teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +1864 -1640
- teradataml/__init__.py +70 -60
- teradataml/_version.py +11 -11
- teradataml/analytics/Transformations.py +2995 -2995
- teradataml/analytics/__init__.py +81 -83
- teradataml/analytics/analytic_function_executor.py +2013 -2010
- teradataml/analytics/analytic_query_generator.py +958 -958
- teradataml/analytics/byom/H2OPredict.py +514 -514
- teradataml/analytics/byom/PMMLPredict.py +437 -437
- teradataml/analytics/byom/__init__.py +14 -14
- teradataml/analytics/json_parser/__init__.py +130 -130
- teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
- teradataml/analytics/json_parser/json_store.py +191 -191
- teradataml/analytics/json_parser/metadata.py +1637 -1637
- teradataml/analytics/json_parser/utils.py +804 -803
- teradataml/analytics/meta_class.py +196 -196
- teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
- teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
- teradataml/analytics/sqle/__init__.py +97 -110
- teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
- teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
- teradataml/analytics/table_operator/__init__.py +10 -10
- teradataml/analytics/uaf/__init__.py +63 -63
- teradataml/analytics/utils.py +693 -692
- teradataml/analytics/valib.py +1603 -1600
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +1 -3
- teradataml/catalog/byom.py +1759 -1716
- teradataml/catalog/function_argument_mapper.py +859 -861
- teradataml/catalog/model_cataloging_utils.py +491 -1510
- teradataml/clients/pkce_client.py +481 -481
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/bulk_exposed_utils.py +111 -111
- teradataml/common/constants.py +1433 -1441
- teradataml/common/deprecations.py +160 -0
- teradataml/common/exceptions.py +73 -73
- teradataml/common/formula.py +742 -742
- teradataml/common/garbagecollector.py +592 -635
- teradataml/common/messagecodes.py +422 -431
- teradataml/common/messages.py +227 -231
- teradataml/common/sqlbundle.py +693 -693
- teradataml/common/td_coltype_code_to_tdtype.py +48 -48
- teradataml/common/utils.py +2418 -2500
- teradataml/common/warnings.py +25 -25
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/config/dummy_file1.cfg +4 -4
- teradataml/config/dummy_file2.cfg +2 -2
- teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
- teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
- teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
- teradataml/context/aed_context.py +217 -217
- teradataml/context/context.py +1071 -999
- teradataml/data/A_loan.csv +19 -19
- teradataml/data/BINARY_REALS_LEFT.csv +11 -11
- teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
- teradataml/data/B_loan.csv +49 -49
- teradataml/data/BuoyData2.csv +17 -17
- teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
- teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
- teradataml/data/Convolve2RealsLeft.csv +5 -5
- teradataml/data/Convolve2RealsRight.csv +5 -5
- teradataml/data/Convolve2ValidLeft.csv +11 -11
- teradataml/data/Convolve2ValidRight.csv +11 -11
- teradataml/data/DFFTConv_Real_8_8.csv +65 -65
- teradataml/data/Orders1_12mf.csv +24 -24
- teradataml/data/Pi_loan.csv +7 -7
- teradataml/data/SMOOTHED_DATA.csv +7 -7
- teradataml/data/TestDFFT8.csv +9 -9
- teradataml/data/TestRiver.csv +109 -109
- teradataml/data/Traindata.csv +28 -28
- teradataml/data/acf.csv +17 -17
- teradataml/data/adaboost_example.json +34 -34
- teradataml/data/adaboostpredict_example.json +24 -24
- teradataml/data/additional_table.csv +10 -10
- teradataml/data/admissions_test.csv +21 -21
- teradataml/data/admissions_train.csv +41 -41
- teradataml/data/admissions_train_nulls.csv +41 -41
- teradataml/data/ageandheight.csv +13 -13
- teradataml/data/ageandpressure.csv +31 -31
- teradataml/data/antiselect_example.json +36 -36
- teradataml/data/antiselect_input.csv +8 -8
- teradataml/data/antiselect_input_mixed_case.csv +8 -8
- teradataml/data/applicant_external.csv +6 -6
- teradataml/data/applicant_reference.csv +6 -6
- teradataml/data/arima_example.json +9 -9
- teradataml/data/assortedtext_input.csv +8 -8
- teradataml/data/attribution_example.json +33 -33
- teradataml/data/attribution_sample_table.csv +27 -27
- teradataml/data/attribution_sample_table1.csv +6 -6
- teradataml/data/attribution_sample_table2.csv +11 -11
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bank_web_clicks1.csv +42 -42
- teradataml/data/bank_web_clicks2.csv +91 -91
- teradataml/data/bank_web_url.csv +85 -85
- teradataml/data/barrier.csv +2 -2
- teradataml/data/barrier_new.csv +3 -3
- teradataml/data/betweenness_example.json +13 -13
- teradataml/data/bin_breaks.csv +8 -8
- teradataml/data/bin_fit_ip.csv +3 -3
- teradataml/data/binary_complex_left.csv +11 -11
- teradataml/data/binary_complex_right.csv +11 -11
- teradataml/data/binary_matrix_complex_left.csv +21 -21
- teradataml/data/binary_matrix_complex_right.csv +21 -21
- teradataml/data/binary_matrix_real_left.csv +21 -21
- teradataml/data/binary_matrix_real_right.csv +21 -21
- teradataml/data/blood2ageandweight.csv +26 -26
- teradataml/data/bmi.csv +501 -0
- teradataml/data/boston.csv +507 -507
- teradataml/data/buoydata_mix.csv +11 -11
- teradataml/data/burst_data.csv +5 -5
- teradataml/data/burst_example.json +20 -20
- teradataml/data/byom_example.json +17 -17
- teradataml/data/bytes_table.csv +3 -3
- teradataml/data/cal_housing_ex_raw.csv +70 -70
- teradataml/data/callers.csv +7 -7
- teradataml/data/calls.csv +10 -10
- teradataml/data/cars_hist.csv +33 -33
- teradataml/data/cat_table.csv +24 -24
- teradataml/data/ccm_example.json +31 -31
- teradataml/data/ccm_input.csv +91 -91
- teradataml/data/ccm_input2.csv +13 -13
- teradataml/data/ccmexample.csv +101 -101
- teradataml/data/ccmprepare_example.json +8 -8
- teradataml/data/ccmprepare_input.csv +91 -91
- teradataml/data/cfilter_example.json +12 -12
- teradataml/data/changepointdetection_example.json +18 -18
- teradataml/data/changepointdetectionrt_example.json +8 -8
- teradataml/data/chi_sq.csv +2 -2
- teradataml/data/churn_data.csv +14 -14
- teradataml/data/churn_emission.csv +35 -35
- teradataml/data/churn_initial.csv +3 -3
- teradataml/data/churn_state_transition.csv +5 -5
- teradataml/data/citedges_2.csv +745 -745
- teradataml/data/citvertices_2.csv +1210 -1210
- teradataml/data/clicks2.csv +16 -16
- teradataml/data/clickstream.csv +12 -12
- teradataml/data/clickstream1.csv +11 -11
- teradataml/data/closeness_example.json +15 -15
- teradataml/data/complaints.csv +21 -21
- teradataml/data/complaints_mini.csv +3 -3
- teradataml/data/complaints_testtoken.csv +224 -224
- teradataml/data/complaints_tokens_test.csv +353 -353
- teradataml/data/complaints_traintoken.csv +472 -472
- teradataml/data/computers_category.csv +1001 -1001
- teradataml/data/computers_test1.csv +1252 -1252
- teradataml/data/computers_train1.csv +5009 -5009
- teradataml/data/computers_train1_clustered.csv +5009 -5009
- teradataml/data/confusionmatrix_example.json +9 -9
- teradataml/data/conversion_event_table.csv +3 -3
- teradataml/data/corr_input.csv +17 -17
- teradataml/data/correlation_example.json +11 -11
- teradataml/data/coxhazardratio_example.json +39 -39
- teradataml/data/coxph_example.json +15 -15
- teradataml/data/coxsurvival_example.json +28 -28
- teradataml/data/cpt.csv +41 -41
- teradataml/data/credit_ex_merged.csv +45 -45
- teradataml/data/customer_loyalty.csv +301 -301
- teradataml/data/customer_loyalty_newseq.csv +31 -31
- teradataml/data/dataframe_example.json +146 -146
- teradataml/data/decisionforest_example.json +37 -37
- teradataml/data/decisionforestpredict_example.json +38 -38
- teradataml/data/decisiontree_example.json +21 -21
- teradataml/data/decisiontreepredict_example.json +45 -45
- teradataml/data/dfft2_size4_real.csv +17 -17
- teradataml/data/dfft2_test_matrix16.csv +17 -17
- teradataml/data/dfft2conv_real_4_4.csv +65 -65
- teradataml/data/diabetes.csv +443 -443
- teradataml/data/diabetes_test.csv +89 -89
- teradataml/data/dict_table.csv +5 -5
- teradataml/data/docperterm_table.csv +4 -4
- teradataml/data/docs/__init__.py +1 -1
- teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
- teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
- teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
- teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
- teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
- teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
- teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
- teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
- teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
- teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
- teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
- teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
- teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
- teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
- teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
- teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
- teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
- teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
- teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
- teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
- teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
- teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +132 -132
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +103 -103
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +101 -101
- teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
- teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
- teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
- teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
- teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
- teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
- teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
- teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
- teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
- teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
- teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
- teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
- teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
- teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +126 -126
- teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
- teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
- teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
- teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
- teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
- teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +243 -243
- teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
- teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
- teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
- teradataml/data/docs/sqle/docs_17_20/FTest.py +160 -160
- teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
- teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
- teradataml/data/docs/sqle/docs_17_20/GLM.py +380 -380
- teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
- teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +123 -123
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
- teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +204 -204
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
- teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
- teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
- teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
- teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +117 -117
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
- teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
- teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +225 -225
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +115 -115
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
- teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
- teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
- teradataml/data/docs/sqle/docs_17_20/ROC.py +163 -163
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
- teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
- teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
- teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +202 -202
- teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +197 -197
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +110 -109
- teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
- teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
- teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
- teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
- teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +171 -171
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
- teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
- teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
- teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
- teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
- teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
- teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
- teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
- teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +353 -353
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +275 -275
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +155 -155
- teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
- teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
- teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
- teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
- teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
- teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
- teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
- teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
- teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
- teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
- teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
- teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
- teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
- teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
- teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
- teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
- teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
- teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
- teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
- teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
- teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
- teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
- teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
- teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
- teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
- teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
- teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
- teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
- teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
- teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
- teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
- teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
- teradataml/data/dtw_example.json +17 -17
- teradataml/data/dtw_t1.csv +11 -11
- teradataml/data/dtw_t2.csv +4 -4
- teradataml/data/dwt2d_example.json +15 -15
- teradataml/data/dwt_example.json +14 -14
- teradataml/data/dwt_filter_dim.csv +5 -5
- teradataml/data/emission.csv +9 -9
- teradataml/data/emp_table_by_dept.csv +19 -19
- teradataml/data/employee_info.csv +4 -4
- teradataml/data/employee_table.csv +6 -6
- teradataml/data/excluding_event_table.csv +2 -2
- teradataml/data/finance_data.csv +6 -6
- teradataml/data/finance_data2.csv +61 -61
- teradataml/data/finance_data3.csv +93 -93
- teradataml/data/fish.csv +160 -0
- teradataml/data/fm_blood2ageandweight.csv +26 -26
- teradataml/data/fmeasure_example.json +11 -11
- teradataml/data/followers_leaders.csv +10 -10
- teradataml/data/fpgrowth_example.json +12 -12
- teradataml/data/frequentpaths_example.json +29 -29
- teradataml/data/friends.csv +9 -9
- teradataml/data/fs_input.csv +33 -33
- teradataml/data/fs_input1.csv +33 -33
- teradataml/data/genData.csv +513 -513
- teradataml/data/geodataframe_example.json +39 -39
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/glm_admissions_model.csv +12 -12
- teradataml/data/glm_example.json +29 -29
- teradataml/data/glml1l2_example.json +28 -28
- teradataml/data/glml1l2predict_example.json +54 -54
- teradataml/data/glmpredict_example.json +54 -54
- teradataml/data/gq_t1.csv +21 -21
- teradataml/data/hconvolve_complex_right.csv +5 -5
- teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
- teradataml/data/histogram_example.json +11 -11
- teradataml/data/hmmdecoder_example.json +78 -78
- teradataml/data/hmmevaluator_example.json +24 -24
- teradataml/data/hmmsupervised_example.json +10 -10
- teradataml/data/hmmunsupervised_example.json +7 -7
- teradataml/data/house_values.csv +12 -12
- teradataml/data/house_values2.csv +13 -13
- teradataml/data/housing_cat.csv +7 -7
- teradataml/data/housing_data.csv +9 -9
- teradataml/data/housing_test.csv +47 -47
- teradataml/data/housing_test_binary.csv +47 -47
- teradataml/data/housing_train.csv +493 -493
- teradataml/data/housing_train_attribute.csv +4 -4
- teradataml/data/housing_train_binary.csv +437 -437
- teradataml/data/housing_train_parameter.csv +2 -2
- teradataml/data/housing_train_response.csv +493 -493
- teradataml/data/ibm_stock.csv +370 -370
- teradataml/data/ibm_stock1.csv +370 -370
- teradataml/data/identitymatch_example.json +21 -21
- teradataml/data/idf_table.csv +4 -4
- teradataml/data/impressions.csv +101 -101
- teradataml/data/inflation.csv +21 -21
- teradataml/data/initial.csv +3 -3
- teradataml/data/insect_sprays.csv +12 -12
- teradataml/data/insurance.csv +1339 -1339
- teradataml/data/interpolator_example.json +12 -12
- teradataml/data/iris_altinput.csv +481 -481
- teradataml/data/iris_attribute_output.csv +8 -8
- teradataml/data/iris_attribute_test.csv +121 -121
- teradataml/data/iris_attribute_train.csv +481 -481
- teradataml/data/iris_category_expect_predict.csv +31 -31
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/iris_input.csv +151 -151
- teradataml/data/iris_response_train.csv +121 -121
- teradataml/data/iris_test.csv +31 -31
- teradataml/data/iris_train.csv +121 -121
- teradataml/data/join_table1.csv +4 -4
- teradataml/data/join_table2.csv +4 -4
- teradataml/data/jsons/anly_function_name.json +6 -6
- teradataml/data/jsons/byom/dataikupredict.json +147 -147
- teradataml/data/jsons/byom/datarobotpredict.json +146 -146
- teradataml/data/jsons/byom/h2opredict.json +194 -194
- teradataml/data/jsons/byom/onnxpredict.json +186 -186
- teradataml/data/jsons/byom/pmmlpredict.json +146 -146
- teradataml/data/jsons/paired_functions.json +435 -435
- teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
- teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
- teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
- teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
- teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
- teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
- teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
- teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
- teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
- teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
- teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
- teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
- teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
- teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
- teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
- teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
- teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
- teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
- teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
- teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
- teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
- teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
- teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
- teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
- teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
- teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
- teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
- teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
- teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
- teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
- teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
- teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
- teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
- teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
- teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
- teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
- teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
- teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
- teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
- teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +76 -76
- teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
- teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
- teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
- teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
- teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
- teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
- teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
- teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
- teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
- teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +186 -186
- teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
- teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +431 -431
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +125 -125
- teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
- teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +91 -91
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
- teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +211 -211
- teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
- teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +101 -101
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
- teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
- teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +177 -177
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
- teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
- teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +124 -124
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +156 -156
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +70 -70
- teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
- teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
- teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
- teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
- teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
- teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
- teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +312 -312
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +182 -182
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +170 -170
- teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
- teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
- teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
- teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
- teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
- teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
- teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
- teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
- teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
- teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
- teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
- teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
- teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
- teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
- teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
- teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
- teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
- teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
- teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
- teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
- teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
- teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
- teradataml/data/kmeans_example.json +17 -17
- teradataml/data/kmeans_us_arrests_data.csv +0 -0
- teradataml/data/knn_example.json +18 -18
- teradataml/data/knnrecommender_example.json +6 -6
- teradataml/data/knnrecommenderpredict_example.json +12 -12
- teradataml/data/lar_example.json +17 -17
- teradataml/data/larpredict_example.json +30 -30
- teradataml/data/lc_new_predictors.csv +5 -5
- teradataml/data/lc_new_reference.csv +9 -9
- teradataml/data/lda_example.json +8 -8
- teradataml/data/ldainference_example.json +14 -14
- teradataml/data/ldatopicsummary_example.json +8 -8
- teradataml/data/levendist_input.csv +13 -13
- teradataml/data/levenshteindistance_example.json +10 -10
- teradataml/data/linreg_example.json +9 -9
- teradataml/data/load_example_data.py +326 -323
- teradataml/data/loan_prediction.csv +295 -295
- teradataml/data/lungcancer.csv +138 -138
- teradataml/data/mappingdata.csv +12 -12
- teradataml/data/milk_timeseries.csv +157 -157
- teradataml/data/min_max_titanic.csv +4 -4
- teradataml/data/minhash_example.json +6 -6
- teradataml/data/ml_ratings.csv +7547 -7547
- teradataml/data/ml_ratings_10.csv +2445 -2445
- teradataml/data/model1_table.csv +5 -5
- teradataml/data/model2_table.csv +5 -5
- teradataml/data/models/iris_db_glm_model.pmml +56 -56
- teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
- teradataml/data/modularity_example.json +12 -12
- teradataml/data/movavg_example.json +7 -7
- teradataml/data/mtx1.csv +7 -7
- teradataml/data/mtx2.csv +13 -13
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/mvdfft8.csv +9 -9
- teradataml/data/naivebayes_example.json +9 -9
- teradataml/data/naivebayespredict_example.json +19 -19
- teradataml/data/naivebayestextclassifier2_example.json +6 -6
- teradataml/data/naivebayestextclassifier_example.json +8 -8
- teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
- teradataml/data/name_Find_configure.csv +10 -10
- teradataml/data/namedentityfinder_example.json +14 -14
- teradataml/data/namedentityfinderevaluator_example.json +10 -10
- teradataml/data/namedentityfindertrainer_example.json +6 -6
- teradataml/data/nb_iris_input_test.csv +31 -31
- teradataml/data/nb_iris_input_train.csv +121 -121
- teradataml/data/nbp_iris_model.csv +13 -13
- teradataml/data/ner_extractor_text.csv +2 -2
- teradataml/data/ner_sports_test2.csv +29 -29
- teradataml/data/ner_sports_train.csv +501 -501
- teradataml/data/nerevaluator_example.json +5 -5
- teradataml/data/nerextractor_example.json +18 -18
- teradataml/data/nermem_sports_test.csv +17 -17
- teradataml/data/nermem_sports_train.csv +50 -50
- teradataml/data/nertrainer_example.json +6 -6
- teradataml/data/ngrams_example.json +6 -6
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
- teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
- teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
- teradataml/data/npath_example.json +23 -23
- teradataml/data/ntree_example.json +14 -14
- teradataml/data/numeric_strings.csv +4 -4
- teradataml/data/numerics.csv +4 -4
- teradataml/data/ocean_buoy.csv +17 -17
- teradataml/data/ocean_buoy2.csv +17 -17
- teradataml/data/ocean_buoys.csv +27 -27
- teradataml/data/ocean_buoys2.csv +10 -10
- teradataml/data/ocean_buoys_nonpti.csv +28 -28
- teradataml/data/ocean_buoys_seq.csv +29 -29
- teradataml/data/openml_example.json +63 -0
- teradataml/data/optional_event_table.csv +4 -4
- teradataml/data/orders1.csv +11 -11
- teradataml/data/orders1_12.csv +12 -12
- teradataml/data/orders_ex.csv +4 -4
- teradataml/data/pack_example.json +8 -8
- teradataml/data/package_tracking.csv +19 -19
- teradataml/data/package_tracking_pti.csv +18 -18
- teradataml/data/pagerank_example.json +13 -13
- teradataml/data/paragraphs_input.csv +6 -6
- teradataml/data/pathanalyzer_example.json +7 -7
- teradataml/data/pathgenerator_example.json +7 -7
- teradataml/data/phrases.csv +7 -7
- teradataml/data/pivot_example.json +8 -8
- teradataml/data/pivot_input.csv +22 -22
- teradataml/data/playerRating.csv +31 -31
- teradataml/data/postagger_example.json +6 -6
- teradataml/data/posttagger_output.csv +44 -44
- teradataml/data/production_data.csv +16 -16
- teradataml/data/production_data2.csv +7 -7
- teradataml/data/randomsample_example.json +31 -31
- teradataml/data/randomwalksample_example.json +8 -8
- teradataml/data/rank_table.csv +6 -6
- teradataml/data/ref_mobile_data.csv +4 -4
- teradataml/data/ref_mobile_data_dense.csv +2 -2
- teradataml/data/ref_url.csv +17 -17
- teradataml/data/restaurant_reviews.csv +7 -7
- teradataml/data/river_data.csv +145 -145
- teradataml/data/roc_example.json +7 -7
- teradataml/data/roc_input.csv +101 -101
- teradataml/data/rule_inputs.csv +6 -6
- teradataml/data/rule_table.csv +2 -2
- teradataml/data/sales.csv +7 -7
- teradataml/data/sales_transaction.csv +501 -501
- teradataml/data/salesdata.csv +342 -342
- teradataml/data/sample_cities.csv +2 -2
- teradataml/data/sample_shapes.csv +10 -10
- teradataml/data/sample_streets.csv +2 -2
- teradataml/data/sampling_example.json +15 -15
- teradataml/data/sax_example.json +8 -8
- teradataml/data/scale_example.json +23 -23
- teradataml/data/scale_housing.csv +11 -11
- teradataml/data/scale_housing_test.csv +6 -6
- teradataml/data/scale_stat.csv +11 -11
- teradataml/data/scalebypartition_example.json +13 -13
- teradataml/data/scalemap_example.json +13 -13
- teradataml/data/scalesummary_example.json +12 -12
- teradataml/data/score_category.csv +101 -101
- teradataml/data/score_summary.csv +4 -4
- teradataml/data/script_example.json +9 -9
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/mapper.py +15 -15
- teradataml/data/scripts/mapper_replace.py +15 -15
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/seeds.csv +10 -10
- teradataml/data/sentenceextractor_example.json +6 -6
- teradataml/data/sentiment_extract_input.csv +11 -11
- teradataml/data/sentiment_train.csv +16 -16
- teradataml/data/sentiment_word.csv +20 -20
- teradataml/data/sentiment_word_input.csv +19 -19
- teradataml/data/sentimentextractor_example.json +24 -24
- teradataml/data/sentimenttrainer_example.json +8 -8
- teradataml/data/sequence_table.csv +10 -10
- teradataml/data/seriessplitter_example.json +7 -7
- teradataml/data/sessionize_example.json +17 -17
- teradataml/data/sessionize_table.csv +116 -116
- teradataml/data/setop_test1.csv +24 -24
- teradataml/data/setop_test2.csv +22 -22
- teradataml/data/soc_nw_edges.csv +10 -10
- teradataml/data/soc_nw_vertices.csv +7 -7
- teradataml/data/souvenir_timeseries.csv +167 -167
- teradataml/data/sparse_iris_attribute.csv +5 -5
- teradataml/data/sparse_iris_test.csv +121 -121
- teradataml/data/sparse_iris_train.csv +601 -601
- teradataml/data/star1.csv +6 -6
- teradataml/data/state_transition.csv +5 -5
- teradataml/data/stock_data.csv +53 -53
- teradataml/data/stock_movement.csv +11 -11
- teradataml/data/stock_vol.csv +76 -76
- teradataml/data/stop_words.csv +8 -8
- teradataml/data/store_sales.csv +37 -37
- teradataml/data/stringsimilarity_example.json +7 -7
- teradataml/data/strsimilarity_input.csv +13 -13
- teradataml/data/students.csv +101 -101
- teradataml/data/svm_iris_input_test.csv +121 -121
- teradataml/data/svm_iris_input_train.csv +481 -481
- teradataml/data/svm_iris_model.csv +7 -7
- teradataml/data/svmdense_example.json +9 -9
- teradataml/data/svmdensepredict_example.json +18 -18
- teradataml/data/svmsparse_example.json +7 -7
- teradataml/data/svmsparsepredict_example.json +13 -13
- teradataml/data/svmsparsesummary_example.json +7 -7
- teradataml/data/target_mobile_data.csv +13 -13
- teradataml/data/target_mobile_data_dense.csv +5 -5
- teradataml/data/templatedata.csv +1201 -1201
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_loan_prediction.csv +53 -53
- teradataml/data/test_pacf_12.csv +37 -37
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/test_river2.csv +109 -109
- teradataml/data/text_inputs.csv +6 -6
- teradataml/data/textchunker_example.json +7 -7
- teradataml/data/textclassifier_example.json +6 -6
- teradataml/data/textclassifier_input.csv +7 -7
- teradataml/data/textclassifiertrainer_example.json +6 -6
- teradataml/data/textmorph_example.json +5 -5
- teradataml/data/textparser_example.json +15 -15
- teradataml/data/texttagger_example.json +11 -11
- teradataml/data/texttokenizer_example.json +6 -6
- teradataml/data/texttrainer_input.csv +11 -11
- teradataml/data/tf_example.json +6 -6
- teradataml/data/tfidf_example.json +13 -13
- teradataml/data/tfidf_input1.csv +201 -201
- teradataml/data/tfidf_train.csv +6 -6
- teradataml/data/time_table1.csv +535 -535
- teradataml/data/time_table2.csv +14 -14
- teradataml/data/timeseriesdata.csv +1601 -1601
- teradataml/data/timeseriesdatasetsd4.csv +105 -105
- teradataml/data/titanic.csv +892 -892
- teradataml/data/token_table.csv +696 -696
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/train_tracking.csv +27 -27
- teradataml/data/transformation_table.csv +5 -5
- teradataml/data/transformation_table_new.csv +1 -1
- teradataml/data/tv_spots.csv +16 -16
- teradataml/data/twod_climate_data.csv +117 -117
- teradataml/data/uaf_example.json +475 -475
- teradataml/data/univariatestatistics_example.json +8 -8
- teradataml/data/unpack_example.json +9 -9
- teradataml/data/unpivot_example.json +9 -9
- teradataml/data/unpivot_input.csv +8 -8
- teradataml/data/us_air_pass.csv +36 -36
- teradataml/data/us_population.csv +624 -624
- teradataml/data/us_states_shapes.csv +52 -52
- teradataml/data/varmax_example.json +17 -17
- teradataml/data/vectordistance_example.json +25 -25
- teradataml/data/ville_climatedata.csv +121 -121
- teradataml/data/ville_tempdata.csv +12 -12
- teradataml/data/ville_tempdata1.csv +12 -12
- teradataml/data/ville_temperature.csv +11 -11
- teradataml/data/waveletTable.csv +1605 -1605
- teradataml/data/waveletTable2.csv +1605 -1605
- teradataml/data/weightedmovavg_example.json +8 -8
- teradataml/data/wft_testing.csv +5 -5
- teradataml/data/wine_data.csv +1600 -0
- teradataml/data/word_embed_input_table1.csv +5 -5
- teradataml/data/word_embed_input_table2.csv +4 -4
- teradataml/data/word_embed_model.csv +22 -22
- teradataml/data/words_input.csv +13 -13
- teradataml/data/xconvolve_complex_left.csv +6 -6
- teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
- teradataml/data/xgboost_example.json +35 -35
- teradataml/data/xgboostpredict_example.json +31 -31
- teradataml/dataframe/copy_to.py +1764 -1698
- teradataml/dataframe/data_transfer.py +2753 -2745
- teradataml/dataframe/dataframe.py +17545 -16946
- teradataml/dataframe/dataframe_utils.py +1837 -1740
- teradataml/dataframe/fastload.py +611 -603
- teradataml/dataframe/indexer.py +424 -424
- teradataml/dataframe/setop.py +1179 -1166
- teradataml/dataframe/sql.py +10090 -6432
- teradataml/dataframe/sql_function_parameters.py +439 -388
- teradataml/dataframe/sql_functions.py +652 -652
- teradataml/dataframe/sql_interfaces.py +220 -220
- teradataml/dataframe/vantage_function_types.py +674 -630
- teradataml/dataframe/window.py +693 -692
- teradataml/dbutils/__init__.py +3 -3
- teradataml/dbutils/dbutils.py +1167 -1150
- teradataml/dbutils/filemgr.py +267 -267
- teradataml/gen_ai/__init__.py +2 -2
- teradataml/gen_ai/convAI.py +472 -472
- teradataml/geospatial/__init__.py +3 -3
- teradataml/geospatial/geodataframe.py +1105 -1094
- teradataml/geospatial/geodataframecolumn.py +392 -387
- teradataml/geospatial/geometry_types.py +925 -925
- teradataml/hyperparameter_tuner/__init__.py +1 -1
- teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
- teradataml/hyperparameter_tuner/utils.py +281 -187
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +121 -124
- teradataml/options/configure.py +337 -336
- teradataml/options/display.py +176 -176
- teradataml/plot/__init__.py +2 -2
- teradataml/plot/axis.py +1388 -1388
- teradataml/plot/constants.py +15 -15
- teradataml/plot/figure.py +398 -398
- teradataml/plot/plot.py +760 -760
- teradataml/plot/query_generator.py +83 -83
- teradataml/plot/subplot.py +216 -216
- teradataml/scriptmgmt/UserEnv.py +3788 -3761
- teradataml/scriptmgmt/__init__.py +3 -3
- teradataml/scriptmgmt/lls_utils.py +1616 -1604
- teradataml/series/series.py +532 -532
- teradataml/series/series_utils.py +71 -71
- teradataml/table_operators/Apply.py +949 -917
- teradataml/table_operators/Script.py +1719 -1982
- teradataml/table_operators/TableOperator.py +1207 -1616
- teradataml/table_operators/__init__.py +2 -3
- teradataml/table_operators/apply_query_generator.py +262 -262
- teradataml/table_operators/query_generator.py +507 -507
- teradataml/table_operators/table_operator_query_generator.py +460 -460
- teradataml/table_operators/table_operator_util.py +631 -639
- teradataml/table_operators/templates/dataframe_apply.template +184 -184
- teradataml/table_operators/templates/dataframe_map.template +176 -176
- teradataml/table_operators/templates/script_executor.template +170 -170
- teradataml/utils/dtypes.py +684 -684
- teradataml/utils/internal_buffer.py +84 -84
- teradataml/utils/print_versions.py +205 -205
- teradataml/utils/utils.py +410 -410
- teradataml/utils/validators.py +2239 -2115
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +270 -41
- teradataml-20.0.0.0.dist-info/RECORD +1038 -0
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +1 -1
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +1 -1
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- teradataml-17.20.0.7.dist-info/RECORD +0 -1280
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
teradataml/data/lungcancer.csv
CHANGED
|
@@ -1,138 +1,138 @@
|
|
|
1
|
-
"id","trt","celltype","time_int","status","karno","diagtime","age","prior"
|
|
2
|
-
61,"standard","large",260,1,80,5,45,"no"
|
|
3
|
-
101,"test","smallcell",99,1,85,4,62,"no"
|
|
4
|
-
40,"standard","smallcell",27,1,60,8,62,"no"
|
|
5
|
-
122,"test","adeno",84,1,80,4,62,"yes"
|
|
6
|
-
38,"standard","smallcell",51,1,60,1,67,"no"
|
|
7
|
-
17,"standard","smallcell",384,1,60,9,42,"no"
|
|
8
|
-
80,"test","squamous",33,1,30,6,64,"no"
|
|
9
|
-
19,"standard","smallcell",54,1,80,4,63,"yes"
|
|
10
|
-
78,"test","squamous",587,1,60,3,58,"no"
|
|
11
|
-
34,"standard","smallcell",31,1,75,3,65,"no"
|
|
12
|
-
120,"test","adeno",140,1,70,3,63,"no"
|
|
13
|
-
59,"standard","large",278,1,60,12,63,"no"
|
|
14
|
-
76,"test","squamous",111,1,70,3,62,"no"
|
|
15
|
-
13,"standard","squamous",144,1,30,4,63,"no"
|
|
16
|
-
57,"standard","large",216,1,50,15,52,"no"
|
|
17
|
-
99,"test","smallcell",99,1,70,3,72,"no"
|
|
18
|
-
116,"test","adeno",8,1,50,5,66,"no"
|
|
19
|
-
32,"standard","smallcell",139,1,80,2,64,"no"
|
|
20
|
-
118,"test","adeno",48,1,10,4,81,"no"
|
|
21
|
-
36,"standard","smallcell",287,1,60,25,66,"yes"
|
|
22
|
-
93,"test","smallcell",13,1,30,2,62,"no"
|
|
23
|
-
11,"standard","squamous",42,1,60,4,81,"no"
|
|
24
|
-
55,"standard","large",177,1,50,16,66,"yes"
|
|
25
|
-
97,"test","smallcell",7,1,20,11,66,"no"
|
|
26
|
-
133,"test","large",133,1,75,1,65,"no"
|
|
27
|
-
51,"standard","adeno",12,1,50,4,63,"yes"
|
|
28
|
-
95,"test","smallcell",2,1,40,36,44,"yes"
|
|
29
|
-
15,"standard","squamous",11,1,70,11,48,"yes"
|
|
30
|
-
131,"test","large",43,1,60,11,49,"yes"
|
|
31
|
-
9,"standard","squamous",314,1,50,18,43,"no"
|
|
32
|
-
135,"test","large",231,1,70,18,67,"yes"
|
|
33
|
-
137,"test","large",49,1,30,3,37,"no"
|
|
34
|
-
108,"test","adeno",24,1,40,2,60,"no"
|
|
35
|
-
49,"standard","adeno",117,1,80,2,38,"no"
|
|
36
|
-
72,"test","squamous",87,0,80,3,48,"no"
|
|
37
|
-
74,"test","squamous",242,1,50,1,70,"no"
|
|
38
|
-
26,"standard","smallcell",16,1,30,4,53,"yes"
|
|
39
|
-
28,"standard","smallcell",22,1,60,4,68,"no"
|
|
40
|
-
112,"test","adeno",51,1,60,5,62,"no"
|
|
41
|
-
53,"standard","adeno",3,1,30,3,43,"no"
|
|
42
|
-
5,"standard","squamous",118,1,70,11,65,"yes"
|
|
43
|
-
89,"test","squamous",15,1,50,13,40,"yes"
|
|
44
|
-
110,"test","adeno",83,0,99,3,57,"no"
|
|
45
|
-
114,"test","adeno",52,1,60,3,43,"no"
|
|
46
|
-
24,"standard","smallcell",59,1,30,2,65,"no"
|
|
47
|
-
68,"standard","large",250,1,70,8,53,"yes"
|
|
48
|
-
7,"standard","squamous",82,1,40,10,69,"yes"
|
|
49
|
-
30,"standard","smallcell",21,1,40,2,55,"yes"
|
|
50
|
-
3,"standard","squamous",228,1,60,3,38,"no"
|
|
51
|
-
87,"test","squamous",44,1,60,13,70,"yes"
|
|
52
|
-
127,"test","large",164,1,70,15,68,"yes"
|
|
53
|
-
91,"test","smallcell",103,0,70,22,36,"yes"
|
|
54
|
-
43,"standard","smallcell",63,1,50,11,48,"no"
|
|
55
|
-
66,"standard","large",105,1,80,11,66,"no"
|
|
56
|
-
22,"standard","smallcell",97,0,60,5,67,"no"
|
|
57
|
-
70,"test","squamous",999,1,90,12,54,"yes"
|
|
58
|
-
1,"standard","squamous",72,1,60,7,69,"no"
|
|
59
|
-
106,"test","smallcell",51,1,30,87,59,"yes"
|
|
60
|
-
62,"standard","large",200,1,80,12,41,"yes"
|
|
61
|
-
129,"test","large",53,1,60,12,66,"no"
|
|
62
|
-
41,"standard","smallcell",54,1,70,1,67,"no"
|
|
63
|
-
64,"standard","large",182,0,90,2,62,"no"
|
|
64
|
-
39,"standard","smallcell",122,1,80,28,53,"no"
|
|
65
|
-
47,"standard","adeno",92,1,70,10,60,"no"
|
|
66
|
-
20,"standard","smallcell",13,1,60,4,56,"no"
|
|
67
|
-
104,"test","smallcell",95,1,70,1,61,"no"
|
|
68
|
-
37,"standard","smallcell",18,1,30,4,60,"no"
|
|
69
|
-
45,"standard","smallcell",10,1,40,23,67,"yes"
|
|
70
|
-
60,"standard","large",12,1,40,12,68,"yes"
|
|
71
|
-
83,"test","squamous",467,1,90,2,64,"no"
|
|
72
|
-
77,"test","squamous",1,1,20,21,65,"yes"
|
|
73
|
-
85,"test","squamous",1,1,50,7,35,"no"
|
|
74
|
-
18,"standard","smallcell",4,1,40,2,35,"no"
|
|
75
|
-
123,"test","adeno",19,1,50,10,42,"no"
|
|
76
|
-
35,"standard","smallcell",52,1,70,2,55,"no"
|
|
77
|
-
125,"test","adeno",80,1,40,4,63,"no"
|
|
78
|
-
79,"test","squamous",389,1,90,2,62,"no"
|
|
79
|
-
81,"test","squamous",25,1,20,36,63,"no"
|
|
80
|
-
54,"standard","adeno",95,1,80,4,34,"no"
|
|
81
|
-
102,"test","smallcell",61,1,70,2,71,"no"
|
|
82
|
-
58,"standard","large",553,1,70,2,47,"no"
|
|
83
|
-
121,"test","adeno",186,1,90,3,60,"no"
|
|
84
|
-
94,"test","smallcell",87,1,60,2,60,"no"
|
|
85
|
-
100,"test","smallcell",8,1,80,2,68,"no"
|
|
86
|
-
98,"test","smallcell",24,1,60,8,49,"no"
|
|
87
|
-
119,"test","adeno",7,1,40,4,58,"no"
|
|
88
|
-
12,"standard","squamous",8,1,40,58,63,"yes"
|
|
89
|
-
117,"test","adeno",36,1,70,8,61,"no"
|
|
90
|
-
56,"standard","large",162,1,80,5,62,"no"
|
|
91
|
-
16,"standard","smallcell",30,1,60,3,61,"no"
|
|
92
|
-
52,"standard","adeno",162,1,80,5,64,"no"
|
|
93
|
-
14,"standard","squamous",25,0,80,9,52,"yes"
|
|
94
|
-
96,"test","smallcell",20,1,30,9,54,"yes"
|
|
95
|
-
136,"test","large",378,1,80,4,65,"no"
|
|
96
|
-
92,"test","smallcell",21,1,20,4,71,"no"
|
|
97
|
-
31,"standard","smallcell",18,1,20,15,42,"no"
|
|
98
|
-
75,"test","squamous",991,1,70,7,50,"yes"
|
|
99
|
-
33,"standard","smallcell",20,1,30,5,65,"no"
|
|
100
|
-
132,"test","large",340,1,80,10,64,"yes"
|
|
101
|
-
29,"standard","smallcell",56,1,80,12,43,"yes"
|
|
102
|
-
115,"test","adeno",73,1,60,3,70,"no"
|
|
103
|
-
10,"standard","squamous",100,0,70,6,70,"no"
|
|
104
|
-
50,"standard","adeno",132,1,80,5,50,"no"
|
|
105
|
-
69,"standard","large",100,1,60,13,37,"yes"
|
|
106
|
-
73,"test","squamous",231,0,50,8,52,"yes"
|
|
107
|
-
71,"test","squamous",112,1,80,6,60,"no"
|
|
108
|
-
109,"test","adeno",18,1,40,5,69,"yes"
|
|
109
|
-
6,"standard","squamous",10,1,20,5,49,"no"
|
|
110
|
-
134,"test","large",111,1,60,5,64,"no"
|
|
111
|
-
48,"standard","adeno",35,1,40,6,62,"no"
|
|
112
|
-
27,"standard","smallcell",151,1,50,12,69,"no"
|
|
113
|
-
46,"standard","adeno",8,1,20,19,61,"yes"
|
|
114
|
-
113,"test","adeno",90,1,60,22,50,"yes"
|
|
115
|
-
88,"test","squamous",283,1,90,2,51,"no"
|
|
116
|
-
67,"standard","large",103,1,80,5,38,"no"
|
|
117
|
-
86,"test","squamous",30,1,70,11,63,"no"
|
|
118
|
-
111,"test","adeno",31,1,80,3,39,"no"
|
|
119
|
-
65,"standard","large",143,1,90,8,60,"no"
|
|
120
|
-
107,"test","smallcell",29,1,40,8,67,"no"
|
|
121
|
-
23,"standard","smallcell",153,1,60,14,63,"yes"
|
|
122
|
-
90,"test","smallcell",25,1,30,2,69,"no"
|
|
123
|
-
63,"standard","large",156,1,70,2,66,"no"
|
|
124
|
-
4,"standard","squamous",126,1,60,9,63,"yes"
|
|
125
|
-
84,"test","squamous",201,1,80,28,52,"yes"
|
|
126
|
-
8,"standard","squamous",110,1,80,29,68,"no"
|
|
127
|
-
103,"test","smallcell",25,1,70,2,70,"no"
|
|
128
|
-
44,"standard","smallcell",392,1,40,4,68,"no"
|
|
129
|
-
124,"test","adeno",45,1,40,3,69,"no"
|
|
130
|
-
130,"test","large",15,1,30,5,63,"no"
|
|
131
|
-
105,"test","smallcell",80,1,50,17,71,"no"
|
|
132
|
-
21,"standard","smallcell",123,0,40,3,55,"no"
|
|
133
|
-
128,"test","large",19,1,30,4,39,"yes"
|
|
134
|
-
42,"standard","smallcell",7,1,50,7,72,"no"
|
|
135
|
-
25,"standard","smallcell",117,1,80,3,46,"no"
|
|
136
|
-
82,"test","squamous",357,1,70,13,58,"no"
|
|
137
|
-
126,"test","large",52,1,60,4,45,"no"
|
|
138
|
-
2,"standard","squamous",411,1,70,5,64,"yes"
|
|
1
|
+
"id","trt","celltype","time_int","status","karno","diagtime","age","prior"
|
|
2
|
+
61,"standard","large",260,1,80,5,45,"no"
|
|
3
|
+
101,"test","smallcell",99,1,85,4,62,"no"
|
|
4
|
+
40,"standard","smallcell",27,1,60,8,62,"no"
|
|
5
|
+
122,"test","adeno",84,1,80,4,62,"yes"
|
|
6
|
+
38,"standard","smallcell",51,1,60,1,67,"no"
|
|
7
|
+
17,"standard","smallcell",384,1,60,9,42,"no"
|
|
8
|
+
80,"test","squamous",33,1,30,6,64,"no"
|
|
9
|
+
19,"standard","smallcell",54,1,80,4,63,"yes"
|
|
10
|
+
78,"test","squamous",587,1,60,3,58,"no"
|
|
11
|
+
34,"standard","smallcell",31,1,75,3,65,"no"
|
|
12
|
+
120,"test","adeno",140,1,70,3,63,"no"
|
|
13
|
+
59,"standard","large",278,1,60,12,63,"no"
|
|
14
|
+
76,"test","squamous",111,1,70,3,62,"no"
|
|
15
|
+
13,"standard","squamous",144,1,30,4,63,"no"
|
|
16
|
+
57,"standard","large",216,1,50,15,52,"no"
|
|
17
|
+
99,"test","smallcell",99,1,70,3,72,"no"
|
|
18
|
+
116,"test","adeno",8,1,50,5,66,"no"
|
|
19
|
+
32,"standard","smallcell",139,1,80,2,64,"no"
|
|
20
|
+
118,"test","adeno",48,1,10,4,81,"no"
|
|
21
|
+
36,"standard","smallcell",287,1,60,25,66,"yes"
|
|
22
|
+
93,"test","smallcell",13,1,30,2,62,"no"
|
|
23
|
+
11,"standard","squamous",42,1,60,4,81,"no"
|
|
24
|
+
55,"standard","large",177,1,50,16,66,"yes"
|
|
25
|
+
97,"test","smallcell",7,1,20,11,66,"no"
|
|
26
|
+
133,"test","large",133,1,75,1,65,"no"
|
|
27
|
+
51,"standard","adeno",12,1,50,4,63,"yes"
|
|
28
|
+
95,"test","smallcell",2,1,40,36,44,"yes"
|
|
29
|
+
15,"standard","squamous",11,1,70,11,48,"yes"
|
|
30
|
+
131,"test","large",43,1,60,11,49,"yes"
|
|
31
|
+
9,"standard","squamous",314,1,50,18,43,"no"
|
|
32
|
+
135,"test","large",231,1,70,18,67,"yes"
|
|
33
|
+
137,"test","large",49,1,30,3,37,"no"
|
|
34
|
+
108,"test","adeno",24,1,40,2,60,"no"
|
|
35
|
+
49,"standard","adeno",117,1,80,2,38,"no"
|
|
36
|
+
72,"test","squamous",87,0,80,3,48,"no"
|
|
37
|
+
74,"test","squamous",242,1,50,1,70,"no"
|
|
38
|
+
26,"standard","smallcell",16,1,30,4,53,"yes"
|
|
39
|
+
28,"standard","smallcell",22,1,60,4,68,"no"
|
|
40
|
+
112,"test","adeno",51,1,60,5,62,"no"
|
|
41
|
+
53,"standard","adeno",3,1,30,3,43,"no"
|
|
42
|
+
5,"standard","squamous",118,1,70,11,65,"yes"
|
|
43
|
+
89,"test","squamous",15,1,50,13,40,"yes"
|
|
44
|
+
110,"test","adeno",83,0,99,3,57,"no"
|
|
45
|
+
114,"test","adeno",52,1,60,3,43,"no"
|
|
46
|
+
24,"standard","smallcell",59,1,30,2,65,"no"
|
|
47
|
+
68,"standard","large",250,1,70,8,53,"yes"
|
|
48
|
+
7,"standard","squamous",82,1,40,10,69,"yes"
|
|
49
|
+
30,"standard","smallcell",21,1,40,2,55,"yes"
|
|
50
|
+
3,"standard","squamous",228,1,60,3,38,"no"
|
|
51
|
+
87,"test","squamous",44,1,60,13,70,"yes"
|
|
52
|
+
127,"test","large",164,1,70,15,68,"yes"
|
|
53
|
+
91,"test","smallcell",103,0,70,22,36,"yes"
|
|
54
|
+
43,"standard","smallcell",63,1,50,11,48,"no"
|
|
55
|
+
66,"standard","large",105,1,80,11,66,"no"
|
|
56
|
+
22,"standard","smallcell",97,0,60,5,67,"no"
|
|
57
|
+
70,"test","squamous",999,1,90,12,54,"yes"
|
|
58
|
+
1,"standard","squamous",72,1,60,7,69,"no"
|
|
59
|
+
106,"test","smallcell",51,1,30,87,59,"yes"
|
|
60
|
+
62,"standard","large",200,1,80,12,41,"yes"
|
|
61
|
+
129,"test","large",53,1,60,12,66,"no"
|
|
62
|
+
41,"standard","smallcell",54,1,70,1,67,"no"
|
|
63
|
+
64,"standard","large",182,0,90,2,62,"no"
|
|
64
|
+
39,"standard","smallcell",122,1,80,28,53,"no"
|
|
65
|
+
47,"standard","adeno",92,1,70,10,60,"no"
|
|
66
|
+
20,"standard","smallcell",13,1,60,4,56,"no"
|
|
67
|
+
104,"test","smallcell",95,1,70,1,61,"no"
|
|
68
|
+
37,"standard","smallcell",18,1,30,4,60,"no"
|
|
69
|
+
45,"standard","smallcell",10,1,40,23,67,"yes"
|
|
70
|
+
60,"standard","large",12,1,40,12,68,"yes"
|
|
71
|
+
83,"test","squamous",467,1,90,2,64,"no"
|
|
72
|
+
77,"test","squamous",1,1,20,21,65,"yes"
|
|
73
|
+
85,"test","squamous",1,1,50,7,35,"no"
|
|
74
|
+
18,"standard","smallcell",4,1,40,2,35,"no"
|
|
75
|
+
123,"test","adeno",19,1,50,10,42,"no"
|
|
76
|
+
35,"standard","smallcell",52,1,70,2,55,"no"
|
|
77
|
+
125,"test","adeno",80,1,40,4,63,"no"
|
|
78
|
+
79,"test","squamous",389,1,90,2,62,"no"
|
|
79
|
+
81,"test","squamous",25,1,20,36,63,"no"
|
|
80
|
+
54,"standard","adeno",95,1,80,4,34,"no"
|
|
81
|
+
102,"test","smallcell",61,1,70,2,71,"no"
|
|
82
|
+
58,"standard","large",553,1,70,2,47,"no"
|
|
83
|
+
121,"test","adeno",186,1,90,3,60,"no"
|
|
84
|
+
94,"test","smallcell",87,1,60,2,60,"no"
|
|
85
|
+
100,"test","smallcell",8,1,80,2,68,"no"
|
|
86
|
+
98,"test","smallcell",24,1,60,8,49,"no"
|
|
87
|
+
119,"test","adeno",7,1,40,4,58,"no"
|
|
88
|
+
12,"standard","squamous",8,1,40,58,63,"yes"
|
|
89
|
+
117,"test","adeno",36,1,70,8,61,"no"
|
|
90
|
+
56,"standard","large",162,1,80,5,62,"no"
|
|
91
|
+
16,"standard","smallcell",30,1,60,3,61,"no"
|
|
92
|
+
52,"standard","adeno",162,1,80,5,64,"no"
|
|
93
|
+
14,"standard","squamous",25,0,80,9,52,"yes"
|
|
94
|
+
96,"test","smallcell",20,1,30,9,54,"yes"
|
|
95
|
+
136,"test","large",378,1,80,4,65,"no"
|
|
96
|
+
92,"test","smallcell",21,1,20,4,71,"no"
|
|
97
|
+
31,"standard","smallcell",18,1,20,15,42,"no"
|
|
98
|
+
75,"test","squamous",991,1,70,7,50,"yes"
|
|
99
|
+
33,"standard","smallcell",20,1,30,5,65,"no"
|
|
100
|
+
132,"test","large",340,1,80,10,64,"yes"
|
|
101
|
+
29,"standard","smallcell",56,1,80,12,43,"yes"
|
|
102
|
+
115,"test","adeno",73,1,60,3,70,"no"
|
|
103
|
+
10,"standard","squamous",100,0,70,6,70,"no"
|
|
104
|
+
50,"standard","adeno",132,1,80,5,50,"no"
|
|
105
|
+
69,"standard","large",100,1,60,13,37,"yes"
|
|
106
|
+
73,"test","squamous",231,0,50,8,52,"yes"
|
|
107
|
+
71,"test","squamous",112,1,80,6,60,"no"
|
|
108
|
+
109,"test","adeno",18,1,40,5,69,"yes"
|
|
109
|
+
6,"standard","squamous",10,1,20,5,49,"no"
|
|
110
|
+
134,"test","large",111,1,60,5,64,"no"
|
|
111
|
+
48,"standard","adeno",35,1,40,6,62,"no"
|
|
112
|
+
27,"standard","smallcell",151,1,50,12,69,"no"
|
|
113
|
+
46,"standard","adeno",8,1,20,19,61,"yes"
|
|
114
|
+
113,"test","adeno",90,1,60,22,50,"yes"
|
|
115
|
+
88,"test","squamous",283,1,90,2,51,"no"
|
|
116
|
+
67,"standard","large",103,1,80,5,38,"no"
|
|
117
|
+
86,"test","squamous",30,1,70,11,63,"no"
|
|
118
|
+
111,"test","adeno",31,1,80,3,39,"no"
|
|
119
|
+
65,"standard","large",143,1,90,8,60,"no"
|
|
120
|
+
107,"test","smallcell",29,1,40,8,67,"no"
|
|
121
|
+
23,"standard","smallcell",153,1,60,14,63,"yes"
|
|
122
|
+
90,"test","smallcell",25,1,30,2,69,"no"
|
|
123
|
+
63,"standard","large",156,1,70,2,66,"no"
|
|
124
|
+
4,"standard","squamous",126,1,60,9,63,"yes"
|
|
125
|
+
84,"test","squamous",201,1,80,28,52,"yes"
|
|
126
|
+
8,"standard","squamous",110,1,80,29,68,"no"
|
|
127
|
+
103,"test","smallcell",25,1,70,2,70,"no"
|
|
128
|
+
44,"standard","smallcell",392,1,40,4,68,"no"
|
|
129
|
+
124,"test","adeno",45,1,40,3,69,"no"
|
|
130
|
+
130,"test","large",15,1,30,5,63,"no"
|
|
131
|
+
105,"test","smallcell",80,1,50,17,71,"no"
|
|
132
|
+
21,"standard","smallcell",123,0,40,3,55,"no"
|
|
133
|
+
128,"test","large",19,1,30,4,39,"yes"
|
|
134
|
+
42,"standard","smallcell",7,1,50,7,72,"no"
|
|
135
|
+
25,"standard","smallcell",117,1,80,3,46,"no"
|
|
136
|
+
82,"test","squamous",357,1,70,13,58,"no"
|
|
137
|
+
126,"test","large",52,1,60,4,45,"no"
|
|
138
|
+
2,"standard","squamous",411,1,70,5,64,"yes"
|
teradataml/data/mappingdata.csv
CHANGED
|
@@ -1,12 +1,12 @@
|
|
|
1
|
-
"timeseriesid","templateid"
|
|
2
|
-
4,1
|
|
3
|
-
4,2
|
|
4
|
-
4,3
|
|
5
|
-
3,1
|
|
6
|
-
3,2
|
|
7
|
-
3,3
|
|
8
|
-
1,2
|
|
9
|
-
1,3
|
|
10
|
-
2,1
|
|
11
|
-
2,2
|
|
12
|
-
2,3
|
|
1
|
+
"timeseriesid","templateid"
|
|
2
|
+
4,1
|
|
3
|
+
4,2
|
|
4
|
+
4,3
|
|
5
|
+
3,1
|
|
6
|
+
3,2
|
|
7
|
+
3,3
|
|
8
|
+
1,2
|
|
9
|
+
1,3
|
|
10
|
+
2,1
|
|
11
|
+
2,2
|
|
12
|
+
2,3
|
|
@@ -1,157 +1,157 @@
|
|
|
1
|
-
"id_partition","id","period","milkpound"
|
|
2
|
-
1,1,"1962-01",578.3
|
|
3
|
-
1,2,"1962-02",609.8
|
|
4
|
-
1,3,"1962-03",628.4
|
|
5
|
-
1,4,"1962-04",665.6
|
|
6
|
-
1,5,"1962-05",713.8
|
|
7
|
-
1,6,"1962-06",707.2
|
|
8
|
-
1,7,"1962-07",628.4
|
|
9
|
-
1,8,"1962-08",588.1
|
|
10
|
-
1,9,"1962-09",576.3
|
|
11
|
-
1,10,"1962-10",566.5
|
|
12
|
-
1,11,"1962-11",561.1
|
|
13
|
-
1,12,"1962-12",571.4
|
|
14
|
-
1,13,"1963-01",589.1
|
|
15
|
-
1,14,"1963-02",615.3
|
|
16
|
-
1,15,"1963-03",641.2
|
|
17
|
-
1,16,"1963-04",682.8
|
|
18
|
-
1,17,"1963-05",728.5
|
|
19
|
-
1,18,"1963-06",726.4
|
|
20
|
-
1,19,"1963-07",648
|
|
21
|
-
1,20,"1963-08",605.8
|
|
22
|
-
1,21,"1963-09",591.5
|
|
23
|
-
1,22,"1963-10",576.3
|
|
24
|
-
1,23,"1963-11",573.2
|
|
25
|
-
1,24,"1963-12",587.1
|
|
26
|
-
1,25,"1964-01",616.6
|
|
27
|
-
1,26,"1964-02",648.6
|
|
28
|
-
1,27,"1964-03",675.5
|
|
29
|
-
1,28,"1964-04",715.3
|
|
30
|
-
1,29,"1964-05",756
|
|
31
|
-
1,30,"1964-06",746.7
|
|
32
|
-
1,31,"1964-07",665.7
|
|
33
|
-
1,32,"1964-08",627.4
|
|
34
|
-
1,33,"1964-09",612.8
|
|
35
|
-
1,34,"1964-10",599.9
|
|
36
|
-
1,35,"1964-11",602.7
|
|
37
|
-
1,36,"1964-12",622.5
|
|
38
|
-
1,37,"1965-01",646.1
|
|
39
|
-
1,38,"1965-02",676.1
|
|
40
|
-
1,39,"1965-03",696.1
|
|
41
|
-
1,40,"1965-04",732.5
|
|
42
|
-
1,41,"1965-05",767.8
|
|
43
|
-
1,42,"1965-06",767
|
|
44
|
-
1,43,"1965-07",689.3
|
|
45
|
-
1,44,"1965-08",641.2
|
|
46
|
-
1,45,"1965-09",624
|
|
47
|
-
1,46,"1965-10",609.7
|
|
48
|
-
1,47,"1965-11",610.8
|
|
49
|
-
1,48,"1965-12",623.5
|
|
50
|
-
2,49,"1966-01",664.7
|
|
51
|
-
2,50,"1966-02",690.3
|
|
52
|
-
2,51,"1966-03",722.6
|
|
53
|
-
2,52,"1966-04",766
|
|
54
|
-
2,53,"1966-05",796.3
|
|
55
|
-
2,54,"1966-06",809.6
|
|
56
|
-
2,55,"1966-07",721.7
|
|
57
|
-
2,56,"1966-08",684.4
|
|
58
|
-
2,57,"1966-09",670.6
|
|
59
|
-
2,58,"1966-10",654.9
|
|
60
|
-
2,59,"1966-11",654.4
|
|
61
|
-
2,60,"1966-12",675.5
|
|
62
|
-
2,61,"1967-01",700.1
|
|
63
|
-
2,62,"1967-02",725.1
|
|
64
|
-
2,63,"1967-03",748.2
|
|
65
|
-
2,64,"1967-04",795.4
|
|
66
|
-
2,65,"1967-05",821.8
|
|
67
|
-
2,66,"1967-06",828.9
|
|
68
|
-
2,67,"1967-07",753.1
|
|
69
|
-
2,68,"1967-08",708.9
|
|
70
|
-
2,69,"1967-09",690.9
|
|
71
|
-
2,70,"1967-10",674.5
|
|
72
|
-
2,71,"1967-11",669.6
|
|
73
|
-
2,72,"1967-12",685.3
|
|
74
|
-
2,73,"1968-01",704
|
|
75
|
-
2,74,"1968-02",730.5
|
|
76
|
-
2,75,"1968-03",760.9
|
|
77
|
-
2,76,"1968-04",807.6
|
|
78
|
-
2,77,"1968-05",842.4
|
|
79
|
-
2,78,"1968-06",838
|
|
80
|
-
2,79,"1968-07",768.8
|
|
81
|
-
2,80,"1968-08",726.6
|
|
82
|
-
2,81,"1968-09",711.2
|
|
83
|
-
2,82,"1968-10",693.2
|
|
84
|
-
2,83,"1968-11",686.9
|
|
85
|
-
2,84,"1968-12",698.1
|
|
86
|
-
2,85,"1969-01",720.7
|
|
87
|
-
2,86,"1969-02",750.1
|
|
88
|
-
2,87,"1969-03",770.8
|
|
89
|
-
2,88,"1969-04",816.7
|
|
90
|
-
2,89,"1969-05",855.2
|
|
91
|
-
2,90,"1969-06",857.3
|
|
92
|
-
2,91,"1969-07",786.5
|
|
93
|
-
2,92,"1969-08",750.1
|
|
94
|
-
2,93,"1969-09",735.6
|
|
95
|
-
2,94,"1969-10",709.9
|
|
96
|
-
2,95,"1969-11",700.1
|
|
97
|
-
2,96,"1969-12",720.7
|
|
98
|
-
2,97,"1970-01",736.4
|
|
99
|
-
2,98,"1970-02",768.5
|
|
100
|
-
2,99,"1970-03",792.4
|
|
101
|
-
2,100,"1970-04",836
|
|
102
|
-
2,101,"1970-05",869.9
|
|
103
|
-
2,102,"1970-06",871.5
|
|
104
|
-
2,103,"1970-07",804.1
|
|
105
|
-
2,104,"1970-08",768.8
|
|
106
|
-
2,105,"1970-09",750.8
|
|
107
|
-
2,106,"1970-10",733.4
|
|
108
|
-
2,107,"1970-11",721.4
|
|
109
|
-
2,108,"1970-12",737.4
|
|
110
|
-
2,109,"1971-01",789.4
|
|
111
|
-
2,110,"1971-02",821.8
|
|
112
|
-
2,111,"1971-03",844.4
|
|
113
|
-
2,112,"1971-04",890.8
|
|
114
|
-
2,113,"1971-05",924.9
|
|
115
|
-
2,114,"1971-06",926.3
|
|
116
|
-
2,115,"1971-07",853.2
|
|
117
|
-
2,116,"1971-08",818.9
|
|
118
|
-
2,117,"1971-09",801.5
|
|
119
|
-
2,118,"1971-10",785.5
|
|
120
|
-
2,119,"1971-11",774.1
|
|
121
|
-
2,120,"1971-12",785.5
|
|
122
|
-
2,121,"1972-01",811
|
|
123
|
-
2,122,"1972-02",838.6
|
|
124
|
-
2,123,"1972-03",873.9
|
|
125
|
-
2,124,"1972-04",913.1
|
|
126
|
-
2,125,"1972-05",943.6
|
|
127
|
-
2,126,"1972-06",948.6
|
|
128
|
-
2,127,"1972-07",877.8
|
|
129
|
-
2,128,"1972-08",839.5
|
|
130
|
-
2,129,"1972-09",820.8
|
|
131
|
-
2,130,"1972-10",795.3
|
|
132
|
-
2,131,"1972-11",777.2
|
|
133
|
-
2,132,"1972-12",790.4
|
|
134
|
-
2,133,"1973-01",806.1
|
|
135
|
-
2,134,"1973-02",840.3
|
|
136
|
-
2,135,"1973-03",867
|
|
137
|
-
2,136,"1973-04",911.1
|
|
138
|
-
2,137,"1973-05",939.6
|
|
139
|
-
2,138,"1973-06",937.5
|
|
140
|
-
2,139,"1973-07",865
|
|
141
|
-
2,140,"1973-08",821.8
|
|
142
|
-
2,141,"1973-09",795.4
|
|
143
|
-
2,142,"1973-10",776.6
|
|
144
|
-
2,143,"1973-11",771.1
|
|
145
|
-
2,144,"1973-12",787.4
|
|
146
|
-
2,145,"1974-01",813
|
|
147
|
-
2,146,"1974-02",845.7
|
|
148
|
-
2,147,"1974-03",872.9
|
|
149
|
-
2,148,"1974-04",915.2
|
|
150
|
-
2,149,"1974-05",951.4
|
|
151
|
-
2,150,"1974-06",960.8
|
|
152
|
-
2,151,"1974-07",891.5
|
|
153
|
-
2,152,"1974-08",851.3
|
|
154
|
-
2,153,"1974-09",826.9
|
|
155
|
-
2,154,"1974-10",797.3
|
|
156
|
-
2,155,"1974-11",784.3
|
|
157
|
-
2,156,"1974-12",798.2
|
|
1
|
+
"id_partition","id","period","milkpound"
|
|
2
|
+
1,1,"1962-01",578.3
|
|
3
|
+
1,2,"1962-02",609.8
|
|
4
|
+
1,3,"1962-03",628.4
|
|
5
|
+
1,4,"1962-04",665.6
|
|
6
|
+
1,5,"1962-05",713.8
|
|
7
|
+
1,6,"1962-06",707.2
|
|
8
|
+
1,7,"1962-07",628.4
|
|
9
|
+
1,8,"1962-08",588.1
|
|
10
|
+
1,9,"1962-09",576.3
|
|
11
|
+
1,10,"1962-10",566.5
|
|
12
|
+
1,11,"1962-11",561.1
|
|
13
|
+
1,12,"1962-12",571.4
|
|
14
|
+
1,13,"1963-01",589.1
|
|
15
|
+
1,14,"1963-02",615.3
|
|
16
|
+
1,15,"1963-03",641.2
|
|
17
|
+
1,16,"1963-04",682.8
|
|
18
|
+
1,17,"1963-05",728.5
|
|
19
|
+
1,18,"1963-06",726.4
|
|
20
|
+
1,19,"1963-07",648
|
|
21
|
+
1,20,"1963-08",605.8
|
|
22
|
+
1,21,"1963-09",591.5
|
|
23
|
+
1,22,"1963-10",576.3
|
|
24
|
+
1,23,"1963-11",573.2
|
|
25
|
+
1,24,"1963-12",587.1
|
|
26
|
+
1,25,"1964-01",616.6
|
|
27
|
+
1,26,"1964-02",648.6
|
|
28
|
+
1,27,"1964-03",675.5
|
|
29
|
+
1,28,"1964-04",715.3
|
|
30
|
+
1,29,"1964-05",756
|
|
31
|
+
1,30,"1964-06",746.7
|
|
32
|
+
1,31,"1964-07",665.7
|
|
33
|
+
1,32,"1964-08",627.4
|
|
34
|
+
1,33,"1964-09",612.8
|
|
35
|
+
1,34,"1964-10",599.9
|
|
36
|
+
1,35,"1964-11",602.7
|
|
37
|
+
1,36,"1964-12",622.5
|
|
38
|
+
1,37,"1965-01",646.1
|
|
39
|
+
1,38,"1965-02",676.1
|
|
40
|
+
1,39,"1965-03",696.1
|
|
41
|
+
1,40,"1965-04",732.5
|
|
42
|
+
1,41,"1965-05",767.8
|
|
43
|
+
1,42,"1965-06",767
|
|
44
|
+
1,43,"1965-07",689.3
|
|
45
|
+
1,44,"1965-08",641.2
|
|
46
|
+
1,45,"1965-09",624
|
|
47
|
+
1,46,"1965-10",609.7
|
|
48
|
+
1,47,"1965-11",610.8
|
|
49
|
+
1,48,"1965-12",623.5
|
|
50
|
+
2,49,"1966-01",664.7
|
|
51
|
+
2,50,"1966-02",690.3
|
|
52
|
+
2,51,"1966-03",722.6
|
|
53
|
+
2,52,"1966-04",766
|
|
54
|
+
2,53,"1966-05",796.3
|
|
55
|
+
2,54,"1966-06",809.6
|
|
56
|
+
2,55,"1966-07",721.7
|
|
57
|
+
2,56,"1966-08",684.4
|
|
58
|
+
2,57,"1966-09",670.6
|
|
59
|
+
2,58,"1966-10",654.9
|
|
60
|
+
2,59,"1966-11",654.4
|
|
61
|
+
2,60,"1966-12",675.5
|
|
62
|
+
2,61,"1967-01",700.1
|
|
63
|
+
2,62,"1967-02",725.1
|
|
64
|
+
2,63,"1967-03",748.2
|
|
65
|
+
2,64,"1967-04",795.4
|
|
66
|
+
2,65,"1967-05",821.8
|
|
67
|
+
2,66,"1967-06",828.9
|
|
68
|
+
2,67,"1967-07",753.1
|
|
69
|
+
2,68,"1967-08",708.9
|
|
70
|
+
2,69,"1967-09",690.9
|
|
71
|
+
2,70,"1967-10",674.5
|
|
72
|
+
2,71,"1967-11",669.6
|
|
73
|
+
2,72,"1967-12",685.3
|
|
74
|
+
2,73,"1968-01",704
|
|
75
|
+
2,74,"1968-02",730.5
|
|
76
|
+
2,75,"1968-03",760.9
|
|
77
|
+
2,76,"1968-04",807.6
|
|
78
|
+
2,77,"1968-05",842.4
|
|
79
|
+
2,78,"1968-06",838
|
|
80
|
+
2,79,"1968-07",768.8
|
|
81
|
+
2,80,"1968-08",726.6
|
|
82
|
+
2,81,"1968-09",711.2
|
|
83
|
+
2,82,"1968-10",693.2
|
|
84
|
+
2,83,"1968-11",686.9
|
|
85
|
+
2,84,"1968-12",698.1
|
|
86
|
+
2,85,"1969-01",720.7
|
|
87
|
+
2,86,"1969-02",750.1
|
|
88
|
+
2,87,"1969-03",770.8
|
|
89
|
+
2,88,"1969-04",816.7
|
|
90
|
+
2,89,"1969-05",855.2
|
|
91
|
+
2,90,"1969-06",857.3
|
|
92
|
+
2,91,"1969-07",786.5
|
|
93
|
+
2,92,"1969-08",750.1
|
|
94
|
+
2,93,"1969-09",735.6
|
|
95
|
+
2,94,"1969-10",709.9
|
|
96
|
+
2,95,"1969-11",700.1
|
|
97
|
+
2,96,"1969-12",720.7
|
|
98
|
+
2,97,"1970-01",736.4
|
|
99
|
+
2,98,"1970-02",768.5
|
|
100
|
+
2,99,"1970-03",792.4
|
|
101
|
+
2,100,"1970-04",836
|
|
102
|
+
2,101,"1970-05",869.9
|
|
103
|
+
2,102,"1970-06",871.5
|
|
104
|
+
2,103,"1970-07",804.1
|
|
105
|
+
2,104,"1970-08",768.8
|
|
106
|
+
2,105,"1970-09",750.8
|
|
107
|
+
2,106,"1970-10",733.4
|
|
108
|
+
2,107,"1970-11",721.4
|
|
109
|
+
2,108,"1970-12",737.4
|
|
110
|
+
2,109,"1971-01",789.4
|
|
111
|
+
2,110,"1971-02",821.8
|
|
112
|
+
2,111,"1971-03",844.4
|
|
113
|
+
2,112,"1971-04",890.8
|
|
114
|
+
2,113,"1971-05",924.9
|
|
115
|
+
2,114,"1971-06",926.3
|
|
116
|
+
2,115,"1971-07",853.2
|
|
117
|
+
2,116,"1971-08",818.9
|
|
118
|
+
2,117,"1971-09",801.5
|
|
119
|
+
2,118,"1971-10",785.5
|
|
120
|
+
2,119,"1971-11",774.1
|
|
121
|
+
2,120,"1971-12",785.5
|
|
122
|
+
2,121,"1972-01",811
|
|
123
|
+
2,122,"1972-02",838.6
|
|
124
|
+
2,123,"1972-03",873.9
|
|
125
|
+
2,124,"1972-04",913.1
|
|
126
|
+
2,125,"1972-05",943.6
|
|
127
|
+
2,126,"1972-06",948.6
|
|
128
|
+
2,127,"1972-07",877.8
|
|
129
|
+
2,128,"1972-08",839.5
|
|
130
|
+
2,129,"1972-09",820.8
|
|
131
|
+
2,130,"1972-10",795.3
|
|
132
|
+
2,131,"1972-11",777.2
|
|
133
|
+
2,132,"1972-12",790.4
|
|
134
|
+
2,133,"1973-01",806.1
|
|
135
|
+
2,134,"1973-02",840.3
|
|
136
|
+
2,135,"1973-03",867
|
|
137
|
+
2,136,"1973-04",911.1
|
|
138
|
+
2,137,"1973-05",939.6
|
|
139
|
+
2,138,"1973-06",937.5
|
|
140
|
+
2,139,"1973-07",865
|
|
141
|
+
2,140,"1973-08",821.8
|
|
142
|
+
2,141,"1973-09",795.4
|
|
143
|
+
2,142,"1973-10",776.6
|
|
144
|
+
2,143,"1973-11",771.1
|
|
145
|
+
2,144,"1973-12",787.4
|
|
146
|
+
2,145,"1974-01",813
|
|
147
|
+
2,146,"1974-02",845.7
|
|
148
|
+
2,147,"1974-03",872.9
|
|
149
|
+
2,148,"1974-04",915.2
|
|
150
|
+
2,149,"1974-05",951.4
|
|
151
|
+
2,150,"1974-06",960.8
|
|
152
|
+
2,151,"1974-07",891.5
|
|
153
|
+
2,152,"1974-08",851.3
|
|
154
|
+
2,153,"1974-09",826.9
|
|
155
|
+
2,154,"1974-10",797.3
|
|
156
|
+
2,155,"1974-11",784.3
|
|
157
|
+
2,156,"1974-12",798.2
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
"minVal","maxVal","label"
|
|
2
|
-
0, 20, "Young age"
|
|
3
|
-
21, 45, "Middle Age"
|
|
4
|
-
46, 91, "Old Age"
|
|
1
|
+
"minVal","maxVal","label"
|
|
2
|
+
0, 20, "Young age"
|
|
3
|
+
21, 45, "Middle Age"
|
|
4
|
+
46, 91, "Old Age"
|
|
@@ -1,6 +1,6 @@
|
|
|
1
|
-
{
|
|
2
|
-
"salesdata" : {
|
|
3
|
-
"userid" : "integer",
|
|
4
|
-
"itemid" : "varchar(20)"
|
|
5
|
-
}
|
|
6
|
-
}
|
|
1
|
+
{
|
|
2
|
+
"salesdata" : {
|
|
3
|
+
"userid" : "integer",
|
|
4
|
+
"itemid" : "varchar(20)"
|
|
5
|
+
}
|
|
6
|
+
}
|