teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (1285) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +1864 -1640
  4. teradataml/__init__.py +70 -60
  5. teradataml/_version.py +11 -11
  6. teradataml/analytics/Transformations.py +2995 -2995
  7. teradataml/analytics/__init__.py +81 -83
  8. teradataml/analytics/analytic_function_executor.py +2013 -2010
  9. teradataml/analytics/analytic_query_generator.py +958 -958
  10. teradataml/analytics/byom/H2OPredict.py +514 -514
  11. teradataml/analytics/byom/PMMLPredict.py +437 -437
  12. teradataml/analytics/byom/__init__.py +14 -14
  13. teradataml/analytics/json_parser/__init__.py +130 -130
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
  15. teradataml/analytics/json_parser/json_store.py +191 -191
  16. teradataml/analytics/json_parser/metadata.py +1637 -1637
  17. teradataml/analytics/json_parser/utils.py +804 -803
  18. teradataml/analytics/meta_class.py +196 -196
  19. teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
  21. teradataml/analytics/sqle/__init__.py +97 -110
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
  24. teradataml/analytics/table_operator/__init__.py +10 -10
  25. teradataml/analytics/uaf/__init__.py +63 -63
  26. teradataml/analytics/utils.py +693 -692
  27. teradataml/analytics/valib.py +1603 -1600
  28. teradataml/automl/__init__.py +1628 -0
  29. teradataml/automl/custom_json_utils.py +1270 -0
  30. teradataml/automl/data_preparation.py +993 -0
  31. teradataml/automl/data_transformation.py +727 -0
  32. teradataml/automl/feature_engineering.py +1648 -0
  33. teradataml/automl/feature_exploration.py +547 -0
  34. teradataml/automl/model_evaluation.py +163 -0
  35. teradataml/automl/model_training.py +887 -0
  36. teradataml/catalog/__init__.py +1 -3
  37. teradataml/catalog/byom.py +1759 -1716
  38. teradataml/catalog/function_argument_mapper.py +859 -861
  39. teradataml/catalog/model_cataloging_utils.py +491 -1510
  40. teradataml/clients/pkce_client.py +481 -481
  41. teradataml/common/aed_utils.py +6 -2
  42. teradataml/common/bulk_exposed_utils.py +111 -111
  43. teradataml/common/constants.py +1433 -1441
  44. teradataml/common/deprecations.py +160 -0
  45. teradataml/common/exceptions.py +73 -73
  46. teradataml/common/formula.py +742 -742
  47. teradataml/common/garbagecollector.py +592 -635
  48. teradataml/common/messagecodes.py +422 -431
  49. teradataml/common/messages.py +227 -231
  50. teradataml/common/sqlbundle.py +693 -693
  51. teradataml/common/td_coltype_code_to_tdtype.py +48 -48
  52. teradataml/common/utils.py +2418 -2500
  53. teradataml/common/warnings.py +25 -25
  54. teradataml/common/wrapper_utils.py +1 -110
  55. teradataml/config/dummy_file1.cfg +4 -4
  56. teradataml/config/dummy_file2.cfg +2 -2
  57. teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
  58. teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
  59. teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
  60. teradataml/context/aed_context.py +217 -217
  61. teradataml/context/context.py +1071 -999
  62. teradataml/data/A_loan.csv +19 -19
  63. teradataml/data/BINARY_REALS_LEFT.csv +11 -11
  64. teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
  65. teradataml/data/B_loan.csv +49 -49
  66. teradataml/data/BuoyData2.csv +17 -17
  67. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
  68. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
  69. teradataml/data/Convolve2RealsLeft.csv +5 -5
  70. teradataml/data/Convolve2RealsRight.csv +5 -5
  71. teradataml/data/Convolve2ValidLeft.csv +11 -11
  72. teradataml/data/Convolve2ValidRight.csv +11 -11
  73. teradataml/data/DFFTConv_Real_8_8.csv +65 -65
  74. teradataml/data/Orders1_12mf.csv +24 -24
  75. teradataml/data/Pi_loan.csv +7 -7
  76. teradataml/data/SMOOTHED_DATA.csv +7 -7
  77. teradataml/data/TestDFFT8.csv +9 -9
  78. teradataml/data/TestRiver.csv +109 -109
  79. teradataml/data/Traindata.csv +28 -28
  80. teradataml/data/acf.csv +17 -17
  81. teradataml/data/adaboost_example.json +34 -34
  82. teradataml/data/adaboostpredict_example.json +24 -24
  83. teradataml/data/additional_table.csv +10 -10
  84. teradataml/data/admissions_test.csv +21 -21
  85. teradataml/data/admissions_train.csv +41 -41
  86. teradataml/data/admissions_train_nulls.csv +41 -41
  87. teradataml/data/ageandheight.csv +13 -13
  88. teradataml/data/ageandpressure.csv +31 -31
  89. teradataml/data/antiselect_example.json +36 -36
  90. teradataml/data/antiselect_input.csv +8 -8
  91. teradataml/data/antiselect_input_mixed_case.csv +8 -8
  92. teradataml/data/applicant_external.csv +6 -6
  93. teradataml/data/applicant_reference.csv +6 -6
  94. teradataml/data/arima_example.json +9 -9
  95. teradataml/data/assortedtext_input.csv +8 -8
  96. teradataml/data/attribution_example.json +33 -33
  97. teradataml/data/attribution_sample_table.csv +27 -27
  98. teradataml/data/attribution_sample_table1.csv +6 -6
  99. teradataml/data/attribution_sample_table2.csv +11 -11
  100. teradataml/data/bank_churn.csv +10001 -0
  101. teradataml/data/bank_web_clicks1.csv +42 -42
  102. teradataml/data/bank_web_clicks2.csv +91 -91
  103. teradataml/data/bank_web_url.csv +85 -85
  104. teradataml/data/barrier.csv +2 -2
  105. teradataml/data/barrier_new.csv +3 -3
  106. teradataml/data/betweenness_example.json +13 -13
  107. teradataml/data/bin_breaks.csv +8 -8
  108. teradataml/data/bin_fit_ip.csv +3 -3
  109. teradataml/data/binary_complex_left.csv +11 -11
  110. teradataml/data/binary_complex_right.csv +11 -11
  111. teradataml/data/binary_matrix_complex_left.csv +21 -21
  112. teradataml/data/binary_matrix_complex_right.csv +21 -21
  113. teradataml/data/binary_matrix_real_left.csv +21 -21
  114. teradataml/data/binary_matrix_real_right.csv +21 -21
  115. teradataml/data/blood2ageandweight.csv +26 -26
  116. teradataml/data/bmi.csv +501 -0
  117. teradataml/data/boston.csv +507 -507
  118. teradataml/data/buoydata_mix.csv +11 -11
  119. teradataml/data/burst_data.csv +5 -5
  120. teradataml/data/burst_example.json +20 -20
  121. teradataml/data/byom_example.json +17 -17
  122. teradataml/data/bytes_table.csv +3 -3
  123. teradataml/data/cal_housing_ex_raw.csv +70 -70
  124. teradataml/data/callers.csv +7 -7
  125. teradataml/data/calls.csv +10 -10
  126. teradataml/data/cars_hist.csv +33 -33
  127. teradataml/data/cat_table.csv +24 -24
  128. teradataml/data/ccm_example.json +31 -31
  129. teradataml/data/ccm_input.csv +91 -91
  130. teradataml/data/ccm_input2.csv +13 -13
  131. teradataml/data/ccmexample.csv +101 -101
  132. teradataml/data/ccmprepare_example.json +8 -8
  133. teradataml/data/ccmprepare_input.csv +91 -91
  134. teradataml/data/cfilter_example.json +12 -12
  135. teradataml/data/changepointdetection_example.json +18 -18
  136. teradataml/data/changepointdetectionrt_example.json +8 -8
  137. teradataml/data/chi_sq.csv +2 -2
  138. teradataml/data/churn_data.csv +14 -14
  139. teradataml/data/churn_emission.csv +35 -35
  140. teradataml/data/churn_initial.csv +3 -3
  141. teradataml/data/churn_state_transition.csv +5 -5
  142. teradataml/data/citedges_2.csv +745 -745
  143. teradataml/data/citvertices_2.csv +1210 -1210
  144. teradataml/data/clicks2.csv +16 -16
  145. teradataml/data/clickstream.csv +12 -12
  146. teradataml/data/clickstream1.csv +11 -11
  147. teradataml/data/closeness_example.json +15 -15
  148. teradataml/data/complaints.csv +21 -21
  149. teradataml/data/complaints_mini.csv +3 -3
  150. teradataml/data/complaints_testtoken.csv +224 -224
  151. teradataml/data/complaints_tokens_test.csv +353 -353
  152. teradataml/data/complaints_traintoken.csv +472 -472
  153. teradataml/data/computers_category.csv +1001 -1001
  154. teradataml/data/computers_test1.csv +1252 -1252
  155. teradataml/data/computers_train1.csv +5009 -5009
  156. teradataml/data/computers_train1_clustered.csv +5009 -5009
  157. teradataml/data/confusionmatrix_example.json +9 -9
  158. teradataml/data/conversion_event_table.csv +3 -3
  159. teradataml/data/corr_input.csv +17 -17
  160. teradataml/data/correlation_example.json +11 -11
  161. teradataml/data/coxhazardratio_example.json +39 -39
  162. teradataml/data/coxph_example.json +15 -15
  163. teradataml/data/coxsurvival_example.json +28 -28
  164. teradataml/data/cpt.csv +41 -41
  165. teradataml/data/credit_ex_merged.csv +45 -45
  166. teradataml/data/customer_loyalty.csv +301 -301
  167. teradataml/data/customer_loyalty_newseq.csv +31 -31
  168. teradataml/data/dataframe_example.json +146 -146
  169. teradataml/data/decisionforest_example.json +37 -37
  170. teradataml/data/decisionforestpredict_example.json +38 -38
  171. teradataml/data/decisiontree_example.json +21 -21
  172. teradataml/data/decisiontreepredict_example.json +45 -45
  173. teradataml/data/dfft2_size4_real.csv +17 -17
  174. teradataml/data/dfft2_test_matrix16.csv +17 -17
  175. teradataml/data/dfft2conv_real_4_4.csv +65 -65
  176. teradataml/data/diabetes.csv +443 -443
  177. teradataml/data/diabetes_test.csv +89 -89
  178. teradataml/data/dict_table.csv +5 -5
  179. teradataml/data/docperterm_table.csv +4 -4
  180. teradataml/data/docs/__init__.py +1 -1
  181. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
  182. teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
  183. teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
  184. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
  185. teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
  186. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
  187. teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
  188. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
  189. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
  190. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
  191. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
  192. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
  193. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
  194. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
  195. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
  196. teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
  197. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
  198. teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
  199. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
  200. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
  201. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
  202. teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
  203. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
  204. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
  205. teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
  206. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
  207. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
  208. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
  209. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +132 -132
  210. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +103 -103
  211. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
  212. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +101 -101
  213. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
  214. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
  215. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
  216. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
  217. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
  218. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
  219. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
  220. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
  221. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
  222. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
  223. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
  224. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
  225. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
  226. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
  227. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
  228. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
  229. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
  230. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
  231. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
  232. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
  233. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
  234. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +126 -126
  235. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
  236. teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
  237. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
  238. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
  239. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
  240. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
  241. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
  242. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
  243. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +243 -243
  244. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
  245. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
  246. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
  247. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
  248. teradataml/data/docs/sqle/docs_17_20/FTest.py +160 -160
  249. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
  250. teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
  251. teradataml/data/docs/sqle/docs_17_20/GLM.py +380 -380
  252. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
  253. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
  254. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
  255. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +123 -123
  256. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
  257. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
  258. teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
  259. teradataml/data/docs/sqle/docs_17_20/KMeans.py +204 -204
  260. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
  261. teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
  262. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
  263. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
  264. teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
  265. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
  266. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
  267. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
  268. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +117 -117
  269. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
  270. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
  271. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
  272. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
  273. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +225 -225
  274. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +115 -115
  275. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
  276. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
  277. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
  278. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
  279. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
  280. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
  281. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
  282. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
  283. teradataml/data/docs/sqle/docs_17_20/ROC.py +163 -163
  284. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
  285. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
  286. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
  287. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
  288. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
  289. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
  290. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
  291. teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
  292. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +202 -202
  293. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
  294. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +197 -197
  295. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +110 -109
  296. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
  297. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
  298. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
  299. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
  300. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
  301. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
  302. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
  303. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
  304. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +171 -171
  305. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
  306. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
  307. teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
  308. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
  309. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
  310. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
  311. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
  312. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
  313. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
  314. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
  315. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
  316. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +353 -353
  317. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +275 -275
  318. teradataml/data/docs/sqle/docs_17_20/ZTest.py +155 -155
  319. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
  320. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
  321. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
  322. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
  323. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
  324. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
  325. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
  326. teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
  327. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
  328. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
  329. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
  330. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
  331. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
  332. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
  333. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
  334. teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
  335. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
  336. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
  337. teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
  338. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
  339. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
  340. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
  341. teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
  342. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
  343. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
  344. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
  345. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
  346. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
  347. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
  348. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
  349. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
  350. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
  351. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
  352. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
  353. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
  354. teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
  355. teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
  356. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
  357. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
  358. teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
  359. teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
  360. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
  361. teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
  362. teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
  363. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
  364. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
  365. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
  366. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
  367. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
  368. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
  369. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
  370. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
  371. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
  372. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
  373. teradataml/data/dtw_example.json +17 -17
  374. teradataml/data/dtw_t1.csv +11 -11
  375. teradataml/data/dtw_t2.csv +4 -4
  376. teradataml/data/dwt2d_example.json +15 -15
  377. teradataml/data/dwt_example.json +14 -14
  378. teradataml/data/dwt_filter_dim.csv +5 -5
  379. teradataml/data/emission.csv +9 -9
  380. teradataml/data/emp_table_by_dept.csv +19 -19
  381. teradataml/data/employee_info.csv +4 -4
  382. teradataml/data/employee_table.csv +6 -6
  383. teradataml/data/excluding_event_table.csv +2 -2
  384. teradataml/data/finance_data.csv +6 -6
  385. teradataml/data/finance_data2.csv +61 -61
  386. teradataml/data/finance_data3.csv +93 -93
  387. teradataml/data/fish.csv +160 -0
  388. teradataml/data/fm_blood2ageandweight.csv +26 -26
  389. teradataml/data/fmeasure_example.json +11 -11
  390. teradataml/data/followers_leaders.csv +10 -10
  391. teradataml/data/fpgrowth_example.json +12 -12
  392. teradataml/data/frequentpaths_example.json +29 -29
  393. teradataml/data/friends.csv +9 -9
  394. teradataml/data/fs_input.csv +33 -33
  395. teradataml/data/fs_input1.csv +33 -33
  396. teradataml/data/genData.csv +513 -513
  397. teradataml/data/geodataframe_example.json +39 -39
  398. teradataml/data/glass_types.csv +215 -0
  399. teradataml/data/glm_admissions_model.csv +12 -12
  400. teradataml/data/glm_example.json +29 -29
  401. teradataml/data/glml1l2_example.json +28 -28
  402. teradataml/data/glml1l2predict_example.json +54 -54
  403. teradataml/data/glmpredict_example.json +54 -54
  404. teradataml/data/gq_t1.csv +21 -21
  405. teradataml/data/hconvolve_complex_right.csv +5 -5
  406. teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
  407. teradataml/data/histogram_example.json +11 -11
  408. teradataml/data/hmmdecoder_example.json +78 -78
  409. teradataml/data/hmmevaluator_example.json +24 -24
  410. teradataml/data/hmmsupervised_example.json +10 -10
  411. teradataml/data/hmmunsupervised_example.json +7 -7
  412. teradataml/data/house_values.csv +12 -12
  413. teradataml/data/house_values2.csv +13 -13
  414. teradataml/data/housing_cat.csv +7 -7
  415. teradataml/data/housing_data.csv +9 -9
  416. teradataml/data/housing_test.csv +47 -47
  417. teradataml/data/housing_test_binary.csv +47 -47
  418. teradataml/data/housing_train.csv +493 -493
  419. teradataml/data/housing_train_attribute.csv +4 -4
  420. teradataml/data/housing_train_binary.csv +437 -437
  421. teradataml/data/housing_train_parameter.csv +2 -2
  422. teradataml/data/housing_train_response.csv +493 -493
  423. teradataml/data/ibm_stock.csv +370 -370
  424. teradataml/data/ibm_stock1.csv +370 -370
  425. teradataml/data/identitymatch_example.json +21 -21
  426. teradataml/data/idf_table.csv +4 -4
  427. teradataml/data/impressions.csv +101 -101
  428. teradataml/data/inflation.csv +21 -21
  429. teradataml/data/initial.csv +3 -3
  430. teradataml/data/insect_sprays.csv +12 -12
  431. teradataml/data/insurance.csv +1339 -1339
  432. teradataml/data/interpolator_example.json +12 -12
  433. teradataml/data/iris_altinput.csv +481 -481
  434. teradataml/data/iris_attribute_output.csv +8 -8
  435. teradataml/data/iris_attribute_test.csv +121 -121
  436. teradataml/data/iris_attribute_train.csv +481 -481
  437. teradataml/data/iris_category_expect_predict.csv +31 -31
  438. teradataml/data/iris_data.csv +151 -0
  439. teradataml/data/iris_input.csv +151 -151
  440. teradataml/data/iris_response_train.csv +121 -121
  441. teradataml/data/iris_test.csv +31 -31
  442. teradataml/data/iris_train.csv +121 -121
  443. teradataml/data/join_table1.csv +4 -4
  444. teradataml/data/join_table2.csv +4 -4
  445. teradataml/data/jsons/anly_function_name.json +6 -6
  446. teradataml/data/jsons/byom/dataikupredict.json +147 -147
  447. teradataml/data/jsons/byom/datarobotpredict.json +146 -146
  448. teradataml/data/jsons/byom/h2opredict.json +194 -194
  449. teradataml/data/jsons/byom/onnxpredict.json +186 -186
  450. teradataml/data/jsons/byom/pmmlpredict.json +146 -146
  451. teradataml/data/jsons/paired_functions.json +435 -435
  452. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
  453. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
  454. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
  455. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
  456. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
  457. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
  458. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
  459. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
  460. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
  461. teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
  462. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
  463. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
  464. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
  465. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
  466. teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
  467. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
  468. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
  469. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
  470. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
  471. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
  472. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
  473. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
  474. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
  475. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
  476. teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
  477. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
  478. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
  479. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
  480. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
  481. teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
  482. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
  483. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
  484. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
  485. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
  486. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
  487. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
  488. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
  489. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
  490. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
  491. teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
  492. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
  493. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
  494. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
  495. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
  496. teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
  497. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
  498. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
  499. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
  500. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
  501. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
  502. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
  503. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
  504. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
  505. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
  506. teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
  507. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
  508. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
  509. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
  510. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
  511. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
  512. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
  513. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
  514. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
  515. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
  516. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
  517. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
  518. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
  519. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
  520. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
  521. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
  522. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
  523. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
  524. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
  525. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
  526. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
  527. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
  528. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
  529. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
  530. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
  531. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
  532. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
  533. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
  534. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
  535. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
  536. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
  537. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
  538. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
  539. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
  540. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
  541. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
  542. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
  543. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
  544. teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
  545. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
  546. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
  547. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
  548. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
  549. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
  550. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
  551. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
  552. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
  553. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
  554. teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
  555. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
  556. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
  557. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
  558. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +76 -76
  559. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
  560. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
  561. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
  562. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
  563. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
  564. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
  565. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
  566. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
  567. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
  568. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
  569. teradataml/data/jsons/sqle/17.20/TD_FTest.json +186 -186
  570. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
  571. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
  572. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
  573. teradataml/data/jsons/sqle/17.20/TD_GLM.json +431 -431
  574. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +125 -125
  575. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
  576. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
  577. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +91 -91
  578. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
  579. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
  580. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
  581. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +211 -211
  582. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
  583. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
  584. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
  585. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +101 -101
  586. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
  587. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
  588. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
  589. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
  590. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
  591. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
  592. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
  593. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
  594. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
  595. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
  596. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
  597. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
  598. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
  599. teradataml/data/jsons/sqle/17.20/TD_ROC.json +177 -177
  600. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
  601. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
  602. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
  603. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
  604. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
  605. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
  606. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
  607. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
  608. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +124 -124
  609. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +156 -156
  610. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +70 -70
  611. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
  612. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
  613. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
  614. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
  615. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
  616. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
  617. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
  618. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
  619. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
  620. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
  621. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
  622. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
  623. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
  624. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
  625. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +312 -312
  626. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +182 -182
  627. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +170 -170
  628. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
  629. teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
  630. teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
  631. teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
  632. teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
  633. teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
  634. teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
  635. teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
  636. teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
  637. teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
  638. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
  639. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
  640. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
  641. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
  642. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
  643. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
  644. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
  645. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
  646. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
  647. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
  648. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
  649. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
  650. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
  651. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
  652. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
  653. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
  654. teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
  655. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
  656. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
  657. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
  658. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
  659. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
  660. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
  661. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
  662. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
  663. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
  664. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
  665. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
  666. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
  667. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
  668. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
  669. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
  670. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
  671. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
  672. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
  673. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
  674. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
  675. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
  676. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
  677. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
  678. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
  679. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
  680. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
  681. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
  682. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
  683. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
  684. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
  685. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
  686. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
  687. teradataml/data/kmeans_example.json +17 -17
  688. teradataml/data/kmeans_us_arrests_data.csv +0 -0
  689. teradataml/data/knn_example.json +18 -18
  690. teradataml/data/knnrecommender_example.json +6 -6
  691. teradataml/data/knnrecommenderpredict_example.json +12 -12
  692. teradataml/data/lar_example.json +17 -17
  693. teradataml/data/larpredict_example.json +30 -30
  694. teradataml/data/lc_new_predictors.csv +5 -5
  695. teradataml/data/lc_new_reference.csv +9 -9
  696. teradataml/data/lda_example.json +8 -8
  697. teradataml/data/ldainference_example.json +14 -14
  698. teradataml/data/ldatopicsummary_example.json +8 -8
  699. teradataml/data/levendist_input.csv +13 -13
  700. teradataml/data/levenshteindistance_example.json +10 -10
  701. teradataml/data/linreg_example.json +9 -9
  702. teradataml/data/load_example_data.py +326 -323
  703. teradataml/data/loan_prediction.csv +295 -295
  704. teradataml/data/lungcancer.csv +138 -138
  705. teradataml/data/mappingdata.csv +12 -12
  706. teradataml/data/milk_timeseries.csv +157 -157
  707. teradataml/data/min_max_titanic.csv +4 -4
  708. teradataml/data/minhash_example.json +6 -6
  709. teradataml/data/ml_ratings.csv +7547 -7547
  710. teradataml/data/ml_ratings_10.csv +2445 -2445
  711. teradataml/data/model1_table.csv +5 -5
  712. teradataml/data/model2_table.csv +5 -5
  713. teradataml/data/models/iris_db_glm_model.pmml +56 -56
  714. teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
  715. teradataml/data/modularity_example.json +12 -12
  716. teradataml/data/movavg_example.json +7 -7
  717. teradataml/data/mtx1.csv +7 -7
  718. teradataml/data/mtx2.csv +13 -13
  719. teradataml/data/multi_model_classification.csv +401 -0
  720. teradataml/data/multi_model_regression.csv +401 -0
  721. teradataml/data/mvdfft8.csv +9 -9
  722. teradataml/data/naivebayes_example.json +9 -9
  723. teradataml/data/naivebayespredict_example.json +19 -19
  724. teradataml/data/naivebayestextclassifier2_example.json +6 -6
  725. teradataml/data/naivebayestextclassifier_example.json +8 -8
  726. teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
  727. teradataml/data/name_Find_configure.csv +10 -10
  728. teradataml/data/namedentityfinder_example.json +14 -14
  729. teradataml/data/namedentityfinderevaluator_example.json +10 -10
  730. teradataml/data/namedentityfindertrainer_example.json +6 -6
  731. teradataml/data/nb_iris_input_test.csv +31 -31
  732. teradataml/data/nb_iris_input_train.csv +121 -121
  733. teradataml/data/nbp_iris_model.csv +13 -13
  734. teradataml/data/ner_extractor_text.csv +2 -2
  735. teradataml/data/ner_sports_test2.csv +29 -29
  736. teradataml/data/ner_sports_train.csv +501 -501
  737. teradataml/data/nerevaluator_example.json +5 -5
  738. teradataml/data/nerextractor_example.json +18 -18
  739. teradataml/data/nermem_sports_test.csv +17 -17
  740. teradataml/data/nermem_sports_train.csv +50 -50
  741. teradataml/data/nertrainer_example.json +6 -6
  742. teradataml/data/ngrams_example.json +6 -6
  743. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
  744. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
  745. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
  746. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
  747. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
  748. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
  749. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
  750. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
  751. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
  752. teradataml/data/npath_example.json +23 -23
  753. teradataml/data/ntree_example.json +14 -14
  754. teradataml/data/numeric_strings.csv +4 -4
  755. teradataml/data/numerics.csv +4 -4
  756. teradataml/data/ocean_buoy.csv +17 -17
  757. teradataml/data/ocean_buoy2.csv +17 -17
  758. teradataml/data/ocean_buoys.csv +27 -27
  759. teradataml/data/ocean_buoys2.csv +10 -10
  760. teradataml/data/ocean_buoys_nonpti.csv +28 -28
  761. teradataml/data/ocean_buoys_seq.csv +29 -29
  762. teradataml/data/openml_example.json +63 -0
  763. teradataml/data/optional_event_table.csv +4 -4
  764. teradataml/data/orders1.csv +11 -11
  765. teradataml/data/orders1_12.csv +12 -12
  766. teradataml/data/orders_ex.csv +4 -4
  767. teradataml/data/pack_example.json +8 -8
  768. teradataml/data/package_tracking.csv +19 -19
  769. teradataml/data/package_tracking_pti.csv +18 -18
  770. teradataml/data/pagerank_example.json +13 -13
  771. teradataml/data/paragraphs_input.csv +6 -6
  772. teradataml/data/pathanalyzer_example.json +7 -7
  773. teradataml/data/pathgenerator_example.json +7 -7
  774. teradataml/data/phrases.csv +7 -7
  775. teradataml/data/pivot_example.json +8 -8
  776. teradataml/data/pivot_input.csv +22 -22
  777. teradataml/data/playerRating.csv +31 -31
  778. teradataml/data/postagger_example.json +6 -6
  779. teradataml/data/posttagger_output.csv +44 -44
  780. teradataml/data/production_data.csv +16 -16
  781. teradataml/data/production_data2.csv +7 -7
  782. teradataml/data/randomsample_example.json +31 -31
  783. teradataml/data/randomwalksample_example.json +8 -8
  784. teradataml/data/rank_table.csv +6 -6
  785. teradataml/data/ref_mobile_data.csv +4 -4
  786. teradataml/data/ref_mobile_data_dense.csv +2 -2
  787. teradataml/data/ref_url.csv +17 -17
  788. teradataml/data/restaurant_reviews.csv +7 -7
  789. teradataml/data/river_data.csv +145 -145
  790. teradataml/data/roc_example.json +7 -7
  791. teradataml/data/roc_input.csv +101 -101
  792. teradataml/data/rule_inputs.csv +6 -6
  793. teradataml/data/rule_table.csv +2 -2
  794. teradataml/data/sales.csv +7 -7
  795. teradataml/data/sales_transaction.csv +501 -501
  796. teradataml/data/salesdata.csv +342 -342
  797. teradataml/data/sample_cities.csv +2 -2
  798. teradataml/data/sample_shapes.csv +10 -10
  799. teradataml/data/sample_streets.csv +2 -2
  800. teradataml/data/sampling_example.json +15 -15
  801. teradataml/data/sax_example.json +8 -8
  802. teradataml/data/scale_example.json +23 -23
  803. teradataml/data/scale_housing.csv +11 -11
  804. teradataml/data/scale_housing_test.csv +6 -6
  805. teradataml/data/scale_stat.csv +11 -11
  806. teradataml/data/scalebypartition_example.json +13 -13
  807. teradataml/data/scalemap_example.json +13 -13
  808. teradataml/data/scalesummary_example.json +12 -12
  809. teradataml/data/score_category.csv +101 -101
  810. teradataml/data/score_summary.csv +4 -4
  811. teradataml/data/script_example.json +9 -9
  812. teradataml/data/scripts/deploy_script.py +65 -0
  813. teradataml/data/scripts/mapper.R +20 -0
  814. teradataml/data/scripts/mapper.py +15 -15
  815. teradataml/data/scripts/mapper_replace.py +15 -15
  816. teradataml/data/scripts/sklearn/__init__.py +0 -0
  817. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  818. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  819. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  820. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  821. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  822. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  823. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  824. teradataml/data/seeds.csv +10 -10
  825. teradataml/data/sentenceextractor_example.json +6 -6
  826. teradataml/data/sentiment_extract_input.csv +11 -11
  827. teradataml/data/sentiment_train.csv +16 -16
  828. teradataml/data/sentiment_word.csv +20 -20
  829. teradataml/data/sentiment_word_input.csv +19 -19
  830. teradataml/data/sentimentextractor_example.json +24 -24
  831. teradataml/data/sentimenttrainer_example.json +8 -8
  832. teradataml/data/sequence_table.csv +10 -10
  833. teradataml/data/seriessplitter_example.json +7 -7
  834. teradataml/data/sessionize_example.json +17 -17
  835. teradataml/data/sessionize_table.csv +116 -116
  836. teradataml/data/setop_test1.csv +24 -24
  837. teradataml/data/setop_test2.csv +22 -22
  838. teradataml/data/soc_nw_edges.csv +10 -10
  839. teradataml/data/soc_nw_vertices.csv +7 -7
  840. teradataml/data/souvenir_timeseries.csv +167 -167
  841. teradataml/data/sparse_iris_attribute.csv +5 -5
  842. teradataml/data/sparse_iris_test.csv +121 -121
  843. teradataml/data/sparse_iris_train.csv +601 -601
  844. teradataml/data/star1.csv +6 -6
  845. teradataml/data/state_transition.csv +5 -5
  846. teradataml/data/stock_data.csv +53 -53
  847. teradataml/data/stock_movement.csv +11 -11
  848. teradataml/data/stock_vol.csv +76 -76
  849. teradataml/data/stop_words.csv +8 -8
  850. teradataml/data/store_sales.csv +37 -37
  851. teradataml/data/stringsimilarity_example.json +7 -7
  852. teradataml/data/strsimilarity_input.csv +13 -13
  853. teradataml/data/students.csv +101 -101
  854. teradataml/data/svm_iris_input_test.csv +121 -121
  855. teradataml/data/svm_iris_input_train.csv +481 -481
  856. teradataml/data/svm_iris_model.csv +7 -7
  857. teradataml/data/svmdense_example.json +9 -9
  858. teradataml/data/svmdensepredict_example.json +18 -18
  859. teradataml/data/svmsparse_example.json +7 -7
  860. teradataml/data/svmsparsepredict_example.json +13 -13
  861. teradataml/data/svmsparsesummary_example.json +7 -7
  862. teradataml/data/target_mobile_data.csv +13 -13
  863. teradataml/data/target_mobile_data_dense.csv +5 -5
  864. teradataml/data/templatedata.csv +1201 -1201
  865. teradataml/data/templates/open_source_ml.json +9 -0
  866. teradataml/data/teradataml_example.json +73 -1
  867. teradataml/data/test_classification.csv +101 -0
  868. teradataml/data/test_loan_prediction.csv +53 -53
  869. teradataml/data/test_pacf_12.csv +37 -37
  870. teradataml/data/test_prediction.csv +101 -0
  871. teradataml/data/test_regression.csv +101 -0
  872. teradataml/data/test_river2.csv +109 -109
  873. teradataml/data/text_inputs.csv +6 -6
  874. teradataml/data/textchunker_example.json +7 -7
  875. teradataml/data/textclassifier_example.json +6 -6
  876. teradataml/data/textclassifier_input.csv +7 -7
  877. teradataml/data/textclassifiertrainer_example.json +6 -6
  878. teradataml/data/textmorph_example.json +5 -5
  879. teradataml/data/textparser_example.json +15 -15
  880. teradataml/data/texttagger_example.json +11 -11
  881. teradataml/data/texttokenizer_example.json +6 -6
  882. teradataml/data/texttrainer_input.csv +11 -11
  883. teradataml/data/tf_example.json +6 -6
  884. teradataml/data/tfidf_example.json +13 -13
  885. teradataml/data/tfidf_input1.csv +201 -201
  886. teradataml/data/tfidf_train.csv +6 -6
  887. teradataml/data/time_table1.csv +535 -535
  888. teradataml/data/time_table2.csv +14 -14
  889. teradataml/data/timeseriesdata.csv +1601 -1601
  890. teradataml/data/timeseriesdatasetsd4.csv +105 -105
  891. teradataml/data/titanic.csv +892 -892
  892. teradataml/data/token_table.csv +696 -696
  893. teradataml/data/train_multiclass.csv +101 -0
  894. teradataml/data/train_regression.csv +101 -0
  895. teradataml/data/train_regression_multiple_labels.csv +101 -0
  896. teradataml/data/train_tracking.csv +27 -27
  897. teradataml/data/transformation_table.csv +5 -5
  898. teradataml/data/transformation_table_new.csv +1 -1
  899. teradataml/data/tv_spots.csv +16 -16
  900. teradataml/data/twod_climate_data.csv +117 -117
  901. teradataml/data/uaf_example.json +475 -475
  902. teradataml/data/univariatestatistics_example.json +8 -8
  903. teradataml/data/unpack_example.json +9 -9
  904. teradataml/data/unpivot_example.json +9 -9
  905. teradataml/data/unpivot_input.csv +8 -8
  906. teradataml/data/us_air_pass.csv +36 -36
  907. teradataml/data/us_population.csv +624 -624
  908. teradataml/data/us_states_shapes.csv +52 -52
  909. teradataml/data/varmax_example.json +17 -17
  910. teradataml/data/vectordistance_example.json +25 -25
  911. teradataml/data/ville_climatedata.csv +121 -121
  912. teradataml/data/ville_tempdata.csv +12 -12
  913. teradataml/data/ville_tempdata1.csv +12 -12
  914. teradataml/data/ville_temperature.csv +11 -11
  915. teradataml/data/waveletTable.csv +1605 -1605
  916. teradataml/data/waveletTable2.csv +1605 -1605
  917. teradataml/data/weightedmovavg_example.json +8 -8
  918. teradataml/data/wft_testing.csv +5 -5
  919. teradataml/data/wine_data.csv +1600 -0
  920. teradataml/data/word_embed_input_table1.csv +5 -5
  921. teradataml/data/word_embed_input_table2.csv +4 -4
  922. teradataml/data/word_embed_model.csv +22 -22
  923. teradataml/data/words_input.csv +13 -13
  924. teradataml/data/xconvolve_complex_left.csv +6 -6
  925. teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
  926. teradataml/data/xgboost_example.json +35 -35
  927. teradataml/data/xgboostpredict_example.json +31 -31
  928. teradataml/dataframe/copy_to.py +1764 -1698
  929. teradataml/dataframe/data_transfer.py +2753 -2745
  930. teradataml/dataframe/dataframe.py +17545 -16946
  931. teradataml/dataframe/dataframe_utils.py +1837 -1740
  932. teradataml/dataframe/fastload.py +611 -603
  933. teradataml/dataframe/indexer.py +424 -424
  934. teradataml/dataframe/setop.py +1179 -1166
  935. teradataml/dataframe/sql.py +10090 -6432
  936. teradataml/dataframe/sql_function_parameters.py +439 -388
  937. teradataml/dataframe/sql_functions.py +652 -652
  938. teradataml/dataframe/sql_interfaces.py +220 -220
  939. teradataml/dataframe/vantage_function_types.py +674 -630
  940. teradataml/dataframe/window.py +693 -692
  941. teradataml/dbutils/__init__.py +3 -3
  942. teradataml/dbutils/dbutils.py +1167 -1150
  943. teradataml/dbutils/filemgr.py +267 -267
  944. teradataml/gen_ai/__init__.py +2 -2
  945. teradataml/gen_ai/convAI.py +472 -472
  946. teradataml/geospatial/__init__.py +3 -3
  947. teradataml/geospatial/geodataframe.py +1105 -1094
  948. teradataml/geospatial/geodataframecolumn.py +392 -387
  949. teradataml/geospatial/geometry_types.py +925 -925
  950. teradataml/hyperparameter_tuner/__init__.py +1 -1
  951. teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
  952. teradataml/hyperparameter_tuner/utils.py +281 -187
  953. teradataml/lib/aed_0_1.dll +0 -0
  954. teradataml/lib/libaed_0_1.dylib +0 -0
  955. teradataml/lib/libaed_0_1.so +0 -0
  956. teradataml/libaed_0_1.dylib +0 -0
  957. teradataml/libaed_0_1.so +0 -0
  958. teradataml/opensource/__init__.py +1 -0
  959. teradataml/opensource/sklearn/__init__.py +1 -0
  960. teradataml/opensource/sklearn/_class.py +255 -0
  961. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  962. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  963. teradataml/opensource/sklearn/constants.py +54 -0
  964. teradataml/options/__init__.py +121 -124
  965. teradataml/options/configure.py +337 -336
  966. teradataml/options/display.py +176 -176
  967. teradataml/plot/__init__.py +2 -2
  968. teradataml/plot/axis.py +1388 -1388
  969. teradataml/plot/constants.py +15 -15
  970. teradataml/plot/figure.py +398 -398
  971. teradataml/plot/plot.py +760 -760
  972. teradataml/plot/query_generator.py +83 -83
  973. teradataml/plot/subplot.py +216 -216
  974. teradataml/scriptmgmt/UserEnv.py +3788 -3761
  975. teradataml/scriptmgmt/__init__.py +3 -3
  976. teradataml/scriptmgmt/lls_utils.py +1616 -1604
  977. teradataml/series/series.py +532 -532
  978. teradataml/series/series_utils.py +71 -71
  979. teradataml/table_operators/Apply.py +949 -917
  980. teradataml/table_operators/Script.py +1719 -1982
  981. teradataml/table_operators/TableOperator.py +1207 -1616
  982. teradataml/table_operators/__init__.py +2 -3
  983. teradataml/table_operators/apply_query_generator.py +262 -262
  984. teradataml/table_operators/query_generator.py +507 -507
  985. teradataml/table_operators/table_operator_query_generator.py +460 -460
  986. teradataml/table_operators/table_operator_util.py +631 -639
  987. teradataml/table_operators/templates/dataframe_apply.template +184 -184
  988. teradataml/table_operators/templates/dataframe_map.template +176 -176
  989. teradataml/table_operators/templates/script_executor.template +170 -170
  990. teradataml/utils/dtypes.py +684 -684
  991. teradataml/utils/internal_buffer.py +84 -84
  992. teradataml/utils/print_versions.py +205 -205
  993. teradataml/utils/utils.py +410 -410
  994. teradataml/utils/validators.py +2239 -2115
  995. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +270 -41
  996. teradataml-20.0.0.0.dist-info/RECORD +1038 -0
  997. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +1 -1
  998. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +1 -1
  999. teradataml/analytics/mle/AdaBoost.py +0 -651
  1000. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  1001. teradataml/analytics/mle/Antiselect.py +0 -342
  1002. teradataml/analytics/mle/Arima.py +0 -641
  1003. teradataml/analytics/mle/ArimaPredict.py +0 -477
  1004. teradataml/analytics/mle/Attribution.py +0 -1070
  1005. teradataml/analytics/mle/Betweenness.py +0 -658
  1006. teradataml/analytics/mle/Burst.py +0 -711
  1007. teradataml/analytics/mle/CCM.py +0 -600
  1008. teradataml/analytics/mle/CCMPrepare.py +0 -324
  1009. teradataml/analytics/mle/CFilter.py +0 -460
  1010. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  1011. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  1012. teradataml/analytics/mle/Closeness.py +0 -737
  1013. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  1014. teradataml/analytics/mle/Correlation.py +0 -477
  1015. teradataml/analytics/mle/Correlation2.py +0 -573
  1016. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  1017. teradataml/analytics/mle/CoxPH.py +0 -556
  1018. teradataml/analytics/mle/CoxSurvival.py +0 -478
  1019. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  1020. teradataml/analytics/mle/DTW.py +0 -623
  1021. teradataml/analytics/mle/DWT.py +0 -564
  1022. teradataml/analytics/mle/DWT2D.py +0 -599
  1023. teradataml/analytics/mle/DecisionForest.py +0 -716
  1024. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  1025. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  1026. teradataml/analytics/mle/DecisionTree.py +0 -830
  1027. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  1028. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  1029. teradataml/analytics/mle/FMeasure.py +0 -402
  1030. teradataml/analytics/mle/FPGrowth.py +0 -734
  1031. teradataml/analytics/mle/FrequentPaths.py +0 -695
  1032. teradataml/analytics/mle/GLM.py +0 -558
  1033. teradataml/analytics/mle/GLML1L2.py +0 -547
  1034. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  1035. teradataml/analytics/mle/GLMPredict.py +0 -529
  1036. teradataml/analytics/mle/HMMDecoder.py +0 -945
  1037. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  1038. teradataml/analytics/mle/HMMSupervised.py +0 -521
  1039. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  1040. teradataml/analytics/mle/Histogram.py +0 -561
  1041. teradataml/analytics/mle/IDWT.py +0 -476
  1042. teradataml/analytics/mle/IDWT2D.py +0 -493
  1043. teradataml/analytics/mle/IdentityMatch.py +0 -763
  1044. teradataml/analytics/mle/Interpolator.py +0 -918
  1045. teradataml/analytics/mle/KMeans.py +0 -485
  1046. teradataml/analytics/mle/KNN.py +0 -627
  1047. teradataml/analytics/mle/KNNRecommender.py +0 -488
  1048. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  1049. teradataml/analytics/mle/LAR.py +0 -439
  1050. teradataml/analytics/mle/LARPredict.py +0 -478
  1051. teradataml/analytics/mle/LDA.py +0 -548
  1052. teradataml/analytics/mle/LDAInference.py +0 -492
  1053. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  1054. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  1055. teradataml/analytics/mle/LinReg.py +0 -433
  1056. teradataml/analytics/mle/LinRegPredict.py +0 -438
  1057. teradataml/analytics/mle/MinHash.py +0 -544
  1058. teradataml/analytics/mle/Modularity.py +0 -587
  1059. teradataml/analytics/mle/NEREvaluator.py +0 -410
  1060. teradataml/analytics/mle/NERExtractor.py +0 -595
  1061. teradataml/analytics/mle/NERTrainer.py +0 -458
  1062. teradataml/analytics/mle/NGrams.py +0 -570
  1063. teradataml/analytics/mle/NPath.py +0 -634
  1064. teradataml/analytics/mle/NTree.py +0 -549
  1065. teradataml/analytics/mle/NaiveBayes.py +0 -462
  1066. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  1067. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  1068. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  1069. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  1070. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  1071. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  1072. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  1073. teradataml/analytics/mle/POSTagger.py +0 -417
  1074. teradataml/analytics/mle/Pack.py +0 -411
  1075. teradataml/analytics/mle/PageRank.py +0 -535
  1076. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  1077. teradataml/analytics/mle/PathGenerator.py +0 -367
  1078. teradataml/analytics/mle/PathStart.py +0 -464
  1079. teradataml/analytics/mle/PathSummarizer.py +0 -470
  1080. teradataml/analytics/mle/Pivot.py +0 -471
  1081. teradataml/analytics/mle/ROC.py +0 -425
  1082. teradataml/analytics/mle/RandomSample.py +0 -637
  1083. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  1084. teradataml/analytics/mle/SAX.py +0 -779
  1085. teradataml/analytics/mle/SVMDense.py +0 -677
  1086. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  1087. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  1088. teradataml/analytics/mle/SVMSparse.py +0 -557
  1089. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  1090. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  1091. teradataml/analytics/mle/Sampling.py +0 -549
  1092. teradataml/analytics/mle/Scale.py +0 -565
  1093. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  1094. teradataml/analytics/mle/ScaleMap.py +0 -378
  1095. teradataml/analytics/mle/ScaleSummary.py +0 -320
  1096. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  1097. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  1098. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  1099. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  1100. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  1101. teradataml/analytics/mle/Sessionize.py +0 -475
  1102. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  1103. teradataml/analytics/mle/StringSimilarity.py +0 -425
  1104. teradataml/analytics/mle/TF.py +0 -389
  1105. teradataml/analytics/mle/TFIDF.py +0 -504
  1106. teradataml/analytics/mle/TextChunker.py +0 -414
  1107. teradataml/analytics/mle/TextClassifier.py +0 -399
  1108. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  1109. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  1110. teradataml/analytics/mle/TextMorph.py +0 -494
  1111. teradataml/analytics/mle/TextParser.py +0 -623
  1112. teradataml/analytics/mle/TextTagger.py +0 -530
  1113. teradataml/analytics/mle/TextTokenizer.py +0 -502
  1114. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  1115. teradataml/analytics/mle/Unpack.py +0 -526
  1116. teradataml/analytics/mle/Unpivot.py +0 -438
  1117. teradataml/analytics/mle/VarMax.py +0 -776
  1118. teradataml/analytics/mle/VectorDistance.py +0 -762
  1119. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  1120. teradataml/analytics/mle/XGBoost.py +0 -842
  1121. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  1122. teradataml/analytics/mle/__init__.py +0 -123
  1123. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  1124. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  1125. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  1126. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  1127. teradataml/analytics/mle/json/arima_mle.json +0 -172
  1128. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  1129. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  1130. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  1131. teradataml/analytics/mle/json/burst_mle.json +0 -140
  1132. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  1133. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  1134. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  1135. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  1136. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  1137. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  1138. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  1139. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  1140. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  1141. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  1142. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  1143. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  1144. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  1145. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  1146. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  1147. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  1148. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  1149. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  1150. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  1151. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  1152. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  1153. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  1154. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  1155. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  1156. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  1157. teradataml/analytics/mle/json/glm_mle.json +0 -111
  1158. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  1159. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  1160. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  1161. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  1162. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  1163. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  1164. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  1165. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  1166. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  1167. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  1168. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  1169. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  1170. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  1171. teradataml/analytics/mle/json/knn_mle.json +0 -141
  1172. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  1173. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  1174. teradataml/analytics/mle/json/lar_mle.json +0 -78
  1175. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  1176. teradataml/analytics/mle/json/lda_mle.json +0 -130
  1177. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  1178. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  1179. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  1180. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  1181. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  1182. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  1183. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  1184. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  1185. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  1186. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  1187. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  1188. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  1189. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  1190. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  1191. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  1192. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  1193. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  1194. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  1195. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  1196. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  1197. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  1198. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  1199. teradataml/analytics/mle/json/pack_mle.json +0 -58
  1200. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  1201. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  1202. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  1203. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  1204. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  1205. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  1206. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  1207. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  1208. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  1209. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  1210. teradataml/analytics/mle/json/roc_mle.json +0 -73
  1211. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  1212. teradataml/analytics/mle/json/sax_mle.json +0 -154
  1213. teradataml/analytics/mle/json/scale_mle.json +0 -93
  1214. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  1215. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  1216. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  1217. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  1218. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  1219. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  1220. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  1221. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  1222. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  1223. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  1224. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  1225. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  1226. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  1227. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  1228. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  1229. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  1230. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  1231. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  1232. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  1233. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  1234. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  1235. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  1236. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  1237. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  1238. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  1239. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  1240. teradataml/analytics/mle/json/tf_mle.json +0 -33
  1241. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  1242. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  1243. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  1244. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  1245. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  1246. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  1247. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  1248. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  1249. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  1250. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  1251. teradataml/analytics/sqle/Antiselect.py +0 -321
  1252. teradataml/analytics/sqle/Attribution.py +0 -603
  1253. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  1254. teradataml/analytics/sqle/GLMPredict.py +0 -430
  1255. teradataml/analytics/sqle/MovingAverage.py +0 -543
  1256. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  1257. teradataml/analytics/sqle/NPath.py +0 -632
  1258. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  1259. teradataml/analytics/sqle/Pack.py +0 -388
  1260. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  1261. teradataml/analytics/sqle/Sessionize.py +0 -390
  1262. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  1263. teradataml/analytics/sqle/Unpack.py +0 -503
  1264. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  1265. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  1266. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  1267. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  1268. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  1269. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  1270. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  1271. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  1272. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  1273. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  1274. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  1275. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  1276. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  1277. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  1278. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  1279. teradataml/catalog/model_cataloging.py +0 -980
  1280. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  1281. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  1282. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  1283. teradataml/table_operators/sandbox_container_util.py +0 -643
  1284. teradataml-17.20.0.7.dist-info/RECORD +0 -1280
  1285. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1628 @@
1
+ # ##################################################################
2
+ #
3
+ # Copyright 2024 Teradata. All rights reserved.
4
+ # TERADATA CONFIDENTIAL AND TRADE SECRET
5
+ #
6
+ # Primary Owner: Sweta Shaw
7
+ # Email Id: Sweta.Shaw@Teradata.com
8
+ #
9
+ # Secondary Owner: Akhil Bisht
10
+ # Email Id: AKHIL.BISHT@Teradata.com
11
+ #
12
+ # Version: 1.1
13
+ # Function Version: 1.0
14
+ # ##################################################################
15
+
16
+ # Python libraries
17
+ import json
18
+ import numpy as np
19
+ from sklearn.metrics import confusion_matrix
20
+ import time
21
+
22
+ # Teradata libraries
23
+ from teradataml.dataframe.copy_to import copy_to_sql
24
+ from teradataml import ColumnExpression
25
+ from teradataml.dataframe.dataframe import DataFrame
26
+ from teradataml.utils.validators import _Validators
27
+ from teradataml import ROC
28
+ from teradataml.common.utils import UtilFuncs
29
+ from teradataml.utils.dtypes import _Dtypes
30
+ from teradataml.common.utils import UtilFuncs
31
+ from teradataml import TeradataMlException
32
+ from teradataml.common.messages import Messages, MessageCodes
33
+
34
+ # AutoML Internal libraries
35
+ from teradataml.automl.data_preparation import _DataPreparation
36
+ from teradataml.automl.feature_engineering import _FeatureEngineering
37
+ from teradataml.automl.feature_exploration import _FeatureExplore, _is_terminal
38
+ from teradataml.automl.model_evaluation import _ModelEvaluator
39
+ from teradataml.automl.model_training import _ModelTraining
40
+ from teradataml.automl.data_transformation import _DataTransformation
41
+ from teradataml.automl.custom_json_utils import _GenerateCustomJson
42
+
43
+
44
+ class AutoML:
45
+
46
+ def __init__(self,
47
+ task_type = "Default",
48
+ include = None,
49
+ exclude = None,
50
+ verbose = 0,
51
+ max_runtime_secs = None,
52
+ stopping_metric = None,
53
+ stopping_tolerance = None,
54
+ custom_config_file = None):
55
+ """
56
+ DESCRIPTION:
57
+ AutoML (Automated Machine Learning) is an approach that automates the process
58
+ of building, training, and validating machine learning models. It involves
59
+ various algorithms to automate various aspects of the machine learning workflow,
60
+ such as data preparation, feature engineering, model selection, hyperparameter
61
+ tuning, and model deployment. It aims to simplify the process of building
62
+ machine learning models, by automating some of the more time-consuming
63
+ and labor-intensive tasks involved in the process.
64
+
65
+ AutoML is designed to handle both regression and classification (binary and
66
+ multiclass) tasks. User can specify the task type whether to apply
67
+ regression OR classification algorithm on the provided dataset. By default, AutoML
68
+ decides the task type.
69
+
70
+ AutoML by default, trains using all model algorithms applicable for the
71
+ task type problem. For example, "glm" and "svm" does not support multi-class
72
+ classification problem. Thus, only 3 models are available to train in case
73
+ of multi-class classification problem, by default. While for regression and
74
+ binary classification problem, all 5 models i.e., "glm", "svm", "knn",
75
+ "decision_forest", "xgboost" are available to train by default.
76
+
77
+ AutoML provides functionality to use specific model algorithms for training.
78
+ User can provide either include or exclude model. In case of include,
79
+ only specified models are trained while for exclude, all models except
80
+ specified model are trained.
81
+
82
+ AutoML also provides an option to customize the processes within feature
83
+ engineering, data preparation and model training phases. User can customize
84
+ the processes by passing the JSON file path in case of custom run. It also
85
+ supports early stopping of model training based on stopping metrics and
86
+ maximum running time.
87
+
88
+ PARAMETERS:
89
+ task_type:
90
+ Optional Arugment.
91
+ Specifies the task type for AutoML, whether to apply regression OR classification
92
+ on the provided dataset. If user wants AutoML to decide the task type automatically,
93
+ then it should be set to "Default".
94
+ Default Value: "Default"
95
+ Permitted Values: "Regression", "Classification", "Default"
96
+ Types: str
97
+
98
+ include:
99
+ Optional Argument.
100
+ Specifies the model algorithms to be used for model training phase.
101
+ By default, all 5 models are used for training for regression and binary
102
+ classification problem, while only 3 models are used for multi-class.
103
+ Permitted Values: "glm", "svm", "knn", "decision_forest", "xgboost"
104
+ Types: str OR list of str
105
+
106
+
107
+ exclude:
108
+ Optional Argument.
109
+ Specifies the model algorithms to be excluded from model training phase.
110
+ No model is excluded by default.
111
+ Permitted Values: "glm", "svm", "knn", "decision_forest", "xgboost"
112
+ Types: str OR list of str
113
+
114
+ verbose:
115
+ Optional Argument.
116
+ Specifies the detailed execution steps based on verbose level.
117
+ Default Value: 0
118
+ Permitted Values:
119
+ * 0: prints the progress bar and leaderboard
120
+ * 1: prints the execution steps of AutoML.
121
+ * 2: prints the intermediate data between the execution of each step of AutoML.
122
+ Types: int
123
+
124
+ max_runtime_secs:
125
+ Optional Arugment.
126
+ Specifies the time limit in seconds for model training.
127
+ Types: int
128
+
129
+ stopping_metric:
130
+ Required, when "stopping_tolerance" is set, otherwise optional.
131
+ Specifies the stopping metrics for stopping tolerance in model training.
132
+ Permitted Values:
133
+ * For task_type "Regression": "R2", "MAE", "MSE", "MSLE",
134
+ "RMSE", "RMSLE"
135
+ * For task_type "Classification": 'MICRO-F1','MACRO-F1',
136
+ 'MICRO-RECALL','MACRO-RECALL',
137
+ 'MICRO-PRECISION', 'MACRO-PRECISION',
138
+ 'WEIGHTED-PRECISION','WEIGHTED-RECALL',
139
+ 'WEIGHTED-F1', 'ACCURACY'
140
+ Types: str
141
+
142
+ stopping_tolerance:
143
+ Required, when "stopping_metric" is set, otherwise optional.
144
+ Specifies the stopping tolerance for stopping metrics in model training.
145
+ Types: float
146
+
147
+ custom_config_file:
148
+ Optional Argument.
149
+ Specifies the path of JSON file in case of custom run.
150
+ Types: str
151
+
152
+ RETURNS:
153
+ Instance of AutoML.
154
+
155
+ RAISES:
156
+ TeradataMlException, TypeError, ValueError
157
+
158
+ EXAMPLES:
159
+ # Notes:
160
+ # 1. Get the connection to Vantage to execute the function.
161
+ # 2. One must import the required functions mentioned in
162
+ # the example from teradataml.
163
+ # 3. Function raises error if not supported on the Vantage
164
+ # user is connected to.
165
+
166
+ # Load the example data.
167
+ >>> load_example_data("GLMPredict", ["admissions_test", "admissions_train"])
168
+ >>> load_example_data("decisionforestpredict", ["housing_train", "housing_test"])
169
+ >>> load_example_data("teradataml", "iris_input")
170
+
171
+ # Create teradataml DataFrames.
172
+ >>> admissions_train = DataFrame.from_table("admissions_train")
173
+ >>> admissions_test = DataFrame.from_table("admissions_test")
174
+ >>> housing_train = DataFrame.from_table("housing_train")
175
+ >>> housing_test = DataFrame.from_table("housing_test")
176
+ >>> iris_input = DataFrame.from_table("iris_input")
177
+
178
+ # Example 1: Run AutoML for classification problem.
179
+ # Scenario: Predict whether a student will be admitted to a university
180
+ # based on different factors. Run AutoML to get the best
181
+ # performing model out of available models.
182
+
183
+ # Create an instance of AutoML.
184
+ >>> automl_obj = AutoML(task_type="Classification")
185
+
186
+ # Fit the data.
187
+ >>> automl_obj.fit(admissions_train, "admitted")
188
+
189
+ # Run predict with best performing model.
190
+ >>> prediction = automl_obj.predict()
191
+ >>> prediction
192
+
193
+ # Run predict for new test data with best performing model.
194
+ >>> prediction = automl_obj.predict(admissions_test)
195
+ >>> prediction
196
+
197
+ # Run predict for new test data with second best performing model.
198
+ >>> prediction = automl_obj.predict(admissions_test, rank=2)
199
+ >>> prediction
200
+
201
+ # Display leaderboard.
202
+ >>> automl_obj.leaderboard()
203
+
204
+ # Display best performing model.
205
+ >>> automl_obj.leader()
206
+
207
+ # Example 2 : Run AutoML for regression problem.
208
+ # Scenario : Predict the price of house based on different factors.
209
+ # Run AutoML to get the best performing model using custom
210
+ # configuration file to customize different processes of
211
+ # AutoML Run. Use include to specify "xgbooost" and
212
+ # "decision_forset" models to be used for training.
213
+
214
+ # Generate custom JSON file
215
+ >>> AutoML.generate_custom_config("custom_housing")
216
+
217
+ # Create instance of AutoML.
218
+ >>> automl_obj = AutoML(task_type="Regression",
219
+ >>> verbose=1,
220
+ >>> include=["decision_forest", "xgboost"],
221
+ >>> custom_config_file="custom_housing.json")
222
+ # Fit the data.
223
+ >>> automl_obj.fit(housing_train, "price")
224
+
225
+ # Run predict with best performing model.
226
+ >>> prediction = automl_obj.predict()
227
+ >>> prediction
228
+
229
+ # Run predict for new test data with best performing model.
230
+ >>> prediction = automl_obj.predict(housing_test)
231
+ >>> prediction
232
+
233
+ # Run predict for new test data with second best performing model.
234
+ >>> prediction = automl_obj.predict(housing_test, rank=2)
235
+ >>> prediction
236
+
237
+ # Display leaderboard.
238
+ >>> automl_obj.leaderboard()
239
+
240
+ # Display best performing model.
241
+ >>> automl_obj.leader()
242
+
243
+ # Example 3 : Run AutoML for multiclass classification problem.
244
+ # Scenario : Predict the species of iris flower based on different
245
+ # factors. Use custom configuration file to customize
246
+ # different processes of AutoML Run to get the best
247
+ # performing model out of available models.
248
+
249
+ # Generate custom JSON file
250
+ >>> AutoML.generate_custom_config()
251
+
252
+ # Create instance of AutoML.
253
+ >>> automl_obj = AutoML(verbose=2,
254
+ >>> exclude="xgboost",
255
+ >>> custom_config_file="custom.json")
256
+ # Fit the data.
257
+ >>> automl_obj.fit(iris_input, iris_input.species)
258
+
259
+ # Run predict with best performing model.
260
+ >>> prediction = automl_obj.predict()
261
+ >>> prediction
262
+
263
+ # Run predict with second best performing model.
264
+ >>> prediction = automl_obj.predict(rank=2)
265
+ >>> prediction
266
+
267
+ # Display leaderboard.
268
+ >>> automl_obj.leaderboard()
269
+
270
+ # Display best performing model.
271
+ >>> automl_obj.leader()
272
+
273
+ # Example 4 : Run AutoML for regression problem with early stopping metric and tolerance.
274
+ # Scenario : Predict the price of house based on different factors.
275
+ # Use custom configuration file to customize different
276
+ # processes of AutoML Run. Define performance threshold
277
+ # to acquire for the available models, and terminate training
278
+ # upon meeting the stipulated performance criteria.
279
+
280
+ # Generate custom JSON file
281
+ >>> AutoML.generate_custom_config("custom_housing")
282
+
283
+ # Create instance of AutoML.
284
+ >>> automl_obj = AutoML(verbose=2,
285
+ >>> exclude="xgboost",
286
+ >>> stopping_metric="R2",
287
+ >>> stopping_tolerance=0.7,
288
+ >>> custom_config_file="custom_housing.json")
289
+ # Fit the data.
290
+ >>> automl_obj.fit(housing_train, "price")
291
+
292
+ # Run predict with best performing model.
293
+ >>> prediction = automl_obj.predict()
294
+ >>> prediction
295
+
296
+ # Display leaderboard.
297
+ >>> automl_obj.leaderboard()
298
+
299
+ # Example 5 : Run AutoML for regression problem with maximum runtime.
300
+ # Scenario : Predict the species of iris flower based on different factors.
301
+ # Run AutoML to get the best performing model in specified time.
302
+
303
+ # Create instance of AutoML.
304
+ >>> automl_obj = AutoML(verbose=2,
305
+ >>> exclude="xgboost",
306
+ >>> max_runtime_secs=500)
307
+ # Fit the data.
308
+ >>> automl_obj.fit(iris_input, iris_input.species)
309
+
310
+ # Run predict with best performing model.
311
+ >>> prediction = automl_obj.predict()
312
+ >>> prediction
313
+
314
+ # Run predict with second best performing model.
315
+ >>> prediction = automl_obj.predict(rank=2)
316
+ >>> prediction
317
+
318
+ # Display leaderboard.
319
+ >>> automl_obj.leaderboard()
320
+
321
+ # Display best performing model.
322
+ >>> automl_obj.leader()
323
+ """
324
+ # Appending arguments to list for validation
325
+ arg_info_matrix = []
326
+ arg_info_matrix.append(["task_type", task_type, True, (str), True, ["Regression", "Classification", "Default"]])
327
+ arg_info_matrix.append(["include", include, True, (str, list), True, ["glm", "svm", "knn",
328
+ "decision_forest", "xgboost"]])
329
+ arg_info_matrix.append(["exclude", exclude, True, (str, list), True, ["glm", "svm", "knn",
330
+ "decision_forest", "xgboost"]])
331
+ arg_info_matrix.append(["verbose", verbose, True, (int), True, [0,1,2]])
332
+ arg_info_matrix.append(["max_runtime_secs", max_runtime_secs, True, (int, float)])
333
+ arg_info_matrix.append(["stopping_metric", stopping_metric, True, (str), True, ["R2", 'MAE',
334
+ 'MSE', 'MSLE',
335
+ 'RMSE', 'RMSLE',
336
+ 'MICRO-F1','MACRO-F1',
337
+ 'MICRO-RECALL','MACRO-RECALL',
338
+ 'MICRO-PRECISION', 'MACRO-PRECISION',
339
+ 'WEIGHTED-PRECISION','WEIGHTED-RECALL',
340
+ 'WEIGHTED-F1', 'ACCURACY']])
341
+ arg_info_matrix.append(["stopping_tolerance", stopping_tolerance, True, (float, int)])
342
+ arg_info_matrix.append(["custom_config_file", custom_config_file, True, (str), True])
343
+
344
+
345
+ # Validate argument types
346
+ _Validators._validate_function_arguments(arg_info_matrix)
347
+ # Either include or exclude can be used.
348
+ if include is not None or exclude is not None:
349
+ _Validators._validate_mutually_exclusive_arguments(include, "include", exclude, "exclude")
350
+ # Validate mutually inclusive arguments
351
+ _Validators._validate_mutually_inclusive_arguments(stopping_metric, "stopping_metric", stopping_tolerance, "stopping_tolerance")
352
+
353
+ custom_data = None
354
+ self.auto = True
355
+ # Validate custom file
356
+ if custom_config_file:
357
+ # Performing validation
358
+ _Validators._validate_file_exists(custom_config_file)
359
+ _Validators._validate_file_extension(custom_config_file, "json")
360
+ _Validators._check_empty_file(custom_config_file)
361
+ # Setting auto to False
362
+ self.auto = False
363
+ # Loading file
364
+ with open(custom_config_file, 'r') as json_file:
365
+ custom_data = json.load(json_file)
366
+
367
+ # Initializing class variables
368
+ self.data = None
369
+ self.target_column = None
370
+ self.custom_data = custom_data
371
+ self.task_type = task_type
372
+ self.include_model = include
373
+ self.exclude_model = exclude
374
+ self.verbose = verbose
375
+ self.max_runtime_secs = max_runtime_secs
376
+ self.stopping_metric = stopping_metric
377
+ self.stopping_tolerance = stopping_tolerance
378
+ self.model_list = ['decision_forest', 'xgboost', 'knn', 'svm', 'glm']
379
+ self.is_classification_type = lambda: self.task_type.upper() == 'CLASSIFICATION'
380
+ self._is_fit_called = False
381
+
382
+ def fit(self,
383
+ data,
384
+ target_column):
385
+ """
386
+ DESCRIPTION:
387
+ Function triggers the AutoML run. It is designed to handle both
388
+ regression and classification tasks depending on the specified "task_type".
389
+
390
+ PARAMETERS:
391
+ data:
392
+ Required Argument.
393
+ Specifies the input teradataml DataFrame.
394
+ Types: teradataml Dataframe
395
+
396
+ target_column:
397
+ Required Arugment.
398
+ Specifies target column of dataset.
399
+ Types: str or ColumnExpression
400
+
401
+ RETURNS:
402
+ None
403
+
404
+ RAISES:
405
+ TeradataMlException, TypeError, ValueError
406
+
407
+ EXAMPLES:
408
+ # Create an instance of the AutoML called "automl_obj"
409
+ # by referring "AutoML() or AutoRegressor() or AutoClassifier()" method.
410
+ # Perform fit() operation on the "automl_obj".
411
+
412
+ # Example 1: Passing column expression for target column.
413
+ >>> automl_obj.fit(data = housing_train, target_col = housing_train.price)
414
+
415
+ # Example 2: Passing name of target column.
416
+ >>> automl_obj.fit(data = housing_train, target_col = "price")
417
+ """
418
+
419
+ self._is_fit_called = True
420
+ # Checking if target column is of type ColumnExpression
421
+ if isinstance(target_column, ColumnExpression):
422
+ target_column = target_column.name
423
+
424
+ # Appending fit arguments to list for validation
425
+ arg_info_fit_matrix = []
426
+ arg_info_fit_matrix.append(["data", data, False, (DataFrame), True])
427
+ arg_info_fit_matrix.append(["target_column", target_column, False, (str), True])
428
+
429
+ # Validate argument types
430
+ _Validators._validate_function_arguments(arg_info_fit_matrix)
431
+
432
+ # Initializing class variables
433
+ self.data = data
434
+ self.target_column = target_column
435
+
436
+ # Checking if include model list is present
437
+ if self.include_model:
438
+ # Converting to list if passed as string
439
+ self.include_model = UtilFuncs._as_list(self.include_model)
440
+ # Updating model list based on include list
441
+ self.model_list = list(set(self.include_model))
442
+ self.model_list = [model.lower() for model in self.model_list]
443
+
444
+ # Checking if exclude model list is present
445
+ if self.exclude_model:
446
+ # Converting to list if passed as string
447
+ self.exclude_model = UtilFuncs._as_list(self.exclude_model)
448
+ # Updating model list based on exclude list
449
+ self.model_list = list(set(self.model_list) - set(self.exclude_model))
450
+ self.model_list = [model.lower() for model in self.model_list]
451
+
452
+ # Checking if target column is present in data
453
+ _Validators._validate_dataframe_has_argument_columns(self.target_column, "target_column", self.data, "df")
454
+
455
+ # Handling default task type
456
+ if self.task_type.casefold() == "default":
457
+ # if target column is having distinct values less than or equal to 20,
458
+ # then it will be mapped to classification problem else regression problem
459
+ if self.data.drop_duplicate(self.target_column).size <= 20:
460
+ print("\nTask type is set to Classification as target column "
461
+ "is having distinct values less than or equal to 20.")
462
+ self.task_type = "Classification"
463
+ else:
464
+ print("\nTask type is set to Regression as target column is "
465
+ "having distinct values greater than 20.")
466
+ self.task_type = "Regression"
467
+
468
+ if self.is_classification_type():
469
+ if self.stopping_metric is not None:
470
+ permitted_values = ["MICRO-F1", "MACRO-F1",
471
+ "MICRO-RECALL", "MACRO-RECALL",
472
+ "MICRO-PRECISION", "MACRO-PRECISION",
473
+ "WEIGHTED-PRECISION", "WEIGHTED-RECALL",
474
+ "WEIGHTED-F1", "ACCURACY"]
475
+ _Validators._validate_permitted_values(self.stopping_metric, permitted_values, "stopping_metric")
476
+ else:
477
+ if self.stopping_metric is not None:
478
+ permitted_values = ["R2", 'MAE', 'MSE', 'MSLE','RMSE', 'RMSLE']
479
+ _Validators._validate_permitted_values(self.stopping_metric, permitted_values, "stopping_metric")
480
+
481
+ if not self.is_classification_type():
482
+ _Validators._validate_column_type(self.data, self.target_column, 'target_column',
483
+ expected_types=UtilFuncs()._get_numeric_datatypes())
484
+
485
+ # Displaying received custom input
486
+ if self.custom_data:
487
+ print("\n Received below input for customization : ")
488
+ print(json.dumps(self.custom_data, indent=4))
489
+
490
+ # Classification probelm
491
+ task_cls = _Classification
492
+ cls_method = "_classification"
493
+
494
+ # Regression problem
495
+ if self.task_type.casefold() == "regression":
496
+ task_cls = _Regression
497
+ cls_method = "_regression"
498
+
499
+ # Running AutoML
500
+ clf = task_cls(self.data, self.target_column, self.custom_data)
501
+
502
+ self.model_info, self.leader_board, self.target_count, self.target_label, \
503
+ self.data_transformation_params, self.table_name_mapping = getattr(clf, cls_method)(
504
+ model_list = self.model_list,
505
+ auto = self.auto,
506
+ verbose = self.verbose,
507
+ max_runtime_secs = self.max_runtime_secs,
508
+ stopping_metric = self.stopping_metric,
509
+ stopping_tolerance = self.stopping_tolerance
510
+ )
511
+ # Model Evaluation Phase
512
+ self.m_evaluator = _ModelEvaluator(self.model_info,
513
+ self.target_column,
514
+ self.task_type)
515
+
516
+ def predict(self,
517
+ data = None,
518
+ rank = 1):
519
+ """
520
+ DESCRIPTION:
521
+ Function generates prediction on either default test data or any other data
522
+ using model rank in leaderboard and displays performance metrics
523
+ of the specified model.
524
+
525
+ If test data contains target column, then it displays both prediction
526
+ and performance metrics, otherwise displays only prediction.
527
+
528
+ PARAMETERS:
529
+ data:
530
+ Optional Argument.
531
+ Specifies the dataset on which prediction and performance
532
+ metrices needs to be generated using model rank in leaderboard.
533
+ When "data" is not specified default test data is used. Default
534
+ test data is the dataset generated at the time of training.
535
+ Types: teradataml DataFrame
536
+
537
+ rank:
538
+ Optional Argument.
539
+ Specifies the rank of the model in the leaderboard to be used for prediction.
540
+ Default Value: 1
541
+ Types: int
542
+
543
+ RETURNS:
544
+ Pandas DataFrame with predictions.
545
+
546
+ RAISES:
547
+ TeradataMlException, TypeError, ValueError
548
+
549
+ EXAMPLES:
550
+ # Create an instance of the AutoML called "automl_obj"
551
+ # by referring "AutoML() or AutoRegressor() or AutoClassifier()" method.
552
+ # Perform fit() operation on the "automl_obj".
553
+ # Perform predict() operation on the "automl_obj".
554
+
555
+ # Example 1: Run predict with best performing model.
556
+ >>> prediction = automl_obj.predict()
557
+ >>> prediction
558
+
559
+ # Example 2: Run predict with second best performing model.
560
+ >>> prediction = automl_obj.predict(rank=2)
561
+ >>> prediction
562
+
563
+ # Example 3: Run predict for new test data with best performing model.
564
+ >>> prediction = automl_obj.predict(admissions_test)
565
+ >>> prediction
566
+
567
+ # Example 4: Run predict for new test data with second best performing model.
568
+ >>> prediction = automl_obj.predict(admissions_test, rank=2)
569
+ >>> prediction
570
+ """
571
+ if not self._is_fit_called:
572
+ # raise ValueError("fit() method must be called before generating prediction.")
573
+ err = Messages.get_message(MessageCodes.FUNC_EXECUTION_FAILED,
574
+ "'predict' method", \
575
+ "'fit' method must be called before" \
576
+ " running predict.")
577
+ raise TeradataMlException(err, MessageCodes.EXECUTION_FAILED)
578
+ # Appending predict arguments to list for validation.
579
+ arg_info_pred_matrix = []
580
+ arg_info_pred_matrix.append(["data", data, True, (DataFrame), True])
581
+ arg_info_pred_matrix.append(["rank", rank, True, (int), True])
582
+
583
+ # Validate argument types
584
+ _Validators._validate_function_arguments(arg_info_pred_matrix)
585
+
586
+ # Setting test data indicator to default value, i.e., False.
587
+ self.test_data_ind = False
588
+ # Setting target column indicator to default value, i.e., False.
589
+ self.target_column_ind = False
590
+ # Model Evaluation using rank-1 [rank starts from 0 in leaderboard]
591
+ rank = rank-1
592
+
593
+ # Checking if there is test data provided or not.
594
+ # If no, then model will generate predicion on default test data.
595
+ # If yes, then at first data transformation will happen then prediction will be generated.
596
+ if data is None:
597
+ metrics, pred = self.m_evaluator.model_evaluation(rank = rank,
598
+ table_name_mapping=self.table_name_mapping)
599
+ else:
600
+ # Setting test data indicator to True
601
+ self.test_data_ind = True
602
+ # Setting indicator to True if target column exists
603
+ if self.target_column in data.columns:
604
+ self.target_column_ind = True
605
+
606
+ # Data Transformation Phase
607
+ data_transform_instance = _DataTransformation(data = data,
608
+ data_transformation_params = \
609
+ self.data_transformation_params,
610
+ auto = self.auto,
611
+ verbose = self.verbose,
612
+ target_column_ind = self.target_column_ind,
613
+ table_name_mapping=self.table_name_mapping)
614
+
615
+ self.table_name_mapping = data_transform_instance.data_transformation()
616
+
617
+ # Checking for target column presence in passed test data.
618
+ # If present, then both prediction and evaluation metrics will be generated.
619
+ # If not present, then only prediction will be generated.
620
+ if self.target_column_ind:
621
+ metrics, pred = self.m_evaluator.model_evaluation(rank = rank,
622
+ test_data_ind = \
623
+ self.test_data_ind,
624
+ target_column_ind = \
625
+ self.target_column_ind,
626
+ table_name_mapping=self.table_name_mapping)
627
+ else:
628
+ pred = self.m_evaluator.model_evaluation(rank = rank,
629
+ test_data_ind = \
630
+ self.test_data_ind,
631
+ table_name_mapping=self.table_name_mapping)
632
+ # Checking if problem type is classification and target label is present.
633
+ if self.is_classification_type() and self.target_label is not None:
634
+ # Displaying target column labels
635
+ tar_dct = {}
636
+ print('Target Column Mapping:')
637
+ # Iterating rows
638
+ for row in self.target_label.result.itertuples():
639
+ # Retrieving the category names of encoded target column
640
+ # row[1] contains the orginal name of cateogry
641
+ # row[2] contains the encoded value
642
+ if row[1] != 'TD_CATEGORY_COUNT':
643
+ tar_dct[row[1]] = row[2]
644
+
645
+ for key, value in tar_dct.items():
646
+ print(f"{key}: {value}")
647
+
648
+ print("\n Prediction : ")
649
+ print(pred.result)
650
+
651
+ # Showing performance metrics if there is no test data
652
+ # Or if target column is present in test data.
653
+ if not self.test_data_ind or self.target_column_ind:
654
+ print("\n Performance Metrics : ")
655
+ print(metrics.result)
656
+
657
+ prediction_column = 'prediction' if 'prediction' in pred.result.columns else 'Prediction'
658
+
659
+ # Displaying confusion matrix and ROC-AUC for classification problem
660
+ if self.is_classification_type():
661
+ print_data = lambda data: print(data) if _is_terminal() else display(data)
662
+ # Displaying ROC-AUC for binary classification
663
+ if self.target_count == 2:
664
+ fit_params = {
665
+ "probability_column" : prediction_column,
666
+ "observation_column" : self.target_column,
667
+ "positive_class" : "1",
668
+ "data" : pred.result
669
+ }
670
+ # Fitting ROC
671
+ roc_out = ROC(**fit_params)
672
+ print("\n ROC-AUC : ")
673
+ print_data(roc_out.result)
674
+ print_data(roc_out.output_data)
675
+
676
+ # Displaying confusion matrix for binary and multiclass classification
677
+ prediction_df=pred.result.to_pandas()
678
+ target_col = self.target_column
679
+ print("\n Confusion Matrix : ")
680
+ print_data(confusion_matrix(prediction_df[target_col], prediction_df[prediction_column]))
681
+
682
+ # Returning prediction
683
+ return pred.result
684
+
685
+ def leaderboard(self):
686
+ """
687
+ DESCRIPTION:
688
+ Function displays leaderboard.
689
+
690
+ RETURNS:
691
+ Pandas DataFrame with Leaderboard information.
692
+
693
+ RAISES:
694
+ TeradataMlException.
695
+
696
+ EXAMPLES:
697
+ # Create an instance of the AutoML called "automl_obj"
698
+ # by referring "AutoML() or AutoRegressor() or AutoClassifier()" method.
699
+ # Perform fit() operation on the "automl_obj".
700
+ # Generate leaderboard using leaderboard() method on "automl_obj".
701
+ >>> automl_obj.leaderboard()
702
+ """
703
+ if not self._is_fit_called:
704
+ # raise ValueError("fit() method must be called before generating leaderboard.")
705
+ err = Messages.get_message(MessageCodes.FUNC_EXECUTION_FAILED,
706
+ "'leaderboard' method", \
707
+ "'fit' method must be called before" \
708
+ " generating leaderboard.")
709
+ raise TeradataMlException(err, MessageCodes.EXECUTION_FAILED)
710
+ return self.leader_board
711
+
712
+ def leader(self):
713
+ """
714
+ DESCRIPTION:
715
+ Function displays best performing model.
716
+
717
+ RETURNS:
718
+ None
719
+
720
+ RAISES:
721
+ TeradataMlException.
722
+
723
+ EXAMPLES:
724
+ # Create an instance of the AutoML called "automl_obj"
725
+ # by referring "AutoML() or AutoRegressor() or AutoClassifier()" method.
726
+ # Perform fit() operation on the "automl_obj".
727
+ # Generate leaderboard using leaderboard() method on "automl_obj".
728
+ # Display best performing model using leader() method on "automl_obj".
729
+ >>> automl_obj.leader()
730
+ """
731
+ if not self._is_fit_called:
732
+ # raise ValueError("fit() method must be called before generating leader.")
733
+ err = Messages.get_message(MessageCodes.FUNC_EXECUTION_FAILED,
734
+ "'leader' method", \
735
+ "'fit' method must be called before" \
736
+ " generating leader.")
737
+ raise TeradataMlException(err, MessageCodes.EXECUTION_FAILED)
738
+ record = self.leader_board
739
+ if not _is_terminal():
740
+ display(record[record['Rank'] == 1])
741
+ else:
742
+ print(record[record['Rank'] == 1])
743
+
744
+ @staticmethod
745
+ def generate_custom_config(file_name = "custom"):
746
+ """
747
+ DESCRIPTION:
748
+ Function generates custom JSON file containing user customized input under current
749
+ working directory which can be used for AutoML execution.
750
+
751
+ PARAMETERS:
752
+ file_name:
753
+ Optional Argument.
754
+ Specifies the name of the file to be generated. Do not pass the file name
755
+ with extension. Extension '.json' is automatically added to specified file name.
756
+ Default Value: "custom"
757
+ Types: str
758
+
759
+ RETURNS:
760
+ None
761
+
762
+ EXAMPLES:
763
+ # Import either of AutoML or AutoClassifier or AutoRegressor from teradataml.
764
+ # As per requirement, generate json file using generate_custom_config() method.
765
+
766
+ # Generate a default file named "custom.json" file using either of below options.
767
+ >>> AutoML.generate_custom_config()
768
+ or
769
+ >>> AutoClassifier.generate_custom_config()
770
+ or
771
+ >>> AutoRegressor.generate_custom_config()
772
+ # The above code will generate "custom.json" file under the current working directory.
773
+
774
+ # Generate different file name using "file_name" argument.
775
+ >>> AutoML.generate_custom_config("titanic_custom")
776
+ or
777
+ >>> AutoClassifier.generate_custom_config("titanic_custom")
778
+ or
779
+ >>> AutoRegressor.generate_custom_config("housing_custom")
780
+ # The above code will generate "titanic_custom.json" file under the current working directory.
781
+
782
+ """
783
+ # Intializing class
784
+ generator = _GenerateCustomJson()
785
+ # Generating custom JSON data
786
+ data = generator._generate_custom_json()
787
+ # Converting to JSON
788
+ custom_json = json.dumps(data, indent=4)
789
+ # Save JSON data to the specified file
790
+ json_file = f"{file_name}.json"
791
+ with open(json_file, 'w') as file:
792
+ file.write(custom_json)
793
+ print(f"\n'{json_file}' file is generated successfully under the current working directory.")
794
+
795
+
796
+ class _Regression(_FeatureExplore, _FeatureEngineering, _DataPreparation, _ModelTraining):
797
+
798
+ def __init__(self,
799
+ data,
800
+ target_column,
801
+ custom_data = None):
802
+ """
803
+ DESCRIPTION:
804
+ Function initializes the data, target column for Regression.
805
+
806
+ PARAMETERS:
807
+ data:
808
+ Required Argument.
809
+ Specifies the input teradataml Dataframe.
810
+ Types: teradataml Dataframe
811
+
812
+ target_column:
813
+ Required Arugment.
814
+ Specifies the name of the target column in "data".
815
+ Types: str
816
+
817
+ custom_data:
818
+ Optional Arugment.
819
+ Specifies json object containing user customized input.
820
+ Types: json object
821
+ """
822
+ self.data = data
823
+ self.target_column = target_column
824
+ self.custom_data = custom_data
825
+
826
+
827
+ def _regression(self,
828
+ model_list = None,
829
+ auto = False,
830
+ verbose = 0,
831
+ max_runtime_secs = None,
832
+ stopping_metric = None,
833
+ stopping_tolerance = None):
834
+ """
835
+ DESCRIPTION:
836
+ Interal Function runs Regression.
837
+
838
+ PARAMETERS:
839
+ auto:
840
+ Optional Arugment.
841
+ Specifies whether to run AutoML in custom mode or auto mode.
842
+ When set to False, runs in custom mode. Otherwise, by default runs in auto mode.
843
+ Types: bool
844
+
845
+ verbose:
846
+ Optional Argument.
847
+ Specifies the detailed execution steps based on verbose level.
848
+ Default Value: 0
849
+ Permitted Values:
850
+ * 0: prints the progress bar and leaderboard
851
+ * 1: prints the execution steps of AutoML.
852
+ * 2: prints the intermediate data between the execution of each step of AutoML.
853
+ Types: int
854
+
855
+ max_runtime_secs:
856
+ Optional Arugment.
857
+ Specifies the time limit in seconds for model training.
858
+ Types: int
859
+
860
+ stopping_metric:
861
+ Required, when "stopping_tolerance" is set, otherwise optional.
862
+ Specifies the stopping mertics for stopping tolerance in model training.
863
+ Types: str
864
+
865
+ stopping_tolerance:
866
+ Required, when "stopping_metric" is set, otherwise optional.
867
+ Specifies the stopping tolerance for stopping metrics in model training.
868
+ Types: float
869
+
870
+ RETURNS:
871
+ a tuple containing, model information and leaderboard.
872
+ """
873
+ # Feature Exploration Phase
874
+ _FeatureExplore.__init__(self,
875
+ data = self.data,
876
+ target_column = self.target_column,
877
+ verbose=verbose)
878
+ if verbose > 0:
879
+ self._exploration()
880
+ # Feature Engineering Phase
881
+ _FeatureEngineering.__init__(self,
882
+ data = self.data,
883
+ target_column = self.target_column,
884
+ model_list = model_list,
885
+ verbose = verbose,
886
+ custom_data = self.custom_data)
887
+ # Start time
888
+ start_time = time.time()
889
+ data, excluded_columns, target_label, data_transformation_params = self.feature_engineering(auto)
890
+
891
+ # Data preparation Phase
892
+ _DataPreparation.__init__(self,
893
+ data = self.data,
894
+ target_column = self.target_column,
895
+ verbose = verbose,
896
+ excluded_columns = excluded_columns,
897
+ custom_data = self.custom_data,
898
+ data_transform_dict = data_transformation_params)
899
+ features, data_transformation_params = self.data_preparation(auto)
900
+
901
+ # Calculating max_runtime_secs for model training by,
902
+ # subtracting the time taken for feature engineering and data preparation
903
+ max_runtime_secs = max_runtime_secs - (time.time() - start_time) \
904
+ if max_runtime_secs is not None else None
905
+
906
+ # Setting max_runtime_secs to 60 seconds if it is less than 0
907
+ max_runtime_secs = 60 if max_runtime_secs is not None and \
908
+ max_runtime_secs < 0 else max_runtime_secs
909
+
910
+ # Model Training
911
+ _ModelTraining.__init__(self,
912
+ data = self.data,
913
+ target_column = self.target_column,
914
+ model_list = model_list,
915
+ verbose = verbose,
916
+ features = features,
917
+ task_type = "Regression",
918
+ custom_data = self.custom_data)
919
+ models_info, leaderboard, target_count = self.model_training(auto = auto,
920
+ max_runtime_secs = max_runtime_secs,
921
+ stopping_metric = stopping_metric,
922
+ stopping_tolerance = stopping_tolerance)
923
+
924
+ return (models_info, leaderboard, target_count, target_label, data_transformation_params, self.table_name_mapping)
925
+
926
+ class _Classification(_FeatureExplore, _FeatureEngineering, _DataPreparation, _ModelTraining):
927
+
928
+ def __init__(self,
929
+ data,
930
+ target_column,
931
+ custom_data = None):
932
+ """
933
+ DESCRIPTION:
934
+ Function initializes the data, target column for Classification.
935
+
936
+ PARAMETERS:
937
+ data:
938
+ Required Argument.
939
+ Specifies the input teradataml Dataframe.
940
+ Types: teradataml Dataframe
941
+
942
+ target_column:
943
+ Required Arugment.
944
+ Specifies the name of the target column in "data".
945
+ Types: str
946
+
947
+ custom_data:
948
+ Optional Arugment.
949
+ Specifies json object containing user customized input.
950
+ Types: json object
951
+ """
952
+ self.data = data
953
+ self.target_column = target_column
954
+ self.custom_data = custom_data
955
+
956
+ def _classification(self,
957
+ model_list = None,
958
+ auto = False,
959
+ verbose = 0,
960
+ max_runtime_secs = None,
961
+ stopping_metric = None,
962
+ stopping_tolerance = None):
963
+ """
964
+ DESCRIPTION:
965
+ Interal Function runs Classification.
966
+
967
+ PARAMETERS:
968
+ auto:
969
+ Optional Arugment.
970
+ Specifies whether to run AutoML in custom mode or auto mode.
971
+ When set to False, runs in custom mode. Otherwise, by default runs in auto mode.
972
+ Types: bool
973
+
974
+ verbose:
975
+ Optional Argument.
976
+ Specifies the detailed execution steps based on verbose level.
977
+ Default Value: 0
978
+ Permitted Values:
979
+ * 0: prints the progress bar and leaderboard
980
+ * 1: prints the execution steps of AutoML.
981
+ * 2: prints the intermediate data between the execution of each step of AutoML.
982
+ Types: int
983
+
984
+ max_runtime_secs:
985
+ Optional Arugment.
986
+ Specifies the time limit in seconds for model training.
987
+ Types: int
988
+
989
+ stopping_metric:
990
+ Required, when "stopping_tolerance" is set, otherwise optional.
991
+ Specifies the stopping mertics for stopping tolerance in model training.
992
+ Types: str
993
+
994
+ stopping_tolerance:
995
+ Required, when "stopping_metric" is set, otherwise optional.
996
+ Specifies the stopping tolerance for stopping metrics in model training.
997
+ Types: float
998
+
999
+ RETURNS:
1000
+ a tuple containing, model information and leaderboard.
1001
+ """
1002
+
1003
+
1004
+ # Feature Exploration Phase
1005
+ _FeatureExplore.__init__(self,
1006
+ data = self.data,
1007
+ target_column = self.target_column,
1008
+ verbose=verbose)
1009
+ if verbose > 0:
1010
+ self._exploration()
1011
+ # Feature Engineeting Phase
1012
+ _FeatureEngineering.__init__(self,
1013
+ data = self.data,
1014
+ target_column = self.target_column,
1015
+ model_list = model_list,
1016
+ verbose = verbose,
1017
+ task_type = "Classification",
1018
+ custom_data = self.custom_data)
1019
+ # Start time
1020
+ start_time = time.time()
1021
+ data, excluded_columns, target_label, data_transformation_params = self.feature_engineering(auto)
1022
+ # Data Preparation Phase
1023
+ _DataPreparation.__init__(self,
1024
+ data = self.data,
1025
+ target_column = self.target_column,
1026
+ verbose = verbose,
1027
+ excluded_columns = excluded_columns,
1028
+ custom_data = self.custom_data,
1029
+ data_transform_dict = data_transformation_params,
1030
+ task_type = "Classification")
1031
+ features, data_transformation_params = self.data_preparation(auto)
1032
+
1033
+ # Calculating max_runtime_secs for model training by,
1034
+ # subtracting the time taken for feature engineering and data preparation
1035
+ max_runtime_secs = max_runtime_secs - (time.time() - start_time) \
1036
+ if max_runtime_secs is not None else None
1037
+
1038
+ # Setting max_runtime_secs to 60 seconds if it is less than 0
1039
+ max_runtime_secs = 60 if max_runtime_secs is not None and \
1040
+ max_runtime_secs < 0 else max_runtime_secs
1041
+
1042
+ # Model training
1043
+ _ModelTraining.__init__(self,
1044
+ data = self.data,
1045
+ target_column = self.target_column,
1046
+ model_list = model_list,
1047
+ verbose = verbose,
1048
+ features = features,
1049
+ task_type = "Classification",
1050
+ custom_data = self.custom_data)
1051
+ models_info, leaderboard, target_count = self.model_training(auto = auto,
1052
+ max_runtime_secs = max_runtime_secs,
1053
+ stopping_metric = stopping_metric,
1054
+ stopping_tolerance = stopping_tolerance)
1055
+
1056
+ return (models_info, leaderboard, target_count, target_label, data_transformation_params, self.table_name_mapping)
1057
+
1058
+ def _target_column_details(self):
1059
+ """
1060
+ DESCRIPTION:
1061
+ Internal function displays the target column distribution of Target column/ Response column.
1062
+ """
1063
+ # If data visualization libraries are available
1064
+ if self._check_visualization_libraries() and not _is_terminal():
1065
+ import matplotlib.pyplot as plt
1066
+ import seaborn as sns
1067
+ self._display_msg(msg='\nTarget Column Distribution:',
1068
+ show_data=True)
1069
+ plt.figure(figsize=(6, 6))
1070
+ # Ploting a histogram for target column
1071
+ sns.countplot(data=self.data.select([self.target_column]).to_pandas(), x=self.target_column)
1072
+ plt.show()
1073
+
1074
+ def _check_data_imbalance(self,
1075
+ data=None):
1076
+ """
1077
+ DESCRIPTION:
1078
+ Internal function calculate and checks the imbalance in dataset.
1079
+
1080
+ PARAMETERS:
1081
+ data:
1082
+ Required Argument.
1083
+ Specifies the input teradataml DataFrame.
1084
+ Types: teradataml Dataframe
1085
+
1086
+ RETURNS:
1087
+ bool, True if imbalance dataset detected, Otherwise False.
1088
+ """
1089
+ self._display_msg(msg="\nChecking imbalance data ...",
1090
+ progress_bar=self.progress_bar)
1091
+ # Calculate the distribution of classes in the target column
1092
+ class_dist = data[self.target_column].value_counts().values
1093
+
1094
+ # Find the minimum count of data points among the classes
1095
+ min_ct = np.min(class_dist)
1096
+
1097
+ # Find the maximum count of data points among the classes
1098
+ max_ct = np.max(class_dist)
1099
+
1100
+ # Calculate the imbalance ratio(minimum count to maximum count)
1101
+ imb_ratio = min_ct / max_ct
1102
+
1103
+ # Check if the imbalance ratio less than the threshold of 0.4
1104
+ if imb_ratio < 0.4:
1105
+ self._display_msg(msg="Imbalance Found.",
1106
+ progress_bar=self.progress_bar)
1107
+ return True
1108
+
1109
+ self._display_msg(msg="Imbalance Not Found.",
1110
+ progress_bar=self.progress_bar)
1111
+ return False
1112
+
1113
+ def _set_custom_sampling(self):
1114
+ """
1115
+ DESCRIPTION:
1116
+ Function to handle customized data sampling for imbalance dataset.
1117
+ """
1118
+ # Fetching user input for data sampling
1119
+ data_imbalance_input = self.custom_data.get("DataImbalanceIndicator", False)
1120
+ if data_imbalance_input:
1121
+ # Extracting method for performing data sampling
1122
+ handling_method = self.custom_data.get("DataImbalanceMethod", None)
1123
+ if handling_method == 'SMOTE':
1124
+ self._data_sampling_method = "SMOTE"
1125
+ elif handling_method == 'NearMiss':
1126
+ self._data_sampling_method = "NearMiss"
1127
+ else:
1128
+ self._display_msg(inline_msg="Provided method for data imbalance is not supported. AutoML will Proceed with default option.",
1129
+ progress_bar=self.progress_bar)
1130
+ else:
1131
+ self._display_msg(inline_msg="No information provided for performing customized imbalanced dataset sampling. AutoML will Proceed with default option.",
1132
+ progress_bar=self.progress_bar)
1133
+
1134
+ def _data_sampling(self,
1135
+ data):
1136
+ """
1137
+ DESCRIPTION:
1138
+ Function to handle data imbalance in dataset using sampling techniques
1139
+ in case of classification.
1140
+
1141
+ PARAMETERS:
1142
+ data:
1143
+ Required Argument.
1144
+ Specifies the input teradataml DataFrame.
1145
+ Types: pandas Dataframe.
1146
+
1147
+ RETURNS:
1148
+ Teradataml dataframe after handling data imbalance.
1149
+ """
1150
+ self._display_msg(msg="\nStarting data imbalance handling ...",
1151
+ progress_bar=self.progress_bar,
1152
+ show_data=True)
1153
+
1154
+ # Importing required libraries
1155
+ from imblearn.over_sampling import SMOTE
1156
+ from imblearn.under_sampling import NearMiss
1157
+
1158
+ st = time.time()
1159
+ self._display_msg(msg=f"\nBalancing the data using {self._data_sampling_method}...",
1160
+ progress_bar=self.progress_bar,
1161
+ show_data=True)
1162
+ # Performing data sampling
1163
+ try:
1164
+ # Fetching the minimum target column label count and
1165
+ # accordingly setting the number of neighbors for the sampler
1166
+ min_label_count = min(data[self.target_column].value_counts())
1167
+ if self._data_sampling_method == 'SMOTE':
1168
+ n_neighbors = min(5, min_label_count - 1)
1169
+ sampling_method = SMOTE(k_neighbors=n_neighbors, random_state=5)
1170
+ else:
1171
+ n_neighbors = min(3, min_label_count)
1172
+ sampling_method = NearMiss(version=1, n_neighbors=n_neighbors)
1173
+
1174
+ # Fitting on dataset
1175
+ xt, yt = sampling_method.fit_resample(data.drop(columns=[self.target_column], axis=1),
1176
+ data[self.target_column])
1177
+
1178
+ # Merging the balanced dataset with target column
1179
+ balanced_df = (xt.reset_index().merge(yt.reset_index(), on="index"))
1180
+ balanced_df.drop(columns=['index', 'id'], axis=1, inplace=True)
1181
+ balanced_df = balanced_df.reset_index().rename(columns={'index': 'id'})
1182
+
1183
+ et = time.time()
1184
+ self._display_msg(msg=f"Handled imbalanced dataset using {self._data_sampling_method}: {et - st:.2f} sec",
1185
+ progress_bar=self.progress_bar,
1186
+ show_data=True)
1187
+ except:
1188
+ self._display_msg(msg=f"Balancing using {self._data_sampling_method} Failed!!",
1189
+ progress_bar=self.progress_bar,
1190
+ show_data=True)
1191
+ # Returning original data if the data sampler fails
1192
+ return data
1193
+
1194
+ self._display_msg(msg="Completed data imbalance handling.",
1195
+ progress_bar=self.progress_bar,
1196
+ show_data=True)
1197
+ # Returning balanced dataframe
1198
+ return balanced_df
1199
+
1200
+ class AutoRegressor(AutoML):
1201
+
1202
+ def __init__(self,
1203
+ include = None,
1204
+ exclude = None,
1205
+ verbose=0,
1206
+ max_runtime_secs=None,
1207
+ stopping_metric=None,
1208
+ stopping_tolerance=None,
1209
+ custom_config_file=None
1210
+ ):
1211
+ """
1212
+ DESCRIPTION:
1213
+ AutoRegressor is a special purpose AutoML feature to run regression specific tasks.
1214
+
1215
+ PARAMETERS:
1216
+ include:
1217
+ Optional Argument.
1218
+ Specifies the model algorithms to be used for model training phase.
1219
+ By default, all 5 models are used for training for regression and binary
1220
+ classification problem, while only 3 models are used for multi-class.
1221
+ Permitted Values: "glm", "svm", "knn", "decision_forest", "xgboost"
1222
+ Types: str OR list of str
1223
+
1224
+ exclude:
1225
+ Optional Argument.
1226
+ Specifies the model algorithms to be excluded from model training phase.
1227
+ No model is excluded by default.
1228
+ Permitted Values: "glm", "svm", "knn", "decision_forest", "xgboost"
1229
+ Types: str OR list of str
1230
+
1231
+ verbose:
1232
+ Optional Argument.
1233
+ Specifies the detailed execution steps based on verbose level.
1234
+ Default Value: 0
1235
+ Permitted Values:
1236
+ * 0: prints the progress bar and leaderboard
1237
+ * 1: prints the execution steps of AutoML.
1238
+ * 2: prints the intermediate data between the execution of each step of AutoML.
1239
+ Types: int
1240
+
1241
+ max_runtime_secs:
1242
+ Optional Arugment.
1243
+ Specifies the time limit in seconds for model training.
1244
+ Types: int
1245
+
1246
+ stopping_metric:
1247
+ Required, when "stopping_tolerance" is set, otherwise optional.
1248
+ Specifies the stopping mertics for stopping tolerance in model training.
1249
+ Permitted Values:
1250
+ * For task_type "Regression": "R2", "MAE", "MSE", "MSLE",
1251
+ "RMSE", "RMSLE"
1252
+ * For task_type "Classification": 'MICRO-F1','MACRO-F1',
1253
+ 'MICRO-RECALL','MACRO-RECALL',
1254
+ 'MICRO-PRECISION', 'MACRO-PRECISION',
1255
+ 'WEIGHTED-PRECISION','WEIGHTED-RECALL',
1256
+ 'WEIGHTED-F1', 'ACCURACY'
1257
+ Types: str
1258
+
1259
+ stopping_tolerance:
1260
+ Required, when "stopping_metric" is set, otherwise optional.
1261
+ Specifies the stopping tolerance for stopping metrics in model training.
1262
+ Types: float
1263
+
1264
+ custom_config_file:
1265
+ Optional Argument.
1266
+ Specifies the path of JSON file in case of custom run.
1267
+ Types: str
1268
+
1269
+ RETURNS:
1270
+ Instance of AutoRegressor.
1271
+
1272
+ RAISES:
1273
+ TeradataMlException, TypeError, ValueError
1274
+
1275
+ EXAMPLES:
1276
+ # Notes:
1277
+ # 1. Get the connection to Vantage to execute the function.
1278
+ # 2. One must import the required functions mentioned in
1279
+ # the example from teradataml.
1280
+ # 3. Function will raise error if not supported on the Vantage
1281
+ # user is connected to.
1282
+
1283
+ # Load the example data.
1284
+ >>> load_example_data("decisionforestpredict", ["housing_train", "housing_test"])
1285
+
1286
+ # Create teradataml DataFrame object.
1287
+ >>> housing_train = DataFrame.from_table("housing_train")
1288
+
1289
+ # Example 1 : Run AutoRegressor using default options.
1290
+ # Scenario : Predict the price of house based on different factors.
1291
+
1292
+ # Create instance of AutoRegressor.
1293
+ >>> automl_obj = AutoRegressor()
1294
+
1295
+ # Fit the data.
1296
+ >>> automl_obj.fit(housing_train, "price")
1297
+
1298
+ # Predict using best performing model.
1299
+ >>> prediction = automl_obj.predict()
1300
+ >>> prediction
1301
+
1302
+ # Run predict for new test data with best performing model.
1303
+ >>> prediction = automl_obj.predict(housing_test)
1304
+ >>> prediction
1305
+
1306
+ # Run predict for new test data with second best performing model.
1307
+ >>> prediction = automl_obj.predict(housing_test, rank=2)
1308
+ >>> prediction
1309
+
1310
+ # Display leaderboard.
1311
+ >>> automl_obj.leaderboard()
1312
+
1313
+ # Display best performing model.
1314
+ >>> automl_obj.leader()
1315
+
1316
+ # Example 2 : Run AutoRegressor for regression problem with early stopping metric and tolerance.
1317
+ # Scenario : Predict the price of house based on different factors.
1318
+ # Use custom configuration file to customize different
1319
+ # processes of AutoML Run. Define performance threshold
1320
+ # to acquire for the available models, and terminate training
1321
+ # upon meeting the stipulated performance criteria.
1322
+
1323
+ # Generate custom configuration file.
1324
+ >>> AutoRegressor.generate_custom_config("custom_housing")
1325
+
1326
+ # Create instance of AutoRegressor.
1327
+ >>> automl_obj = AutoRegressor(verbose=2,
1328
+ >>> exclude="xgboost",
1329
+ >>> stopping_metric="R2",
1330
+ >>> stopping_tolerance=0.7,
1331
+ >>> custom_config_file="custom_housing.json")
1332
+ # Fit the data.
1333
+ >>> automl_obj.fit(housing_train, "price")
1334
+
1335
+ # Run predict with best performing model.
1336
+ >>> prediction = automl_obj.predict()
1337
+ >>> prediction
1338
+
1339
+ # Display leaderboard.
1340
+ >>> automl_obj.leaderboard()
1341
+
1342
+ # Example 3 : Run AutoRegressor for regression problem with maximum runtime.
1343
+ # Scenario : Predict the price of house based on different factors.
1344
+ # Run AutoML to get the best performing model in specified time.
1345
+
1346
+ # Create instance of AutoRegressor.
1347
+ >>> automl_obj = AutoRegressor(verbose=2,
1348
+ >>> exclude="xgboost",
1349
+ >>> max_runtime_secs=500)
1350
+ # Fit the data.
1351
+ >>> automl_obj.fit(housing_train, "price")
1352
+
1353
+ # Run predict with best performing model.
1354
+ >>> prediction = automl_obj.predict()
1355
+ >>> prediction
1356
+
1357
+ # Run predict with second best performing model.
1358
+ >>> prediction = automl_obj.predict(rank=2)
1359
+ >>> prediction
1360
+
1361
+ # Display leaderboard.
1362
+ >>> automl_obj.leaderboard()
1363
+
1364
+ # Display best performing model.
1365
+ >>> automl_obj.leader()
1366
+ """
1367
+ self.verbose = verbose
1368
+ self.max_runtime_secs = max_runtime_secs
1369
+ self.stopping_metric = stopping_metric
1370
+ self.stopping_tolerance = stopping_tolerance
1371
+ self.custom_config_file = custom_config_file
1372
+ self.task_type = "Regression"
1373
+ self.include = include
1374
+ self.exclude = exclude
1375
+
1376
+ super(AutoRegressor, self).__init__(task_type=self.task_type,
1377
+ include = self.include,
1378
+ exclude = self.exclude,
1379
+ verbose=self.verbose,
1380
+ max_runtime_secs=self.max_runtime_secs,
1381
+ stopping_metric=self.stopping_metric,
1382
+ stopping_tolerance=self.stopping_tolerance,
1383
+ custom_config_file=self.custom_config_file)
1384
+ class AutoClassifier(AutoML):
1385
+
1386
+ def __init__(self,
1387
+ include = None,
1388
+ exclude = None,
1389
+ verbose=0,
1390
+ max_runtime_secs=None,
1391
+ stopping_metric=None,
1392
+ stopping_tolerance=None,
1393
+ custom_config_file=None
1394
+ ):
1395
+ """
1396
+ DESCRIPTION:
1397
+ AutoClassifier is a special purpose AutoML feature to run classification specific tasks.
1398
+
1399
+ PARAMETERS:
1400
+ include:
1401
+ Optional Argument.
1402
+ Specifies the model algorithms to be used for model training phase.
1403
+ By default, all 5 models are used for training for regression and binary
1404
+ classification problem, while only 3 models are used for multi-class.
1405
+ Permitted Values: "glm", "svm", "knn", "decision_forest", "xgboost"
1406
+ Types: str OR list of str
1407
+
1408
+ exclude:
1409
+ Optional Argument.
1410
+ Specifies the model algorithms to be excluded from model training phase.
1411
+ No model is excluded by default.
1412
+ Permitted Values: "glm", "svm", "knn", "decision_forest", "xgboost"
1413
+ Types: str OR list of str
1414
+
1415
+ verbose:
1416
+ Optional Argument.
1417
+ Specifies the detailed execution steps based on verbose level.
1418
+ Default Value: 0
1419
+ Permitted Values:
1420
+ * 0: prints the progress bar and leaderboard
1421
+ * 1: prints the execution steps of AutoML.
1422
+ * 2: prints the intermediate data between the execution of each step of AutoML.
1423
+ Types: int
1424
+
1425
+ max_runtime_secs:
1426
+ Optional Arugment.
1427
+ Specifies the time limit in seconds for model training.
1428
+ Types: int
1429
+
1430
+ stopping_metric:
1431
+ Required, when "stopping_tolerance" is set, otherwise optional.
1432
+ Specifies the stopping mertics for stopping tolerance in model training.
1433
+ Types: str
1434
+
1435
+ stopping_tolerance:
1436
+ Required, when "stopping_metric" is set, otherwise optional.
1437
+ Specifies the stopping tolerance for stopping metrics in model training.
1438
+ Permitted Values:
1439
+ * For task_type "Regression": "R2", "MAE", "MSE", "MSLE",
1440
+ "RMSE", "RMSLE"
1441
+ * For task_type "Classification": 'MICRO-F1','MACRO-F1',
1442
+ 'MICRO-RECALL','MACRO-RECALL',
1443
+ 'MICRO-PRECISION', 'MACRO-PRECISION',
1444
+ 'WEIGHTED-PRECISION','WEIGHTED-RECALL',
1445
+ 'WEIGHTED-F1', 'ACCURACY'
1446
+ Types: float
1447
+
1448
+ custom_config_file:
1449
+ Optional Argument.
1450
+ Specifies the path of json file in case of custom run.
1451
+ Types: str
1452
+
1453
+ RETURNS:
1454
+ Instance of AutoClassifier.
1455
+
1456
+ RAISES:
1457
+ TeradataMlException, TypeError, ValueError
1458
+
1459
+ EXAMPLES:
1460
+ # Notes:
1461
+ # 1. Get the connection to Vantage to execute the function.
1462
+ # 2. One must import the required functions mentioned in
1463
+ # the example from teradataml.
1464
+ # 3. Function will raise error if not supported on the Vantage
1465
+ # user is connected to.
1466
+
1467
+ # Load the example data.
1468
+ >>> load_example_data("teradataml", ["titanic", "iris_input"])
1469
+ >>> load_example_data("GLMPredict", ["admissions_test", "admissions_train"])
1470
+
1471
+ # Create teradataml DataFrame object.
1472
+ >>> admissions_train = DataFrame.from_table("admissions_train")
1473
+ >>> titanic = DataFrame.from_table("titanic")
1474
+ >>> iris_input = DataFrame.from_table("iris_input")
1475
+ >>> admissions_test = DataFrame.from_table("admissions_test")
1476
+
1477
+ # Example 1 : Run AutoClassifier for binary classification problem
1478
+ # Scenario : Predict whether a student will be admitted to a university
1479
+ # based on different factors. Run AutoML to get the best performing model
1480
+ # out of available models.
1481
+
1482
+ # Create instance of AutoClassifier..
1483
+ >>> automl_obj = AutoClassifier()
1484
+
1485
+ # Fit the data.
1486
+ >>> automl_obj.fit(admissions_train, "admitted")
1487
+
1488
+ # Predict using best performing model.
1489
+ >>> prediction = automl_obj.predict()
1490
+ >>> prediction
1491
+
1492
+ # Run predict for new test data with best performing model.
1493
+ >>> prediction = automl_obj.predict(admissions_test)
1494
+ >>> prediction
1495
+
1496
+ # Run predict for new test data with second best performing model.
1497
+ >>> prediction = automl_obj.predict(admissions_test, rank=2)
1498
+ >>> prediction
1499
+
1500
+ # Display leaderboard.
1501
+ >>> automl_obj.leaderboard()
1502
+
1503
+ # Display best performing model.
1504
+ >>> automl_obj.leader()
1505
+
1506
+ # Example 2 : Run AutoClassifier for binary classification.
1507
+ # Scenario : Predict whether passenger aboard the RMS Titanic survived
1508
+ # or not based on differect factors. Run AutoML to get the
1509
+ # best performing model out of available models. Use custom
1510
+ # configuration file to customize different processes of
1511
+ # AutoML Run.
1512
+
1513
+ # Generate custom configuration file.
1514
+ >>> AutoClassifier.generate_custom_config("custom_titanic")
1515
+
1516
+ # Create instance of AutoClassifier.
1517
+ >>> automl_obj = AutoClassifier(verbose=2,
1518
+ >>> custom_config_file="custom_titanic.json")
1519
+ # Fit the data.
1520
+ >>> automl_obj.fit(titanic, titanic.survived)
1521
+
1522
+ # Run predict with best performing model.
1523
+ >>> prediction = automl_obj.predict()
1524
+ >>> prediction
1525
+
1526
+ # Run predict with second best performing model.
1527
+ >>> prediction = automl_obj.predict(rank=2)
1528
+ >>> prediction
1529
+
1530
+ # Display leaderboard.
1531
+ >>> automl_obj.leaderboard()
1532
+
1533
+ # Display best performing model.
1534
+ >>> automl_obj.leader()
1535
+
1536
+ # Example 3 : Run AutoClassifier for multiclass classification problem.
1537
+ # Scenario : Predict the species of iris flower based on different factors.
1538
+ # Run AutoML to get the best performing model out of available
1539
+ # models. Use custom configuration file to customize different
1540
+ # processes of AutoML Run.
1541
+
1542
+ # Generate custom configuration file.
1543
+ >>> AutoClassifier.generate_custom_config("custom_iris")
1544
+
1545
+ # Create instance of AutoClassifier.
1546
+ >>> automl_obj = AutoClassifier(verbose=1,
1547
+ >>> custom_config_file="custom_iris.json")
1548
+ # Fit the data.
1549
+ >>> automl_obj.fit(iris_input, "species")
1550
+
1551
+ # Predict using best performing model.
1552
+ >>> prediction = automl_obj.predict()
1553
+ >>> prediction
1554
+
1555
+ # Display leaderboard.
1556
+ >>> automl_obj.leaderboard()
1557
+
1558
+ # Display best performing model.
1559
+ >>> automl_obj.leader()
1560
+
1561
+ # Example 4 : Run AutoClassifier for classification problem with stopping metric and tolerance.
1562
+ # Scenario : Predict whether passenger aboard the RMS Titanic survived
1563
+ # or not based on differect factors. Use custom configuration
1564
+ # file to customize different processes of AutoML Run. Define
1565
+ # performance threshold to acquire for the available models, and
1566
+ # terminate training upon meeting the stipulated performance criteria.
1567
+
1568
+ # Generate custom configuration file.
1569
+ >>> AutoClassifier.generate_custom_config("custom_titanic")
1570
+
1571
+ # Create instance of AutoClassifier.
1572
+ >>> automl_obj = AutoClassifier(verbose=2,
1573
+ >>> exclude="xgboost",
1574
+ >>> stopping_metric="MICRO-F1",
1575
+ >>> stopping_tolerance=0.7,
1576
+ >>> custom_config_file="custom_titanic.json")
1577
+ # Fit the data.
1578
+ >>> automl_obj.fit(titanic, titanic.survived)
1579
+
1580
+ # Run predict with best performing model.
1581
+ >>> prediction = automl_obj.predict()
1582
+ >>> prediction
1583
+
1584
+ # Display leaderboard.
1585
+ >>> automl_obj.leaderboard()
1586
+
1587
+ # Example 5 : Run AutoClassifier for classification problem with maximum runtime.
1588
+ # Scenario : Predict the species of iris flower based on different factors.
1589
+ # Run AutoML to get the best performing model in specified time.
1590
+
1591
+ # Create instance of AutoClassifier.
1592
+ >>> automl_obj = AutoClassifier(verbose=2,
1593
+ >>> exclude="xgboost",
1594
+ >>> max_runtime_secs=500)
1595
+ # Fit the data.
1596
+ >>> automl_obj.fit(iris_input, iris_input.species)
1597
+
1598
+ # Run predict with best performing model.
1599
+ >>> prediction = automl_obj.predict()
1600
+ >>> prediction
1601
+
1602
+ # Run predict with second best performing model.
1603
+ >>> prediction = automl_obj.predict(rank=2)
1604
+ >>> prediction
1605
+
1606
+ # Display leaderboard.
1607
+ >>> automl_obj.leaderboard()
1608
+
1609
+ # Display best performing model.
1610
+ >>> automl_obj.leader()
1611
+ """
1612
+ self.verbose = verbose
1613
+ self.max_runtime_secs = max_runtime_secs
1614
+ self.stopping_metric = stopping_metric
1615
+ self.stopping_tolerance = stopping_tolerance
1616
+ self.custom_config_file = custom_config_file
1617
+ self.task_type = "Classification"
1618
+ self.include = include
1619
+ self.exclude = exclude
1620
+
1621
+ super(AutoClassifier, self).__init__(task_type=self.task_type,
1622
+ include = self.include,
1623
+ exclude = self.exclude,
1624
+ verbose=self.verbose,
1625
+ max_runtime_secs=self.max_runtime_secs,
1626
+ stopping_metric=self.stopping_metric,
1627
+ stopping_tolerance=self.stopping_tolerance,
1628
+ custom_config_file=self.custom_config_file)