teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (1285) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +1864 -1640
  4. teradataml/__init__.py +70 -60
  5. teradataml/_version.py +11 -11
  6. teradataml/analytics/Transformations.py +2995 -2995
  7. teradataml/analytics/__init__.py +81 -83
  8. teradataml/analytics/analytic_function_executor.py +2013 -2010
  9. teradataml/analytics/analytic_query_generator.py +958 -958
  10. teradataml/analytics/byom/H2OPredict.py +514 -514
  11. teradataml/analytics/byom/PMMLPredict.py +437 -437
  12. teradataml/analytics/byom/__init__.py +14 -14
  13. teradataml/analytics/json_parser/__init__.py +130 -130
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
  15. teradataml/analytics/json_parser/json_store.py +191 -191
  16. teradataml/analytics/json_parser/metadata.py +1637 -1637
  17. teradataml/analytics/json_parser/utils.py +804 -803
  18. teradataml/analytics/meta_class.py +196 -196
  19. teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
  21. teradataml/analytics/sqle/__init__.py +97 -110
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
  24. teradataml/analytics/table_operator/__init__.py +10 -10
  25. teradataml/analytics/uaf/__init__.py +63 -63
  26. teradataml/analytics/utils.py +693 -692
  27. teradataml/analytics/valib.py +1603 -1600
  28. teradataml/automl/__init__.py +1628 -0
  29. teradataml/automl/custom_json_utils.py +1270 -0
  30. teradataml/automl/data_preparation.py +993 -0
  31. teradataml/automl/data_transformation.py +727 -0
  32. teradataml/automl/feature_engineering.py +1648 -0
  33. teradataml/automl/feature_exploration.py +547 -0
  34. teradataml/automl/model_evaluation.py +163 -0
  35. teradataml/automl/model_training.py +887 -0
  36. teradataml/catalog/__init__.py +1 -3
  37. teradataml/catalog/byom.py +1759 -1716
  38. teradataml/catalog/function_argument_mapper.py +859 -861
  39. teradataml/catalog/model_cataloging_utils.py +491 -1510
  40. teradataml/clients/pkce_client.py +481 -481
  41. teradataml/common/aed_utils.py +6 -2
  42. teradataml/common/bulk_exposed_utils.py +111 -111
  43. teradataml/common/constants.py +1433 -1441
  44. teradataml/common/deprecations.py +160 -0
  45. teradataml/common/exceptions.py +73 -73
  46. teradataml/common/formula.py +742 -742
  47. teradataml/common/garbagecollector.py +592 -635
  48. teradataml/common/messagecodes.py +422 -431
  49. teradataml/common/messages.py +227 -231
  50. teradataml/common/sqlbundle.py +693 -693
  51. teradataml/common/td_coltype_code_to_tdtype.py +48 -48
  52. teradataml/common/utils.py +2418 -2500
  53. teradataml/common/warnings.py +25 -25
  54. teradataml/common/wrapper_utils.py +1 -110
  55. teradataml/config/dummy_file1.cfg +4 -4
  56. teradataml/config/dummy_file2.cfg +2 -2
  57. teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
  58. teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
  59. teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
  60. teradataml/context/aed_context.py +217 -217
  61. teradataml/context/context.py +1071 -999
  62. teradataml/data/A_loan.csv +19 -19
  63. teradataml/data/BINARY_REALS_LEFT.csv +11 -11
  64. teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
  65. teradataml/data/B_loan.csv +49 -49
  66. teradataml/data/BuoyData2.csv +17 -17
  67. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
  68. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
  69. teradataml/data/Convolve2RealsLeft.csv +5 -5
  70. teradataml/data/Convolve2RealsRight.csv +5 -5
  71. teradataml/data/Convolve2ValidLeft.csv +11 -11
  72. teradataml/data/Convolve2ValidRight.csv +11 -11
  73. teradataml/data/DFFTConv_Real_8_8.csv +65 -65
  74. teradataml/data/Orders1_12mf.csv +24 -24
  75. teradataml/data/Pi_loan.csv +7 -7
  76. teradataml/data/SMOOTHED_DATA.csv +7 -7
  77. teradataml/data/TestDFFT8.csv +9 -9
  78. teradataml/data/TestRiver.csv +109 -109
  79. teradataml/data/Traindata.csv +28 -28
  80. teradataml/data/acf.csv +17 -17
  81. teradataml/data/adaboost_example.json +34 -34
  82. teradataml/data/adaboostpredict_example.json +24 -24
  83. teradataml/data/additional_table.csv +10 -10
  84. teradataml/data/admissions_test.csv +21 -21
  85. teradataml/data/admissions_train.csv +41 -41
  86. teradataml/data/admissions_train_nulls.csv +41 -41
  87. teradataml/data/ageandheight.csv +13 -13
  88. teradataml/data/ageandpressure.csv +31 -31
  89. teradataml/data/antiselect_example.json +36 -36
  90. teradataml/data/antiselect_input.csv +8 -8
  91. teradataml/data/antiselect_input_mixed_case.csv +8 -8
  92. teradataml/data/applicant_external.csv +6 -6
  93. teradataml/data/applicant_reference.csv +6 -6
  94. teradataml/data/arima_example.json +9 -9
  95. teradataml/data/assortedtext_input.csv +8 -8
  96. teradataml/data/attribution_example.json +33 -33
  97. teradataml/data/attribution_sample_table.csv +27 -27
  98. teradataml/data/attribution_sample_table1.csv +6 -6
  99. teradataml/data/attribution_sample_table2.csv +11 -11
  100. teradataml/data/bank_churn.csv +10001 -0
  101. teradataml/data/bank_web_clicks1.csv +42 -42
  102. teradataml/data/bank_web_clicks2.csv +91 -91
  103. teradataml/data/bank_web_url.csv +85 -85
  104. teradataml/data/barrier.csv +2 -2
  105. teradataml/data/barrier_new.csv +3 -3
  106. teradataml/data/betweenness_example.json +13 -13
  107. teradataml/data/bin_breaks.csv +8 -8
  108. teradataml/data/bin_fit_ip.csv +3 -3
  109. teradataml/data/binary_complex_left.csv +11 -11
  110. teradataml/data/binary_complex_right.csv +11 -11
  111. teradataml/data/binary_matrix_complex_left.csv +21 -21
  112. teradataml/data/binary_matrix_complex_right.csv +21 -21
  113. teradataml/data/binary_matrix_real_left.csv +21 -21
  114. teradataml/data/binary_matrix_real_right.csv +21 -21
  115. teradataml/data/blood2ageandweight.csv +26 -26
  116. teradataml/data/bmi.csv +501 -0
  117. teradataml/data/boston.csv +507 -507
  118. teradataml/data/buoydata_mix.csv +11 -11
  119. teradataml/data/burst_data.csv +5 -5
  120. teradataml/data/burst_example.json +20 -20
  121. teradataml/data/byom_example.json +17 -17
  122. teradataml/data/bytes_table.csv +3 -3
  123. teradataml/data/cal_housing_ex_raw.csv +70 -70
  124. teradataml/data/callers.csv +7 -7
  125. teradataml/data/calls.csv +10 -10
  126. teradataml/data/cars_hist.csv +33 -33
  127. teradataml/data/cat_table.csv +24 -24
  128. teradataml/data/ccm_example.json +31 -31
  129. teradataml/data/ccm_input.csv +91 -91
  130. teradataml/data/ccm_input2.csv +13 -13
  131. teradataml/data/ccmexample.csv +101 -101
  132. teradataml/data/ccmprepare_example.json +8 -8
  133. teradataml/data/ccmprepare_input.csv +91 -91
  134. teradataml/data/cfilter_example.json +12 -12
  135. teradataml/data/changepointdetection_example.json +18 -18
  136. teradataml/data/changepointdetectionrt_example.json +8 -8
  137. teradataml/data/chi_sq.csv +2 -2
  138. teradataml/data/churn_data.csv +14 -14
  139. teradataml/data/churn_emission.csv +35 -35
  140. teradataml/data/churn_initial.csv +3 -3
  141. teradataml/data/churn_state_transition.csv +5 -5
  142. teradataml/data/citedges_2.csv +745 -745
  143. teradataml/data/citvertices_2.csv +1210 -1210
  144. teradataml/data/clicks2.csv +16 -16
  145. teradataml/data/clickstream.csv +12 -12
  146. teradataml/data/clickstream1.csv +11 -11
  147. teradataml/data/closeness_example.json +15 -15
  148. teradataml/data/complaints.csv +21 -21
  149. teradataml/data/complaints_mini.csv +3 -3
  150. teradataml/data/complaints_testtoken.csv +224 -224
  151. teradataml/data/complaints_tokens_test.csv +353 -353
  152. teradataml/data/complaints_traintoken.csv +472 -472
  153. teradataml/data/computers_category.csv +1001 -1001
  154. teradataml/data/computers_test1.csv +1252 -1252
  155. teradataml/data/computers_train1.csv +5009 -5009
  156. teradataml/data/computers_train1_clustered.csv +5009 -5009
  157. teradataml/data/confusionmatrix_example.json +9 -9
  158. teradataml/data/conversion_event_table.csv +3 -3
  159. teradataml/data/corr_input.csv +17 -17
  160. teradataml/data/correlation_example.json +11 -11
  161. teradataml/data/coxhazardratio_example.json +39 -39
  162. teradataml/data/coxph_example.json +15 -15
  163. teradataml/data/coxsurvival_example.json +28 -28
  164. teradataml/data/cpt.csv +41 -41
  165. teradataml/data/credit_ex_merged.csv +45 -45
  166. teradataml/data/customer_loyalty.csv +301 -301
  167. teradataml/data/customer_loyalty_newseq.csv +31 -31
  168. teradataml/data/dataframe_example.json +146 -146
  169. teradataml/data/decisionforest_example.json +37 -37
  170. teradataml/data/decisionforestpredict_example.json +38 -38
  171. teradataml/data/decisiontree_example.json +21 -21
  172. teradataml/data/decisiontreepredict_example.json +45 -45
  173. teradataml/data/dfft2_size4_real.csv +17 -17
  174. teradataml/data/dfft2_test_matrix16.csv +17 -17
  175. teradataml/data/dfft2conv_real_4_4.csv +65 -65
  176. teradataml/data/diabetes.csv +443 -443
  177. teradataml/data/diabetes_test.csv +89 -89
  178. teradataml/data/dict_table.csv +5 -5
  179. teradataml/data/docperterm_table.csv +4 -4
  180. teradataml/data/docs/__init__.py +1 -1
  181. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
  182. teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
  183. teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
  184. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
  185. teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
  186. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
  187. teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
  188. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
  189. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
  190. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
  191. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
  192. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
  193. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
  194. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
  195. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
  196. teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
  197. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
  198. teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
  199. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
  200. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
  201. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
  202. teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
  203. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
  204. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
  205. teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
  206. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
  207. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
  208. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
  209. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +132 -132
  210. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +103 -103
  211. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
  212. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +101 -101
  213. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
  214. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
  215. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
  216. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
  217. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
  218. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
  219. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
  220. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
  221. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
  222. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
  223. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
  224. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
  225. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
  226. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
  227. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
  228. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
  229. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
  230. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
  231. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
  232. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
  233. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
  234. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +126 -126
  235. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
  236. teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
  237. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
  238. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
  239. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
  240. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
  241. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
  242. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
  243. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +243 -243
  244. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
  245. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
  246. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
  247. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
  248. teradataml/data/docs/sqle/docs_17_20/FTest.py +160 -160
  249. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
  250. teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
  251. teradataml/data/docs/sqle/docs_17_20/GLM.py +380 -380
  252. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
  253. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
  254. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
  255. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +123 -123
  256. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
  257. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
  258. teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
  259. teradataml/data/docs/sqle/docs_17_20/KMeans.py +204 -204
  260. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
  261. teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
  262. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
  263. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
  264. teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
  265. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
  266. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
  267. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
  268. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +117 -117
  269. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
  270. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
  271. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
  272. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
  273. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +225 -225
  274. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +115 -115
  275. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
  276. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
  277. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
  278. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
  279. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
  280. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
  281. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
  282. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
  283. teradataml/data/docs/sqle/docs_17_20/ROC.py +163 -163
  284. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
  285. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
  286. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
  287. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
  288. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
  289. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
  290. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
  291. teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
  292. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +202 -202
  293. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
  294. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +197 -197
  295. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +110 -109
  296. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
  297. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
  298. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
  299. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
  300. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
  301. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
  302. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
  303. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
  304. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +171 -171
  305. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
  306. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
  307. teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
  308. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
  309. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
  310. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
  311. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
  312. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
  313. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
  314. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
  315. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
  316. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +353 -353
  317. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +275 -275
  318. teradataml/data/docs/sqle/docs_17_20/ZTest.py +155 -155
  319. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
  320. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
  321. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
  322. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
  323. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
  324. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
  325. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
  326. teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
  327. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
  328. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
  329. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
  330. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
  331. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
  332. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
  333. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
  334. teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
  335. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
  336. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
  337. teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
  338. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
  339. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
  340. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
  341. teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
  342. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
  343. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
  344. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
  345. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
  346. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
  347. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
  348. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
  349. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
  350. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
  351. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
  352. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
  353. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
  354. teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
  355. teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
  356. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
  357. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
  358. teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
  359. teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
  360. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
  361. teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
  362. teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
  363. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
  364. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
  365. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
  366. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
  367. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
  368. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
  369. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
  370. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
  371. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
  372. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
  373. teradataml/data/dtw_example.json +17 -17
  374. teradataml/data/dtw_t1.csv +11 -11
  375. teradataml/data/dtw_t2.csv +4 -4
  376. teradataml/data/dwt2d_example.json +15 -15
  377. teradataml/data/dwt_example.json +14 -14
  378. teradataml/data/dwt_filter_dim.csv +5 -5
  379. teradataml/data/emission.csv +9 -9
  380. teradataml/data/emp_table_by_dept.csv +19 -19
  381. teradataml/data/employee_info.csv +4 -4
  382. teradataml/data/employee_table.csv +6 -6
  383. teradataml/data/excluding_event_table.csv +2 -2
  384. teradataml/data/finance_data.csv +6 -6
  385. teradataml/data/finance_data2.csv +61 -61
  386. teradataml/data/finance_data3.csv +93 -93
  387. teradataml/data/fish.csv +160 -0
  388. teradataml/data/fm_blood2ageandweight.csv +26 -26
  389. teradataml/data/fmeasure_example.json +11 -11
  390. teradataml/data/followers_leaders.csv +10 -10
  391. teradataml/data/fpgrowth_example.json +12 -12
  392. teradataml/data/frequentpaths_example.json +29 -29
  393. teradataml/data/friends.csv +9 -9
  394. teradataml/data/fs_input.csv +33 -33
  395. teradataml/data/fs_input1.csv +33 -33
  396. teradataml/data/genData.csv +513 -513
  397. teradataml/data/geodataframe_example.json +39 -39
  398. teradataml/data/glass_types.csv +215 -0
  399. teradataml/data/glm_admissions_model.csv +12 -12
  400. teradataml/data/glm_example.json +29 -29
  401. teradataml/data/glml1l2_example.json +28 -28
  402. teradataml/data/glml1l2predict_example.json +54 -54
  403. teradataml/data/glmpredict_example.json +54 -54
  404. teradataml/data/gq_t1.csv +21 -21
  405. teradataml/data/hconvolve_complex_right.csv +5 -5
  406. teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
  407. teradataml/data/histogram_example.json +11 -11
  408. teradataml/data/hmmdecoder_example.json +78 -78
  409. teradataml/data/hmmevaluator_example.json +24 -24
  410. teradataml/data/hmmsupervised_example.json +10 -10
  411. teradataml/data/hmmunsupervised_example.json +7 -7
  412. teradataml/data/house_values.csv +12 -12
  413. teradataml/data/house_values2.csv +13 -13
  414. teradataml/data/housing_cat.csv +7 -7
  415. teradataml/data/housing_data.csv +9 -9
  416. teradataml/data/housing_test.csv +47 -47
  417. teradataml/data/housing_test_binary.csv +47 -47
  418. teradataml/data/housing_train.csv +493 -493
  419. teradataml/data/housing_train_attribute.csv +4 -4
  420. teradataml/data/housing_train_binary.csv +437 -437
  421. teradataml/data/housing_train_parameter.csv +2 -2
  422. teradataml/data/housing_train_response.csv +493 -493
  423. teradataml/data/ibm_stock.csv +370 -370
  424. teradataml/data/ibm_stock1.csv +370 -370
  425. teradataml/data/identitymatch_example.json +21 -21
  426. teradataml/data/idf_table.csv +4 -4
  427. teradataml/data/impressions.csv +101 -101
  428. teradataml/data/inflation.csv +21 -21
  429. teradataml/data/initial.csv +3 -3
  430. teradataml/data/insect_sprays.csv +12 -12
  431. teradataml/data/insurance.csv +1339 -1339
  432. teradataml/data/interpolator_example.json +12 -12
  433. teradataml/data/iris_altinput.csv +481 -481
  434. teradataml/data/iris_attribute_output.csv +8 -8
  435. teradataml/data/iris_attribute_test.csv +121 -121
  436. teradataml/data/iris_attribute_train.csv +481 -481
  437. teradataml/data/iris_category_expect_predict.csv +31 -31
  438. teradataml/data/iris_data.csv +151 -0
  439. teradataml/data/iris_input.csv +151 -151
  440. teradataml/data/iris_response_train.csv +121 -121
  441. teradataml/data/iris_test.csv +31 -31
  442. teradataml/data/iris_train.csv +121 -121
  443. teradataml/data/join_table1.csv +4 -4
  444. teradataml/data/join_table2.csv +4 -4
  445. teradataml/data/jsons/anly_function_name.json +6 -6
  446. teradataml/data/jsons/byom/dataikupredict.json +147 -147
  447. teradataml/data/jsons/byom/datarobotpredict.json +146 -146
  448. teradataml/data/jsons/byom/h2opredict.json +194 -194
  449. teradataml/data/jsons/byom/onnxpredict.json +186 -186
  450. teradataml/data/jsons/byom/pmmlpredict.json +146 -146
  451. teradataml/data/jsons/paired_functions.json +435 -435
  452. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
  453. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
  454. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
  455. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
  456. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
  457. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
  458. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
  459. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
  460. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
  461. teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
  462. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
  463. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
  464. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
  465. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
  466. teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
  467. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
  468. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
  469. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
  470. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
  471. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
  472. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
  473. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
  474. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
  475. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
  476. teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
  477. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
  478. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
  479. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
  480. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
  481. teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
  482. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
  483. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
  484. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
  485. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
  486. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
  487. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
  488. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
  489. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
  490. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
  491. teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
  492. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
  493. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
  494. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
  495. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
  496. teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
  497. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
  498. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
  499. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
  500. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
  501. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
  502. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
  503. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
  504. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
  505. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
  506. teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
  507. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
  508. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
  509. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
  510. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
  511. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
  512. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
  513. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
  514. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
  515. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
  516. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
  517. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
  518. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
  519. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
  520. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
  521. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
  522. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
  523. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
  524. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
  525. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
  526. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
  527. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
  528. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
  529. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
  530. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
  531. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
  532. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
  533. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
  534. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
  535. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
  536. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
  537. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
  538. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
  539. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
  540. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
  541. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
  542. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
  543. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
  544. teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
  545. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
  546. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
  547. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
  548. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
  549. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
  550. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
  551. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
  552. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
  553. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
  554. teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
  555. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
  556. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
  557. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
  558. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +76 -76
  559. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
  560. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
  561. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
  562. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
  563. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
  564. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
  565. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
  566. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
  567. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
  568. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
  569. teradataml/data/jsons/sqle/17.20/TD_FTest.json +186 -186
  570. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
  571. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
  572. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
  573. teradataml/data/jsons/sqle/17.20/TD_GLM.json +431 -431
  574. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +125 -125
  575. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
  576. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
  577. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +91 -91
  578. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
  579. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
  580. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
  581. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +211 -211
  582. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
  583. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
  584. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
  585. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +101 -101
  586. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
  587. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
  588. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
  589. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
  590. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
  591. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
  592. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
  593. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
  594. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
  595. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
  596. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
  597. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
  598. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
  599. teradataml/data/jsons/sqle/17.20/TD_ROC.json +177 -177
  600. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
  601. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
  602. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
  603. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
  604. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
  605. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
  606. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
  607. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
  608. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +124 -124
  609. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +156 -156
  610. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +70 -70
  611. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
  612. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
  613. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
  614. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
  615. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
  616. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
  617. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
  618. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
  619. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
  620. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
  621. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
  622. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
  623. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
  624. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
  625. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +312 -312
  626. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +182 -182
  627. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +170 -170
  628. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
  629. teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
  630. teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
  631. teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
  632. teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
  633. teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
  634. teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
  635. teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
  636. teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
  637. teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
  638. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
  639. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
  640. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
  641. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
  642. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
  643. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
  644. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
  645. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
  646. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
  647. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
  648. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
  649. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
  650. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
  651. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
  652. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
  653. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
  654. teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
  655. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
  656. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
  657. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
  658. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
  659. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
  660. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
  661. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
  662. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
  663. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
  664. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
  665. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
  666. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
  667. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
  668. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
  669. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
  670. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
  671. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
  672. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
  673. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
  674. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
  675. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
  676. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
  677. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
  678. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
  679. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
  680. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
  681. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
  682. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
  683. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
  684. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
  685. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
  686. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
  687. teradataml/data/kmeans_example.json +17 -17
  688. teradataml/data/kmeans_us_arrests_data.csv +0 -0
  689. teradataml/data/knn_example.json +18 -18
  690. teradataml/data/knnrecommender_example.json +6 -6
  691. teradataml/data/knnrecommenderpredict_example.json +12 -12
  692. teradataml/data/lar_example.json +17 -17
  693. teradataml/data/larpredict_example.json +30 -30
  694. teradataml/data/lc_new_predictors.csv +5 -5
  695. teradataml/data/lc_new_reference.csv +9 -9
  696. teradataml/data/lda_example.json +8 -8
  697. teradataml/data/ldainference_example.json +14 -14
  698. teradataml/data/ldatopicsummary_example.json +8 -8
  699. teradataml/data/levendist_input.csv +13 -13
  700. teradataml/data/levenshteindistance_example.json +10 -10
  701. teradataml/data/linreg_example.json +9 -9
  702. teradataml/data/load_example_data.py +326 -323
  703. teradataml/data/loan_prediction.csv +295 -295
  704. teradataml/data/lungcancer.csv +138 -138
  705. teradataml/data/mappingdata.csv +12 -12
  706. teradataml/data/milk_timeseries.csv +157 -157
  707. teradataml/data/min_max_titanic.csv +4 -4
  708. teradataml/data/minhash_example.json +6 -6
  709. teradataml/data/ml_ratings.csv +7547 -7547
  710. teradataml/data/ml_ratings_10.csv +2445 -2445
  711. teradataml/data/model1_table.csv +5 -5
  712. teradataml/data/model2_table.csv +5 -5
  713. teradataml/data/models/iris_db_glm_model.pmml +56 -56
  714. teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
  715. teradataml/data/modularity_example.json +12 -12
  716. teradataml/data/movavg_example.json +7 -7
  717. teradataml/data/mtx1.csv +7 -7
  718. teradataml/data/mtx2.csv +13 -13
  719. teradataml/data/multi_model_classification.csv +401 -0
  720. teradataml/data/multi_model_regression.csv +401 -0
  721. teradataml/data/mvdfft8.csv +9 -9
  722. teradataml/data/naivebayes_example.json +9 -9
  723. teradataml/data/naivebayespredict_example.json +19 -19
  724. teradataml/data/naivebayestextclassifier2_example.json +6 -6
  725. teradataml/data/naivebayestextclassifier_example.json +8 -8
  726. teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
  727. teradataml/data/name_Find_configure.csv +10 -10
  728. teradataml/data/namedentityfinder_example.json +14 -14
  729. teradataml/data/namedentityfinderevaluator_example.json +10 -10
  730. teradataml/data/namedentityfindertrainer_example.json +6 -6
  731. teradataml/data/nb_iris_input_test.csv +31 -31
  732. teradataml/data/nb_iris_input_train.csv +121 -121
  733. teradataml/data/nbp_iris_model.csv +13 -13
  734. teradataml/data/ner_extractor_text.csv +2 -2
  735. teradataml/data/ner_sports_test2.csv +29 -29
  736. teradataml/data/ner_sports_train.csv +501 -501
  737. teradataml/data/nerevaluator_example.json +5 -5
  738. teradataml/data/nerextractor_example.json +18 -18
  739. teradataml/data/nermem_sports_test.csv +17 -17
  740. teradataml/data/nermem_sports_train.csv +50 -50
  741. teradataml/data/nertrainer_example.json +6 -6
  742. teradataml/data/ngrams_example.json +6 -6
  743. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
  744. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
  745. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
  746. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
  747. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
  748. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
  749. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
  750. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
  751. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
  752. teradataml/data/npath_example.json +23 -23
  753. teradataml/data/ntree_example.json +14 -14
  754. teradataml/data/numeric_strings.csv +4 -4
  755. teradataml/data/numerics.csv +4 -4
  756. teradataml/data/ocean_buoy.csv +17 -17
  757. teradataml/data/ocean_buoy2.csv +17 -17
  758. teradataml/data/ocean_buoys.csv +27 -27
  759. teradataml/data/ocean_buoys2.csv +10 -10
  760. teradataml/data/ocean_buoys_nonpti.csv +28 -28
  761. teradataml/data/ocean_buoys_seq.csv +29 -29
  762. teradataml/data/openml_example.json +63 -0
  763. teradataml/data/optional_event_table.csv +4 -4
  764. teradataml/data/orders1.csv +11 -11
  765. teradataml/data/orders1_12.csv +12 -12
  766. teradataml/data/orders_ex.csv +4 -4
  767. teradataml/data/pack_example.json +8 -8
  768. teradataml/data/package_tracking.csv +19 -19
  769. teradataml/data/package_tracking_pti.csv +18 -18
  770. teradataml/data/pagerank_example.json +13 -13
  771. teradataml/data/paragraphs_input.csv +6 -6
  772. teradataml/data/pathanalyzer_example.json +7 -7
  773. teradataml/data/pathgenerator_example.json +7 -7
  774. teradataml/data/phrases.csv +7 -7
  775. teradataml/data/pivot_example.json +8 -8
  776. teradataml/data/pivot_input.csv +22 -22
  777. teradataml/data/playerRating.csv +31 -31
  778. teradataml/data/postagger_example.json +6 -6
  779. teradataml/data/posttagger_output.csv +44 -44
  780. teradataml/data/production_data.csv +16 -16
  781. teradataml/data/production_data2.csv +7 -7
  782. teradataml/data/randomsample_example.json +31 -31
  783. teradataml/data/randomwalksample_example.json +8 -8
  784. teradataml/data/rank_table.csv +6 -6
  785. teradataml/data/ref_mobile_data.csv +4 -4
  786. teradataml/data/ref_mobile_data_dense.csv +2 -2
  787. teradataml/data/ref_url.csv +17 -17
  788. teradataml/data/restaurant_reviews.csv +7 -7
  789. teradataml/data/river_data.csv +145 -145
  790. teradataml/data/roc_example.json +7 -7
  791. teradataml/data/roc_input.csv +101 -101
  792. teradataml/data/rule_inputs.csv +6 -6
  793. teradataml/data/rule_table.csv +2 -2
  794. teradataml/data/sales.csv +7 -7
  795. teradataml/data/sales_transaction.csv +501 -501
  796. teradataml/data/salesdata.csv +342 -342
  797. teradataml/data/sample_cities.csv +2 -2
  798. teradataml/data/sample_shapes.csv +10 -10
  799. teradataml/data/sample_streets.csv +2 -2
  800. teradataml/data/sampling_example.json +15 -15
  801. teradataml/data/sax_example.json +8 -8
  802. teradataml/data/scale_example.json +23 -23
  803. teradataml/data/scale_housing.csv +11 -11
  804. teradataml/data/scale_housing_test.csv +6 -6
  805. teradataml/data/scale_stat.csv +11 -11
  806. teradataml/data/scalebypartition_example.json +13 -13
  807. teradataml/data/scalemap_example.json +13 -13
  808. teradataml/data/scalesummary_example.json +12 -12
  809. teradataml/data/score_category.csv +101 -101
  810. teradataml/data/score_summary.csv +4 -4
  811. teradataml/data/script_example.json +9 -9
  812. teradataml/data/scripts/deploy_script.py +65 -0
  813. teradataml/data/scripts/mapper.R +20 -0
  814. teradataml/data/scripts/mapper.py +15 -15
  815. teradataml/data/scripts/mapper_replace.py +15 -15
  816. teradataml/data/scripts/sklearn/__init__.py +0 -0
  817. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  818. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  819. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  820. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  821. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  822. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  823. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  824. teradataml/data/seeds.csv +10 -10
  825. teradataml/data/sentenceextractor_example.json +6 -6
  826. teradataml/data/sentiment_extract_input.csv +11 -11
  827. teradataml/data/sentiment_train.csv +16 -16
  828. teradataml/data/sentiment_word.csv +20 -20
  829. teradataml/data/sentiment_word_input.csv +19 -19
  830. teradataml/data/sentimentextractor_example.json +24 -24
  831. teradataml/data/sentimenttrainer_example.json +8 -8
  832. teradataml/data/sequence_table.csv +10 -10
  833. teradataml/data/seriessplitter_example.json +7 -7
  834. teradataml/data/sessionize_example.json +17 -17
  835. teradataml/data/sessionize_table.csv +116 -116
  836. teradataml/data/setop_test1.csv +24 -24
  837. teradataml/data/setop_test2.csv +22 -22
  838. teradataml/data/soc_nw_edges.csv +10 -10
  839. teradataml/data/soc_nw_vertices.csv +7 -7
  840. teradataml/data/souvenir_timeseries.csv +167 -167
  841. teradataml/data/sparse_iris_attribute.csv +5 -5
  842. teradataml/data/sparse_iris_test.csv +121 -121
  843. teradataml/data/sparse_iris_train.csv +601 -601
  844. teradataml/data/star1.csv +6 -6
  845. teradataml/data/state_transition.csv +5 -5
  846. teradataml/data/stock_data.csv +53 -53
  847. teradataml/data/stock_movement.csv +11 -11
  848. teradataml/data/stock_vol.csv +76 -76
  849. teradataml/data/stop_words.csv +8 -8
  850. teradataml/data/store_sales.csv +37 -37
  851. teradataml/data/stringsimilarity_example.json +7 -7
  852. teradataml/data/strsimilarity_input.csv +13 -13
  853. teradataml/data/students.csv +101 -101
  854. teradataml/data/svm_iris_input_test.csv +121 -121
  855. teradataml/data/svm_iris_input_train.csv +481 -481
  856. teradataml/data/svm_iris_model.csv +7 -7
  857. teradataml/data/svmdense_example.json +9 -9
  858. teradataml/data/svmdensepredict_example.json +18 -18
  859. teradataml/data/svmsparse_example.json +7 -7
  860. teradataml/data/svmsparsepredict_example.json +13 -13
  861. teradataml/data/svmsparsesummary_example.json +7 -7
  862. teradataml/data/target_mobile_data.csv +13 -13
  863. teradataml/data/target_mobile_data_dense.csv +5 -5
  864. teradataml/data/templatedata.csv +1201 -1201
  865. teradataml/data/templates/open_source_ml.json +9 -0
  866. teradataml/data/teradataml_example.json +73 -1
  867. teradataml/data/test_classification.csv +101 -0
  868. teradataml/data/test_loan_prediction.csv +53 -53
  869. teradataml/data/test_pacf_12.csv +37 -37
  870. teradataml/data/test_prediction.csv +101 -0
  871. teradataml/data/test_regression.csv +101 -0
  872. teradataml/data/test_river2.csv +109 -109
  873. teradataml/data/text_inputs.csv +6 -6
  874. teradataml/data/textchunker_example.json +7 -7
  875. teradataml/data/textclassifier_example.json +6 -6
  876. teradataml/data/textclassifier_input.csv +7 -7
  877. teradataml/data/textclassifiertrainer_example.json +6 -6
  878. teradataml/data/textmorph_example.json +5 -5
  879. teradataml/data/textparser_example.json +15 -15
  880. teradataml/data/texttagger_example.json +11 -11
  881. teradataml/data/texttokenizer_example.json +6 -6
  882. teradataml/data/texttrainer_input.csv +11 -11
  883. teradataml/data/tf_example.json +6 -6
  884. teradataml/data/tfidf_example.json +13 -13
  885. teradataml/data/tfidf_input1.csv +201 -201
  886. teradataml/data/tfidf_train.csv +6 -6
  887. teradataml/data/time_table1.csv +535 -535
  888. teradataml/data/time_table2.csv +14 -14
  889. teradataml/data/timeseriesdata.csv +1601 -1601
  890. teradataml/data/timeseriesdatasetsd4.csv +105 -105
  891. teradataml/data/titanic.csv +892 -892
  892. teradataml/data/token_table.csv +696 -696
  893. teradataml/data/train_multiclass.csv +101 -0
  894. teradataml/data/train_regression.csv +101 -0
  895. teradataml/data/train_regression_multiple_labels.csv +101 -0
  896. teradataml/data/train_tracking.csv +27 -27
  897. teradataml/data/transformation_table.csv +5 -5
  898. teradataml/data/transformation_table_new.csv +1 -1
  899. teradataml/data/tv_spots.csv +16 -16
  900. teradataml/data/twod_climate_data.csv +117 -117
  901. teradataml/data/uaf_example.json +475 -475
  902. teradataml/data/univariatestatistics_example.json +8 -8
  903. teradataml/data/unpack_example.json +9 -9
  904. teradataml/data/unpivot_example.json +9 -9
  905. teradataml/data/unpivot_input.csv +8 -8
  906. teradataml/data/us_air_pass.csv +36 -36
  907. teradataml/data/us_population.csv +624 -624
  908. teradataml/data/us_states_shapes.csv +52 -52
  909. teradataml/data/varmax_example.json +17 -17
  910. teradataml/data/vectordistance_example.json +25 -25
  911. teradataml/data/ville_climatedata.csv +121 -121
  912. teradataml/data/ville_tempdata.csv +12 -12
  913. teradataml/data/ville_tempdata1.csv +12 -12
  914. teradataml/data/ville_temperature.csv +11 -11
  915. teradataml/data/waveletTable.csv +1605 -1605
  916. teradataml/data/waveletTable2.csv +1605 -1605
  917. teradataml/data/weightedmovavg_example.json +8 -8
  918. teradataml/data/wft_testing.csv +5 -5
  919. teradataml/data/wine_data.csv +1600 -0
  920. teradataml/data/word_embed_input_table1.csv +5 -5
  921. teradataml/data/word_embed_input_table2.csv +4 -4
  922. teradataml/data/word_embed_model.csv +22 -22
  923. teradataml/data/words_input.csv +13 -13
  924. teradataml/data/xconvolve_complex_left.csv +6 -6
  925. teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
  926. teradataml/data/xgboost_example.json +35 -35
  927. teradataml/data/xgboostpredict_example.json +31 -31
  928. teradataml/dataframe/copy_to.py +1764 -1698
  929. teradataml/dataframe/data_transfer.py +2753 -2745
  930. teradataml/dataframe/dataframe.py +17545 -16946
  931. teradataml/dataframe/dataframe_utils.py +1837 -1740
  932. teradataml/dataframe/fastload.py +611 -603
  933. teradataml/dataframe/indexer.py +424 -424
  934. teradataml/dataframe/setop.py +1179 -1166
  935. teradataml/dataframe/sql.py +10090 -6432
  936. teradataml/dataframe/sql_function_parameters.py +439 -388
  937. teradataml/dataframe/sql_functions.py +652 -652
  938. teradataml/dataframe/sql_interfaces.py +220 -220
  939. teradataml/dataframe/vantage_function_types.py +674 -630
  940. teradataml/dataframe/window.py +693 -692
  941. teradataml/dbutils/__init__.py +3 -3
  942. teradataml/dbutils/dbutils.py +1167 -1150
  943. teradataml/dbutils/filemgr.py +267 -267
  944. teradataml/gen_ai/__init__.py +2 -2
  945. teradataml/gen_ai/convAI.py +472 -472
  946. teradataml/geospatial/__init__.py +3 -3
  947. teradataml/geospatial/geodataframe.py +1105 -1094
  948. teradataml/geospatial/geodataframecolumn.py +392 -387
  949. teradataml/geospatial/geometry_types.py +925 -925
  950. teradataml/hyperparameter_tuner/__init__.py +1 -1
  951. teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
  952. teradataml/hyperparameter_tuner/utils.py +281 -187
  953. teradataml/lib/aed_0_1.dll +0 -0
  954. teradataml/lib/libaed_0_1.dylib +0 -0
  955. teradataml/lib/libaed_0_1.so +0 -0
  956. teradataml/libaed_0_1.dylib +0 -0
  957. teradataml/libaed_0_1.so +0 -0
  958. teradataml/opensource/__init__.py +1 -0
  959. teradataml/opensource/sklearn/__init__.py +1 -0
  960. teradataml/opensource/sklearn/_class.py +255 -0
  961. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  962. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  963. teradataml/opensource/sklearn/constants.py +54 -0
  964. teradataml/options/__init__.py +121 -124
  965. teradataml/options/configure.py +337 -336
  966. teradataml/options/display.py +176 -176
  967. teradataml/plot/__init__.py +2 -2
  968. teradataml/plot/axis.py +1388 -1388
  969. teradataml/plot/constants.py +15 -15
  970. teradataml/plot/figure.py +398 -398
  971. teradataml/plot/plot.py +760 -760
  972. teradataml/plot/query_generator.py +83 -83
  973. teradataml/plot/subplot.py +216 -216
  974. teradataml/scriptmgmt/UserEnv.py +3788 -3761
  975. teradataml/scriptmgmt/__init__.py +3 -3
  976. teradataml/scriptmgmt/lls_utils.py +1616 -1604
  977. teradataml/series/series.py +532 -532
  978. teradataml/series/series_utils.py +71 -71
  979. teradataml/table_operators/Apply.py +949 -917
  980. teradataml/table_operators/Script.py +1719 -1982
  981. teradataml/table_operators/TableOperator.py +1207 -1616
  982. teradataml/table_operators/__init__.py +2 -3
  983. teradataml/table_operators/apply_query_generator.py +262 -262
  984. teradataml/table_operators/query_generator.py +507 -507
  985. teradataml/table_operators/table_operator_query_generator.py +460 -460
  986. teradataml/table_operators/table_operator_util.py +631 -639
  987. teradataml/table_operators/templates/dataframe_apply.template +184 -184
  988. teradataml/table_operators/templates/dataframe_map.template +176 -176
  989. teradataml/table_operators/templates/script_executor.template +170 -170
  990. teradataml/utils/dtypes.py +684 -684
  991. teradataml/utils/internal_buffer.py +84 -84
  992. teradataml/utils/print_versions.py +205 -205
  993. teradataml/utils/utils.py +410 -410
  994. teradataml/utils/validators.py +2239 -2115
  995. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +270 -41
  996. teradataml-20.0.0.0.dist-info/RECORD +1038 -0
  997. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +1 -1
  998. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +1 -1
  999. teradataml/analytics/mle/AdaBoost.py +0 -651
  1000. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  1001. teradataml/analytics/mle/Antiselect.py +0 -342
  1002. teradataml/analytics/mle/Arima.py +0 -641
  1003. teradataml/analytics/mle/ArimaPredict.py +0 -477
  1004. teradataml/analytics/mle/Attribution.py +0 -1070
  1005. teradataml/analytics/mle/Betweenness.py +0 -658
  1006. teradataml/analytics/mle/Burst.py +0 -711
  1007. teradataml/analytics/mle/CCM.py +0 -600
  1008. teradataml/analytics/mle/CCMPrepare.py +0 -324
  1009. teradataml/analytics/mle/CFilter.py +0 -460
  1010. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  1011. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  1012. teradataml/analytics/mle/Closeness.py +0 -737
  1013. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  1014. teradataml/analytics/mle/Correlation.py +0 -477
  1015. teradataml/analytics/mle/Correlation2.py +0 -573
  1016. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  1017. teradataml/analytics/mle/CoxPH.py +0 -556
  1018. teradataml/analytics/mle/CoxSurvival.py +0 -478
  1019. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  1020. teradataml/analytics/mle/DTW.py +0 -623
  1021. teradataml/analytics/mle/DWT.py +0 -564
  1022. teradataml/analytics/mle/DWT2D.py +0 -599
  1023. teradataml/analytics/mle/DecisionForest.py +0 -716
  1024. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  1025. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  1026. teradataml/analytics/mle/DecisionTree.py +0 -830
  1027. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  1028. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  1029. teradataml/analytics/mle/FMeasure.py +0 -402
  1030. teradataml/analytics/mle/FPGrowth.py +0 -734
  1031. teradataml/analytics/mle/FrequentPaths.py +0 -695
  1032. teradataml/analytics/mle/GLM.py +0 -558
  1033. teradataml/analytics/mle/GLML1L2.py +0 -547
  1034. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  1035. teradataml/analytics/mle/GLMPredict.py +0 -529
  1036. teradataml/analytics/mle/HMMDecoder.py +0 -945
  1037. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  1038. teradataml/analytics/mle/HMMSupervised.py +0 -521
  1039. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  1040. teradataml/analytics/mle/Histogram.py +0 -561
  1041. teradataml/analytics/mle/IDWT.py +0 -476
  1042. teradataml/analytics/mle/IDWT2D.py +0 -493
  1043. teradataml/analytics/mle/IdentityMatch.py +0 -763
  1044. teradataml/analytics/mle/Interpolator.py +0 -918
  1045. teradataml/analytics/mle/KMeans.py +0 -485
  1046. teradataml/analytics/mle/KNN.py +0 -627
  1047. teradataml/analytics/mle/KNNRecommender.py +0 -488
  1048. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  1049. teradataml/analytics/mle/LAR.py +0 -439
  1050. teradataml/analytics/mle/LARPredict.py +0 -478
  1051. teradataml/analytics/mle/LDA.py +0 -548
  1052. teradataml/analytics/mle/LDAInference.py +0 -492
  1053. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  1054. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  1055. teradataml/analytics/mle/LinReg.py +0 -433
  1056. teradataml/analytics/mle/LinRegPredict.py +0 -438
  1057. teradataml/analytics/mle/MinHash.py +0 -544
  1058. teradataml/analytics/mle/Modularity.py +0 -587
  1059. teradataml/analytics/mle/NEREvaluator.py +0 -410
  1060. teradataml/analytics/mle/NERExtractor.py +0 -595
  1061. teradataml/analytics/mle/NERTrainer.py +0 -458
  1062. teradataml/analytics/mle/NGrams.py +0 -570
  1063. teradataml/analytics/mle/NPath.py +0 -634
  1064. teradataml/analytics/mle/NTree.py +0 -549
  1065. teradataml/analytics/mle/NaiveBayes.py +0 -462
  1066. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  1067. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  1068. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  1069. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  1070. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  1071. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  1072. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  1073. teradataml/analytics/mle/POSTagger.py +0 -417
  1074. teradataml/analytics/mle/Pack.py +0 -411
  1075. teradataml/analytics/mle/PageRank.py +0 -535
  1076. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  1077. teradataml/analytics/mle/PathGenerator.py +0 -367
  1078. teradataml/analytics/mle/PathStart.py +0 -464
  1079. teradataml/analytics/mle/PathSummarizer.py +0 -470
  1080. teradataml/analytics/mle/Pivot.py +0 -471
  1081. teradataml/analytics/mle/ROC.py +0 -425
  1082. teradataml/analytics/mle/RandomSample.py +0 -637
  1083. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  1084. teradataml/analytics/mle/SAX.py +0 -779
  1085. teradataml/analytics/mle/SVMDense.py +0 -677
  1086. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  1087. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  1088. teradataml/analytics/mle/SVMSparse.py +0 -557
  1089. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  1090. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  1091. teradataml/analytics/mle/Sampling.py +0 -549
  1092. teradataml/analytics/mle/Scale.py +0 -565
  1093. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  1094. teradataml/analytics/mle/ScaleMap.py +0 -378
  1095. teradataml/analytics/mle/ScaleSummary.py +0 -320
  1096. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  1097. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  1098. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  1099. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  1100. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  1101. teradataml/analytics/mle/Sessionize.py +0 -475
  1102. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  1103. teradataml/analytics/mle/StringSimilarity.py +0 -425
  1104. teradataml/analytics/mle/TF.py +0 -389
  1105. teradataml/analytics/mle/TFIDF.py +0 -504
  1106. teradataml/analytics/mle/TextChunker.py +0 -414
  1107. teradataml/analytics/mle/TextClassifier.py +0 -399
  1108. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  1109. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  1110. teradataml/analytics/mle/TextMorph.py +0 -494
  1111. teradataml/analytics/mle/TextParser.py +0 -623
  1112. teradataml/analytics/mle/TextTagger.py +0 -530
  1113. teradataml/analytics/mle/TextTokenizer.py +0 -502
  1114. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  1115. teradataml/analytics/mle/Unpack.py +0 -526
  1116. teradataml/analytics/mle/Unpivot.py +0 -438
  1117. teradataml/analytics/mle/VarMax.py +0 -776
  1118. teradataml/analytics/mle/VectorDistance.py +0 -762
  1119. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  1120. teradataml/analytics/mle/XGBoost.py +0 -842
  1121. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  1122. teradataml/analytics/mle/__init__.py +0 -123
  1123. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  1124. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  1125. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  1126. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  1127. teradataml/analytics/mle/json/arima_mle.json +0 -172
  1128. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  1129. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  1130. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  1131. teradataml/analytics/mle/json/burst_mle.json +0 -140
  1132. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  1133. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  1134. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  1135. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  1136. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  1137. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  1138. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  1139. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  1140. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  1141. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  1142. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  1143. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  1144. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  1145. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  1146. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  1147. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  1148. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  1149. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  1150. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  1151. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  1152. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  1153. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  1154. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  1155. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  1156. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  1157. teradataml/analytics/mle/json/glm_mle.json +0 -111
  1158. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  1159. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  1160. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  1161. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  1162. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  1163. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  1164. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  1165. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  1166. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  1167. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  1168. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  1169. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  1170. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  1171. teradataml/analytics/mle/json/knn_mle.json +0 -141
  1172. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  1173. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  1174. teradataml/analytics/mle/json/lar_mle.json +0 -78
  1175. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  1176. teradataml/analytics/mle/json/lda_mle.json +0 -130
  1177. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  1178. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  1179. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  1180. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  1181. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  1182. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  1183. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  1184. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  1185. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  1186. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  1187. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  1188. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  1189. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  1190. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  1191. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  1192. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  1193. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  1194. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  1195. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  1196. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  1197. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  1198. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  1199. teradataml/analytics/mle/json/pack_mle.json +0 -58
  1200. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  1201. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  1202. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  1203. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  1204. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  1205. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  1206. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  1207. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  1208. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  1209. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  1210. teradataml/analytics/mle/json/roc_mle.json +0 -73
  1211. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  1212. teradataml/analytics/mle/json/sax_mle.json +0 -154
  1213. teradataml/analytics/mle/json/scale_mle.json +0 -93
  1214. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  1215. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  1216. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  1217. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  1218. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  1219. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  1220. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  1221. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  1222. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  1223. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  1224. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  1225. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  1226. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  1227. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  1228. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  1229. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  1230. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  1231. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  1232. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  1233. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  1234. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  1235. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  1236. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  1237. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  1238. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  1239. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  1240. teradataml/analytics/mle/json/tf_mle.json +0 -33
  1241. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  1242. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  1243. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  1244. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  1245. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  1246. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  1247. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  1248. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  1249. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  1250. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  1251. teradataml/analytics/sqle/Antiselect.py +0 -321
  1252. teradataml/analytics/sqle/Attribution.py +0 -603
  1253. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  1254. teradataml/analytics/sqle/GLMPredict.py +0 -430
  1255. teradataml/analytics/sqle/MovingAverage.py +0 -543
  1256. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  1257. teradataml/analytics/sqle/NPath.py +0 -632
  1258. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  1259. teradataml/analytics/sqle/Pack.py +0 -388
  1260. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  1261. teradataml/analytics/sqle/Sessionize.py +0 -390
  1262. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  1263. teradataml/analytics/sqle/Unpack.py +0 -503
  1264. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  1265. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  1266. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  1267. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  1268. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  1269. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  1270. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  1271. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  1272. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  1273. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  1274. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  1275. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  1276. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  1277. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  1278. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  1279. teradataml/catalog/model_cataloging.py +0 -980
  1280. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  1281. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  1282. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  1283. teradataml/table_operators/sandbox_container_util.py +0 -643
  1284. teradataml-17.20.0.7.dist-info/RECORD +0 -1280
  1285. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
@@ -1,926 +1,926 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2021 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
8
- # Secondary Owner:
9
- #
10
- # This file contains the implementation of Geometry types for
11
- # Teradata Geospatial data types. These implementation allows user
12
- # to create the singlton item like a literal that can be used in
13
- # any Geospatial function call.
14
- #
15
- # ##################################################################
16
- from teradataml.common.messagecodes import MessageCodes
17
- from teradataml.common.messages import Messages
18
- from teradataml.utils.dtypes import _str_list, _int_list, \
19
- _int_float_list, _int_float_tuple_list
20
- from teradataml.utils.validators import _Validators
21
- VANTAGE_EMPTY_GEOM_FMT = "EMPTY"
22
-
23
- class GeometryType(object):
24
- """ Base class for Geospatial Geometry Types. """
25
-
26
- def __init__(self, *args):
27
- """ Constructor for Geometry object. """
28
- self._is_empty = True
29
- self.coordinates = VANTAGE_EMPTY_GEOM_FMT
30
- self._str_fmt = "{} {}"
31
-
32
- if args and args[0] is not None:
33
- self._is_empty = False
34
- self.coordinates = []
35
- self._str_fmt = "{}{}"
36
-
37
- def __str__(self):
38
- """ Return String Representation for a Geometry object. """
39
- return self._str_fmt.format(self.__class__.__name__,
40
- self._coords_vantage_fmt)
41
-
42
- def _vantage_str_(self):
43
- """ Return Vantage String Representation for a Geometry object. """
44
- return "new ST_Geometry('{}')".format(str(self))
45
-
46
- @property
47
- def coords(self):
48
- """ Returns the coordinates of the Geometry object. """
49
- return self.coordinates
50
-
51
- @property
52
- def geom_type(self):
53
- """ Returns the type of a Geometry. """
54
- return self.__class__.__name__
55
-
56
- def __getattr__(self, item):
57
- """"""
58
- # TODO::
59
- # Add a code to create a table with ST_Geometry column and insert
60
- # the value for the Geometry object in the same, when any
61
- # Geospatial function is executed.
62
- # Creating table and then GeoDataFrame on top of the created table,
63
- # will enable us to execute any Geospatial function on the
64
- # Geometry Type Object and return the results, just like shapely
65
- # library does.
66
- # Doing this will not require any additional things to be implemented.
67
- # This is what the workflow should look like when any function
68
- # (geospatial) executed on any of the Geometry Types object:
69
- # 1. We will enter this function, validate that the function being
70
- # executed is Geospatial.
71
- # 2. Check if self._geodf is set or not. If set go to 4.
72
- # 3. If not set, then create a table with geospatial data type
73
- # (ST_GEOMETRY) column.
74
- # i. Get the table name from UtilFuncs get table name
75
- # functionality. Should be GCed at the end.
76
- # ii. Insert the User passed data in the table.
77
- # iii. Set the self._geodf to the GeoDataFrame() on the created
78
- # table.
79
- # 4. If set, then just call the function on the self._geodf.
80
- # For example, self._geodf.<func_name>(...)
81
- "TODO"
82
-
83
- class Point(GeometryType):
84
- """
85
- Class Point enables end user to create an object for the single Point
86
- using the coordinates. Allows user to use the same in GeoDataFrame
87
- manipulation and processing.
88
- """
89
- def __init__(self, *coordinates):
90
- """
91
- DESCRIPTION:
92
- Enables end user to create an object for the single Point
93
- using the coordinates. Allows user to use the same in GeoDataFrame
94
- manipulation and processing using any Geospatial function.
95
-
96
- PARAMETERS:
97
- *coordinates:
98
- Optional Argument.
99
- Specifies the coordinates of a Point. Coordinates must be
100
- specified in positional fashion.
101
- If coordinates are not passed, an object for empty point is
102
- created.
103
- When coordinates are passed, one must pass either 2 or 3
104
- values to define a Point in 2-dimentions or 3-dimentions.
105
- Types: int, float
106
-
107
- RETURNS:
108
- Point
109
-
110
- RAISES:
111
- TeradataMlException, TypeError, ValueError
112
-
113
- EXAMPLES:
114
- >>> from teradataml import Point
115
-
116
- # Example 1: Create a Point in 2D, using x and y coordinates.
117
- >>> p1 = Point(0, 20)
118
- >>> # Print the coordinates.
119
- >>> print(p1.coords)
120
- (0, 20)
121
- >>> # Print the geometry type.
122
- >>> p1.geom_type
123
- 'Point'
124
- >>>
125
-
126
- # Example 2: Create a Point in 3D, using x, y and z coordinates.
127
- >>> p2 = Point(0, 20, 30)
128
- >>> # Print the coordinates.
129
- >>> print(p2.coords)
130
- (0, 20, 30)
131
- >>>
132
-
133
- # Example 3: Create an empty Point.
134
- >>> pe = Point()
135
- >>> # Print the coordinates.
136
- >>> print(pe.coords)
137
- EMPTY
138
- >>>
139
- """
140
- super(Point, self).__init__(*coordinates)
141
-
142
- if len(coordinates) == 1 and isinstance(coordinates[0], tuple):
143
- # Create a Point by directly passing a tuple.
144
- coordinates = coordinates[0]
145
- elif len(coordinates) > 3 or len(coordinates) == 1:
146
- # TODO - Error handling.
147
- raise Exception("Must pass 2 or 3 coordinates.")
148
-
149
- if not self._is_empty:
150
- for co in coordinates:
151
- arg_info = [["coordinates", co, False, (int, float)]]
152
- _Validators()._validate_function_arguments(arg_info)
153
-
154
- self.x = coordinates[0]
155
- self.y = coordinates[1]
156
- self.z = None
157
- if len(coordinates) == 3:
158
- self.z = coordinates[2]
159
-
160
- @property
161
- def coords(self):
162
- """ Returns the coordinates of the Point Geometry object. """
163
- if self._is_empty:
164
- return VANTAGE_EMPTY_GEOM_FMT
165
- else:
166
- return (self.x, self.y) if self.z is None else (
167
- self.x, self.y, self.z)
168
-
169
- @property
170
- def _coords_vantage_fmt(self):
171
- """
172
- Returns the coordinates of the Point Geometry object in Vantage format.
173
- """
174
- if self._is_empty:
175
- return VANTAGE_EMPTY_GEOM_FMT
176
- else:
177
- return "({})".format(" ".join(map(str, self.coords)))
178
-
179
- class LineString(GeometryType):
180
- """
181
- Class LineString enables end user to create an object for the single
182
- LineString using the coordinates. Allows user to use the same in
183
- GeoDataFrame manipulation and processing.
184
- """
185
- def __init__(self, coordinates=None):
186
- """
187
- DESCRIPTION:
188
- Enables end user to create an object for the single LineString
189
- using the coordinates. Allows user to use the same in GeoDataFrame
190
- manipulation and processing using any Geospatial function.
191
-
192
- PARAMETERS:
193
- coordinates:
194
- Optional Argument.
195
- Specifies the coordinates of a Line. While passing coordinates
196
- for a line, one must always pass coordinates in list of either
197
- two-tuples for 2D or list of three-tuples for 3D.
198
- Argument also accepts list of Points as well instead of tuples.
199
- If coordinates are not passed, an object for empty line is
200
- created.
201
- Types: List of
202
- a. Point geometry objects or
203
- b. two-tuple of int or float or
204
- c. three-tuple of int or float or
205
- d. Mix of any of the above.
206
-
207
- RETURNS:
208
- LineString
209
-
210
- RAISES:
211
- TeradataMlException, TypeError, ValueError
212
-
213
- EXAMPLES:
214
- >>> from teradataml import Point, LineString
215
-
216
- # Example 1: Create a LineString in 2D, using x and y coordinates.
217
- >>> l1 = LineString([(0, 0), (0, 20), (20, 20)])
218
- >>> # Print the coordinates.
219
- >>> print(l1.coords)
220
- [(0, 0), (0, 20), (20, 20)]
221
- >>> # Print the geometry type.
222
- >>> l1.geom_type
223
- 'LineString'
224
- >>>
225
-
226
- # Example 2: Create a LineString in 3D, using x, y and z coordinates.
227
- >>> l2 = LineString([(0, 0, 1), (0, 1, 3), (1, 3, 6), (3, 3, 6),
228
- ... (3, 6, 1), (6, 3, 3), (3, 3, 0)])
229
- >>> # Print the coordinates.
230
- >>> print(l1.coords)
231
- [(0, 0), (0, 20), (20, 20)]
232
- >>>
233
-
234
- # Example 3: Create a LineString using Point geometry objects.
235
- # Create some Points in 2D, using x and y coordinates.
236
- >>> p1 = Point(0, 20)
237
- >>> p2 = Point(0, 0)
238
- >>> p3 = Point(20, 20)
239
- >>> l3 = LineString([p1, p2, p3])
240
- >>> # Print the coordinates.
241
- >>> print(l3.coords)
242
- [(0, 20), (0, 0), (20, 20)]
243
- >>>
244
-
245
- # Example 4: Create a LineString using mix of Point geometry objects
246
- # and coordinates.
247
- >>> p1 = Point(0, 20)
248
- >>> p2 = Point(20, 20)
249
- >>> l4 = LineString([(0, 0), p1, p2, (20, 0)])
250
- >>> # Print the coordinates.
251
- >>> print(l4.coords)
252
- [(0, 0), (0, 20), (20, 20), (20, 0)]
253
- >>>
254
-
255
- # Example 5: Create an empty LineString.
256
- >>> le = LineString()
257
- >>> # Print the coordinates.
258
- >>> print(le.coords)
259
- EMPTY
260
- >>>
261
- """
262
- super(LineString, self).__init__(coordinates)
263
- if coordinates is not None:
264
- # Argument validations.
265
- arg_info = [["coordinates", coordinates, False, (list, Point, tuple)]]
266
- _Validators()._validate_function_arguments(arg_info)
267
-
268
- # List of two-tuples or three-tuples or Point or mix.
269
- for co in coordinates:
270
- if isinstance(co, Point):
271
- self.coordinates.append(co.coords)
272
- else:
273
- # Validate coordinates
274
- Point(*co)
275
- self.coordinates.append(co)
276
-
277
- @property
278
- def _coords_vantage_fmt(self):
279
- """
280
- Returns the coordinates of the LineString Geometry object in Vantage format.
281
- """
282
- if self._is_empty:
283
- return VANTAGE_EMPTY_GEOM_FMT
284
- else:
285
- return "({})".format(
286
- ", ".join(map(lambda x: " ".join(map(str, x)), self.coords)))
287
-
288
- class Polygon(GeometryType):
289
- """
290
- Class Polygon enables end user to create an object for the single Polygon
291
- using the coordinates. Allows user to use the same in GeoDataFrame
292
- manipulation and processing.
293
- """
294
- def __init__(self, coordinates=None):
295
- """
296
- DESCRIPTION:
297
- Enables end user to create an object for the single Polygon
298
- using the coordinates. Allows user to use the same in GeoDataFrame
299
- manipulation and processing using any Geospatial function.
300
-
301
- PARAMETERS:
302
- coordinates:
303
- Optional Argument.
304
- Specifies the coordinates of a polygon. While passing coordinates
305
- for a polygon, one must always pass coordinates in list of either
306
- two-tuples for 2D or list of three-tuples for 3D.
307
- Argument also accepts list of Point and/or LineString as well
308
- instead of tuples.
309
- If coordinates are not passed, an object for empty polygon is
310
- created.
311
- Types: List of
312
- a. two-tuple of int or float or
313
- b. three-tuple of int or float or
314
- c. Point geometry objects or
315
- d. LineString geometry objects or
316
- e. Mix of any of the above.
317
-
318
- RETURNS:
319
- Polygon
320
-
321
- RAISES:
322
- TeradataMlException, TypeError, ValueError
323
-
324
- EXAMPLES:
325
- >>> from teradataml import Point, LineString, Polygon
326
-
327
- # Example 1: Create a Polygon in 2D, using x and y coordinates.
328
- >>> go1 = Polygon([(0, 0), (0, 20), (20, 20), (20, 0), (0, 0)])
329
- >>> # Print the coordinates.
330
- >>> print(go1.coords)
331
- [(0, 0), (0, 20), (20, 20), (20, 0), (0, 0)]
332
- >>> # Print the geometry type.
333
- >>> go1.geom_type
334
- 'Polygon'
335
- >>>
336
-
337
- # Example 2: Create a Polygon in 3D, using x, y and z coordinates.
338
- >>> go2 = Polygon([(0, 0, 0), (0, 0, 20), (0, 20, 0), (0, 20, 20),
339
- ... (20, 0, 0), (20, 0, 20), (20, 20, 0), (20, 20, 20),
340
- ... (0, 0, 0)])
341
- >>> # Print the coordinates.
342
- >>> print(go2.coords)
343
- [(0, 0, 0), (0, 0, 20), (0, 20, 0), (0, 20, 20), (20, 0, 0), (20, 0, 20), (20, 20, 0), (20, 20, 20), (0, 0, 0)]
344
- >>>
345
-
346
- # Example 3: Create a Polygon using Point geometry objects.
347
- # Create Point objects in 2D, using x and y coordinates.
348
- >>> p1 = Point(0, 0)
349
- >>> p2 = Point(0, 20)
350
- >>> p3 = Point(20, 20)
351
- >>> p4 = Point(20, 0)
352
- >>> go3 = Polygon([p1, p2, p3, p4, p1])
353
- >>> # Print the coordinates.
354
- >>> print(go3.coords)
355
- [(0, 0), (0, 20), (20, 20), (20, 0), (0, 0)]
356
- >>>
357
-
358
- # Example 4: Create a Polygon using LineString geometry objects.
359
- # Create some LineString objects in 2D, using x and y coordinates.
360
- >>> l1 = LineString([(0, 0), (0, 20), (20, 20)])
361
- >>> l2 = LineString([(20, 0), (0, 0)])
362
- >>> go4 = Polygon([l1, l2])
363
- >>> # Print the coordinates.
364
- >>> print(go4.coords)
365
- [(0, 0), (0, 20), (20, 20), (20, 0), (0, 0)]
366
- >>>
367
-
368
- # Example 5: Create a Polygon using mix of Point, LineString
369
- # geometry objects and coordinates.
370
- >>> p1 = Point(0, 0)
371
- >>> l1 = LineString([p1, (0, 20), (20, 20)])
372
- >>> go5 = Polygon([l1, (20, 0), p1])
373
- >>> # Print the coordinates.
374
- >>> print(go5.coords)
375
- [(0, 0), (0, 20), (20, 20), (20, 0), (0, 0)]
376
- >>>
377
-
378
- # Example 6: Create an empty Polygon.
379
- >>> poe = Polygon()
380
- >>> # Print the coordinates.
381
- >>> print(poe.coords)
382
- EMPTY
383
- >>>
384
- """
385
- super(Polygon, self).__init__(coordinates)
386
- if coordinates is not None:
387
- # Argument validation.
388
- acc_types = (list, Point, LineString, tuple)
389
- arg_info = [["coordinates", coordinates, False, acc_types]]
390
- _Validators()._validate_function_arguments(arg_info)
391
-
392
- # List of two-tuples or three-tuples or LineString or Point or mix.
393
- for co in coordinates:
394
- if isinstance(co, (Point)):
395
- self.coordinates.append(co.coords)
396
- elif isinstance(co, LineString):
397
- for lco in co.coords:
398
- self.coordinates.append(lco)
399
- else:
400
- # Validate individual coordinates passed.
401
- Point(*co)
402
- self.coordinates.append(co)
403
-
404
- @property
405
- def _coords_vantage_fmt(self):
406
- """
407
- Returns the coordinates of the Polygon Geometry object in Vantage format.
408
- """
409
- if self._is_empty:
410
- return VANTAGE_EMPTY_GEOM_FMT
411
- else:
412
- return "(({}))".format(
413
- ", ".join(map(lambda x: " ".join(map(str, x)), self.coords)))
414
-
415
- class MultiPoint(GeometryType):
416
- """
417
- Class MultiPoint enables end user to create an object holding multiple
418
- Point geometry objects. Allows user to use the same in GeoDataFrame
419
- manipulation and processing.
420
- """
421
- def __init__(self, points=None):
422
- """
423
- DESCRIPTION:
424
- Enables end user to create an object holding the multiple Point
425
- geometry objects. Allows user to use the same in GeoDataFrame
426
- manipulation and processing using any Geospatial function.
427
-
428
- PARAMETERS:
429
- points:
430
- Optional Argument.
431
- Specifies the list of points. If no points are passed, an object
432
- for empty MultiPoint is created.
433
- Types: List of Point objects
434
-
435
- RETURNS:
436
- MultiPoint
437
-
438
- RAISES:
439
- TeradataMlException, TypeError, ValueError
440
-
441
- EXAMPLES:
442
- >>> from teradataml import Point, MultiPoint
443
-
444
- # Example 1: Create a MultiPoint in 2D, using x and y coordinates.
445
- >>> p1 = Point(0, 0)
446
- >>> p2 = Point(0, 20)
447
- >>> p3 = Point(20, 20)
448
- >>> p4 = Point(20, 0)
449
- >>> go1 = MultiPoint([p1, p2, p3, p4, p1])
450
- >>> # Print the coordinates.
451
- >>> print(go1.coords)
452
- [(0, 0), (0, 20), (20, 20), (20, 0), (0, 0)]
453
- >>> # Print the geometry type.
454
- >>> print(go1.geom_type)
455
- MultiPoint
456
- >>>
457
-
458
- # Example 2: Create an empty MultiPoint.
459
- >>> poe = MultiPoint()
460
- >>> # Print the coordinates.
461
- >>> print(poe.coords)
462
- EMPTY
463
- >>>
464
- """
465
- super(MultiPoint, self).__init__(points)
466
- if points is not None:
467
- # Argument validation.
468
- acc_types = (list, Point)
469
- arg_info = [["points", points, False, acc_types]]
470
- _Validators()._validate_function_arguments(arg_info)
471
-
472
- self.points = points
473
- for po in points:
474
- self.coordinates.append(po.coords)
475
-
476
- @property
477
- def _coords_vantage_fmt(self):
478
- """
479
- Returns the coordinates of the MultiPoint Geometry object in Vantage
480
- format.
481
- """
482
- if self._is_empty:
483
- return VANTAGE_EMPTY_GEOM_FMT
484
- else:
485
- return "({})".format(
486
- ", ".join([pnt._coords_vantage_fmt for pnt in self.points]))
487
-
488
- class MultiLineString(GeometryType):
489
- """
490
- Class MultiLineString enables end user to create an object holding multiple
491
- LineString geometry objects. Allows user to use the same in GeoDataFrame
492
- manipulation and processing.
493
- """
494
- def __init__(self, lines=None):
495
- """
496
- DESCRIPTION:
497
- Enables end user to create an object holding the multiple LineString
498
- geometry objects. Allows user to use the same in GeoDataFrame
499
- manipulation and processing using any Geospatial function.
500
-
501
- PARAMETERS:
502
- lines:
503
- Optional Argument.
504
- Specifies the list of lines. If no lines are passed, an object
505
- for empty MultiLineString is created.
506
- Types: List of LineString objects
507
-
508
- RETURNS:
509
- MultiLineString
510
-
511
- RAISES:
512
- TeradataMlException, TypeError, ValueError
513
-
514
- EXAMPLES:
515
- >>> from teradataml import LineString, MultiLineString
516
-
517
- # Example 1: Create a MultiLineString in 2D, using x and y coordinates.
518
- >>> l1 = LineString([(1, 3), (3, 0), (0, 1)])
519
- >>> l2 = LineString([(1.35, 3.6456), (3.6756, 0.23), (0.345, 1.756)])
520
- >>> go1 = MultiLineString([l1, l2])
521
- >>> # Print the coordinates.
522
- >>> print(go1.coords)
523
- [[(1, 3), (3, 0), (0, 1)], [(1.35, 3.6456), (3.6756, 0.23), (0.345, 1.756)]]
524
- >>> # Print the geometry type.
525
- >>> print(go1.geom_type)
526
- MultiLineString
527
- >>>
528
-
529
- # Example 2: Create an empty MultiLineString.
530
- >>> mls = MultiLineString()
531
- >>> # Print the coordinates.
532
- >>> print(mls.coords)
533
- EMPTY
534
- >>>
535
- """
536
- super(MultiLineString, self).__init__(lines)
537
- if lines is not None:
538
- # Argument validation.
539
- acc_types = (list, LineString)
540
- arg_info = [["lines", lines, False, acc_types]]
541
- _Validators()._validate_function_arguments(arg_info)
542
-
543
- self.lines = lines
544
- for po in lines:
545
- self.coordinates.append(po.coords)
546
-
547
- @property
548
- def _coords_vantage_fmt(self):
549
- """
550
- Returns the coordinates of the MultiLineString Geometry object in
551
- Vantage format.
552
- """
553
- if self._is_empty:
554
- return VANTAGE_EMPTY_GEOM_FMT
555
- else:
556
- return "({})".format(
557
- ", ".join([line._coords_vantage_fmt for line in self.lines]))
558
-
559
- class MultiPolygon(GeometryType):
560
- """
561
- Class MultiPolygon enables end user to create an object holding multiple
562
- Polygon geometry objects. Allows user to use the same in GeoDataFrame
563
- manipulation and processing.
564
- """
565
- def __init__(self, polygons=None):
566
- """
567
- DESCRIPTION:
568
- Enables end user to create an object holding the multiple Polygon
569
- geometry objects. Allows user to use the same in GeoDataFrame
570
- manipulation and processing using any Geospatial function.
571
-
572
- PARAMETERS:
573
- polygons:
574
- Optional Argument.
575
- Specifies the list of polygons. If no polygons are passed, an
576
- object for empty MultiPolygon is created.
577
- Types: List of Polygon objects
578
-
579
- RETURNS:
580
- MultiPolygon
581
-
582
- RAISES:
583
- TeradataMlException, TypeError, ValueError
584
-
585
- EXAMPLES:
586
- >>> from teradataml import Polygon, MultiPolygon
587
-
588
- # Example 1: Create a MultiPolygon in 2D, using x and y coordinates.
589
- >>> po1 = Polygon([(0, 0), (0, 20), (20, 20), (20, 0), (0, 0)])
590
- >>> po2 = Polygon([(0.6, 0.8), (0.6, 20.8), (20.6, 20.8), (20.6, 0.8), (0.6, 0.8)])
591
- >>> go1 = MultiPolygon([po1, po2])
592
- >>> # Print the coordinates.
593
- >>> print(go1.coords)
594
- [[(0, 0), (0, 20), (20, 20), (20, 0), (0, 0)], [(0.6, 0.8), (0.6, 20.8), (20.6, 20.8), (20.6, 0.8), (0.6, 0.8)]]
595
- >>> # Print the geometry type.
596
- >>> print(go1.geom_type)
597
- MultiPolygon
598
- >>>
599
-
600
- # Example 2: Create an empty MultiPolygon.
601
- >>> poe = MultiPolygon()
602
- >>> # Print the coordinates.
603
- >>> print(poe.coords)
604
- EMPTY
605
- >>>
606
- """
607
- super(MultiPolygon, self).__init__(polygons)
608
- if polygons is not None:
609
- # Argument validation.
610
- acc_types = (list, Polygon)
611
- arg_info = [["polygons", polygons, False, acc_types]]
612
- _Validators()._validate_function_arguments(arg_info)
613
-
614
- self.polygons = polygons
615
- for po in polygons:
616
- self.coordinates.append(po.coords)
617
-
618
- @property
619
- def _coords_vantage_fmt(self):
620
- """
621
- Returns the coordinates of the MultiPolygon Geometry object in Vantage
622
- format.
623
- """
624
- if self._is_empty:
625
- return VANTAGE_EMPTY_GEOM_FMT
626
- else:
627
- return "({})".format(
628
- ", ".join([pnt._coords_vantage_fmt for pnt in self.polygons]))
629
-
630
- class GeometryCollection(GeometryType):
631
- """
632
- Class GeometryCollection enables end user to create an object for the
633
- single GeometryCollection, i.e., collection of different geometry objects
634
- using the geometries. This allows user to use the same in GeoDataFrame
635
- manipulation and processing.
636
- """
637
- def __init__(self, geometries=None):
638
- """
639
- DESCRIPTION:
640
- Enables end user to create an object holding the multiple types of
641
- geometry objects. Allows user to use the same in GeoDataFrame
642
- manipulation and processing using any Geospatial function.
643
-
644
- PARAMETERS:
645
- geoms:
646
- Optional Argument.
647
- Specifies the list of different geometry types.
648
- If no geometries are are passed, an object for empty
649
- GeometryCollection is created.
650
- Types: List of geometry objects of types:
651
- 1. Point
652
- 2. LineString
653
- 3. Polygon
654
- 4. MultiPoint
655
- 5. MultiLineString
656
- 6. MultiPolygon
657
- 7. GeometryCollection
658
- 8. Mixture of any of these.
659
-
660
- RETURNS:
661
- GeometryCollection
662
-
663
- RAISES:
664
- TeradataMlException, TypeError, ValueError
665
-
666
- EXAMPLES:
667
- >>> from teradataml import Point, LineString, Polygon, MultiPoint,
668
- ... MultiLineString, MultiPolygon, GeometryCollection
669
-
670
- # Example 1: Create a GeometryCollection object with all geometries.
671
- >>> # Create Point objects.
672
- >>> p1 = Point(1, 1)
673
- >>> p2 = Point()
674
- >>> p3 = Point(6, 3)
675
- >>> p4 = Point(10, 5)
676
- >>> p5 = Point()
677
- >>>
678
- >>> # Create LineString Objects.
679
- >>> l1 = LineString([(1, 3), (3, 0), (0, 1)])
680
- >>> l2 = LineString([(1.35, 3.6456), (3.6756, 0.23), (0.345, 1.756)])
681
- >>> l3 = LineString()
682
- >>>
683
- >>> # Create Polygon Objects.
684
- >>> po1 = Polygon([(0, 0, 0), (0, 0, 20), (0, 20, 0), (0, 20, 20),
685
- ... (20, 0, 0), (20, 0, 20), (20, 20, 0), (20, 20, 20),
686
- ... (0, 0, 0)])
687
- >>> po2 = Polygon([(0, 0, 0), (0, 0, 20.435), (0, 20.435, 0),
688
- ... (0, 20.435, 20.435), (20.435, 0, 0), (20.435, 0, 20.435),
689
- ... (20.435, 20.435, 0), (20.435, 20.435, 20.435),
690
- ... (0, 0, 0)])
691
- >>> po3 = Polygon()
692
- >>>
693
- >>> # Create MultiPolygon Object.
694
- >>> mpol = MultiPolygon([po1, Polygon(), po2])
695
- >>>
696
- >>> # Create MultiLineString Object.
697
- >>> mlin = MultiLineString([l1, l2, l3])
698
- >>>
699
- >>> # Create MultiPoint Object.
700
- >>> mpnt = MultiPoint([p1, p2, p3, p4, p5])
701
- >>>
702
- >>> # Create a GeometryCollection object.
703
- >>> gc1 = GeometryCollection([p1, p2, l1, l3, po2, po3, po1, mpol, mlin, mpnt])
704
- >>> # Print the coordinates.
705
- >>> print(gc1.coords)
706
- [(1, 1), 'EMPTY', [(1, 3), (3, 0), (0, 1)], 'EMPTY', [(0, 0, 0), (0, 0, 20.435), (0, 20.435, 0), (0, 20.435, 20.435), (20.435, 0, 0), (20.435, 0, 20.435), (20.435, 20.435, 0), (20.435, 20.435, 20.435), (0, 0, 0)], 'EMPTY', [(0, 0, 0), (0, 0, 20), (0, 20, 0), (0, 20, 20), (20, 0, 0), (20, 0, 20), (20, 20, 0), (20, 20, 20), (0, 0, 0)], [[(0, 0, 0), (0, 0, 20), (0, 20, 0), (0, 20, 20), (20, 0, 0), (20, 0, 20), (20, 20, 0), (20, 20, 20), (0, 0, 0)], 'EMPTY', [(0, 0, 0), (0, 0, 20.435), (0, 20.435, 0), (0, 20.435, 20.435), (20.435, 0, 0), (20.435, 0, 20.435), (20.435, 20.435, 0), (20.435, 20.435, 20.435), (0, 0, 0)]], [[(1, 3), (3, 0), (0, 1)], [(1.35, 3.6456), (3.6756, 0.23), (0.345, 1.756)], 'EMPTY'], [(1, 1), 'EMPTY', (6, 3), (10, 5), 'EMPTY']]
707
- >>> # Print the geometry type.
708
- >>> print(gc1.geom_type)
709
- GeometryCollection
710
- >>>
711
-
712
- # Example 2: Create an empty GeometryCollection.
713
- >>> gc2 = GeometryCollection()
714
- >>> # Print the coordinates.
715
- >>> print(gc2.coords)
716
- EMPTY
717
- >>>
718
- """
719
- super(GeometryCollection, self).__init__(geometries)
720
- if geometries is not None:
721
- # Argument validation.
722
- acc_types = (list, Point, LineString, Polygon, MultiPoint,
723
- MultiLineString, MultiPolygon, GeometryCollection)
724
- arg_info = [["geometries", geometries, False, acc_types]]
725
- _Validators()._validate_function_arguments(arg_info)
726
-
727
- self.geometries = geometries
728
- for geo in geometries:
729
- self.coordinates.append(geo.coords)
730
-
731
- @property
732
- def _coords_vantage_fmt(self):
733
- """
734
- Returns the coordinates of the GeometryCollection Geometry object in
735
- Vantage format.
736
- """
737
- if self._is_empty:
738
- return VANTAGE_EMPTY_GEOM_FMT
739
- else:
740
- return "({})".format(
741
- ", ".join(map(str, self.geometries)))
742
-
743
- class GeoSequence(LineString):
744
- """
745
- Class GeoSequence enables end user to create an object for the
746
- LineString geometry objects with tracking information such as
747
- timestamp. This allows user to use the same in GeoDataFrame
748
- manipulation and processing.
749
- """
750
- def __init__(self, coordinates=None, timestamps=None, link_ids=None,
751
- user_field_count=0, user_fields=None):
752
- """
753
- DESCRIPTION:
754
- Enables end user to create an object holding the LineString
755
- geometry objects with tracking information such as timestamps.
756
- Allows user to use the same in GeoDataFrame manipulation and
757
- processing using any Geospatial function.
758
-
759
- PARAMETERS:
760
- coordinates:
761
- Optional Argument.
762
- Specifies the list of coordinates of a Point. While passing
763
- coordinates, one must always pass coordinates in list of either
764
- two-tuples for 2D or list of three-tuples for 3D.
765
- Argument also accepts list of Points as well instead of tuples.
766
- If coordinates are not passed, an object for empty line is
767
- created.
768
- Types: List of
769
- a. Point geometry objects or
770
- b. two-tuple of int or float or
771
- c. three-tuple of int or float or
772
- d. Mix of any of the above.
773
-
774
- timestamps:
775
- Optional Argument.
776
- Specifies the list of timestamp values for each coordinate with
777
- the following format:
778
- yyyy-mm-dd hh:mi:ss.ms
779
- The first timestamp value is associated with the first point, the
780
- second timestamp value is associated with the second point, and
781
- so forth.
782
- Note:
783
- You must specify n timestamp values, where n is the number of
784
- points in the geosequence.
785
- Types: list of strings
786
-
787
- link_ids:
788
- Optional Argument.
789
- Specifies the list of values for the ID of the link on the road
790
- network for a point in the geosequence.
791
- This value is reserved for a future release.
792
- The first link ID value is associated with the first point, the
793
- second link ID value is associated with the second point, and
794
- so forth.
795
- Note:
796
- You must specify n link ID values, where n is the number of
797
- points in the geosequence.
798
- Types: list of ints
799
-
800
- user_field_count:
801
- Optional Argument.
802
- Specifies the value that represents the number of user field
803
- elements for each point in the geosequence.
804
- A value of 0 indicates that no user field elements appear after
805
- count in the character string.
806
- Default Value: 0
807
- Types: int
808
-
809
- user_fields:
810
- Optional Argument.
811
- Specifies the list of user field tuples that represents a value to
812
- associated with a point. For example, certain tracking systems may
813
- associate velocity, direction, and acceleration values with each point.
814
- Note:
815
- 1. You must specify count groups of n user field values (where n is
816
- the number of points in the geosequence).
817
- 2. The first group provides the first user field values for each point,
818
- the second group provides the second user field values for each point,
819
- and so forth.
820
- 3. Each group can be formed using a tuple.
821
- Types: list of tuples of ints or floats
822
-
823
- RETURNS:
824
- GeoSequence
825
-
826
- RAISES:
827
- TeradataMlException, TypeError, ValueError
828
-
829
- EXAMPLES:
830
- >>> from teradataml import Point, GeoSequence
831
-
832
- # Example 1: Create a GeoSequence with 2D points and no user fields.
833
- >>> coordinates = [(1, 3), (3, 0), (0, 1)]
834
- >>> timestamps = ["2008-03-17 10:34:03.53", "2008-03-17 10:38:25.21", "2008-03-17 10:41:41.48"]
835
- >>> link_ids = [1001, 1002, 1003]
836
- >>> gs1 = GeoSequence(coordinates=coordinates, timestamps=timestamps, link_ids=link_ids)
837
- >>> gs1.coords
838
- [(1, 3), (3, 0), (0, 1)]
839
- >>> str(gs1)
840
- 'GeoSequence((1 3, 3 0, 0 1), (2008-03-17 10:34:03.53, 2008-03-17 10:38:25.21, 2008-03-17 10:41:41.48), (1001, 1002, 1003), (0))'
841
- >>>
842
-
843
- # Example 2: Create a GeoSequence with 3D points and 2 user fields.
844
- # Note that coordinates can be provided as tuple of ints/floats
845
- # or Point objects.
846
- >>> p1 = (3, 0, 6)
847
- >>> coordinates = [(1, 3, 6), p1, (6, 0, 1)]
848
- >>> timestamps = ["2008-03-17 10:34:03.53", "2008-03-17 10:38:25.21", "2008-03-17 10:41:41.48"]
849
- >>> link_ids = [1001, 1002, 1003]
850
- >>> user_fields = [(1, 2), (3, 4), (5, 6)]
851
- >>> gs2 = GeoSequence(coordinates=coordinates, timestamps=timestamps, link_ids=link_ids,
852
- ... user_field_count=2, user_fields=user_fields)
853
- >>> gs2.coords
854
- [(1, 3, 6), (3, 0, 6), (6, 0, 1)]
855
- >>> str(gs2)
856
- 'GeoSequence((1 3 6, 3 0 6, 6 0 1), (2008-03-17 10:34:03.53, 2008-03-17 10:38:25.21, 2008-03-17 10:41:41.48), (1001, 1002, 1003), (2, 1, 2, 3, 4, 5, 6))'
857
- >>>
858
-
859
- # Example 3: Create an empty GeoSequence.
860
- >>> gs3 = GeoSequence()
861
- >>> # Print the coordinates.
862
- >>> print(gc3.coords)
863
- EMPTY
864
- >>>
865
- """
866
- self.timestamps = timestamps
867
- self.user_field_count = user_field_count
868
- self.link_ids = link_ids
869
- self.user_fields = user_fields
870
-
871
- super(GeoSequence, self).__init__(coordinates)
872
- all_args_provided = all([coordinates, self.timestamps, self.link_ids])
873
- any_args_provided = any([coordinates, self.timestamps, self.link_ids])
874
-
875
- if any_args_provided:
876
- if not all_args_provided:
877
- raise ValueError("Either provide all (coordinates, timestamps, link_ids) or None.")
878
-
879
- if all_args_provided:
880
- arg_info = []
881
- arg_info.append(["timestamps", self.timestamps, True, _str_list])
882
- arg_info.append(["link_ids", self.link_ids, True, _int_list])
883
- arg_info.append(["user_field_count", self.user_field_count, True, int])
884
- arg_info.append(["user_fields", self.user_fields, True,
885
- (_int_float_tuple_list, _int_float_list)])
886
- _Validators()._validate_function_arguments(arg_info)
887
-
888
- _Validators._validate_list_lengths_equal(self.coordinates, "coordinates",
889
- self.timestamps, "timestamps")
890
- _Validators._validate_list_lengths_equal(self.coordinates, "coordinates",
891
- self.link_ids, "link_ids")
892
- if self.user_fields is not None:
893
- _Validators._validate_list_lengths_equal(self.coordinates, "coordinates",
894
- self.user_fields, "user_fields")
895
-
896
- for uf in self.user_fields:
897
- if isinstance(uf, tuple):
898
- if len(uf) != self.user_field_count:
899
- err_ = Messages.get_message(MessageCodes.GEOSEQ_USER_FIELD_NUM)
900
- raise ValueError(err_)
901
-
902
- @property
903
- def _coords_vantage_fmt(self):
904
- """
905
- Returns the coordinates of the GeometryCollection Geometry object in
906
- Vantage format.
907
- """
908
- if self._is_empty:
909
- return VANTAGE_EMPTY_GEOM_FMT
910
- else:
911
- coords = "({})".format(
912
- ", ".join(map(lambda x: " ".join(map(str, x)),
913
- self.coords)))
914
- ts = "({})".format(", ".join(self.timestamps))
915
- ids = "({})".format(", ".join(map(str, self.link_ids)))
916
- ufs = [self.user_field_count]
917
- if self.user_fields is not None:
918
- for uf in self.user_fields:
919
- if not isinstance(uf, tuple):
920
- ufs.append(uf)
921
- else:
922
- ufs.append(", ".join(map(str, list(uf))))
923
-
924
- uf = "({})".format(", ".join(map(str, ufs)))
925
- return "({}, {}, {}, {})".format(coords, ts, ids, uf)
1
+ #!/usr/bin/python
2
+ # ##################################################################
3
+ #
4
+ # Copyright 2021 Teradata. All rights reserved.
5
+ # TERADATA CONFIDENTIAL AND TRADE SECRET
6
+ #
7
+ # Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
8
+ # Secondary Owner:
9
+ #
10
+ # This file contains the implementation of Geometry types for
11
+ # Teradata Geospatial data types. These implementation allows user
12
+ # to create the singlton item like a literal that can be used in
13
+ # any Geospatial function call.
14
+ #
15
+ # ##################################################################
16
+ from teradataml.common.messagecodes import MessageCodes
17
+ from teradataml.common.messages import Messages
18
+ from teradataml.utils.dtypes import _str_list, _int_list, \
19
+ _int_float_list, _int_float_tuple_list
20
+ from teradataml.utils.validators import _Validators
21
+ VANTAGE_EMPTY_GEOM_FMT = "EMPTY"
22
+
23
+ class GeometryType(object):
24
+ """ Base class for Geospatial Geometry Types. """
25
+
26
+ def __init__(self, *args):
27
+ """ Constructor for Geometry object. """
28
+ self._is_empty = True
29
+ self.coordinates = VANTAGE_EMPTY_GEOM_FMT
30
+ self._str_fmt = "{} {}"
31
+
32
+ if args and args[0] is not None:
33
+ self._is_empty = False
34
+ self.coordinates = []
35
+ self._str_fmt = "{}{}"
36
+
37
+ def __str__(self):
38
+ """ Return String Representation for a Geometry object. """
39
+ return self._str_fmt.format(self.__class__.__name__,
40
+ self._coords_vantage_fmt)
41
+
42
+ def _vantage_str_(self):
43
+ """ Return Vantage String Representation for a Geometry object. """
44
+ return "new ST_Geometry('{}')".format(str(self))
45
+
46
+ @property
47
+ def coords(self):
48
+ """ Returns the coordinates of the Geometry object. """
49
+ return self.coordinates
50
+
51
+ @property
52
+ def geom_type(self):
53
+ """ Returns the type of a Geometry. """
54
+ return self.__class__.__name__
55
+
56
+ def __getattr__(self, item):
57
+ """"""
58
+ # TODO::
59
+ # Add a code to create a table with ST_Geometry column and insert
60
+ # the value for the Geometry object in the same, when any
61
+ # Geospatial function is executed.
62
+ # Creating table and then GeoDataFrame on top of the created table,
63
+ # will enable us to execute any Geospatial function on the
64
+ # Geometry Type Object and return the results, just like shapely
65
+ # library does.
66
+ # Doing this will not require any additional things to be implemented.
67
+ # This is what the workflow should look like when any function
68
+ # (geospatial) executed on any of the Geometry Types object:
69
+ # 1. We will enter this function, validate that the function being
70
+ # executed is Geospatial.
71
+ # 2. Check if self._geodf is set or not. If set go to 4.
72
+ # 3. If not set, then create a table with geospatial data type
73
+ # (ST_GEOMETRY) column.
74
+ # i. Get the table name from UtilFuncs get table name
75
+ # functionality. Should be GCed at the end.
76
+ # ii. Insert the User passed data in the table.
77
+ # iii. Set the self._geodf to the GeoDataFrame() on the created
78
+ # table.
79
+ # 4. If set, then just call the function on the self._geodf.
80
+ # For example, self._geodf.<func_name>(...)
81
+ "TODO"
82
+
83
+ class Point(GeometryType):
84
+ """
85
+ Class Point enables end user to create an object for the single Point
86
+ using the coordinates. Allows user to use the same in GeoDataFrame
87
+ manipulation and processing.
88
+ """
89
+ def __init__(self, *coordinates):
90
+ """
91
+ DESCRIPTION:
92
+ Enables end user to create an object for the single Point
93
+ using the coordinates. Allows user to use the same in GeoDataFrame
94
+ manipulation and processing using any Geospatial function.
95
+
96
+ PARAMETERS:
97
+ *coordinates:
98
+ Optional Argument.
99
+ Specifies the coordinates of a Point. Coordinates must be
100
+ specified in positional fashion.
101
+ If coordinates are not passed, an object for empty point is
102
+ created.
103
+ When coordinates are passed, one must pass either 2 or 3
104
+ values to define a Point in 2-dimentions or 3-dimentions.
105
+ Types: int, float
106
+
107
+ RETURNS:
108
+ Point
109
+
110
+ RAISES:
111
+ TeradataMlException, TypeError, ValueError
112
+
113
+ EXAMPLES:
114
+ >>> from teradataml import Point
115
+
116
+ # Example 1: Create a Point in 2D, using x and y coordinates.
117
+ >>> p1 = Point(0, 20)
118
+ >>> # Print the coordinates.
119
+ >>> print(p1.coords)
120
+ (0, 20)
121
+ >>> # Print the geometry type.
122
+ >>> p1.geom_type
123
+ 'Point'
124
+ >>>
125
+
126
+ # Example 2: Create a Point in 3D, using x, y and z coordinates.
127
+ >>> p2 = Point(0, 20, 30)
128
+ >>> # Print the coordinates.
129
+ >>> print(p2.coords)
130
+ (0, 20, 30)
131
+ >>>
132
+
133
+ # Example 3: Create an empty Point.
134
+ >>> pe = Point()
135
+ >>> # Print the coordinates.
136
+ >>> print(pe.coords)
137
+ EMPTY
138
+ >>>
139
+ """
140
+ super(Point, self).__init__(*coordinates)
141
+
142
+ if len(coordinates) == 1 and isinstance(coordinates[0], tuple):
143
+ # Create a Point by directly passing a tuple.
144
+ coordinates = coordinates[0]
145
+ elif len(coordinates) > 3 or len(coordinates) == 1:
146
+ # TODO - Error handling.
147
+ raise Exception("Must pass 2 or 3 coordinates.")
148
+
149
+ if not self._is_empty:
150
+ for co in coordinates:
151
+ arg_info = [["coordinates", co, False, (int, float)]]
152
+ _Validators()._validate_function_arguments(arg_info)
153
+
154
+ self.x = coordinates[0]
155
+ self.y = coordinates[1]
156
+ self.z = None
157
+ if len(coordinates) == 3:
158
+ self.z = coordinates[2]
159
+
160
+ @property
161
+ def coords(self):
162
+ """ Returns the coordinates of the Point Geometry object. """
163
+ if self._is_empty:
164
+ return VANTAGE_EMPTY_GEOM_FMT
165
+ else:
166
+ return (self.x, self.y) if self.z is None else (
167
+ self.x, self.y, self.z)
168
+
169
+ @property
170
+ def _coords_vantage_fmt(self):
171
+ """
172
+ Returns the coordinates of the Point Geometry object in Vantage format.
173
+ """
174
+ if self._is_empty:
175
+ return VANTAGE_EMPTY_GEOM_FMT
176
+ else:
177
+ return "({})".format(" ".join(map(str, self.coords)))
178
+
179
+ class LineString(GeometryType):
180
+ """
181
+ Class LineString enables end user to create an object for the single
182
+ LineString using the coordinates. Allows user to use the same in
183
+ GeoDataFrame manipulation and processing.
184
+ """
185
+ def __init__(self, coordinates=None):
186
+ """
187
+ DESCRIPTION:
188
+ Enables end user to create an object for the single LineString
189
+ using the coordinates. Allows user to use the same in GeoDataFrame
190
+ manipulation and processing using any Geospatial function.
191
+
192
+ PARAMETERS:
193
+ coordinates:
194
+ Optional Argument.
195
+ Specifies the coordinates of a Line. While passing coordinates
196
+ for a line, one must always pass coordinates in list of either
197
+ two-tuples for 2D or list of three-tuples for 3D.
198
+ Argument also accepts list of Points as well instead of tuples.
199
+ If coordinates are not passed, an object for empty line is
200
+ created.
201
+ Types: List of
202
+ a. Point geometry objects or
203
+ b. two-tuple of int or float or
204
+ c. three-tuple of int or float or
205
+ d. Mix of any of the above.
206
+
207
+ RETURNS:
208
+ LineString
209
+
210
+ RAISES:
211
+ TeradataMlException, TypeError, ValueError
212
+
213
+ EXAMPLES:
214
+ >>> from teradataml import Point, LineString
215
+
216
+ # Example 1: Create a LineString in 2D, using x and y coordinates.
217
+ >>> l1 = LineString([(0, 0), (0, 20), (20, 20)])
218
+ >>> # Print the coordinates.
219
+ >>> print(l1.coords)
220
+ [(0, 0), (0, 20), (20, 20)]
221
+ >>> # Print the geometry type.
222
+ >>> l1.geom_type
223
+ 'LineString'
224
+ >>>
225
+
226
+ # Example 2: Create a LineString in 3D, using x, y and z coordinates.
227
+ >>> l2 = LineString([(0, 0, 1), (0, 1, 3), (1, 3, 6), (3, 3, 6),
228
+ ... (3, 6, 1), (6, 3, 3), (3, 3, 0)])
229
+ >>> # Print the coordinates.
230
+ >>> print(l1.coords)
231
+ [(0, 0), (0, 20), (20, 20)]
232
+ >>>
233
+
234
+ # Example 3: Create a LineString using Point geometry objects.
235
+ # Create some Points in 2D, using x and y coordinates.
236
+ >>> p1 = Point(0, 20)
237
+ >>> p2 = Point(0, 0)
238
+ >>> p3 = Point(20, 20)
239
+ >>> l3 = LineString([p1, p2, p3])
240
+ >>> # Print the coordinates.
241
+ >>> print(l3.coords)
242
+ [(0, 20), (0, 0), (20, 20)]
243
+ >>>
244
+
245
+ # Example 4: Create a LineString using mix of Point geometry objects
246
+ # and coordinates.
247
+ >>> p1 = Point(0, 20)
248
+ >>> p2 = Point(20, 20)
249
+ >>> l4 = LineString([(0, 0), p1, p2, (20, 0)])
250
+ >>> # Print the coordinates.
251
+ >>> print(l4.coords)
252
+ [(0, 0), (0, 20), (20, 20), (20, 0)]
253
+ >>>
254
+
255
+ # Example 5: Create an empty LineString.
256
+ >>> le = LineString()
257
+ >>> # Print the coordinates.
258
+ >>> print(le.coords)
259
+ EMPTY
260
+ >>>
261
+ """
262
+ super(LineString, self).__init__(coordinates)
263
+ if coordinates is not None:
264
+ # Argument validations.
265
+ arg_info = [["coordinates", coordinates, False, (list, Point, tuple)]]
266
+ _Validators()._validate_function_arguments(arg_info)
267
+
268
+ # List of two-tuples or three-tuples or Point or mix.
269
+ for co in coordinates:
270
+ if isinstance(co, Point):
271
+ self.coordinates.append(co.coords)
272
+ else:
273
+ # Validate coordinates
274
+ Point(*co)
275
+ self.coordinates.append(co)
276
+
277
+ @property
278
+ def _coords_vantage_fmt(self):
279
+ """
280
+ Returns the coordinates of the LineString Geometry object in Vantage format.
281
+ """
282
+ if self._is_empty:
283
+ return VANTAGE_EMPTY_GEOM_FMT
284
+ else:
285
+ return "({})".format(
286
+ ", ".join(map(lambda x: " ".join(map(str, x)), self.coords)))
287
+
288
+ class Polygon(GeometryType):
289
+ """
290
+ Class Polygon enables end user to create an object for the single Polygon
291
+ using the coordinates. Allows user to use the same in GeoDataFrame
292
+ manipulation and processing.
293
+ """
294
+ def __init__(self, coordinates=None):
295
+ """
296
+ DESCRIPTION:
297
+ Enables end user to create an object for the single Polygon
298
+ using the coordinates. Allows user to use the same in GeoDataFrame
299
+ manipulation and processing using any Geospatial function.
300
+
301
+ PARAMETERS:
302
+ coordinates:
303
+ Optional Argument.
304
+ Specifies the coordinates of a polygon. While passing coordinates
305
+ for a polygon, one must always pass coordinates in list of either
306
+ two-tuples for 2D or list of three-tuples for 3D.
307
+ Argument also accepts list of Point and/or LineString as well
308
+ instead of tuples.
309
+ If coordinates are not passed, an object for empty polygon is
310
+ created.
311
+ Types: List of
312
+ a. two-tuple of int or float or
313
+ b. three-tuple of int or float or
314
+ c. Point geometry objects or
315
+ d. LineString geometry objects or
316
+ e. Mix of any of the above.
317
+
318
+ RETURNS:
319
+ Polygon
320
+
321
+ RAISES:
322
+ TeradataMlException, TypeError, ValueError
323
+
324
+ EXAMPLES:
325
+ >>> from teradataml import Point, LineString, Polygon
326
+
327
+ # Example 1: Create a Polygon in 2D, using x and y coordinates.
328
+ >>> go1 = Polygon([(0, 0), (0, 20), (20, 20), (20, 0), (0, 0)])
329
+ >>> # Print the coordinates.
330
+ >>> print(go1.coords)
331
+ [(0, 0), (0, 20), (20, 20), (20, 0), (0, 0)]
332
+ >>> # Print the geometry type.
333
+ >>> go1.geom_type
334
+ 'Polygon'
335
+ >>>
336
+
337
+ # Example 2: Create a Polygon in 3D, using x, y and z coordinates.
338
+ >>> go2 = Polygon([(0, 0, 0), (0, 0, 20), (0, 20, 0), (0, 20, 20),
339
+ ... (20, 0, 0), (20, 0, 20), (20, 20, 0), (20, 20, 20),
340
+ ... (0, 0, 0)])
341
+ >>> # Print the coordinates.
342
+ >>> print(go2.coords)
343
+ [(0, 0, 0), (0, 0, 20), (0, 20, 0), (0, 20, 20), (20, 0, 0), (20, 0, 20), (20, 20, 0), (20, 20, 20), (0, 0, 0)]
344
+ >>>
345
+
346
+ # Example 3: Create a Polygon using Point geometry objects.
347
+ # Create Point objects in 2D, using x and y coordinates.
348
+ >>> p1 = Point(0, 0)
349
+ >>> p2 = Point(0, 20)
350
+ >>> p3 = Point(20, 20)
351
+ >>> p4 = Point(20, 0)
352
+ >>> go3 = Polygon([p1, p2, p3, p4, p1])
353
+ >>> # Print the coordinates.
354
+ >>> print(go3.coords)
355
+ [(0, 0), (0, 20), (20, 20), (20, 0), (0, 0)]
356
+ >>>
357
+
358
+ # Example 4: Create a Polygon using LineString geometry objects.
359
+ # Create some LineString objects in 2D, using x and y coordinates.
360
+ >>> l1 = LineString([(0, 0), (0, 20), (20, 20)])
361
+ >>> l2 = LineString([(20, 0), (0, 0)])
362
+ >>> go4 = Polygon([l1, l2])
363
+ >>> # Print the coordinates.
364
+ >>> print(go4.coords)
365
+ [(0, 0), (0, 20), (20, 20), (20, 0), (0, 0)]
366
+ >>>
367
+
368
+ # Example 5: Create a Polygon using mix of Point, LineString
369
+ # geometry objects and coordinates.
370
+ >>> p1 = Point(0, 0)
371
+ >>> l1 = LineString([p1, (0, 20), (20, 20)])
372
+ >>> go5 = Polygon([l1, (20, 0), p1])
373
+ >>> # Print the coordinates.
374
+ >>> print(go5.coords)
375
+ [(0, 0), (0, 20), (20, 20), (20, 0), (0, 0)]
376
+ >>>
377
+
378
+ # Example 6: Create an empty Polygon.
379
+ >>> poe = Polygon()
380
+ >>> # Print the coordinates.
381
+ >>> print(poe.coords)
382
+ EMPTY
383
+ >>>
384
+ """
385
+ super(Polygon, self).__init__(coordinates)
386
+ if coordinates is not None:
387
+ # Argument validation.
388
+ acc_types = (list, Point, LineString, tuple)
389
+ arg_info = [["coordinates", coordinates, False, acc_types]]
390
+ _Validators()._validate_function_arguments(arg_info)
391
+
392
+ # List of two-tuples or three-tuples or LineString or Point or mix.
393
+ for co in coordinates:
394
+ if isinstance(co, (Point)):
395
+ self.coordinates.append(co.coords)
396
+ elif isinstance(co, LineString):
397
+ for lco in co.coords:
398
+ self.coordinates.append(lco)
399
+ else:
400
+ # Validate individual coordinates passed.
401
+ Point(*co)
402
+ self.coordinates.append(co)
403
+
404
+ @property
405
+ def _coords_vantage_fmt(self):
406
+ """
407
+ Returns the coordinates of the Polygon Geometry object in Vantage format.
408
+ """
409
+ if self._is_empty:
410
+ return VANTAGE_EMPTY_GEOM_FMT
411
+ else:
412
+ return "(({}))".format(
413
+ ", ".join(map(lambda x: " ".join(map(str, x)), self.coords)))
414
+
415
+ class MultiPoint(GeometryType):
416
+ """
417
+ Class MultiPoint enables end user to create an object holding multiple
418
+ Point geometry objects. Allows user to use the same in GeoDataFrame
419
+ manipulation and processing.
420
+ """
421
+ def __init__(self, points=None):
422
+ """
423
+ DESCRIPTION:
424
+ Enables end user to create an object holding the multiple Point
425
+ geometry objects. Allows user to use the same in GeoDataFrame
426
+ manipulation and processing using any Geospatial function.
427
+
428
+ PARAMETERS:
429
+ points:
430
+ Optional Argument.
431
+ Specifies the list of points. If no points are passed, an object
432
+ for empty MultiPoint is created.
433
+ Types: List of Point objects
434
+
435
+ RETURNS:
436
+ MultiPoint
437
+
438
+ RAISES:
439
+ TeradataMlException, TypeError, ValueError
440
+
441
+ EXAMPLES:
442
+ >>> from teradataml import Point, MultiPoint
443
+
444
+ # Example 1: Create a MultiPoint in 2D, using x and y coordinates.
445
+ >>> p1 = Point(0, 0)
446
+ >>> p2 = Point(0, 20)
447
+ >>> p3 = Point(20, 20)
448
+ >>> p4 = Point(20, 0)
449
+ >>> go1 = MultiPoint([p1, p2, p3, p4, p1])
450
+ >>> # Print the coordinates.
451
+ >>> print(go1.coords)
452
+ [(0, 0), (0, 20), (20, 20), (20, 0), (0, 0)]
453
+ >>> # Print the geometry type.
454
+ >>> print(go1.geom_type)
455
+ MultiPoint
456
+ >>>
457
+
458
+ # Example 2: Create an empty MultiPoint.
459
+ >>> poe = MultiPoint()
460
+ >>> # Print the coordinates.
461
+ >>> print(poe.coords)
462
+ EMPTY
463
+ >>>
464
+ """
465
+ super(MultiPoint, self).__init__(points)
466
+ if points is not None:
467
+ # Argument validation.
468
+ acc_types = (list, Point)
469
+ arg_info = [["points", points, False, acc_types]]
470
+ _Validators()._validate_function_arguments(arg_info)
471
+
472
+ self.points = points
473
+ for po in points:
474
+ self.coordinates.append(po.coords)
475
+
476
+ @property
477
+ def _coords_vantage_fmt(self):
478
+ """
479
+ Returns the coordinates of the MultiPoint Geometry object in Vantage
480
+ format.
481
+ """
482
+ if self._is_empty:
483
+ return VANTAGE_EMPTY_GEOM_FMT
484
+ else:
485
+ return "({})".format(
486
+ ", ".join([pnt._coords_vantage_fmt for pnt in self.points]))
487
+
488
+ class MultiLineString(GeometryType):
489
+ """
490
+ Class MultiLineString enables end user to create an object holding multiple
491
+ LineString geometry objects. Allows user to use the same in GeoDataFrame
492
+ manipulation and processing.
493
+ """
494
+ def __init__(self, lines=None):
495
+ """
496
+ DESCRIPTION:
497
+ Enables end user to create an object holding the multiple LineString
498
+ geometry objects. Allows user to use the same in GeoDataFrame
499
+ manipulation and processing using any Geospatial function.
500
+
501
+ PARAMETERS:
502
+ lines:
503
+ Optional Argument.
504
+ Specifies the list of lines. If no lines are passed, an object
505
+ for empty MultiLineString is created.
506
+ Types: List of LineString objects
507
+
508
+ RETURNS:
509
+ MultiLineString
510
+
511
+ RAISES:
512
+ TeradataMlException, TypeError, ValueError
513
+
514
+ EXAMPLES:
515
+ >>> from teradataml import LineString, MultiLineString
516
+
517
+ # Example 1: Create a MultiLineString in 2D, using x and y coordinates.
518
+ >>> l1 = LineString([(1, 3), (3, 0), (0, 1)])
519
+ >>> l2 = LineString([(1.35, 3.6456), (3.6756, 0.23), (0.345, 1.756)])
520
+ >>> go1 = MultiLineString([l1, l2])
521
+ >>> # Print the coordinates.
522
+ >>> print(go1.coords)
523
+ [[(1, 3), (3, 0), (0, 1)], [(1.35, 3.6456), (3.6756, 0.23), (0.345, 1.756)]]
524
+ >>> # Print the geometry type.
525
+ >>> print(go1.geom_type)
526
+ MultiLineString
527
+ >>>
528
+
529
+ # Example 2: Create an empty MultiLineString.
530
+ >>> mls = MultiLineString()
531
+ >>> # Print the coordinates.
532
+ >>> print(mls.coords)
533
+ EMPTY
534
+ >>>
535
+ """
536
+ super(MultiLineString, self).__init__(lines)
537
+ if lines is not None:
538
+ # Argument validation.
539
+ acc_types = (list, LineString)
540
+ arg_info = [["lines", lines, False, acc_types]]
541
+ _Validators()._validate_function_arguments(arg_info)
542
+
543
+ self.lines = lines
544
+ for po in lines:
545
+ self.coordinates.append(po.coords)
546
+
547
+ @property
548
+ def _coords_vantage_fmt(self):
549
+ """
550
+ Returns the coordinates of the MultiLineString Geometry object in
551
+ Vantage format.
552
+ """
553
+ if self._is_empty:
554
+ return VANTAGE_EMPTY_GEOM_FMT
555
+ else:
556
+ return "({})".format(
557
+ ", ".join([line._coords_vantage_fmt for line in self.lines]))
558
+
559
+ class MultiPolygon(GeometryType):
560
+ """
561
+ Class MultiPolygon enables end user to create an object holding multiple
562
+ Polygon geometry objects. Allows user to use the same in GeoDataFrame
563
+ manipulation and processing.
564
+ """
565
+ def __init__(self, polygons=None):
566
+ """
567
+ DESCRIPTION:
568
+ Enables end user to create an object holding the multiple Polygon
569
+ geometry objects. Allows user to use the same in GeoDataFrame
570
+ manipulation and processing using any Geospatial function.
571
+
572
+ PARAMETERS:
573
+ polygons:
574
+ Optional Argument.
575
+ Specifies the list of polygons. If no polygons are passed, an
576
+ object for empty MultiPolygon is created.
577
+ Types: List of Polygon objects
578
+
579
+ RETURNS:
580
+ MultiPolygon
581
+
582
+ RAISES:
583
+ TeradataMlException, TypeError, ValueError
584
+
585
+ EXAMPLES:
586
+ >>> from teradataml import Polygon, MultiPolygon
587
+
588
+ # Example 1: Create a MultiPolygon in 2D, using x and y coordinates.
589
+ >>> po1 = Polygon([(0, 0), (0, 20), (20, 20), (20, 0), (0, 0)])
590
+ >>> po2 = Polygon([(0.6, 0.8), (0.6, 20.8), (20.6, 20.8), (20.6, 0.8), (0.6, 0.8)])
591
+ >>> go1 = MultiPolygon([po1, po2])
592
+ >>> # Print the coordinates.
593
+ >>> print(go1.coords)
594
+ [[(0, 0), (0, 20), (20, 20), (20, 0), (0, 0)], [(0.6, 0.8), (0.6, 20.8), (20.6, 20.8), (20.6, 0.8), (0.6, 0.8)]]
595
+ >>> # Print the geometry type.
596
+ >>> print(go1.geom_type)
597
+ MultiPolygon
598
+ >>>
599
+
600
+ # Example 2: Create an empty MultiPolygon.
601
+ >>> poe = MultiPolygon()
602
+ >>> # Print the coordinates.
603
+ >>> print(poe.coords)
604
+ EMPTY
605
+ >>>
606
+ """
607
+ super(MultiPolygon, self).__init__(polygons)
608
+ if polygons is not None:
609
+ # Argument validation.
610
+ acc_types = (list, Polygon)
611
+ arg_info = [["polygons", polygons, False, acc_types]]
612
+ _Validators()._validate_function_arguments(arg_info)
613
+
614
+ self.polygons = polygons
615
+ for po in polygons:
616
+ self.coordinates.append(po.coords)
617
+
618
+ @property
619
+ def _coords_vantage_fmt(self):
620
+ """
621
+ Returns the coordinates of the MultiPolygon Geometry object in Vantage
622
+ format.
623
+ """
624
+ if self._is_empty:
625
+ return VANTAGE_EMPTY_GEOM_FMT
626
+ else:
627
+ return "({})".format(
628
+ ", ".join([pnt._coords_vantage_fmt for pnt in self.polygons]))
629
+
630
+ class GeometryCollection(GeometryType):
631
+ """
632
+ Class GeometryCollection enables end user to create an object for the
633
+ single GeometryCollection, i.e., collection of different geometry objects
634
+ using the geometries. This allows user to use the same in GeoDataFrame
635
+ manipulation and processing.
636
+ """
637
+ def __init__(self, geometries=None):
638
+ """
639
+ DESCRIPTION:
640
+ Enables end user to create an object holding the multiple types of
641
+ geometry objects. Allows user to use the same in GeoDataFrame
642
+ manipulation and processing using any Geospatial function.
643
+
644
+ PARAMETERS:
645
+ geoms:
646
+ Optional Argument.
647
+ Specifies the list of different geometry types.
648
+ If no geometries are are passed, an object for empty
649
+ GeometryCollection is created.
650
+ Types: List of geometry objects of types:
651
+ 1. Point
652
+ 2. LineString
653
+ 3. Polygon
654
+ 4. MultiPoint
655
+ 5. MultiLineString
656
+ 6. MultiPolygon
657
+ 7. GeometryCollection
658
+ 8. Mixture of any of these.
659
+
660
+ RETURNS:
661
+ GeometryCollection
662
+
663
+ RAISES:
664
+ TeradataMlException, TypeError, ValueError
665
+
666
+ EXAMPLES:
667
+ >>> from teradataml import Point, LineString, Polygon, MultiPoint,
668
+ ... MultiLineString, MultiPolygon, GeometryCollection
669
+
670
+ # Example 1: Create a GeometryCollection object with all geometries.
671
+ >>> # Create Point objects.
672
+ >>> p1 = Point(1, 1)
673
+ >>> p2 = Point()
674
+ >>> p3 = Point(6, 3)
675
+ >>> p4 = Point(10, 5)
676
+ >>> p5 = Point()
677
+ >>>
678
+ >>> # Create LineString Objects.
679
+ >>> l1 = LineString([(1, 3), (3, 0), (0, 1)])
680
+ >>> l2 = LineString([(1.35, 3.6456), (3.6756, 0.23), (0.345, 1.756)])
681
+ >>> l3 = LineString()
682
+ >>>
683
+ >>> # Create Polygon Objects.
684
+ >>> po1 = Polygon([(0, 0, 0), (0, 0, 20), (0, 20, 0), (0, 20, 20),
685
+ ... (20, 0, 0), (20, 0, 20), (20, 20, 0), (20, 20, 20),
686
+ ... (0, 0, 0)])
687
+ >>> po2 = Polygon([(0, 0, 0), (0, 0, 20.435), (0, 20.435, 0),
688
+ ... (0, 20.435, 20.435), (20.435, 0, 0), (20.435, 0, 20.435),
689
+ ... (20.435, 20.435, 0), (20.435, 20.435, 20.435),
690
+ ... (0, 0, 0)])
691
+ >>> po3 = Polygon()
692
+ >>>
693
+ >>> # Create MultiPolygon Object.
694
+ >>> mpol = MultiPolygon([po1, Polygon(), po2])
695
+ >>>
696
+ >>> # Create MultiLineString Object.
697
+ >>> mlin = MultiLineString([l1, l2, l3])
698
+ >>>
699
+ >>> # Create MultiPoint Object.
700
+ >>> mpnt = MultiPoint([p1, p2, p3, p4, p5])
701
+ >>>
702
+ >>> # Create a GeometryCollection object.
703
+ >>> gc1 = GeometryCollection([p1, p2, l1, l3, po2, po3, po1, mpol, mlin, mpnt])
704
+ >>> # Print the coordinates.
705
+ >>> print(gc1.coords)
706
+ [(1, 1), 'EMPTY', [(1, 3), (3, 0), (0, 1)], 'EMPTY', [(0, 0, 0), (0, 0, 20.435), (0, 20.435, 0), (0, 20.435, 20.435), (20.435, 0, 0), (20.435, 0, 20.435), (20.435, 20.435, 0), (20.435, 20.435, 20.435), (0, 0, 0)], 'EMPTY', [(0, 0, 0), (0, 0, 20), (0, 20, 0), (0, 20, 20), (20, 0, 0), (20, 0, 20), (20, 20, 0), (20, 20, 20), (0, 0, 0)], [[(0, 0, 0), (0, 0, 20), (0, 20, 0), (0, 20, 20), (20, 0, 0), (20, 0, 20), (20, 20, 0), (20, 20, 20), (0, 0, 0)], 'EMPTY', [(0, 0, 0), (0, 0, 20.435), (0, 20.435, 0), (0, 20.435, 20.435), (20.435, 0, 0), (20.435, 0, 20.435), (20.435, 20.435, 0), (20.435, 20.435, 20.435), (0, 0, 0)]], [[(1, 3), (3, 0), (0, 1)], [(1.35, 3.6456), (3.6756, 0.23), (0.345, 1.756)], 'EMPTY'], [(1, 1), 'EMPTY', (6, 3), (10, 5), 'EMPTY']]
707
+ >>> # Print the geometry type.
708
+ >>> print(gc1.geom_type)
709
+ GeometryCollection
710
+ >>>
711
+
712
+ # Example 2: Create an empty GeometryCollection.
713
+ >>> gc2 = GeometryCollection()
714
+ >>> # Print the coordinates.
715
+ >>> print(gc2.coords)
716
+ EMPTY
717
+ >>>
718
+ """
719
+ super(GeometryCollection, self).__init__(geometries)
720
+ if geometries is not None:
721
+ # Argument validation.
722
+ acc_types = (list, Point, LineString, Polygon, MultiPoint,
723
+ MultiLineString, MultiPolygon, GeometryCollection)
724
+ arg_info = [["geometries", geometries, False, acc_types]]
725
+ _Validators()._validate_function_arguments(arg_info)
726
+
727
+ self.geometries = geometries
728
+ for geo in geometries:
729
+ self.coordinates.append(geo.coords)
730
+
731
+ @property
732
+ def _coords_vantage_fmt(self):
733
+ """
734
+ Returns the coordinates of the GeometryCollection Geometry object in
735
+ Vantage format.
736
+ """
737
+ if self._is_empty:
738
+ return VANTAGE_EMPTY_GEOM_FMT
739
+ else:
740
+ return "({})".format(
741
+ ", ".join(map(str, self.geometries)))
742
+
743
+ class GeoSequence(LineString):
744
+ """
745
+ Class GeoSequence enables end user to create an object for the
746
+ LineString geometry objects with tracking information such as
747
+ timestamp. This allows user to use the same in GeoDataFrame
748
+ manipulation and processing.
749
+ """
750
+ def __init__(self, coordinates=None, timestamps=None, link_ids=None,
751
+ user_field_count=0, user_fields=None):
752
+ """
753
+ DESCRIPTION:
754
+ Enables end user to create an object holding the LineString
755
+ geometry objects with tracking information such as timestamps.
756
+ Allows user to use the same in GeoDataFrame manipulation and
757
+ processing using any Geospatial function.
758
+
759
+ PARAMETERS:
760
+ coordinates:
761
+ Optional Argument.
762
+ Specifies the list of coordinates of a Point. While passing
763
+ coordinates, one must always pass coordinates in list of either
764
+ two-tuples for 2D or list of three-tuples for 3D.
765
+ Argument also accepts list of Points as well instead of tuples.
766
+ If coordinates are not passed, an object for empty line is
767
+ created.
768
+ Types: List of
769
+ a. Point geometry objects or
770
+ b. two-tuple of int or float or
771
+ c. three-tuple of int or float or
772
+ d. Mix of any of the above.
773
+
774
+ timestamps:
775
+ Optional Argument.
776
+ Specifies the list of timestamp values for each coordinate with
777
+ the following format:
778
+ yyyy-mm-dd hh:mi:ss.ms
779
+ The first timestamp value is associated with the first point, the
780
+ second timestamp value is associated with the second point, and
781
+ so forth.
782
+ Note:
783
+ You must specify n timestamp values, where n is the number of
784
+ points in the geosequence.
785
+ Types: list of strings
786
+
787
+ link_ids:
788
+ Optional Argument.
789
+ Specifies the list of values for the ID of the link on the road
790
+ network for a point in the geosequence.
791
+ This value is reserved for a future release.
792
+ The first link ID value is associated with the first point, the
793
+ second link ID value is associated with the second point, and
794
+ so forth.
795
+ Note:
796
+ You must specify n link ID values, where n is the number of
797
+ points in the geosequence.
798
+ Types: list of ints
799
+
800
+ user_field_count:
801
+ Optional Argument.
802
+ Specifies the value that represents the number of user field
803
+ elements for each point in the geosequence.
804
+ A value of 0 indicates that no user field elements appear after
805
+ count in the character string.
806
+ Default Value: 0
807
+ Types: int
808
+
809
+ user_fields:
810
+ Optional Argument.
811
+ Specifies the list of user field tuples that represents a value to
812
+ associated with a point. For example, certain tracking systems may
813
+ associate velocity, direction, and acceleration values with each point.
814
+ Note:
815
+ 1. You must specify count groups of n user field values (where n is
816
+ the number of points in the geosequence).
817
+ 2. The first group provides the first user field values for each point,
818
+ the second group provides the second user field values for each point,
819
+ and so forth.
820
+ 3. Each group can be formed using a tuple.
821
+ Types: list of tuples of ints or floats
822
+
823
+ RETURNS:
824
+ GeoSequence
825
+
826
+ RAISES:
827
+ TeradataMlException, TypeError, ValueError
828
+
829
+ EXAMPLES:
830
+ >>> from teradataml import Point, GeoSequence
831
+
832
+ # Example 1: Create a GeoSequence with 2D points and no user fields.
833
+ >>> coordinates = [(1, 3), (3, 0), (0, 1)]
834
+ >>> timestamps = ["2008-03-17 10:34:03.53", "2008-03-17 10:38:25.21", "2008-03-17 10:41:41.48"]
835
+ >>> link_ids = [1001, 1002, 1003]
836
+ >>> gs1 = GeoSequence(coordinates=coordinates, timestamps=timestamps, link_ids=link_ids)
837
+ >>> gs1.coords
838
+ [(1, 3), (3, 0), (0, 1)]
839
+ >>> str(gs1)
840
+ 'GeoSequence((1 3, 3 0, 0 1), (2008-03-17 10:34:03.53, 2008-03-17 10:38:25.21, 2008-03-17 10:41:41.48), (1001, 1002, 1003), (0))'
841
+ >>>
842
+
843
+ # Example 2: Create a GeoSequence with 3D points and 2 user fields.
844
+ # Note that coordinates can be provided as tuple of ints/floats
845
+ # or Point objects.
846
+ >>> p1 = (3, 0, 6)
847
+ >>> coordinates = [(1, 3, 6), p1, (6, 0, 1)]
848
+ >>> timestamps = ["2008-03-17 10:34:03.53", "2008-03-17 10:38:25.21", "2008-03-17 10:41:41.48"]
849
+ >>> link_ids = [1001, 1002, 1003]
850
+ >>> user_fields = [(1, 2), (3, 4), (5, 6)]
851
+ >>> gs2 = GeoSequence(coordinates=coordinates, timestamps=timestamps, link_ids=link_ids,
852
+ ... user_field_count=2, user_fields=user_fields)
853
+ >>> gs2.coords
854
+ [(1, 3, 6), (3, 0, 6), (6, 0, 1)]
855
+ >>> str(gs2)
856
+ 'GeoSequence((1 3 6, 3 0 6, 6 0 1), (2008-03-17 10:34:03.53, 2008-03-17 10:38:25.21, 2008-03-17 10:41:41.48), (1001, 1002, 1003), (2, 1, 2, 3, 4, 5, 6))'
857
+ >>>
858
+
859
+ # Example 3: Create an empty GeoSequence.
860
+ >>> gs3 = GeoSequence()
861
+ >>> # Print the coordinates.
862
+ >>> print(gc3.coords)
863
+ EMPTY
864
+ >>>
865
+ """
866
+ self.timestamps = timestamps
867
+ self.user_field_count = user_field_count
868
+ self.link_ids = link_ids
869
+ self.user_fields = user_fields
870
+
871
+ super(GeoSequence, self).__init__(coordinates)
872
+ all_args_provided = all([coordinates, self.timestamps, self.link_ids])
873
+ any_args_provided = any([coordinates, self.timestamps, self.link_ids])
874
+
875
+ if any_args_provided:
876
+ if not all_args_provided:
877
+ raise ValueError("Either provide all (coordinates, timestamps, link_ids) or None.")
878
+
879
+ if all_args_provided:
880
+ arg_info = []
881
+ arg_info.append(["timestamps", self.timestamps, True, _str_list])
882
+ arg_info.append(["link_ids", self.link_ids, True, _int_list])
883
+ arg_info.append(["user_field_count", self.user_field_count, True, int])
884
+ arg_info.append(["user_fields", self.user_fields, True,
885
+ (_int_float_tuple_list, _int_float_list)])
886
+ _Validators()._validate_function_arguments(arg_info)
887
+
888
+ _Validators._validate_list_lengths_equal(self.coordinates, "coordinates",
889
+ self.timestamps, "timestamps")
890
+ _Validators._validate_list_lengths_equal(self.coordinates, "coordinates",
891
+ self.link_ids, "link_ids")
892
+ if self.user_fields is not None:
893
+ _Validators._validate_list_lengths_equal(self.coordinates, "coordinates",
894
+ self.user_fields, "user_fields")
895
+
896
+ for uf in self.user_fields:
897
+ if isinstance(uf, tuple):
898
+ if len(uf) != self.user_field_count:
899
+ err_ = Messages.get_message(MessageCodes.GEOSEQ_USER_FIELD_NUM)
900
+ raise ValueError(err_)
901
+
902
+ @property
903
+ def _coords_vantage_fmt(self):
904
+ """
905
+ Returns the coordinates of the GeometryCollection Geometry object in
906
+ Vantage format.
907
+ """
908
+ if self._is_empty:
909
+ return VANTAGE_EMPTY_GEOM_FMT
910
+ else:
911
+ coords = "({})".format(
912
+ ", ".join(map(lambda x: " ".join(map(str, x)),
913
+ self.coords)))
914
+ ts = "({})".format(", ".join(self.timestamps))
915
+ ids = "({})".format(", ".join(map(str, self.link_ids)))
916
+ ufs = [self.user_field_count]
917
+ if self.user_fields is not None:
918
+ for uf in self.user_fields:
919
+ if not isinstance(uf, tuple):
920
+ ufs.append(uf)
921
+ else:
922
+ ufs.append(", ".join(map(str, list(uf))))
923
+
924
+ uf = "({})".format(", ".join(map(str, ufs)))
925
+ return "({}, {}, {}, {})".format(coords, ts, ids, uf)
926
926