pyxllib 0.3.96__py3-none-any.whl → 0.3.197__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (306) hide show
  1. pyxllib/algo/geo.py +12 -0
  2. pyxllib/algo/intervals.py +1 -1
  3. pyxllib/algo/matcher.py +78 -0
  4. pyxllib/algo/pupil.py +187 -19
  5. pyxllib/algo/specialist.py +2 -1
  6. pyxllib/algo/stat.py +38 -2
  7. {pyxlpr → pyxllib/autogui}/__init__.py +1 -1
  8. pyxllib/autogui/activewin.py +246 -0
  9. pyxllib/autogui/all.py +9 -0
  10. pyxllib/{ext/autogui → autogui}/autogui.py +40 -11
  11. pyxllib/autogui/uiautolib.py +362 -0
  12. pyxllib/autogui/wechat.py +827 -0
  13. pyxllib/autogui/wechat_msg.py +421 -0
  14. pyxllib/autogui/wxautolib.py +84 -0
  15. pyxllib/cv/slidercaptcha.py +137 -0
  16. pyxllib/data/echarts.py +123 -12
  17. pyxllib/data/jsonlib.py +89 -0
  18. pyxllib/data/pglib.py +514 -30
  19. pyxllib/data/sqlite.py +231 -4
  20. pyxllib/ext/JLineViewer.py +14 -1
  21. pyxllib/ext/drissionlib.py +277 -0
  22. pyxllib/ext/kq5034lib.py +0 -1594
  23. pyxllib/ext/robustprocfile.py +497 -0
  24. pyxllib/ext/unixlib.py +6 -5
  25. pyxllib/ext/utools.py +108 -95
  26. pyxllib/ext/webhook.py +32 -14
  27. pyxllib/ext/wjxlib.py +88 -0
  28. pyxllib/ext/wpsapi.py +124 -0
  29. pyxllib/ext/xlwork.py +9 -0
  30. pyxllib/ext/yuquelib.py +1003 -71
  31. pyxllib/file/docxlib.py +1 -1
  32. pyxllib/file/libreoffice.py +165 -0
  33. pyxllib/file/movielib.py +9 -0
  34. pyxllib/file/packlib/__init__.py +112 -75
  35. pyxllib/file/pdflib.py +1 -1
  36. pyxllib/file/pupil.py +1 -1
  37. pyxllib/file/specialist/dirlib.py +1 -1
  38. pyxllib/file/specialist/download.py +10 -3
  39. pyxllib/file/specialist/filelib.py +266 -55
  40. pyxllib/file/xlsxlib.py +205 -50
  41. pyxllib/file/xlsyncfile.py +341 -0
  42. pyxllib/prog/cachetools.py +64 -0
  43. pyxllib/prog/filelock.py +42 -0
  44. pyxllib/prog/multiprogs.py +940 -0
  45. pyxllib/prog/newbie.py +9 -2
  46. pyxllib/prog/pupil.py +129 -60
  47. pyxllib/prog/specialist/__init__.py +176 -2
  48. pyxllib/prog/specialist/bc.py +5 -2
  49. pyxllib/prog/specialist/browser.py +11 -2
  50. pyxllib/prog/specialist/datetime.py +68 -0
  51. pyxllib/prog/specialist/tictoc.py +12 -13
  52. pyxllib/prog/specialist/xllog.py +5 -5
  53. pyxllib/prog/xlosenv.py +7 -0
  54. pyxllib/text/airscript.js +744 -0
  55. pyxllib/text/charclasslib.py +17 -5
  56. pyxllib/text/jiebalib.py +6 -3
  57. pyxllib/text/jinjalib.py +32 -0
  58. pyxllib/text/jsa_ai_prompt.md +271 -0
  59. pyxllib/text/jscode.py +159 -4
  60. pyxllib/text/nestenv.py +1 -1
  61. pyxllib/text/newbie.py +12 -0
  62. pyxllib/text/pupil/common.py +26 -0
  63. pyxllib/text/specialist/ptag.py +2 -2
  64. pyxllib/text/templates/echart_base.html +11 -0
  65. pyxllib/text/templates/highlight_code.html +17 -0
  66. pyxllib/text/templates/latex_editor.html +103 -0
  67. pyxllib/text/xmllib.py +76 -14
  68. pyxllib/xl.py +2 -1
  69. pyxllib-0.3.197.dist-info/METADATA +48 -0
  70. pyxllib-0.3.197.dist-info/RECORD +126 -0
  71. {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info}/WHEEL +1 -2
  72. pyxllib/ext/autogui/__init__.py +0 -8
  73. pyxllib-0.3.96.dist-info/METADATA +0 -51
  74. pyxllib-0.3.96.dist-info/RECORD +0 -333
  75. pyxllib-0.3.96.dist-info/top_level.txt +0 -2
  76. pyxlpr/ai/__init__.py +0 -5
  77. pyxlpr/ai/clientlib.py +0 -1281
  78. pyxlpr/ai/specialist.py +0 -286
  79. pyxlpr/ai/torch_app.py +0 -172
  80. pyxlpr/ai/xlpaddle.py +0 -655
  81. pyxlpr/ai/xltorch.py +0 -705
  82. pyxlpr/data/__init__.py +0 -11
  83. pyxlpr/data/coco.py +0 -1325
  84. pyxlpr/data/datacls.py +0 -365
  85. pyxlpr/data/datasets.py +0 -200
  86. pyxlpr/data/gptlib.py +0 -1291
  87. pyxlpr/data/icdar/__init__.py +0 -96
  88. pyxlpr/data/icdar/deteval.py +0 -377
  89. pyxlpr/data/icdar/icdar2013.py +0 -341
  90. pyxlpr/data/icdar/iou.py +0 -340
  91. pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
  92. pyxlpr/data/imtextline.py +0 -473
  93. pyxlpr/data/labelme.py +0 -866
  94. pyxlpr/data/removeline.py +0 -179
  95. pyxlpr/data/specialist.py +0 -57
  96. pyxlpr/eval/__init__.py +0 -85
  97. pyxlpr/paddleocr.py +0 -776
  98. pyxlpr/ppocr/__init__.py +0 -15
  99. pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
  100. pyxlpr/ppocr/data/__init__.py +0 -135
  101. pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
  102. pyxlpr/ppocr/data/imaug/__init__.py +0 -67
  103. pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
  104. pyxlpr/ppocr/data/imaug/east_process.py +0 -437
  105. pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
  106. pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
  107. pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
  108. pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
  109. pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
  110. pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
  111. pyxlpr/ppocr/data/imaug/operators.py +0 -433
  112. pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
  113. pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
  114. pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
  115. pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
  116. pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
  117. pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
  118. pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
  119. pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
  120. pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
  121. pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
  122. pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
  123. pyxlpr/ppocr/data/simple_dataset.py +0 -372
  124. pyxlpr/ppocr/losses/__init__.py +0 -61
  125. pyxlpr/ppocr/losses/ace_loss.py +0 -52
  126. pyxlpr/ppocr/losses/basic_loss.py +0 -135
  127. pyxlpr/ppocr/losses/center_loss.py +0 -88
  128. pyxlpr/ppocr/losses/cls_loss.py +0 -30
  129. pyxlpr/ppocr/losses/combined_loss.py +0 -67
  130. pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
  131. pyxlpr/ppocr/losses/det_db_loss.py +0 -80
  132. pyxlpr/ppocr/losses/det_east_loss.py +0 -63
  133. pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
  134. pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
  135. pyxlpr/ppocr/losses/distillation_loss.py +0 -272
  136. pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
  137. pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
  138. pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
  139. pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
  140. pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
  141. pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
  142. pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
  143. pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
  144. pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
  145. pyxlpr/ppocr/losses/table_att_loss.py +0 -109
  146. pyxlpr/ppocr/metrics/__init__.py +0 -44
  147. pyxlpr/ppocr/metrics/cls_metric.py +0 -45
  148. pyxlpr/ppocr/metrics/det_metric.py +0 -82
  149. pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
  150. pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
  151. pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
  152. pyxlpr/ppocr/metrics/kie_metric.py +0 -70
  153. pyxlpr/ppocr/metrics/rec_metric.py +0 -75
  154. pyxlpr/ppocr/metrics/table_metric.py +0 -50
  155. pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
  156. pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
  157. pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
  158. pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
  159. pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
  160. pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
  161. pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
  162. pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
  163. pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
  164. pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
  165. pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
  166. pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
  167. pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
  168. pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
  169. pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
  170. pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
  171. pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
  172. pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
  173. pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
  174. pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
  175. pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
  176. pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
  177. pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
  178. pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
  179. pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
  180. pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
  181. pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
  182. pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
  183. pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
  184. pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
  185. pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
  186. pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
  187. pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
  188. pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
  189. pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
  190. pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
  191. pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
  192. pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
  193. pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
  194. pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
  195. pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
  196. pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
  197. pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
  198. pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
  199. pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
  200. pyxlpr/ppocr/optimizer/__init__.py +0 -61
  201. pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
  202. pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
  203. pyxlpr/ppocr/optimizer/optimizer.py +0 -160
  204. pyxlpr/ppocr/optimizer/regularizer.py +0 -52
  205. pyxlpr/ppocr/postprocess/__init__.py +0 -55
  206. pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
  207. pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
  208. pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
  209. pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
  210. pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
  211. pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
  212. pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
  213. pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
  214. pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
  215. pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
  216. pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
  217. pyxlpr/ppocr/tools/__init__.py +0 -14
  218. pyxlpr/ppocr/tools/eval.py +0 -83
  219. pyxlpr/ppocr/tools/export_center.py +0 -77
  220. pyxlpr/ppocr/tools/export_model.py +0 -129
  221. pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
  222. pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
  223. pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
  224. pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
  225. pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
  226. pyxlpr/ppocr/tools/infer/utility.py +0 -629
  227. pyxlpr/ppocr/tools/infer_cls.py +0 -83
  228. pyxlpr/ppocr/tools/infer_det.py +0 -134
  229. pyxlpr/ppocr/tools/infer_e2e.py +0 -122
  230. pyxlpr/ppocr/tools/infer_kie.py +0 -153
  231. pyxlpr/ppocr/tools/infer_rec.py +0 -146
  232. pyxlpr/ppocr/tools/infer_table.py +0 -107
  233. pyxlpr/ppocr/tools/program.py +0 -596
  234. pyxlpr/ppocr/tools/test_hubserving.py +0 -117
  235. pyxlpr/ppocr/tools/train.py +0 -163
  236. pyxlpr/ppocr/tools/xlprog.py +0 -748
  237. pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
  238. pyxlpr/ppocr/utils/__init__.py +0 -24
  239. pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
  240. pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
  241. pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
  242. pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
  243. pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
  244. pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
  245. pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
  246. pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
  247. pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
  248. pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
  249. pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
  250. pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
  251. pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
  252. pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
  253. pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
  254. pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
  255. pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
  256. pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
  257. pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
  258. pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
  259. pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
  260. pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
  261. pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
  262. pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
  263. pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
  264. pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
  265. pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
  266. pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
  267. pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
  268. pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
  269. pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
  270. pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
  271. pyxlpr/ppocr/utils/dict90.txt +0 -90
  272. pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
  273. pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
  274. pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
  275. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
  276. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
  277. pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
  278. pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
  279. pyxlpr/ppocr/utils/en_dict.txt +0 -95
  280. pyxlpr/ppocr/utils/gen_label.py +0 -81
  281. pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
  282. pyxlpr/ppocr/utils/iou.py +0 -54
  283. pyxlpr/ppocr/utils/logging.py +0 -69
  284. pyxlpr/ppocr/utils/network.py +0 -84
  285. pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
  286. pyxlpr/ppocr/utils/profiler.py +0 -110
  287. pyxlpr/ppocr/utils/save_load.py +0 -150
  288. pyxlpr/ppocr/utils/stats.py +0 -72
  289. pyxlpr/ppocr/utils/utility.py +0 -80
  290. pyxlpr/ppstructure/__init__.py +0 -13
  291. pyxlpr/ppstructure/predict_system.py +0 -187
  292. pyxlpr/ppstructure/table/__init__.py +0 -13
  293. pyxlpr/ppstructure/table/eval_table.py +0 -72
  294. pyxlpr/ppstructure/table/matcher.py +0 -192
  295. pyxlpr/ppstructure/table/predict_structure.py +0 -136
  296. pyxlpr/ppstructure/table/predict_table.py +0 -221
  297. pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
  298. pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
  299. pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
  300. pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
  301. pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
  302. pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
  303. pyxlpr/ppstructure/utility.py +0 -71
  304. pyxlpr/xlai.py +0 -10
  305. /pyxllib/{ext/autogui → autogui}/virtualkey.py +0 -0
  306. {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info/licenses}/LICENSE +0 -0
@@ -1,592 +0,0 @@
1
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- """Contains various CTC decoders."""
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
-
19
- import cv2
20
- import math
21
-
22
- import numpy as np
23
- from itertools import groupby
24
- from skimage.morphology._skeletonize import thin
25
-
26
-
27
- def get_dict(character_dict_path):
28
- character_str = ""
29
- with open(character_dict_path, "rb") as fin:
30
- lines = fin.readlines()
31
- for line in lines:
32
- line = line.decode('utf-8').strip("\n").strip("\r\n")
33
- character_str += line
34
- dict_character = list(character_str)
35
- return dict_character
36
-
37
-
38
- def point_pair2poly(point_pair_list):
39
- """
40
- Transfer vertical point_pairs into poly point in clockwise.
41
- """
42
- pair_length_list = []
43
- for point_pair in point_pair_list:
44
- pair_length = np.linalg.norm(point_pair[0] - point_pair[1])
45
- pair_length_list.append(pair_length)
46
- pair_length_list = np.array(pair_length_list)
47
- pair_info = (pair_length_list.max(), pair_length_list.min(),
48
- pair_length_list.mean())
49
-
50
- point_num = len(point_pair_list) * 2
51
- point_list = [0] * point_num
52
- for idx, point_pair in enumerate(point_pair_list):
53
- point_list[idx] = point_pair[0]
54
- point_list[point_num - 1 - idx] = point_pair[1]
55
- return np.array(point_list).reshape(-1, 2), pair_info
56
-
57
-
58
- def shrink_quad_along_width(quad, begin_width_ratio=0., end_width_ratio=1.):
59
- """
60
- Generate shrink_quad_along_width.
61
- """
62
- ratio_pair = np.array(
63
- [[begin_width_ratio], [end_width_ratio]], dtype=np.float32)
64
- p0_1 = quad[0] + (quad[1] - quad[0]) * ratio_pair
65
- p3_2 = quad[3] + (quad[2] - quad[3]) * ratio_pair
66
- return np.array([p0_1[0], p0_1[1], p3_2[1], p3_2[0]])
67
-
68
-
69
- def expand_poly_along_width(poly, shrink_ratio_of_width=0.3):
70
- """
71
- expand poly along width.
72
- """
73
- point_num = poly.shape[0]
74
- left_quad = np.array(
75
- [poly[0], poly[1], poly[-2], poly[-1]], dtype=np.float32)
76
- left_ratio = -shrink_ratio_of_width * np.linalg.norm(left_quad[0] - left_quad[3]) / \
77
- (np.linalg.norm(left_quad[0] - left_quad[1]) + 1e-6)
78
- left_quad_expand = shrink_quad_along_width(left_quad, left_ratio, 1.0)
79
- right_quad = np.array(
80
- [
81
- poly[point_num // 2 - 2], poly[point_num // 2 - 1],
82
- poly[point_num // 2], poly[point_num // 2 + 1]
83
- ],
84
- dtype=np.float32)
85
- right_ratio = 1.0 + \
86
- shrink_ratio_of_width * np.linalg.norm(right_quad[0] - right_quad[3]) / \
87
- (np.linalg.norm(right_quad[0] - right_quad[1]) + 1e-6)
88
- right_quad_expand = shrink_quad_along_width(right_quad, 0.0, right_ratio)
89
- poly[0] = left_quad_expand[0]
90
- poly[-1] = left_quad_expand[-1]
91
- poly[point_num // 2 - 1] = right_quad_expand[1]
92
- poly[point_num // 2] = right_quad_expand[2]
93
- return poly
94
-
95
-
96
- def softmax(logits):
97
- """
98
- logits: N x d
99
- """
100
- max_value = np.max(logits, axis=1, keepdims=True)
101
- exp = np.exp(logits - max_value)
102
- exp_sum = np.sum(exp, axis=1, keepdims=True)
103
- dist = exp / exp_sum
104
- return dist
105
-
106
-
107
- def get_keep_pos_idxs(labels, remove_blank=None):
108
- """
109
- Remove duplicate and get pos idxs of keep items.
110
- The value of keep_blank should be [None, 95].
111
- """
112
- duplicate_len_list = []
113
- keep_pos_idx_list = []
114
- keep_char_idx_list = []
115
- for k, v_ in groupby(labels):
116
- current_len = len(list(v_))
117
- if k != remove_blank:
118
- current_idx = int(sum(duplicate_len_list) + current_len // 2)
119
- keep_pos_idx_list.append(current_idx)
120
- keep_char_idx_list.append(k)
121
- duplicate_len_list.append(current_len)
122
- return keep_char_idx_list, keep_pos_idx_list
123
-
124
-
125
- def remove_blank(labels, blank=0):
126
- new_labels = [x for x in labels if x != blank]
127
- return new_labels
128
-
129
-
130
- def insert_blank(labels, blank=0):
131
- new_labels = [blank]
132
- for l in labels:
133
- new_labels += [l, blank]
134
- return new_labels
135
-
136
-
137
- def ctc_greedy_decoder(probs_seq, blank=95, keep_blank_in_idxs=True):
138
- """
139
- CTC greedy (best path) decoder.
140
- """
141
- raw_str = np.argmax(np.array(probs_seq), axis=1)
142
- remove_blank_in_pos = None if keep_blank_in_idxs else blank
143
- dedup_str, keep_idx_list = get_keep_pos_idxs(
144
- raw_str, remove_blank=remove_blank_in_pos)
145
- dst_str = remove_blank(dedup_str, blank=blank)
146
- return dst_str, keep_idx_list
147
-
148
-
149
- def instance_ctc_greedy_decoder(gather_info,
150
- logits_map,
151
- keep_blank_in_idxs=True):
152
- """
153
- gather_info: [[x, y], [x, y] ...]
154
- logits_map: H x W X (n_chars + 1)
155
- """
156
- _, _, C = logits_map.shape
157
- ys, xs = zip(*gather_info)
158
- logits_seq = logits_map[list(ys), list(xs)] # n x 96
159
- probs_seq = softmax(logits_seq)
160
- dst_str, keep_idx_list = ctc_greedy_decoder(
161
- probs_seq, blank=C - 1, keep_blank_in_idxs=keep_blank_in_idxs)
162
- keep_gather_list = [gather_info[idx] for idx in keep_idx_list]
163
- return dst_str, keep_gather_list
164
-
165
-
166
- def ctc_decoder_for_image(gather_info_list, logits_map,
167
- keep_blank_in_idxs=True):
168
- """
169
- CTC decoder using multiple processes.
170
- """
171
- decoder_results = []
172
- for gather_info in gather_info_list:
173
- res = instance_ctc_greedy_decoder(
174
- gather_info, logits_map, keep_blank_in_idxs=keep_blank_in_idxs)
175
- decoder_results.append(res)
176
- return decoder_results
177
-
178
-
179
- def sort_with_direction(pos_list, f_direction):
180
- """
181
- f_direction: h x w x 2
182
- pos_list: [[y, x], [y, x], [y, x] ...]
183
- """
184
-
185
- def sort_part_with_direction(pos_list, point_direction):
186
- pos_list = np.array(pos_list).reshape(-1, 2)
187
- point_direction = np.array(point_direction).reshape(-1, 2)
188
- average_direction = np.mean(point_direction, axis=0, keepdims=True)
189
- pos_proj_leng = np.sum(pos_list * average_direction, axis=1)
190
- sorted_list = pos_list[np.argsort(pos_proj_leng)].tolist()
191
- sorted_direction = point_direction[np.argsort(pos_proj_leng)].tolist()
192
- return sorted_list, sorted_direction
193
-
194
- pos_list = np.array(pos_list).reshape(-1, 2)
195
- point_direction = f_direction[pos_list[:, 0], pos_list[:, 1]] # x, y
196
- point_direction = point_direction[:, ::-1] # x, y -> y, x
197
- sorted_point, sorted_direction = sort_part_with_direction(pos_list,
198
- point_direction)
199
-
200
- point_num = len(sorted_point)
201
- if point_num >= 16:
202
- middle_num = point_num // 2
203
- first_part_point = sorted_point[:middle_num]
204
- first_point_direction = sorted_direction[:middle_num]
205
- sorted_fist_part_point, sorted_fist_part_direction = sort_part_with_direction(
206
- first_part_point, first_point_direction)
207
-
208
- last_part_point = sorted_point[middle_num:]
209
- last_point_direction = sorted_direction[middle_num:]
210
- sorted_last_part_point, sorted_last_part_direction = sort_part_with_direction(
211
- last_part_point, last_point_direction)
212
- sorted_point = sorted_fist_part_point + sorted_last_part_point
213
- sorted_direction = sorted_fist_part_direction + sorted_last_part_direction
214
-
215
- return sorted_point, np.array(sorted_direction)
216
-
217
-
218
- def add_id(pos_list, image_id=0):
219
- """
220
- Add id for gather feature, for inference.
221
- """
222
- new_list = []
223
- for item in pos_list:
224
- new_list.append((image_id, item[0], item[1]))
225
- return new_list
226
-
227
-
228
- def sort_and_expand_with_direction(pos_list, f_direction):
229
- """
230
- f_direction: h x w x 2
231
- pos_list: [[y, x], [y, x], [y, x] ...]
232
- """
233
- h, w, _ = f_direction.shape
234
- sorted_list, point_direction = sort_with_direction(pos_list, f_direction)
235
-
236
- # expand along
237
- point_num = len(sorted_list)
238
- sub_direction_len = max(point_num // 3, 2)
239
- left_direction = point_direction[:sub_direction_len, :]
240
- right_dirction = point_direction[point_num - sub_direction_len:, :]
241
-
242
- left_average_direction = -np.mean(left_direction, axis=0, keepdims=True)
243
- left_average_len = np.linalg.norm(left_average_direction)
244
- left_start = np.array(sorted_list[0])
245
- left_step = left_average_direction / (left_average_len + 1e-6)
246
-
247
- right_average_direction = np.mean(right_dirction, axis=0, keepdims=True)
248
- right_average_len = np.linalg.norm(right_average_direction)
249
- right_step = right_average_direction / (right_average_len + 1e-6)
250
- right_start = np.array(sorted_list[-1])
251
-
252
- append_num = max(
253
- int((left_average_len + right_average_len) / 2.0 * 0.15), 1)
254
- left_list = []
255
- right_list = []
256
- for i in range(append_num):
257
- ly, lx = np.round(left_start + left_step * (i + 1)).flatten().astype(
258
- 'int32').tolist()
259
- if ly < h and lx < w and (ly, lx) not in left_list:
260
- left_list.append((ly, lx))
261
- ry, rx = np.round(right_start + right_step * (i + 1)).flatten().astype(
262
- 'int32').tolist()
263
- if ry < h and rx < w and (ry, rx) not in right_list:
264
- right_list.append((ry, rx))
265
-
266
- all_list = left_list[::-1] + sorted_list + right_list
267
- return all_list
268
-
269
-
270
- def sort_and_expand_with_direction_v2(pos_list, f_direction, binary_tcl_map):
271
- """
272
- f_direction: h x w x 2
273
- pos_list: [[y, x], [y, x], [y, x] ...]
274
- binary_tcl_map: h x w
275
- """
276
- h, w, _ = f_direction.shape
277
- sorted_list, point_direction = sort_with_direction(pos_list, f_direction)
278
-
279
- # expand along
280
- point_num = len(sorted_list)
281
- sub_direction_len = max(point_num // 3, 2)
282
- left_direction = point_direction[:sub_direction_len, :]
283
- right_dirction = point_direction[point_num - sub_direction_len:, :]
284
-
285
- left_average_direction = -np.mean(left_direction, axis=0, keepdims=True)
286
- left_average_len = np.linalg.norm(left_average_direction)
287
- left_start = np.array(sorted_list[0])
288
- left_step = left_average_direction / (left_average_len + 1e-6)
289
-
290
- right_average_direction = np.mean(right_dirction, axis=0, keepdims=True)
291
- right_average_len = np.linalg.norm(right_average_direction)
292
- right_step = right_average_direction / (right_average_len + 1e-6)
293
- right_start = np.array(sorted_list[-1])
294
-
295
- append_num = max(
296
- int((left_average_len + right_average_len) / 2.0 * 0.15), 1)
297
- max_append_num = 2 * append_num
298
-
299
- left_list = []
300
- right_list = []
301
- for i in range(max_append_num):
302
- ly, lx = np.round(left_start + left_step * (i + 1)).flatten().astype(
303
- 'int32').tolist()
304
- if ly < h and lx < w and (ly, lx) not in left_list:
305
- if binary_tcl_map[ly, lx] > 0.5:
306
- left_list.append((ly, lx))
307
- else:
308
- break
309
-
310
- for i in range(max_append_num):
311
- ry, rx = np.round(right_start + right_step * (i + 1)).flatten().astype(
312
- 'int32').tolist()
313
- if ry < h and rx < w and (ry, rx) not in right_list:
314
- if binary_tcl_map[ry, rx] > 0.5:
315
- right_list.append((ry, rx))
316
- else:
317
- break
318
-
319
- all_list = left_list[::-1] + sorted_list + right_list
320
- return all_list
321
-
322
-
323
- def generate_pivot_list_curved(p_score,
324
- p_char_maps,
325
- f_direction,
326
- score_thresh=0.5,
327
- is_expand=True,
328
- is_backbone=False,
329
- image_id=0):
330
- """
331
- return center point and end point of TCL instance; filter with the char maps;
332
- """
333
- p_score = p_score[0]
334
- f_direction = f_direction.transpose(1, 2, 0)
335
- p_tcl_map = (p_score > score_thresh) * 1.0
336
- skeleton_map = thin(p_tcl_map)
337
- instance_count, instance_label_map = cv2.connectedComponents(
338
- skeleton_map.astype(np.uint8), connectivity=8)
339
-
340
- # get TCL Instance
341
- all_pos_yxs = []
342
- center_pos_yxs = []
343
- end_points_yxs = []
344
- instance_center_pos_yxs = []
345
- pred_strs = []
346
- if instance_count > 0:
347
- for instance_id in range(1, instance_count):
348
- pos_list = []
349
- ys, xs = np.where(instance_label_map == instance_id)
350
- pos_list = list(zip(ys, xs))
351
-
352
- ### FIX-ME, eliminate outlier
353
- if len(pos_list) < 3:
354
- continue
355
-
356
- if is_expand:
357
- pos_list_sorted = sort_and_expand_with_direction_v2(
358
- pos_list, f_direction, p_tcl_map)
359
- else:
360
- pos_list_sorted, _ = sort_with_direction(pos_list, f_direction)
361
- all_pos_yxs.append(pos_list_sorted)
362
-
363
- # use decoder to filter backgroud points.
364
- p_char_maps = p_char_maps.transpose([1, 2, 0])
365
- decode_res = ctc_decoder_for_image(
366
- all_pos_yxs, logits_map=p_char_maps, keep_blank_in_idxs=True)
367
- for decoded_str, keep_yxs_list in decode_res:
368
- if is_backbone:
369
- keep_yxs_list_with_id = add_id(keep_yxs_list, image_id=image_id)
370
- instance_center_pos_yxs.append(keep_yxs_list_with_id)
371
- pred_strs.append(decoded_str)
372
- else:
373
- end_points_yxs.extend((keep_yxs_list[0], keep_yxs_list[-1]))
374
- center_pos_yxs.extend(keep_yxs_list)
375
-
376
- if is_backbone:
377
- return pred_strs, instance_center_pos_yxs
378
- else:
379
- return center_pos_yxs, end_points_yxs
380
-
381
-
382
- def generate_pivot_list_horizontal(p_score,
383
- p_char_maps,
384
- f_direction,
385
- score_thresh=0.5,
386
- is_backbone=False,
387
- image_id=0):
388
- """
389
- return center point and end point of TCL instance; filter with the char maps;
390
- """
391
- p_score = p_score[0]
392
- f_direction = f_direction.transpose(1, 2, 0)
393
- p_tcl_map_bi = (p_score > score_thresh) * 1.0
394
- instance_count, instance_label_map = cv2.connectedComponents(
395
- p_tcl_map_bi.astype(np.uint8), connectivity=8)
396
-
397
- # get TCL Instance
398
- all_pos_yxs = []
399
- center_pos_yxs = []
400
- end_points_yxs = []
401
- instance_center_pos_yxs = []
402
-
403
- if instance_count > 0:
404
- for instance_id in range(1, instance_count):
405
- pos_list = []
406
- ys, xs = np.where(instance_label_map == instance_id)
407
- pos_list = list(zip(ys, xs))
408
-
409
- ### FIX-ME, eliminate outlier
410
- if len(pos_list) < 5:
411
- continue
412
-
413
- # add rule here
414
- main_direction = extract_main_direction(pos_list,
415
- f_direction) # y x
416
- reference_directin = np.array([0, 1]).reshape([-1, 2]) # y x
417
- is_h_angle = abs(np.sum(
418
- main_direction * reference_directin)) < math.cos(math.pi / 180 *
419
- 70)
420
-
421
- point_yxs = np.array(pos_list)
422
- max_y, max_x = np.max(point_yxs, axis=0)
423
- min_y, min_x = np.min(point_yxs, axis=0)
424
- is_h_len = (max_y - min_y) < 1.5 * (max_x - min_x)
425
-
426
- pos_list_final = []
427
- if is_h_len:
428
- xs = np.unique(xs)
429
- for x in xs:
430
- ys = instance_label_map[:, x].copy().reshape((-1, ))
431
- y = int(np.where(ys == instance_id)[0].mean())
432
- pos_list_final.append((y, x))
433
- else:
434
- ys = np.unique(ys)
435
- for y in ys:
436
- xs = instance_label_map[y, :].copy().reshape((-1, ))
437
- x = int(np.where(xs == instance_id)[0].mean())
438
- pos_list_final.append((y, x))
439
-
440
- pos_list_sorted, _ = sort_with_direction(pos_list_final,
441
- f_direction)
442
- all_pos_yxs.append(pos_list_sorted)
443
-
444
- # use decoder to filter backgroud points.
445
- p_char_maps = p_char_maps.transpose([1, 2, 0])
446
- decode_res = ctc_decoder_for_image(
447
- all_pos_yxs, logits_map=p_char_maps, keep_blank_in_idxs=True)
448
- for decoded_str, keep_yxs_list in decode_res:
449
- if is_backbone:
450
- keep_yxs_list_with_id = add_id(keep_yxs_list, image_id=image_id)
451
- instance_center_pos_yxs.append(keep_yxs_list_with_id)
452
- else:
453
- end_points_yxs.extend((keep_yxs_list[0], keep_yxs_list[-1]))
454
- center_pos_yxs.extend(keep_yxs_list)
455
-
456
- if is_backbone:
457
- return instance_center_pos_yxs
458
- else:
459
- return center_pos_yxs, end_points_yxs
460
-
461
-
462
- def generate_pivot_list_slow(p_score,
463
- p_char_maps,
464
- f_direction,
465
- score_thresh=0.5,
466
- is_backbone=False,
467
- is_curved=True,
468
- image_id=0):
469
- """
470
- Warp all the function together.
471
- """
472
- if is_curved:
473
- return generate_pivot_list_curved(
474
- p_score,
475
- p_char_maps,
476
- f_direction,
477
- score_thresh=score_thresh,
478
- is_expand=True,
479
- is_backbone=is_backbone,
480
- image_id=image_id)
481
- else:
482
- return generate_pivot_list_horizontal(
483
- p_score,
484
- p_char_maps,
485
- f_direction,
486
- score_thresh=score_thresh,
487
- is_backbone=is_backbone,
488
- image_id=image_id)
489
-
490
-
491
- # for refine module
492
- def extract_main_direction(pos_list, f_direction):
493
- """
494
- f_direction: h x w x 2
495
- pos_list: [[y, x], [y, x], [y, x] ...]
496
- """
497
- pos_list = np.array(pos_list)
498
- point_direction = f_direction[pos_list[:, 0], pos_list[:, 1]]
499
- point_direction = point_direction[:, ::-1] # x, y -> y, x
500
- average_direction = np.mean(point_direction, axis=0, keepdims=True)
501
- average_direction = average_direction / (
502
- np.linalg.norm(average_direction) + 1e-6)
503
- return average_direction
504
-
505
-
506
- def sort_by_direction_with_image_id_deprecated(pos_list, f_direction):
507
- """
508
- f_direction: h x w x 2
509
- pos_list: [[id, y, x], [id, y, x], [id, y, x] ...]
510
- """
511
- pos_list_full = np.array(pos_list).reshape(-1, 3)
512
- pos_list = pos_list_full[:, 1:]
513
- point_direction = f_direction[pos_list[:, 0], pos_list[:, 1]] # x, y
514
- point_direction = point_direction[:, ::-1] # x, y -> y, x
515
- average_direction = np.mean(point_direction, axis=0, keepdims=True)
516
- pos_proj_leng = np.sum(pos_list * average_direction, axis=1)
517
- sorted_list = pos_list_full[np.argsort(pos_proj_leng)].tolist()
518
- return sorted_list
519
-
520
-
521
- def sort_by_direction_with_image_id(pos_list, f_direction):
522
- """
523
- f_direction: h x w x 2
524
- pos_list: [[y, x], [y, x], [y, x] ...]
525
- """
526
-
527
- def sort_part_with_direction(pos_list_full, point_direction):
528
- pos_list_full = np.array(pos_list_full).reshape(-1, 3)
529
- pos_list = pos_list_full[:, 1:]
530
- point_direction = np.array(point_direction).reshape(-1, 2)
531
- average_direction = np.mean(point_direction, axis=0, keepdims=True)
532
- pos_proj_leng = np.sum(pos_list * average_direction, axis=1)
533
- sorted_list = pos_list_full[np.argsort(pos_proj_leng)].tolist()
534
- sorted_direction = point_direction[np.argsort(pos_proj_leng)].tolist()
535
- return sorted_list, sorted_direction
536
-
537
- pos_list = np.array(pos_list).reshape(-1, 3)
538
- point_direction = f_direction[pos_list[:, 1], pos_list[:, 2]] # x, y
539
- point_direction = point_direction[:, ::-1] # x, y -> y, x
540
- sorted_point, sorted_direction = sort_part_with_direction(pos_list,
541
- point_direction)
542
-
543
- point_num = len(sorted_point)
544
- if point_num >= 16:
545
- middle_num = point_num // 2
546
- first_part_point = sorted_point[:middle_num]
547
- first_point_direction = sorted_direction[:middle_num]
548
- sorted_fist_part_point, sorted_fist_part_direction = sort_part_with_direction(
549
- first_part_point, first_point_direction)
550
-
551
- last_part_point = sorted_point[middle_num:]
552
- last_point_direction = sorted_direction[middle_num:]
553
- sorted_last_part_point, sorted_last_part_direction = sort_part_with_direction(
554
- last_part_point, last_point_direction)
555
- sorted_point = sorted_fist_part_point + sorted_last_part_point
556
- sorted_direction = sorted_fist_part_direction + sorted_last_part_direction
557
-
558
- return sorted_point
559
-
560
-
561
- def generate_pivot_list_tt_inference(p_score,
562
- p_char_maps,
563
- f_direction,
564
- score_thresh=0.5,
565
- is_backbone=False,
566
- is_curved=True,
567
- image_id=0):
568
- """
569
- return center point and end point of TCL instance; filter with the char maps;
570
- """
571
- p_score = p_score[0]
572
- f_direction = f_direction.transpose(1, 2, 0)
573
- p_tcl_map = (p_score > score_thresh) * 1.0
574
- skeleton_map = thin(p_tcl_map)
575
- instance_count, instance_label_map = cv2.connectedComponents(
576
- skeleton_map.astype(np.uint8), connectivity=8)
577
-
578
- # get TCL Instance
579
- all_pos_yxs = []
580
- if instance_count > 0:
581
- for instance_id in range(1, instance_count):
582
- pos_list = []
583
- ys, xs = np.where(instance_label_map == instance_id)
584
- pos_list = list(zip(ys, xs))
585
- ### FIX-ME, eliminate outlier
586
- if len(pos_list) < 3:
587
- continue
588
- pos_list_sorted = sort_and_expand_with_direction_v2(
589
- pos_list, f_direction, p_tcl_map)
590
- pos_list_sorted_with_id = add_id(pos_list_sorted, image_id=image_id)
591
- all_pos_yxs.append(pos_list_sorted_with_id)
592
- return all_pos_yxs