teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (1285) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +1864 -1640
  4. teradataml/__init__.py +70 -60
  5. teradataml/_version.py +11 -11
  6. teradataml/analytics/Transformations.py +2995 -2995
  7. teradataml/analytics/__init__.py +81 -83
  8. teradataml/analytics/analytic_function_executor.py +2013 -2010
  9. teradataml/analytics/analytic_query_generator.py +958 -958
  10. teradataml/analytics/byom/H2OPredict.py +514 -514
  11. teradataml/analytics/byom/PMMLPredict.py +437 -437
  12. teradataml/analytics/byom/__init__.py +14 -14
  13. teradataml/analytics/json_parser/__init__.py +130 -130
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
  15. teradataml/analytics/json_parser/json_store.py +191 -191
  16. teradataml/analytics/json_parser/metadata.py +1637 -1637
  17. teradataml/analytics/json_parser/utils.py +804 -803
  18. teradataml/analytics/meta_class.py +196 -196
  19. teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
  21. teradataml/analytics/sqle/__init__.py +97 -110
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
  24. teradataml/analytics/table_operator/__init__.py +10 -10
  25. teradataml/analytics/uaf/__init__.py +63 -63
  26. teradataml/analytics/utils.py +693 -692
  27. teradataml/analytics/valib.py +1603 -1600
  28. teradataml/automl/__init__.py +1628 -0
  29. teradataml/automl/custom_json_utils.py +1270 -0
  30. teradataml/automl/data_preparation.py +993 -0
  31. teradataml/automl/data_transformation.py +727 -0
  32. teradataml/automl/feature_engineering.py +1648 -0
  33. teradataml/automl/feature_exploration.py +547 -0
  34. teradataml/automl/model_evaluation.py +163 -0
  35. teradataml/automl/model_training.py +887 -0
  36. teradataml/catalog/__init__.py +1 -3
  37. teradataml/catalog/byom.py +1759 -1716
  38. teradataml/catalog/function_argument_mapper.py +859 -861
  39. teradataml/catalog/model_cataloging_utils.py +491 -1510
  40. teradataml/clients/pkce_client.py +481 -481
  41. teradataml/common/aed_utils.py +6 -2
  42. teradataml/common/bulk_exposed_utils.py +111 -111
  43. teradataml/common/constants.py +1433 -1441
  44. teradataml/common/deprecations.py +160 -0
  45. teradataml/common/exceptions.py +73 -73
  46. teradataml/common/formula.py +742 -742
  47. teradataml/common/garbagecollector.py +592 -635
  48. teradataml/common/messagecodes.py +422 -431
  49. teradataml/common/messages.py +227 -231
  50. teradataml/common/sqlbundle.py +693 -693
  51. teradataml/common/td_coltype_code_to_tdtype.py +48 -48
  52. teradataml/common/utils.py +2418 -2500
  53. teradataml/common/warnings.py +25 -25
  54. teradataml/common/wrapper_utils.py +1 -110
  55. teradataml/config/dummy_file1.cfg +4 -4
  56. teradataml/config/dummy_file2.cfg +2 -2
  57. teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
  58. teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
  59. teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
  60. teradataml/context/aed_context.py +217 -217
  61. teradataml/context/context.py +1071 -999
  62. teradataml/data/A_loan.csv +19 -19
  63. teradataml/data/BINARY_REALS_LEFT.csv +11 -11
  64. teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
  65. teradataml/data/B_loan.csv +49 -49
  66. teradataml/data/BuoyData2.csv +17 -17
  67. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
  68. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
  69. teradataml/data/Convolve2RealsLeft.csv +5 -5
  70. teradataml/data/Convolve2RealsRight.csv +5 -5
  71. teradataml/data/Convolve2ValidLeft.csv +11 -11
  72. teradataml/data/Convolve2ValidRight.csv +11 -11
  73. teradataml/data/DFFTConv_Real_8_8.csv +65 -65
  74. teradataml/data/Orders1_12mf.csv +24 -24
  75. teradataml/data/Pi_loan.csv +7 -7
  76. teradataml/data/SMOOTHED_DATA.csv +7 -7
  77. teradataml/data/TestDFFT8.csv +9 -9
  78. teradataml/data/TestRiver.csv +109 -109
  79. teradataml/data/Traindata.csv +28 -28
  80. teradataml/data/acf.csv +17 -17
  81. teradataml/data/adaboost_example.json +34 -34
  82. teradataml/data/adaboostpredict_example.json +24 -24
  83. teradataml/data/additional_table.csv +10 -10
  84. teradataml/data/admissions_test.csv +21 -21
  85. teradataml/data/admissions_train.csv +41 -41
  86. teradataml/data/admissions_train_nulls.csv +41 -41
  87. teradataml/data/ageandheight.csv +13 -13
  88. teradataml/data/ageandpressure.csv +31 -31
  89. teradataml/data/antiselect_example.json +36 -36
  90. teradataml/data/antiselect_input.csv +8 -8
  91. teradataml/data/antiselect_input_mixed_case.csv +8 -8
  92. teradataml/data/applicant_external.csv +6 -6
  93. teradataml/data/applicant_reference.csv +6 -6
  94. teradataml/data/arima_example.json +9 -9
  95. teradataml/data/assortedtext_input.csv +8 -8
  96. teradataml/data/attribution_example.json +33 -33
  97. teradataml/data/attribution_sample_table.csv +27 -27
  98. teradataml/data/attribution_sample_table1.csv +6 -6
  99. teradataml/data/attribution_sample_table2.csv +11 -11
  100. teradataml/data/bank_churn.csv +10001 -0
  101. teradataml/data/bank_web_clicks1.csv +42 -42
  102. teradataml/data/bank_web_clicks2.csv +91 -91
  103. teradataml/data/bank_web_url.csv +85 -85
  104. teradataml/data/barrier.csv +2 -2
  105. teradataml/data/barrier_new.csv +3 -3
  106. teradataml/data/betweenness_example.json +13 -13
  107. teradataml/data/bin_breaks.csv +8 -8
  108. teradataml/data/bin_fit_ip.csv +3 -3
  109. teradataml/data/binary_complex_left.csv +11 -11
  110. teradataml/data/binary_complex_right.csv +11 -11
  111. teradataml/data/binary_matrix_complex_left.csv +21 -21
  112. teradataml/data/binary_matrix_complex_right.csv +21 -21
  113. teradataml/data/binary_matrix_real_left.csv +21 -21
  114. teradataml/data/binary_matrix_real_right.csv +21 -21
  115. teradataml/data/blood2ageandweight.csv +26 -26
  116. teradataml/data/bmi.csv +501 -0
  117. teradataml/data/boston.csv +507 -507
  118. teradataml/data/buoydata_mix.csv +11 -11
  119. teradataml/data/burst_data.csv +5 -5
  120. teradataml/data/burst_example.json +20 -20
  121. teradataml/data/byom_example.json +17 -17
  122. teradataml/data/bytes_table.csv +3 -3
  123. teradataml/data/cal_housing_ex_raw.csv +70 -70
  124. teradataml/data/callers.csv +7 -7
  125. teradataml/data/calls.csv +10 -10
  126. teradataml/data/cars_hist.csv +33 -33
  127. teradataml/data/cat_table.csv +24 -24
  128. teradataml/data/ccm_example.json +31 -31
  129. teradataml/data/ccm_input.csv +91 -91
  130. teradataml/data/ccm_input2.csv +13 -13
  131. teradataml/data/ccmexample.csv +101 -101
  132. teradataml/data/ccmprepare_example.json +8 -8
  133. teradataml/data/ccmprepare_input.csv +91 -91
  134. teradataml/data/cfilter_example.json +12 -12
  135. teradataml/data/changepointdetection_example.json +18 -18
  136. teradataml/data/changepointdetectionrt_example.json +8 -8
  137. teradataml/data/chi_sq.csv +2 -2
  138. teradataml/data/churn_data.csv +14 -14
  139. teradataml/data/churn_emission.csv +35 -35
  140. teradataml/data/churn_initial.csv +3 -3
  141. teradataml/data/churn_state_transition.csv +5 -5
  142. teradataml/data/citedges_2.csv +745 -745
  143. teradataml/data/citvertices_2.csv +1210 -1210
  144. teradataml/data/clicks2.csv +16 -16
  145. teradataml/data/clickstream.csv +12 -12
  146. teradataml/data/clickstream1.csv +11 -11
  147. teradataml/data/closeness_example.json +15 -15
  148. teradataml/data/complaints.csv +21 -21
  149. teradataml/data/complaints_mini.csv +3 -3
  150. teradataml/data/complaints_testtoken.csv +224 -224
  151. teradataml/data/complaints_tokens_test.csv +353 -353
  152. teradataml/data/complaints_traintoken.csv +472 -472
  153. teradataml/data/computers_category.csv +1001 -1001
  154. teradataml/data/computers_test1.csv +1252 -1252
  155. teradataml/data/computers_train1.csv +5009 -5009
  156. teradataml/data/computers_train1_clustered.csv +5009 -5009
  157. teradataml/data/confusionmatrix_example.json +9 -9
  158. teradataml/data/conversion_event_table.csv +3 -3
  159. teradataml/data/corr_input.csv +17 -17
  160. teradataml/data/correlation_example.json +11 -11
  161. teradataml/data/coxhazardratio_example.json +39 -39
  162. teradataml/data/coxph_example.json +15 -15
  163. teradataml/data/coxsurvival_example.json +28 -28
  164. teradataml/data/cpt.csv +41 -41
  165. teradataml/data/credit_ex_merged.csv +45 -45
  166. teradataml/data/customer_loyalty.csv +301 -301
  167. teradataml/data/customer_loyalty_newseq.csv +31 -31
  168. teradataml/data/dataframe_example.json +146 -146
  169. teradataml/data/decisionforest_example.json +37 -37
  170. teradataml/data/decisionforestpredict_example.json +38 -38
  171. teradataml/data/decisiontree_example.json +21 -21
  172. teradataml/data/decisiontreepredict_example.json +45 -45
  173. teradataml/data/dfft2_size4_real.csv +17 -17
  174. teradataml/data/dfft2_test_matrix16.csv +17 -17
  175. teradataml/data/dfft2conv_real_4_4.csv +65 -65
  176. teradataml/data/diabetes.csv +443 -443
  177. teradataml/data/diabetes_test.csv +89 -89
  178. teradataml/data/dict_table.csv +5 -5
  179. teradataml/data/docperterm_table.csv +4 -4
  180. teradataml/data/docs/__init__.py +1 -1
  181. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
  182. teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
  183. teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
  184. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
  185. teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
  186. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
  187. teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
  188. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
  189. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
  190. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
  191. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
  192. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
  193. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
  194. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
  195. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
  196. teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
  197. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
  198. teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
  199. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
  200. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
  201. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
  202. teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
  203. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
  204. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
  205. teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
  206. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
  207. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
  208. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
  209. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +132 -132
  210. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +103 -103
  211. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
  212. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +101 -101
  213. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
  214. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
  215. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
  216. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
  217. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
  218. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
  219. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
  220. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
  221. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
  222. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
  223. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
  224. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
  225. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
  226. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
  227. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
  228. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
  229. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
  230. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
  231. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
  232. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
  233. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
  234. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +126 -126
  235. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
  236. teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
  237. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
  238. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
  239. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
  240. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
  241. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
  242. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
  243. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +243 -243
  244. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
  245. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
  246. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
  247. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
  248. teradataml/data/docs/sqle/docs_17_20/FTest.py +160 -160
  249. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
  250. teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
  251. teradataml/data/docs/sqle/docs_17_20/GLM.py +380 -380
  252. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
  253. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
  254. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
  255. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +123 -123
  256. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
  257. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
  258. teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
  259. teradataml/data/docs/sqle/docs_17_20/KMeans.py +204 -204
  260. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
  261. teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
  262. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
  263. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
  264. teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
  265. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
  266. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
  267. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
  268. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +117 -117
  269. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
  270. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
  271. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
  272. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
  273. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +225 -225
  274. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +115 -115
  275. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
  276. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
  277. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
  278. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
  279. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
  280. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
  281. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
  282. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
  283. teradataml/data/docs/sqle/docs_17_20/ROC.py +163 -163
  284. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
  285. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
  286. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
  287. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
  288. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
  289. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
  290. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
  291. teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
  292. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +202 -202
  293. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
  294. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +197 -197
  295. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +110 -109
  296. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
  297. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
  298. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
  299. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
  300. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
  301. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
  302. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
  303. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
  304. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +171 -171
  305. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
  306. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
  307. teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
  308. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
  309. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
  310. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
  311. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
  312. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
  313. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
  314. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
  315. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
  316. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +353 -353
  317. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +275 -275
  318. teradataml/data/docs/sqle/docs_17_20/ZTest.py +155 -155
  319. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
  320. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
  321. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
  322. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
  323. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
  324. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
  325. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
  326. teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
  327. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
  328. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
  329. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
  330. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
  331. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
  332. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
  333. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
  334. teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
  335. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
  336. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
  337. teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
  338. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
  339. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
  340. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
  341. teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
  342. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
  343. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
  344. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
  345. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
  346. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
  347. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
  348. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
  349. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
  350. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
  351. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
  352. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
  353. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
  354. teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
  355. teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
  356. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
  357. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
  358. teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
  359. teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
  360. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
  361. teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
  362. teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
  363. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
  364. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
  365. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
  366. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
  367. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
  368. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
  369. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
  370. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
  371. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
  372. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
  373. teradataml/data/dtw_example.json +17 -17
  374. teradataml/data/dtw_t1.csv +11 -11
  375. teradataml/data/dtw_t2.csv +4 -4
  376. teradataml/data/dwt2d_example.json +15 -15
  377. teradataml/data/dwt_example.json +14 -14
  378. teradataml/data/dwt_filter_dim.csv +5 -5
  379. teradataml/data/emission.csv +9 -9
  380. teradataml/data/emp_table_by_dept.csv +19 -19
  381. teradataml/data/employee_info.csv +4 -4
  382. teradataml/data/employee_table.csv +6 -6
  383. teradataml/data/excluding_event_table.csv +2 -2
  384. teradataml/data/finance_data.csv +6 -6
  385. teradataml/data/finance_data2.csv +61 -61
  386. teradataml/data/finance_data3.csv +93 -93
  387. teradataml/data/fish.csv +160 -0
  388. teradataml/data/fm_blood2ageandweight.csv +26 -26
  389. teradataml/data/fmeasure_example.json +11 -11
  390. teradataml/data/followers_leaders.csv +10 -10
  391. teradataml/data/fpgrowth_example.json +12 -12
  392. teradataml/data/frequentpaths_example.json +29 -29
  393. teradataml/data/friends.csv +9 -9
  394. teradataml/data/fs_input.csv +33 -33
  395. teradataml/data/fs_input1.csv +33 -33
  396. teradataml/data/genData.csv +513 -513
  397. teradataml/data/geodataframe_example.json +39 -39
  398. teradataml/data/glass_types.csv +215 -0
  399. teradataml/data/glm_admissions_model.csv +12 -12
  400. teradataml/data/glm_example.json +29 -29
  401. teradataml/data/glml1l2_example.json +28 -28
  402. teradataml/data/glml1l2predict_example.json +54 -54
  403. teradataml/data/glmpredict_example.json +54 -54
  404. teradataml/data/gq_t1.csv +21 -21
  405. teradataml/data/hconvolve_complex_right.csv +5 -5
  406. teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
  407. teradataml/data/histogram_example.json +11 -11
  408. teradataml/data/hmmdecoder_example.json +78 -78
  409. teradataml/data/hmmevaluator_example.json +24 -24
  410. teradataml/data/hmmsupervised_example.json +10 -10
  411. teradataml/data/hmmunsupervised_example.json +7 -7
  412. teradataml/data/house_values.csv +12 -12
  413. teradataml/data/house_values2.csv +13 -13
  414. teradataml/data/housing_cat.csv +7 -7
  415. teradataml/data/housing_data.csv +9 -9
  416. teradataml/data/housing_test.csv +47 -47
  417. teradataml/data/housing_test_binary.csv +47 -47
  418. teradataml/data/housing_train.csv +493 -493
  419. teradataml/data/housing_train_attribute.csv +4 -4
  420. teradataml/data/housing_train_binary.csv +437 -437
  421. teradataml/data/housing_train_parameter.csv +2 -2
  422. teradataml/data/housing_train_response.csv +493 -493
  423. teradataml/data/ibm_stock.csv +370 -370
  424. teradataml/data/ibm_stock1.csv +370 -370
  425. teradataml/data/identitymatch_example.json +21 -21
  426. teradataml/data/idf_table.csv +4 -4
  427. teradataml/data/impressions.csv +101 -101
  428. teradataml/data/inflation.csv +21 -21
  429. teradataml/data/initial.csv +3 -3
  430. teradataml/data/insect_sprays.csv +12 -12
  431. teradataml/data/insurance.csv +1339 -1339
  432. teradataml/data/interpolator_example.json +12 -12
  433. teradataml/data/iris_altinput.csv +481 -481
  434. teradataml/data/iris_attribute_output.csv +8 -8
  435. teradataml/data/iris_attribute_test.csv +121 -121
  436. teradataml/data/iris_attribute_train.csv +481 -481
  437. teradataml/data/iris_category_expect_predict.csv +31 -31
  438. teradataml/data/iris_data.csv +151 -0
  439. teradataml/data/iris_input.csv +151 -151
  440. teradataml/data/iris_response_train.csv +121 -121
  441. teradataml/data/iris_test.csv +31 -31
  442. teradataml/data/iris_train.csv +121 -121
  443. teradataml/data/join_table1.csv +4 -4
  444. teradataml/data/join_table2.csv +4 -4
  445. teradataml/data/jsons/anly_function_name.json +6 -6
  446. teradataml/data/jsons/byom/dataikupredict.json +147 -147
  447. teradataml/data/jsons/byom/datarobotpredict.json +146 -146
  448. teradataml/data/jsons/byom/h2opredict.json +194 -194
  449. teradataml/data/jsons/byom/onnxpredict.json +186 -186
  450. teradataml/data/jsons/byom/pmmlpredict.json +146 -146
  451. teradataml/data/jsons/paired_functions.json +435 -435
  452. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
  453. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
  454. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
  455. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
  456. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
  457. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
  458. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
  459. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
  460. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
  461. teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
  462. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
  463. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
  464. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
  465. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
  466. teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
  467. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
  468. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
  469. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
  470. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
  471. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
  472. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
  473. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
  474. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
  475. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
  476. teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
  477. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
  478. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
  479. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
  480. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
  481. teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
  482. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
  483. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
  484. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
  485. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
  486. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
  487. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
  488. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
  489. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
  490. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
  491. teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
  492. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
  493. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
  494. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
  495. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
  496. teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
  497. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
  498. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
  499. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
  500. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
  501. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
  502. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
  503. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
  504. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
  505. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
  506. teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
  507. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
  508. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
  509. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
  510. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
  511. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
  512. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
  513. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
  514. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
  515. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
  516. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
  517. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
  518. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
  519. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
  520. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
  521. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
  522. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
  523. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
  524. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
  525. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
  526. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
  527. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
  528. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
  529. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
  530. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
  531. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
  532. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
  533. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
  534. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
  535. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
  536. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
  537. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
  538. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
  539. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
  540. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
  541. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
  542. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
  543. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
  544. teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
  545. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
  546. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
  547. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
  548. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
  549. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
  550. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
  551. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
  552. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
  553. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
  554. teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
  555. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
  556. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
  557. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
  558. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +76 -76
  559. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
  560. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
  561. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
  562. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
  563. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
  564. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
  565. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
  566. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
  567. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
  568. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
  569. teradataml/data/jsons/sqle/17.20/TD_FTest.json +186 -186
  570. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
  571. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
  572. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
  573. teradataml/data/jsons/sqle/17.20/TD_GLM.json +431 -431
  574. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +125 -125
  575. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
  576. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
  577. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +91 -91
  578. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
  579. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
  580. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
  581. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +211 -211
  582. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
  583. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
  584. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
  585. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +101 -101
  586. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
  587. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
  588. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
  589. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
  590. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
  591. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
  592. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
  593. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
  594. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
  595. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
  596. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
  597. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
  598. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
  599. teradataml/data/jsons/sqle/17.20/TD_ROC.json +177 -177
  600. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
  601. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
  602. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
  603. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
  604. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
  605. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
  606. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
  607. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
  608. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +124 -124
  609. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +156 -156
  610. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +70 -70
  611. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
  612. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
  613. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
  614. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
  615. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
  616. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
  617. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
  618. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
  619. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
  620. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
  621. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
  622. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
  623. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
  624. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
  625. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +312 -312
  626. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +182 -182
  627. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +170 -170
  628. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
  629. teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
  630. teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
  631. teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
  632. teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
  633. teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
  634. teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
  635. teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
  636. teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
  637. teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
  638. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
  639. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
  640. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
  641. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
  642. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
  643. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
  644. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
  645. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
  646. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
  647. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
  648. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
  649. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
  650. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
  651. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
  652. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
  653. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
  654. teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
  655. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
  656. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
  657. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
  658. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
  659. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
  660. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
  661. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
  662. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
  663. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
  664. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
  665. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
  666. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
  667. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
  668. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
  669. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
  670. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
  671. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
  672. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
  673. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
  674. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
  675. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
  676. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
  677. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
  678. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
  679. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
  680. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
  681. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
  682. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
  683. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
  684. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
  685. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
  686. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
  687. teradataml/data/kmeans_example.json +17 -17
  688. teradataml/data/kmeans_us_arrests_data.csv +0 -0
  689. teradataml/data/knn_example.json +18 -18
  690. teradataml/data/knnrecommender_example.json +6 -6
  691. teradataml/data/knnrecommenderpredict_example.json +12 -12
  692. teradataml/data/lar_example.json +17 -17
  693. teradataml/data/larpredict_example.json +30 -30
  694. teradataml/data/lc_new_predictors.csv +5 -5
  695. teradataml/data/lc_new_reference.csv +9 -9
  696. teradataml/data/lda_example.json +8 -8
  697. teradataml/data/ldainference_example.json +14 -14
  698. teradataml/data/ldatopicsummary_example.json +8 -8
  699. teradataml/data/levendist_input.csv +13 -13
  700. teradataml/data/levenshteindistance_example.json +10 -10
  701. teradataml/data/linreg_example.json +9 -9
  702. teradataml/data/load_example_data.py +326 -323
  703. teradataml/data/loan_prediction.csv +295 -295
  704. teradataml/data/lungcancer.csv +138 -138
  705. teradataml/data/mappingdata.csv +12 -12
  706. teradataml/data/milk_timeseries.csv +157 -157
  707. teradataml/data/min_max_titanic.csv +4 -4
  708. teradataml/data/minhash_example.json +6 -6
  709. teradataml/data/ml_ratings.csv +7547 -7547
  710. teradataml/data/ml_ratings_10.csv +2445 -2445
  711. teradataml/data/model1_table.csv +5 -5
  712. teradataml/data/model2_table.csv +5 -5
  713. teradataml/data/models/iris_db_glm_model.pmml +56 -56
  714. teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
  715. teradataml/data/modularity_example.json +12 -12
  716. teradataml/data/movavg_example.json +7 -7
  717. teradataml/data/mtx1.csv +7 -7
  718. teradataml/data/mtx2.csv +13 -13
  719. teradataml/data/multi_model_classification.csv +401 -0
  720. teradataml/data/multi_model_regression.csv +401 -0
  721. teradataml/data/mvdfft8.csv +9 -9
  722. teradataml/data/naivebayes_example.json +9 -9
  723. teradataml/data/naivebayespredict_example.json +19 -19
  724. teradataml/data/naivebayestextclassifier2_example.json +6 -6
  725. teradataml/data/naivebayestextclassifier_example.json +8 -8
  726. teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
  727. teradataml/data/name_Find_configure.csv +10 -10
  728. teradataml/data/namedentityfinder_example.json +14 -14
  729. teradataml/data/namedentityfinderevaluator_example.json +10 -10
  730. teradataml/data/namedentityfindertrainer_example.json +6 -6
  731. teradataml/data/nb_iris_input_test.csv +31 -31
  732. teradataml/data/nb_iris_input_train.csv +121 -121
  733. teradataml/data/nbp_iris_model.csv +13 -13
  734. teradataml/data/ner_extractor_text.csv +2 -2
  735. teradataml/data/ner_sports_test2.csv +29 -29
  736. teradataml/data/ner_sports_train.csv +501 -501
  737. teradataml/data/nerevaluator_example.json +5 -5
  738. teradataml/data/nerextractor_example.json +18 -18
  739. teradataml/data/nermem_sports_test.csv +17 -17
  740. teradataml/data/nermem_sports_train.csv +50 -50
  741. teradataml/data/nertrainer_example.json +6 -6
  742. teradataml/data/ngrams_example.json +6 -6
  743. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
  744. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
  745. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
  746. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
  747. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
  748. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
  749. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
  750. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
  751. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
  752. teradataml/data/npath_example.json +23 -23
  753. teradataml/data/ntree_example.json +14 -14
  754. teradataml/data/numeric_strings.csv +4 -4
  755. teradataml/data/numerics.csv +4 -4
  756. teradataml/data/ocean_buoy.csv +17 -17
  757. teradataml/data/ocean_buoy2.csv +17 -17
  758. teradataml/data/ocean_buoys.csv +27 -27
  759. teradataml/data/ocean_buoys2.csv +10 -10
  760. teradataml/data/ocean_buoys_nonpti.csv +28 -28
  761. teradataml/data/ocean_buoys_seq.csv +29 -29
  762. teradataml/data/openml_example.json +63 -0
  763. teradataml/data/optional_event_table.csv +4 -4
  764. teradataml/data/orders1.csv +11 -11
  765. teradataml/data/orders1_12.csv +12 -12
  766. teradataml/data/orders_ex.csv +4 -4
  767. teradataml/data/pack_example.json +8 -8
  768. teradataml/data/package_tracking.csv +19 -19
  769. teradataml/data/package_tracking_pti.csv +18 -18
  770. teradataml/data/pagerank_example.json +13 -13
  771. teradataml/data/paragraphs_input.csv +6 -6
  772. teradataml/data/pathanalyzer_example.json +7 -7
  773. teradataml/data/pathgenerator_example.json +7 -7
  774. teradataml/data/phrases.csv +7 -7
  775. teradataml/data/pivot_example.json +8 -8
  776. teradataml/data/pivot_input.csv +22 -22
  777. teradataml/data/playerRating.csv +31 -31
  778. teradataml/data/postagger_example.json +6 -6
  779. teradataml/data/posttagger_output.csv +44 -44
  780. teradataml/data/production_data.csv +16 -16
  781. teradataml/data/production_data2.csv +7 -7
  782. teradataml/data/randomsample_example.json +31 -31
  783. teradataml/data/randomwalksample_example.json +8 -8
  784. teradataml/data/rank_table.csv +6 -6
  785. teradataml/data/ref_mobile_data.csv +4 -4
  786. teradataml/data/ref_mobile_data_dense.csv +2 -2
  787. teradataml/data/ref_url.csv +17 -17
  788. teradataml/data/restaurant_reviews.csv +7 -7
  789. teradataml/data/river_data.csv +145 -145
  790. teradataml/data/roc_example.json +7 -7
  791. teradataml/data/roc_input.csv +101 -101
  792. teradataml/data/rule_inputs.csv +6 -6
  793. teradataml/data/rule_table.csv +2 -2
  794. teradataml/data/sales.csv +7 -7
  795. teradataml/data/sales_transaction.csv +501 -501
  796. teradataml/data/salesdata.csv +342 -342
  797. teradataml/data/sample_cities.csv +2 -2
  798. teradataml/data/sample_shapes.csv +10 -10
  799. teradataml/data/sample_streets.csv +2 -2
  800. teradataml/data/sampling_example.json +15 -15
  801. teradataml/data/sax_example.json +8 -8
  802. teradataml/data/scale_example.json +23 -23
  803. teradataml/data/scale_housing.csv +11 -11
  804. teradataml/data/scale_housing_test.csv +6 -6
  805. teradataml/data/scale_stat.csv +11 -11
  806. teradataml/data/scalebypartition_example.json +13 -13
  807. teradataml/data/scalemap_example.json +13 -13
  808. teradataml/data/scalesummary_example.json +12 -12
  809. teradataml/data/score_category.csv +101 -101
  810. teradataml/data/score_summary.csv +4 -4
  811. teradataml/data/script_example.json +9 -9
  812. teradataml/data/scripts/deploy_script.py +65 -0
  813. teradataml/data/scripts/mapper.R +20 -0
  814. teradataml/data/scripts/mapper.py +15 -15
  815. teradataml/data/scripts/mapper_replace.py +15 -15
  816. teradataml/data/scripts/sklearn/__init__.py +0 -0
  817. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  818. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  819. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  820. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  821. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  822. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  823. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  824. teradataml/data/seeds.csv +10 -10
  825. teradataml/data/sentenceextractor_example.json +6 -6
  826. teradataml/data/sentiment_extract_input.csv +11 -11
  827. teradataml/data/sentiment_train.csv +16 -16
  828. teradataml/data/sentiment_word.csv +20 -20
  829. teradataml/data/sentiment_word_input.csv +19 -19
  830. teradataml/data/sentimentextractor_example.json +24 -24
  831. teradataml/data/sentimenttrainer_example.json +8 -8
  832. teradataml/data/sequence_table.csv +10 -10
  833. teradataml/data/seriessplitter_example.json +7 -7
  834. teradataml/data/sessionize_example.json +17 -17
  835. teradataml/data/sessionize_table.csv +116 -116
  836. teradataml/data/setop_test1.csv +24 -24
  837. teradataml/data/setop_test2.csv +22 -22
  838. teradataml/data/soc_nw_edges.csv +10 -10
  839. teradataml/data/soc_nw_vertices.csv +7 -7
  840. teradataml/data/souvenir_timeseries.csv +167 -167
  841. teradataml/data/sparse_iris_attribute.csv +5 -5
  842. teradataml/data/sparse_iris_test.csv +121 -121
  843. teradataml/data/sparse_iris_train.csv +601 -601
  844. teradataml/data/star1.csv +6 -6
  845. teradataml/data/state_transition.csv +5 -5
  846. teradataml/data/stock_data.csv +53 -53
  847. teradataml/data/stock_movement.csv +11 -11
  848. teradataml/data/stock_vol.csv +76 -76
  849. teradataml/data/stop_words.csv +8 -8
  850. teradataml/data/store_sales.csv +37 -37
  851. teradataml/data/stringsimilarity_example.json +7 -7
  852. teradataml/data/strsimilarity_input.csv +13 -13
  853. teradataml/data/students.csv +101 -101
  854. teradataml/data/svm_iris_input_test.csv +121 -121
  855. teradataml/data/svm_iris_input_train.csv +481 -481
  856. teradataml/data/svm_iris_model.csv +7 -7
  857. teradataml/data/svmdense_example.json +9 -9
  858. teradataml/data/svmdensepredict_example.json +18 -18
  859. teradataml/data/svmsparse_example.json +7 -7
  860. teradataml/data/svmsparsepredict_example.json +13 -13
  861. teradataml/data/svmsparsesummary_example.json +7 -7
  862. teradataml/data/target_mobile_data.csv +13 -13
  863. teradataml/data/target_mobile_data_dense.csv +5 -5
  864. teradataml/data/templatedata.csv +1201 -1201
  865. teradataml/data/templates/open_source_ml.json +9 -0
  866. teradataml/data/teradataml_example.json +73 -1
  867. teradataml/data/test_classification.csv +101 -0
  868. teradataml/data/test_loan_prediction.csv +53 -53
  869. teradataml/data/test_pacf_12.csv +37 -37
  870. teradataml/data/test_prediction.csv +101 -0
  871. teradataml/data/test_regression.csv +101 -0
  872. teradataml/data/test_river2.csv +109 -109
  873. teradataml/data/text_inputs.csv +6 -6
  874. teradataml/data/textchunker_example.json +7 -7
  875. teradataml/data/textclassifier_example.json +6 -6
  876. teradataml/data/textclassifier_input.csv +7 -7
  877. teradataml/data/textclassifiertrainer_example.json +6 -6
  878. teradataml/data/textmorph_example.json +5 -5
  879. teradataml/data/textparser_example.json +15 -15
  880. teradataml/data/texttagger_example.json +11 -11
  881. teradataml/data/texttokenizer_example.json +6 -6
  882. teradataml/data/texttrainer_input.csv +11 -11
  883. teradataml/data/tf_example.json +6 -6
  884. teradataml/data/tfidf_example.json +13 -13
  885. teradataml/data/tfidf_input1.csv +201 -201
  886. teradataml/data/tfidf_train.csv +6 -6
  887. teradataml/data/time_table1.csv +535 -535
  888. teradataml/data/time_table2.csv +14 -14
  889. teradataml/data/timeseriesdata.csv +1601 -1601
  890. teradataml/data/timeseriesdatasetsd4.csv +105 -105
  891. teradataml/data/titanic.csv +892 -892
  892. teradataml/data/token_table.csv +696 -696
  893. teradataml/data/train_multiclass.csv +101 -0
  894. teradataml/data/train_regression.csv +101 -0
  895. teradataml/data/train_regression_multiple_labels.csv +101 -0
  896. teradataml/data/train_tracking.csv +27 -27
  897. teradataml/data/transformation_table.csv +5 -5
  898. teradataml/data/transformation_table_new.csv +1 -1
  899. teradataml/data/tv_spots.csv +16 -16
  900. teradataml/data/twod_climate_data.csv +117 -117
  901. teradataml/data/uaf_example.json +475 -475
  902. teradataml/data/univariatestatistics_example.json +8 -8
  903. teradataml/data/unpack_example.json +9 -9
  904. teradataml/data/unpivot_example.json +9 -9
  905. teradataml/data/unpivot_input.csv +8 -8
  906. teradataml/data/us_air_pass.csv +36 -36
  907. teradataml/data/us_population.csv +624 -624
  908. teradataml/data/us_states_shapes.csv +52 -52
  909. teradataml/data/varmax_example.json +17 -17
  910. teradataml/data/vectordistance_example.json +25 -25
  911. teradataml/data/ville_climatedata.csv +121 -121
  912. teradataml/data/ville_tempdata.csv +12 -12
  913. teradataml/data/ville_tempdata1.csv +12 -12
  914. teradataml/data/ville_temperature.csv +11 -11
  915. teradataml/data/waveletTable.csv +1605 -1605
  916. teradataml/data/waveletTable2.csv +1605 -1605
  917. teradataml/data/weightedmovavg_example.json +8 -8
  918. teradataml/data/wft_testing.csv +5 -5
  919. teradataml/data/wine_data.csv +1600 -0
  920. teradataml/data/word_embed_input_table1.csv +5 -5
  921. teradataml/data/word_embed_input_table2.csv +4 -4
  922. teradataml/data/word_embed_model.csv +22 -22
  923. teradataml/data/words_input.csv +13 -13
  924. teradataml/data/xconvolve_complex_left.csv +6 -6
  925. teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
  926. teradataml/data/xgboost_example.json +35 -35
  927. teradataml/data/xgboostpredict_example.json +31 -31
  928. teradataml/dataframe/copy_to.py +1764 -1698
  929. teradataml/dataframe/data_transfer.py +2753 -2745
  930. teradataml/dataframe/dataframe.py +17545 -16946
  931. teradataml/dataframe/dataframe_utils.py +1837 -1740
  932. teradataml/dataframe/fastload.py +611 -603
  933. teradataml/dataframe/indexer.py +424 -424
  934. teradataml/dataframe/setop.py +1179 -1166
  935. teradataml/dataframe/sql.py +10090 -6432
  936. teradataml/dataframe/sql_function_parameters.py +439 -388
  937. teradataml/dataframe/sql_functions.py +652 -652
  938. teradataml/dataframe/sql_interfaces.py +220 -220
  939. teradataml/dataframe/vantage_function_types.py +674 -630
  940. teradataml/dataframe/window.py +693 -692
  941. teradataml/dbutils/__init__.py +3 -3
  942. teradataml/dbutils/dbutils.py +1167 -1150
  943. teradataml/dbutils/filemgr.py +267 -267
  944. teradataml/gen_ai/__init__.py +2 -2
  945. teradataml/gen_ai/convAI.py +472 -472
  946. teradataml/geospatial/__init__.py +3 -3
  947. teradataml/geospatial/geodataframe.py +1105 -1094
  948. teradataml/geospatial/geodataframecolumn.py +392 -387
  949. teradataml/geospatial/geometry_types.py +925 -925
  950. teradataml/hyperparameter_tuner/__init__.py +1 -1
  951. teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
  952. teradataml/hyperparameter_tuner/utils.py +281 -187
  953. teradataml/lib/aed_0_1.dll +0 -0
  954. teradataml/lib/libaed_0_1.dylib +0 -0
  955. teradataml/lib/libaed_0_1.so +0 -0
  956. teradataml/libaed_0_1.dylib +0 -0
  957. teradataml/libaed_0_1.so +0 -0
  958. teradataml/opensource/__init__.py +1 -0
  959. teradataml/opensource/sklearn/__init__.py +1 -0
  960. teradataml/opensource/sklearn/_class.py +255 -0
  961. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  962. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  963. teradataml/opensource/sklearn/constants.py +54 -0
  964. teradataml/options/__init__.py +121 -124
  965. teradataml/options/configure.py +337 -336
  966. teradataml/options/display.py +176 -176
  967. teradataml/plot/__init__.py +2 -2
  968. teradataml/plot/axis.py +1388 -1388
  969. teradataml/plot/constants.py +15 -15
  970. teradataml/plot/figure.py +398 -398
  971. teradataml/plot/plot.py +760 -760
  972. teradataml/plot/query_generator.py +83 -83
  973. teradataml/plot/subplot.py +216 -216
  974. teradataml/scriptmgmt/UserEnv.py +3788 -3761
  975. teradataml/scriptmgmt/__init__.py +3 -3
  976. teradataml/scriptmgmt/lls_utils.py +1616 -1604
  977. teradataml/series/series.py +532 -532
  978. teradataml/series/series_utils.py +71 -71
  979. teradataml/table_operators/Apply.py +949 -917
  980. teradataml/table_operators/Script.py +1719 -1982
  981. teradataml/table_operators/TableOperator.py +1207 -1616
  982. teradataml/table_operators/__init__.py +2 -3
  983. teradataml/table_operators/apply_query_generator.py +262 -262
  984. teradataml/table_operators/query_generator.py +507 -507
  985. teradataml/table_operators/table_operator_query_generator.py +460 -460
  986. teradataml/table_operators/table_operator_util.py +631 -639
  987. teradataml/table_operators/templates/dataframe_apply.template +184 -184
  988. teradataml/table_operators/templates/dataframe_map.template +176 -176
  989. teradataml/table_operators/templates/script_executor.template +170 -170
  990. teradataml/utils/dtypes.py +684 -684
  991. teradataml/utils/internal_buffer.py +84 -84
  992. teradataml/utils/print_versions.py +205 -205
  993. teradataml/utils/utils.py +410 -410
  994. teradataml/utils/validators.py +2239 -2115
  995. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +270 -41
  996. teradataml-20.0.0.0.dist-info/RECORD +1038 -0
  997. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +1 -1
  998. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +1 -1
  999. teradataml/analytics/mle/AdaBoost.py +0 -651
  1000. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  1001. teradataml/analytics/mle/Antiselect.py +0 -342
  1002. teradataml/analytics/mle/Arima.py +0 -641
  1003. teradataml/analytics/mle/ArimaPredict.py +0 -477
  1004. teradataml/analytics/mle/Attribution.py +0 -1070
  1005. teradataml/analytics/mle/Betweenness.py +0 -658
  1006. teradataml/analytics/mle/Burst.py +0 -711
  1007. teradataml/analytics/mle/CCM.py +0 -600
  1008. teradataml/analytics/mle/CCMPrepare.py +0 -324
  1009. teradataml/analytics/mle/CFilter.py +0 -460
  1010. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  1011. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  1012. teradataml/analytics/mle/Closeness.py +0 -737
  1013. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  1014. teradataml/analytics/mle/Correlation.py +0 -477
  1015. teradataml/analytics/mle/Correlation2.py +0 -573
  1016. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  1017. teradataml/analytics/mle/CoxPH.py +0 -556
  1018. teradataml/analytics/mle/CoxSurvival.py +0 -478
  1019. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  1020. teradataml/analytics/mle/DTW.py +0 -623
  1021. teradataml/analytics/mle/DWT.py +0 -564
  1022. teradataml/analytics/mle/DWT2D.py +0 -599
  1023. teradataml/analytics/mle/DecisionForest.py +0 -716
  1024. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  1025. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  1026. teradataml/analytics/mle/DecisionTree.py +0 -830
  1027. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  1028. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  1029. teradataml/analytics/mle/FMeasure.py +0 -402
  1030. teradataml/analytics/mle/FPGrowth.py +0 -734
  1031. teradataml/analytics/mle/FrequentPaths.py +0 -695
  1032. teradataml/analytics/mle/GLM.py +0 -558
  1033. teradataml/analytics/mle/GLML1L2.py +0 -547
  1034. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  1035. teradataml/analytics/mle/GLMPredict.py +0 -529
  1036. teradataml/analytics/mle/HMMDecoder.py +0 -945
  1037. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  1038. teradataml/analytics/mle/HMMSupervised.py +0 -521
  1039. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  1040. teradataml/analytics/mle/Histogram.py +0 -561
  1041. teradataml/analytics/mle/IDWT.py +0 -476
  1042. teradataml/analytics/mle/IDWT2D.py +0 -493
  1043. teradataml/analytics/mle/IdentityMatch.py +0 -763
  1044. teradataml/analytics/mle/Interpolator.py +0 -918
  1045. teradataml/analytics/mle/KMeans.py +0 -485
  1046. teradataml/analytics/mle/KNN.py +0 -627
  1047. teradataml/analytics/mle/KNNRecommender.py +0 -488
  1048. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  1049. teradataml/analytics/mle/LAR.py +0 -439
  1050. teradataml/analytics/mle/LARPredict.py +0 -478
  1051. teradataml/analytics/mle/LDA.py +0 -548
  1052. teradataml/analytics/mle/LDAInference.py +0 -492
  1053. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  1054. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  1055. teradataml/analytics/mle/LinReg.py +0 -433
  1056. teradataml/analytics/mle/LinRegPredict.py +0 -438
  1057. teradataml/analytics/mle/MinHash.py +0 -544
  1058. teradataml/analytics/mle/Modularity.py +0 -587
  1059. teradataml/analytics/mle/NEREvaluator.py +0 -410
  1060. teradataml/analytics/mle/NERExtractor.py +0 -595
  1061. teradataml/analytics/mle/NERTrainer.py +0 -458
  1062. teradataml/analytics/mle/NGrams.py +0 -570
  1063. teradataml/analytics/mle/NPath.py +0 -634
  1064. teradataml/analytics/mle/NTree.py +0 -549
  1065. teradataml/analytics/mle/NaiveBayes.py +0 -462
  1066. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  1067. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  1068. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  1069. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  1070. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  1071. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  1072. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  1073. teradataml/analytics/mle/POSTagger.py +0 -417
  1074. teradataml/analytics/mle/Pack.py +0 -411
  1075. teradataml/analytics/mle/PageRank.py +0 -535
  1076. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  1077. teradataml/analytics/mle/PathGenerator.py +0 -367
  1078. teradataml/analytics/mle/PathStart.py +0 -464
  1079. teradataml/analytics/mle/PathSummarizer.py +0 -470
  1080. teradataml/analytics/mle/Pivot.py +0 -471
  1081. teradataml/analytics/mle/ROC.py +0 -425
  1082. teradataml/analytics/mle/RandomSample.py +0 -637
  1083. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  1084. teradataml/analytics/mle/SAX.py +0 -779
  1085. teradataml/analytics/mle/SVMDense.py +0 -677
  1086. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  1087. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  1088. teradataml/analytics/mle/SVMSparse.py +0 -557
  1089. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  1090. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  1091. teradataml/analytics/mle/Sampling.py +0 -549
  1092. teradataml/analytics/mle/Scale.py +0 -565
  1093. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  1094. teradataml/analytics/mle/ScaleMap.py +0 -378
  1095. teradataml/analytics/mle/ScaleSummary.py +0 -320
  1096. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  1097. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  1098. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  1099. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  1100. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  1101. teradataml/analytics/mle/Sessionize.py +0 -475
  1102. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  1103. teradataml/analytics/mle/StringSimilarity.py +0 -425
  1104. teradataml/analytics/mle/TF.py +0 -389
  1105. teradataml/analytics/mle/TFIDF.py +0 -504
  1106. teradataml/analytics/mle/TextChunker.py +0 -414
  1107. teradataml/analytics/mle/TextClassifier.py +0 -399
  1108. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  1109. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  1110. teradataml/analytics/mle/TextMorph.py +0 -494
  1111. teradataml/analytics/mle/TextParser.py +0 -623
  1112. teradataml/analytics/mle/TextTagger.py +0 -530
  1113. teradataml/analytics/mle/TextTokenizer.py +0 -502
  1114. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  1115. teradataml/analytics/mle/Unpack.py +0 -526
  1116. teradataml/analytics/mle/Unpivot.py +0 -438
  1117. teradataml/analytics/mle/VarMax.py +0 -776
  1118. teradataml/analytics/mle/VectorDistance.py +0 -762
  1119. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  1120. teradataml/analytics/mle/XGBoost.py +0 -842
  1121. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  1122. teradataml/analytics/mle/__init__.py +0 -123
  1123. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  1124. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  1125. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  1126. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  1127. teradataml/analytics/mle/json/arima_mle.json +0 -172
  1128. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  1129. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  1130. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  1131. teradataml/analytics/mle/json/burst_mle.json +0 -140
  1132. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  1133. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  1134. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  1135. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  1136. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  1137. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  1138. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  1139. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  1140. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  1141. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  1142. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  1143. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  1144. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  1145. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  1146. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  1147. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  1148. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  1149. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  1150. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  1151. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  1152. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  1153. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  1154. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  1155. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  1156. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  1157. teradataml/analytics/mle/json/glm_mle.json +0 -111
  1158. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  1159. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  1160. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  1161. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  1162. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  1163. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  1164. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  1165. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  1166. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  1167. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  1168. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  1169. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  1170. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  1171. teradataml/analytics/mle/json/knn_mle.json +0 -141
  1172. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  1173. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  1174. teradataml/analytics/mle/json/lar_mle.json +0 -78
  1175. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  1176. teradataml/analytics/mle/json/lda_mle.json +0 -130
  1177. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  1178. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  1179. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  1180. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  1181. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  1182. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  1183. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  1184. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  1185. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  1186. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  1187. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  1188. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  1189. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  1190. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  1191. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  1192. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  1193. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  1194. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  1195. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  1196. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  1197. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  1198. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  1199. teradataml/analytics/mle/json/pack_mle.json +0 -58
  1200. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  1201. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  1202. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  1203. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  1204. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  1205. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  1206. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  1207. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  1208. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  1209. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  1210. teradataml/analytics/mle/json/roc_mle.json +0 -73
  1211. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  1212. teradataml/analytics/mle/json/sax_mle.json +0 -154
  1213. teradataml/analytics/mle/json/scale_mle.json +0 -93
  1214. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  1215. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  1216. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  1217. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  1218. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  1219. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  1220. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  1221. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  1222. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  1223. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  1224. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  1225. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  1226. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  1227. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  1228. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  1229. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  1230. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  1231. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  1232. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  1233. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  1234. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  1235. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  1236. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  1237. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  1238. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  1239. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  1240. teradataml/analytics/mle/json/tf_mle.json +0 -33
  1241. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  1242. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  1243. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  1244. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  1245. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  1246. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  1247. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  1248. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  1249. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  1250. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  1251. teradataml/analytics/sqle/Antiselect.py +0 -321
  1252. teradataml/analytics/sqle/Attribution.py +0 -603
  1253. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  1254. teradataml/analytics/sqle/GLMPredict.py +0 -430
  1255. teradataml/analytics/sqle/MovingAverage.py +0 -543
  1256. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  1257. teradataml/analytics/sqle/NPath.py +0 -632
  1258. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  1259. teradataml/analytics/sqle/Pack.py +0 -388
  1260. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  1261. teradataml/analytics/sqle/Sessionize.py +0 -390
  1262. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  1263. teradataml/analytics/sqle/Unpack.py +0 -503
  1264. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  1265. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  1266. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  1267. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  1268. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  1269. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  1270. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  1271. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  1272. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  1273. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  1274. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  1275. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  1276. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  1277. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  1278. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  1279. teradataml/catalog/model_cataloging.py +0 -980
  1280. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  1281. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  1282. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  1283. teradataml/table_operators/sandbox_container_util.py +0 -643
  1284. teradataml-17.20.0.7.dist-info/RECORD +0 -1280
  1285. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
@@ -1,501 +1,501 @@
1
- "id","content"
2
- "469","2. <start:per> anthony washington <end> ( <start:loc> u.s. <end> ) 68.44"
3
- "265","<start:org> los angeles <end> 72 61 .541 2"
4
- "40","four one-day warm-up matches at the start of the tour ."
5
- "122"," i want a fifth title ."
6
- "326","it was tough to play at night ."
7
- "530","1= <start:per> andrei tiwontschik <end> ( <start:loc> germany <end> ) 5.86"
8
- "162","<start:org> lg <end> 2 <start:org> ob <end> 0"
9
- "387","<start:per> woods <end> was among a group of 13 players at four under "
10
- "183","results from the u.s. open tennis championships at the <start:loc> national tennis centre <end> on friday ( prefix number denotes seeding ) :"
11
- "244","<start:org> minnesota <end> at <start:loc> milwaukee <end>"
12
- "223","eastern division"
13
- "448","5. <start:per> patrick stevens <end> ( <start:loc> belgium <end> ) 20.54"
14
- "509","6. <start:per> phylis smith <end> ( <start:loc> britain <end> ) 52.05"
15
- "305"," i just kept saying to myself "
16
- "488","3. <start:per> rose cheruiyot <end> ( <start:loc> kenya <end> ) 15:05.41"
17
- "19","cricket - english county championship scores ."
18
- "366","golf - <start:per> henke <end> takes lead in <start:loc> milwaukee <end> "
19
- "101","soccer - <start:loc> romania <end> beat <start:loc> lithuania <end> in under-21 match ."
20
- "345"," <start:per> randall <end> was one of the most exciting quarterbacks in <start:org> nfl <end> history "
21
- "263","western division"
22
- "202","add women s singles "
23
- "427","2. <start:per> patricia djate-taillard <end> ( <start:loc> france <end> ) 4:08.22"
24
- "406","earlier this month he also beat world champion <start:per> bailey <end> in <start:loc> zurich <end> ."
25
- "324","but i think it s not that ."
26
- "467","men s discus"
27
- "284","<start:org> california <end> 14 <start:org> new york <end> 3"
28
- "528","8. <start:per> craig winrow <end> ( <start:loc> britain <end> ) 1:46.66"
29
- "385"," no bogeys on the card "
30
- "181","tennis - friday s results from the u.s. open ."
31
- "141","results of south korean pro-soccer"
32
- "120","<start:per> duran <end> "
33
- "303","<start:per> washington <end> "
34
- "242","<start:org> kansas city <end> at <start:loc> detroit <end>"
35
- "17","by stumps <start:org> kent <end> had reached 108 for three ."
36
- "446","3. <start:per> ato boldon <end> ( <start:loc> trinidad <end> ) 20.37"
37
- "160","results of south korean"
38
- "38","said on friday ."
39
- "282","<start:org> detroit <end> 4 <start:org> kansas city <end> 1"
40
- "343"," i would like to thank the <start:org> eagles <end> organisation and the wonderful fans of <start:org> philadelphia <end> for supporting me throughout my career "
41
- "425","women s 1"
42
- "507","4. <start:per> anja ruecker <end> ( <start:loc> germany <end> ) 51.61"
43
- "139","soccer - results of south korean pro-soccer games ."
44
- "200","add women s singles "
45
- "465","7. <start:per> john mayock <end> ( <start:loc> britain <end> ) 3:54.67"
46
- "364","<start:per> bryan gorman <end>"
47
- "404","<start:loc> jamaica <end> s <start:per> michael green <end> was second with 10.09 with <start:per> bailey <end> finishing in 10.13 ."
48
- "57","may 25 third one-day international ( at <start:loc> lord s <end> "
49
- "36","a six-test series against <start:loc> england <end> during a four-month tour"
50
- "221","lost "
51
- "261","<start:org> chicago <end> 65 66 .496 5"
52
- "118","<start:loc> panama city <end> 1996-08-30"
53
- "97","basketball tournament on friday :"
54
- "486","1. <start:per> gabriela szabo <end> ( <start:loc> romania <end> ) 15 minutes 04.95 seconds"
55
- "322","<start:per> rios <end> did not appreciate <start:per> tarango <end> s antics ."
56
- "383","<start:per> henke <end> "
57
- "362","<start:per> green <end> "
58
- "78","august 16-18 v <start:org> kent <end> ( three days )"
59
- "179","<start:org> ob <end> 42 6 62 .409 20 1/2"
60
- "240","<start:org> california <end> 62 72 .463 13 1/2"
61
- "15","after the frustration of seeing the opening day of their match badly affected by the weather "
62
- "526","6. <start:per> adem hacini <end> ( <start:loc> algeria <end> ) 1:45.64"
63
- "444","1. <start:per> frankie fredericks <end> ( <start:loc> namibia <end> ) 19.97 seconds"
64
- "505","2. <start:per> jearl miles <end> ( <start:loc> u.s. <end> ) 50.42"
65
- "280","baseball games played on thursday ( home team in caps ) :"
66
- "219","major league baseball"
67
- "301","the day programme went smoothly although sixth-seeded former champion <start:per> agassi <end> had to wriggle out of a dangerous 3-6 0-4 hole "
68
- "158","baseball - results of s. korean professional games ."
69
- "137","2 - <start:per> rodney eyles <end> ( <start:loc> australia <end> ) beat <start:per> derek ryan <end> ( <start:loc> ireland <end> ) 15-6 15-9 11-15 15-10 ."
70
- "76","august 1-4 v <start:org> somerset <end> ( four days )"
71
- "484","8. <start:per> inger miller <end> ( <start:loc> u.s. <end> ) 11.37"
72
- "423","6. <start:per> julie baumann <end> ( <start:loc> switzerland <end> ) 13.11"
73
- "402","watched by an array of former olympic sprint champions at the <start:loc> berlin <end> grand prix meeting "
74
- "341","<start:per> cunningham <end> played his entire 11-year career with the <start:org> philadelphia eagles <end> ."
75
- "320"," i played some of my best tennis in college when fraternities were throwing beer on me ."
76
- "463","5. <start:per> marko koers <end> ( <start:loc> netherlands <end> ) 3:53.47"
77
- "177","<start:org> lotte <end> 46 6 54 .462 14 1/2"
78
- "198","<start:per> amanda coetzer <end> ( <start:loc> south africa <end> ) beat <start:per> irina spirlea <end> ( <start:loc> romania <end> ) 7-6 ( 7-5 ) 7-5"
79
- "34","<start:loc> london <end> 1996-08-30"
80
- "55","may 24 second one-day international ( at <start:loc> the oval <end> "
81
- "442","8. <start:per> jack pierce <end> ( <start:loc> u.s. <end> ) 13.60"
82
- "259","<start:org> st louis <end> 69 65 .515 2 1/2"
83
- "299","next door on the grandstand "
84
- "503","women s 400 metres"
85
- "74","july 24-28 fourth test ( at <start:loc> headingley <end> )"
86
- "524","4. <start:per> nico motchebon <end> ( <start:loc> germany <end> ) 1:45.03"
87
- "156","<start:org> chonbuk <end> 0 0 3 3 7 0"
88
- "95","<start:loc> belgrade <end> 1996-08-30"
89
- "53","may 22 first one-day international ( at <start:loc> headingley <end> "
90
- "381","that s always been the worst part of my game ."
91
- "13","<start:org> derbyshire <end> kept up the hunt for their first championship title since 1936 by reducing <start:org> worcestershire <end> to 133 for five in their second innings "
92
- "360","<start:per> wood <end> "
93
- "318"," i love the crowd if they boo me every day ."
94
- "238","<start:org> seattle <end> 70 63 .526 5"
95
- "482","6. <start:per> chandra sturrup <end> ( <start:loc> bahamas <end> ) 11.26"
96
- "217","baseball - major league standings after thursday s games ."
97
- "114","despite the defeat "
98
- "421","4. <start:per> brigita bokovec <end> ( <start:loc> slovenia <end> ) 12.92"
99
- "339","<start:loc> philadelphia <end> 1996-08-29"
100
- "278","<start:loc> new york <end> 1996-08-30"
101
- "379","it was my best round in a very long time ."
102
- "257","central division"
103
- "196","8 - <start:per> lindsay davenport <end> ( <start:loc> u.s. <end> ) beat <start:per> anne-gaelle sidot <end> ( <start:loc> france <end> ) 6-0 6-3"
104
- "135","<start:per> anthony hill <end> ( <start:loc> australia <end> ) beat <start:per> dan jenson <end> ( <start:loc> australia <end> ) 15-9 15-8 15-17 17-15"
105
- "440","6. <start:per> steve brown <end> ( <start:loc> u.s. <end> ) 13.53"
106
- "522","2. <start:per> norberto tellez <end> ( <start:loc> cuba <end> ) 1:44.58"
107
- "297","<start:per> andre agassi <end> escaped disaster on thursday but wimbledon finalist <start:per> malivai washington <end> and <start:per> marcelo rios <end> were not so fortunate on a night of upsets at the u.s. open ."
108
- "400","<start:loc> berlin <end> 1996-08-30"
109
- "358","65 <start:per> billy andrade <end> "
110
- "236","western division"
111
- "11","at the <start:loc> oval <end> "
112
- "461","3. <start:per> william tanui <end> ( <start:loc> kenya <end> ) 3:51.40"
113
- "154","<start:org> chonnam <end> 0 2 1 4 5 2"
114
- "419","2. <start:per> ludmila engquist <end> ( <start:loc> sweden <end> ) 12.74"
115
- "194","<start:per> jonas bjorkman <end> ( <start:loc> sweden <end> ) beat <start:per> david nainkin <end> ( <start:loc> south africa <end> ) ) 6-4 6-1 6-1"
116
- "175","<start:org> hyundai <end> 57 5 49 .536 6 1/2"
117
- "215","add men s singles "
118
- "133","<start:loc> hong kong <end> 1996-08-30"
119
- "459","1. <start:per> noureddine morceli <end> ( <start:loc> algeria <end> ) 3 minutes 49.09 seconds"
120
- "501","7. <start:per> rohan robinson <end> ( <start:loc> australia <end> ) 49.36"
121
- "480","4. <start:per> mary onyali <end> ( <start:loc> nigeria <end> ) 11.14"
122
- "234","<start:org> milwaukee <end> 64 71 .474 17"
123
- "51","may 18 v <start:org> worcestershire <end>"
124
- "72","july 16-18 v <start:org> glamorgan <end> ( three days )"
125
- "520","men s 800 metres"
126
- "274","<start:org> san francisco <end> at <start:loc> new york <end>"
127
- "316","i think i played very well tonight "
128
- "398","athletics - <start:per> mitchell <end> defeats <start:per> bailey <end> in front of former champions ."
129
- "377","<start:per> henke <end> "
130
- "396","but that did not prevent him from collecting the one-match suspension ."
131
- "499","5. <start:per> sven nylander <end> ( <start:loc> sweden <end> ) 49.22"
132
- "255","<start:org> new york <end> 59 75 .440 25"
133
- "30","<start:loc> chesterfield <end> : <start:org> worcestershire <end> 238 and 133-5 "
134
- "253","<start:org> montreal <end> 71 61 .538 12"
135
- "356","62 <start:per> nolan henke <end>"
136
- "112","the head of the russian league s disciplinary committee "
137
- "91","<start:per> shearer <end> s euro 96 striking partner <start:per> teddy sheringham <end> withdrew from the squad with an injury on friday ."
138
- "314","a boisterous cheering section backed the distracted chilean and booed the lanky american "
139
- "9","<start:per> hussain <end> "
140
- "173","<start:org> ssangbangwool <end> 59 2 49 .545 5 1/2"
141
- "152","<start:org> ulsan <end> 1 0 2 8 9 3"
142
- "436","2. <start:per> tony jarrett <end> ( <start:loc> britain <end> ) 13.35"
143
- "49","may 15 v <start:org> duke of norfolk s xi <end> ( at <start:loc> arundel <end> )"
144
- "438","4. <start:per> emilio valle <end> ( <start:loc> cuba <end> ) 13.52"
145
- "417","women s 100 metres hurdles"
146
- "312","but i think he served pretty well when he had to . "
147
- "375","it was a perfect start ."
148
- "295","<start:per> larry fine <end>"
149
- "70","july 9 v <start:org> minor counties xi <end>"
150
- "26","<start:loc> tunbridge wells <end> : <start:org> nottinghamshire <end> 214 ( <start:per> p. johnson <end> 84 ; <start:per> m. mccague <end> 4-55 ) "
151
- "171","w d l pct gb"
152
- "213","6-0 6-2"
153
- "335","at the same time "
154
- "291","<start:org> los angeles <end> 2 <start:org> montreal <end> 1"
155
- "28","<start:loc> hove <end> : <start:org> sussex <end> 363 ( <start:per> w. athey <end> 111 "
156
- "478","2. <start:per> merlene ottey <end> ( <start:loc> jamaica <end> ) 10.94"
157
- "192","men s singles "
158
- "148","<start:org> puchon <end> 3 1 0 6 1 10"
159
- "89"," in four days it s very difficult to come to a 100 percent conclusion about something like this ..."
160
- "518","6. <start:per> geir moen <end> ( <start:loc> norway <end> ) 10.33"
161
- "457","5. <start:per> stephanie storp <end> ( <start:loc> germany <end> ) 18.41"
162
- "413","athletics - berlin grand prix results ."
163
- "354","6"
164
- "110","<start:loc> moscow <end> 1996-08-30"
165
- "232","<start:org> chicago <end> 71 64 .526 10"
166
- "5","their stay on top "
167
- "211","add women s singles "
168
- "150","<start:org> pohang <end> 2 1 1 11 10 7"
169
- "497","3. <start:per> derrick adkins <end> ( <start:loc> u.s. <end> ) 48.62"
170
- "474","7. <start:per> andreas seelig <end> ( <start:loc> germany <end> ) 62.00"
171
- "476","women s 100 metres"
172
- "415","leading results at the berlin"
173
- "333","at the end of the match "
174
- "331","i play an american so that s why i play at night ."
175
- "394","spanish first division team <start:org> deportivo coruna <end> will be without key midfielder <start:per> mauro silva <end> for saturday s game with <start:org> real madrid <end> after <start:org> fifa <end> "
176
- "7","trailing by 213 "
177
- "129","<start:per> duran <end> "
178
- "188","<start:per> tim henman <end> ( <start:loc> britain <end> ) beat <start:per> doug flach <end> ( <start:loc> u.s. <end> ) 6-3 6-4 6-2"
179
- "251","w l pct gb"
180
- "272","<start:org> los angeles <end> at <start:loc> philadelphia <end>"
181
- "47","may 13 arrive in <start:loc> london <end>"
182
- "24","<start:org> leicestershire <end> 22 points "
183
- "87"," i m sure there wo nt be a problem "
184
- "190","<start:per> sjeng schalken <end> ( <start:loc> netherlands <end> ) beat <start:per> david rikl <end> ( <start:loc> czech republic <end> ) 6 - 2 6-4 6-4"
185
- "373","today "
186
- "289","<start:org> cincinnati <end> 18 <start:org> colorado <end> 7"
187
- "352","leading scores in"
188
- "455","3. <start:per> irina korzhanenko <end> ( <start:loc> russia <end> ) 18.63"
189
- "169","standings after games played on thursday ( tabulate under"
190
- "3","<start:loc> london <end> 1996-08-30"
191
- "66","june 25-27 v <start:org> british universities <end> ( at <start:loc> oxford <end> "
192
- "516","4. <start:per> jon drummond <end> ( <start:loc> u.s. <end> ) 10.22"
193
- "434","men s 110 metres hurdles"
194
- "329","i did nt play my tennis . "
195
- "392","soccer - <start:per> silva <end> s `lost passport excuse not enough for <start:org> fifa <end> ."
196
- "230","central division"
197
- "495","1. <start:per> torrance zellner <end> ( <start:loc> u.s. <end> ) 48.23 seconds"
198
- "186","men s singles "
199
- "249","national league"
200
- "270","<start:org> florida <end> at <start:loc> cincinnati <end>"
201
- "209","<start:per> petr korda <end> ( <start:loc> czech republic <end> ) bat <start:per> bohdan ulihrach <end> ( <start:loc> czech <end>"
202
- "451","8. <start:per> ivan garcia <end> ( <start:loc> cuba <end> ) 20.96"
203
- "514","2. <start:per> michael green <end> ( <start:loc> jamaica <end> ) 10.09"
204
- "127"," each time he fights "
205
- "45","tour itinerary :"
206
- "43","as well as one-day matches against the <start:org> minor counties <end> and"
207
- "106","<start:loc> lithuania <end> - <start:per> danius gleveckas <end> ( 13rd )"
208
- "453","1. <start:per> astrid kumbernuss <end> ( <start:loc> germany <end> ) 19.89 metres"
209
- "432","7. <start:per> margarita maruseva <end> ( <start:loc> russia <end> ) 4:10.87"
210
- "308","the fifth set stayed on serve until the sixth game "
211
- "371","he settled for a birdie and a four-under opening round that left him five shots off the pace ."
212
- "310"," you just kind of keep fighting and you keep trying to make him play a little bit ."
213
- "85","<start:per> adams <end> and <start:per> platt <end> are both injured and will miss <start:loc> england <end> s opening world cup qualifier against <start:loc> moldova <end> on sunday ."
214
- "491","6. <start:per> gunhild halle <end> ( <start:loc> norway <end> ) 15:09.00"
215
- "411","despite the coolish conditions american olympic champion <start:per> gail devers <end> looked in commanding form in the women s 100 "
216
- "167","<start:org> hanwha <end> 6 <start:org> ssangbangwool <end> 5"
217
- "350","golf - leading scores at greater milwaukee open ."
218
- "348","<start:per> cunningham <end> has already been signed as a broadcaster ."
219
- "64","june 14-16 v <start:org> leicestershire <end> ( three days )"
220
- "228","<start:org> toronto <end> 63 71 .470 11 1/2"
221
- "146","won "
222
- "41","the tourists will play nine first-class matches against"
223
- "104","scorers :"
224
- "493","8. <start:per> sally barsosio <end> ( <start:loc> kenya <end> ) 15:14.34"
225
- "207","<start:per> andrei medvedev <end> ( <start:loc> ukraine <end> ) beat <start:per> jan kroslak <end> ( <start:loc> slovakia <end> ) 6-4 6-3"
226
- "306"," i kept my composure and i was proud of myself for that -- usually i would have folded up the tent and gone home . "
227
- "369","<start:per> henke <end> stood two strokes ahead of <start:per> bob estes <end> and three up on <start:per> billy andrade <end> "
228
- "268","friday "
229
- "472","5. <start:per> virgilijus alekna <end> ( <start:loc> lithuania <end> ) 65.00"
230
- "367","<start:loc> milwaukee <end> "
231
- "430","5. <start:per> leah pells <end> ( <start:loc> canada <end> ) 4:09.95"
232
- "165","<start:org> haitai <end> 2 <start:org> samsung <end> 0"
233
- "125","i m not retiring "
234
- "163","<start:org> lotte <end> 6 <start:org> hyundai <end> 2"
235
- "226","<start:org> baltimore <end> 70 63 .526 4"
236
- "22","<start:loc> leicester <end> : <start:org> leicestershire <end> beat <start:org> somerset <end> by an innings and 39 runs ."
237
- "390","<start:per> mark brooks <end> "
238
- "20","<start:loc> london <end> 1996-08-30"
239
- "83","the world s costliest footballer <start:per> alan shearer <end> was named as the new <start:loc> england <end> captain on friday ."
240
- "205","<start:per> hendrik dreekmann <end> ( <start:loc> germany <end> ) beat <start:per> thomas johansson <end> ( <start:loc> sweden <end> )"
241
- "247","<start:org> boston <end> at <start:loc> oakland <end>"
242
- "346","during his 11 years in <start:loc> philadelphia <end> "
243
- "409","they had been invited to the meeting to watch a special relay to mark the 60th anniversary of <start:per> jesse owens <end> s four gold medals at the 1936 olympics in the same <start:loc> berlin <end> stadium ."
244
- "470","3. <start:per> vasily kaptyukh <end> ( <start:loc> belarus <end> ) 66.24"
245
- "512","men s 100 metres"
246
- "468","1. <start:per> lars riedel <end> ( <start:loc> germany <end> ) 70.60 metres"
247
- "266","<start:org> colorado <end> 70 65 .519 5"
248
- "62","june 5-9 first test match ( at <start:loc> edgbaston <end> "
249
- "287","<start:org> san diego <end> 3 <start:org> new york <end> 2"
250
- "60","may 31 - june 2 v <start:org> derbyshire <end> ( three days )"
251
- "123","this match is to prepare me ."
252
- "327","balls were going really fast ."
253
- "144","<start:org> puchon <end> 2 <start:org> chonbuk <end> 1 ( halftime 1-1 )"
254
- "529","men s pole vault"
255
- "81","soccer - <start:per> shearer <end> named as <start:loc> england <end> captain ."
256
- "245","<start:org> cleveland <end> at <start:loc> texas <end>"
257
- "388","defending champion <start:per> scott hoch <end> shot a three-under 68 and was six strokes back ."
258
- "79","august 21-25 sixth test ( at <start:loc> the oval <end> "
259
- "142","games played on thursday ."
260
- "510","7. <start:per> linda kisabaka <end> ( <start:loc> germany <end> ) 52.41"
261
- "184","women s singles "
262
- "344"," although it saddens me to leave "
263
- "407","<start:loc> berlin <end> "
264
- "285","<start:org> seattle <end> 9 <start:org> baltimore <end> 6"
265
- "449","6. <start:per> jon drummond <end> ( <start:loc> u.s. <end> ) 20.78"
266
- "58","may 27-29 v <start:org> gloucestershire <end> or <start:org> sussex <end> or <start:org> surrey <end> ( three"
267
- "121","the fight "
268
- "325","i think i played really bad ."
269
- "102","<start:loc> bucharest <end> 1996-08-30"
270
- "323"," he s always complaining too much "
271
- "386","sometimes i take more pride in that . "
272
- "182","<start:loc> new york <end> 1996-08-30"
273
- "428","3. <start:per> carla sacramento <end> ( <start:loc> portugal <end> ) 4:08.96"
274
- "384","<start:per> estes <end> "
275
- "447","4. <start:per> geir moen <end> ( <start:loc> norway <end> ) 20.41"
276
- "39","<start:loc> australia <end> will also play three one-day internationals and"
277
- "224","w l pct gb"
278
- "241","friday "
279
- "243","<start:org> chicago <end> at <start:loc> toronto <end>"
280
- "508","5. <start:per> olabisi afolabi <end> ( <start:loc> nigeria <end> ) 51.98"
281
- "489","4. <start:per> annemari sandell <end> ( <start:loc> finland <end> ) 15:06.33"
282
- "506","3. <start:per> fatima yusuf <end> ( <start:loc> nigeria <end> ) 51.43"
283
- "304","<start:per> obrien <end> "
284
- "222","american league"
285
- "264","<start:org> san diego <end> 75 60 .556 -"
286
- "98","<start:org> red star <end> ( <start:loc> yugoslavia <end> ) beat <start:org> dinamo <end> ( <start:loc> russia <end> ) 92-90 ( halftime"
287
- "161","professional baseball games played on thursday ."
288
- "283","<start:org> minnesota <end> 6 <start:org> milwaukee <end> 1"
289
- "487","2. <start:per> gete wami <end> ( <start:loc> ethiopia <end> ) 15:05.21"
290
- "363","<start:per> mike hulbert <end> "
291
- "426","1. <start:per> svetlana masterkova <end> ( <start:loc> russia <end> ) four minutes 6.87 seconds"
292
- "37","starting on may 13 next year "
293
- "140","<start:loc> seoul <end> 1996-08-30"
294
- "403","<start:per> bailey <end> "
295
- "466","8. <start:per> marcus osullivan <end> ( <start:loc> ireland <end> ) 3:54.87"
296
- "220","standings after games played on thursday ( tabulate under won "
297
- "405","last friday <start:per> mitchell <end> "
298
- "56","<start:loc> london <end> )"
299
- "119","panamanian boxing legend <start:per> roberto hands of stone duran <end> climbs into the ring on saturday in another age-defying attempt to sustain his long career ."
300
- "485","women s 5"
301
- "201","add men s singles "
302
- "96","result in an international"
303
- "159","<start:loc> seoul <end> 1996-08-30"
304
- "77","august 7-11 fifth test ( at <start:loc> trent bridge <end> "
305
- "262","<start:org> pittsburgh <end> 56 77 .421 15"
306
- "361","67 <start:per> mark calcavecchia <end> "
307
- "424","7. <start:per> gillian russell <end> ( <start:loc> jamaica <end> ) 13.17"
308
- "342","a three-time pro bowl selection "
309
- "527","7. <start:per> vebjoen rodal <end> ( <start:loc> norway <end> ) 1:46.45"
310
- "218","<start:loc> new york <end> 1996-08-30"
311
- "16","they were held up by a gritty 84 from <start:per> paul johnson <end> but ex-england fast bowler <start:per> martin mccague <end> took four for 55 ."
312
- "260","<start:org> cincinnati <end> 66 67 .496 5"
313
- "445","2. <start:per> michael johnson <end> ( <start:loc> u.s. <end> ) 20.02"
314
- "401","american <start:per> dennis mitchell <end> outclassed olympic 100 metres champion <start:per> donovan bailey <end> for the third time at a major post-games meeting in front of the most experienced sprinting crowd in the world on friday ."
315
- "281","american league"
316
- "525","5. <start:per> david kiptoo <end> ( <start:loc> kenya <end> ) 1:45.27"
317
- "302","but the night belonged to the upstarts ."
318
- "258","<start:org> houston <end> 72 63 .533 -"
319
- "464","6. <start:per> isaac viciosa <end> ( <start:loc> spain <end> ) 3:53.85"
320
- "382","all in all "
321
- "199","add men s singles "
322
- "523","3. <start:per> sammy langat <end> ( <start:loc> kenya <end> ) 1:44.96"
323
- "321","if tennis was like that every day "
324
- "35","<start:loc> australia <end> will defend the ashes in"
325
- "117","boxing - <start:loc> panama <end> s <start:per> roberto duran <end> fights the sands of time ."
326
- "115","lying three points behind <start:org> alania <end> and two behind <start:org> dynamo moscow <end> "
327
- "178","<start:org> lg <end> 46 5 59 .441 17"
328
- "300","the temperamental left-hander defeated the chilean 6-4 4-6 7-6 6-2 ."
329
- "443","men s 200 metres"
330
- "359","66 <start:per> neal lancaster <end> "
331
- "422","5. <start:per> dionne rose <end> ( <start:loc> jamaica <end> ) 12.92"
332
- "340","<start:per> randall cunningham <end> "
333
- "239","<start:org> oakland <end> 64 72 .471 12 1/2"
334
- "73","july 19-21 v <start:org> middlesex <end> ( three days )"
335
- "136","4 - <start:per> peter nicol <end> ( <start:loc> scotland <end> ) beat 7 - <start:per> chris walker <end> ( <start:loc> england <end> ) 15-8 15-13 13-15 15-9"
336
- "54","<start:org> leeds <end> )"
337
- "504","1. <start:per> falilat ogunkoya <end> ( <start:loc> nigeria <end> ) 50.31 seconds"
338
- "134","quarter-final results in the hong kong open on friday ( prefix number denotes seeding ) : 1 - <start:per> jansher khan <end> ( <start:loc> pakistan <end> ) beat <start:per> mark cairns <end> ( <start:loc> england <end> ) 15-10 15-6 15-7"
339
- "197","4 - <start:per> conchita martinez <end> ( <start:loc> spain <end> ) beat <start:per> helena sukova <end> ( <start:loc> czech republic <end> ) 6-4 6-3"
340
- "380","my short game has improved since i ve had to use it so often ."
341
- "14","australian <start:per> tom moody <end> took six for 82 but <start:per> chris adams <end> "
342
- "399","<start:per> adrian warner <end>"
343
- "462","4. <start:per> laban rotich <end> ( <start:loc> kenya <end> ) 3:53.42"
344
- "237","<start:org> texas <end> 75 58 .564 -"
345
- "483","7. <start:per> irina privalova <end> ( <start:loc> russia <end> ) 11.27"
346
- "521","1. <start:per> wilson kipketer <end> ( <start:loc> denmark <end> ) 1:43.34"
347
- "176","<start:org> samsung <end> 49 5 56 .468 14"
348
- "94","basketball - international tournament result ."
349
- "279","results of major league"
350
- "113","the club "
351
- "441","7. <start:per> frank busemann <end> ( <start:loc> germany <end> ) 13.58"
352
- "420","3. <start:per> aliuska lopez <end> ( <start:loc> cuba <end> ) 12.92"
353
- "319","it fires me up "
354
- "378"," we finally got things going in the right direction "
355
- "33","cricket - 1997 ashes intinerary ."
356
- "12","he was well backed by <start:loc> england <end> hopeful <start:per> mark butcher <end> who made 70 as <start:org> surrey <end> closed on 429 for seven "
357
- "155","<start:org> pusan <end> 0 2 1 3 7 2"
358
- "439","5. <start:per> falk balzer <end> ( <start:loc> germany <end> ) 13.52"
359
- "502","8. <start:per> dusan kovacs <end> ( <start:loc> hungary <end> ) 49.58"
360
- "277","baseball - major league results thursday ."
361
- "195","women s singles "
362
- "235","<start:org> kansas city <end> 61 74 .452 20"
363
- "298","the 11th-seeded <start:per> washington <end> fell short of reprising his wimbledon miracle comeback as he lost to red-hot wildcard <start:per> alex obrien <end> 6-3 6-4 5-7 3-6 6-3 in a two hour 51 minute struggle on the stadium court ."
364
- "338","<start:org> nfl <end> american football-randall <start:per> cunningham <end> retires ."
365
- "460","2. <start:per> venuste niyongabo <end> ( <start:loc> burundi <end> ) 3:51.01"
366
- "296","<start:loc> new york <end> 1996-08-30"
367
- "481","5. <start:per> chryste gaines <end> ( <start:loc> u.s. <end> ) 11.20"
368
- "52","may 20 v <start:org> durham <end>"
369
- "256","<start:org> philadelphia <end> 54 80 .403 30"
370
- "418","1. <start:per> michelle freeman <end> ( <start:loc> jamaica <end> ) 12.71 seconds"
371
- "174","<start:org> hanwha <end> 58 1 49 .542 6"
372
- "92","he will probably be replaced by <start:per> shearer <end> s <start:org> newcastle <end> team mate <start:per> les ferdinand <end> ."
373
- "317","the match turned on the third-set tiebreaker "
374
- "111","<start:org> rotor volgograd <end> must play their next home game behind closed doors after fans hurled bottles and stones at <start:org> dynamo moscow <end> players during a 1-0 home defeat on saturday that ended <start:org> rotor <end> s brief spell as league leaders ."
375
- "153","<start:org> anyang <end> 0 3 1 6 9 3"
376
- "275","<start:org> colorado <end> at <start:loc> st louis <end>"
377
- "31","<start:loc> bristol <end> : <start:org> gloucestershire <end> 183 and 185-6 ( <start:per> j. russell <end> 56 not out ) "
378
- "90","but he knows how to conduct himself "
379
- "10","by the close <start:org> yorkshire <end> had turned that into a 37-run advantage but off-spinner <start:per> such <end> had scuttled their hopes "
380
- "132","squash - hong kong open quarter-final results ."
381
- "500","6. <start:per> eric thomas <end> ( <start:loc> u.s. <end> ) 49.35"
382
- "151","<start:org> suwan <end> 1 3 0 7 3 6"
383
- "479","3. <start:per> gwen torrence <end> ( <start:loc> u.s. <end> ) 11.07"
384
- "50","may 17 v <start:org> northampton <end>"
385
- "357","64 <start:per> bob estes <end>"
386
- "416","grand prix athletics meeting on friday :"
387
- "71","july 12 v <start:loc> scotland <end>"
388
- "315"," i m an emotional player "
389
- "254","<start:org> florida <end> 64 70 .478 20"
390
- "8","<start:org> essex <end> "
391
- "336","after i won i figured i could give them a little razzle-dazzle . "
392
- "437","3. <start:per> florian schwarthoff <end> ( <start:loc> germany <end> ) 13.36"
393
- "172","<start:org> haitai <end> 64 2 43 .596 -"
394
- "273","<start:org> houston <end> at <start:loc> pittsburgh <end>"
395
- "193","<start:per> alexander volkov <end> ( <start:loc> russia <end> ) beat <start:per> mikael tillstrom <end> ( <start:loc> sweden <end> ) 1-6 6- 4 6-1 4-6 7-6 ( 10-8 )"
396
- "355","on thursday ( players <start:loc> u.s. <end> unless stated ) :"
397
- "29","<start:loc> portsmouth <end> : <start:org> middlesex <end> 199 and 426 ( <start:per> j. pooley <end> 111 "
398
- "130","<start:per> camacho <end> took a controversial points decision against the panamanian in <start:loc> atlantic city <end> in june in a title fight ."
399
- "458","men s mile"
400
- "252","<start:org> atlanta <end> 83 49 .629 -"
401
- "498","4. <start:per> fabrizio mori <end> ( <start:loc> italy <end> ) 49.21"
402
- "395","<start:per> silva <end> excused his absence from <start:loc> brazil <end> s game against <start:loc> russia <end> "
403
- "519","7. <start:per> marc blume <end> ( <start:loc> germany <end> ) 10.48"
404
- "109","soccer - <start:org> rotor <end> fans locked out after <start:loc> volgograd <end> violence ."
405
- "294","tennis - <start:per> tarango <end> "
406
- "456","4. <start:per> valentina fedyushina <end> ( <start:loc> russia <end> ) 18.55"
407
- "376","i m in a good position . "
408
- "435","1. <start:per> mark crear <end> ( <start:loc> u.s. <end> ) 13.26 seconds"
409
- "212","2 - <start:per> monica seles <end> ( <start:loc> u.s. <end> ) beat <start:per> dally randriantefy <end> ( <start:loc> madagascar <end> )"
410
- "313","<start:per> tarango <end> "
411
- "233","<start:org> minnesota <end> 67 67 .500 13 1/2"
412
- "27","<start:loc> london <end> ( <start:loc> the oval <end> ) : <start:org> warwickshire <end> 195 "
413
- "69","july 3-7 third test ( at <start:loc> old trafford <end> "
414
- "170","won "
415
- "477","1. <start:per> gail devers <end> ( <start:loc> u.s. <end> ) 10.89 seconds"
416
- "292","<start:org> florida <end> 10 <start:org> st louis <end> 9"
417
- "334"," i support their enthusiasm "
418
- "414","<start:loc> berlin <end> 1996-08-30"
419
- "191","<start:per> guy forget <end> ( <start:loc> france <end> ) beat 17 - <start:per> felix mantilla <end> ( <start:loc> spain <end> ) 6-4 7-5 6-3"
420
- "149","<start:org> chonan <end> 3 0 1 13 10 9"
421
- "374","he added : i thought i got off off to a great start ."
422
- "128","if he loses saturday "
423
- "48","may 14 practice at <start:loc> lord s <end>"
424
- "475","8. <start:per> michael moellenbeck <end> ( <start:loc> germany <end> ) 58.56"
425
- "210","<start:loc> republic <end> ) 6-0 7-6 ( 7-5 ) 6-2"
426
- "454","2. <start:per> claudia mues <end> ( <start:loc> germany <end> ) 18.80"
427
- "517","5. <start:per> davidson ezinwa <end> ( <start:loc> nigeria <end> ) 10.24"
428
- "67","june 28-30 v <start:org> hampshire <end> ( three days )"
429
- "6","after bowling <start:org> somerset <end> out for 83 on the opening morning at <start:loc> grace road <end> "
430
- "168","note - <start:org> lotte <end> and <start:org> hyundai <end> "
431
- "231","<start:org> cleveland <end> 80 53 .602 -"
432
- "332","i did nt feel good on the court . "
433
- "271","<start:org> san diego <end> at <start:loc> montreal <end>"
434
- "433","8. <start:per> sara thorsett <end> ( <start:loc> u.s. <end> ) 4:11.06"
435
- "496","2. <start:per> samuel matete <end> ( <start:loc> zambia <end> ) 48.34"
436
- "393","<start:loc> madrid <end> 1996-08-30"
437
- "250","eastern division"
438
- "25","<start:loc> chester-le-street <end> : <start:org> glamorgan <end> 259 and 207 ( <start:per> a. dale <end> 69 "
439
- "88"," there were three or four people who could have done it but when i spoke to <start:per> alan <end> he was up for it and really wanted it ."
440
- "107","attendance : 200"
441
- "515","3. <start:per> donovan bailey <end> ( <start:loc> canada <end> ) 10.13"
442
- "290","<start:org> atlanta <end> 5 <start:org> pittsburgh <end> 1"
443
- "353","the $ 1.2 million greater milwaukee open at the par-71 "
444
- "147","w d l g / f g / a p"
445
- "311","i think he got a little tight at a couple of moments "
446
- "473","6. <start:per> juergen schult <end> ( <start:loc> germany <end> ) 64.46"
447
- "189","<start:per> mark philippoussis <end> ( <start:loc> australia <end> ) beat <start:per> andrei olhovskiy <end> ( <start:loc> russia <end> ) 6 - 3 6-4 6-2"
448
- "4","west indian all-rounder <start:per> phil simmons <end> took four for 38 on friday as <start:org> leicestershire <end> beat <start:org> somerset <end> by an innings and 39 runs in two days to take over at the head of the county championship ."
449
- "372"," yesterday was the toughest day i ve had for a long time "
450
- "126","but those close to the boxer acknowledge that the man who has won championships in four different weight classes -- lightweight "
451
- "229","<start:org> detroit <end> 48 86 .358 26 1/2"
452
- "330"," i do nt see the ball like i see during the day ."
453
- "86","<start:per> shearer <end> takes the captaincy on a trial basis "
454
- "166","<start:org> samsung <end> 10 <start:org> haitai <end> 3"
455
- "494","men s 400 metres hurdles"
456
- "187","4 - <start:per> goran ivanisevic <end> ( <start:loc> croatia <end> ) beat <start:per> scott draper <end> ( <start:loc> australia <end> ) 6-7 ( 1-7 ) 6-3 6-4 6-4"
457
- "309","the texan blasted in two aces to hold serve at 5-2 and then converted his eighth match point for victory when <start:per> washington <end> found the net with another backhand from 40-0 ."
458
- "431","6. <start:per> carmen wuestenhagen <end> ( <start:loc> germany <end> ) 4:10.38"
459
- "351","<start:loc> milwaukee <end> "
460
- "452","women s shot put"
461
- "227","<start:org> boston <end> 69 65 .515 5 1/2"
462
- "288","<start:org> chicago <end> 4 <start:org> houston <end> 3"
463
- "269","<start:org> atlanta <end> at <start:loc> chicago <end>"
464
- "44","<start:loc> scotland <end> ."
465
- "23","<start:org> somerset <end> 83 and 174 ( <start:per> p. simmons <end> 4-38 ) "
466
- "145","standings after games played on thursday ( tabulate under -"
467
- "65","june 19-23 second test ( at <start:loc> lord s <end> )"
468
- "105","<start:loc> romania <end> - <start:per> cosmin contra <end> ( 31st ) "
469
- "84","the 26-year-old "
470
- "206","7-6 ( 7-1 ) 6-2 4-6 6-1"
471
- "248","<start:org> baltimore <end> at <start:loc> seattle <end>"
472
- "370","<start:per> woods <end> "
473
- "267","<start:org> san francisco <end> 57 74 .435 16"
474
- "2","cricket - <start:org> leicestershire <end> take over at top after innings victory ."
475
- "513","1. <start:per> dennis mitchell <end> ( <start:loc> u.s. <end> ) 10.08"
476
- "492","7. <start:per> pauline konga <end> ( <start:loc> kenya <end> ) 15:09.74"
477
- "124","i feel good ."
478
- "471","4. <start:per> vladimir dubrovshchik <end> ( <start:loc> belarus <end> ) 65.30"
479
- "63","june 11-13 v a first class county ( to be confirmed )"
480
- "410"," today the concentration was the most important thing for me "
481
- "389","<start:per> phil mickelson <end> "
482
- "328","i lost too many points that i never lose ."
483
- "246","<start:org> new york <end> at <start:loc> california <end>"
484
- "42","english county sides and another against <start:org> british universities <end> "
485
- "429","4. <start:per> yekaterina podkopayeva <end> ( <start:loc> russia <end> ) 4:09.25"
486
- "185","<start:per> sandrine testud <end> ( <start:loc> france <end> ) beat <start:per> ines gorrochategui <end> ( <start:loc> argentina <end> ) 4-6 6-2 6-1"
487
- "103","<start:loc> romania <end> beat <start:loc> lithuania <end> 2-1 ( halftime 1-1 ) in their european under-21 soccer match on friday ."
488
- "307","the hard-serving <start:per> obrien <end> "
489
- "21","result and close of play scores in english county championship matches on friday :"
490
- "450","7. <start:per> claus hirsbro <end> ( <start:loc> denmark <end> ) 20.90"
491
- "368","<start:per> nolan henke <end> fired a nine-under-par 62 to grab a two-shot lead after the opening round of the $ 1.2 million greater milwaukee open thursday as 20-year-old <start:per> tiger woods <end> shot 67 in his professional debut ."
492
- "164","<start:org> hyundai <end> 6 <start:org> lotte <end> 5"
493
- "511","8. <start:per> karin janke <end> ( <start:loc> germany <end> ) 53.13"
494
- "225","<start:org> new york <end> 74 59 .556 -"
495
- "490","5. <start:per> tegla loroupe <end> ( <start:loc> kenya <end> ) 15:08.79"
496
- "286","national league"
497
- "82","<start:loc> london <end> 1996-08-30"
498
- "143","<start:org> pohang <end> 3 <start:org> ulsan <end> 2 ( halftime 1-0 )"
499
- "347","a second-round choice in 1985 "
500
- "408","among the crowd on friday were olympic 100 metres champions going back to 1948 ."
501
- "204","add men s singles "
1
+ "id","content"
2
+ "469","2. <start:per> anthony washington <end> ( <start:loc> u.s. <end> ) 68.44"
3
+ "265","<start:org> los angeles <end> 72 61 .541 2"
4
+ "40","four one-day warm-up matches at the start of the tour ."
5
+ "122"," i want a fifth title ."
6
+ "326","it was tough to play at night ."
7
+ "530","1= <start:per> andrei tiwontschik <end> ( <start:loc> germany <end> ) 5.86"
8
+ "162","<start:org> lg <end> 2 <start:org> ob <end> 0"
9
+ "387","<start:per> woods <end> was among a group of 13 players at four under "
10
+ "183","results from the u.s. open tennis championships at the <start:loc> national tennis centre <end> on friday ( prefix number denotes seeding ) :"
11
+ "244","<start:org> minnesota <end> at <start:loc> milwaukee <end>"
12
+ "223","eastern division"
13
+ "448","5. <start:per> patrick stevens <end> ( <start:loc> belgium <end> ) 20.54"
14
+ "509","6. <start:per> phylis smith <end> ( <start:loc> britain <end> ) 52.05"
15
+ "305"," i just kept saying to myself "
16
+ "488","3. <start:per> rose cheruiyot <end> ( <start:loc> kenya <end> ) 15:05.41"
17
+ "19","cricket - english county championship scores ."
18
+ "366","golf - <start:per> henke <end> takes lead in <start:loc> milwaukee <end> "
19
+ "101","soccer - <start:loc> romania <end> beat <start:loc> lithuania <end> in under-21 match ."
20
+ "345"," <start:per> randall <end> was one of the most exciting quarterbacks in <start:org> nfl <end> history "
21
+ "263","western division"
22
+ "202","add women s singles "
23
+ "427","2. <start:per> patricia djate-taillard <end> ( <start:loc> france <end> ) 4:08.22"
24
+ "406","earlier this month he also beat world champion <start:per> bailey <end> in <start:loc> zurich <end> ."
25
+ "324","but i think it s not that ."
26
+ "467","men s discus"
27
+ "284","<start:org> california <end> 14 <start:org> new york <end> 3"
28
+ "528","8. <start:per> craig winrow <end> ( <start:loc> britain <end> ) 1:46.66"
29
+ "385"," no bogeys on the card "
30
+ "181","tennis - friday s results from the u.s. open ."
31
+ "141","results of south korean pro-soccer"
32
+ "120","<start:per> duran <end> "
33
+ "303","<start:per> washington <end> "
34
+ "242","<start:org> kansas city <end> at <start:loc> detroit <end>"
35
+ "17","by stumps <start:org> kent <end> had reached 108 for three ."
36
+ "446","3. <start:per> ato boldon <end> ( <start:loc> trinidad <end> ) 20.37"
37
+ "160","results of south korean"
38
+ "38","said on friday ."
39
+ "282","<start:org> detroit <end> 4 <start:org> kansas city <end> 1"
40
+ "343"," i would like to thank the <start:org> eagles <end> organisation and the wonderful fans of <start:org> philadelphia <end> for supporting me throughout my career "
41
+ "425","women s 1"
42
+ "507","4. <start:per> anja ruecker <end> ( <start:loc> germany <end> ) 51.61"
43
+ "139","soccer - results of south korean pro-soccer games ."
44
+ "200","add women s singles "
45
+ "465","7. <start:per> john mayock <end> ( <start:loc> britain <end> ) 3:54.67"
46
+ "364","<start:per> bryan gorman <end>"
47
+ "404","<start:loc> jamaica <end> s <start:per> michael green <end> was second with 10.09 with <start:per> bailey <end> finishing in 10.13 ."
48
+ "57","may 25 third one-day international ( at <start:loc> lord s <end> "
49
+ "36","a six-test series against <start:loc> england <end> during a four-month tour"
50
+ "221","lost "
51
+ "261","<start:org> chicago <end> 65 66 .496 5"
52
+ "118","<start:loc> panama city <end> 1996-08-30"
53
+ "97","basketball tournament on friday :"
54
+ "486","1. <start:per> gabriela szabo <end> ( <start:loc> romania <end> ) 15 minutes 04.95 seconds"
55
+ "322","<start:per> rios <end> did not appreciate <start:per> tarango <end> s antics ."
56
+ "383","<start:per> henke <end> "
57
+ "362","<start:per> green <end> "
58
+ "78","august 16-18 v <start:org> kent <end> ( three days )"
59
+ "179","<start:org> ob <end> 42 6 62 .409 20 1/2"
60
+ "240","<start:org> california <end> 62 72 .463 13 1/2"
61
+ "15","after the frustration of seeing the opening day of their match badly affected by the weather "
62
+ "526","6. <start:per> adem hacini <end> ( <start:loc> algeria <end> ) 1:45.64"
63
+ "444","1. <start:per> frankie fredericks <end> ( <start:loc> namibia <end> ) 19.97 seconds"
64
+ "505","2. <start:per> jearl miles <end> ( <start:loc> u.s. <end> ) 50.42"
65
+ "280","baseball games played on thursday ( home team in caps ) :"
66
+ "219","major league baseball"
67
+ "301","the day programme went smoothly although sixth-seeded former champion <start:per> agassi <end> had to wriggle out of a dangerous 3-6 0-4 hole "
68
+ "158","baseball - results of s. korean professional games ."
69
+ "137","2 - <start:per> rodney eyles <end> ( <start:loc> australia <end> ) beat <start:per> derek ryan <end> ( <start:loc> ireland <end> ) 15-6 15-9 11-15 15-10 ."
70
+ "76","august 1-4 v <start:org> somerset <end> ( four days )"
71
+ "484","8. <start:per> inger miller <end> ( <start:loc> u.s. <end> ) 11.37"
72
+ "423","6. <start:per> julie baumann <end> ( <start:loc> switzerland <end> ) 13.11"
73
+ "402","watched by an array of former olympic sprint champions at the <start:loc> berlin <end> grand prix meeting "
74
+ "341","<start:per> cunningham <end> played his entire 11-year career with the <start:org> philadelphia eagles <end> ."
75
+ "320"," i played some of my best tennis in college when fraternities were throwing beer on me ."
76
+ "463","5. <start:per> marko koers <end> ( <start:loc> netherlands <end> ) 3:53.47"
77
+ "177","<start:org> lotte <end> 46 6 54 .462 14 1/2"
78
+ "198","<start:per> amanda coetzer <end> ( <start:loc> south africa <end> ) beat <start:per> irina spirlea <end> ( <start:loc> romania <end> ) 7-6 ( 7-5 ) 7-5"
79
+ "34","<start:loc> london <end> 1996-08-30"
80
+ "55","may 24 second one-day international ( at <start:loc> the oval <end> "
81
+ "442","8. <start:per> jack pierce <end> ( <start:loc> u.s. <end> ) 13.60"
82
+ "259","<start:org> st louis <end> 69 65 .515 2 1/2"
83
+ "299","next door on the grandstand "
84
+ "503","women s 400 metres"
85
+ "74","july 24-28 fourth test ( at <start:loc> headingley <end> )"
86
+ "524","4. <start:per> nico motchebon <end> ( <start:loc> germany <end> ) 1:45.03"
87
+ "156","<start:org> chonbuk <end> 0 0 3 3 7 0"
88
+ "95","<start:loc> belgrade <end> 1996-08-30"
89
+ "53","may 22 first one-day international ( at <start:loc> headingley <end> "
90
+ "381","that s always been the worst part of my game ."
91
+ "13","<start:org> derbyshire <end> kept up the hunt for their first championship title since 1936 by reducing <start:org> worcestershire <end> to 133 for five in their second innings "
92
+ "360","<start:per> wood <end> "
93
+ "318"," i love the crowd if they boo me every day ."
94
+ "238","<start:org> seattle <end> 70 63 .526 5"
95
+ "482","6. <start:per> chandra sturrup <end> ( <start:loc> bahamas <end> ) 11.26"
96
+ "217","baseball - major league standings after thursday s games ."
97
+ "114","despite the defeat "
98
+ "421","4. <start:per> brigita bokovec <end> ( <start:loc> slovenia <end> ) 12.92"
99
+ "339","<start:loc> philadelphia <end> 1996-08-29"
100
+ "278","<start:loc> new york <end> 1996-08-30"
101
+ "379","it was my best round in a very long time ."
102
+ "257","central division"
103
+ "196","8 - <start:per> lindsay davenport <end> ( <start:loc> u.s. <end> ) beat <start:per> anne-gaelle sidot <end> ( <start:loc> france <end> ) 6-0 6-3"
104
+ "135","<start:per> anthony hill <end> ( <start:loc> australia <end> ) beat <start:per> dan jenson <end> ( <start:loc> australia <end> ) 15-9 15-8 15-17 17-15"
105
+ "440","6. <start:per> steve brown <end> ( <start:loc> u.s. <end> ) 13.53"
106
+ "522","2. <start:per> norberto tellez <end> ( <start:loc> cuba <end> ) 1:44.58"
107
+ "297","<start:per> andre agassi <end> escaped disaster on thursday but wimbledon finalist <start:per> malivai washington <end> and <start:per> marcelo rios <end> were not so fortunate on a night of upsets at the u.s. open ."
108
+ "400","<start:loc> berlin <end> 1996-08-30"
109
+ "358","65 <start:per> billy andrade <end> "
110
+ "236","western division"
111
+ "11","at the <start:loc> oval <end> "
112
+ "461","3. <start:per> william tanui <end> ( <start:loc> kenya <end> ) 3:51.40"
113
+ "154","<start:org> chonnam <end> 0 2 1 4 5 2"
114
+ "419","2. <start:per> ludmila engquist <end> ( <start:loc> sweden <end> ) 12.74"
115
+ "194","<start:per> jonas bjorkman <end> ( <start:loc> sweden <end> ) beat <start:per> david nainkin <end> ( <start:loc> south africa <end> ) ) 6-4 6-1 6-1"
116
+ "175","<start:org> hyundai <end> 57 5 49 .536 6 1/2"
117
+ "215","add men s singles "
118
+ "133","<start:loc> hong kong <end> 1996-08-30"
119
+ "459","1. <start:per> noureddine morceli <end> ( <start:loc> algeria <end> ) 3 minutes 49.09 seconds"
120
+ "501","7. <start:per> rohan robinson <end> ( <start:loc> australia <end> ) 49.36"
121
+ "480","4. <start:per> mary onyali <end> ( <start:loc> nigeria <end> ) 11.14"
122
+ "234","<start:org> milwaukee <end> 64 71 .474 17"
123
+ "51","may 18 v <start:org> worcestershire <end>"
124
+ "72","july 16-18 v <start:org> glamorgan <end> ( three days )"
125
+ "520","men s 800 metres"
126
+ "274","<start:org> san francisco <end> at <start:loc> new york <end>"
127
+ "316","i think i played very well tonight "
128
+ "398","athletics - <start:per> mitchell <end> defeats <start:per> bailey <end> in front of former champions ."
129
+ "377","<start:per> henke <end> "
130
+ "396","but that did not prevent him from collecting the one-match suspension ."
131
+ "499","5. <start:per> sven nylander <end> ( <start:loc> sweden <end> ) 49.22"
132
+ "255","<start:org> new york <end> 59 75 .440 25"
133
+ "30","<start:loc> chesterfield <end> : <start:org> worcestershire <end> 238 and 133-5 "
134
+ "253","<start:org> montreal <end> 71 61 .538 12"
135
+ "356","62 <start:per> nolan henke <end>"
136
+ "112","the head of the russian league s disciplinary committee "
137
+ "91","<start:per> shearer <end> s euro 96 striking partner <start:per> teddy sheringham <end> withdrew from the squad with an injury on friday ."
138
+ "314","a boisterous cheering section backed the distracted chilean and booed the lanky american "
139
+ "9","<start:per> hussain <end> "
140
+ "173","<start:org> ssangbangwool <end> 59 2 49 .545 5 1/2"
141
+ "152","<start:org> ulsan <end> 1 0 2 8 9 3"
142
+ "436","2. <start:per> tony jarrett <end> ( <start:loc> britain <end> ) 13.35"
143
+ "49","may 15 v <start:org> duke of norfolk s xi <end> ( at <start:loc> arundel <end> )"
144
+ "438","4. <start:per> emilio valle <end> ( <start:loc> cuba <end> ) 13.52"
145
+ "417","women s 100 metres hurdles"
146
+ "312","but i think he served pretty well when he had to . "
147
+ "375","it was a perfect start ."
148
+ "295","<start:per> larry fine <end>"
149
+ "70","july 9 v <start:org> minor counties xi <end>"
150
+ "26","<start:loc> tunbridge wells <end> : <start:org> nottinghamshire <end> 214 ( <start:per> p. johnson <end> 84 ; <start:per> m. mccague <end> 4-55 ) "
151
+ "171","w d l pct gb"
152
+ "213","6-0 6-2"
153
+ "335","at the same time "
154
+ "291","<start:org> los angeles <end> 2 <start:org> montreal <end> 1"
155
+ "28","<start:loc> hove <end> : <start:org> sussex <end> 363 ( <start:per> w. athey <end> 111 "
156
+ "478","2. <start:per> merlene ottey <end> ( <start:loc> jamaica <end> ) 10.94"
157
+ "192","men s singles "
158
+ "148","<start:org> puchon <end> 3 1 0 6 1 10"
159
+ "89"," in four days it s very difficult to come to a 100 percent conclusion about something like this ..."
160
+ "518","6. <start:per> geir moen <end> ( <start:loc> norway <end> ) 10.33"
161
+ "457","5. <start:per> stephanie storp <end> ( <start:loc> germany <end> ) 18.41"
162
+ "413","athletics - berlin grand prix results ."
163
+ "354","6"
164
+ "110","<start:loc> moscow <end> 1996-08-30"
165
+ "232","<start:org> chicago <end> 71 64 .526 10"
166
+ "5","their stay on top "
167
+ "211","add women s singles "
168
+ "150","<start:org> pohang <end> 2 1 1 11 10 7"
169
+ "497","3. <start:per> derrick adkins <end> ( <start:loc> u.s. <end> ) 48.62"
170
+ "474","7. <start:per> andreas seelig <end> ( <start:loc> germany <end> ) 62.00"
171
+ "476","women s 100 metres"
172
+ "415","leading results at the berlin"
173
+ "333","at the end of the match "
174
+ "331","i play an american so that s why i play at night ."
175
+ "394","spanish first division team <start:org> deportivo coruna <end> will be without key midfielder <start:per> mauro silva <end> for saturday s game with <start:org> real madrid <end> after <start:org> fifa <end> "
176
+ "7","trailing by 213 "
177
+ "129","<start:per> duran <end> "
178
+ "188","<start:per> tim henman <end> ( <start:loc> britain <end> ) beat <start:per> doug flach <end> ( <start:loc> u.s. <end> ) 6-3 6-4 6-2"
179
+ "251","w l pct gb"
180
+ "272","<start:org> los angeles <end> at <start:loc> philadelphia <end>"
181
+ "47","may 13 arrive in <start:loc> london <end>"
182
+ "24","<start:org> leicestershire <end> 22 points "
183
+ "87"," i m sure there wo nt be a problem "
184
+ "190","<start:per> sjeng schalken <end> ( <start:loc> netherlands <end> ) beat <start:per> david rikl <end> ( <start:loc> czech republic <end> ) 6 - 2 6-4 6-4"
185
+ "373","today "
186
+ "289","<start:org> cincinnati <end> 18 <start:org> colorado <end> 7"
187
+ "352","leading scores in"
188
+ "455","3. <start:per> irina korzhanenko <end> ( <start:loc> russia <end> ) 18.63"
189
+ "169","standings after games played on thursday ( tabulate under"
190
+ "3","<start:loc> london <end> 1996-08-30"
191
+ "66","june 25-27 v <start:org> british universities <end> ( at <start:loc> oxford <end> "
192
+ "516","4. <start:per> jon drummond <end> ( <start:loc> u.s. <end> ) 10.22"
193
+ "434","men s 110 metres hurdles"
194
+ "329","i did nt play my tennis . "
195
+ "392","soccer - <start:per> silva <end> s `lost passport excuse not enough for <start:org> fifa <end> ."
196
+ "230","central division"
197
+ "495","1. <start:per> torrance zellner <end> ( <start:loc> u.s. <end> ) 48.23 seconds"
198
+ "186","men s singles "
199
+ "249","national league"
200
+ "270","<start:org> florida <end> at <start:loc> cincinnati <end>"
201
+ "209","<start:per> petr korda <end> ( <start:loc> czech republic <end> ) bat <start:per> bohdan ulihrach <end> ( <start:loc> czech <end>"
202
+ "451","8. <start:per> ivan garcia <end> ( <start:loc> cuba <end> ) 20.96"
203
+ "514","2. <start:per> michael green <end> ( <start:loc> jamaica <end> ) 10.09"
204
+ "127"," each time he fights "
205
+ "45","tour itinerary :"
206
+ "43","as well as one-day matches against the <start:org> minor counties <end> and"
207
+ "106","<start:loc> lithuania <end> - <start:per> danius gleveckas <end> ( 13rd )"
208
+ "453","1. <start:per> astrid kumbernuss <end> ( <start:loc> germany <end> ) 19.89 metres"
209
+ "432","7. <start:per> margarita maruseva <end> ( <start:loc> russia <end> ) 4:10.87"
210
+ "308","the fifth set stayed on serve until the sixth game "
211
+ "371","he settled for a birdie and a four-under opening round that left him five shots off the pace ."
212
+ "310"," you just kind of keep fighting and you keep trying to make him play a little bit ."
213
+ "85","<start:per> adams <end> and <start:per> platt <end> are both injured and will miss <start:loc> england <end> s opening world cup qualifier against <start:loc> moldova <end> on sunday ."
214
+ "491","6. <start:per> gunhild halle <end> ( <start:loc> norway <end> ) 15:09.00"
215
+ "411","despite the coolish conditions american olympic champion <start:per> gail devers <end> looked in commanding form in the women s 100 "
216
+ "167","<start:org> hanwha <end> 6 <start:org> ssangbangwool <end> 5"
217
+ "350","golf - leading scores at greater milwaukee open ."
218
+ "348","<start:per> cunningham <end> has already been signed as a broadcaster ."
219
+ "64","june 14-16 v <start:org> leicestershire <end> ( three days )"
220
+ "228","<start:org> toronto <end> 63 71 .470 11 1/2"
221
+ "146","won "
222
+ "41","the tourists will play nine first-class matches against"
223
+ "104","scorers :"
224
+ "493","8. <start:per> sally barsosio <end> ( <start:loc> kenya <end> ) 15:14.34"
225
+ "207","<start:per> andrei medvedev <end> ( <start:loc> ukraine <end> ) beat <start:per> jan kroslak <end> ( <start:loc> slovakia <end> ) 6-4 6-3"
226
+ "306"," i kept my composure and i was proud of myself for that -- usually i would have folded up the tent and gone home . "
227
+ "369","<start:per> henke <end> stood two strokes ahead of <start:per> bob estes <end> and three up on <start:per> billy andrade <end> "
228
+ "268","friday "
229
+ "472","5. <start:per> virgilijus alekna <end> ( <start:loc> lithuania <end> ) 65.00"
230
+ "367","<start:loc> milwaukee <end> "
231
+ "430","5. <start:per> leah pells <end> ( <start:loc> canada <end> ) 4:09.95"
232
+ "165","<start:org> haitai <end> 2 <start:org> samsung <end> 0"
233
+ "125","i m not retiring "
234
+ "163","<start:org> lotte <end> 6 <start:org> hyundai <end> 2"
235
+ "226","<start:org> baltimore <end> 70 63 .526 4"
236
+ "22","<start:loc> leicester <end> : <start:org> leicestershire <end> beat <start:org> somerset <end> by an innings and 39 runs ."
237
+ "390","<start:per> mark brooks <end> "
238
+ "20","<start:loc> london <end> 1996-08-30"
239
+ "83","the world s costliest footballer <start:per> alan shearer <end> was named as the new <start:loc> england <end> captain on friday ."
240
+ "205","<start:per> hendrik dreekmann <end> ( <start:loc> germany <end> ) beat <start:per> thomas johansson <end> ( <start:loc> sweden <end> )"
241
+ "247","<start:org> boston <end> at <start:loc> oakland <end>"
242
+ "346","during his 11 years in <start:loc> philadelphia <end> "
243
+ "409","they had been invited to the meeting to watch a special relay to mark the 60th anniversary of <start:per> jesse owens <end> s four gold medals at the 1936 olympics in the same <start:loc> berlin <end> stadium ."
244
+ "470","3. <start:per> vasily kaptyukh <end> ( <start:loc> belarus <end> ) 66.24"
245
+ "512","men s 100 metres"
246
+ "468","1. <start:per> lars riedel <end> ( <start:loc> germany <end> ) 70.60 metres"
247
+ "266","<start:org> colorado <end> 70 65 .519 5"
248
+ "62","june 5-9 first test match ( at <start:loc> edgbaston <end> "
249
+ "287","<start:org> san diego <end> 3 <start:org> new york <end> 2"
250
+ "60","may 31 - june 2 v <start:org> derbyshire <end> ( three days )"
251
+ "123","this match is to prepare me ."
252
+ "327","balls were going really fast ."
253
+ "144","<start:org> puchon <end> 2 <start:org> chonbuk <end> 1 ( halftime 1-1 )"
254
+ "529","men s pole vault"
255
+ "81","soccer - <start:per> shearer <end> named as <start:loc> england <end> captain ."
256
+ "245","<start:org> cleveland <end> at <start:loc> texas <end>"
257
+ "388","defending champion <start:per> scott hoch <end> shot a three-under 68 and was six strokes back ."
258
+ "79","august 21-25 sixth test ( at <start:loc> the oval <end> "
259
+ "142","games played on thursday ."
260
+ "510","7. <start:per> linda kisabaka <end> ( <start:loc> germany <end> ) 52.41"
261
+ "184","women s singles "
262
+ "344"," although it saddens me to leave "
263
+ "407","<start:loc> berlin <end> "
264
+ "285","<start:org> seattle <end> 9 <start:org> baltimore <end> 6"
265
+ "449","6. <start:per> jon drummond <end> ( <start:loc> u.s. <end> ) 20.78"
266
+ "58","may 27-29 v <start:org> gloucestershire <end> or <start:org> sussex <end> or <start:org> surrey <end> ( three"
267
+ "121","the fight "
268
+ "325","i think i played really bad ."
269
+ "102","<start:loc> bucharest <end> 1996-08-30"
270
+ "323"," he s always complaining too much "
271
+ "386","sometimes i take more pride in that . "
272
+ "182","<start:loc> new york <end> 1996-08-30"
273
+ "428","3. <start:per> carla sacramento <end> ( <start:loc> portugal <end> ) 4:08.96"
274
+ "384","<start:per> estes <end> "
275
+ "447","4. <start:per> geir moen <end> ( <start:loc> norway <end> ) 20.41"
276
+ "39","<start:loc> australia <end> will also play three one-day internationals and"
277
+ "224","w l pct gb"
278
+ "241","friday "
279
+ "243","<start:org> chicago <end> at <start:loc> toronto <end>"
280
+ "508","5. <start:per> olabisi afolabi <end> ( <start:loc> nigeria <end> ) 51.98"
281
+ "489","4. <start:per> annemari sandell <end> ( <start:loc> finland <end> ) 15:06.33"
282
+ "506","3. <start:per> fatima yusuf <end> ( <start:loc> nigeria <end> ) 51.43"
283
+ "304","<start:per> obrien <end> "
284
+ "222","american league"
285
+ "264","<start:org> san diego <end> 75 60 .556 -"
286
+ "98","<start:org> red star <end> ( <start:loc> yugoslavia <end> ) beat <start:org> dinamo <end> ( <start:loc> russia <end> ) 92-90 ( halftime"
287
+ "161","professional baseball games played on thursday ."
288
+ "283","<start:org> minnesota <end> 6 <start:org> milwaukee <end> 1"
289
+ "487","2. <start:per> gete wami <end> ( <start:loc> ethiopia <end> ) 15:05.21"
290
+ "363","<start:per> mike hulbert <end> "
291
+ "426","1. <start:per> svetlana masterkova <end> ( <start:loc> russia <end> ) four minutes 6.87 seconds"
292
+ "37","starting on may 13 next year "
293
+ "140","<start:loc> seoul <end> 1996-08-30"
294
+ "403","<start:per> bailey <end> "
295
+ "466","8. <start:per> marcus osullivan <end> ( <start:loc> ireland <end> ) 3:54.87"
296
+ "220","standings after games played on thursday ( tabulate under won "
297
+ "405","last friday <start:per> mitchell <end> "
298
+ "56","<start:loc> london <end> )"
299
+ "119","panamanian boxing legend <start:per> roberto hands of stone duran <end> climbs into the ring on saturday in another age-defying attempt to sustain his long career ."
300
+ "485","women s 5"
301
+ "201","add men s singles "
302
+ "96","result in an international"
303
+ "159","<start:loc> seoul <end> 1996-08-30"
304
+ "77","august 7-11 fifth test ( at <start:loc> trent bridge <end> "
305
+ "262","<start:org> pittsburgh <end> 56 77 .421 15"
306
+ "361","67 <start:per> mark calcavecchia <end> "
307
+ "424","7. <start:per> gillian russell <end> ( <start:loc> jamaica <end> ) 13.17"
308
+ "342","a three-time pro bowl selection "
309
+ "527","7. <start:per> vebjoen rodal <end> ( <start:loc> norway <end> ) 1:46.45"
310
+ "218","<start:loc> new york <end> 1996-08-30"
311
+ "16","they were held up by a gritty 84 from <start:per> paul johnson <end> but ex-england fast bowler <start:per> martin mccague <end> took four for 55 ."
312
+ "260","<start:org> cincinnati <end> 66 67 .496 5"
313
+ "445","2. <start:per> michael johnson <end> ( <start:loc> u.s. <end> ) 20.02"
314
+ "401","american <start:per> dennis mitchell <end> outclassed olympic 100 metres champion <start:per> donovan bailey <end> for the third time at a major post-games meeting in front of the most experienced sprinting crowd in the world on friday ."
315
+ "281","american league"
316
+ "525","5. <start:per> david kiptoo <end> ( <start:loc> kenya <end> ) 1:45.27"
317
+ "302","but the night belonged to the upstarts ."
318
+ "258","<start:org> houston <end> 72 63 .533 -"
319
+ "464","6. <start:per> isaac viciosa <end> ( <start:loc> spain <end> ) 3:53.85"
320
+ "382","all in all "
321
+ "199","add men s singles "
322
+ "523","3. <start:per> sammy langat <end> ( <start:loc> kenya <end> ) 1:44.96"
323
+ "321","if tennis was like that every day "
324
+ "35","<start:loc> australia <end> will defend the ashes in"
325
+ "117","boxing - <start:loc> panama <end> s <start:per> roberto duran <end> fights the sands of time ."
326
+ "115","lying three points behind <start:org> alania <end> and two behind <start:org> dynamo moscow <end> "
327
+ "178","<start:org> lg <end> 46 5 59 .441 17"
328
+ "300","the temperamental left-hander defeated the chilean 6-4 4-6 7-6 6-2 ."
329
+ "443","men s 200 metres"
330
+ "359","66 <start:per> neal lancaster <end> "
331
+ "422","5. <start:per> dionne rose <end> ( <start:loc> jamaica <end> ) 12.92"
332
+ "340","<start:per> randall cunningham <end> "
333
+ "239","<start:org> oakland <end> 64 72 .471 12 1/2"
334
+ "73","july 19-21 v <start:org> middlesex <end> ( three days )"
335
+ "136","4 - <start:per> peter nicol <end> ( <start:loc> scotland <end> ) beat 7 - <start:per> chris walker <end> ( <start:loc> england <end> ) 15-8 15-13 13-15 15-9"
336
+ "54","<start:org> leeds <end> )"
337
+ "504","1. <start:per> falilat ogunkoya <end> ( <start:loc> nigeria <end> ) 50.31 seconds"
338
+ "134","quarter-final results in the hong kong open on friday ( prefix number denotes seeding ) : 1 - <start:per> jansher khan <end> ( <start:loc> pakistan <end> ) beat <start:per> mark cairns <end> ( <start:loc> england <end> ) 15-10 15-6 15-7"
339
+ "197","4 - <start:per> conchita martinez <end> ( <start:loc> spain <end> ) beat <start:per> helena sukova <end> ( <start:loc> czech republic <end> ) 6-4 6-3"
340
+ "380","my short game has improved since i ve had to use it so often ."
341
+ "14","australian <start:per> tom moody <end> took six for 82 but <start:per> chris adams <end> "
342
+ "399","<start:per> adrian warner <end>"
343
+ "462","4. <start:per> laban rotich <end> ( <start:loc> kenya <end> ) 3:53.42"
344
+ "237","<start:org> texas <end> 75 58 .564 -"
345
+ "483","7. <start:per> irina privalova <end> ( <start:loc> russia <end> ) 11.27"
346
+ "521","1. <start:per> wilson kipketer <end> ( <start:loc> denmark <end> ) 1:43.34"
347
+ "176","<start:org> samsung <end> 49 5 56 .468 14"
348
+ "94","basketball - international tournament result ."
349
+ "279","results of major league"
350
+ "113","the club "
351
+ "441","7. <start:per> frank busemann <end> ( <start:loc> germany <end> ) 13.58"
352
+ "420","3. <start:per> aliuska lopez <end> ( <start:loc> cuba <end> ) 12.92"
353
+ "319","it fires me up "
354
+ "378"," we finally got things going in the right direction "
355
+ "33","cricket - 1997 ashes intinerary ."
356
+ "12","he was well backed by <start:loc> england <end> hopeful <start:per> mark butcher <end> who made 70 as <start:org> surrey <end> closed on 429 for seven "
357
+ "155","<start:org> pusan <end> 0 2 1 3 7 2"
358
+ "439","5. <start:per> falk balzer <end> ( <start:loc> germany <end> ) 13.52"
359
+ "502","8. <start:per> dusan kovacs <end> ( <start:loc> hungary <end> ) 49.58"
360
+ "277","baseball - major league results thursday ."
361
+ "195","women s singles "
362
+ "235","<start:org> kansas city <end> 61 74 .452 20"
363
+ "298","the 11th-seeded <start:per> washington <end> fell short of reprising his wimbledon miracle comeback as he lost to red-hot wildcard <start:per> alex obrien <end> 6-3 6-4 5-7 3-6 6-3 in a two hour 51 minute struggle on the stadium court ."
364
+ "338","<start:org> nfl <end> american football-randall <start:per> cunningham <end> retires ."
365
+ "460","2. <start:per> venuste niyongabo <end> ( <start:loc> burundi <end> ) 3:51.01"
366
+ "296","<start:loc> new york <end> 1996-08-30"
367
+ "481","5. <start:per> chryste gaines <end> ( <start:loc> u.s. <end> ) 11.20"
368
+ "52","may 20 v <start:org> durham <end>"
369
+ "256","<start:org> philadelphia <end> 54 80 .403 30"
370
+ "418","1. <start:per> michelle freeman <end> ( <start:loc> jamaica <end> ) 12.71 seconds"
371
+ "174","<start:org> hanwha <end> 58 1 49 .542 6"
372
+ "92","he will probably be replaced by <start:per> shearer <end> s <start:org> newcastle <end> team mate <start:per> les ferdinand <end> ."
373
+ "317","the match turned on the third-set tiebreaker "
374
+ "111","<start:org> rotor volgograd <end> must play their next home game behind closed doors after fans hurled bottles and stones at <start:org> dynamo moscow <end> players during a 1-0 home defeat on saturday that ended <start:org> rotor <end> s brief spell as league leaders ."
375
+ "153","<start:org> anyang <end> 0 3 1 6 9 3"
376
+ "275","<start:org> colorado <end> at <start:loc> st louis <end>"
377
+ "31","<start:loc> bristol <end> : <start:org> gloucestershire <end> 183 and 185-6 ( <start:per> j. russell <end> 56 not out ) "
378
+ "90","but he knows how to conduct himself "
379
+ "10","by the close <start:org> yorkshire <end> had turned that into a 37-run advantage but off-spinner <start:per> such <end> had scuttled their hopes "
380
+ "132","squash - hong kong open quarter-final results ."
381
+ "500","6. <start:per> eric thomas <end> ( <start:loc> u.s. <end> ) 49.35"
382
+ "151","<start:org> suwan <end> 1 3 0 7 3 6"
383
+ "479","3. <start:per> gwen torrence <end> ( <start:loc> u.s. <end> ) 11.07"
384
+ "50","may 17 v <start:org> northampton <end>"
385
+ "357","64 <start:per> bob estes <end>"
386
+ "416","grand prix athletics meeting on friday :"
387
+ "71","july 12 v <start:loc> scotland <end>"
388
+ "315"," i m an emotional player "
389
+ "254","<start:org> florida <end> 64 70 .478 20"
390
+ "8","<start:org> essex <end> "
391
+ "336","after i won i figured i could give them a little razzle-dazzle . "
392
+ "437","3. <start:per> florian schwarthoff <end> ( <start:loc> germany <end> ) 13.36"
393
+ "172","<start:org> haitai <end> 64 2 43 .596 -"
394
+ "273","<start:org> houston <end> at <start:loc> pittsburgh <end>"
395
+ "193","<start:per> alexander volkov <end> ( <start:loc> russia <end> ) beat <start:per> mikael tillstrom <end> ( <start:loc> sweden <end> ) 1-6 6- 4 6-1 4-6 7-6 ( 10-8 )"
396
+ "355","on thursday ( players <start:loc> u.s. <end> unless stated ) :"
397
+ "29","<start:loc> portsmouth <end> : <start:org> middlesex <end> 199 and 426 ( <start:per> j. pooley <end> 111 "
398
+ "130","<start:per> camacho <end> took a controversial points decision against the panamanian in <start:loc> atlantic city <end> in june in a title fight ."
399
+ "458","men s mile"
400
+ "252","<start:org> atlanta <end> 83 49 .629 -"
401
+ "498","4. <start:per> fabrizio mori <end> ( <start:loc> italy <end> ) 49.21"
402
+ "395","<start:per> silva <end> excused his absence from <start:loc> brazil <end> s game against <start:loc> russia <end> "
403
+ "519","7. <start:per> marc blume <end> ( <start:loc> germany <end> ) 10.48"
404
+ "109","soccer - <start:org> rotor <end> fans locked out after <start:loc> volgograd <end> violence ."
405
+ "294","tennis - <start:per> tarango <end> "
406
+ "456","4. <start:per> valentina fedyushina <end> ( <start:loc> russia <end> ) 18.55"
407
+ "376","i m in a good position . "
408
+ "435","1. <start:per> mark crear <end> ( <start:loc> u.s. <end> ) 13.26 seconds"
409
+ "212","2 - <start:per> monica seles <end> ( <start:loc> u.s. <end> ) beat <start:per> dally randriantefy <end> ( <start:loc> madagascar <end> )"
410
+ "313","<start:per> tarango <end> "
411
+ "233","<start:org> minnesota <end> 67 67 .500 13 1/2"
412
+ "27","<start:loc> london <end> ( <start:loc> the oval <end> ) : <start:org> warwickshire <end> 195 "
413
+ "69","july 3-7 third test ( at <start:loc> old trafford <end> "
414
+ "170","won "
415
+ "477","1. <start:per> gail devers <end> ( <start:loc> u.s. <end> ) 10.89 seconds"
416
+ "292","<start:org> florida <end> 10 <start:org> st louis <end> 9"
417
+ "334"," i support their enthusiasm "
418
+ "414","<start:loc> berlin <end> 1996-08-30"
419
+ "191","<start:per> guy forget <end> ( <start:loc> france <end> ) beat 17 - <start:per> felix mantilla <end> ( <start:loc> spain <end> ) 6-4 7-5 6-3"
420
+ "149","<start:org> chonan <end> 3 0 1 13 10 9"
421
+ "374","he added : i thought i got off off to a great start ."
422
+ "128","if he loses saturday "
423
+ "48","may 14 practice at <start:loc> lord s <end>"
424
+ "475","8. <start:per> michael moellenbeck <end> ( <start:loc> germany <end> ) 58.56"
425
+ "210","<start:loc> republic <end> ) 6-0 7-6 ( 7-5 ) 6-2"
426
+ "454","2. <start:per> claudia mues <end> ( <start:loc> germany <end> ) 18.80"
427
+ "517","5. <start:per> davidson ezinwa <end> ( <start:loc> nigeria <end> ) 10.24"
428
+ "67","june 28-30 v <start:org> hampshire <end> ( three days )"
429
+ "6","after bowling <start:org> somerset <end> out for 83 on the opening morning at <start:loc> grace road <end> "
430
+ "168","note - <start:org> lotte <end> and <start:org> hyundai <end> "
431
+ "231","<start:org> cleveland <end> 80 53 .602 -"
432
+ "332","i did nt feel good on the court . "
433
+ "271","<start:org> san diego <end> at <start:loc> montreal <end>"
434
+ "433","8. <start:per> sara thorsett <end> ( <start:loc> u.s. <end> ) 4:11.06"
435
+ "496","2. <start:per> samuel matete <end> ( <start:loc> zambia <end> ) 48.34"
436
+ "393","<start:loc> madrid <end> 1996-08-30"
437
+ "250","eastern division"
438
+ "25","<start:loc> chester-le-street <end> : <start:org> glamorgan <end> 259 and 207 ( <start:per> a. dale <end> 69 "
439
+ "88"," there were three or four people who could have done it but when i spoke to <start:per> alan <end> he was up for it and really wanted it ."
440
+ "107","attendance : 200"
441
+ "515","3. <start:per> donovan bailey <end> ( <start:loc> canada <end> ) 10.13"
442
+ "290","<start:org> atlanta <end> 5 <start:org> pittsburgh <end> 1"
443
+ "353","the $ 1.2 million greater milwaukee open at the par-71 "
444
+ "147","w d l g / f g / a p"
445
+ "311","i think he got a little tight at a couple of moments "
446
+ "473","6. <start:per> juergen schult <end> ( <start:loc> germany <end> ) 64.46"
447
+ "189","<start:per> mark philippoussis <end> ( <start:loc> australia <end> ) beat <start:per> andrei olhovskiy <end> ( <start:loc> russia <end> ) 6 - 3 6-4 6-2"
448
+ "4","west indian all-rounder <start:per> phil simmons <end> took four for 38 on friday as <start:org> leicestershire <end> beat <start:org> somerset <end> by an innings and 39 runs in two days to take over at the head of the county championship ."
449
+ "372"," yesterday was the toughest day i ve had for a long time "
450
+ "126","but those close to the boxer acknowledge that the man who has won championships in four different weight classes -- lightweight "
451
+ "229","<start:org> detroit <end> 48 86 .358 26 1/2"
452
+ "330"," i do nt see the ball like i see during the day ."
453
+ "86","<start:per> shearer <end> takes the captaincy on a trial basis "
454
+ "166","<start:org> samsung <end> 10 <start:org> haitai <end> 3"
455
+ "494","men s 400 metres hurdles"
456
+ "187","4 - <start:per> goran ivanisevic <end> ( <start:loc> croatia <end> ) beat <start:per> scott draper <end> ( <start:loc> australia <end> ) 6-7 ( 1-7 ) 6-3 6-4 6-4"
457
+ "309","the texan blasted in two aces to hold serve at 5-2 and then converted his eighth match point for victory when <start:per> washington <end> found the net with another backhand from 40-0 ."
458
+ "431","6. <start:per> carmen wuestenhagen <end> ( <start:loc> germany <end> ) 4:10.38"
459
+ "351","<start:loc> milwaukee <end> "
460
+ "452","women s shot put"
461
+ "227","<start:org> boston <end> 69 65 .515 5 1/2"
462
+ "288","<start:org> chicago <end> 4 <start:org> houston <end> 3"
463
+ "269","<start:org> atlanta <end> at <start:loc> chicago <end>"
464
+ "44","<start:loc> scotland <end> ."
465
+ "23","<start:org> somerset <end> 83 and 174 ( <start:per> p. simmons <end> 4-38 ) "
466
+ "145","standings after games played on thursday ( tabulate under -"
467
+ "65","june 19-23 second test ( at <start:loc> lord s <end> )"
468
+ "105","<start:loc> romania <end> - <start:per> cosmin contra <end> ( 31st ) "
469
+ "84","the 26-year-old "
470
+ "206","7-6 ( 7-1 ) 6-2 4-6 6-1"
471
+ "248","<start:org> baltimore <end> at <start:loc> seattle <end>"
472
+ "370","<start:per> woods <end> "
473
+ "267","<start:org> san francisco <end> 57 74 .435 16"
474
+ "2","cricket - <start:org> leicestershire <end> take over at top after innings victory ."
475
+ "513","1. <start:per> dennis mitchell <end> ( <start:loc> u.s. <end> ) 10.08"
476
+ "492","7. <start:per> pauline konga <end> ( <start:loc> kenya <end> ) 15:09.74"
477
+ "124","i feel good ."
478
+ "471","4. <start:per> vladimir dubrovshchik <end> ( <start:loc> belarus <end> ) 65.30"
479
+ "63","june 11-13 v a first class county ( to be confirmed )"
480
+ "410"," today the concentration was the most important thing for me "
481
+ "389","<start:per> phil mickelson <end> "
482
+ "328","i lost too many points that i never lose ."
483
+ "246","<start:org> new york <end> at <start:loc> california <end>"
484
+ "42","english county sides and another against <start:org> british universities <end> "
485
+ "429","4. <start:per> yekaterina podkopayeva <end> ( <start:loc> russia <end> ) 4:09.25"
486
+ "185","<start:per> sandrine testud <end> ( <start:loc> france <end> ) beat <start:per> ines gorrochategui <end> ( <start:loc> argentina <end> ) 4-6 6-2 6-1"
487
+ "103","<start:loc> romania <end> beat <start:loc> lithuania <end> 2-1 ( halftime 1-1 ) in their european under-21 soccer match on friday ."
488
+ "307","the hard-serving <start:per> obrien <end> "
489
+ "21","result and close of play scores in english county championship matches on friday :"
490
+ "450","7. <start:per> claus hirsbro <end> ( <start:loc> denmark <end> ) 20.90"
491
+ "368","<start:per> nolan henke <end> fired a nine-under-par 62 to grab a two-shot lead after the opening round of the $ 1.2 million greater milwaukee open thursday as 20-year-old <start:per> tiger woods <end> shot 67 in his professional debut ."
492
+ "164","<start:org> hyundai <end> 6 <start:org> lotte <end> 5"
493
+ "511","8. <start:per> karin janke <end> ( <start:loc> germany <end> ) 53.13"
494
+ "225","<start:org> new york <end> 74 59 .556 -"
495
+ "490","5. <start:per> tegla loroupe <end> ( <start:loc> kenya <end> ) 15:08.79"
496
+ "286","national league"
497
+ "82","<start:loc> london <end> 1996-08-30"
498
+ "143","<start:org> pohang <end> 3 <start:org> ulsan <end> 2 ( halftime 1-0 )"
499
+ "347","a second-round choice in 1985 "
500
+ "408","among the crowd on friday were olympic 100 metres champions going back to 1948 ."
501
+ "204","add men s singles "