0 -388
  1260. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  1261. teradataml/analytics/sqle/Sessionize.py +0 -390
  1262. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  1263. teradataml/analytics/sqle/Unpack.py +0 -503
  1264. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  1265. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  1266. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  1267. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  1268. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  1269. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  1270. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  1271. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  1272. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  1273. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  1274. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  1275. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  1276. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  1277. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  1278. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  1279. teradataml/catalog/model_cataloging.py +0 -980
  1280. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  1281. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  1282. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  1283. teradataml/table_operators/sandbox_container_util.py +0 -643
  1284. teradataml-17.20.0.7.dist-info/RECORD +0 -1280
  1285. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
@@ -1,603 +1,611 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2019 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Abhinav Sahu (abhinav.sahu@teradata.com)
8
- # Secondary Owner:
9
- #
10
- # ##################################################################
11
-
12
- import re
13
- import datetime
14
- import warnings
15
- import pandas as pd
16
-
17
- from sqlalchemy import MetaData, Table, Column
18
- from sqlalchemy.exc import OperationalError as sqlachemyOperationalError
19
- from teradataml.dataframe import dataframe
20
- from teradataml.context.context import *
21
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
22
- from teradataml.common.constants import TeradataConstants, DriverEscapeFunctions
23
- from teradataml.common.utils import UtilFuncs
24
- from teradataml.common.garbagecollector import GarbageCollector
25
- from teradataml.utils.validators import _Validators
26
- from teradataml.dataframe.copy_to import copy_to_sql, \
27
- _validate_pti_copy_parameters, _create_table_object, \
28
- _create_pti_table_object, _extract_column_info, \
29
- _check_columns_insertion_compatible
30
- from teradataml.dataframe.data_transfer import _DataTransferUtils
31
-
32
-
33
- def fastload(df, table_name, schema_name=None, if_exists='replace', index=False,
34
- index_label=None, primary_index=None, types=None, batch_size=None,
35
- save_errors=False, open_sessions=None):
36
- """
37
- The fastload() API writes records from a Pandas DataFrame to Teradata Vantage
38
- using Fastload. FastLoad API can be used to quickly load large amounts of data
39
- in an empty table on Vantage.
40
- 1. Teradata recommends to use this API when number rows in the Pandas DataFrame
41
- is greater than 100,000 to have better performance. To insert lesser rows,
42
- please use copy_to_sql for optimized performance. The data is loaded in batches.
43
- 2. FastLoad API cannot load duplicate rows in the DataFrame if the table is a
44
- MULTISET table having primary index.
45
- 3. FastLoad API does not support all Teradata Advanced SQL Engine data types.
46
- For example, target table having BLOB and CLOB data type columns cannot be
47
- loaded.
48
- 4. If there are any incorrect rows i.e. due to constraint violations, data type
49
- conversion errors, etc., FastLoad protocol ignores those rows and inserts
50
- all valid rows.
51
- 5. Rows in the DataFrame that failed to get inserted are categorized into errors
52
- and warnings by FastLoad protocol and these errors and warnings are stored
53
- into respective error and warning tables by FastLoad API.
54
- 6. If save_errors argument is True, the names of error and warning tables are
55
- shown once the fastload operation is complete. These tables will be persisted
56
- using copy_to_sql.
57
-
58
- For additional information about FastLoad protocol through teradatasql driver,
59
- please refer the FASTLOAD section of https://pypi.org/project/teradatasql/#FastLoad
60
- driver documentation for more information.
61
-
62
- PARAMETERS:
63
- df:
64
- Required Argument.
65
- Specifies the Pandas DataFrame object to be saved in Vantage.
66
- Types: pandas.DataFrame
67
-
68
- table_name:
69
- Required Argument.
70
- Specifies the name of the table to be created in Vantage.
71
- Types: String
72
-
73
- schema_name:
74
- Optional Argument.
75
- Specifies the name of the database schema in Vantage to write to.
76
- Types: String
77
- Default: None (Uses default database schema).
78
-
79
- if_exists:
80
- Optional Argument.
81
- Specifies the action to take when table already exists in Vantage.
82
- Types: String
83
- Possible values: {'fail', 'replace', 'append'}
84
- - fail: If table exists, raise TeradataMlException.
85
- - replace: If table exists, drop it, recreate it, and insert data.
86
- - append: If table exists, insert data. Create if does not exist.
87
- Default: replace
88
-
89
- index:
90
- Optional Argument.
91
- Specifies whether to save Pandas DataFrame index as a column or not.
92
- Types: Boolean (True or False)
93
- Default: False
94
-
95
- index_label:
96
- Optional Argument.
97
- Specifies the column label(s) for Pandas DataFrame index column(s).
98
- Types: String or list of strings
99
- Default: None
100
-
101
- primary_index:
102
- Optional Argument.
103
- Specifies which column(s) to use as primary index while creating table
104
- in Vantage. When set to None, No Primary Index (NoPI) tables are created.
105
- Types: String or list of strings
106
- Default: None
107
- Example:
108
- primary_index = 'my_primary_index'
109
- primary_index = ['my_primary_index1', 'my_primary_index2', 'my_primary_index3']
110
-
111
- types:
112
- Optional Argument.
113
- Specifies the data types for requested columns to be saved in Vantage.
114
- Types: Python dictionary ({column_name1: type_value1, ... column_nameN: type_valueN})
115
- Default: None
116
-
117
- Note:
118
- 1. This argument accepts a dictionary of columns names and their required
119
- teradatasqlalchemy types as key-value pairs, allowing to specify a subset
120
- of the columns of a specific type.
121
- i) When only a subset of all columns are provided, the column types
122
- for the rest are assigned appropriately.
123
- ii) When types argument is not provided, the column types are assigned
124
- as listed in the following table:
125
- +---------------------------+-----------------------------------------+
126
- | Pandas/Numpy Type | teradatasqlalchemy Type |
127
- +---------------------------+-----------------------------------------+
128
- | int32 | INTEGER |
129
- +---------------------------+-----------------------------------------+
130
- | int64 | BIGINT |
131
- +---------------------------+-----------------------------------------+
132
- | bool | BYTEINT |
133
- +---------------------------+-----------------------------------------+
134
- | float32/float64 | FLOAT |
135
- +---------------------------+-----------------------------------------+
136
- | datetime64/datetime64[ns] | TIMESTAMP |
137
- +---------------------------+-----------------------------------------+
138
- | datetime64[ns,<time_zone>]| TIMESTAMP(timezone=True) |
139
- +---------------------------+-----------------------------------------+
140
- | Any other data type | VARCHAR(configure.default_varchar_size) |
141
- +---------------------------+-----------------------------------------+
142
- 2. This argument does not have any effect when the table specified using
143
- table_name and schema_name exists and if_exists = 'append'.
144
-
145
- batch_size:
146
- Optional Argument.
147
- Specifies the number of rows to be loaded in a batch. For better performance,
148
- recommended batch size is at least 100,000. batch_size must be a positive integer.
149
- If this argument is None, there are two cases based on the number of
150
- rows, say N in the dataframe 'df' as explained below:
151
- If N is greater than 100,000, the rows are divided into batches of
152
- equal size with each batch having at least 100,000 rows (except the
153
- last batch which might have more rows). If N is less than 100,000, the
154
- rows are inserted in one batch after notifying the user that insertion
155
- happens with degradation of performance.
156
- If this argument is not None, the rows are inserted in batches of size
157
- given in the argument, irrespective of the recommended batch size.
158
- The last batch will have rows less than the batch size specified, if the
159
- number of rows is not an integral multiples of the argument batch_size.
160
- Default Value: None
161
- Types: int
162
-
163
- save_errors:
164
- Optional Argument.
165
- Specifies whether to persist the error/warning information in Vantage
166
- or not. If save_errors is set to False, error/warnings are not persisted
167
- as tables. If argument is set to True, the error and warnings information
168
- are presisted and names of error and warning tables are returned. Otherwise,
169
- the function returns None for the names of the tables.
170
- Default Value: False
171
- Types: bool
172
-
173
- open_sessions:
174
- Optional Argument.
175
- Specifies the number of Teradata data transfer sessions to be opened for fastload operation.
176
- Note : If "open_sessions" argument is not provided, the default value is the smaller of 8 or the
177
- number of AMPs available.
178
- For additional information about number of Teradata data-transfer
179
- sessions opened during fastload, please refer to:
180
- https://pypi.org/project/teradatasql/#FastLoad
181
- Default Value: None
182
- Types: int
183
-
184
- RETURNS:
185
- A dict containing the following attributes:
186
- 1. errors_dataframe: It is a Pandas DataFrame containing error messages
187
- thrown by fastload. DataFrame is empty if there are no errors.
188
- 2. warnings_dataframe: It is a Pandas DataFrame containing warning messages
189
- thrown by fastload. DataFrame is empty if there are no warnings.
190
- 3. errors_table: Name of the table containing errors. It is None, if
191
- argument save_errors is False.
192
- 4. warnings_table: Name of the table containing warnings. It is None, if
193
- argument save_errors is False.
194
-
195
- RAISES:
196
- TeradataMlException
197
-
198
- EXAMPLES:
199
- Saving a Pandas DataFrame using Fastload:
200
- >>> from teradataml.dataframe.fastload import fastload
201
- >>> from teradatasqlalchemy.types import *
202
-
203
- >>> df = {'emp_name': ['A1', 'A2', 'A3', 'A4'],
204
- 'emp_sage': [100, 200, 300, 400],
205
- 'emp_id': [133, 144, 155, 177],
206
- 'marks': [99.99, 97.32, 94.67, 91.00]
207
- }
208
-
209
- >>> pandas_df = pd.DataFrame(df)
210
-
211
- # a) Default execution
212
- >>> fastload(df = pandas_df, table_name = 'my_table')
213
-
214
- # b) Save a Pandas DataFrame with primary_index
215
- >>> pandas_df = pandas_df.set_index(['emp_id'])
216
- >>> fastload(df = pandas_df, table_name = 'my_table_1', primary_index='emp_id')
217
-
218
- # c) Save a Pandas DataFrame using fastload() with index and primary_index
219
- >>> fastload(df = pandas_df, table_name = 'my_table_2', index=True,
220
- primary_index='index_label')
221
-
222
- # d) Save a Pandas DataFrame using types, appending to the table if it already exists
223
- >>> fastload(df = pandas_df, table_name = 'my_table_3', schema_name = 'alice',
224
- index = True, index_label = 'my_index_label',
225
- primary_index = ['emp_id'], if_exists = 'append',
226
- types = {'emp_name': VARCHAR, 'emp_sage':INTEGER,
227
- 'emp_id': BIGINT, 'marks': DECIMAL})
228
-
229
- # e) Save a Pandas DataFrame using levels in index of type MultiIndex
230
- >>> pandas_df = pandas_df.set_index(['emp_id', 'emp_name'])
231
- >>> fastload(df = pandas_df, table_name = 'my_table_4', schema_name = 'alice',
232
- index = True, index_label = ['index1', 'index2'],
233
- primary_index = ['index1'], if_exists = 'replace')
234
-
235
- # f) Save a Pandas DataFrame by opening spcified number of teradata data transfer sessions
236
- >>> fastload(df = pandas_df, table_name = 'my_table_5', open_sessions = 2)
237
-
238
- """
239
- # Deriving global connection using get_connection()
240
- con = get_connection()
241
- try:
242
- if con is None:
243
- raise TeradataMlException(Messages.get_message(MessageCodes.CONNECTION_FAILURE),
244
- MessageCodes.CONNECTION_FAILURE)
245
-
246
- if isinstance(df, dataframe.DataFrame):
247
- raise TeradataMlException(Messages.get_message(MessageCodes.UNSUPPORTED_DATATYPE,
248
- 'df', "Pandas DataFrame"), MessageCodes.UNSUPPORTED_DATATYPE)
249
-
250
- dt_obj = _DataTransferUtils(df=df, table_name=table_name, schema_name=schema_name, if_exists=if_exists,
251
- index=index, index_label=index_label, primary_index=primary_index,
252
- types=types, batch_size=batch_size,
253
- save_errors=save_errors, api_name='fastload',
254
- use_fastload=True, open_sessions=open_sessions)
255
- # Validate DataFrame & related flags; Proceed only when True
256
- dt_obj._validate()
257
-
258
- # We have commented out the PTI related code for now as fastload fails to
259
- # load data into PTI tables. Same has been reported to gosql team. We'll
260
- # un-comment this once the issue is fixed.
261
- # Check if the table to be created must be a Primary Time Index (PTI) table.
262
- # If a user specifies the timecode_column parameter, and attempt to create
263
- # a PTI will be made.
264
- # is_pti = False
265
- # if timecode_column is not None:
266
- # is_pti = True
267
- # if primary_index is not None:
268
- # warnings.warn(Messages.get_message(MessageCodes.IGNORE_ARGS_WARN,
269
- # 'primary_index',
270
- # 'timecode_column',
271
- # 'specified'))
272
- # else:
273
- # ignored = []
274
- # if timezero_date is not None: ignored.append('timezero_date')
275
- # if timebucket_duration is not None: ignored.append('timebucket_duration')
276
- # if sequence_column is not None: ignored.append('sequence_column')
277
- # if seq_max is not None: ignored.append('seq_max')
278
- # if columns_list is not None and (
279
- # not isinstance(columns_list, list) or len(columns_list) > 0): ignored.append('columns_list')
280
- # if primary_time_index_name is not None: ignored.append('primary_time_index_name')
281
- # if len(ignored) > 0:
282
- # warnings.warn(Messages.get_message(MessageCodes.IGNORE_ARGS_WARN,
283
- # ignored,
284
- # 'timecode_column',
285
- # 'missing'))
286
-
287
- # Check and calculate batch size for optimized performance for FastLoad
288
- if batch_size is None:
289
- batch_size = _get_batchsize(df)
290
- else:
291
- # Validate argument batch_size type
292
- _Validators._validate_function_arguments([["batch_size", batch_size,
293
- False, (int)]])
294
- if batch_size < 100000:
295
- warnings.warn("The batch_size provided is less than 100000. Teradata \
296
- recommends using 100000 as minimum batch size for \
297
- improved performance.")
298
-
299
- # If the table created must be a PTI table, then validate additional parameters
300
- # Note that if the required parameters for PTI are valid, then other parameters, though being validated,
301
- # will be ignored - for example, primary_index
302
- # if is_pti:
303
- # _validate_pti_copy_parameters(df, timecode_column, timebucket_duration,
304
- # timezero_date, primary_time_index_name, columns_list,
305
- # sequence_column, seq_max, types, index, index_label)
306
-
307
- # Check if destination table exists
308
- table_exists = dt_obj._table_exists(con)
309
-
310
- # Raise an exception when the table not exists and if_exists='fail'
311
- dt_obj._check_table_exists(is_table_exists=table_exists)
312
-
313
- # Let's create the SQLAlchemy table object to recreate the table
314
- if not table_exists or if_exists.lower() == 'replace':
315
- dt_obj._create_or_replace_table(con, table_exists=table_exists)
316
-
317
- fl_dict = _insert_from_dataframe(dt_obj, table_name, batch_size)
318
-
319
- # Check column compatibility for insertion when table exists and if_exists = 'append'
320
- if table_exists and if_exists.lower() == 'append':
321
- # Create table object
322
- table = UtilFuncs._get_sqlalchemy_table(table_name,
323
- schema_name=schema_name)
324
-
325
- cols = _extract_column_info(df, index=index, index_label=index_label)
326
- if table is not None:
327
- dt_obj._check_columns_compatibility(table_obj=table, cols=cols)
328
-
329
- stag_table_name = ''
330
- try:
331
- # Create staging table and use FastLoad to load data.
332
- # Then copy all the rows from staging table to target table using insert_into sql.
333
- stag_table_name = UtilFuncs._generate_temp_table_name(prefix="fl_stag",
334
- gc_on_quit=False,
335
- quote=False,
336
- table_type=TeradataConstants.TERADATA_TABLE)
337
-
338
- # Get the table name without schema name for further steps
339
- stag_table_name = stag_table_name.split('.')[-1].replace('"', '')
340
- # Create staging table object
341
- dt_obj._create_table(con, table_name=stag_table_name)
342
-
343
- # Insert data to staging table using faslload
344
- fl_dict = _insert_from_dataframe(dt_obj, stag_table_name, batch_size)
345
-
346
- # Insert data from staging table to target data.
347
- df_utils._insert_all_from_table(table_name,
348
- dt_obj._get_fully_qualified_table_name(table_name=stag_table_name),
349
- cols[0], schema_name)
350
- except:
351
- raise
352
- finally:
353
- if stag_table_name:
354
- UtilFuncs._drop_table(dt_obj._get_fully_qualified_table_name(stag_table_name))
355
-
356
- except (TeradataMlException, ValueError, TypeError):
357
- raise
358
- except Exception as err:
359
- raise TeradataMlException(Messages.get_message(MessageCodes.FASTLOAD_FAILS),
360
- MessageCodes.FASTLOAD_FAILS) from err
361
- return fl_dict
362
-
363
- def _insert_from_dataframe(dt_obj, table_name, batch_size):
364
- """
365
- This is an internal function used to to sequentially extract column info from DataFrame,
366
- iterate rows, and insert rows manually. Used for Insertions to Tables with Pandas index.
367
- This uses DBAPI's escape functions for Fastload which is a batch insertion method.
368
-
369
- PARAMETERS:
370
- dt_obj:
371
- Object of _DataTransferUtils class.
372
- Types: object
373
-
374
- table_name:
375
- Name of the table.
376
- Types: String
377
-
378
- batch_size:
379
- Specifies the number of rows to be inserted in a batch.
380
- Types: Int
381
-
382
- RETURNS:
383
- dict
384
-
385
- RAISES:
386
- Exception
387
-
388
- EXAMPLES:
389
- _insert_from_dataframe(dt_obj, table_name, batch_size=100)
390
- """
391
- conn = get_connection().connection
392
- # Create a cursor from connection object
393
- cur = conn.cursor()
394
-
395
- error_tablename = ""
396
- warn_tablename = ""
397
-
398
- try:
399
- # if is_pti:
400
- # # This if for non-index columns.
401
- # col_names = _reorder_insert_list_for_pti(col_names, timecode_column, sequence_column)
402
-
403
- is_multi_index = isinstance(dt_obj.df.index, pd.MultiIndex)
404
-
405
- # The Fastload functionality is provided through several escape methods using
406
- # teradatasql; like: {fn teradata_try_fastload}, {fn teradata_get_errors}, etc.
407
- # - {fn teradata_nativesql}: This escape method is to specify to use native
408
- # SQL escape calls.
409
- # - {fn teradata_autocommit_off}: This escape method is to turn off auto-commit.
410
- # For FastLoad it is required that it should not execute any transaction
411
- # management SQL commands when auto-commit is on.
412
- # - {fn teradata_try_fastload}: This escape method tries to use FastLoad
413
- # for the INSERT statement, and automatically executes the INSERT as a regular
414
- # SQL statement when the INSERT is not compatible with FastLoad.
415
- # - {fn teradata_require_fastload}: This escape method requires FastLoad
416
- # for the INSERT statement, and fails with an error when the INSERT is not
417
- # compatible with FastLoad.
418
- # - {fn teradata_get_errors}: This escape method returns in one string all
419
- # data errors observed by FastLoad for the most recent batch. The data errors
420
- # are obtained from FastLoad error table 1, for problems such as constraint
421
- # violations, data type conversion errors, and unavailable AMP conditions.
422
- # - {fn teradata_get_warnings}: This escape method returns in one string all
423
- # warnings generated by FastLoad for the request. The warnings are obtained
424
- # from FastLoad error table 2, for problems such as duplicate rows.
425
- # - {fn teradata_logon_sequence_number}: This escape method returns the string
426
- # form of an integer representing the Logon Sequence Number(LSN) for the
427
- # FastLoad. Returns an empty string if the request is not a FastLoad.
428
-
429
- # Quoted, schema-qualified table name.
430
- table = dt_obj._get_fully_qualified_table_name(table_name)
431
-
432
- # Form the INSERT query for fastlod.
433
- ins = dt_obj._form_insert_query(table)
434
-
435
- # Turn off autocommit before the Fastload insertion
436
- dt_obj._process_escape_functions(cur, escape_function= \
437
- DriverEscapeFunctions.AUTOCOMMIT_OFF)
438
-
439
- # Initialize dict template for saving error/warning information
440
- err_dict = {key:[] for key in ['batch_no', 'error_message']}
441
- warn_dict = {key:[] for key in ['batch_no', 'error_message']}
442
-
443
- batch_number = 1
444
- num_batches = int(dt_obj.df.shape[0]/batch_size)
445
-
446
- for i in range(0, dt_obj.df.shape[0], batch_size):
447
- # Add the remaining rows to last batch after second last batch
448
- if (batch_number == num_batches) :
449
- last_elem = dt_obj.df.shape[0]
450
- else :
451
- last_elem = i + batch_size
452
-
453
- pdf = dt_obj.df.iloc[i:last_elem]
454
- insert_list = []
455
- # Iterate rows of DataFrame per batch size to convert it to list of lists.
456
- for row_index, row in enumerate(pdf.itertuples(index=True)):
457
- insert_list2 = []
458
- for col_index, x in enumerate(pdf.columns):
459
- insert_list2.append(row[col_index+1])
460
- if dt_obj.index is True:
461
- insert_list2.extend(row[0]) if is_multi_index else insert_list2.append(row[0])
462
- insert_list.append(insert_list2)
463
- # Execute insert statement
464
- cur.execute (ins, insert_list)
465
-
466
- # Get error and warning information
467
- err, _ = dt_obj._process_fastexport_errors_warnings(ins)
468
- if len(err) != 0:
469
- err_dict['batch_no'].extend([batch_number] * len(err))
470
- err_dict['error_message'].extend(err)
471
-
472
- print("Processed {} rows in batch {}.".format(pdf.shape[0], batch_number))
473
-
474
- # If shape of DataFrame equal to last_elem of last batch.
475
- if last_elem == dt_obj.df.shape[0]:
476
- break
477
-
478
- batch_number += 1
479
-
480
- # Get logon sequence number to be used for error/warning table names
481
- logon_seq_number = dt_obj._process_escape_functions(cur, escape_function= \
482
- DriverEscapeFunctions.LOGON_SEQ_NUM,
483
- insert_query=ins)
484
-
485
- # Commit the rows
486
- conn.commit()
487
-
488
- # Get error and warning information, if any.
489
- # Errors/Warnings like duplicate rows are added here.
490
- _, warn = dt_obj._process_fastexport_errors_warnings(ins)
491
- if len(warn) != 0:
492
- warn_dict['batch_no'].extend(['batch_summary'] * len(warn))
493
- warn_dict['error_message'].extend(warn)
494
-
495
- # Get error and warning informations for error and warning tables, persist
496
- # error and warning tables to Vantage if user has specified save_error as True
497
- # else show it as pandas dataframe on console.
498
- pd_err_df = dt_obj._get_pandas_df_from_errors_warnings(err_dict)
499
- if not pd_err_df.empty:
500
- msg_type = "err"
501
- error_tablename = dt_obj._create_error_warnings_table(pd_err_df, msg_type, logon_seq_number[0][0])
502
-
503
- pd_warn_df = dt_obj._get_pandas_df_from_errors_warnings(warn_dict)
504
- if not pd_warn_df.empty:
505
- msg_type = "warn"
506
- warn_tablename = dt_obj._create_error_warnings_table(pd_warn_df, msg_type, logon_seq_number[0][0])
507
-
508
- except Exception:
509
- conn.rollback()
510
- raise
511
- finally:
512
- # Turn on autocommit.
513
- dt_obj._process_escape_functions(cur, escape_function=DriverEscapeFunctions.AUTOCOMMIT_ON)
514
- cur.close()
515
-
516
- return {"errors_dataframe": pd_err_df, "warnings_dataframe": pd_warn_df,
517
- "errors_table": error_tablename, "warnings_table": warn_tablename}
518
-
519
- def _get_batchsize(df):
520
- """
521
- This internal function calculates batch size which should be more than 100000
522
- for better fastload performance.
523
-
524
- PARAMETERS:
525
- df:
526
- The Pandas DataFrame object for which the batch size has to be calculated.
527
- Types: pandas.DataFrame
528
-
529
- RETURNS:
530
- Batch size i.e. number of rows to be inserted in a batch.
531
-
532
- RAISES:
533
- N/A
534
-
535
- EXAMPLES:
536
- _get_batchsize(df)
537
- """
538
- return df.shape[0] if df.shape[0] <= 100000 else round(df.shape[0]/int(df.shape[0]/100000))
539
-
540
- def _create_table_for_fastload(df, con, table_name, schema_name=None, primary_index=None,
541
- is_pti=False, primary_time_index_name=None, timecode_column=None,
542
- timezero_date=None, timebucket_duration=None, sequence_column=None,
543
- seq_max=None, columns_list=[], types=None, index=False,
544
- index_label=None):
545
- """
546
- PARAMETERS:
547
- df:
548
- Specifies the Pandas DataFrame object to be saved.
549
- Types: pandas.DataFrame
550
-
551
- con:
552
- A SQLAlchemy connectable (engine/connection) object
553
- Types: Teradata connection object
554
-
555
- table_name:
556
- Specifies the name of the table to be created in Vantage.
557
- Types: String
558
-
559
- schema_name:
560
- Specifies the name of the database schema in Teradata Vantage to write to.
561
- Types: String
562
-
563
- index:
564
- Specifies whether to save Pandas DataFrame index as a column or not.
565
- Types: Boolean (True or False)
566
-
567
- index_label:
568
- Specifies the column label(s) for Pandas DataFrame index column(s).
569
- Types: String or list of strings
570
-
571
- primary_index:
572
- Specifies which column(s) to use as primary index while creating Teradata
573
- table in Vantage. When None, No Primary Index Teradata tables are created.
574
- Types: String or list of strings
575
-
576
- types:
577
- Specifies required data-types for requested columns to be saved in Vantage.
578
- Types: Python dictionary ({column_name1: type_value1, ... column_nameN: type_valueN})
579
-
580
- RETURNS:
581
- Table object
582
-
583
- RAISES:
584
- TeradataMlException, sqlalchemy.OperationalError
585
-
586
- EXAMPLES:
587
- _create_table_for_fastload(df, con, table_name, schema_name, primary_index,
588
- is_pti, primary_time_index_name, timecode_column,
589
- timezero_date, timebucket_duration, sequence_column,
590
- seq_max, columns_list, types, index, index_label)
591
- """
592
- if is_pti:
593
- table = _create_pti_table_object(df=df, con=con, table_name=table_name,
594
- schema_name=schema_name, temporary=False,
595
- primary_time_index_name=primary_time_index_name,
596
- timecode_column=timecode_column, timezero_date=timezero_date,
597
- timebucket_duration=timebucket_duration,
598
- sequence_column=sequence_column, seq_max=seq_max,
599
- columns_list=columns_list, set_table=False,
600
- types=types, index=index, index_label=index_label)
601
-
602
- UtilFuncs._create_table_using_table_object(table)
603
-
1
+ #!/usr/bin/python
2
+ # ##################################################################
3
+ #
4
+ # Copyright 2019 Teradata. All rights reserved.
5
+ # TERADATA CONFIDENTIAL AND TRADE SECRET
6
+ #
7
+ # Primary Owner: Abhinav Sahu (abhinav.sahu@teradata.com)
8
+ # Secondary Owner:
9
+ #
10
+ # ##################################################################
11
+
12
+ import re
13
+ import datetime
14
+ import warnings
15
+ import pandas as pd
16
+
17
+ from sqlalchemy import MetaData, Table, Column
18
+ from sqlalchemy.exc import OperationalError as sqlachemyOperationalError
19
+ from teradataml.dataframe import dataframe
20
+ from teradataml.context.context import *
21
+ from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
22
+ from teradataml.common.constants import TeradataConstants, DriverEscapeFunctions
23
+ from teradataml.common.utils import UtilFuncs
24
+ from teradataml.common.garbagecollector import GarbageCollector
25
+ from teradataml.utils.validators import _Validators
26
+ from teradataml.dataframe.copy_to import copy_to_sql, \
27
+ _validate_pti_copy_parameters, _create_table_object, \
28
+ _create_pti_table_object, _extract_column_info, \
29
+ _check_columns_insertion_compatible
30
+ from teradataml.dataframe.data_transfer import _DataTransferUtils
31
+ from teradatasqlalchemy.telemetry.queryband import collect_queryband
32
+
33
+
34
+ @collect_queryband(queryband="fstLd")
35
+ def fastload(df, table_name, schema_name=None, if_exists='replace', index=False,
36
+ index_label=None, primary_index=None, types=None, batch_size=None,
37
+ save_errors=False, open_sessions=None):
38
+ """
39
+ The fastload() API writes records from a Pandas DataFrame to Teradata Vantage
40
+ using Fastload. FastLoad API can be used to quickly load large amounts of data
41
+ in an empty table on Vantage.
42
+ 1. Teradata recommends to use this API when number rows in the Pandas DataFrame
43
+ is greater than 100,000 to have better performance. To insert lesser rows,
44
+ please use copy_to_sql for optimized performance. The data is loaded in batches.
45
+ 2. FastLoad API cannot load duplicate rows in the DataFrame if the table is a
46
+ MULTISET table having primary index.
47
+ 3. FastLoad API does not support all Teradata Advanced SQL Engine data types.
48
+ For example, target table having BLOB and CLOB data type columns cannot be
49
+ loaded.
50
+ 4. If there are any incorrect rows i.e. due to constraint violations, data type
51
+ conversion errors, etc., FastLoad protocol ignores those rows and inserts
52
+ all valid rows.
53
+ 5. Rows in the DataFrame that failed to get inserted are categorized into errors
54
+ and warnings by FastLoad protocol and these errors and warnings are stored
55
+ into respective error and warning tables by FastLoad API.
56
+ 6. If save_errors argument is True, the names of error and warning tables are
57
+ shown once the fastload operation is complete. These tables will be persisted
58
+ using copy_to_sql.
59
+
60
+ For additional information about FastLoad protocol through teradatasql driver,
61
+ please refer the FASTLOAD section of https://pypi.org/project/teradatasql/#FastLoad
62
+ driver documentation for more information.
63
+
64
+ PARAMETERS:
65
+ df:
66
+ Required Argument.
67
+ Specifies the Pandas DataFrame object to be saved in Vantage.
68
+ Types: pandas.DataFrame
69
+
70
+ table_name:
71
+ Required Argument.
72
+ Specifies the name of the table to be created in Vantage.
73
+ Types: String
74
+
75
+ schema_name:
76
+ Optional Argument.
77
+ Specifies the name of the database schema in Vantage to write to.
78
+ Types: String
79
+ Default: None (Uses default database schema).
80
+
81
+ if_exists:
82
+ Optional Argument.
83
+ Specifies the action to take when table already exists in Vantage.
84
+ Types: String
85
+ Possible values: {'fail', 'replace', 'append'}
86
+ - fail: If table exists, raise TeradataMlException.
87
+ - replace: If table exists, drop it, recreate it, and insert data.
88
+ - append: If table exists, insert data. Create if does not exist.
89
+ Default: replace
90
+
91
+ index:
92
+ Optional Argument.
93
+ Specifies whether to save Pandas DataFrame index as a column or not.
94
+ Types: Boolean (True or False)
95
+ Default: False
96
+
97
+ index_label:
98
+ Optional Argument.
99
+ Specifies the column label(s) for Pandas DataFrame index column(s).
100
+ Types: String or list of strings
101
+ Default: None
102
+
103
+ primary_index:
104
+ Optional Argument.
105
+ Specifies which column(s) to use as primary index while creating table
106
+ in Vantage. When set to None, No Primary Index (NoPI) tables are created.
107
+ Types: String or list of strings
108
+ Default: None
109
+ Example:
110
+ primary_index = 'my_primary_index'
111
+ primary_index = ['my_primary_index1', 'my_primary_index2', 'my_primary_index3']
112
+
113
+ types:
114
+ Optional Argument.
115
+ Specifies the data types for requested columns to be saved in Vantage.
116
+ Types: Python dictionary ({column_name1: type_value1, ... column_nameN: type_valueN})
117
+ Default: None
118
+
119
+ Note:
120
+ 1. This argument accepts a dictionary of columns names and their required
121
+ teradatasqlalchemy types as key-value pairs, allowing to specify a subset
122
+ of the columns of a specific type.
123
+ i) When only a subset of all columns are provided, the column types
124
+ for the rest are assigned appropriately.
125
+ ii) When types argument is not provided, the column types are assigned
126
+ as listed in the following table:
127
+ +---------------------------+-----------------------------------------+
128
+ | Pandas/Numpy Type | teradatasqlalchemy Type |
129
+ +---------------------------+-----------------------------------------+
130
+ | int32 | INTEGER |
131
+ +---------------------------+-----------------------------------------+
132
+ | int64 | BIGINT |
133
+ +---------------------------+-----------------------------------------+
134
+ | bool | BYTEINT |
135
+ +---------------------------+-----------------------------------------+
136
+ | float32/float64 | FLOAT |
137
+ +---------------------------+-----------------------------------------+
138
+ | datetime64/datetime64[ns] | TIMESTAMP |
139
+ +---------------------------+-----------------------------------------+
140
+ | datetime64[ns,<time_zone>]| TIMESTAMP(timezone=True) |
141
+ +---------------------------+-----------------------------------------+
142
+ | Any other data type | VARCHAR(configure.default_varchar_size) |
143
+ +---------------------------+-----------------------------------------+
144
+ 2. This argument does not have any effect when the table specified using
145
+ table_name and schema_name exists and if_exists = 'append'.
146
+
147
+ batch_size:
148
+ Optional Argument.
149
+ Specifies the number of rows to be loaded in a batch. For better performance,
150
+ recommended batch size is at least 100,000. batch_size must be a positive integer.
151
+ If this argument is None, there are two cases based on the number of
152
+ rows, say N in the dataframe 'df' as explained below:
153
+ If N is greater than 100,000, the rows are divided into batches of
154
+ equal size with each batch having at least 100,000 rows (except the
155
+ last batch which might have more rows). If N is less than 100,000, the
156
+ rows are inserted in one batch after notifying the user that insertion
157
+ happens with degradation of performance.
158
+ If this argument is not None, the rows are inserted in batches of size
159
+ given in the argument, irrespective of the recommended batch size.
160
+ The last batch will have rows less than the batch size specified, if the
161
+ number of rows is not an integral multiples of the argument batch_size.
162
+ Default Value: None
163
+ Types: int
164
+
165
+ save_errors:
166
+ Optional Argument.
167
+ Specifies whether to persist the error/warning information in Vantage
168
+ or not. If save_errors is set to False, error/warnings are not persisted
169
+ as tables. If argument is set to True, the error and warnings information
170
+ are presisted and names of error and warning tables are returned. Otherwise,
171
+ the function returns None for the names of the tables.
172
+ Default Value: False
173
+ Types: bool
174
+
175
+ open_sessions:
176
+ Optional Argument.
177
+ Specifies the number of Teradata data transfer sessions to be opened for fastload operation.
178
+ Note : If "open_sessions" argument is not provided, the default value is the smaller of 8 or the
179
+ number of AMPs available.
180
+ For additional information about number of Teradata data-transfer
181
+ sessions opened during fastload, please refer to:
182
+ https://pypi.org/project/teradatasql/#FastLoad
183
+ Default Value: None
184
+ Types: int
185
+
186
+ RETURNS:
187
+ A dict containing the following attributes:
188
+ 1. errors_dataframe: It is a Pandas DataFrame containing error messages
189
+ thrown by fastload. DataFrame is empty if there are no errors.
190
+ 2. warnings_dataframe: It is a Pandas DataFrame containing warning messages
191
+ thrown by fastload. DataFrame is empty if there are no warnings.
192
+ 3. errors_table: Name of the table containing errors. It is None, if
193
+ argument save_errors is False.
194
+ 4. warnings_table: Name of the table containing warnings. It is None, if
195
+ argument save_errors is False.
196
+
197
+ RAISES:
198
+ TeradataMlException
199
+
200
+ EXAMPLES:
201
+ Saving a Pandas DataFrame using Fastload:
202
+ >>> from teradataml.dataframe.fastload import fastload
203
+ >>> from teradatasqlalchemy.types import *
204
+
205
+ >>> df = {'emp_name': ['A1', 'A2', 'A3', 'A4'],
206
+ 'emp_sage': [100, 200, 300, 400],
207
+ 'emp_id': [133, 144, 155, 177],
208
+ 'marks': [99.99, 97.32, 94.67, 91.00]
209
+ }
210
+
211
+ >>> pandas_df = pd.DataFrame(df)
212
+
213
+ # a) Default execution
214
+ >>> fastload(df = pandas_df, table_name = 'my_table')
215
+
216
+ # b) Save a Pandas DataFrame with primary_index
217
+ >>> pandas_df = pandas_df.set_index(['emp_id'])
218
+ >>> fastload(df = pandas_df, table_name = 'my_table_1', primary_index='emp_id')
219
+
220
+ # c) Save a Pandas DataFrame using fastload() with index and primary_index
221
+ >>> fastload(df = pandas_df, table_name = 'my_table_2', index=True,
222
+ primary_index='index_label')
223
+
224
+ # d) Save a Pandas DataFrame using types, appending to the table if it already exists
225
+ >>> fastload(df = pandas_df, table_name = 'my_table_3', schema_name = 'alice',
226
+ index = True, index_label = 'my_index_label',
227
+ primary_index = ['emp_id'], if_exists = 'append',
228
+ types = {'emp_name': VARCHAR, 'emp_sage':INTEGER,
229
+ 'emp_id': BIGINT, 'marks': DECIMAL})
230
+
231
+ # e) Save a Pandas DataFrame using levels in index of type MultiIndex
232
+ >>> pandas_df = pandas_df.set_index(['emp_id', 'emp_name'])
233
+ >>> fastload(df = pandas_df, table_name = 'my_table_4', schema_name = 'alice',
234
+ index = True, index_label = ['index1', 'index2'],
235
+ primary_index = ['index1'], if_exists = 'replace')
236
+
237
+ # f) Save a Pandas DataFrame by opening spcified number of teradata data transfer sessions
238
+ >>> fastload(df = pandas_df, table_name = 'my_table_5', open_sessions = 2)
239
+
240
+ """
241
+ # Deriving global connection using get_connection()
242
+ con = get_connection()
243
+ try:
244
+ if con is None:
245
+ raise TeradataMlException(Messages.get_message(MessageCodes.CONNECTION_FAILURE),
246
+ MessageCodes.CONNECTION_FAILURE)
247
+
248
+ if isinstance(df, dataframe.DataFrame):
249
+ raise TeradataMlException(Messages.get_message(MessageCodes.UNSUPPORTED_DATATYPE,
250
+ 'df', "Pandas DataFrame"), MessageCodes.UNSUPPORTED_DATATYPE)
251
+
252
+ dt_obj = _DataTransferUtils(df=df, table_name=table_name, schema_name=schema_name, if_exists=if_exists,
253
+ index=index, index_label=index_label, primary_index=primary_index,
254
+ types=types, batch_size=batch_size,
255
+ save_errors=save_errors, api_name='fastload',
256
+ use_fastload=True, open_sessions=open_sessions)
257
+ # Validate DataFrame & related flags; Proceed only when True
258
+ dt_obj._validate()
259
+
260
+ # We have commented out the PTI related code for now as fastload fails to
261
+ # load data into PTI tables. Same has been reported to gosql team. We'll
262
+ # un-comment this once the issue is fixed.
263
+ # Check if the table to be created must be a Primary Time Index (PTI) table.
264
+ # If a user specifies the timecode_column parameter, and attempt to create
265
+ # a PTI will be made.
266
+ # is_pti = False
267
+ # if timecode_column is not None:
268
+ # is_pti = True
269
+ # if primary_index is not None:
270
+ # warnings.warn(Messages.get_message(MessageCodes.IGNORE_ARGS_WARN,
271
+ # 'primary_index',
272
+ # 'timecode_column',
273
+ # 'specified'))
274
+ # else:
275
+ # ignored = []
276
+ # if timezero_date is not None: ignored.append('timezero_date')
277
+ # if timebucket_duration is not None: ignored.append('timebucket_duration')
278
+ # if sequence_column is not None: ignored.append('sequence_column')
279
+ # if seq_max is not None: ignored.append('seq_max')
280
+ # if columns_list is not None and (
281
+ # not isinstance(columns_list, list) or len(columns_list) > 0): ignored.append('columns_list')
282
+ # if primary_time_index_name is not None: ignored.append('primary_time_index_name')
283
+ # if len(ignored) > 0:
284
+ # warnings.warn(Messages.get_message(MessageCodes.IGNORE_ARGS_WARN,
285
+ # ignored,
286
+ # 'timecode_column',
287
+ # 'missing'))
288
+
289
+ # Check and calculate batch size for optimized performance for FastLoad
290
+ if batch_size is None:
291
+ batch_size = _get_batchsize(df)
292
+ else:
293
+ # Validate argument batch_size type
294
+ _Validators._validate_function_arguments([["batch_size", batch_size,
295
+ False, (int)]])
296
+ if batch_size < 100000:
297
+ warnings.warn("The batch_size provided is less than 100000. "
298
+ "Teradata recommends using 100000 as minimum batch "
299
+ "size for improved performance.", stacklevel=2)
300
+
301
+ # If the table created must be a PTI table, then validate additional parameters
302
+ # Note that if the required parameters for PTI are valid, then other parameters, though being validated,
303
+ # will be ignored - for example, primary_index
304
+ # if is_pti:
305
+ # _validate_pti_copy_parameters(df, timecode_column, timebucket_duration,
306
+ # timezero_date, primary_time_index_name, columns_list,
307
+ # sequence_column, seq_max, types, index, index_label)
308
+
309
+ # Check if destination table exists
310
+ table_exists = dt_obj._table_exists(con)
311
+
312
+ # Raise an exception when the table not exists and if_exists='fail'
313
+ dt_obj._check_table_exists(is_table_exists=table_exists)
314
+
315
+ # Let's create the SQLAlchemy table object to recreate the table
316
+ if not table_exists or if_exists.lower() == 'replace':
317
+ dt_obj._create_or_replace_table(con, table_exists=table_exists)
318
+
319
+ fl_dict = _insert_from_dataframe(dt_obj, table_name, batch_size)
320
+
321
+ # Check column compatibility for insertion when table exists and if_exists = 'append'
322
+ if table_exists and if_exists.lower() == 'append':
323
+ # Create table object
324
+ table = UtilFuncs._get_sqlalchemy_table(table_name,
325
+ schema_name=schema_name)
326
+
327
+ cols = _extract_column_info(df, index=index, index_label=index_label)
328
+ if table is not None:
329
+ dt_obj._check_columns_compatibility(table_obj=table, cols=cols)
330
+
331
+ stag_table_name = ''
332
+ try:
333
+ # Create staging table and use FastLoad to load data.
334
+ # Then copy all the rows from staging table to target table using insert_into sql.
335
+ stag_table_name = UtilFuncs._generate_temp_table_name(prefix="fl_stag",
336
+ gc_on_quit=False,
337
+ quote=False,
338
+ table_type=TeradataConstants.TERADATA_TABLE)
339
+
340
+ # Get the table name without schema name for further steps
341
+ stag_table_name = stag_table_name.split('.')[-1].replace('"', '')
342
+ # Create staging table object
343
+ dt_obj._create_table(con, table_name=stag_table_name)
344
+
345
+ # Insert data to staging table using faslload
346
+ fl_dict = _insert_from_dataframe(dt_obj, stag_table_name, batch_size)
347
+
348
+ # Insert data from staging table to target data.
349
+ df_utils._insert_all_from_table(table_name,
350
+ dt_obj._get_fully_qualified_table_name(table_name=stag_table_name),
351
+ cols[0], schema_name)
352
+ except:
353
+ raise
354
+ finally:
355
+ if stag_table_name:
356
+ UtilFuncs._drop_table(dt_obj._get_fully_qualified_table_name(stag_table_name))
357
+
358
+ except (TeradataMlException, ValueError, TypeError):
359
+ raise
360
+ except Exception as err:
361
+ raise TeradataMlException(Messages.get_message(MessageCodes.FASTLOAD_FAILS),
362
+ MessageCodes.FASTLOAD_FAILS) from err
363
+ return fl_dict
364
+
365
+
366
+ def _insert_from_dataframe(dt_obj, table_name, batch_size):
367
+ """
368
+ This is an internal function used to to sequentially extract column info from DataFrame,
369
+ iterate rows, and insert rows manually. Used for Insertions to Tables with Pandas index.
370
+ This uses DBAPI's escape functions for Fastload which is a batch insertion method.
371
+
372
+ PARAMETERS:
373
+ dt_obj:
374
+ Object of _DataTransferUtils class.
375
+ Types: object
376
+
377
+ table_name:
378
+ Name of the table.
379
+ Types: String
380
+
381
+ batch_size:
382
+ Specifies the number of rows to be inserted in a batch.
383
+ Types: Int
384
+
385
+ RETURNS:
386
+ dict
387
+
388
+ RAISES:
389
+ Exception
390
+
391
+ EXAMPLES:
392
+ _insert_from_dataframe(dt_obj, table_name, batch_size=100)
393
+ """
394
+ conn = get_connection().connection
395
+ # Create a cursor from connection object
396
+ cur = conn.cursor()
397
+
398
+ error_tablename = ""
399
+ warn_tablename = ""
400
+
401
+ try:
402
+ # if is_pti:
403
+ # # This if for non-index columns.
404
+ # col_names = _reorder_insert_list_for_pti(col_names, timecode_column, sequence_column)
405
+
406
+ is_multi_index = isinstance(dt_obj.df.index, pd.MultiIndex)
407
+
408
+ # The Fastload functionality is provided through several escape methods using
409
+ # teradatasql; like: {fn teradata_try_fastload}, {fn teradata_get_errors}, etc.
410
+ # - {fn teradata_nativesql}: This escape method is to specify to use native
411
+ # SQL escape calls.
412
+ # - {fn teradata_autocommit_off}: This escape method is to turn off auto-commit.
413
+ # For FastLoad it is required that it should not execute any transaction
414
+ # management SQL commands when auto-commit is on.
415
+ # - {fn teradata_try_fastload}: This escape method tries to use FastLoad
416
+ # for the INSERT statement, and automatically executes the INSERT as a regular
417
+ # SQL statement when the INSERT is not compatible with FastLoad.
418
+ # - {fn teradata_require_fastload}: This escape method requires FastLoad
419
+ # for the INSERT statement, and fails with an error when the INSERT is not
420
+ # compatible with FastLoad.
421
+ # - {fn teradata_get_errors}: This escape method returns in one string all
422
+ # data errors observed by FastLoad for the most recent batch. The data errors
423
+ # are obtained from FastLoad error table 1, for problems such as constraint
424
+ # violations, data type conversion errors, and unavailable AMP conditions.
425
+ # - {fn teradata_get_warnings}: This escape method returns in one string all
426
+ # warnings generated by FastLoad for the request. The warnings are obtained
427
+ # from FastLoad error table 2, for problems such as duplicate rows.
428
+ # - {fn teradata_logon_sequence_number}: This escape method returns the string
429
+ # form of an integer representing the Logon Sequence Number(LSN) for the
430
+ # FastLoad. Returns an empty string if the request is not a FastLoad.
431
+
432
+ # Quoted, schema-qualified table name.
433
+ table = dt_obj._get_fully_qualified_table_name(table_name)
434
+
435
+ # Form the INSERT query for fastlod.
436
+ ins = dt_obj._form_insert_query(table)
437
+
438
+ # Turn off autocommit before the Fastload insertion
439
+ dt_obj._process_escape_functions(cur, escape_function= \
440
+ DriverEscapeFunctions.AUTOCOMMIT_OFF)
441
+
442
+ # Initialize dict template for saving error/warning information
443
+ err_dict = {key:[] for key in ['batch_no', 'error_message']}
444
+ warn_dict = {key:[] for key in ['batch_no', 'error_message']}
445
+
446
+ batch_number = 1
447
+ num_batches = int(dt_obj.df.shape[0]/batch_size)
448
+
449
+
450
+ # Empty queryband buffer before SQL call.
451
+ UtilFuncs._set_queryband()
452
+ for i in range(0, dt_obj.df.shape[0], batch_size):
453
+ # Add the remaining rows to last batch after second last batch
454
+ if (batch_number == num_batches) :
455
+ last_elem = dt_obj.df.shape[0]
456
+ else :
457
+ last_elem = i + batch_size
458
+
459
+ pdf = dt_obj.df.iloc[i:last_elem]
460
+ insert_list = []
461
+ # Iterate rows of DataFrame per batch size to convert it to list of lists.
462
+ for row_index, row in enumerate(pdf.itertuples(index=True)):
463
+ insert_list2 = []
464
+ for col_index, x in enumerate(pdf.columns):
465
+ insert_list2.append(row[col_index+1])
466
+ if dt_obj.index is True:
467
+ insert_list2.extend(row[0]) if is_multi_index else insert_list2.append(row[0])
468
+ insert_list.append(insert_list2)
469
+ # Execute insert statement
470
+ cur.execute (ins, insert_list)
471
+
472
+ # Get error and warning information
473
+ err, _ = dt_obj._process_fastexport_errors_warnings(ins)
474
+ if len(err) != 0:
475
+ err_dict['batch_no'].extend([batch_number] * len(err))
476
+ err_dict['error_message'].extend(err)
477
+
478
+ print("Processed {} rows in batch {}.".format(pdf.shape[0], batch_number))
479
+
480
+ # If shape of DataFrame equal to last_elem of last batch.
481
+ if last_elem == dt_obj.df.shape[0]:
482
+ break
483
+
484
+ batch_number += 1
485
+
486
+ # Get logon sequence number to be used for error/warning table names
487
+ logon_seq_number = dt_obj._process_escape_functions(cur, escape_function= \
488
+ DriverEscapeFunctions.LOGON_SEQ_NUM,
489
+ insert_query=ins)
490
+
491
+ # Commit the rows
492
+ conn.commit()
493
+
494
+ # Get error and warning information, if any.
495
+ # Errors/Warnings like duplicate rows are added here.
496
+ _, warn = dt_obj._process_fastexport_errors_warnings(ins)
497
+ if len(warn) != 0:
498
+ warn_dict['batch_no'].extend(['batch_summary'] * len(warn))
499
+ warn_dict['error_message'].extend(warn)
500
+
501
+ # Get error and warning informations for error and warning tables, persist
502
+ # error and warning tables to Vantage if user has specified save_error as True
503
+ # else show it as pandas dataframe on console.
504
+ pd_err_df = dt_obj._get_pandas_df_from_errors_warnings(err_dict)
505
+ if not pd_err_df.empty:
506
+ msg_type = "err"
507
+ error_tablename = dt_obj._create_error_warnings_table(pd_err_df, msg_type, logon_seq_number[0][0])
508
+
509
+ pd_warn_df = dt_obj._get_pandas_df_from_errors_warnings(warn_dict)
510
+ if not pd_warn_df.empty:
511
+ msg_type = "warn"
512
+ warn_tablename = dt_obj._create_error_warnings_table(pd_warn_df, msg_type, logon_seq_number[0][0])
513
+
514
+ except Exception:
515
+ conn.rollback()
516
+ raise
517
+ finally:
518
+ # Turn on autocommit.
519
+ dt_obj._process_escape_functions(cur, escape_function=DriverEscapeFunctions.AUTOCOMMIT_ON)
520
+ cur.close()
521
+
522
+ return {"errors_dataframe": pd_err_df, "warnings_dataframe": pd_warn_df,
523
+ "errors_table": error_tablename, "warnings_table": warn_tablename}
524
+
525
+
526
+ def _get_batchsize(df):
527
+ """
528
+ This internal function calculates batch size which should be more than 100000
529
+ for better fastload performance.
530
+
531
+ PARAMETERS:
532
+ df:
533
+ The Pandas DataFrame object for which the batch size has to be calculated.
534
+ Types: pandas.DataFrame
535
+
536
+ RETURNS:
537
+ Batch size i.e. number of rows to be inserted in a batch.
538
+
539
+ RAISES:
540
+ N/A
541
+
542
+ EXAMPLES:
543
+ _get_batchsize(df)
544
+ """
545
+ return df.shape[0] if df.shape[0] <= 100000 else round(df.shape[0]/int(df.shape[0]/100000))
546
+
547
+
548
+ def _create_table_for_fastload(df, con, table_name, schema_name=None, primary_index=None,
549
+ is_pti=False, primary_time_index_name=None, timecode_column=None,
550
+ timezero_date=None, timebucket_duration=None, sequence_column=None,
551
+ seq_max=None, columns_list=[], types=None, index=False,
552
+ index_label=None):
553
+ """
554
+ PARAMETERS:
555
+ df:
556
+ Specifies the Pandas DataFrame object to be saved.
557
+ Types: pandas.DataFrame
558
+
559
+ con:
560
+ A SQLAlchemy connectable (engine/connection) object
561
+ Types: Teradata connection object
562
+
563
+ table_name:
564
+ Specifies the name of the table to be created in Vantage.
565
+ Types: String
566
+
567
+ schema_name:
568
+ Specifies the name of the database schema in Teradata Vantage to write to.
569
+ Types: String
570
+
571
+ index:
572
+ Specifies whether to save Pandas DataFrame index as a column or not.
573
+ Types: Boolean (True or False)
574
+
575
+ index_label:
576
+ Specifies the column label(s) for Pandas DataFrame index column(s).
577
+ Types: String or list of strings
578
+
579
+ primary_index:
580
+ Specifies which column(s) to use as primary index while creating Teradata
581
+ table in Vantage. When None, No Primary Index Teradata tables are created.
582
+ Types: String or list of strings
583
+
584
+ types:
585
+ Specifies required data-types for requested columns to be saved in Vantage.
586
+ Types: Python dictionary ({column_name1: type_value1, ... column_nameN: type_valueN})
587
+
588
+ RETURNS:
589
+ Table object
590
+
591
+ RAISES:
592
+ TeradataMlException, sqlalchemy.OperationalError
593
+
594
+ EXAMPLES:
595
+ _create_table_for_fastload(df, con, table_name, schema_name, primary_index,
596
+ is_pti, primary_time_index_name, timecode_column,
597
+ timezero_date, timebucket_duration, sequence_column,
598
+ seq_max, columns_list, types, index, index_label)
599
+ """
600
+ if is_pti:
601
+ table = _create_pti_table_object(df=df, con=con, table_name=table_name,
602
+ schema_name=schema_name, temporary=False,
603
+ primary_time_index_name=primary_time_index_name,
604
+ timecode_column=timecode_column, timezero_date=timezero_date,
605
+ timebucket_duration=timebucket_duration,
606
+ sequence_column=sequence_column, seq_max=seq_max,
607
+ columns_list=columns_list, set_table=False,
608
+ types=types, index=index, index_label=index_label)
609
+
610
+ UtilFuncs._create_table_using_table_object(table)
611
+