teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +1864 -1640
- teradataml/__init__.py +70 -60
- teradataml/_version.py +11 -11
- teradataml/analytics/Transformations.py +2995 -2995
- teradataml/analytics/__init__.py +81 -83
- teradataml/analytics/analytic_function_executor.py +2013 -2010
- teradataml/analytics/analytic_query_generator.py +958 -958
- teradataml/analytics/byom/H2OPredict.py +514 -514
- teradataml/analytics/byom/PMMLPredict.py +437 -437
- teradataml/analytics/byom/__init__.py +14 -14
- teradataml/analytics/json_parser/__init__.py +130 -130
- teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
- teradataml/analytics/json_parser/json_store.py +191 -191
- teradataml/analytics/json_parser/metadata.py +1637 -1637
- teradataml/analytics/json_parser/utils.py +804 -803
- teradataml/analytics/meta_class.py +196 -196
- teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
- teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
- teradataml/analytics/sqle/__init__.py +97 -110
- teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
- teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
- teradataml/analytics/table_operator/__init__.py +10 -10
- teradataml/analytics/uaf/__init__.py +63 -63
- teradataml/analytics/utils.py +693 -692
- teradataml/analytics/valib.py +1603 -1600
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +1 -3
- teradataml/catalog/byom.py +1759 -1716
- teradataml/catalog/function_argument_mapper.py +859 -861
- teradataml/catalog/model_cataloging_utils.py +491 -1510
- teradataml/clients/pkce_client.py +481 -481
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/bulk_exposed_utils.py +111 -111
- teradataml/common/constants.py +1433 -1441
- teradataml/common/deprecations.py +160 -0
- teradataml/common/exceptions.py +73 -73
- teradataml/common/formula.py +742 -742
- teradataml/common/garbagecollector.py +592 -635
- teradataml/common/messagecodes.py +422 -431
- teradataml/common/messages.py +227 -231
- teradataml/common/sqlbundle.py +693 -693
- teradataml/common/td_coltype_code_to_tdtype.py +48 -48
- teradataml/common/utils.py +2418 -2500
- teradataml/common/warnings.py +25 -25
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/config/dummy_file1.cfg +4 -4
- teradataml/config/dummy_file2.cfg +2 -2
- teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
- teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
- teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
- teradataml/context/aed_context.py +217 -217
- teradataml/context/context.py +1071 -999
- teradataml/data/A_loan.csv +19 -19
- teradataml/data/BINARY_REALS_LEFT.csv +11 -11
- teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
- teradataml/data/B_loan.csv +49 -49
- teradataml/data/BuoyData2.csv +17 -17
- teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
- teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
- teradataml/data/Convolve2RealsLeft.csv +5 -5
- teradataml/data/Convolve2RealsRight.csv +5 -5
- teradataml/data/Convolve2ValidLeft.csv +11 -11
- teradataml/data/Convolve2ValidRight.csv +11 -11
- teradataml/data/DFFTConv_Real_8_8.csv +65 -65
- teradataml/data/Orders1_12mf.csv +24 -24
- teradataml/data/Pi_loan.csv +7 -7
- teradataml/data/SMOOTHED_DATA.csv +7 -7
- teradataml/data/TestDFFT8.csv +9 -9
- teradataml/data/TestRiver.csv +109 -109
- teradataml/data/Traindata.csv +28 -28
- teradataml/data/acf.csv +17 -17
- teradataml/data/adaboost_example.json +34 -34
- teradataml/data/adaboostpredict_example.json +24 -24
- teradataml/data/additional_table.csv +10 -10
- teradataml/data/admissions_test.csv +21 -21
- teradataml/data/admissions_train.csv +41 -41
- teradataml/data/admissions_train_nulls.csv +41 -41
- teradataml/data/ageandheight.csv +13 -13
- teradataml/data/ageandpressure.csv +31 -31
- teradataml/data/antiselect_example.json +36 -36
- teradataml/data/antiselect_input.csv +8 -8
- teradataml/data/antiselect_input_mixed_case.csv +8 -8
- teradataml/data/applicant_external.csv +6 -6
- teradataml/data/applicant_reference.csv +6 -6
- teradataml/data/arima_example.json +9 -9
- teradataml/data/assortedtext_input.csv +8 -8
- teradataml/data/attribution_example.json +33 -33
- teradataml/data/attribution_sample_table.csv +27 -27
- teradataml/data/attribution_sample_table1.csv +6 -6
- teradataml/data/attribution_sample_table2.csv +11 -11
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bank_web_clicks1.csv +42 -42
- teradataml/data/bank_web_clicks2.csv +91 -91
- teradataml/data/bank_web_url.csv +85 -85
- teradataml/data/barrier.csv +2 -2
- teradataml/data/barrier_new.csv +3 -3
- teradataml/data/betweenness_example.json +13 -13
- teradataml/data/bin_breaks.csv +8 -8
- teradataml/data/bin_fit_ip.csv +3 -3
- teradataml/data/binary_complex_left.csv +11 -11
- teradataml/data/binary_complex_right.csv +11 -11
- teradataml/data/binary_matrix_complex_left.csv +21 -21
- teradataml/data/binary_matrix_complex_right.csv +21 -21
- teradataml/data/binary_matrix_real_left.csv +21 -21
- teradataml/data/binary_matrix_real_right.csv +21 -21
- teradataml/data/blood2ageandweight.csv +26 -26
- teradataml/data/bmi.csv +501 -0
- teradataml/data/boston.csv +507 -507
- teradataml/data/buoydata_mix.csv +11 -11
- teradataml/data/burst_data.csv +5 -5
- teradataml/data/burst_example.json +20 -20
- teradataml/data/byom_example.json +17 -17
- teradataml/data/bytes_table.csv +3 -3
- teradataml/data/cal_housing_ex_raw.csv +70 -70
- teradataml/data/callers.csv +7 -7
- teradataml/data/calls.csv +10 -10
- teradataml/data/cars_hist.csv +33 -33
- teradataml/data/cat_table.csv +24 -24
- teradataml/data/ccm_example.json +31 -31
- teradataml/data/ccm_input.csv +91 -91
- teradataml/data/ccm_input2.csv +13 -13
- teradataml/data/ccmexample.csv +101 -101
- teradataml/data/ccmprepare_example.json +8 -8
- teradataml/data/ccmprepare_input.csv +91 -91
- teradataml/data/cfilter_example.json +12 -12
- teradataml/data/changepointdetection_example.json +18 -18
- teradataml/data/changepointdetectionrt_example.json +8 -8
- teradataml/data/chi_sq.csv +2 -2
- teradataml/data/churn_data.csv +14 -14
- teradataml/data/churn_emission.csv +35 -35
- teradataml/data/churn_initial.csv +3 -3
- teradataml/data/churn_state_transition.csv +5 -5
- teradataml/data/citedges_2.csv +745 -745
- teradataml/data/citvertices_2.csv +1210 -1210
- teradataml/data/clicks2.csv +16 -16
- teradataml/data/clickstream.csv +12 -12
- teradataml/data/clickstream1.csv +11 -11
- teradataml/data/closeness_example.json +15 -15
- teradataml/data/complaints.csv +21 -21
- teradataml/data/complaints_mini.csv +3 -3
- teradataml/data/complaints_testtoken.csv +224 -224
- teradataml/data/complaints_tokens_test.csv +353 -353
- teradataml/data/complaints_traintoken.csv +472 -472
- teradataml/data/computers_category.csv +1001 -1001
- teradataml/data/computers_test1.csv +1252 -1252
- teradataml/data/computers_train1.csv +5009 -5009
- teradataml/data/computers_train1_clustered.csv +5009 -5009
- teradataml/data/confusionmatrix_example.json +9 -9
- teradataml/data/conversion_event_table.csv +3 -3
- teradataml/data/corr_input.csv +17 -17
- teradataml/data/correlation_example.json +11 -11
- teradataml/data/coxhazardratio_example.json +39 -39
- teradataml/data/coxph_example.json +15 -15
- teradataml/data/coxsurvival_example.json +28 -28
- teradataml/data/cpt.csv +41 -41
- teradataml/data/credit_ex_merged.csv +45 -45
- teradataml/data/customer_loyalty.csv +301 -301
- teradataml/data/customer_loyalty_newseq.csv +31 -31
- teradataml/data/dataframe_example.json +146 -146
- teradataml/data/decisionforest_example.json +37 -37
- teradataml/data/decisionforestpredict_example.json +38 -38
- teradataml/data/decisiontree_example.json +21 -21
- teradataml/data/decisiontreepredict_example.json +45 -45
- teradataml/data/dfft2_size4_real.csv +17 -17
- teradataml/data/dfft2_test_matrix16.csv +17 -17
- teradataml/data/dfft2conv_real_4_4.csv +65 -65
- teradataml/data/diabetes.csv +443 -443
- teradataml/data/diabetes_test.csv +89 -89
- teradataml/data/dict_table.csv +5 -5
- teradataml/data/docperterm_table.csv +4 -4
- teradataml/data/docs/__init__.py +1 -1
- teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
- teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
- teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
- teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
- teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
- teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
- teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
- teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
- teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
- teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
- teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
- teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
- teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
- teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
- teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
- teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
- teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
- teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
- teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
- teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
- teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
- teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +132 -132
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +103 -103
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +101 -101
- teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
- teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
- teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
- teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
- teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
- teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
- teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
- teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
- teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
- teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
- teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
- teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
- teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
- teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +126 -126
- teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
- teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
- teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
- teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
- teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
- teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +243 -243
- teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
- teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
- teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
- teradataml/data/docs/sqle/docs_17_20/FTest.py +160 -160
- teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
- teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
- teradataml/data/docs/sqle/docs_17_20/GLM.py +380 -380
- teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
- teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +123 -123
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
- teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +204 -204
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
- teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
- teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
- teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
- teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +117 -117
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
- teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
- teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +225 -225
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +115 -115
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
- teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
- teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
- teradataml/data/docs/sqle/docs_17_20/ROC.py +163 -163
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
- teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
- teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
- teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +202 -202
- teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +197 -197
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +110 -109
- teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
- teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
- teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
- teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
- teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +171 -171
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
- teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
- teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
- teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
- teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
- teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
- teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
- teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
- teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +353 -353
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +275 -275
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +155 -155
- teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
- teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
- teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
- teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
- teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
- teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
- teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
- teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
- teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
- teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
- teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
- teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
- teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
- teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
- teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
- teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
- teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
- teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
- teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
- teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
- teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
- teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
- teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
- teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
- teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
- teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
- teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
- teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
- teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
- teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
- teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
- teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
- teradataml/data/dtw_example.json +17 -17
- teradataml/data/dtw_t1.csv +11 -11
- teradataml/data/dtw_t2.csv +4 -4
- teradataml/data/dwt2d_example.json +15 -15
- teradataml/data/dwt_example.json +14 -14
- teradataml/data/dwt_filter_dim.csv +5 -5
- teradataml/data/emission.csv +9 -9
- teradataml/data/emp_table_by_dept.csv +19 -19
- teradataml/data/employee_info.csv +4 -4
- teradataml/data/employee_table.csv +6 -6
- teradataml/data/excluding_event_table.csv +2 -2
- teradataml/data/finance_data.csv +6 -6
- teradataml/data/finance_data2.csv +61 -61
- teradataml/data/finance_data3.csv +93 -93
- teradataml/data/fish.csv +160 -0
- teradataml/data/fm_blood2ageandweight.csv +26 -26
- teradataml/data/fmeasure_example.json +11 -11
- teradataml/data/followers_leaders.csv +10 -10
- teradataml/data/fpgrowth_example.json +12 -12
- teradataml/data/frequentpaths_example.json +29 -29
- teradataml/data/friends.csv +9 -9
- teradataml/data/fs_input.csv +33 -33
- teradataml/data/fs_input1.csv +33 -33
- teradataml/data/genData.csv +513 -513
- teradataml/data/geodataframe_example.json +39 -39
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/glm_admissions_model.csv +12 -12
- teradataml/data/glm_example.json +29 -29
- teradataml/data/glml1l2_example.json +28 -28
- teradataml/data/glml1l2predict_example.json +54 -54
- teradataml/data/glmpredict_example.json +54 -54
- teradataml/data/gq_t1.csv +21 -21
- teradataml/data/hconvolve_complex_right.csv +5 -5
- teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
- teradataml/data/histogram_example.json +11 -11
- teradataml/data/hmmdecoder_example.json +78 -78
- teradataml/data/hmmevaluator_example.json +24 -24
- teradataml/data/hmmsupervised_example.json +10 -10
- teradataml/data/hmmunsupervised_example.json +7 -7
- teradataml/data/house_values.csv +12 -12
- teradataml/data/house_values2.csv +13 -13
- teradataml/data/housing_cat.csv +7 -7
- teradataml/data/housing_data.csv +9 -9
- teradataml/data/housing_test.csv +47 -47
- teradataml/data/housing_test_binary.csv +47 -47
- teradataml/data/housing_train.csv +493 -493
- teradataml/data/housing_train_attribute.csv +4 -4
- teradataml/data/housing_train_binary.csv +437 -437
- teradataml/data/housing_train_parameter.csv +2 -2
- teradataml/data/housing_train_response.csv +493 -493
- teradataml/data/ibm_stock.csv +370 -370
- teradataml/data/ibm_stock1.csv +370 -370
- teradataml/data/identitymatch_example.json +21 -21
- teradataml/data/idf_table.csv +4 -4
- teradataml/data/impressions.csv +101 -101
- teradataml/data/inflation.csv +21 -21
- teradataml/data/initial.csv +3 -3
- teradataml/data/insect_sprays.csv +12 -12
- teradataml/data/insurance.csv +1339 -1339
- teradataml/data/interpolator_example.json +12 -12
- teradataml/data/iris_altinput.csv +481 -481
- teradataml/data/iris_attribute_output.csv +8 -8
- teradataml/data/iris_attribute_test.csv +121 -121
- teradataml/data/iris_attribute_train.csv +481 -481
- teradataml/data/iris_category_expect_predict.csv +31 -31
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/iris_input.csv +151 -151
- teradataml/data/iris_response_train.csv +121 -121
- teradataml/data/iris_test.csv +31 -31
- teradataml/data/iris_train.csv +121 -121
- teradataml/data/join_table1.csv +4 -4
- teradataml/data/join_table2.csv +4 -4
- teradataml/data/jsons/anly_function_name.json +6 -6
- teradataml/data/jsons/byom/dataikupredict.json +147 -147
- teradataml/data/jsons/byom/datarobotpredict.json +146 -146
- teradataml/data/jsons/byom/h2opredict.json +194 -194
- teradataml/data/jsons/byom/onnxpredict.json +186 -186
- teradataml/data/jsons/byom/pmmlpredict.json +146 -146
- teradataml/data/jsons/paired_functions.json +435 -435
- teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
- teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
- teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
- teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
- teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
- teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
- teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
- teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
- teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
- teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
- teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
- teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
- teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
- teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
- teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
- teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
- teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
- teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
- teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
- teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
- teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
- teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
- teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
- teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
- teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
- teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
- teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
- teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
- teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
- teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
- teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
- teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
- teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
- teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
- teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
- teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
- teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
- teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
- teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
- teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +76 -76
- teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
- teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
- teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
- teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
- teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
- teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
- teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
- teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
- teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
- teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +186 -186
- teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
- teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +431 -431
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +125 -125
- teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
- teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +91 -91
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
- teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +211 -211
- teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
- teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +101 -101
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
- teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
- teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +177 -177
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
- teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
- teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +124 -124
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +156 -156
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +70 -70
- teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
- teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
- teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
- teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
- teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
- teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
- teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +312 -312
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +182 -182
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +170 -170
- teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
- teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
- teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
- teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
- teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
- teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
- teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
- teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
- teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
- teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
- teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
- teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
- teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
- teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
- teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
- teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
- teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
- teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
- teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
- teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
- teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
- teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
- teradataml/data/kmeans_example.json +17 -17
- teradataml/data/kmeans_us_arrests_data.csv +0 -0
- teradataml/data/knn_example.json +18 -18
- teradataml/data/knnrecommender_example.json +6 -6
- teradataml/data/knnrecommenderpredict_example.json +12 -12
- teradataml/data/lar_example.json +17 -17
- teradataml/data/larpredict_example.json +30 -30
- teradataml/data/lc_new_predictors.csv +5 -5
- teradataml/data/lc_new_reference.csv +9 -9
- teradataml/data/lda_example.json +8 -8
- teradataml/data/ldainference_example.json +14 -14
- teradataml/data/ldatopicsummary_example.json +8 -8
- teradataml/data/levendist_input.csv +13 -13
- teradataml/data/levenshteindistance_example.json +10 -10
- teradataml/data/linreg_example.json +9 -9
- teradataml/data/load_example_data.py +326 -323
- teradataml/data/loan_prediction.csv +295 -295
- teradataml/data/lungcancer.csv +138 -138
- teradataml/data/mappingdata.csv +12 -12
- teradataml/data/milk_timeseries.csv +157 -157
- teradataml/data/min_max_titanic.csv +4 -4
- teradataml/data/minhash_example.json +6 -6
- teradataml/data/ml_ratings.csv +7547 -7547
- teradataml/data/ml_ratings_10.csv +2445 -2445
- teradataml/data/model1_table.csv +5 -5
- teradataml/data/model2_table.csv +5 -5
- teradataml/data/models/iris_db_glm_model.pmml +56 -56
- teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
- teradataml/data/modularity_example.json +12 -12
- teradataml/data/movavg_example.json +7 -7
- teradataml/data/mtx1.csv +7 -7
- teradataml/data/mtx2.csv +13 -13
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/mvdfft8.csv +9 -9
- teradataml/data/naivebayes_example.json +9 -9
- teradataml/data/naivebayespredict_example.json +19 -19
- teradataml/data/naivebayestextclassifier2_example.json +6 -6
- teradataml/data/naivebayestextclassifier_example.json +8 -8
- teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
- teradataml/data/name_Find_configure.csv +10 -10
- teradataml/data/namedentityfinder_example.json +14 -14
- teradataml/data/namedentityfinderevaluator_example.json +10 -10
- teradataml/data/namedentityfindertrainer_example.json +6 -6
- teradataml/data/nb_iris_input_test.csv +31 -31
- teradataml/data/nb_iris_input_train.csv +121 -121
- teradataml/data/nbp_iris_model.csv +13 -13
- teradataml/data/ner_extractor_text.csv +2 -2
- teradataml/data/ner_sports_test2.csv +29 -29
- teradataml/data/ner_sports_train.csv +501 -501
- teradataml/data/nerevaluator_example.json +5 -5
- teradataml/data/nerextractor_example.json +18 -18
- teradataml/data/nermem_sports_test.csv +17 -17
- teradataml/data/nermem_sports_train.csv +50 -50
- teradataml/data/nertrainer_example.json +6 -6
- teradataml/data/ngrams_example.json +6 -6
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
- teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
- teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
- teradataml/data/npath_example.json +23 -23
- teradataml/data/ntree_example.json +14 -14
- teradataml/data/numeric_strings.csv +4 -4
- teradataml/data/numerics.csv +4 -4
- teradataml/data/ocean_buoy.csv +17 -17
- teradataml/data/ocean_buoy2.csv +17 -17
- teradataml/data/ocean_buoys.csv +27 -27
- teradataml/data/ocean_buoys2.csv +10 -10
- teradataml/data/ocean_buoys_nonpti.csv +28 -28
- teradataml/data/ocean_buoys_seq.csv +29 -29
- teradataml/data/openml_example.json +63 -0
- teradataml/data/optional_event_table.csv +4 -4
- teradataml/data/orders1.csv +11 -11
- teradataml/data/orders1_12.csv +12 -12
- teradataml/data/orders_ex.csv +4 -4
- teradataml/data/pack_example.json +8 -8
- teradataml/data/package_tracking.csv +19 -19
- teradataml/data/package_tracking_pti.csv +18 -18
- teradataml/data/pagerank_example.json +13 -13
- teradataml/data/paragraphs_input.csv +6 -6
- teradataml/data/pathanalyzer_example.json +7 -7
- teradataml/data/pathgenerator_example.json +7 -7
- teradataml/data/phrases.csv +7 -7
- teradataml/data/pivot_example.json +8 -8
- teradataml/data/pivot_input.csv +22 -22
- teradataml/data/playerRating.csv +31 -31
- teradataml/data/postagger_example.json +6 -6
- teradataml/data/posttagger_output.csv +44 -44
- teradataml/data/production_data.csv +16 -16
- teradataml/data/production_data2.csv +7 -7
- teradataml/data/randomsample_example.json +31 -31
- teradataml/data/randomwalksample_example.json +8 -8
- teradataml/data/rank_table.csv +6 -6
- teradataml/data/ref_mobile_data.csv +4 -4
- teradataml/data/ref_mobile_data_dense.csv +2 -2
- teradataml/data/ref_url.csv +17 -17
- teradataml/data/restaurant_reviews.csv +7 -7
- teradataml/data/river_data.csv +145 -145
- teradataml/data/roc_example.json +7 -7
- teradataml/data/roc_input.csv +101 -101
- teradataml/data/rule_inputs.csv +6 -6
- teradataml/data/rule_table.csv +2 -2
- teradataml/data/sales.csv +7 -7
- teradataml/data/sales_transaction.csv +501 -501
- teradataml/data/salesdata.csv +342 -342
- teradataml/data/sample_cities.csv +2 -2
- teradataml/data/sample_shapes.csv +10 -10
- teradataml/data/sample_streets.csv +2 -2
- teradataml/data/sampling_example.json +15 -15
- teradataml/data/sax_example.json +8 -8
- teradataml/data/scale_example.json +23 -23
- teradataml/data/scale_housing.csv +11 -11
- teradataml/data/scale_housing_test.csv +6 -6
- teradataml/data/scale_stat.csv +11 -11
- teradataml/data/scalebypartition_example.json +13 -13
- teradataml/data/scalemap_example.json +13 -13
- teradataml/data/scalesummary_example.json +12 -12
- teradataml/data/score_category.csv +101 -101
- teradataml/data/score_summary.csv +4 -4
- teradataml/data/script_example.json +9 -9
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/mapper.py +15 -15
- teradataml/data/scripts/mapper_replace.py +15 -15
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/seeds.csv +10 -10
- teradataml/data/sentenceextractor_example.json +6 -6
- teradataml/data/sentiment_extract_input.csv +11 -11
- teradataml/data/sentiment_train.csv +16 -16
- teradataml/data/sentiment_word.csv +20 -20
- teradataml/data/sentiment_word_input.csv +19 -19
- teradataml/data/sentimentextractor_example.json +24 -24
- teradataml/data/sentimenttrainer_example.json +8 -8
- teradataml/data/sequence_table.csv +10 -10
- teradataml/data/seriessplitter_example.json +7 -7
- teradataml/data/sessionize_example.json +17 -17
- teradataml/data/sessionize_table.csv +116 -116
- teradataml/data/setop_test1.csv +24 -24
- teradataml/data/setop_test2.csv +22 -22
- teradataml/data/soc_nw_edges.csv +10 -10
- teradataml/data/soc_nw_vertices.csv +7 -7
- teradataml/data/souvenir_timeseries.csv +167 -167
- teradataml/data/sparse_iris_attribute.csv +5 -5
- teradataml/data/sparse_iris_test.csv +121 -121
- teradataml/data/sparse_iris_train.csv +601 -601
- teradataml/data/star1.csv +6 -6
- teradataml/data/state_transition.csv +5 -5
- teradataml/data/stock_data.csv +53 -53
- teradataml/data/stock_movement.csv +11 -11
- teradataml/data/stock_vol.csv +76 -76
- teradataml/data/stop_words.csv +8 -8
- teradataml/data/store_sales.csv +37 -37
- teradataml/data/stringsimilarity_example.json +7 -7
- teradataml/data/strsimilarity_input.csv +13 -13
- teradataml/data/students.csv +101 -101
- teradataml/data/svm_iris_input_test.csv +121 -121
- teradataml/data/svm_iris_input_train.csv +481 -481
- teradataml/data/svm_iris_model.csv +7 -7
- teradataml/data/svmdense_example.json +9 -9
- teradataml/data/svmdensepredict_example.json +18 -18
- teradataml/data/svmsparse_example.json +7 -7
- teradataml/data/svmsparsepredict_example.json +13 -13
- teradataml/data/svmsparsesummary_example.json +7 -7
- teradataml/data/target_mobile_data.csv +13 -13
- teradataml/data/target_mobile_data_dense.csv +5 -5
- teradataml/data/templatedata.csv +1201 -1201
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_loan_prediction.csv +53 -53
- teradataml/data/test_pacf_12.csv +37 -37
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/test_river2.csv +109 -109
- teradataml/data/text_inputs.csv +6 -6
- teradataml/data/textchunker_example.json +7 -7
- teradataml/data/textclassifier_example.json +6 -6
- teradataml/data/textclassifier_input.csv +7 -7
- teradataml/data/textclassifiertrainer_example.json +6 -6
- teradataml/data/textmorph_example.json +5 -5
- teradataml/data/textparser_example.json +15 -15
- teradataml/data/texttagger_example.json +11 -11
- teradataml/data/texttokenizer_example.json +6 -6
- teradataml/data/texttrainer_input.csv +11 -11
- teradataml/data/tf_example.json +6 -6
- teradataml/data/tfidf_example.json +13 -13
- teradataml/data/tfidf_input1.csv +201 -201
- teradataml/data/tfidf_train.csv +6 -6
- teradataml/data/time_table1.csv +535 -535
- teradataml/data/time_table2.csv +14 -14
- teradataml/data/timeseriesdata.csv +1601 -1601
- teradataml/data/timeseriesdatasetsd4.csv +105 -105
- teradataml/data/titanic.csv +892 -892
- teradataml/data/token_table.csv +696 -696
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/train_tracking.csv +27 -27
- teradataml/data/transformation_table.csv +5 -5
- teradataml/data/transformation_table_new.csv +1 -1
- teradataml/data/tv_spots.csv +16 -16
- teradataml/data/twod_climate_data.csv +117 -117
- teradataml/data/uaf_example.json +475 -475
- teradataml/data/univariatestatistics_example.json +8 -8
- teradataml/data/unpack_example.json +9 -9
- teradataml/data/unpivot_example.json +9 -9
- teradataml/data/unpivot_input.csv +8 -8
- teradataml/data/us_air_pass.csv +36 -36
- teradataml/data/us_population.csv +624 -624
- teradataml/data/us_states_shapes.csv +52 -52
- teradataml/data/varmax_example.json +17 -17
- teradataml/data/vectordistance_example.json +25 -25
- teradataml/data/ville_climatedata.csv +121 -121
- teradataml/data/ville_tempdata.csv +12 -12
- teradataml/data/ville_tempdata1.csv +12 -12
- teradataml/data/ville_temperature.csv +11 -11
- teradataml/data/waveletTable.csv +1605 -1605
- teradataml/data/waveletTable2.csv +1605 -1605
- teradataml/data/weightedmovavg_example.json +8 -8
- teradataml/data/wft_testing.csv +5 -5
- teradataml/data/wine_data.csv +1600 -0
- teradataml/data/word_embed_input_table1.csv +5 -5
- teradataml/data/word_embed_input_table2.csv +4 -4
- teradataml/data/word_embed_model.csv +22 -22
- teradataml/data/words_input.csv +13 -13
- teradataml/data/xconvolve_complex_left.csv +6 -6
- teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
- teradataml/data/xgboost_example.json +35 -35
- teradataml/data/xgboostpredict_example.json +31 -31
- teradataml/dataframe/copy_to.py +1764 -1698
- teradataml/dataframe/data_transfer.py +2753 -2745
- teradataml/dataframe/dataframe.py +17545 -16946
- teradataml/dataframe/dataframe_utils.py +1837 -1740
- teradataml/dataframe/fastload.py +611 -603
- teradataml/dataframe/indexer.py +424 -424
- teradataml/dataframe/setop.py +1179 -1166
- teradataml/dataframe/sql.py +10090 -6432
- teradataml/dataframe/sql_function_parameters.py +439 -388
- teradataml/dataframe/sql_functions.py +652 -652
- teradataml/dataframe/sql_interfaces.py +220 -220
- teradataml/dataframe/vantage_function_types.py +674 -630
- teradataml/dataframe/window.py +693 -692
- teradataml/dbutils/__init__.py +3 -3
- teradataml/dbutils/dbutils.py +1167 -1150
- teradataml/dbutils/filemgr.py +267 -267
- teradataml/gen_ai/__init__.py +2 -2
- teradataml/gen_ai/convAI.py +472 -472
- teradataml/geospatial/__init__.py +3 -3
- teradataml/geospatial/geodataframe.py +1105 -1094
- teradataml/geospatial/geodataframecolumn.py +392 -387
- teradataml/geospatial/geometry_types.py +925 -925
- teradataml/hyperparameter_tuner/__init__.py +1 -1
- teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
- teradataml/hyperparameter_tuner/utils.py +281 -187
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +121 -124
- teradataml/options/configure.py +337 -336
- teradataml/options/display.py +176 -176
- teradataml/plot/__init__.py +2 -2
- teradataml/plot/axis.py +1388 -1388
- teradataml/plot/constants.py +15 -15
- teradataml/plot/figure.py +398 -398
- teradataml/plot/plot.py +760 -760
- teradataml/plot/query_generator.py +83 -83
- teradataml/plot/subplot.py +216 -216
- teradataml/scriptmgmt/UserEnv.py +3788 -3761
- teradataml/scriptmgmt/__init__.py +3 -3
- teradataml/scriptmgmt/lls_utils.py +1616 -1604
- teradataml/series/series.py +532 -532
- teradataml/series/series_utils.py +71 -71
- teradataml/table_operators/Apply.py +949 -917
- teradataml/table_operators/Script.py +1719 -1982
- teradataml/table_operators/TableOperator.py +1207 -1616
- teradataml/table_operators/__init__.py +2 -3
- teradataml/table_operators/apply_query_generator.py +262 -262
- teradataml/table_operators/query_generator.py +507 -507
- teradataml/table_operators/table_operator_query_generator.py +460 -460
- teradataml/table_operators/table_operator_util.py +631 -639
- teradataml/table_operators/templates/dataframe_apply.template +184 -184
- teradataml/table_operators/templates/dataframe_map.template +176 -176
- teradataml/table_operators/templates/script_executor.template +170 -170
- teradataml/utils/dtypes.py +684 -684
- teradataml/utils/internal_buffer.py +84 -84
- teradataml/utils/print_versions.py +205 -205
- teradataml/utils/utils.py +410 -410
- teradataml/utils/validators.py +2239 -2115
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +270 -41
- teradataml-20.0.0.0.dist-info/RECORD +1038 -0
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +1 -1
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +1 -1
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- teradataml-17.20.0.7.dist-info/RECORD +0 -1280
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
teradataml/gen_ai/convAI.py
CHANGED
|
@@ -1,473 +1,473 @@
|
|
|
1
|
-
# ##################################################################
|
|
2
|
-
#
|
|
3
|
-
# Copyright 2023 Teradata. All rights reserved.
|
|
4
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
5
|
-
#
|
|
6
|
-
# Primary Owner: Kesavaragavan B (kesavaragavan.b@teradata.com)
|
|
7
|
-
# Secondary Owner: Prafulla V Tekawade (prafulla.tekawade@teradata.com)
|
|
8
|
-
#
|
|
9
|
-
# This file implements tdmlAI and DBChain which is used for Vantage
|
|
10
|
-
# database interaction. The tdmlAI manages LLM inference endpoints and
|
|
11
|
-
# DBChain enables interaction between user, Vantage database.
|
|
12
|
-
# Notes:
|
|
13
|
-
# * This code is only for internal use.
|
|
14
|
-
# * The code may perform modify, create, or delete operations
|
|
15
|
-
# in database based on given query. Hence, limit the permissions
|
|
16
|
-
# granted to the credentials.
|
|
17
|
-
#
|
|
18
|
-
# ##################################################################
|
|
19
|
-
|
|
20
|
-
# Import required packages.
|
|
21
|
-
import openai
|
|
22
|
-
import os
|
|
23
|
-
from langchain.llms import AzureOpenAI
|
|
24
|
-
from langchain.utilities import SQLDatabase
|
|
25
|
-
from langchain_experimental.sql import SQLDatabaseChain
|
|
26
|
-
from langchain.prompts.prompt import PromptTemplate
|
|
27
|
-
from teradataml import get_context, get_connection
|
|
28
|
-
from teradataml.utils.validators import _Validators
|
|
29
|
-
|
|
30
|
-
def _set_openAI(api_key, api_type, api_base, api_version):
|
|
31
|
-
"""
|
|
32
|
-
DESCRIPTION:
|
|
33
|
-
Internal function to set environment variables for AzureAI.
|
|
34
|
-
|
|
35
|
-
PARAMETERS:
|
|
36
|
-
api_key:
|
|
37
|
-
Required Argument.
|
|
38
|
-
Specifies the AzureAI API key.
|
|
39
|
-
Types: str
|
|
40
|
-
|
|
41
|
-
api_type:
|
|
42
|
-
Required Argument.
|
|
43
|
-
Specifies the AzureAI API type.
|
|
44
|
-
Types: str
|
|
45
|
-
|
|
46
|
-
api_base:
|
|
47
|
-
Required Argument.
|
|
48
|
-
Specifies the AzureAI API base url.
|
|
49
|
-
Types: str
|
|
50
|
-
|
|
51
|
-
api_version:
|
|
52
|
-
Required Argument.
|
|
53
|
-
Specifies the AzureAI API version.
|
|
54
|
-
Types: str
|
|
55
|
-
|
|
56
|
-
RETURNS:
|
|
57
|
-
None
|
|
58
|
-
|
|
59
|
-
RAISES:
|
|
60
|
-
None
|
|
61
|
-
|
|
62
|
-
EXAMPLES:
|
|
63
|
-
_set_openAI(api_type = "azure"
|
|
64
|
-
api_base = "https://***.openai.azure.com/"
|
|
65
|
-
api_version = "2021-12-35"
|
|
66
|
-
api_key = "999***")
|
|
67
|
-
"""
|
|
68
|
-
# Set API type.
|
|
69
|
-
os.environ["OPENAI_API_TYPE"] = api_type
|
|
70
|
-
# Set API version like follow "2022-06-10".
|
|
71
|
-
os.environ["OPENAI_API_VERSION"] = api_version
|
|
72
|
-
# Set API Base URL as follow
|
|
73
|
-
# "https://****instance.openai.azure.com/".
|
|
74
|
-
os.environ["OPENAI_API_BASE"] = api_base
|
|
75
|
-
# Set API key.
|
|
76
|
-
os.environ["OPENAI_API_KEY"] = api_key
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
class tdmlAI:
|
|
80
|
-
"""tdmlAI provides convenient access to the LLM endpoints for inference."""
|
|
81
|
-
|
|
82
|
-
def __init__(self,api_key,
|
|
83
|
-
api_type,
|
|
84
|
-
api_base,
|
|
85
|
-
api_version,
|
|
86
|
-
engine,
|
|
87
|
-
model_name):
|
|
88
|
-
"""
|
|
89
|
-
DESCRIPTION:
|
|
90
|
-
Constructor of tdmlAI that sets up the environment and
|
|
91
|
-
initializes the LLM endpoint.
|
|
92
|
-
|
|
93
|
-
PARAMETERS:
|
|
94
|
-
api_key:
|
|
95
|
-
Required Argument.
|
|
96
|
-
Specifies the LLM API key.
|
|
97
|
-
Types: str
|
|
98
|
-
|
|
99
|
-
api_type:
|
|
100
|
-
Required Argument.
|
|
101
|
-
Specifies the LLM API type.
|
|
102
|
-
Types: str
|
|
103
|
-
|
|
104
|
-
api_base:
|
|
105
|
-
Required Argument.
|
|
106
|
-
Specifies the LLM API base url.
|
|
107
|
-
Types: str
|
|
108
|
-
|
|
109
|
-
api_version:
|
|
110
|
-
Required Argument.
|
|
111
|
-
Specifies the LLM API version.
|
|
112
|
-
Types: str
|
|
113
|
-
|
|
114
|
-
engine:
|
|
115
|
-
Required Argument.
|
|
116
|
-
Specifies the deployment name of the LLM.
|
|
117
|
-
Types: str
|
|
118
|
-
|
|
119
|
-
model_name:
|
|
120
|
-
Required Argument.
|
|
121
|
-
Specifies the LLM model name.
|
|
122
|
-
Types: str
|
|
123
|
-
|
|
124
|
-
RETURNS:
|
|
125
|
-
None
|
|
126
|
-
|
|
127
|
-
RAISES:
|
|
128
|
-
TeradataMlException, ValueError, TypeError
|
|
129
|
-
|
|
130
|
-
EXAMPLES:
|
|
131
|
-
# Import the modules.
|
|
132
|
-
from teradataml.gen_ai.convAI import tdmlAI
|
|
133
|
-
# Create LLM endpoint.
|
|
134
|
-
tdml_ai_obj = tdmlAI(api_type = "azure",
|
|
135
|
-
api_base = "https://****.openai.azure.com/",
|
|
136
|
-
api_version = "2000-11-35",
|
|
137
|
-
api_key = <provide your llm API key>,
|
|
138
|
-
engine = <provide your llm engine name>,
|
|
139
|
-
model_name = "gpt-3.5-turbo")
|
|
140
|
-
"""
|
|
141
|
-
|
|
142
|
-
# Argument validations
|
|
143
|
-
awu_matrix = []
|
|
144
|
-
awu_matrix.append(["api_key", api_key, False, (str)])
|
|
145
|
-
awu_matrix.append(["api_type", api_type, False, (str)])
|
|
146
|
-
awu_matrix.append(["api_base", api_base, False, (str)])
|
|
147
|
-
awu_matrix.append(["api_version", api_version, False, (str)])
|
|
148
|
-
awu_matrix.append(["engine", engine, False, (str)])
|
|
149
|
-
awu_matrix.append(["model_name", model_name, False, (str)])
|
|
150
|
-
# Validate argument types
|
|
151
|
-
_Validators._validate_function_arguments(awu_matrix)
|
|
152
|
-
|
|
153
|
-
# Set API type.
|
|
154
|
-
self.api_type = api_type
|
|
155
|
-
# Set API Base URL as follow
|
|
156
|
-
# "https://****instance.openai.azure.com/".
|
|
157
|
-
self.api_base = api_base
|
|
158
|
-
# Set API version like follow "2022-06-10".
|
|
159
|
-
self.api_version = api_version
|
|
160
|
-
# Set API key.
|
|
161
|
-
self.api_key = api_key
|
|
162
|
-
# Set LLM engine name.
|
|
163
|
-
self.__engine = engine
|
|
164
|
-
# Set model name.
|
|
165
|
-
self.model_name = model_name
|
|
166
|
-
|
|
167
|
-
# Update environment and openai variables.
|
|
168
|
-
self.__set_llm_env()
|
|
169
|
-
|
|
170
|
-
# Initialize AzureOpenAI LLM.
|
|
171
|
-
self._llm = AzureOpenAI(engine=self.__engine, model_name=self.model_name)
|
|
172
|
-
|
|
173
|
-
|
|
174
|
-
def __set_llm_env(self):
|
|
175
|
-
"""
|
|
176
|
-
DESCRIPTION:
|
|
177
|
-
Internal function to set all LLM info in OS environment and
|
|
178
|
-
openai variables.
|
|
179
|
-
|
|
180
|
-
PARAMETERS:
|
|
181
|
-
None
|
|
182
|
-
|
|
183
|
-
RETURNS:
|
|
184
|
-
None
|
|
185
|
-
|
|
186
|
-
RAISES:
|
|
187
|
-
None
|
|
188
|
-
|
|
189
|
-
EXAMPLES:
|
|
190
|
-
self.__set_llm_env()
|
|
191
|
-
"""
|
|
192
|
-
# Set API type.
|
|
193
|
-
openai.api_type = self.api_type
|
|
194
|
-
# Set API Base URL as follow
|
|
195
|
-
openai.api_base = self.api_base
|
|
196
|
-
# Set API version.
|
|
197
|
-
openai.api_version = self.api_version
|
|
198
|
-
# Set API key.
|
|
199
|
-
openai.api_key = self.api_key
|
|
200
|
-
# Update OS environment variables.
|
|
201
|
-
_set_openAI(api_type=self.api_type, api_base=self.api_base,
|
|
202
|
-
api_version=self.api_version, api_key=self.api_key)
|
|
203
|
-
|
|
204
|
-
|
|
205
|
-
def get_llm(self):
|
|
206
|
-
"""
|
|
207
|
-
DESCRIPTION:
|
|
208
|
-
Get LLM inference endpoint.
|
|
209
|
-
|
|
210
|
-
PARAMETERS:
|
|
211
|
-
None
|
|
212
|
-
|
|
213
|
-
RETURNS:
|
|
214
|
-
LLM endpoint object.
|
|
215
|
-
|
|
216
|
-
RAISES:
|
|
217
|
-
None
|
|
218
|
-
|
|
219
|
-
EXAMPLES:
|
|
220
|
-
tdml_ai_obj.get_llm()
|
|
221
|
-
"""
|
|
222
|
-
return self._llm
|
|
223
|
-
|
|
224
|
-
|
|
225
|
-
def answer(self, query):
|
|
226
|
-
"""
|
|
227
|
-
DESCRIPTION:
|
|
228
|
-
Get the answer to the query.
|
|
229
|
-
|
|
230
|
-
PARAMETERS:
|
|
231
|
-
query:
|
|
232
|
-
Required Argument.
|
|
233
|
-
Specifies the question which needs to be answered by LLM.
|
|
234
|
-
Types: str
|
|
235
|
-
|
|
236
|
-
RETURNS:
|
|
237
|
-
str
|
|
238
|
-
|
|
239
|
-
RAISES:
|
|
240
|
-
TeradataMlException, ValueError
|
|
241
|
-
|
|
242
|
-
EXAMPLES:
|
|
243
|
-
tdml_ai_obj.run("Tell me a joke")
|
|
244
|
-
"""
|
|
245
|
-
awu_matrix = []
|
|
246
|
-
awu_matrix.append(["query", query, False, (str)])
|
|
247
|
-
# Validate argument types
|
|
248
|
-
_Validators._validate_function_arguments(awu_matrix)
|
|
249
|
-
return self._llm(query)
|
|
250
|
-
|
|
251
|
-
|
|
252
|
-
class DBChain(tdmlAI):
|
|
253
|
-
"""Class manages database chain and communication between user, database, and LLM."""
|
|
254
|
-
# Prompt to retrieve the answer with high accuracy.
|
|
255
|
-
__DEFAULT_TEMPLATE = """
|
|
256
|
-
You are a Teradata Vantage DataBase expert. Given an input question,
|
|
257
|
-
first create a syntactically correct Teradata query to run,
|
|
258
|
-
then look at the results of the query and return the answer to
|
|
259
|
-
the input question. Unless the user specifies in the question a specific
|
|
260
|
-
number of examples to obtain, query for at most 2 results using the LIMIT
|
|
261
|
-
clause as per Teradata SQL query. You can order the results to return the most
|
|
262
|
-
informative data in the database. Never query for all columns from a table.
|
|
263
|
-
You must query only the columns that are needed to answer the question.
|
|
264
|
-
Wrap each column name in double quotes (") to denote them as delimited identifiers.
|
|
265
|
-
|
|
266
|
-
Pay attention to use only the column names you can see in the tables below.
|
|
267
|
-
Be careful to not query for columns that do not exist. Also, pay attention
|
|
268
|
-
to which column is in which table.
|
|
269
|
-
Pay attention to select correct table names and column names for teradatasql query generation.
|
|
270
|
-
|
|
271
|
-
Given an input question, first create a syntactically correct teradatasql query
|
|
272
|
-
to run, then look at the results of the query and return the answer.
|
|
273
|
-
Use the following format:
|
|
274
|
-
|
|
275
|
-
Question: "Question here"
|
|
276
|
-
SQLQuery: "SQL Query to run"
|
|
277
|
-
SQLResult: "Result of the SQLQuery"
|
|
278
|
-
Answer: "Final answer here"
|
|
279
|
-
|
|
280
|
-
Only use the following tables:
|
|
281
|
-
|
|
282
|
-
{table_info}
|
|
283
|
-
|
|
284
|
-
If someone asks to list out tables present in 'DBC' DataBase user,
|
|
285
|
-
then following is an example teradatasql query for 'DBC' user:
|
|
286
|
-
SQL Query: SELECT TableName,
|
|
287
|
-
FROM DBC.TablesV
|
|
288
|
-
WHERE TableKind = 'T'
|
|
289
|
-
and DatabaseName = 'DBC'
|
|
290
|
-
ORDER BY TableName;
|
|
291
|
-
|
|
292
|
-
|
|
293
|
-
Question: {input}"""
|
|
294
|
-
|
|
295
|
-
def __init__(self, llm, include_tables=None, verbose=False, ignore_tdml_prompt=False):
|
|
296
|
-
"""
|
|
297
|
-
DESCRIPTION:
|
|
298
|
-
Constructor of DBChain that sets up interaction channel between client (user),
|
|
299
|
-
Vantage database, and LLM endpoint.
|
|
300
|
-
Notes:
|
|
301
|
-
* LLM input tokens size must be greater than 1k to perform basic operations
|
|
302
|
-
and increase LLM token size based on operation complexity.
|
|
303
|
-
* Establish connection with Vantage before initializing DBChain.
|
|
304
|
-
|
|
305
|
-
PARAMETERS:
|
|
306
|
-
llm:
|
|
307
|
-
Required Argument.
|
|
308
|
-
Specifies the LLM endpoint object for inference.
|
|
309
|
-
Types: tdmlAI
|
|
310
|
-
|
|
311
|
-
include_tables:
|
|
312
|
-
Optional Argument.
|
|
313
|
-
Specifies the table names to be included for interaction.
|
|
314
|
-
When a list of tables is provided, DBChain gives the
|
|
315
|
-
highest priority to those tables for data exploration.
|
|
316
|
-
Otherwise, entire database tables present in Vantage is taken
|
|
317
|
-
into account for data exploration.
|
|
318
|
-
Notes:
|
|
319
|
-
* List of tables has to be provided for more
|
|
320
|
-
accurate results.
|
|
321
|
-
* Provide list of tables When LLM input token size is
|
|
322
|
-
less than 4k.
|
|
323
|
-
* Views present in database may cause inconsistent result when
|
|
324
|
-
include_tables are not provided.
|
|
325
|
-
Types: list of str
|
|
326
|
-
|
|
327
|
-
verbose:
|
|
328
|
-
Optional Argument.
|
|
329
|
-
Specifies whether to display the interaction between LLM and Vantage.
|
|
330
|
-
Default Value: False
|
|
331
|
-
Types: bool
|
|
332
|
-
|
|
333
|
-
ignore_tdml_prompt:
|
|
334
|
-
Optional Argument.
|
|
335
|
-
Specifies wether to ignore tdml engineered prompt design.
|
|
336
|
-
When "ignore_tdml_prompt" is set to True then tdml engineered
|
|
337
|
-
prompt is ignored. Otherwise, prompt is used for accurate results.
|
|
338
|
-
Notes:
|
|
339
|
-
* Custom engineered prompt is used for higher accurate results.
|
|
340
|
-
* Set "ignore_tdml_prompt" to True when LLM contains limitation on
|
|
341
|
-
input token size.
|
|
342
|
-
Default Value: False
|
|
343
|
-
Types: bool
|
|
344
|
-
|
|
345
|
-
RETURNS:
|
|
346
|
-
TeradataMlException, ValueError, TypeError
|
|
347
|
-
|
|
348
|
-
RAISES:
|
|
349
|
-
None
|
|
350
|
-
|
|
351
|
-
EXAMPLES:
|
|
352
|
-
# Import the modules.
|
|
353
|
-
from teradataml.gen_ai.convAI import tdmlAI
|
|
354
|
-
# Create LLM endpoint.
|
|
355
|
-
tdml_ai_obj = tdmlAI(api_type = "azure",
|
|
356
|
-
api_base = "https://****.openai.azure.com/",
|
|
357
|
-
api_version = "2000-11-35",
|
|
358
|
-
api_key = <provide your llm API key>,
|
|
359
|
-
engine=<provide your llm engine name>,
|
|
360
|
-
model_name="gpt-3.5-turbo")
|
|
361
|
-
|
|
362
|
-
# Create DBChain object.
|
|
363
|
-
dbchain_obj = DBChain(llm=tdml_ai_obj,verbose=False)
|
|
364
|
-
"""
|
|
365
|
-
|
|
366
|
-
# Argument validations
|
|
367
|
-
awu_matrix = []
|
|
368
|
-
awu_matrix.append(["llm", llm, False, (tdmlAI)])
|
|
369
|
-
awu_matrix.append(["include_tables", include_tables, True, (list)])
|
|
370
|
-
awu_matrix.append(["verbose", verbose, True, (bool)])
|
|
371
|
-
awu_matrix.append(["ignore_tdml_prompt", ignore_tdml_prompt, True, (bool)])
|
|
372
|
-
# Validate argument types
|
|
373
|
-
_Validators._validate_function_arguments(awu_matrix)
|
|
374
|
-
# Set LLM inference endpoint used for sql query generation.
|
|
375
|
-
self._llm = llm.get_llm()
|
|
376
|
-
# Set table names needs to be explored.
|
|
377
|
-
self._table_names = include_tables
|
|
378
|
-
# Set verbose to display intermediate steps.
|
|
379
|
-
self._verbose = verbose
|
|
380
|
-
# Database custom prompt to improve the SQL generation accuracy.
|
|
381
|
-
self.__PROMPT = PromptTemplate(
|
|
382
|
-
input_variables=["input", "table_info"], template=self.__DEFAULT_TEMPLATE ) \
|
|
383
|
-
if not ignore_tdml_prompt else None
|
|
384
|
-
# Maintains interaction records.
|
|
385
|
-
self.__records = []
|
|
386
|
-
|
|
387
|
-
# Get all table names except views when table name is 'None'.
|
|
388
|
-
if self._table_names is None:
|
|
389
|
-
self.__pull_db_details()
|
|
390
|
-
# set tdsqlalchemy engine.
|
|
391
|
-
self.__engine = get_context()
|
|
392
|
-
|
|
393
|
-
# Initialize SQLDatabase chain.
|
|
394
|
-
self.__db = SQLDatabase(engine=self.__engine, include_tables=self._table_names)
|
|
395
|
-
# Initialize SQLDatabase Chain.
|
|
396
|
-
self.__db_chain = SQLDatabaseChain.from_llm(self._llm, self.__db, verbose=verbose, prompt=self.__PROMPT)
|
|
397
|
-
|
|
398
|
-
|
|
399
|
-
def run(self, query):
|
|
400
|
-
"""
|
|
401
|
-
DESCRIPTION:
|
|
402
|
-
Function interact with Vantage Database using human natural
|
|
403
|
-
language.
|
|
404
|
-
|
|
405
|
-
PARAMETERS:
|
|
406
|
-
query:
|
|
407
|
-
Required Argument.
|
|
408
|
-
Specifies the question which needs to be answered by LLM.
|
|
409
|
-
Query must be precise and represented in English.
|
|
410
|
-
Types: str
|
|
411
|
-
|
|
412
|
-
RETURNS:
|
|
413
|
-
str
|
|
414
|
-
|
|
415
|
-
RAISES:
|
|
416
|
-
TeradataMlException, ValueError
|
|
417
|
-
|
|
418
|
-
EXAMPLES:
|
|
419
|
-
dbchain_obj.run("How many house present in Boston")
|
|
420
|
-
"""
|
|
421
|
-
awu_matrix = []
|
|
422
|
-
awu_matrix.append(["query", query, False, (str)])
|
|
423
|
-
# Validate argument types
|
|
424
|
-
_Validators._validate_function_arguments(awu_matrix)
|
|
425
|
-
|
|
426
|
-
# Trigger the Database chain interaction.
|
|
427
|
-
result = self.__db_chain.run(query)
|
|
428
|
-
self.__records.append({query:result})
|
|
429
|
-
# return result when verbose is set to 'False'.
|
|
430
|
-
if not self._verbose:
|
|
431
|
-
return result
|
|
432
|
-
|
|
433
|
-
|
|
434
|
-
def __pull_db_details(self):
|
|
435
|
-
"""
|
|
436
|
-
DESCRIPTION:
|
|
437
|
-
Internal function to retrieve table names.
|
|
438
|
-
|
|
439
|
-
PARAMETERS:
|
|
440
|
-
None
|
|
441
|
-
|
|
442
|
-
RETURNS:
|
|
443
|
-
list
|
|
444
|
-
|
|
445
|
-
RAISES:
|
|
446
|
-
None
|
|
447
|
-
|
|
448
|
-
EXAMPLES:
|
|
449
|
-
self.__pull_db_details()
|
|
450
|
-
"""
|
|
451
|
-
_connection = get_connection()
|
|
452
|
-
self._table_names = _connection.dialect.get_table_names(_connection)
|
|
453
|
-
|
|
454
|
-
|
|
455
|
-
def get_interaction_records(self):
|
|
456
|
-
"""
|
|
457
|
-
DESCRIPTION:
|
|
458
|
-
Get the interaction records.
|
|
459
|
-
|
|
460
|
-
PARAMETERS:
|
|
461
|
-
None
|
|
462
|
-
|
|
463
|
-
RETURNS:
|
|
464
|
-
list
|
|
465
|
-
|
|
466
|
-
RAISES:
|
|
467
|
-
None
|
|
468
|
-
|
|
469
|
-
EXAMPLES:
|
|
470
|
-
dbchain_obj.get_interaction_records()
|
|
471
|
-
"""
|
|
472
|
-
return self.__records
|
|
1
|
+
# ##################################################################
|
|
2
|
+
#
|
|
3
|
+
# Copyright 2023 Teradata. All rights reserved.
|
|
4
|
+
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
5
|
+
#
|
|
6
|
+
# Primary Owner: Kesavaragavan B (kesavaragavan.b@teradata.com)
|
|
7
|
+
# Secondary Owner: Prafulla V Tekawade (prafulla.tekawade@teradata.com)
|
|
8
|
+
#
|
|
9
|
+
# This file implements tdmlAI and DBChain which is used for Vantage
|
|
10
|
+
# database interaction. The tdmlAI manages LLM inference endpoints and
|
|
11
|
+
# DBChain enables interaction between user, Vantage database.
|
|
12
|
+
# Notes:
|
|
13
|
+
# * This code is only for internal use.
|
|
14
|
+
# * The code may perform modify, create, or delete operations
|
|
15
|
+
# in database based on given query. Hence, limit the permissions
|
|
16
|
+
# granted to the credentials.
|
|
17
|
+
#
|
|
18
|
+
# ##################################################################
|
|
19
|
+
|
|
20
|
+
# Import required packages.
|
|
21
|
+
import openai
|
|
22
|
+
import os
|
|
23
|
+
from langchain.llms import AzureOpenAI
|
|
24
|
+
from langchain.utilities import SQLDatabase
|
|
25
|
+
from langchain_experimental.sql import SQLDatabaseChain
|
|
26
|
+
from langchain.prompts.prompt import PromptTemplate
|
|
27
|
+
from teradataml import get_context, get_connection
|
|
28
|
+
from teradataml.utils.validators import _Validators
|
|
29
|
+
|
|
30
|
+
def _set_openAI(api_key, api_type, api_base, api_version):
|
|
31
|
+
"""
|
|
32
|
+
DESCRIPTION:
|
|
33
|
+
Internal function to set environment variables for AzureAI.
|
|
34
|
+
|
|
35
|
+
PARAMETERS:
|
|
36
|
+
api_key:
|
|
37
|
+
Required Argument.
|
|
38
|
+
Specifies the AzureAI API key.
|
|
39
|
+
Types: str
|
|
40
|
+
|
|
41
|
+
api_type:
|
|
42
|
+
Required Argument.
|
|
43
|
+
Specifies the AzureAI API type.
|
|
44
|
+
Types: str
|
|
45
|
+
|
|
46
|
+
api_base:
|
|
47
|
+
Required Argument.
|
|
48
|
+
Specifies the AzureAI API base url.
|
|
49
|
+
Types: str
|
|
50
|
+
|
|
51
|
+
api_version:
|
|
52
|
+
Required Argument.
|
|
53
|
+
Specifies the AzureAI API version.
|
|
54
|
+
Types: str
|
|
55
|
+
|
|
56
|
+
RETURNS:
|
|
57
|
+
None
|
|
58
|
+
|
|
59
|
+
RAISES:
|
|
60
|
+
None
|
|
61
|
+
|
|
62
|
+
EXAMPLES:
|
|
63
|
+
_set_openAI(api_type = "azure"
|
|
64
|
+
api_base = "https://***.openai.azure.com/"
|
|
65
|
+
api_version = "2021-12-35"
|
|
66
|
+
api_key = "999***")
|
|
67
|
+
"""
|
|
68
|
+
# Set API type.
|
|
69
|
+
os.environ["OPENAI_API_TYPE"] = api_type
|
|
70
|
+
# Set API version like follow "2022-06-10".
|
|
71
|
+
os.environ["OPENAI_API_VERSION"] = api_version
|
|
72
|
+
# Set API Base URL as follow
|
|
73
|
+
# "https://****instance.openai.azure.com/".
|
|
74
|
+
os.environ["OPENAI_API_BASE"] = api_base
|
|
75
|
+
# Set API key.
|
|
76
|
+
os.environ["OPENAI_API_KEY"] = api_key
|
|
77
|
+
|
|
78
|
+
|
|
79
|
+
class tdmlAI:
|
|
80
|
+
"""tdmlAI provides convenient access to the LLM endpoints for inference."""
|
|
81
|
+
|
|
82
|
+
def __init__(self,api_key,
|
|
83
|
+
api_type,
|
|
84
|
+
api_base,
|
|
85
|
+
api_version,
|
|
86
|
+
engine,
|
|
87
|
+
model_name):
|
|
88
|
+
"""
|
|
89
|
+
DESCRIPTION:
|
|
90
|
+
Constructor of tdmlAI that sets up the environment and
|
|
91
|
+
initializes the LLM endpoint.
|
|
92
|
+
|
|
93
|
+
PARAMETERS:
|
|
94
|
+
api_key:
|
|
95
|
+
Required Argument.
|
|
96
|
+
Specifies the LLM API key.
|
|
97
|
+
Types: str
|
|
98
|
+
|
|
99
|
+
api_type:
|
|
100
|
+
Required Argument.
|
|
101
|
+
Specifies the LLM API type.
|
|
102
|
+
Types: str
|
|
103
|
+
|
|
104
|
+
api_base:
|
|
105
|
+
Required Argument.
|
|
106
|
+
Specifies the LLM API base url.
|
|
107
|
+
Types: str
|
|
108
|
+
|
|
109
|
+
api_version:
|
|
110
|
+
Required Argument.
|
|
111
|
+
Specifies the LLM API version.
|
|
112
|
+
Types: str
|
|
113
|
+
|
|
114
|
+
engine:
|
|
115
|
+
Required Argument.
|
|
116
|
+
Specifies the deployment name of the LLM.
|
|
117
|
+
Types: str
|
|
118
|
+
|
|
119
|
+
model_name:
|
|
120
|
+
Required Argument.
|
|
121
|
+
Specifies the LLM model name.
|
|
122
|
+
Types: str
|
|
123
|
+
|
|
124
|
+
RETURNS:
|
|
125
|
+
None
|
|
126
|
+
|
|
127
|
+
RAISES:
|
|
128
|
+
TeradataMlException, ValueError, TypeError
|
|
129
|
+
|
|
130
|
+
EXAMPLES:
|
|
131
|
+
# Import the modules.
|
|
132
|
+
from teradataml.gen_ai.convAI import tdmlAI
|
|
133
|
+
# Create LLM endpoint.
|
|
134
|
+
tdml_ai_obj = tdmlAI(api_type = "azure",
|
|
135
|
+
api_base = "https://****.openai.azure.com/",
|
|
136
|
+
api_version = "2000-11-35",
|
|
137
|
+
api_key = <provide your llm API key>,
|
|
138
|
+
engine = <provide your llm engine name>,
|
|
139
|
+
model_name = "gpt-3.5-turbo")
|
|
140
|
+
"""
|
|
141
|
+
|
|
142
|
+
# Argument validations
|
|
143
|
+
awu_matrix = []
|
|
144
|
+
awu_matrix.append(["api_key", api_key, False, (str)])
|
|
145
|
+
awu_matrix.append(["api_type", api_type, False, (str)])
|
|
146
|
+
awu_matrix.append(["api_base", api_base, False, (str)])
|
|
147
|
+
awu_matrix.append(["api_version", api_version, False, (str)])
|
|
148
|
+
awu_matrix.append(["engine", engine, False, (str)])
|
|
149
|
+
awu_matrix.append(["model_name", model_name, False, (str)])
|
|
150
|
+
# Validate argument types
|
|
151
|
+
_Validators._validate_function_arguments(awu_matrix)
|
|
152
|
+
|
|
153
|
+
# Set API type.
|
|
154
|
+
self.api_type = api_type
|
|
155
|
+
# Set API Base URL as follow
|
|
156
|
+
# "https://****instance.openai.azure.com/".
|
|
157
|
+
self.api_base = api_base
|
|
158
|
+
# Set API version like follow "2022-06-10".
|
|
159
|
+
self.api_version = api_version
|
|
160
|
+
# Set API key.
|
|
161
|
+
self.api_key = api_key
|
|
162
|
+
# Set LLM engine name.
|
|
163
|
+
self.__engine = engine
|
|
164
|
+
# Set model name.
|
|
165
|
+
self.model_name = model_name
|
|
166
|
+
|
|
167
|
+
# Update environment and openai variables.
|
|
168
|
+
self.__set_llm_env()
|
|
169
|
+
|
|
170
|
+
# Initialize AzureOpenAI LLM.
|
|
171
|
+
self._llm = AzureOpenAI(engine=self.__engine, model_name=self.model_name)
|
|
172
|
+
|
|
173
|
+
|
|
174
|
+
def __set_llm_env(self):
|
|
175
|
+
"""
|
|
176
|
+
DESCRIPTION:
|
|
177
|
+
Internal function to set all LLM info in OS environment and
|
|
178
|
+
openai variables.
|
|
179
|
+
|
|
180
|
+
PARAMETERS:
|
|
181
|
+
None
|
|
182
|
+
|
|
183
|
+
RETURNS:
|
|
184
|
+
None
|
|
185
|
+
|
|
186
|
+
RAISES:
|
|
187
|
+
None
|
|
188
|
+
|
|
189
|
+
EXAMPLES:
|
|
190
|
+
self.__set_llm_env()
|
|
191
|
+
"""
|
|
192
|
+
# Set API type.
|
|
193
|
+
openai.api_type = self.api_type
|
|
194
|
+
# Set API Base URL as follow
|
|
195
|
+
openai.api_base = self.api_base
|
|
196
|
+
# Set API version.
|
|
197
|
+
openai.api_version = self.api_version
|
|
198
|
+
# Set API key.
|
|
199
|
+
openai.api_key = self.api_key
|
|
200
|
+
# Update OS environment variables.
|
|
201
|
+
_set_openAI(api_type=self.api_type, api_base=self.api_base,
|
|
202
|
+
api_version=self.api_version, api_key=self.api_key)
|
|
203
|
+
|
|
204
|
+
|
|
205
|
+
def get_llm(self):
|
|
206
|
+
"""
|
|
207
|
+
DESCRIPTION:
|
|
208
|
+
Get LLM inference endpoint.
|
|
209
|
+
|
|
210
|
+
PARAMETERS:
|
|
211
|
+
None
|
|
212
|
+
|
|
213
|
+
RETURNS:
|
|
214
|
+
LLM endpoint object.
|
|
215
|
+
|
|
216
|
+
RAISES:
|
|
217
|
+
None
|
|
218
|
+
|
|
219
|
+
EXAMPLES:
|
|
220
|
+
tdml_ai_obj.get_llm()
|
|
221
|
+
"""
|
|
222
|
+
return self._llm
|
|
223
|
+
|
|
224
|
+
|
|
225
|
+
def answer(self, query):
|
|
226
|
+
"""
|
|
227
|
+
DESCRIPTION:
|
|
228
|
+
Get the answer to the query.
|
|
229
|
+
|
|
230
|
+
PARAMETERS:
|
|
231
|
+
query:
|
|
232
|
+
Required Argument.
|
|
233
|
+
Specifies the question which needs to be answered by LLM.
|
|
234
|
+
Types: str
|
|
235
|
+
|
|
236
|
+
RETURNS:
|
|
237
|
+
str
|
|
238
|
+
|
|
239
|
+
RAISES:
|
|
240
|
+
TeradataMlException, ValueError
|
|
241
|
+
|
|
242
|
+
EXAMPLES:
|
|
243
|
+
tdml_ai_obj.run("Tell me a joke")
|
|
244
|
+
"""
|
|
245
|
+
awu_matrix = []
|
|
246
|
+
awu_matrix.append(["query", query, False, (str)])
|
|
247
|
+
# Validate argument types
|
|
248
|
+
_Validators._validate_function_arguments(awu_matrix)
|
|
249
|
+
return self._llm(query)
|
|
250
|
+
|
|
251
|
+
|
|
252
|
+
class DBChain(tdmlAI):
|
|
253
|
+
"""Class manages database chain and communication between user, database, and LLM."""
|
|
254
|
+
# Prompt to retrieve the answer with high accuracy.
|
|
255
|
+
__DEFAULT_TEMPLATE = """
|
|
256
|
+
You are a Teradata Vantage DataBase expert. Given an input question,
|
|
257
|
+
first create a syntactically correct Teradata query to run,
|
|
258
|
+
then look at the results of the query and return the answer to
|
|
259
|
+
the input question. Unless the user specifies in the question a specific
|
|
260
|
+
number of examples to obtain, query for at most 2 results using the LIMIT
|
|
261
|
+
clause as per Teradata SQL query. You can order the results to return the most
|
|
262
|
+
informative data in the database. Never query for all columns from a table.
|
|
263
|
+
You must query only the columns that are needed to answer the question.
|
|
264
|
+
Wrap each column name in double quotes (") to denote them as delimited identifiers.
|
|
265
|
+
|
|
266
|
+
Pay attention to use only the column names you can see in the tables below.
|
|
267
|
+
Be careful to not query for columns that do not exist. Also, pay attention
|
|
268
|
+
to which column is in which table.
|
|
269
|
+
Pay attention to select correct table names and column names for teradatasql query generation.
|
|
270
|
+
|
|
271
|
+
Given an input question, first create a syntactically correct teradatasql query
|
|
272
|
+
to run, then look at the results of the query and return the answer.
|
|
273
|
+
Use the following format:
|
|
274
|
+
|
|
275
|
+
Question: "Question here"
|
|
276
|
+
SQLQuery: "SQL Query to run"
|
|
277
|
+
SQLResult: "Result of the SQLQuery"
|
|
278
|
+
Answer: "Final answer here"
|
|
279
|
+
|
|
280
|
+
Only use the following tables:
|
|
281
|
+
|
|
282
|
+
{table_info}
|
|
283
|
+
|
|
284
|
+
If someone asks to list out tables present in 'DBC' DataBase user,
|
|
285
|
+
then following is an example teradatasql query for 'DBC' user:
|
|
286
|
+
SQL Query: SELECT TableName,
|
|
287
|
+
FROM DBC.TablesV
|
|
288
|
+
WHERE TableKind = 'T'
|
|
289
|
+
and DatabaseName = 'DBC'
|
|
290
|
+
ORDER BY TableName;
|
|
291
|
+
|
|
292
|
+
|
|
293
|
+
Question: {input}"""
|
|
294
|
+
|
|
295
|
+
def __init__(self, llm, include_tables=None, verbose=False, ignore_tdml_prompt=False):
|
|
296
|
+
"""
|
|
297
|
+
DESCRIPTION:
|
|
298
|
+
Constructor of DBChain that sets up interaction channel between client (user),
|
|
299
|
+
Vantage database, and LLM endpoint.
|
|
300
|
+
Notes:
|
|
301
|
+
* LLM input tokens size must be greater than 1k to perform basic operations
|
|
302
|
+
and increase LLM token size based on operation complexity.
|
|
303
|
+
* Establish connection with Vantage before initializing DBChain.
|
|
304
|
+
|
|
305
|
+
PARAMETERS:
|
|
306
|
+
llm:
|
|
307
|
+
Required Argument.
|
|
308
|
+
Specifies the LLM endpoint object for inference.
|
|
309
|
+
Types: tdmlAI
|
|
310
|
+
|
|
311
|
+
include_tables:
|
|
312
|
+
Optional Argument.
|
|
313
|
+
Specifies the table names to be included for interaction.
|
|
314
|
+
When a list of tables is provided, DBChain gives the
|
|
315
|
+
highest priority to those tables for data exploration.
|
|
316
|
+
Otherwise, entire database tables present in Vantage is taken
|
|
317
|
+
into account for data exploration.
|
|
318
|
+
Notes:
|
|
319
|
+
* List of tables has to be provided for more
|
|
320
|
+
accurate results.
|
|
321
|
+
* Provide list of tables When LLM input token size is
|
|
322
|
+
less than 4k.
|
|
323
|
+
* Views present in database may cause inconsistent result when
|
|
324
|
+
include_tables are not provided.
|
|
325
|
+
Types: list of str
|
|
326
|
+
|
|
327
|
+
verbose:
|
|
328
|
+
Optional Argument.
|
|
329
|
+
Specifies whether to display the interaction between LLM and Vantage.
|
|
330
|
+
Default Value: False
|
|
331
|
+
Types: bool
|
|
332
|
+
|
|
333
|
+
ignore_tdml_prompt:
|
|
334
|
+
Optional Argument.
|
|
335
|
+
Specifies wether to ignore tdml engineered prompt design.
|
|
336
|
+
When "ignore_tdml_prompt" is set to True then tdml engineered
|
|
337
|
+
prompt is ignored. Otherwise, prompt is used for accurate results.
|
|
338
|
+
Notes:
|
|
339
|
+
* Custom engineered prompt is used for higher accurate results.
|
|
340
|
+
* Set "ignore_tdml_prompt" to True when LLM contains limitation on
|
|
341
|
+
input token size.
|
|
342
|
+
Default Value: False
|
|
343
|
+
Types: bool
|
|
344
|
+
|
|
345
|
+
RETURNS:
|
|
346
|
+
TeradataMlException, ValueError, TypeError
|
|
347
|
+
|
|
348
|
+
RAISES:
|
|
349
|
+
None
|
|
350
|
+
|
|
351
|
+
EXAMPLES:
|
|
352
|
+
# Import the modules.
|
|
353
|
+
from teradataml.gen_ai.convAI import tdmlAI
|
|
354
|
+
# Create LLM endpoint.
|
|
355
|
+
tdml_ai_obj = tdmlAI(api_type = "azure",
|
|
356
|
+
api_base = "https://****.openai.azure.com/",
|
|
357
|
+
api_version = "2000-11-35",
|
|
358
|
+
api_key = <provide your llm API key>,
|
|
359
|
+
engine=<provide your llm engine name>,
|
|
360
|
+
model_name="gpt-3.5-turbo")
|
|
361
|
+
|
|
362
|
+
# Create DBChain object.
|
|
363
|
+
dbchain_obj = DBChain(llm=tdml_ai_obj,verbose=False)
|
|
364
|
+
"""
|
|
365
|
+
|
|
366
|
+
# Argument validations
|
|
367
|
+
awu_matrix = []
|
|
368
|
+
awu_matrix.append(["llm", llm, False, (tdmlAI)])
|
|
369
|
+
awu_matrix.append(["include_tables", include_tables, True, (list)])
|
|
370
|
+
awu_matrix.append(["verbose", verbose, True, (bool)])
|
|
371
|
+
awu_matrix.append(["ignore_tdml_prompt", ignore_tdml_prompt, True, (bool)])
|
|
372
|
+
# Validate argument types
|
|
373
|
+
_Validators._validate_function_arguments(awu_matrix)
|
|
374
|
+
# Set LLM inference endpoint used for sql query generation.
|
|
375
|
+
self._llm = llm.get_llm()
|
|
376
|
+
# Set table names needs to be explored.
|
|
377
|
+
self._table_names = include_tables
|
|
378
|
+
# Set verbose to display intermediate steps.
|
|
379
|
+
self._verbose = verbose
|
|
380
|
+
# Database custom prompt to improve the SQL generation accuracy.
|
|
381
|
+
self.__PROMPT = PromptTemplate(
|
|
382
|
+
input_variables=["input", "table_info"], template=self.__DEFAULT_TEMPLATE ) \
|
|
383
|
+
if not ignore_tdml_prompt else None
|
|
384
|
+
# Maintains interaction records.
|
|
385
|
+
self.__records = []
|
|
386
|
+
|
|
387
|
+
# Get all table names except views when table name is 'None'.
|
|
388
|
+
if self._table_names is None:
|
|
389
|
+
self.__pull_db_details()
|
|
390
|
+
# set tdsqlalchemy engine.
|
|
391
|
+
self.__engine = get_context()
|
|
392
|
+
|
|
393
|
+
# Initialize SQLDatabase chain.
|
|
394
|
+
self.__db = SQLDatabase(engine=self.__engine, include_tables=self._table_names)
|
|
395
|
+
# Initialize SQLDatabase Chain.
|
|
396
|
+
self.__db_chain = SQLDatabaseChain.from_llm(self._llm, self.__db, verbose=verbose, prompt=self.__PROMPT)
|
|
397
|
+
|
|
398
|
+
|
|
399
|
+
def run(self, query):
|
|
400
|
+
"""
|
|
401
|
+
DESCRIPTION:
|
|
402
|
+
Function interact with Vantage Database using human natural
|
|
403
|
+
language.
|
|
404
|
+
|
|
405
|
+
PARAMETERS:
|
|
406
|
+
query:
|
|
407
|
+
Required Argument.
|
|
408
|
+
Specifies the question which needs to be answered by LLM.
|
|
409
|
+
Query must be precise and represented in English.
|
|
410
|
+
Types: str
|
|
411
|
+
|
|
412
|
+
RETURNS:
|
|
413
|
+
str
|
|
414
|
+
|
|
415
|
+
RAISES:
|
|
416
|
+
TeradataMlException, ValueError
|
|
417
|
+
|
|
418
|
+
EXAMPLES:
|
|
419
|
+
dbchain_obj.run("How many house present in Boston")
|
|
420
|
+
"""
|
|
421
|
+
awu_matrix = []
|
|
422
|
+
awu_matrix.append(["query", query, False, (str)])
|
|
423
|
+
# Validate argument types
|
|
424
|
+
_Validators._validate_function_arguments(awu_matrix)
|
|
425
|
+
|
|
426
|
+
# Trigger the Database chain interaction.
|
|
427
|
+
result = self.__db_chain.run(query)
|
|
428
|
+
self.__records.append({query:result})
|
|
429
|
+
# return result when verbose is set to 'False'.
|
|
430
|
+
if not self._verbose:
|
|
431
|
+
return result
|
|
432
|
+
|
|
433
|
+
|
|
434
|
+
def __pull_db_details(self):
|
|
435
|
+
"""
|
|
436
|
+
DESCRIPTION:
|
|
437
|
+
Internal function to retrieve table names.
|
|
438
|
+
|
|
439
|
+
PARAMETERS:
|
|
440
|
+
None
|
|
441
|
+
|
|
442
|
+
RETURNS:
|
|
443
|
+
list
|
|
444
|
+
|
|
445
|
+
RAISES:
|
|
446
|
+
None
|
|
447
|
+
|
|
448
|
+
EXAMPLES:
|
|
449
|
+
self.__pull_db_details()
|
|
450
|
+
"""
|
|
451
|
+
_connection = get_connection()
|
|
452
|
+
self._table_names = _connection.dialect.get_table_names(_connection)
|
|
453
|
+
|
|
454
|
+
|
|
455
|
+
def get_interaction_records(self):
|
|
456
|
+
"""
|
|
457
|
+
DESCRIPTION:
|
|
458
|
+
Get the interaction records.
|
|
459
|
+
|
|
460
|
+
PARAMETERS:
|
|
461
|
+
None
|
|
462
|
+
|
|
463
|
+
RETURNS:
|
|
464
|
+
list
|
|
465
|
+
|
|
466
|
+
RAISES:
|
|
467
|
+
None
|
|
468
|
+
|
|
469
|
+
EXAMPLES:
|
|
470
|
+
dbchain_obj.get_interaction_records()
|
|
471
|
+
"""
|
|
472
|
+
return self.__records
|
|
473
473
|
|