pyxllib 0.3.96__py3-none-any.whl → 0.3.197__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (306) hide show
  1. pyxllib/algo/geo.py +12 -0
  2. pyxllib/algo/intervals.py +1 -1
  3. pyxllib/algo/matcher.py +78 -0
  4. pyxllib/algo/pupil.py +187 -19
  5. pyxllib/algo/specialist.py +2 -1
  6. pyxllib/algo/stat.py +38 -2
  7. {pyxlpr → pyxllib/autogui}/__init__.py +1 -1
  8. pyxllib/autogui/activewin.py +246 -0
  9. pyxllib/autogui/all.py +9 -0
  10. pyxllib/{ext/autogui → autogui}/autogui.py +40 -11
  11. pyxllib/autogui/uiautolib.py +362 -0
  12. pyxllib/autogui/wechat.py +827 -0
  13. pyxllib/autogui/wechat_msg.py +421 -0
  14. pyxllib/autogui/wxautolib.py +84 -0
  15. pyxllib/cv/slidercaptcha.py +137 -0
  16. pyxllib/data/echarts.py +123 -12
  17. pyxllib/data/jsonlib.py +89 -0
  18. pyxllib/data/pglib.py +514 -30
  19. pyxllib/data/sqlite.py +231 -4
  20. pyxllib/ext/JLineViewer.py +14 -1
  21. pyxllib/ext/drissionlib.py +277 -0
  22. pyxllib/ext/kq5034lib.py +0 -1594
  23. pyxllib/ext/robustprocfile.py +497 -0
  24. pyxllib/ext/unixlib.py +6 -5
  25. pyxllib/ext/utools.py +108 -95
  26. pyxllib/ext/webhook.py +32 -14
  27. pyxllib/ext/wjxlib.py +88 -0
  28. pyxllib/ext/wpsapi.py +124 -0
  29. pyxllib/ext/xlwork.py +9 -0
  30. pyxllib/ext/yuquelib.py +1003 -71
  31. pyxllib/file/docxlib.py +1 -1
  32. pyxllib/file/libreoffice.py +165 -0
  33. pyxllib/file/movielib.py +9 -0
  34. pyxllib/file/packlib/__init__.py +112 -75
  35. pyxllib/file/pdflib.py +1 -1
  36. pyxllib/file/pupil.py +1 -1
  37. pyxllib/file/specialist/dirlib.py +1 -1
  38. pyxllib/file/specialist/download.py +10 -3
  39. pyxllib/file/specialist/filelib.py +266 -55
  40. pyxllib/file/xlsxlib.py +205 -50
  41. pyxllib/file/xlsyncfile.py +341 -0
  42. pyxllib/prog/cachetools.py +64 -0
  43. pyxllib/prog/filelock.py +42 -0
  44. pyxllib/prog/multiprogs.py +940 -0
  45. pyxllib/prog/newbie.py +9 -2
  46. pyxllib/prog/pupil.py +129 -60
  47. pyxllib/prog/specialist/__init__.py +176 -2
  48. pyxllib/prog/specialist/bc.py +5 -2
  49. pyxllib/prog/specialist/browser.py +11 -2
  50. pyxllib/prog/specialist/datetime.py +68 -0
  51. pyxllib/prog/specialist/tictoc.py +12 -13
  52. pyxllib/prog/specialist/xllog.py +5 -5
  53. pyxllib/prog/xlosenv.py +7 -0
  54. pyxllib/text/airscript.js +744 -0
  55. pyxllib/text/charclasslib.py +17 -5
  56. pyxllib/text/jiebalib.py +6 -3
  57. pyxllib/text/jinjalib.py +32 -0
  58. pyxllib/text/jsa_ai_prompt.md +271 -0
  59. pyxllib/text/jscode.py +159 -4
  60. pyxllib/text/nestenv.py +1 -1
  61. pyxllib/text/newbie.py +12 -0
  62. pyxllib/text/pupil/common.py +26 -0
  63. pyxllib/text/specialist/ptag.py +2 -2
  64. pyxllib/text/templates/echart_base.html +11 -0
  65. pyxllib/text/templates/highlight_code.html +17 -0
  66. pyxllib/text/templates/latex_editor.html +103 -0
  67. pyxllib/text/xmllib.py +76 -14
  68. pyxllib/xl.py +2 -1
  69. pyxllib-0.3.197.dist-info/METADATA +48 -0
  70. pyxllib-0.3.197.dist-info/RECORD +126 -0
  71. {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info}/WHEEL +1 -2
  72. pyxllib/ext/autogui/__init__.py +0 -8
  73. pyxllib-0.3.96.dist-info/METADATA +0 -51
  74. pyxllib-0.3.96.dist-info/RECORD +0 -333
  75. pyxllib-0.3.96.dist-info/top_level.txt +0 -2
  76. pyxlpr/ai/__init__.py +0 -5
  77. pyxlpr/ai/clientlib.py +0 -1281
  78. pyxlpr/ai/specialist.py +0 -286
  79. pyxlpr/ai/torch_app.py +0 -172
  80. pyxlpr/ai/xlpaddle.py +0 -655
  81. pyxlpr/ai/xltorch.py +0 -705
  82. pyxlpr/data/__init__.py +0 -11
  83. pyxlpr/data/coco.py +0 -1325
  84. pyxlpr/data/datacls.py +0 -365
  85. pyxlpr/data/datasets.py +0 -200
  86. pyxlpr/data/gptlib.py +0 -1291
  87. pyxlpr/data/icdar/__init__.py +0 -96
  88. pyxlpr/data/icdar/deteval.py +0 -377
  89. pyxlpr/data/icdar/icdar2013.py +0 -341
  90. pyxlpr/data/icdar/iou.py +0 -340
  91. pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
  92. pyxlpr/data/imtextline.py +0 -473
  93. pyxlpr/data/labelme.py +0 -866
  94. pyxlpr/data/removeline.py +0 -179
  95. pyxlpr/data/specialist.py +0 -57
  96. pyxlpr/eval/__init__.py +0 -85
  97. pyxlpr/paddleocr.py +0 -776
  98. pyxlpr/ppocr/__init__.py +0 -15
  99. pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
  100. pyxlpr/ppocr/data/__init__.py +0 -135
  101. pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
  102. pyxlpr/ppocr/data/imaug/__init__.py +0 -67
  103. pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
  104. pyxlpr/ppocr/data/imaug/east_process.py +0 -437
  105. pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
  106. pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
  107. pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
  108. pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
  109. pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
  110. pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
  111. pyxlpr/ppocr/data/imaug/operators.py +0 -433
  112. pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
  113. pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
  114. pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
  115. pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
  116. pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
  117. pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
  118. pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
  119. pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
  120. pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
  121. pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
  122. pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
  123. pyxlpr/ppocr/data/simple_dataset.py +0 -372
  124. pyxlpr/ppocr/losses/__init__.py +0 -61
  125. pyxlpr/ppocr/losses/ace_loss.py +0 -52
  126. pyxlpr/ppocr/losses/basic_loss.py +0 -135
  127. pyxlpr/ppocr/losses/center_loss.py +0 -88
  128. pyxlpr/ppocr/losses/cls_loss.py +0 -30
  129. pyxlpr/ppocr/losses/combined_loss.py +0 -67
  130. pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
  131. pyxlpr/ppocr/losses/det_db_loss.py +0 -80
  132. pyxlpr/ppocr/losses/det_east_loss.py +0 -63
  133. pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
  134. pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
  135. pyxlpr/ppocr/losses/distillation_loss.py +0 -272
  136. pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
  137. pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
  138. pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
  139. pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
  140. pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
  141. pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
  142. pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
  143. pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
  144. pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
  145. pyxlpr/ppocr/losses/table_att_loss.py +0 -109
  146. pyxlpr/ppocr/metrics/__init__.py +0 -44
  147. pyxlpr/ppocr/metrics/cls_metric.py +0 -45
  148. pyxlpr/ppocr/metrics/det_metric.py +0 -82
  149. pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
  150. pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
  151. pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
  152. pyxlpr/ppocr/metrics/kie_metric.py +0 -70
  153. pyxlpr/ppocr/metrics/rec_metric.py +0 -75
  154. pyxlpr/ppocr/metrics/table_metric.py +0 -50
  155. pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
  156. pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
  157. pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
  158. pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
  159. pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
  160. pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
  161. pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
  162. pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
  163. pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
  164. pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
  165. pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
  166. pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
  167. pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
  168. pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
  169. pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
  170. pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
  171. pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
  172. pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
  173. pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
  174. pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
  175. pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
  176. pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
  177. pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
  178. pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
  179. pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
  180. pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
  181. pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
  182. pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
  183. pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
  184. pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
  185. pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
  186. pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
  187. pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
  188. pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
  189. pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
  190. pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
  191. pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
  192. pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
  193. pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
  194. pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
  195. pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
  196. pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
  197. pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
  198. pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
  199. pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
  200. pyxlpr/ppocr/optimizer/__init__.py +0 -61
  201. pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
  202. pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
  203. pyxlpr/ppocr/optimizer/optimizer.py +0 -160
  204. pyxlpr/ppocr/optimizer/regularizer.py +0 -52
  205. pyxlpr/ppocr/postprocess/__init__.py +0 -55
  206. pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
  207. pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
  208. pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
  209. pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
  210. pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
  211. pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
  212. pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
  213. pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
  214. pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
  215. pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
  216. pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
  217. pyxlpr/ppocr/tools/__init__.py +0 -14
  218. pyxlpr/ppocr/tools/eval.py +0 -83
  219. pyxlpr/ppocr/tools/export_center.py +0 -77
  220. pyxlpr/ppocr/tools/export_model.py +0 -129
  221. pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
  222. pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
  223. pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
  224. pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
  225. pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
  226. pyxlpr/ppocr/tools/infer/utility.py +0 -629
  227. pyxlpr/ppocr/tools/infer_cls.py +0 -83
  228. pyxlpr/ppocr/tools/infer_det.py +0 -134
  229. pyxlpr/ppocr/tools/infer_e2e.py +0 -122
  230. pyxlpr/ppocr/tools/infer_kie.py +0 -153
  231. pyxlpr/ppocr/tools/infer_rec.py +0 -146
  232. pyxlpr/ppocr/tools/infer_table.py +0 -107
  233. pyxlpr/ppocr/tools/program.py +0 -596
  234. pyxlpr/ppocr/tools/test_hubserving.py +0 -117
  235. pyxlpr/ppocr/tools/train.py +0 -163
  236. pyxlpr/ppocr/tools/xlprog.py +0 -748
  237. pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
  238. pyxlpr/ppocr/utils/__init__.py +0 -24
  239. pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
  240. pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
  241. pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
  242. pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
  243. pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
  244. pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
  245. pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
  246. pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
  247. pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
  248. pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
  249. pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
  250. pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
  251. pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
  252. pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
  253. pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
  254. pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
  255. pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
  256. pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
  257. pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
  258. pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
  259. pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
  260. pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
  261. pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
  262. pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
  263. pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
  264. pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
  265. pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
  266. pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
  267. pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
  268. pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
  269. pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
  270. pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
  271. pyxlpr/ppocr/utils/dict90.txt +0 -90
  272. pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
  273. pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
  274. pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
  275. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
  276. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
  277. pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
  278. pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
  279. pyxlpr/ppocr/utils/en_dict.txt +0 -95
  280. pyxlpr/ppocr/utils/gen_label.py +0 -81
  281. pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
  282. pyxlpr/ppocr/utils/iou.py +0 -54
  283. pyxlpr/ppocr/utils/logging.py +0 -69
  284. pyxlpr/ppocr/utils/network.py +0 -84
  285. pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
  286. pyxlpr/ppocr/utils/profiler.py +0 -110
  287. pyxlpr/ppocr/utils/save_load.py +0 -150
  288. pyxlpr/ppocr/utils/stats.py +0 -72
  289. pyxlpr/ppocr/utils/utility.py +0 -80
  290. pyxlpr/ppstructure/__init__.py +0 -13
  291. pyxlpr/ppstructure/predict_system.py +0 -187
  292. pyxlpr/ppstructure/table/__init__.py +0 -13
  293. pyxlpr/ppstructure/table/eval_table.py +0 -72
  294. pyxlpr/ppstructure/table/matcher.py +0 -192
  295. pyxlpr/ppstructure/table/predict_structure.py +0 -136
  296. pyxlpr/ppstructure/table/predict_table.py +0 -221
  297. pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
  298. pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
  299. pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
  300. pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
  301. pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
  302. pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
  303. pyxlpr/ppstructure/utility.py +0 -71
  304. pyxlpr/xlai.py +0 -10
  305. /pyxllib/{ext/autogui → autogui}/virtualkey.py +0 -0
  306. {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info/licenses}/LICENSE +0 -0
@@ -1,437 +0,0 @@
1
- #copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- #Licensed under the Apache License, Version 2.0 (the "License");
4
- #you may not use this file except in compliance with the License.
5
- #You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- #Unless required by applicable law or agreed to in writing, software
10
- #distributed under the License is distributed on an "AS IS" BASIS,
11
- #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- #See the License for the specific language governing permissions and
13
- #limitations under the License.
14
- """
15
- This code is refered from:
16
- https://github.com/songdejia/EAST/blob/master/data_utils.py
17
- """
18
- import math
19
- import cv2
20
- import numpy as np
21
- import json
22
- import sys
23
- import os
24
-
25
- __all__ = ['EASTProcessTrain']
26
-
27
-
28
- class EASTProcessTrain(object):
29
- def __init__(self,
30
- image_shape=[512, 512],
31
- background_ratio=0.125,
32
- min_crop_side_ratio=0.1,
33
- min_text_size=10,
34
- **kwargs):
35
- self.input_size = image_shape[1]
36
- self.random_scale = np.array([0.5, 1, 2.0, 3.0])
37
- self.background_ratio = background_ratio
38
- self.min_crop_side_ratio = min_crop_side_ratio
39
- self.min_text_size = min_text_size
40
-
41
- def preprocess(self, im):
42
- input_size = self.input_size
43
- im_shape = im.shape
44
- im_size_min = np.min(im_shape[0:2])
45
- im_size_max = np.max(im_shape[0:2])
46
- im_scale = float(input_size) / float(im_size_max)
47
- im = cv2.resize(im, None, None, fx=im_scale, fy=im_scale)
48
- img_mean = [0.485, 0.456, 0.406]
49
- img_std = [0.229, 0.224, 0.225]
50
- # im = im[:, :, ::-1].astype(np.float32)
51
- im = im / 255
52
- im -= img_mean
53
- im /= img_std
54
- new_h, new_w, _ = im.shape
55
- im_padded = np.zeros((input_size, input_size, 3), dtype=np.float32)
56
- im_padded[:new_h, :new_w, :] = im
57
- im_padded = im_padded.transpose((2, 0, 1))
58
- im_padded = im_padded[np.newaxis, :]
59
- return im_padded, im_scale
60
-
61
- def rotate_im_poly(self, im, text_polys):
62
- """
63
- rotate image with 90 / 180 / 270 degre
64
- """
65
- im_w, im_h = im.shape[1], im.shape[0]
66
- dst_im = im.copy()
67
- dst_polys = []
68
- rand_degree_ratio = np.random.rand()
69
- rand_degree_cnt = 1
70
- if 0.333 < rand_degree_ratio < 0.666:
71
- rand_degree_cnt = 2
72
- elif rand_degree_ratio > 0.666:
73
- rand_degree_cnt = 3
74
- for i in range(rand_degree_cnt):
75
- dst_im = np.rot90(dst_im)
76
- rot_degree = -90 * rand_degree_cnt
77
- rot_angle = rot_degree * math.pi / 180.0
78
- n_poly = text_polys.shape[0]
79
- cx, cy = 0.5 * im_w, 0.5 * im_h
80
- ncx, ncy = 0.5 * dst_im.shape[1], 0.5 * dst_im.shape[0]
81
- for i in range(n_poly):
82
- wordBB = text_polys[i]
83
- poly = []
84
- for j in range(4):
85
- sx, sy = wordBB[j][0], wordBB[j][1]
86
- dx = math.cos(rot_angle) * (sx - cx)\
87
- - math.sin(rot_angle) * (sy - cy) + ncx
88
- dy = math.sin(rot_angle) * (sx - cx)\
89
- + math.cos(rot_angle) * (sy - cy) + ncy
90
- poly.append([dx, dy])
91
- dst_polys.append(poly)
92
- dst_polys = np.array(dst_polys, dtype=np.float32)
93
- return dst_im, dst_polys
94
-
95
- def polygon_area(self, poly):
96
- """
97
- compute area of a polygon
98
- :param poly:
99
- :return:
100
- """
101
- edge = [(poly[1][0] - poly[0][0]) * (poly[1][1] + poly[0][1]),
102
- (poly[2][0] - poly[1][0]) * (poly[2][1] + poly[1][1]),
103
- (poly[3][0] - poly[2][0]) * (poly[3][1] + poly[2][1]),
104
- (poly[0][0] - poly[3][0]) * (poly[0][1] + poly[3][1])]
105
- return np.sum(edge) / 2.
106
-
107
- def check_and_validate_polys(self, polys, tags, img_height, img_width):
108
- """
109
- check so that the text poly is in the same direction,
110
- and also filter some invalid polygons
111
- :param polys:
112
- :param tags:
113
- :return:
114
- """
115
- h, w = img_height, img_width
116
- if polys.shape[0] == 0:
117
- return polys
118
- polys[:, :, 0] = np.clip(polys[:, :, 0], 0, w - 1)
119
- polys[:, :, 1] = np.clip(polys[:, :, 1], 0, h - 1)
120
-
121
- validated_polys = []
122
- validated_tags = []
123
- for poly, tag in zip(polys, tags):
124
- p_area = self.polygon_area(poly)
125
- #invalid poly
126
- if abs(p_area) < 1:
127
- continue
128
- if p_area > 0:
129
- #'poly in wrong direction'
130
- if not tag:
131
- tag = True #reversed cases should be ignore
132
- poly = poly[(0, 3, 2, 1), :]
133
- validated_polys.append(poly)
134
- validated_tags.append(tag)
135
- return np.array(validated_polys), np.array(validated_tags)
136
-
137
- def draw_img_polys(self, img, polys):
138
- if len(img.shape) == 4:
139
- img = np.squeeze(img, axis=0)
140
- if img.shape[0] == 3:
141
- img = img.transpose((1, 2, 0))
142
- img[:, :, 2] += 123.68
143
- img[:, :, 1] += 116.78
144
- img[:, :, 0] += 103.94
145
- cv2.imwrite("tmp.jpg", img)
146
- img = cv2.imread("tmp.jpg")
147
- for box in polys:
148
- box = box.astype(np.int32).reshape((-1, 1, 2))
149
- cv2.polylines(img, [box], True, color=(255, 255, 0), thickness=2)
150
- import random
151
- ino = random.randint(0, 100)
152
- cv2.imwrite("tmp_%d.jpg" % ino, img)
153
- return
154
-
155
- def shrink_poly(self, poly, r):
156
- """
157
- fit a poly inside the origin poly, maybe bugs here...
158
- used for generate the score map
159
- :param poly: the text poly
160
- :param r: r in the paper
161
- :return: the shrinked poly
162
- """
163
- # shrink ratio
164
- R = 0.3
165
- # find the longer pair
166
- dist0 = np.linalg.norm(poly[0] - poly[1])
167
- dist1 = np.linalg.norm(poly[2] - poly[3])
168
- dist2 = np.linalg.norm(poly[0] - poly[3])
169
- dist3 = np.linalg.norm(poly[1] - poly[2])
170
- if dist0 + dist1 > dist2 + dist3:
171
- # first move (p0, p1), (p2, p3), then (p0, p3), (p1, p2)
172
- ## p0, p1
173
- theta = np.arctan2((poly[1][1] - poly[0][1]),
174
- (poly[1][0] - poly[0][0]))
175
- poly[0][0] += R * r[0] * np.cos(theta)
176
- poly[0][1] += R * r[0] * np.sin(theta)
177
- poly[1][0] -= R * r[1] * np.cos(theta)
178
- poly[1][1] -= R * r[1] * np.sin(theta)
179
- ## p2, p3
180
- theta = np.arctan2((poly[2][1] - poly[3][1]),
181
- (poly[2][0] - poly[3][0]))
182
- poly[3][0] += R * r[3] * np.cos(theta)
183
- poly[3][1] += R * r[3] * np.sin(theta)
184
- poly[2][0] -= R * r[2] * np.cos(theta)
185
- poly[2][1] -= R * r[2] * np.sin(theta)
186
- ## p0, p3
187
- theta = np.arctan2((poly[3][0] - poly[0][0]),
188
- (poly[3][1] - poly[0][1]))
189
- poly[0][0] += R * r[0] * np.sin(theta)
190
- poly[0][1] += R * r[0] * np.cos(theta)
191
- poly[3][0] -= R * r[3] * np.sin(theta)
192
- poly[3][1] -= R * r[3] * np.cos(theta)
193
- ## p1, p2
194
- theta = np.arctan2((poly[2][0] - poly[1][0]),
195
- (poly[2][1] - poly[1][1]))
196
- poly[1][0] += R * r[1] * np.sin(theta)
197
- poly[1][1] += R * r[1] * np.cos(theta)
198
- poly[2][0] -= R * r[2] * np.sin(theta)
199
- poly[2][1] -= R * r[2] * np.cos(theta)
200
- else:
201
- ## p0, p3
202
- # print poly
203
- theta = np.arctan2((poly[3][0] - poly[0][0]),
204
- (poly[3][1] - poly[0][1]))
205
- poly[0][0] += R * r[0] * np.sin(theta)
206
- poly[0][1] += R * r[0] * np.cos(theta)
207
- poly[3][0] -= R * r[3] * np.sin(theta)
208
- poly[3][1] -= R * r[3] * np.cos(theta)
209
- ## p1, p2
210
- theta = np.arctan2((poly[2][0] - poly[1][0]),
211
- (poly[2][1] - poly[1][1]))
212
- poly[1][0] += R * r[1] * np.sin(theta)
213
- poly[1][1] += R * r[1] * np.cos(theta)
214
- poly[2][0] -= R * r[2] * np.sin(theta)
215
- poly[2][1] -= R * r[2] * np.cos(theta)
216
- ## p0, p1
217
- theta = np.arctan2((poly[1][1] - poly[0][1]),
218
- (poly[1][0] - poly[0][0]))
219
- poly[0][0] += R * r[0] * np.cos(theta)
220
- poly[0][1] += R * r[0] * np.sin(theta)
221
- poly[1][0] -= R * r[1] * np.cos(theta)
222
- poly[1][1] -= R * r[1] * np.sin(theta)
223
- ## p2, p3
224
- theta = np.arctan2((poly[2][1] - poly[3][1]),
225
- (poly[2][0] - poly[3][0]))
226
- poly[3][0] += R * r[3] * np.cos(theta)
227
- poly[3][1] += R * r[3] * np.sin(theta)
228
- poly[2][0] -= R * r[2] * np.cos(theta)
229
- poly[2][1] -= R * r[2] * np.sin(theta)
230
- return poly
231
-
232
- def generate_quad(self, im_size, polys, tags):
233
- """
234
- Generate quadrangle.
235
- """
236
- h, w = im_size
237
- poly_mask = np.zeros((h, w), dtype=np.uint8)
238
- score_map = np.zeros((h, w), dtype=np.uint8)
239
- # (x1, y1, ..., x4, y4, short_edge_norm)
240
- geo_map = np.zeros((h, w, 9), dtype=np.float32)
241
- # mask used during traning, to ignore some hard areas
242
- training_mask = np.ones((h, w), dtype=np.uint8)
243
- for poly_idx, poly_tag in enumerate(zip(polys, tags)):
244
- poly = poly_tag[0]
245
- tag = poly_tag[1]
246
-
247
- r = [None, None, None, None]
248
- for i in range(4):
249
- dist1 = np.linalg.norm(poly[i] - poly[(i + 1) % 4])
250
- dist2 = np.linalg.norm(poly[i] - poly[(i - 1) % 4])
251
- r[i] = min(dist1, dist2)
252
- # score map
253
- shrinked_poly = self.shrink_poly(
254
- poly.copy(), r).astype(np.int32)[np.newaxis, :, :]
255
- cv2.fillPoly(score_map, shrinked_poly, 1)
256
- cv2.fillPoly(poly_mask, shrinked_poly, poly_idx + 1)
257
- # if the poly is too small, then ignore it during training
258
- poly_h = min(
259
- np.linalg.norm(poly[0] - poly[3]),
260
- np.linalg.norm(poly[1] - poly[2]))
261
- poly_w = min(
262
- np.linalg.norm(poly[0] - poly[1]),
263
- np.linalg.norm(poly[2] - poly[3]))
264
- if min(poly_h, poly_w) < self.min_text_size:
265
- cv2.fillPoly(training_mask,
266
- poly.astype(np.int32)[np.newaxis, :, :], 0)
267
-
268
- if tag:
269
- cv2.fillPoly(training_mask,
270
- poly.astype(np.int32)[np.newaxis, :, :], 0)
271
-
272
- xy_in_poly = np.argwhere(poly_mask == (poly_idx + 1))
273
- # geo map.
274
- y_in_poly = xy_in_poly[:, 0]
275
- x_in_poly = xy_in_poly[:, 1]
276
- poly[:, 0] = np.minimum(np.maximum(poly[:, 0], 0), w)
277
- poly[:, 1] = np.minimum(np.maximum(poly[:, 1], 0), h)
278
- for pno in range(4):
279
- geo_channel_beg = pno * 2
280
- geo_map[y_in_poly, x_in_poly, geo_channel_beg] =\
281
- x_in_poly - poly[pno, 0]
282
- geo_map[y_in_poly, x_in_poly, geo_channel_beg+1] =\
283
- y_in_poly - poly[pno, 1]
284
- geo_map[y_in_poly, x_in_poly, 8] = \
285
- 1.0 / max(min(poly_h, poly_w), 1.0)
286
- return score_map, geo_map, training_mask
287
-
288
- def crop_area(self, im, polys, tags, crop_background=False, max_tries=50):
289
- """
290
- make random crop from the input image
291
- :param im:
292
- :param polys:
293
- :param tags:
294
- :param crop_background:
295
- :param max_tries:
296
- :return:
297
- """
298
- h, w, _ = im.shape
299
- pad_h = h // 10
300
- pad_w = w // 10
301
- h_array = np.zeros((h + pad_h * 2), dtype=np.int32)
302
- w_array = np.zeros((w + pad_w * 2), dtype=np.int32)
303
- for poly in polys:
304
- poly = np.round(poly, decimals=0).astype(np.int32)
305
- minx = np.min(poly[:, 0])
306
- maxx = np.max(poly[:, 0])
307
- w_array[minx + pad_w:maxx + pad_w] = 1
308
- miny = np.min(poly[:, 1])
309
- maxy = np.max(poly[:, 1])
310
- h_array[miny + pad_h:maxy + pad_h] = 1
311
- # ensure the cropped area not across a text
312
- h_axis = np.where(h_array == 0)[0]
313
- w_axis = np.where(w_array == 0)[0]
314
- if len(h_axis) == 0 or len(w_axis) == 0:
315
- return im, polys, tags
316
-
317
- for i in range(max_tries):
318
- xx = np.random.choice(w_axis, size=2)
319
- xmin = np.min(xx) - pad_w
320
- xmax = np.max(xx) - pad_w
321
- xmin = np.clip(xmin, 0, w - 1)
322
- xmax = np.clip(xmax, 0, w - 1)
323
- yy = np.random.choice(h_axis, size=2)
324
- ymin = np.min(yy) - pad_h
325
- ymax = np.max(yy) - pad_h
326
- ymin = np.clip(ymin, 0, h - 1)
327
- ymax = np.clip(ymax, 0, h - 1)
328
- if xmax - xmin < self.min_crop_side_ratio * w or \
329
- ymax - ymin < self.min_crop_side_ratio * h:
330
- # area too small
331
- continue
332
- if polys.shape[0] != 0:
333
- poly_axis_in_area = (polys[:, :, 0] >= xmin)\
334
- & (polys[:, :, 0] <= xmax)\
335
- & (polys[:, :, 1] >= ymin)\
336
- & (polys[:, :, 1] <= ymax)
337
- selected_polys = np.where(
338
- np.sum(poly_axis_in_area, axis=1) == 4)[0]
339
- else:
340
- selected_polys = []
341
-
342
- if len(selected_polys) == 0:
343
- # no text in this area
344
- if crop_background:
345
- im = im[ymin:ymax + 1, xmin:xmax + 1, :]
346
- polys = []
347
- tags = []
348
- return im, polys, tags
349
- else:
350
- continue
351
-
352
- im = im[ymin:ymax + 1, xmin:xmax + 1, :]
353
- polys = polys[selected_polys]
354
- tags = tags[selected_polys]
355
- polys[:, :, 0] -= xmin
356
- polys[:, :, 1] -= ymin
357
- return im, polys, tags
358
- return im, polys, tags
359
-
360
- def crop_background_infor(self, im, text_polys, text_tags):
361
- im, text_polys, text_tags = self.crop_area(
362
- im, text_polys, text_tags, crop_background=True)
363
-
364
- if len(text_polys) > 0:
365
- return None
366
- # pad and resize image
367
- input_size = self.input_size
368
- im, ratio = self.preprocess(im)
369
- score_map = np.zeros((input_size, input_size), dtype=np.float32)
370
- geo_map = np.zeros((input_size, input_size, 9), dtype=np.float32)
371
- training_mask = np.ones((input_size, input_size), dtype=np.float32)
372
- return im, score_map, geo_map, training_mask
373
-
374
- def crop_foreground_infor(self, im, text_polys, text_tags):
375
- im, text_polys, text_tags = self.crop_area(
376
- im, text_polys, text_tags, crop_background=False)
377
-
378
- if text_polys.shape[0] == 0:
379
- return None
380
- #continue for all ignore case
381
- if np.sum((text_tags * 1.0)) >= text_tags.size:
382
- return None
383
- # pad and resize image
384
- input_size = self.input_size
385
- im, ratio = self.preprocess(im)
386
- text_polys[:, :, 0] *= ratio
387
- text_polys[:, :, 1] *= ratio
388
- _, _, new_h, new_w = im.shape
389
- # print(im.shape)
390
- # self.draw_img_polys(im, text_polys)
391
- score_map, geo_map, training_mask = self.generate_quad(
392
- (new_h, new_w), text_polys, text_tags)
393
- return im, score_map, geo_map, training_mask
394
-
395
- def __call__(self, data):
396
- im = data['image']
397
- text_polys = data['polys']
398
- text_tags = data['ignore_tags']
399
- if im is None:
400
- return None
401
- if text_polys.shape[0] == 0:
402
- return None
403
-
404
- #add rotate cases
405
- if np.random.rand() < 0.5:
406
- im, text_polys = self.rotate_im_poly(im, text_polys)
407
- h, w, _ = im.shape
408
- text_polys, text_tags = self.check_and_validate_polys(text_polys,
409
- text_tags, h, w)
410
- if text_polys.shape[0] == 0:
411
- return None
412
-
413
- # random scale this image
414
- rd_scale = np.random.choice(self.random_scale)
415
- im = cv2.resize(im, dsize=None, fx=rd_scale, fy=rd_scale)
416
- text_polys *= rd_scale
417
- if np.random.rand() < self.background_ratio:
418
- outs = self.crop_background_infor(im, text_polys, text_tags)
419
- else:
420
- outs = self.crop_foreground_infor(im, text_polys, text_tags)
421
-
422
- if outs is None:
423
- return None
424
- im, score_map, geo_map, training_mask = outs
425
- score_map = score_map[np.newaxis, ::4, ::4].astype(np.float32)
426
- geo_map = np.swapaxes(geo_map, 1, 2)
427
- geo_map = np.swapaxes(geo_map, 1, 0)
428
- geo_map = geo_map[:, ::4, ::4].astype(np.float32)
429
- training_mask = training_mask[np.newaxis, ::4, ::4]
430
- training_mask = training_mask.astype(np.float32)
431
-
432
- data['image'] = im[0]
433
- data['score_map'] = score_map
434
- data['geo_map'] = geo_map
435
- data['training_mask'] = training_mask
436
- # print(im.shape, score_map.shape, geo_map.shape, training_mask.shape)
437
- return data
@@ -1,244 +0,0 @@
1
- """
2
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """
16
-
17
- from __future__ import absolute_import
18
- from __future__ import division
19
- from __future__ import print_function
20
- from __future__ import unicode_literals
21
-
22
- import sys
23
- import six
24
- import cv2
25
- import numpy as np
26
-
27
-
28
- class GenTableMask(object):
29
- """ gen table mask """
30
-
31
- def __init__(self, shrink_h_max, shrink_w_max, mask_type=0, **kwargs):
32
- self.shrink_h_max = 5
33
- self.shrink_w_max = 5
34
- self.mask_type = mask_type
35
-
36
- def projection(self, erosion, h, w, spilt_threshold=0):
37
- # 水平投影
38
- projection_map = np.ones_like(erosion)
39
- project_val_array = [0 for _ in range(0, h)]
40
-
41
- for j in range(0, h):
42
- for i in range(0, w):
43
- if erosion[j, i] == 255:
44
- project_val_array[j] += 1
45
- # 根据数组,获取切割点
46
- start_idx = 0 # 记录进入字符区的索引
47
- end_idx = 0 # 记录进入空白区域的索引
48
- in_text = False # 是否遍历到了字符区内
49
- box_list = []
50
- for i in range(len(project_val_array)):
51
- if in_text == False and project_val_array[i] > spilt_threshold: # 进入字符区了
52
- in_text = True
53
- start_idx = i
54
- elif project_val_array[i] <= spilt_threshold and in_text == True: # 进入空白区了
55
- end_idx = i
56
- in_text = False
57
- if end_idx - start_idx <= 2:
58
- continue
59
- box_list.append((start_idx, end_idx + 1))
60
-
61
- if in_text:
62
- box_list.append((start_idx, h - 1))
63
- # 绘制投影直方图
64
- for j in range(0, h):
65
- for i in range(0, project_val_array[j]):
66
- projection_map[j, i] = 0
67
- return box_list, projection_map
68
-
69
- def projection_cx(self, box_img):
70
- box_gray_img = cv2.cvtColor(box_img, cv2.COLOR_BGR2GRAY)
71
- h, w = box_gray_img.shape
72
- # 灰度图片进行二值化处理
73
- ret, thresh1 = cv2.threshold(box_gray_img, 200, 255, cv2.THRESH_BINARY_INV)
74
- # 纵向腐蚀
75
- if h < w:
76
- kernel = np.ones((2, 1), np.uint8)
77
- erode = cv2.erode(thresh1, kernel, iterations=1)
78
- else:
79
- erode = thresh1
80
- # 水平膨胀
81
- kernel = np.ones((1, 5), np.uint8)
82
- erosion = cv2.dilate(erode, kernel, iterations=1)
83
- # 水平投影
84
- projection_map = np.ones_like(erosion)
85
- project_val_array = [0 for _ in range(0, h)]
86
-
87
- for j in range(0, h):
88
- for i in range(0, w):
89
- if erosion[j, i] == 255:
90
- project_val_array[j] += 1
91
- # 根据数组,获取切割点
92
- start_idx = 0 # 记录进入字符区的索引
93
- end_idx = 0 # 记录进入空白区域的索引
94
- in_text = False # 是否遍历到了字符区内
95
- box_list = []
96
- spilt_threshold = 0
97
- for i in range(len(project_val_array)):
98
- if in_text == False and project_val_array[i] > spilt_threshold: # 进入字符区了
99
- in_text = True
100
- start_idx = i
101
- elif project_val_array[i] <= spilt_threshold and in_text == True: # 进入空白区了
102
- end_idx = i
103
- in_text = False
104
- if end_idx - start_idx <= 2:
105
- continue
106
- box_list.append((start_idx, end_idx + 1))
107
-
108
- if in_text:
109
- box_list.append((start_idx, h - 1))
110
- # 绘制投影直方图
111
- for j in range(0, h):
112
- for i in range(0, project_val_array[j]):
113
- projection_map[j, i] = 0
114
- split_bbox_list = []
115
- if len(box_list) > 1:
116
- for i, (h_start, h_end) in enumerate(box_list):
117
- if i == 0:
118
- h_start = 0
119
- if i == len(box_list):
120
- h_end = h
121
- word_img = erosion[h_start:h_end + 1, :]
122
- word_h, word_w = word_img.shape
123
- w_split_list, w_projection_map = self.projection(word_img.T, word_w, word_h)
124
- w_start, w_end = w_split_list[0][0], w_split_list[-1][1]
125
- if h_start > 0:
126
- h_start -= 1
127
- h_end += 1
128
- word_img = box_img[h_start:h_end + 1:, w_start:w_end + 1, :]
129
- split_bbox_list.append([w_start, h_start, w_end, h_end])
130
- else:
131
- split_bbox_list.append([0, 0, w, h])
132
- return split_bbox_list
133
-
134
- def shrink_bbox(self, bbox):
135
- left, top, right, bottom = bbox
136
- sh_h = min(max(int((bottom - top) * 0.1), 1), self.shrink_h_max)
137
- sh_w = min(max(int((right - left) * 0.1), 1), self.shrink_w_max)
138
- left_new = left + sh_w
139
- right_new = right - sh_w
140
- top_new = top + sh_h
141
- bottom_new = bottom - sh_h
142
- if left_new >= right_new:
143
- left_new = left
144
- right_new = right
145
- if top_new >= bottom_new:
146
- top_new = top
147
- bottom_new = bottom
148
- return [left_new, top_new, right_new, bottom_new]
149
-
150
- def __call__(self, data):
151
- img = data['image']
152
- cells = data['cells']
153
- height, width = img.shape[0:2]
154
- if self.mask_type == 1:
155
- mask_img = np.zeros((height, width), dtype=np.float32)
156
- else:
157
- mask_img = np.zeros((height, width, 3), dtype=np.float32)
158
- cell_num = len(cells)
159
- for cno in range(cell_num):
160
- if "bbox" in cells[cno]:
161
- bbox = cells[cno]['bbox']
162
- left, top, right, bottom = bbox
163
- box_img = img[top:bottom, left:right, :].copy()
164
- split_bbox_list = self.projection_cx(box_img)
165
- for sno in range(len(split_bbox_list)):
166
- split_bbox_list[sno][0] += left
167
- split_bbox_list[sno][1] += top
168
- split_bbox_list[sno][2] += left
169
- split_bbox_list[sno][3] += top
170
-
171
- for sno in range(len(split_bbox_list)):
172
- left, top, right, bottom = split_bbox_list[sno]
173
- left, top, right, bottom = self.shrink_bbox([left, top, right, bottom])
174
- if self.mask_type == 1:
175
- mask_img[top:bottom, left:right] = 1.0
176
- data['mask_img'] = mask_img
177
- else:
178
- mask_img[top:bottom, left:right, :] = (255, 255, 255)
179
- data['image'] = mask_img
180
- return data
181
-
182
- class ResizeTableImage(object):
183
- def __init__(self, max_len, **kwargs):
184
- super(ResizeTableImage, self).__init__()
185
- self.max_len = max_len
186
-
187
- def get_img_bbox(self, cells):
188
- bbox_list = []
189
- if len(cells) == 0:
190
- return bbox_list
191
- cell_num = len(cells)
192
- for cno in range(cell_num):
193
- if "bbox" in cells[cno]:
194
- bbox = cells[cno]['bbox']
195
- bbox_list.append(bbox)
196
- return bbox_list
197
-
198
- def resize_img_table(self, img, bbox_list, max_len):
199
- height, width = img.shape[0:2]
200
- ratio = max_len / (max(height, width) * 1.0)
201
- resize_h = int(height * ratio)
202
- resize_w = int(width * ratio)
203
- img_new = cv2.resize(img, (resize_w, resize_h))
204
- bbox_list_new = []
205
- for bno in range(len(bbox_list)):
206
- left, top, right, bottom = bbox_list[bno].copy()
207
- left = int(left * ratio)
208
- top = int(top * ratio)
209
- right = int(right * ratio)
210
- bottom = int(bottom * ratio)
211
- bbox_list_new.append([left, top, right, bottom])
212
- return img_new, bbox_list_new
213
-
214
- def __call__(self, data):
215
- img = data['image']
216
- if 'cells' not in data:
217
- cells = []
218
- else:
219
- cells = data['cells']
220
- bbox_list = self.get_img_bbox(cells)
221
- img_new, bbox_list_new = self.resize_img_table(img, bbox_list, self.max_len)
222
- data['image'] = img_new
223
- cell_num = len(cells)
224
- bno = 0
225
- for cno in range(cell_num):
226
- if "bbox" in data['cells'][cno]:
227
- data['cells'][cno]['bbox'] = bbox_list_new[bno]
228
- bno += 1
229
- data['max_len'] = self.max_len
230
- return data
231
-
232
- class PaddingTableImage(object):
233
- def __init__(self, **kwargs):
234
- super(PaddingTableImage, self).__init__()
235
-
236
- def __call__(self, data):
237
- img = data['image']
238
- max_len = data['max_len']
239
- padding_img = np.zeros((max_len, max_len, 3), dtype=np.float32)
240
- height, width = img.shape[0:2]
241
- padding_img[0:height, 0:width, :] = img.copy()
242
- data['image'] = padding_img
243
- return data
244
-