teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +1864 -1640
- teradataml/__init__.py +70 -60
- teradataml/_version.py +11 -11
- teradataml/analytics/Transformations.py +2995 -2995
- teradataml/analytics/__init__.py +81 -83
- teradataml/analytics/analytic_function_executor.py +2013 -2010
- teradataml/analytics/analytic_query_generator.py +958 -958
- teradataml/analytics/byom/H2OPredict.py +514 -514
- teradataml/analytics/byom/PMMLPredict.py +437 -437
- teradataml/analytics/byom/__init__.py +14 -14
- teradataml/analytics/json_parser/__init__.py +130 -130
- teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
- teradataml/analytics/json_parser/json_store.py +191 -191
- teradataml/analytics/json_parser/metadata.py +1637 -1637
- teradataml/analytics/json_parser/utils.py +804 -803
- teradataml/analytics/meta_class.py +196 -196
- teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
- teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
- teradataml/analytics/sqle/__init__.py +97 -110
- teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
- teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
- teradataml/analytics/table_operator/__init__.py +10 -10
- teradataml/analytics/uaf/__init__.py +63 -63
- teradataml/analytics/utils.py +693 -692
- teradataml/analytics/valib.py +1603 -1600
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +1 -3
- teradataml/catalog/byom.py +1759 -1716
- teradataml/catalog/function_argument_mapper.py +859 -861
- teradataml/catalog/model_cataloging_utils.py +491 -1510
- teradataml/clients/pkce_client.py +481 -481
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/bulk_exposed_utils.py +111 -111
- teradataml/common/constants.py +1433 -1441
- teradataml/common/deprecations.py +160 -0
- teradataml/common/exceptions.py +73 -73
- teradataml/common/formula.py +742 -742
- teradataml/common/garbagecollector.py +592 -635
- teradataml/common/messagecodes.py +422 -431
- teradataml/common/messages.py +227 -231
- teradataml/common/sqlbundle.py +693 -693
- teradataml/common/td_coltype_code_to_tdtype.py +48 -48
- teradataml/common/utils.py +2418 -2500
- teradataml/common/warnings.py +25 -25
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/config/dummy_file1.cfg +4 -4
- teradataml/config/dummy_file2.cfg +2 -2
- teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
- teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
- teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
- teradataml/context/aed_context.py +217 -217
- teradataml/context/context.py +1071 -999
- teradataml/data/A_loan.csv +19 -19
- teradataml/data/BINARY_REALS_LEFT.csv +11 -11
- teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
- teradataml/data/B_loan.csv +49 -49
- teradataml/data/BuoyData2.csv +17 -17
- teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
- teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
- teradataml/data/Convolve2RealsLeft.csv +5 -5
- teradataml/data/Convolve2RealsRight.csv +5 -5
- teradataml/data/Convolve2ValidLeft.csv +11 -11
- teradataml/data/Convolve2ValidRight.csv +11 -11
- teradataml/data/DFFTConv_Real_8_8.csv +65 -65
- teradataml/data/Orders1_12mf.csv +24 -24
- teradataml/data/Pi_loan.csv +7 -7
- teradataml/data/SMOOTHED_DATA.csv +7 -7
- teradataml/data/TestDFFT8.csv +9 -9
- teradataml/data/TestRiver.csv +109 -109
- teradataml/data/Traindata.csv +28 -28
- teradataml/data/acf.csv +17 -17
- teradataml/data/adaboost_example.json +34 -34
- teradataml/data/adaboostpredict_example.json +24 -24
- teradataml/data/additional_table.csv +10 -10
- teradataml/data/admissions_test.csv +21 -21
- teradataml/data/admissions_train.csv +41 -41
- teradataml/data/admissions_train_nulls.csv +41 -41
- teradataml/data/ageandheight.csv +13 -13
- teradataml/data/ageandpressure.csv +31 -31
- teradataml/data/antiselect_example.json +36 -36
- teradataml/data/antiselect_input.csv +8 -8
- teradataml/data/antiselect_input_mixed_case.csv +8 -8
- teradataml/data/applicant_external.csv +6 -6
- teradataml/data/applicant_reference.csv +6 -6
- teradataml/data/arima_example.json +9 -9
- teradataml/data/assortedtext_input.csv +8 -8
- teradataml/data/attribution_example.json +33 -33
- teradataml/data/attribution_sample_table.csv +27 -27
- teradataml/data/attribution_sample_table1.csv +6 -6
- teradataml/data/attribution_sample_table2.csv +11 -11
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bank_web_clicks1.csv +42 -42
- teradataml/data/bank_web_clicks2.csv +91 -91
- teradataml/data/bank_web_url.csv +85 -85
- teradataml/data/barrier.csv +2 -2
- teradataml/data/barrier_new.csv +3 -3
- teradataml/data/betweenness_example.json +13 -13
- teradataml/data/bin_breaks.csv +8 -8
- teradataml/data/bin_fit_ip.csv +3 -3
- teradataml/data/binary_complex_left.csv +11 -11
- teradataml/data/binary_complex_right.csv +11 -11
- teradataml/data/binary_matrix_complex_left.csv +21 -21
- teradataml/data/binary_matrix_complex_right.csv +21 -21
- teradataml/data/binary_matrix_real_left.csv +21 -21
- teradataml/data/binary_matrix_real_right.csv +21 -21
- teradataml/data/blood2ageandweight.csv +26 -26
- teradataml/data/bmi.csv +501 -0
- teradataml/data/boston.csv +507 -507
- teradataml/data/buoydata_mix.csv +11 -11
- teradataml/data/burst_data.csv +5 -5
- teradataml/data/burst_example.json +20 -20
- teradataml/data/byom_example.json +17 -17
- teradataml/data/bytes_table.csv +3 -3
- teradataml/data/cal_housing_ex_raw.csv +70 -70
- teradataml/data/callers.csv +7 -7
- teradataml/data/calls.csv +10 -10
- teradataml/data/cars_hist.csv +33 -33
- teradataml/data/cat_table.csv +24 -24
- teradataml/data/ccm_example.json +31 -31
- teradataml/data/ccm_input.csv +91 -91
- teradataml/data/ccm_input2.csv +13 -13
- teradataml/data/ccmexample.csv +101 -101
- teradataml/data/ccmprepare_example.json +8 -8
- teradataml/data/ccmprepare_input.csv +91 -91
- teradataml/data/cfilter_example.json +12 -12
- teradataml/data/changepointdetection_example.json +18 -18
- teradataml/data/changepointdetectionrt_example.json +8 -8
- teradataml/data/chi_sq.csv +2 -2
- teradataml/data/churn_data.csv +14 -14
- teradataml/data/churn_emission.csv +35 -35
- teradataml/data/churn_initial.csv +3 -3
- teradataml/data/churn_state_transition.csv +5 -5
- teradataml/data/citedges_2.csv +745 -745
- teradataml/data/citvertices_2.csv +1210 -1210
- teradataml/data/clicks2.csv +16 -16
- teradataml/data/clickstream.csv +12 -12
- teradataml/data/clickstream1.csv +11 -11
- teradataml/data/closeness_example.json +15 -15
- teradataml/data/complaints.csv +21 -21
- teradataml/data/complaints_mini.csv +3 -3
- teradataml/data/complaints_testtoken.csv +224 -224
- teradataml/data/complaints_tokens_test.csv +353 -353
- teradataml/data/complaints_traintoken.csv +472 -472
- teradataml/data/computers_category.csv +1001 -1001
- teradataml/data/computers_test1.csv +1252 -1252
- teradataml/data/computers_train1.csv +5009 -5009
- teradataml/data/computers_train1_clustered.csv +5009 -5009
- teradataml/data/confusionmatrix_example.json +9 -9
- teradataml/data/conversion_event_table.csv +3 -3
- teradataml/data/corr_input.csv +17 -17
- teradataml/data/correlation_example.json +11 -11
- teradataml/data/coxhazardratio_example.json +39 -39
- teradataml/data/coxph_example.json +15 -15
- teradataml/data/coxsurvival_example.json +28 -28
- teradataml/data/cpt.csv +41 -41
- teradataml/data/credit_ex_merged.csv +45 -45
- teradataml/data/customer_loyalty.csv +301 -301
- teradataml/data/customer_loyalty_newseq.csv +31 -31
- teradataml/data/dataframe_example.json +146 -146
- teradataml/data/decisionforest_example.json +37 -37
- teradataml/data/decisionforestpredict_example.json +38 -38
- teradataml/data/decisiontree_example.json +21 -21
- teradataml/data/decisiontreepredict_example.json +45 -45
- teradataml/data/dfft2_size4_real.csv +17 -17
- teradataml/data/dfft2_test_matrix16.csv +17 -17
- teradataml/data/dfft2conv_real_4_4.csv +65 -65
- teradataml/data/diabetes.csv +443 -443
- teradataml/data/diabetes_test.csv +89 -89
- teradataml/data/dict_table.csv +5 -5
- teradataml/data/docperterm_table.csv +4 -4
- teradataml/data/docs/__init__.py +1 -1
- teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
- teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
- teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
- teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
- teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
- teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
- teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
- teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
- teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
- teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
- teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
- teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
- teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
- teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
- teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
- teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
- teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
- teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
- teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
- teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
- teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
- teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +132 -132
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +103 -103
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +101 -101
- teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
- teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
- teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
- teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
- teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
- teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
- teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
- teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
- teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
- teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
- teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
- teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
- teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
- teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +126 -126
- teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
- teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
- teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
- teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
- teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
- teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +243 -243
- teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
- teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
- teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
- teradataml/data/docs/sqle/docs_17_20/FTest.py +160 -160
- teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
- teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
- teradataml/data/docs/sqle/docs_17_20/GLM.py +380 -380
- teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
- teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +123 -123
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
- teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +204 -204
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
- teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
- teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
- teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
- teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +117 -117
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
- teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
- teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +225 -225
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +115 -115
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
- teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
- teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
- teradataml/data/docs/sqle/docs_17_20/ROC.py +163 -163
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
- teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
- teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
- teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +202 -202
- teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +197 -197
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +110 -109
- teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
- teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
- teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
- teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
- teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +171 -171
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
- teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
- teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
- teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
- teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
- teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
- teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
- teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
- teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +353 -353
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +275 -275
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +155 -155
- teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
- teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
- teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
- teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
- teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
- teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
- teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
- teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
- teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
- teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
- teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
- teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
- teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
- teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
- teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
- teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
- teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
- teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
- teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
- teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
- teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
- teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
- teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
- teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
- teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
- teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
- teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
- teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
- teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
- teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
- teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
- teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
- teradataml/data/dtw_example.json +17 -17
- teradataml/data/dtw_t1.csv +11 -11
- teradataml/data/dtw_t2.csv +4 -4
- teradataml/data/dwt2d_example.json +15 -15
- teradataml/data/dwt_example.json +14 -14
- teradataml/data/dwt_filter_dim.csv +5 -5
- teradataml/data/emission.csv +9 -9
- teradataml/data/emp_table_by_dept.csv +19 -19
- teradataml/data/employee_info.csv +4 -4
- teradataml/data/employee_table.csv +6 -6
- teradataml/data/excluding_event_table.csv +2 -2
- teradataml/data/finance_data.csv +6 -6
- teradataml/data/finance_data2.csv +61 -61
- teradataml/data/finance_data3.csv +93 -93
- teradataml/data/fish.csv +160 -0
- teradataml/data/fm_blood2ageandweight.csv +26 -26
- teradataml/data/fmeasure_example.json +11 -11
- teradataml/data/followers_leaders.csv +10 -10
- teradataml/data/fpgrowth_example.json +12 -12
- teradataml/data/frequentpaths_example.json +29 -29
- teradataml/data/friends.csv +9 -9
- teradataml/data/fs_input.csv +33 -33
- teradataml/data/fs_input1.csv +33 -33
- teradataml/data/genData.csv +513 -513
- teradataml/data/geodataframe_example.json +39 -39
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/glm_admissions_model.csv +12 -12
- teradataml/data/glm_example.json +29 -29
- teradataml/data/glml1l2_example.json +28 -28
- teradataml/data/glml1l2predict_example.json +54 -54
- teradataml/data/glmpredict_example.json +54 -54
- teradataml/data/gq_t1.csv +21 -21
- teradataml/data/hconvolve_complex_right.csv +5 -5
- teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
- teradataml/data/histogram_example.json +11 -11
- teradataml/data/hmmdecoder_example.json +78 -78
- teradataml/data/hmmevaluator_example.json +24 -24
- teradataml/data/hmmsupervised_example.json +10 -10
- teradataml/data/hmmunsupervised_example.json +7 -7
- teradataml/data/house_values.csv +12 -12
- teradataml/data/house_values2.csv +13 -13
- teradataml/data/housing_cat.csv +7 -7
- teradataml/data/housing_data.csv +9 -9
- teradataml/data/housing_test.csv +47 -47
- teradataml/data/housing_test_binary.csv +47 -47
- teradataml/data/housing_train.csv +493 -493
- teradataml/data/housing_train_attribute.csv +4 -4
- teradataml/data/housing_train_binary.csv +437 -437
- teradataml/data/housing_train_parameter.csv +2 -2
- teradataml/data/housing_train_response.csv +493 -493
- teradataml/data/ibm_stock.csv +370 -370
- teradataml/data/ibm_stock1.csv +370 -370
- teradataml/data/identitymatch_example.json +21 -21
- teradataml/data/idf_table.csv +4 -4
- teradataml/data/impressions.csv +101 -101
- teradataml/data/inflation.csv +21 -21
- teradataml/data/initial.csv +3 -3
- teradataml/data/insect_sprays.csv +12 -12
- teradataml/data/insurance.csv +1339 -1339
- teradataml/data/interpolator_example.json +12 -12
- teradataml/data/iris_altinput.csv +481 -481
- teradataml/data/iris_attribute_output.csv +8 -8
- teradataml/data/iris_attribute_test.csv +121 -121
- teradataml/data/iris_attribute_train.csv +481 -481
- teradataml/data/iris_category_expect_predict.csv +31 -31
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/iris_input.csv +151 -151
- teradataml/data/iris_response_train.csv +121 -121
- teradataml/data/iris_test.csv +31 -31
- teradataml/data/iris_train.csv +121 -121
- teradataml/data/join_table1.csv +4 -4
- teradataml/data/join_table2.csv +4 -4
- teradataml/data/jsons/anly_function_name.json +6 -6
- teradataml/data/jsons/byom/dataikupredict.json +147 -147
- teradataml/data/jsons/byom/datarobotpredict.json +146 -146
- teradataml/data/jsons/byom/h2opredict.json +194 -194
- teradataml/data/jsons/byom/onnxpredict.json +186 -186
- teradataml/data/jsons/byom/pmmlpredict.json +146 -146
- teradataml/data/jsons/paired_functions.json +435 -435
- teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
- teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
- teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
- teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
- teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
- teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
- teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
- teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
- teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
- teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
- teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
- teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
- teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
- teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
- teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
- teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
- teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
- teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
- teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
- teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
- teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
- teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
- teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
- teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
- teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
- teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
- teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
- teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
- teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
- teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
- teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
- teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
- teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
- teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
- teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
- teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
- teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
- teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
- teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
- teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +76 -76
- teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
- teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
- teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
- teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
- teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
- teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
- teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
- teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
- teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
- teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +186 -186
- teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
- teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +431 -431
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +125 -125
- teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
- teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +91 -91
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
- teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +211 -211
- teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
- teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +101 -101
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
- teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
- teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +177 -177
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
- teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
- teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +124 -124
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +156 -156
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +70 -70
- teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
- teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
- teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
- teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
- teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
- teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
- teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +312 -312
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +182 -182
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +170 -170
- teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
- teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
- teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
- teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
- teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
- teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
- teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
- teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
- teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
- teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
- teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
- teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
- teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
- teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
- teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
- teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
- teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
- teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
- teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
- teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
- teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
- teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
- teradataml/data/kmeans_example.json +17 -17
- teradataml/data/kmeans_us_arrests_data.csv +0 -0
- teradataml/data/knn_example.json +18 -18
- teradataml/data/knnrecommender_example.json +6 -6
- teradataml/data/knnrecommenderpredict_example.json +12 -12
- teradataml/data/lar_example.json +17 -17
- teradataml/data/larpredict_example.json +30 -30
- teradataml/data/lc_new_predictors.csv +5 -5
- teradataml/data/lc_new_reference.csv +9 -9
- teradataml/data/lda_example.json +8 -8
- teradataml/data/ldainference_example.json +14 -14
- teradataml/data/ldatopicsummary_example.json +8 -8
- teradataml/data/levendist_input.csv +13 -13
- teradataml/data/levenshteindistance_example.json +10 -10
- teradataml/data/linreg_example.json +9 -9
- teradataml/data/load_example_data.py +326 -323
- teradataml/data/loan_prediction.csv +295 -295
- teradataml/data/lungcancer.csv +138 -138
- teradataml/data/mappingdata.csv +12 -12
- teradataml/data/milk_timeseries.csv +157 -157
- teradataml/data/min_max_titanic.csv +4 -4
- teradataml/data/minhash_example.json +6 -6
- teradataml/data/ml_ratings.csv +7547 -7547
- teradataml/data/ml_ratings_10.csv +2445 -2445
- teradataml/data/model1_table.csv +5 -5
- teradataml/data/model2_table.csv +5 -5
- teradataml/data/models/iris_db_glm_model.pmml +56 -56
- teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
- teradataml/data/modularity_example.json +12 -12
- teradataml/data/movavg_example.json +7 -7
- teradataml/data/mtx1.csv +7 -7
- teradataml/data/mtx2.csv +13 -13
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/mvdfft8.csv +9 -9
- teradataml/data/naivebayes_example.json +9 -9
- teradataml/data/naivebayespredict_example.json +19 -19
- teradataml/data/naivebayestextclassifier2_example.json +6 -6
- teradataml/data/naivebayestextclassifier_example.json +8 -8
- teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
- teradataml/data/name_Find_configure.csv +10 -10
- teradataml/data/namedentityfinder_example.json +14 -14
- teradataml/data/namedentityfinderevaluator_example.json +10 -10
- teradataml/data/namedentityfindertrainer_example.json +6 -6
- teradataml/data/nb_iris_input_test.csv +31 -31
- teradataml/data/nb_iris_input_train.csv +121 -121
- teradataml/data/nbp_iris_model.csv +13 -13
- teradataml/data/ner_extractor_text.csv +2 -2
- teradataml/data/ner_sports_test2.csv +29 -29
- teradataml/data/ner_sports_train.csv +501 -501
- teradataml/data/nerevaluator_example.json +5 -5
- teradataml/data/nerextractor_example.json +18 -18
- teradataml/data/nermem_sports_test.csv +17 -17
- teradataml/data/nermem_sports_train.csv +50 -50
- teradataml/data/nertrainer_example.json +6 -6
- teradataml/data/ngrams_example.json +6 -6
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
- teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
- teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
- teradataml/data/npath_example.json +23 -23
- teradataml/data/ntree_example.json +14 -14
- teradataml/data/numeric_strings.csv +4 -4
- teradataml/data/numerics.csv +4 -4
- teradataml/data/ocean_buoy.csv +17 -17
- teradataml/data/ocean_buoy2.csv +17 -17
- teradataml/data/ocean_buoys.csv +27 -27
- teradataml/data/ocean_buoys2.csv +10 -10
- teradataml/data/ocean_buoys_nonpti.csv +28 -28
- teradataml/data/ocean_buoys_seq.csv +29 -29
- teradataml/data/openml_example.json +63 -0
- teradataml/data/optional_event_table.csv +4 -4
- teradataml/data/orders1.csv +11 -11
- teradataml/data/orders1_12.csv +12 -12
- teradataml/data/orders_ex.csv +4 -4
- teradataml/data/pack_example.json +8 -8
- teradataml/data/package_tracking.csv +19 -19
- teradataml/data/package_tracking_pti.csv +18 -18
- teradataml/data/pagerank_example.json +13 -13
- teradataml/data/paragraphs_input.csv +6 -6
- teradataml/data/pathanalyzer_example.json +7 -7
- teradataml/data/pathgenerator_example.json +7 -7
- teradataml/data/phrases.csv +7 -7
- teradataml/data/pivot_example.json +8 -8
- teradataml/data/pivot_input.csv +22 -22
- teradataml/data/playerRating.csv +31 -31
- teradataml/data/postagger_example.json +6 -6
- teradataml/data/posttagger_output.csv +44 -44
- teradataml/data/production_data.csv +16 -16
- teradataml/data/production_data2.csv +7 -7
- teradataml/data/randomsample_example.json +31 -31
- teradataml/data/randomwalksample_example.json +8 -8
- teradataml/data/rank_table.csv +6 -6
- teradataml/data/ref_mobile_data.csv +4 -4
- teradataml/data/ref_mobile_data_dense.csv +2 -2
- teradataml/data/ref_url.csv +17 -17
- teradataml/data/restaurant_reviews.csv +7 -7
- teradataml/data/river_data.csv +145 -145
- teradataml/data/roc_example.json +7 -7
- teradataml/data/roc_input.csv +101 -101
- teradataml/data/rule_inputs.csv +6 -6
- teradataml/data/rule_table.csv +2 -2
- teradataml/data/sales.csv +7 -7
- teradataml/data/sales_transaction.csv +501 -501
- teradataml/data/salesdata.csv +342 -342
- teradataml/data/sample_cities.csv +2 -2
- teradataml/data/sample_shapes.csv +10 -10
- teradataml/data/sample_streets.csv +2 -2
- teradataml/data/sampling_example.json +15 -15
- teradataml/data/sax_example.json +8 -8
- teradataml/data/scale_example.json +23 -23
- teradataml/data/scale_housing.csv +11 -11
- teradataml/data/scale_housing_test.csv +6 -6
- teradataml/data/scale_stat.csv +11 -11
- teradataml/data/scalebypartition_example.json +13 -13
- teradataml/data/scalemap_example.json +13 -13
- teradataml/data/scalesummary_example.json +12 -12
- teradataml/data/score_category.csv +101 -101
- teradataml/data/score_summary.csv +4 -4
- teradataml/data/script_example.json +9 -9
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/mapper.py +15 -15
- teradataml/data/scripts/mapper_replace.py +15 -15
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/seeds.csv +10 -10
- teradataml/data/sentenceextractor_example.json +6 -6
- teradataml/data/sentiment_extract_input.csv +11 -11
- teradataml/data/sentiment_train.csv +16 -16
- teradataml/data/sentiment_word.csv +20 -20
- teradataml/data/sentiment_word_input.csv +19 -19
- teradataml/data/sentimentextractor_example.json +24 -24
- teradataml/data/sentimenttrainer_example.json +8 -8
- teradataml/data/sequence_table.csv +10 -10
- teradataml/data/seriessplitter_example.json +7 -7
- teradataml/data/sessionize_example.json +17 -17
- teradataml/data/sessionize_table.csv +116 -116
- teradataml/data/setop_test1.csv +24 -24
- teradataml/data/setop_test2.csv +22 -22
- teradataml/data/soc_nw_edges.csv +10 -10
- teradataml/data/soc_nw_vertices.csv +7 -7
- teradataml/data/souvenir_timeseries.csv +167 -167
- teradataml/data/sparse_iris_attribute.csv +5 -5
- teradataml/data/sparse_iris_test.csv +121 -121
- teradataml/data/sparse_iris_train.csv +601 -601
- teradataml/data/star1.csv +6 -6
- teradataml/data/state_transition.csv +5 -5
- teradataml/data/stock_data.csv +53 -53
- teradataml/data/stock_movement.csv +11 -11
- teradataml/data/stock_vol.csv +76 -76
- teradataml/data/stop_words.csv +8 -8
- teradataml/data/store_sales.csv +37 -37
- teradataml/data/stringsimilarity_example.json +7 -7
- teradataml/data/strsimilarity_input.csv +13 -13
- teradataml/data/students.csv +101 -101
- teradataml/data/svm_iris_input_test.csv +121 -121
- teradataml/data/svm_iris_input_train.csv +481 -481
- teradataml/data/svm_iris_model.csv +7 -7
- teradataml/data/svmdense_example.json +9 -9
- teradataml/data/svmdensepredict_example.json +18 -18
- teradataml/data/svmsparse_example.json +7 -7
- teradataml/data/svmsparsepredict_example.json +13 -13
- teradataml/data/svmsparsesummary_example.json +7 -7
- teradataml/data/target_mobile_data.csv +13 -13
- teradataml/data/target_mobile_data_dense.csv +5 -5
- teradataml/data/templatedata.csv +1201 -1201
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_loan_prediction.csv +53 -53
- teradataml/data/test_pacf_12.csv +37 -37
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/test_river2.csv +109 -109
- teradataml/data/text_inputs.csv +6 -6
- teradataml/data/textchunker_example.json +7 -7
- teradataml/data/textclassifier_example.json +6 -6
- teradataml/data/textclassifier_input.csv +7 -7
- teradataml/data/textclassifiertrainer_example.json +6 -6
- teradataml/data/textmorph_example.json +5 -5
- teradataml/data/textparser_example.json +15 -15
- teradataml/data/texttagger_example.json +11 -11
- teradataml/data/texttokenizer_example.json +6 -6
- teradataml/data/texttrainer_input.csv +11 -11
- teradataml/data/tf_example.json +6 -6
- teradataml/data/tfidf_example.json +13 -13
- teradataml/data/tfidf_input1.csv +201 -201
- teradataml/data/tfidf_train.csv +6 -6
- teradataml/data/time_table1.csv +535 -535
- teradataml/data/time_table2.csv +14 -14
- teradataml/data/timeseriesdata.csv +1601 -1601
- teradataml/data/timeseriesdatasetsd4.csv +105 -105
- teradataml/data/titanic.csv +892 -892
- teradataml/data/token_table.csv +696 -696
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/train_tracking.csv +27 -27
- teradataml/data/transformation_table.csv +5 -5
- teradataml/data/transformation_table_new.csv +1 -1
- teradataml/data/tv_spots.csv +16 -16
- teradataml/data/twod_climate_data.csv +117 -117
- teradataml/data/uaf_example.json +475 -475
- teradataml/data/univariatestatistics_example.json +8 -8
- teradataml/data/unpack_example.json +9 -9
- teradataml/data/unpivot_example.json +9 -9
- teradataml/data/unpivot_input.csv +8 -8
- teradataml/data/us_air_pass.csv +36 -36
- teradataml/data/us_population.csv +624 -624
- teradataml/data/us_states_shapes.csv +52 -52
- teradataml/data/varmax_example.json +17 -17
- teradataml/data/vectordistance_example.json +25 -25
- teradataml/data/ville_climatedata.csv +121 -121
- teradataml/data/ville_tempdata.csv +12 -12
- teradataml/data/ville_tempdata1.csv +12 -12
- teradataml/data/ville_temperature.csv +11 -11
- teradataml/data/waveletTable.csv +1605 -1605
- teradataml/data/waveletTable2.csv +1605 -1605
- teradataml/data/weightedmovavg_example.json +8 -8
- teradataml/data/wft_testing.csv +5 -5
- teradataml/data/wine_data.csv +1600 -0
- teradataml/data/word_embed_input_table1.csv +5 -5
- teradataml/data/word_embed_input_table2.csv +4 -4
- teradataml/data/word_embed_model.csv +22 -22
- teradataml/data/words_input.csv +13 -13
- teradataml/data/xconvolve_complex_left.csv +6 -6
- teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
- teradataml/data/xgboost_example.json +35 -35
- teradataml/data/xgboostpredict_example.json +31 -31
- teradataml/dataframe/copy_to.py +1764 -1698
- teradataml/dataframe/data_transfer.py +2753 -2745
- teradataml/dataframe/dataframe.py +17545 -16946
- teradataml/dataframe/dataframe_utils.py +1837 -1740
- teradataml/dataframe/fastload.py +611 -603
- teradataml/dataframe/indexer.py +424 -424
- teradataml/dataframe/setop.py +1179 -1166
- teradataml/dataframe/sql.py +10090 -6432
- teradataml/dataframe/sql_function_parameters.py +439 -388
- teradataml/dataframe/sql_functions.py +652 -652
- teradataml/dataframe/sql_interfaces.py +220 -220
- teradataml/dataframe/vantage_function_types.py +674 -630
- teradataml/dataframe/window.py +693 -692
- teradataml/dbutils/__init__.py +3 -3
- teradataml/dbutils/dbutils.py +1167 -1150
- teradataml/dbutils/filemgr.py +267 -267
- teradataml/gen_ai/__init__.py +2 -2
- teradataml/gen_ai/convAI.py +472 -472
- teradataml/geospatial/__init__.py +3 -3
- teradataml/geospatial/geodataframe.py +1105 -1094
- teradataml/geospatial/geodataframecolumn.py +392 -387
- teradataml/geospatial/geometry_types.py +925 -925
- teradataml/hyperparameter_tuner/__init__.py +1 -1
- teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
- teradataml/hyperparameter_tuner/utils.py +281 -187
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +121 -124
- teradataml/options/configure.py +337 -336
- teradataml/options/display.py +176 -176
- teradataml/plot/__init__.py +2 -2
- teradataml/plot/axis.py +1388 -1388
- teradataml/plot/constants.py +15 -15
- teradataml/plot/figure.py +398 -398
- teradataml/plot/plot.py +760 -760
- teradataml/plot/query_generator.py +83 -83
- teradataml/plot/subplot.py +216 -216
- teradataml/scriptmgmt/UserEnv.py +3788 -3761
- teradataml/scriptmgmt/__init__.py +3 -3
- teradataml/scriptmgmt/lls_utils.py +1616 -1604
- teradataml/series/series.py +532 -532
- teradataml/series/series_utils.py +71 -71
- teradataml/table_operators/Apply.py +949 -917
- teradataml/table_operators/Script.py +1719 -1982
- teradataml/table_operators/TableOperator.py +1207 -1616
- teradataml/table_operators/__init__.py +2 -3
- teradataml/table_operators/apply_query_generator.py +262 -262
- teradataml/table_operators/query_generator.py +507 -507
- teradataml/table_operators/table_operator_query_generator.py +460 -460
- teradataml/table_operators/table_operator_util.py +631 -639
- teradataml/table_operators/templates/dataframe_apply.template +184 -184
- teradataml/table_operators/templates/dataframe_map.template +176 -176
- teradataml/table_operators/templates/script_executor.template +170 -170
- teradataml/utils/dtypes.py +684 -684
- teradataml/utils/internal_buffer.py +84 -84
- teradataml/utils/print_versions.py +205 -205
- teradataml/utils/utils.py +410 -410
- teradataml/utils/validators.py +2239 -2115
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +270 -41
- teradataml-20.0.0.0.dist-info/RECORD +1038 -0
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +1 -1
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +1 -1
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- teradataml-17.20.0.7.dist-info/RECORD +0 -1280
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
teradataml/utils/utils.py
CHANGED
|
@@ -1,410 +1,410 @@
|
|
|
1
|
-
"""
|
|
2
|
-
Unpublished work.
|
|
3
|
-
Copyright (c) 2023 by Teradata Corporation. All rights reserved.
|
|
4
|
-
TERADATA CORPORATION CONFIDENTIAL AND TRADE SECRET
|
|
5
|
-
|
|
6
|
-
Primary Owner: shivani.kondewar@teradata.com
|
|
7
|
-
Secondary Owner: pradeep.garre@teradata.com
|
|
8
|
-
This includes common functionalities required
|
|
9
|
-
by other classes which can be reused according to the need.
|
|
10
|
-
|
|
11
|
-
"""
|
|
12
|
-
|
|
13
|
-
import functools
|
|
14
|
-
import pandas as pd
|
|
15
|
-
from concurrent.futures import ThreadPoolExecutor, wait
|
|
16
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
17
|
-
from teradataml.common.messages import Messages, MessageCodes
|
|
18
|
-
from teradataml.common.constants import AsyncStatusColumns
|
|
19
|
-
from teradataml.utils.validators import _Validators
|
|
20
|
-
|
|
21
|
-
# TODO: Add an option to set concurrency.
|
|
22
|
-
_td_th_executor = ThreadPoolExecutor(max_workers=4)
|
|
23
|
-
# Internal storage for storing information of async run ids.
|
|
24
|
-
_async_run_id_info = {}
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
def execute_sql(statement, parameters=None):
|
|
28
|
-
"""
|
|
29
|
-
DESCRIPTION:
|
|
30
|
-
Executes the SQL statement by using provided parameters.
|
|
31
|
-
Note:
|
|
32
|
-
Execution of stored procedures and user defined functions is not supported.
|
|
33
|
-
|
|
34
|
-
PARAMETERS:
|
|
35
|
-
statement:
|
|
36
|
-
Required Argument.
|
|
37
|
-
Specifies the SQL statement to execute.
|
|
38
|
-
Types: str
|
|
39
|
-
|
|
40
|
-
parameters:
|
|
41
|
-
Optional Argument.
|
|
42
|
-
Specifies parameters to be used in case of parameterized query.
|
|
43
|
-
Types: list of list, list of tuple
|
|
44
|
-
|
|
45
|
-
RETURNS:
|
|
46
|
-
Cursor object.
|
|
47
|
-
|
|
48
|
-
RAISES:
|
|
49
|
-
TeradataMlException, teradatasql.OperationalError, TypeError, ValueError
|
|
50
|
-
|
|
51
|
-
EXAMPLES:
|
|
52
|
-
# Example 1: Create a table and insert values into the table using SQL.
|
|
53
|
-
# Create a table.
|
|
54
|
-
execute_sql("Create table table1 (col_1 int, col_2 varchar(10), col_3 float);")
|
|
55
|
-
|
|
56
|
-
# Insert values in the table created above.
|
|
57
|
-
execute_sql("Insert into table1 values (1, 'col_val', 2.0);")
|
|
58
|
-
|
|
59
|
-
# Insert values in the table using a parameterized query.
|
|
60
|
-
execute_sql(statement="Insert into table1 values (?, ?, ?);",
|
|
61
|
-
parameters=[[1, 'col_val_1', 10.0],
|
|
62
|
-
[2, 'col_val_2', 20.0]])
|
|
63
|
-
|
|
64
|
-
# Example 2: Execute parameterized 'SELECT' query.
|
|
65
|
-
result_cursor = execute_sql(statement="Select * from table1 where col_1=? and col_3=?;",
|
|
66
|
-
parameters=[(1, 10.0),(1, 20.0)])
|
|
67
|
-
|
|
68
|
-
# Example 3: Run Help Column query on table.
|
|
69
|
-
result_cursor = execute_sql('Help column table1.*;')
|
|
70
|
-
|
|
71
|
-
"""
|
|
72
|
-
# Validate argument types
|
|
73
|
-
arg_info_matrix = []
|
|
74
|
-
arg_info_matrix.append(["statement", statement, False, str, True])
|
|
75
|
-
arg_info_matrix.append(["parameters", parameters, True, (tuple, list), False])
|
|
76
|
-
|
|
77
|
-
_Validators._validate_function_arguments(arg_info_matrix)
|
|
78
|
-
|
|
79
|
-
from teradataml.context.context import get_context
|
|
80
|
-
if get_context() is not None:
|
|
81
|
-
tdsql_con = get_context().raw_connection().driver_connection
|
|
82
|
-
cursor = tdsql_con.cursor()
|
|
83
|
-
return cursor.execute(statement, parameters)
|
|
84
|
-
else:
|
|
85
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.INVALID_CONTEXT_CONNECTION),
|
|
86
|
-
MessageCodes.INVALID_CONTEXT_CONNECTION)
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
class _AsyncDBExecutor:
|
|
90
|
-
"""
|
|
91
|
-
An internal utility to run teradataml API's parallelly by opening
|
|
92
|
-
multiple connections with Vantage.
|
|
93
|
-
Note:
|
|
94
|
-
The utility opens 4 parallel threads to execute the functions
|
|
95
|
-
parallelly.
|
|
96
|
-
"""
|
|
97
|
-
def __init__(self, wait=False):
|
|
98
|
-
"""
|
|
99
|
-
DESCRIPTION:
|
|
100
|
-
Constructor of the class.
|
|
101
|
-
|
|
102
|
-
PARAMETERS:
|
|
103
|
-
wait:
|
|
104
|
-
Optional Argument.
|
|
105
|
-
Specifies the option whether to wait for completion of all
|
|
106
|
-
the threads or not. When set to True, the utility waits till
|
|
107
|
-
all the corresponding threads complete. Otherwise, it executes
|
|
108
|
-
all the threads in background thus making the subsequent action to
|
|
109
|
-
not wait for the completion of threads.
|
|
110
|
-
Default Value: False
|
|
111
|
-
Type: bool
|
|
112
|
-
|
|
113
|
-
RAISES:
|
|
114
|
-
None
|
|
115
|
-
|
|
116
|
-
EXAMPLES:
|
|
117
|
-
# Example1: Execute analytic function ANOVA parallelly by passing different values
|
|
118
|
-
# to parameter 'alpha'.
|
|
119
|
-
load_example_data("teradataml", "insect_sprays")
|
|
120
|
-
insect_sprays = DataFrame("insect_sprays")
|
|
121
|
-
|
|
122
|
-
# Declare the parameters to run ANOVA.
|
|
123
|
-
params1 = {"data": insect_sprays, "alpha": 0.05}
|
|
124
|
-
params2 = {"data": insect_sprays, "alpha": 0.06}
|
|
125
|
-
params3 = {"data": insect_sprays, "alpha": 0.07}
|
|
126
|
-
params4 = {"data": insect_sprays, "alpha": 0.08}
|
|
127
|
-
params5 = {"data": insect_sprays, "alpha": 0.09}
|
|
128
|
-
params6 = {"data": insect_sprays, "alpha": 0.10}
|
|
129
|
-
|
|
130
|
-
# Import "_Async" utility and run ANOVA with above parameters.
|
|
131
|
-
from teradataml.utils.utils import _Async
|
|
132
|
-
async_obj = _Async(wait=True)
|
|
133
|
-
response = async_obj.submit(ANOVA, params1, params2, params3, params4, params5, params6)
|
|
134
|
-
|
|
135
|
-
# Access the results.
|
|
136
|
-
response.results()
|
|
137
|
-
|
|
138
|
-
# Example2: Execute analytic function XGBOOST parallelly in background with
|
|
139
|
-
# different parameters.
|
|
140
|
-
load_example_data("teradataml", "titanic")
|
|
141
|
-
titanic = DataFrame("titanic")
|
|
142
|
-
|
|
143
|
-
# Declare the parameters to run XGBOOST.
|
|
144
|
-
params1 = {"data": titanic,
|
|
145
|
-
"input_columns": ["age", "survived", "pclass"],
|
|
146
|
-
"response_column": 'fare',
|
|
147
|
-
"max_depth": 3,
|
|
148
|
-
"lambda1": 1000.0,
|
|
149
|
-
"model_type": 'Regression',
|
|
150
|
-
"seed": 1,
|
|
151
|
-
"shrinkage_factor": 0.2,
|
|
152
|
-
"iter_num": 3}
|
|
153
|
-
params2 = {"data": titanic,
|
|
154
|
-
"input_columns": ["age", "survived", "pclass"],
|
|
155
|
-
"response_column": 'fare',
|
|
156
|
-
"max_depth": 3,
|
|
157
|
-
"lambda1": 1000.0,
|
|
158
|
-
"model_type": 'Regression',
|
|
159
|
-
"seed": 2,
|
|
160
|
-
"shrinkage_factor": 0.3,
|
|
161
|
-
"iter_num": 4}
|
|
162
|
-
params3 = {"data": titanic,
|
|
163
|
-
"input_columns": ["age", "survived", "pclass"],
|
|
164
|
-
"response_column": 'fare',
|
|
165
|
-
"max_depth": 3,
|
|
166
|
-
"lambda1": 1000.0,
|
|
167
|
-
"model_type": 'Regression',
|
|
168
|
-
"seed": 3,
|
|
169
|
-
"shrinkage_factor": 0.4,
|
|
170
|
-
"iter_num": 5}
|
|
171
|
-
params4 = {"data": titanic,
|
|
172
|
-
"input_columns": ["age", "survived", "pclass"],
|
|
173
|
-
"response_column": 'fare',
|
|
174
|
-
"max_depth": 3,
|
|
175
|
-
"lambda1": 1000.0,
|
|
176
|
-
"model_type": 'Regression',
|
|
177
|
-
"seed": 4,
|
|
178
|
-
"shrinkage_factor": 0.5,
|
|
179
|
-
"iter_num": 6}
|
|
180
|
-
params5 = {"data": titanic,
|
|
181
|
-
"input_columns": ["age", "survived", "pclass"],
|
|
182
|
-
"response_column": 'fare',
|
|
183
|
-
"max_depth": 3,
|
|
184
|
-
"lambda1": 1000.0,
|
|
185
|
-
"model_type": 'Regression',
|
|
186
|
-
"seed": 5,
|
|
187
|
-
"shrinkage_factor": 0.6,
|
|
188
|
-
"iter_num": 7}
|
|
189
|
-
params6 = {"data": titanic,
|
|
190
|
-
"input_columns": ["age", "survived", "pclass"],
|
|
191
|
-
"response_column": 'fare',
|
|
192
|
-
"max_depth": 3,
|
|
193
|
-
"lambda1": 1000.0,
|
|
194
|
-
"model_type": 'Regression',
|
|
195
|
-
"seed": 6,
|
|
196
|
-
"shrinkage_factor": 0.7,
|
|
197
|
-
"iter_num": 8}
|
|
198
|
-
|
|
199
|
-
# Import "_Async" utility and run ANOVA with above parameters.
|
|
200
|
-
from teradataml.utils.utils import _Async
|
|
201
|
-
async_obj = _Async()
|
|
202
|
-
response = async_obj.submit(XGBOOST, params1, params2, params3, params4, params5, params6)
|
|
203
|
-
|
|
204
|
-
# Access the result for first parameter.
|
|
205
|
-
response.result()
|
|
206
|
-
|
|
207
|
-
# Access the result for second parameter.
|
|
208
|
-
response.result(1)
|
|
209
|
-
|
|
210
|
-
# Access the result for last parameter.
|
|
211
|
-
response.result(5)
|
|
212
|
-
"""
|
|
213
|
-
self.__async_runs = []
|
|
214
|
-
self.__wait = wait
|
|
215
|
-
# Note: Do not initiate a seperate thread pool executor.
|
|
216
|
-
# That will create seperate executors for every object.
|
|
217
|
-
# create_context by default uses SingletonThreadPool which
|
|
218
|
-
# means every corresponding thread pool executor opens
|
|
219
|
-
# sessions. Since default cap on connections is 5, this will
|
|
220
|
-
# fail one or the other threads for sure. Also, along with the above
|
|
221
|
-
# mentioned advantage, since the object can run in background, user
|
|
222
|
-
# can invoke any number of _Async objects. Making a seperate
|
|
223
|
-
# executor creates many threads and it will try to open many connections.
|
|
224
|
-
# Setting the executor at global level and using the same will limit
|
|
225
|
-
# the number of connections though user can call any number of _Async
|
|
226
|
-
# jobs as background runs.
|
|
227
|
-
self.__executor = _td_th_executor
|
|
228
|
-
|
|
229
|
-
def submit(self, func, *parameters):
|
|
230
|
-
"""
|
|
231
|
-
DESCRIPTION:
|
|
232
|
-
Function to execute teradataml API with the parameters.
|
|
233
|
-
The function can run "func" with "parameters" either in
|
|
234
|
-
background or foreground based on "wait" option.
|
|
235
|
-
|
|
236
|
-
PARAMETERS:
|
|
237
|
-
func:
|
|
238
|
-
Required Argument.
|
|
239
|
-
Specifies the teradataml API which needs to be executed
|
|
240
|
-
asynchronously.
|
|
241
|
-
Type: class OR function
|
|
242
|
-
|
|
243
|
-
parameters:
|
|
244
|
-
Required Argument.
|
|
245
|
-
Specifies the non keyword arguments which needs to be considered as
|
|
246
|
-
input for "func". The argument accepts any number of arguments and
|
|
247
|
-
every argument should be keyword argument.
|
|
248
|
-
Type: tuple
|
|
249
|
-
|
|
250
|
-
RAISES:
|
|
251
|
-
None
|
|
252
|
-
|
|
253
|
-
RETURNS:
|
|
254
|
-
None
|
|
255
|
-
"""
|
|
256
|
-
self.__async_runs.clear()
|
|
257
|
-
for parameter in parameters:
|
|
258
|
-
self.__async_runs.append(self.__executor.submit(func, **parameter))
|
|
259
|
-
|
|
260
|
-
if self.__wait:
|
|
261
|
-
wait(self.__async_runs)
|
|
262
|
-
|
|
263
|
-
def is_running(self):
|
|
264
|
-
"""
|
|
265
|
-
DESCRIPTION:
|
|
266
|
-
Function to check whether all the threads are completed or not.
|
|
267
|
-
The function returns True when any single thread is either
|
|
268
|
-
running or about to run. It returns False when all individual
|
|
269
|
-
threads are complete.
|
|
270
|
-
|
|
271
|
-
PARAMETERS:
|
|
272
|
-
None
|
|
273
|
-
|
|
274
|
-
RAISES:
|
|
275
|
-
None
|
|
276
|
-
|
|
277
|
-
RETURNS:
|
|
278
|
-
bool
|
|
279
|
-
"""
|
|
280
|
-
return any(async_run.running() for async_run in self.__async_runs)
|
|
281
|
-
|
|
282
|
-
def result(self, index=0):
|
|
283
|
-
"""
|
|
284
|
-
DESCRIPTION:
|
|
285
|
-
Function to get the result for a specific parameter. Order of
|
|
286
|
-
results remains same as input order.
|
|
287
|
-
|
|
288
|
-
PARAMETERS:
|
|
289
|
-
index:
|
|
290
|
-
Optional Argument.
|
|
291
|
-
Specifies the index to get the result.
|
|
292
|
-
Default Value: 0
|
|
293
|
-
Type: int
|
|
294
|
-
|
|
295
|
-
RAISES:
|
|
296
|
-
None
|
|
297
|
-
|
|
298
|
-
RETURNS:
|
|
299
|
-
Result of "func" after execution is complete.
|
|
300
|
-
"""
|
|
301
|
-
return self.__async_runs[index].result()
|
|
302
|
-
|
|
303
|
-
def results(self):
|
|
304
|
-
"""
|
|
305
|
-
DESCRIPTION:
|
|
306
|
-
Function to get the results.
|
|
307
|
-
|
|
308
|
-
PARAMETERS:
|
|
309
|
-
None
|
|
310
|
-
|
|
311
|
-
RAISES:
|
|
312
|
-
None
|
|
313
|
-
|
|
314
|
-
RETURNS:
|
|
315
|
-
list.
|
|
316
|
-
"""
|
|
317
|
-
return [async_run.result() for async_run in self.__async_runs]
|
|
318
|
-
|
|
319
|
-
def async_run_status(run_ids):
|
|
320
|
-
"""
|
|
321
|
-
DESCRIPTION:
|
|
322
|
-
Function to check the status of asynchronous run(s)
|
|
323
|
-
using the unique run id(s).
|
|
324
|
-
|
|
325
|
-
|
|
326
|
-
PARAMETERS:
|
|
327
|
-
run_ids:
|
|
328
|
-
Required Argument.
|
|
329
|
-
Specifies the unique identifier(s) of the asynchronous run.
|
|
330
|
-
Types: str OR list of Strings (str)
|
|
331
|
-
|
|
332
|
-
RETURNS:
|
|
333
|
-
Pandas DataFrame with columns as below:
|
|
334
|
-
* Run Id: Unique identifier of the asynchronous run.
|
|
335
|
-
* Run Description: Description of the asynchronous run.
|
|
336
|
-
* Status: Status of the asynchronous run.
|
|
337
|
-
* Timestamp: Timestamp for 'status'.
|
|
338
|
-
* Additional Details: Addition information of the asynchronous run.
|
|
339
|
-
|
|
340
|
-
|
|
341
|
-
RAISES:
|
|
342
|
-
None
|
|
343
|
-
|
|
344
|
-
EXAMPLES:
|
|
345
|
-
# Examples to showcase the status of asynchronous run ids for OpenAF.
|
|
346
|
-
|
|
347
|
-
# Example 1: Get the status of an environment that has been removed asynchronously.
|
|
348
|
-
>>> env = create_env("testenv1", "python_3.7.13","test env 1")
|
|
349
|
-
User environment 'testenv1' created.
|
|
350
|
-
>>> remove_env("testenv1", asynchronous=True)
|
|
351
|
-
Request to remove environment initiated successfully. Check the status using list_user_envs(). If environment is not removed, check the status of asynchronous call using async_run_status('1ba43e0a-4285-41e1-8738-5f8895c180ee') or get_env('testenv1').status('1ba43e0a-4285-41e1-8738-5f8895c180ee')
|
|
352
|
-
'1ba43e0a-4285-41e1-8738-5f8895c180ee'
|
|
353
|
-
>>> async_run_status('1ba43e0a-4285-41e1-8738-5f8895c180ee')
|
|
354
|
-
Run Id Run Description Status Timestamp Additional Details
|
|
355
|
-
0 1ba43e0a-4285-41e1-8738-5f8895c180ee Remove 'testenv1' user environment. Started 2023-08-31T09:27:06Z
|
|
356
|
-
1 1ba43e0a-4285-41e1-8738-5f8895c180ee Remove 'testenv1' user environment. Finished 2023-08-31T09:27:07Z
|
|
357
|
-
|
|
358
|
-
# Example 2: Get the status of multiple asynchronous run ids for removed environments.
|
|
359
|
-
>>> env1 = create_env("testenv1", "python_3.7.13","test env 1")
|
|
360
|
-
>>> env2 = create_env("testenv2", "python_3.7.13","test env 2")
|
|
361
|
-
User environment 'testenv1' created.
|
|
362
|
-
User environment 'testenv2' created.
|
|
363
|
-
|
|
364
|
-
# Remove 'testenv1' environment asynchronously.
|
|
365
|
-
>>> remove_env("testenv1", asynchronous=True)
|
|
366
|
-
Request to remove environment initiated successfully. Check the status using list_user_envs(). If environment is not removed, check the status of asynchronous call using async_run_status('24812988-b124-45c7-80b1-6a4a826dc110') or get_env('testenv1').status('24812988-b124-45c7-80b1-6a4a826dc110')
|
|
367
|
-
'24812988-b124-45c7-80b1-6a4a826dc110'
|
|
368
|
-
|
|
369
|
-
# Remove 'testenv2' environment asynchronously.
|
|
370
|
-
>>> remove_env("testenv2", asynchronous=True)
|
|
371
|
-
Request to remove environment initiated successfully. Check the status using list_user_envs(). If environment is not removed, check the status of asynchronous call using async_run_status('f686d756-58bb-448b-81e2-979155cb8140') or get_env('testenv2').status('f686d756-58bb-448b-81e2-979155cb8140')
|
|
372
|
-
'f686d756-58bb-448b-81e2-979155cb8140'
|
|
373
|
-
|
|
374
|
-
# Check the status of claim IDs for asynchronously installed libraries and removed environments.
|
|
375
|
-
>>> async_run_status(['24812988-b124-45c7-80b1-6a4a826dc110', 'f686d756-58bb-448b-81e2-979155cb8140'])
|
|
376
|
-
Run Id Run Description Status Timestamp Additional Details
|
|
377
|
-
0 24812988-b124-45c7-80b1-6a4a826dc110 Remove 'testenv1' user environment. Started 2023-08-31T04:00:44Z
|
|
378
|
-
1 24812988-b124-45c7-80b1-6a4a826dc110 Remove 'testenv1' user environment. Finished 2023-08-31T04:00:45Z
|
|
379
|
-
2 f686d756-58bb-448b-81e2-979155cb8140 Remove 'testenv2' user environment. Started 2023-08-31T04:00:47Z
|
|
380
|
-
3 f686d756-58bb-448b-81e2-979155cb8140 Remove 'testenv2' user environment. Finished 2023-08-31T04:00:48Z
|
|
381
|
-
"""
|
|
382
|
-
__arg_info_matrix = []
|
|
383
|
-
__arg_info_matrix.append(["run_ids", run_ids, False, (str, list), True])
|
|
384
|
-
|
|
385
|
-
# Validate arguments.
|
|
386
|
-
_Validators._validate_function_arguments(__arg_info_matrix)
|
|
387
|
-
|
|
388
|
-
# Create thread pool executor to get the status of claim_ids parallelly.
|
|
389
|
-
executor = ThreadPoolExecutor(max_workers=10)
|
|
390
|
-
|
|
391
|
-
run_ids = [run_ids] if isinstance(run_ids, str) else run_ids
|
|
392
|
-
|
|
393
|
-
# Store all the future object in a list.
|
|
394
|
-
futures = []
|
|
395
|
-
for run_id in run_ids:
|
|
396
|
-
# Get the function mapped with the ID.
|
|
397
|
-
func = _async_run_id_info.get(run_id, {}).get("mapped_func")
|
|
398
|
-
futures.append(executor.submit(func, run_id))
|
|
399
|
-
|
|
400
|
-
# Wait till all the futures complete.
|
|
401
|
-
wait(futures)
|
|
402
|
-
|
|
403
|
-
pd_columns = [AsyncStatusColumns.RUN_ID.value,
|
|
404
|
-
AsyncStatusColumns.RUN_DESCRIPTION.value,
|
|
405
|
-
AsyncStatusColumns.STATUS.value,
|
|
406
|
-
AsyncStatusColumns.TIMESTAMP.value,
|
|
407
|
-
AsyncStatusColumns.ADDITIONAL_DETAILS.value]
|
|
408
|
-
return pd.DataFrame.from_records(
|
|
409
|
-
functools.reduce(lambda x, y: x + y, (future.result() for future in futures)),
|
|
410
|
-
columns=pd_columns)
|
|
1
|
+
"""
|
|
2
|
+
Unpublished work.
|
|
3
|
+
Copyright (c) 2023 by Teradata Corporation. All rights reserved.
|
|
4
|
+
TERADATA CORPORATION CONFIDENTIAL AND TRADE SECRET
|
|
5
|
+
|
|
6
|
+
Primary Owner: shivani.kondewar@teradata.com
|
|
7
|
+
Secondary Owner: pradeep.garre@teradata.com
|
|
8
|
+
This includes common functionalities required
|
|
9
|
+
by other classes which can be reused according to the need.
|
|
10
|
+
|
|
11
|
+
"""
|
|
12
|
+
|
|
13
|
+
import functools
|
|
14
|
+
import pandas as pd
|
|
15
|
+
from concurrent.futures import ThreadPoolExecutor, wait
|
|
16
|
+
from teradataml.common.exceptions import TeradataMlException
|
|
17
|
+
from teradataml.common.messages import Messages, MessageCodes
|
|
18
|
+
from teradataml.common.constants import AsyncStatusColumns
|
|
19
|
+
from teradataml.utils.validators import _Validators
|
|
20
|
+
|
|
21
|
+
# TODO: Add an option to set concurrency.
|
|
22
|
+
_td_th_executor = ThreadPoolExecutor(max_workers=4)
|
|
23
|
+
# Internal storage for storing information of async run ids.
|
|
24
|
+
_async_run_id_info = {}
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
def execute_sql(statement, parameters=None):
|
|
28
|
+
"""
|
|
29
|
+
DESCRIPTION:
|
|
30
|
+
Executes the SQL statement by using provided parameters.
|
|
31
|
+
Note:
|
|
32
|
+
Execution of stored procedures and user defined functions is not supported.
|
|
33
|
+
|
|
34
|
+
PARAMETERS:
|
|
35
|
+
statement:
|
|
36
|
+
Required Argument.
|
|
37
|
+
Specifies the SQL statement to execute.
|
|
38
|
+
Types: str
|
|
39
|
+
|
|
40
|
+
parameters:
|
|
41
|
+
Optional Argument.
|
|
42
|
+
Specifies parameters to be used in case of parameterized query.
|
|
43
|
+
Types: list of list, list of tuple
|
|
44
|
+
|
|
45
|
+
RETURNS:
|
|
46
|
+
Cursor object.
|
|
47
|
+
|
|
48
|
+
RAISES:
|
|
49
|
+
TeradataMlException, teradatasql.OperationalError, TypeError, ValueError
|
|
50
|
+
|
|
51
|
+
EXAMPLES:
|
|
52
|
+
# Example 1: Create a table and insert values into the table using SQL.
|
|
53
|
+
# Create a table.
|
|
54
|
+
execute_sql("Create table table1 (col_1 int, col_2 varchar(10), col_3 float);")
|
|
55
|
+
|
|
56
|
+
# Insert values in the table created above.
|
|
57
|
+
execute_sql("Insert into table1 values (1, 'col_val', 2.0);")
|
|
58
|
+
|
|
59
|
+
# Insert values in the table using a parameterized query.
|
|
60
|
+
execute_sql(statement="Insert into table1 values (?, ?, ?);",
|
|
61
|
+
parameters=[[1, 'col_val_1', 10.0],
|
|
62
|
+
[2, 'col_val_2', 20.0]])
|
|
63
|
+
|
|
64
|
+
# Example 2: Execute parameterized 'SELECT' query.
|
|
65
|
+
result_cursor = execute_sql(statement="Select * from table1 where col_1=? and col_3=?;",
|
|
66
|
+
parameters=[(1, 10.0),(1, 20.0)])
|
|
67
|
+
|
|
68
|
+
# Example 3: Run Help Column query on table.
|
|
69
|
+
result_cursor = execute_sql('Help column table1.*;')
|
|
70
|
+
|
|
71
|
+
"""
|
|
72
|
+
# Validate argument types
|
|
73
|
+
arg_info_matrix = []
|
|
74
|
+
arg_info_matrix.append(["statement", statement, False, str, True])
|
|
75
|
+
arg_info_matrix.append(["parameters", parameters, True, (tuple, list), False])
|
|
76
|
+
|
|
77
|
+
_Validators._validate_function_arguments(arg_info_matrix)
|
|
78
|
+
|
|
79
|
+
from teradataml.context.context import get_context
|
|
80
|
+
if get_context() is not None:
|
|
81
|
+
tdsql_con = get_context().raw_connection().driver_connection
|
|
82
|
+
cursor = tdsql_con.cursor()
|
|
83
|
+
return cursor.execute(statement, parameters)
|
|
84
|
+
else:
|
|
85
|
+
raise TeradataMlException(Messages.get_message(MessageCodes.INVALID_CONTEXT_CONNECTION),
|
|
86
|
+
MessageCodes.INVALID_CONTEXT_CONNECTION)
|
|
87
|
+
|
|
88
|
+
|
|
89
|
+
class _AsyncDBExecutor:
|
|
90
|
+
"""
|
|
91
|
+
An internal utility to run teradataml API's parallelly by opening
|
|
92
|
+
multiple connections with Vantage.
|
|
93
|
+
Note:
|
|
94
|
+
The utility opens 4 parallel threads to execute the functions
|
|
95
|
+
parallelly.
|
|
96
|
+
"""
|
|
97
|
+
def __init__(self, wait=False):
|
|
98
|
+
"""
|
|
99
|
+
DESCRIPTION:
|
|
100
|
+
Constructor of the class.
|
|
101
|
+
|
|
102
|
+
PARAMETERS:
|
|
103
|
+
wait:
|
|
104
|
+
Optional Argument.
|
|
105
|
+
Specifies the option whether to wait for completion of all
|
|
106
|
+
the threads or not. When set to True, the utility waits till
|
|
107
|
+
all the corresponding threads complete. Otherwise, it executes
|
|
108
|
+
all the threads in background thus making the subsequent action to
|
|
109
|
+
not wait for the completion of threads.
|
|
110
|
+
Default Value: False
|
|
111
|
+
Type: bool
|
|
112
|
+
|
|
113
|
+
RAISES:
|
|
114
|
+
None
|
|
115
|
+
|
|
116
|
+
EXAMPLES:
|
|
117
|
+
# Example1: Execute analytic function ANOVA parallelly by passing different values
|
|
118
|
+
# to parameter 'alpha'.
|
|
119
|
+
load_example_data("teradataml", "insect_sprays")
|
|
120
|
+
insect_sprays = DataFrame("insect_sprays")
|
|
121
|
+
|
|
122
|
+
# Declare the parameters to run ANOVA.
|
|
123
|
+
params1 = {"data": insect_sprays, "alpha": 0.05}
|
|
124
|
+
params2 = {"data": insect_sprays, "alpha": 0.06}
|
|
125
|
+
params3 = {"data": insect_sprays, "alpha": 0.07}
|
|
126
|
+
params4 = {"data": insect_sprays, "alpha": 0.08}
|
|
127
|
+
params5 = {"data": insect_sprays, "alpha": 0.09}
|
|
128
|
+
params6 = {"data": insect_sprays, "alpha": 0.10}
|
|
129
|
+
|
|
130
|
+
# Import "_Async" utility and run ANOVA with above parameters.
|
|
131
|
+
from teradataml.utils.utils import _Async
|
|
132
|
+
async_obj = _Async(wait=True)
|
|
133
|
+
response = async_obj.submit(ANOVA, params1, params2, params3, params4, params5, params6)
|
|
134
|
+
|
|
135
|
+
# Access the results.
|
|
136
|
+
response.results()
|
|
137
|
+
|
|
138
|
+
# Example2: Execute analytic function XGBOOST parallelly in background with
|
|
139
|
+
# different parameters.
|
|
140
|
+
load_example_data("teradataml", "titanic")
|
|
141
|
+
titanic = DataFrame("titanic")
|
|
142
|
+
|
|
143
|
+
# Declare the parameters to run XGBOOST.
|
|
144
|
+
params1 = {"data": titanic,
|
|
145
|
+
"input_columns": ["age", "survived", "pclass"],
|
|
146
|
+
"response_column": 'fare',
|
|
147
|
+
"max_depth": 3,
|
|
148
|
+
"lambda1": 1000.0,
|
|
149
|
+
"model_type": 'Regression',
|
|
150
|
+
"seed": 1,
|
|
151
|
+
"shrinkage_factor": 0.2,
|
|
152
|
+
"iter_num": 3}
|
|
153
|
+
params2 = {"data": titanic,
|
|
154
|
+
"input_columns": ["age", "survived", "pclass"],
|
|
155
|
+
"response_column": 'fare',
|
|
156
|
+
"max_depth": 3,
|
|
157
|
+
"lambda1": 1000.0,
|
|
158
|
+
"model_type": 'Regression',
|
|
159
|
+
"seed": 2,
|
|
160
|
+
"shrinkage_factor": 0.3,
|
|
161
|
+
"iter_num": 4}
|
|
162
|
+
params3 = {"data": titanic,
|
|
163
|
+
"input_columns": ["age", "survived", "pclass"],
|
|
164
|
+
"response_column": 'fare',
|
|
165
|
+
"max_depth": 3,
|
|
166
|
+
"lambda1": 1000.0,
|
|
167
|
+
"model_type": 'Regression',
|
|
168
|
+
"seed": 3,
|
|
169
|
+
"shrinkage_factor": 0.4,
|
|
170
|
+
"iter_num": 5}
|
|
171
|
+
params4 = {"data": titanic,
|
|
172
|
+
"input_columns": ["age", "survived", "pclass"],
|
|
173
|
+
"response_column": 'fare',
|
|
174
|
+
"max_depth": 3,
|
|
175
|
+
"lambda1": 1000.0,
|
|
176
|
+
"model_type": 'Regression',
|
|
177
|
+
"seed": 4,
|
|
178
|
+
"shrinkage_factor": 0.5,
|
|
179
|
+
"iter_num": 6}
|
|
180
|
+
params5 = {"data": titanic,
|
|
181
|
+
"input_columns": ["age", "survived", "pclass"],
|
|
182
|
+
"response_column": 'fare',
|
|
183
|
+
"max_depth": 3,
|
|
184
|
+
"lambda1": 1000.0,
|
|
185
|
+
"model_type": 'Regression',
|
|
186
|
+
"seed": 5,
|
|
187
|
+
"shrinkage_factor": 0.6,
|
|
188
|
+
"iter_num": 7}
|
|
189
|
+
params6 = {"data": titanic,
|
|
190
|
+
"input_columns": ["age", "survived", "pclass"],
|
|
191
|
+
"response_column": 'fare',
|
|
192
|
+
"max_depth": 3,
|
|
193
|
+
"lambda1": 1000.0,
|
|
194
|
+
"model_type": 'Regression',
|
|
195
|
+
"seed": 6,
|
|
196
|
+
"shrinkage_factor": 0.7,
|
|
197
|
+
"iter_num": 8}
|
|
198
|
+
|
|
199
|
+
# Import "_Async" utility and run ANOVA with above parameters.
|
|
200
|
+
from teradataml.utils.utils import _Async
|
|
201
|
+
async_obj = _Async()
|
|
202
|
+
response = async_obj.submit(XGBOOST, params1, params2, params3, params4, params5, params6)
|
|
203
|
+
|
|
204
|
+
# Access the result for first parameter.
|
|
205
|
+
response.result()
|
|
206
|
+
|
|
207
|
+
# Access the result for second parameter.
|
|
208
|
+
response.result(1)
|
|
209
|
+
|
|
210
|
+
# Access the result for last parameter.
|
|
211
|
+
response.result(5)
|
|
212
|
+
"""
|
|
213
|
+
self.__async_runs = []
|
|
214
|
+
self.__wait = wait
|
|
215
|
+
# Note: Do not initiate a seperate thread pool executor.
|
|
216
|
+
# That will create seperate executors for every object.
|
|
217
|
+
# create_context by default uses SingletonThreadPool which
|
|
218
|
+
# means every corresponding thread pool executor opens
|
|
219
|
+
# sessions. Since default cap on connections is 5, this will
|
|
220
|
+
# fail one or the other threads for sure. Also, along with the above
|
|
221
|
+
# mentioned advantage, since the object can run in background, user
|
|
222
|
+
# can invoke any number of _Async objects. Making a seperate
|
|
223
|
+
# executor creates many threads and it will try to open many connections.
|
|
224
|
+
# Setting the executor at global level and using the same will limit
|
|
225
|
+
# the number of connections though user can call any number of _Async
|
|
226
|
+
# jobs as background runs.
|
|
227
|
+
self.__executor = _td_th_executor
|
|
228
|
+
|
|
229
|
+
def submit(self, func, *parameters):
|
|
230
|
+
"""
|
|
231
|
+
DESCRIPTION:
|
|
232
|
+
Function to execute teradataml API with the parameters.
|
|
233
|
+
The function can run "func" with "parameters" either in
|
|
234
|
+
background or foreground based on "wait" option.
|
|
235
|
+
|
|
236
|
+
PARAMETERS:
|
|
237
|
+
func:
|
|
238
|
+
Required Argument.
|
|
239
|
+
Specifies the teradataml API which needs to be executed
|
|
240
|
+
asynchronously.
|
|
241
|
+
Type: class OR function
|
|
242
|
+
|
|
243
|
+
parameters:
|
|
244
|
+
Required Argument.
|
|
245
|
+
Specifies the non keyword arguments which needs to be considered as
|
|
246
|
+
input for "func". The argument accepts any number of arguments and
|
|
247
|
+
every argument should be keyword argument.
|
|
248
|
+
Type: tuple
|
|
249
|
+
|
|
250
|
+
RAISES:
|
|
251
|
+
None
|
|
252
|
+
|
|
253
|
+
RETURNS:
|
|
254
|
+
None
|
|
255
|
+
"""
|
|
256
|
+
self.__async_runs.clear()
|
|
257
|
+
for parameter in parameters:
|
|
258
|
+
self.__async_runs.append(self.__executor.submit(func, **parameter))
|
|
259
|
+
|
|
260
|
+
if self.__wait:
|
|
261
|
+
wait(self.__async_runs)
|
|
262
|
+
|
|
263
|
+
def is_running(self):
|
|
264
|
+
"""
|
|
265
|
+
DESCRIPTION:
|
|
266
|
+
Function to check whether all the threads are completed or not.
|
|
267
|
+
The function returns True when any single thread is either
|
|
268
|
+
running or about to run. It returns False when all individual
|
|
269
|
+
threads are complete.
|
|
270
|
+
|
|
271
|
+
PARAMETERS:
|
|
272
|
+
None
|
|
273
|
+
|
|
274
|
+
RAISES:
|
|
275
|
+
None
|
|
276
|
+
|
|
277
|
+
RETURNS:
|
|
278
|
+
bool
|
|
279
|
+
"""
|
|
280
|
+
return any(async_run.running() for async_run in self.__async_runs)
|
|
281
|
+
|
|
282
|
+
def result(self, index=0):
|
|
283
|
+
"""
|
|
284
|
+
DESCRIPTION:
|
|
285
|
+
Function to get the result for a specific parameter. Order of
|
|
286
|
+
results remains same as input order.
|
|
287
|
+
|
|
288
|
+
PARAMETERS:
|
|
289
|
+
index:
|
|
290
|
+
Optional Argument.
|
|
291
|
+
Specifies the index to get the result.
|
|
292
|
+
Default Value: 0
|
|
293
|
+
Type: int
|
|
294
|
+
|
|
295
|
+
RAISES:
|
|
296
|
+
None
|
|
297
|
+
|
|
298
|
+
RETURNS:
|
|
299
|
+
Result of "func" after execution is complete.
|
|
300
|
+
"""
|
|
301
|
+
return self.__async_runs[index].result()
|
|
302
|
+
|
|
303
|
+
def results(self):
|
|
304
|
+
"""
|
|
305
|
+
DESCRIPTION:
|
|
306
|
+
Function to get the results.
|
|
307
|
+
|
|
308
|
+
PARAMETERS:
|
|
309
|
+
None
|
|
310
|
+
|
|
311
|
+
RAISES:
|
|
312
|
+
None
|
|
313
|
+
|
|
314
|
+
RETURNS:
|
|
315
|
+
list.
|
|
316
|
+
"""
|
|
317
|
+
return [async_run.result() for async_run in self.__async_runs]
|
|
318
|
+
|
|
319
|
+
def async_run_status(run_ids):
|
|
320
|
+
"""
|
|
321
|
+
DESCRIPTION:
|
|
322
|
+
Function to check the status of asynchronous run(s)
|
|
323
|
+
using the unique run id(s).
|
|
324
|
+
|
|
325
|
+
|
|
326
|
+
PARAMETERS:
|
|
327
|
+
run_ids:
|
|
328
|
+
Required Argument.
|
|
329
|
+
Specifies the unique identifier(s) of the asynchronous run.
|
|
330
|
+
Types: str OR list of Strings (str)
|
|
331
|
+
|
|
332
|
+
RETURNS:
|
|
333
|
+
Pandas DataFrame with columns as below:
|
|
334
|
+
* Run Id: Unique identifier of the asynchronous run.
|
|
335
|
+
* Run Description: Description of the asynchronous run.
|
|
336
|
+
* Status: Status of the asynchronous run.
|
|
337
|
+
* Timestamp: Timestamp for 'status'.
|
|
338
|
+
* Additional Details: Addition information of the asynchronous run.
|
|
339
|
+
|
|
340
|
+
|
|
341
|
+
RAISES:
|
|
342
|
+
None
|
|
343
|
+
|
|
344
|
+
EXAMPLES:
|
|
345
|
+
# Examples to showcase the status of asynchronous run ids for OpenAF.
|
|
346
|
+
|
|
347
|
+
# Example 1: Get the status of an environment that has been removed asynchronously.
|
|
348
|
+
>>> env = create_env("testenv1", "python_3.7.13","test env 1")
|
|
349
|
+
User environment 'testenv1' created.
|
|
350
|
+
>>> remove_env("testenv1", asynchronous=True)
|
|
351
|
+
Request to remove environment initiated successfully. Check the status using list_user_envs(). If environment is not removed, check the status of asynchronous call using async_run_status('1ba43e0a-4285-41e1-8738-5f8895c180ee') or get_env('testenv1').status('1ba43e0a-4285-41e1-8738-5f8895c180ee')
|
|
352
|
+
'1ba43e0a-4285-41e1-8738-5f8895c180ee'
|
|
353
|
+
>>> async_run_status('1ba43e0a-4285-41e1-8738-5f8895c180ee')
|
|
354
|
+
Run Id Run Description Status Timestamp Additional Details
|
|
355
|
+
0 1ba43e0a-4285-41e1-8738-5f8895c180ee Remove 'testenv1' user environment. Started 2023-08-31T09:27:06Z
|
|
356
|
+
1 1ba43e0a-4285-41e1-8738-5f8895c180ee Remove 'testenv1' user environment. Finished 2023-08-31T09:27:07Z
|
|
357
|
+
|
|
358
|
+
# Example 2: Get the status of multiple asynchronous run ids for removed environments.
|
|
359
|
+
>>> env1 = create_env("testenv1", "python_3.7.13","test env 1")
|
|
360
|
+
>>> env2 = create_env("testenv2", "python_3.7.13","test env 2")
|
|
361
|
+
User environment 'testenv1' created.
|
|
362
|
+
User environment 'testenv2' created.
|
|
363
|
+
|
|
364
|
+
# Remove 'testenv1' environment asynchronously.
|
|
365
|
+
>>> remove_env("testenv1", asynchronous=True)
|
|
366
|
+
Request to remove environment initiated successfully. Check the status using list_user_envs(). If environment is not removed, check the status of asynchronous call using async_run_status('24812988-b124-45c7-80b1-6a4a826dc110') or get_env('testenv1').status('24812988-b124-45c7-80b1-6a4a826dc110')
|
|
367
|
+
'24812988-b124-45c7-80b1-6a4a826dc110'
|
|
368
|
+
|
|
369
|
+
# Remove 'testenv2' environment asynchronously.
|
|
370
|
+
>>> remove_env("testenv2", asynchronous=True)
|
|
371
|
+
Request to remove environment initiated successfully. Check the status using list_user_envs(). If environment is not removed, check the status of asynchronous call using async_run_status('f686d756-58bb-448b-81e2-979155cb8140') or get_env('testenv2').status('f686d756-58bb-448b-81e2-979155cb8140')
|
|
372
|
+
'f686d756-58bb-448b-81e2-979155cb8140'
|
|
373
|
+
|
|
374
|
+
# Check the status of claim IDs for asynchronously installed libraries and removed environments.
|
|
375
|
+
>>> async_run_status(['24812988-b124-45c7-80b1-6a4a826dc110', 'f686d756-58bb-448b-81e2-979155cb8140'])
|
|
376
|
+
Run Id Run Description Status Timestamp Additional Details
|
|
377
|
+
0 24812988-b124-45c7-80b1-6a4a826dc110 Remove 'testenv1' user environment. Started 2023-08-31T04:00:44Z
|
|
378
|
+
1 24812988-b124-45c7-80b1-6a4a826dc110 Remove 'testenv1' user environment. Finished 2023-08-31T04:00:45Z
|
|
379
|
+
2 f686d756-58bb-448b-81e2-979155cb8140 Remove 'testenv2' user environment. Started 2023-08-31T04:00:47Z
|
|
380
|
+
3 f686d756-58bb-448b-81e2-979155cb8140 Remove 'testenv2' user environment. Finished 2023-08-31T04:00:48Z
|
|
381
|
+
"""
|
|
382
|
+
__arg_info_matrix = []
|
|
383
|
+
__arg_info_matrix.append(["run_ids", run_ids, False, (str, list), True])
|
|
384
|
+
|
|
385
|
+
# Validate arguments.
|
|
386
|
+
_Validators._validate_function_arguments(__arg_info_matrix)
|
|
387
|
+
|
|
388
|
+
# Create thread pool executor to get the status of claim_ids parallelly.
|
|
389
|
+
executor = ThreadPoolExecutor(max_workers=10)
|
|
390
|
+
|
|
391
|
+
run_ids = [run_ids] if isinstance(run_ids, str) else run_ids
|
|
392
|
+
|
|
393
|
+
# Store all the future object in a list.
|
|
394
|
+
futures = []
|
|
395
|
+
for run_id in run_ids:
|
|
396
|
+
# Get the function mapped with the ID.
|
|
397
|
+
func = _async_run_id_info.get(run_id, {}).get("mapped_func")
|
|
398
|
+
futures.append(executor.submit(func, run_id))
|
|
399
|
+
|
|
400
|
+
# Wait till all the futures complete.
|
|
401
|
+
wait(futures)
|
|
402
|
+
|
|
403
|
+
pd_columns = [AsyncStatusColumns.RUN_ID.value,
|
|
404
|
+
AsyncStatusColumns.RUN_DESCRIPTION.value,
|
|
405
|
+
AsyncStatusColumns.STATUS.value,
|
|
406
|
+
AsyncStatusColumns.TIMESTAMP.value,
|
|
407
|
+
AsyncStatusColumns.ADDITIONAL_DETAILS.value]
|
|
408
|
+
return pd.DataFrame.from_records(
|
|
409
|
+
functools.reduce(lambda x, y: x + y, (future.result() for future in futures)),
|
|
410
|
+
columns=pd_columns)
|