pyxllib 0.3.96__py3-none-any.whl → 0.3.197__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyxllib/algo/geo.py +12 -0
- pyxllib/algo/intervals.py +1 -1
- pyxllib/algo/matcher.py +78 -0
- pyxllib/algo/pupil.py +187 -19
- pyxllib/algo/specialist.py +2 -1
- pyxllib/algo/stat.py +38 -2
- {pyxlpr → pyxllib/autogui}/__init__.py +1 -1
- pyxllib/autogui/activewin.py +246 -0
- pyxllib/autogui/all.py +9 -0
- pyxllib/{ext/autogui → autogui}/autogui.py +40 -11
- pyxllib/autogui/uiautolib.py +362 -0
- pyxllib/autogui/wechat.py +827 -0
- pyxllib/autogui/wechat_msg.py +421 -0
- pyxllib/autogui/wxautolib.py +84 -0
- pyxllib/cv/slidercaptcha.py +137 -0
- pyxllib/data/echarts.py +123 -12
- pyxllib/data/jsonlib.py +89 -0
- pyxllib/data/pglib.py +514 -30
- pyxllib/data/sqlite.py +231 -4
- pyxllib/ext/JLineViewer.py +14 -1
- pyxllib/ext/drissionlib.py +277 -0
- pyxllib/ext/kq5034lib.py +0 -1594
- pyxllib/ext/robustprocfile.py +497 -0
- pyxllib/ext/unixlib.py +6 -5
- pyxllib/ext/utools.py +108 -95
- pyxllib/ext/webhook.py +32 -14
- pyxllib/ext/wjxlib.py +88 -0
- pyxllib/ext/wpsapi.py +124 -0
- pyxllib/ext/xlwork.py +9 -0
- pyxllib/ext/yuquelib.py +1003 -71
- pyxllib/file/docxlib.py +1 -1
- pyxllib/file/libreoffice.py +165 -0
- pyxllib/file/movielib.py +9 -0
- pyxllib/file/packlib/__init__.py +112 -75
- pyxllib/file/pdflib.py +1 -1
- pyxllib/file/pupil.py +1 -1
- pyxllib/file/specialist/dirlib.py +1 -1
- pyxllib/file/specialist/download.py +10 -3
- pyxllib/file/specialist/filelib.py +266 -55
- pyxllib/file/xlsxlib.py +205 -50
- pyxllib/file/xlsyncfile.py +341 -0
- pyxllib/prog/cachetools.py +64 -0
- pyxllib/prog/filelock.py +42 -0
- pyxllib/prog/multiprogs.py +940 -0
- pyxllib/prog/newbie.py +9 -2
- pyxllib/prog/pupil.py +129 -60
- pyxllib/prog/specialist/__init__.py +176 -2
- pyxllib/prog/specialist/bc.py +5 -2
- pyxllib/prog/specialist/browser.py +11 -2
- pyxllib/prog/specialist/datetime.py +68 -0
- pyxllib/prog/specialist/tictoc.py +12 -13
- pyxllib/prog/specialist/xllog.py +5 -5
- pyxllib/prog/xlosenv.py +7 -0
- pyxllib/text/airscript.js +744 -0
- pyxllib/text/charclasslib.py +17 -5
- pyxllib/text/jiebalib.py +6 -3
- pyxllib/text/jinjalib.py +32 -0
- pyxllib/text/jsa_ai_prompt.md +271 -0
- pyxllib/text/jscode.py +159 -4
- pyxllib/text/nestenv.py +1 -1
- pyxllib/text/newbie.py +12 -0
- pyxllib/text/pupil/common.py +26 -0
- pyxllib/text/specialist/ptag.py +2 -2
- pyxllib/text/templates/echart_base.html +11 -0
- pyxllib/text/templates/highlight_code.html +17 -0
- pyxllib/text/templates/latex_editor.html +103 -0
- pyxllib/text/xmllib.py +76 -14
- pyxllib/xl.py +2 -1
- pyxllib-0.3.197.dist-info/METADATA +48 -0
- pyxllib-0.3.197.dist-info/RECORD +126 -0
- {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info}/WHEEL +1 -2
- pyxllib/ext/autogui/__init__.py +0 -8
- pyxllib-0.3.96.dist-info/METADATA +0 -51
- pyxllib-0.3.96.dist-info/RECORD +0 -333
- pyxllib-0.3.96.dist-info/top_level.txt +0 -2
- pyxlpr/ai/__init__.py +0 -5
- pyxlpr/ai/clientlib.py +0 -1281
- pyxlpr/ai/specialist.py +0 -286
- pyxlpr/ai/torch_app.py +0 -172
- pyxlpr/ai/xlpaddle.py +0 -655
- pyxlpr/ai/xltorch.py +0 -705
- pyxlpr/data/__init__.py +0 -11
- pyxlpr/data/coco.py +0 -1325
- pyxlpr/data/datacls.py +0 -365
- pyxlpr/data/datasets.py +0 -200
- pyxlpr/data/gptlib.py +0 -1291
- pyxlpr/data/icdar/__init__.py +0 -96
- pyxlpr/data/icdar/deteval.py +0 -377
- pyxlpr/data/icdar/icdar2013.py +0 -341
- pyxlpr/data/icdar/iou.py +0 -340
- pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
- pyxlpr/data/imtextline.py +0 -473
- pyxlpr/data/labelme.py +0 -866
- pyxlpr/data/removeline.py +0 -179
- pyxlpr/data/specialist.py +0 -57
- pyxlpr/eval/__init__.py +0 -85
- pyxlpr/paddleocr.py +0 -776
- pyxlpr/ppocr/__init__.py +0 -15
- pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
- pyxlpr/ppocr/data/__init__.py +0 -135
- pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
- pyxlpr/ppocr/data/imaug/__init__.py +0 -67
- pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
- pyxlpr/ppocr/data/imaug/east_process.py +0 -437
- pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
- pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
- pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
- pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
- pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
- pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
- pyxlpr/ppocr/data/imaug/operators.py +0 -433
- pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
- pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
- pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
- pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
- pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
- pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
- pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
- pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
- pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
- pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
- pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
- pyxlpr/ppocr/data/simple_dataset.py +0 -372
- pyxlpr/ppocr/losses/__init__.py +0 -61
- pyxlpr/ppocr/losses/ace_loss.py +0 -52
- pyxlpr/ppocr/losses/basic_loss.py +0 -135
- pyxlpr/ppocr/losses/center_loss.py +0 -88
- pyxlpr/ppocr/losses/cls_loss.py +0 -30
- pyxlpr/ppocr/losses/combined_loss.py +0 -67
- pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
- pyxlpr/ppocr/losses/det_db_loss.py +0 -80
- pyxlpr/ppocr/losses/det_east_loss.py +0 -63
- pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
- pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
- pyxlpr/ppocr/losses/distillation_loss.py +0 -272
- pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
- pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
- pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
- pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
- pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
- pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
- pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
- pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
- pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
- pyxlpr/ppocr/losses/table_att_loss.py +0 -109
- pyxlpr/ppocr/metrics/__init__.py +0 -44
- pyxlpr/ppocr/metrics/cls_metric.py +0 -45
- pyxlpr/ppocr/metrics/det_metric.py +0 -82
- pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
- pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
- pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
- pyxlpr/ppocr/metrics/kie_metric.py +0 -70
- pyxlpr/ppocr/metrics/rec_metric.py +0 -75
- pyxlpr/ppocr/metrics/table_metric.py +0 -50
- pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
- pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
- pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
- pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
- pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
- pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
- pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
- pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
- pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
- pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
- pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
- pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
- pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
- pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
- pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
- pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
- pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
- pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
- pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
- pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
- pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
- pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
- pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
- pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
- pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
- pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
- pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
- pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
- pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
- pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
- pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
- pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
- pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
- pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
- pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
- pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
- pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
- pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
- pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
- pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
- pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
- pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
- pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
- pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
- pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
- pyxlpr/ppocr/optimizer/__init__.py +0 -61
- pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
- pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
- pyxlpr/ppocr/optimizer/optimizer.py +0 -160
- pyxlpr/ppocr/optimizer/regularizer.py +0 -52
- pyxlpr/ppocr/postprocess/__init__.py +0 -55
- pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
- pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
- pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
- pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
- pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
- pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
- pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
- pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
- pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
- pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
- pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
- pyxlpr/ppocr/tools/__init__.py +0 -14
- pyxlpr/ppocr/tools/eval.py +0 -83
- pyxlpr/ppocr/tools/export_center.py +0 -77
- pyxlpr/ppocr/tools/export_model.py +0 -129
- pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
- pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
- pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
- pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
- pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
- pyxlpr/ppocr/tools/infer/utility.py +0 -629
- pyxlpr/ppocr/tools/infer_cls.py +0 -83
- pyxlpr/ppocr/tools/infer_det.py +0 -134
- pyxlpr/ppocr/tools/infer_e2e.py +0 -122
- pyxlpr/ppocr/tools/infer_kie.py +0 -153
- pyxlpr/ppocr/tools/infer_rec.py +0 -146
- pyxlpr/ppocr/tools/infer_table.py +0 -107
- pyxlpr/ppocr/tools/program.py +0 -596
- pyxlpr/ppocr/tools/test_hubserving.py +0 -117
- pyxlpr/ppocr/tools/train.py +0 -163
- pyxlpr/ppocr/tools/xlprog.py +0 -748
- pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
- pyxlpr/ppocr/utils/__init__.py +0 -24
- pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
- pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
- pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
- pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
- pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
- pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
- pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
- pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
- pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
- pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
- pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
- pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
- pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
- pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
- pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
- pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
- pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
- pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
- pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
- pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
- pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
- pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
- pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
- pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
- pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
- pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
- pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
- pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
- pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
- pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
- pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
- pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
- pyxlpr/ppocr/utils/dict90.txt +0 -90
- pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
- pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
- pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
- pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
- pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
- pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
- pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
- pyxlpr/ppocr/utils/en_dict.txt +0 -95
- pyxlpr/ppocr/utils/gen_label.py +0 -81
- pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
- pyxlpr/ppocr/utils/iou.py +0 -54
- pyxlpr/ppocr/utils/logging.py +0 -69
- pyxlpr/ppocr/utils/network.py +0 -84
- pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
- pyxlpr/ppocr/utils/profiler.py +0 -110
- pyxlpr/ppocr/utils/save_load.py +0 -150
- pyxlpr/ppocr/utils/stats.py +0 -72
- pyxlpr/ppocr/utils/utility.py +0 -80
- pyxlpr/ppstructure/__init__.py +0 -13
- pyxlpr/ppstructure/predict_system.py +0 -187
- pyxlpr/ppstructure/table/__init__.py +0 -13
- pyxlpr/ppstructure/table/eval_table.py +0 -72
- pyxlpr/ppstructure/table/matcher.py +0 -192
- pyxlpr/ppstructure/table/predict_structure.py +0 -136
- pyxlpr/ppstructure/table/predict_table.py +0 -221
- pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
- pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
- pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
- pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
- pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
- pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
- pyxlpr/ppstructure/utility.py +0 -71
- pyxlpr/xlai.py +0 -10
- /pyxllib/{ext/autogui → autogui}/virtualkey.py +0 -0
- {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info/licenses}/LICENSE +0 -0
@@ -1,437 +0,0 @@
|
|
1
|
-
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
2
|
-
#
|
3
|
-
#Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
#you may not use this file except in compliance with the License.
|
5
|
-
#You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
#Unless required by applicable law or agreed to in writing, software
|
10
|
-
#distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
#See the License for the specific language governing permissions and
|
13
|
-
#limitations under the License.
|
14
|
-
"""
|
15
|
-
This code is refered from:
|
16
|
-
https://github.com/songdejia/EAST/blob/master/data_utils.py
|
17
|
-
"""
|
18
|
-
import math
|
19
|
-
import cv2
|
20
|
-
import numpy as np
|
21
|
-
import json
|
22
|
-
import sys
|
23
|
-
import os
|
24
|
-
|
25
|
-
__all__ = ['EASTProcessTrain']
|
26
|
-
|
27
|
-
|
28
|
-
class EASTProcessTrain(object):
|
29
|
-
def __init__(self,
|
30
|
-
image_shape=[512, 512],
|
31
|
-
background_ratio=0.125,
|
32
|
-
min_crop_side_ratio=0.1,
|
33
|
-
min_text_size=10,
|
34
|
-
**kwargs):
|
35
|
-
self.input_size = image_shape[1]
|
36
|
-
self.random_scale = np.array([0.5, 1, 2.0, 3.0])
|
37
|
-
self.background_ratio = background_ratio
|
38
|
-
self.min_crop_side_ratio = min_crop_side_ratio
|
39
|
-
self.min_text_size = min_text_size
|
40
|
-
|
41
|
-
def preprocess(self, im):
|
42
|
-
input_size = self.input_size
|
43
|
-
im_shape = im.shape
|
44
|
-
im_size_min = np.min(im_shape[0:2])
|
45
|
-
im_size_max = np.max(im_shape[0:2])
|
46
|
-
im_scale = float(input_size) / float(im_size_max)
|
47
|
-
im = cv2.resize(im, None, None, fx=im_scale, fy=im_scale)
|
48
|
-
img_mean = [0.485, 0.456, 0.406]
|
49
|
-
img_std = [0.229, 0.224, 0.225]
|
50
|
-
# im = im[:, :, ::-1].astype(np.float32)
|
51
|
-
im = im / 255
|
52
|
-
im -= img_mean
|
53
|
-
im /= img_std
|
54
|
-
new_h, new_w, _ = im.shape
|
55
|
-
im_padded = np.zeros((input_size, input_size, 3), dtype=np.float32)
|
56
|
-
im_padded[:new_h, :new_w, :] = im
|
57
|
-
im_padded = im_padded.transpose((2, 0, 1))
|
58
|
-
im_padded = im_padded[np.newaxis, :]
|
59
|
-
return im_padded, im_scale
|
60
|
-
|
61
|
-
def rotate_im_poly(self, im, text_polys):
|
62
|
-
"""
|
63
|
-
rotate image with 90 / 180 / 270 degre
|
64
|
-
"""
|
65
|
-
im_w, im_h = im.shape[1], im.shape[0]
|
66
|
-
dst_im = im.copy()
|
67
|
-
dst_polys = []
|
68
|
-
rand_degree_ratio = np.random.rand()
|
69
|
-
rand_degree_cnt = 1
|
70
|
-
if 0.333 < rand_degree_ratio < 0.666:
|
71
|
-
rand_degree_cnt = 2
|
72
|
-
elif rand_degree_ratio > 0.666:
|
73
|
-
rand_degree_cnt = 3
|
74
|
-
for i in range(rand_degree_cnt):
|
75
|
-
dst_im = np.rot90(dst_im)
|
76
|
-
rot_degree = -90 * rand_degree_cnt
|
77
|
-
rot_angle = rot_degree * math.pi / 180.0
|
78
|
-
n_poly = text_polys.shape[0]
|
79
|
-
cx, cy = 0.5 * im_w, 0.5 * im_h
|
80
|
-
ncx, ncy = 0.5 * dst_im.shape[1], 0.5 * dst_im.shape[0]
|
81
|
-
for i in range(n_poly):
|
82
|
-
wordBB = text_polys[i]
|
83
|
-
poly = []
|
84
|
-
for j in range(4):
|
85
|
-
sx, sy = wordBB[j][0], wordBB[j][1]
|
86
|
-
dx = math.cos(rot_angle) * (sx - cx)\
|
87
|
-
- math.sin(rot_angle) * (sy - cy) + ncx
|
88
|
-
dy = math.sin(rot_angle) * (sx - cx)\
|
89
|
-
+ math.cos(rot_angle) * (sy - cy) + ncy
|
90
|
-
poly.append([dx, dy])
|
91
|
-
dst_polys.append(poly)
|
92
|
-
dst_polys = np.array(dst_polys, dtype=np.float32)
|
93
|
-
return dst_im, dst_polys
|
94
|
-
|
95
|
-
def polygon_area(self, poly):
|
96
|
-
"""
|
97
|
-
compute area of a polygon
|
98
|
-
:param poly:
|
99
|
-
:return:
|
100
|
-
"""
|
101
|
-
edge = [(poly[1][0] - poly[0][0]) * (poly[1][1] + poly[0][1]),
|
102
|
-
(poly[2][0] - poly[1][0]) * (poly[2][1] + poly[1][1]),
|
103
|
-
(poly[3][0] - poly[2][0]) * (poly[3][1] + poly[2][1]),
|
104
|
-
(poly[0][0] - poly[3][0]) * (poly[0][1] + poly[3][1])]
|
105
|
-
return np.sum(edge) / 2.
|
106
|
-
|
107
|
-
def check_and_validate_polys(self, polys, tags, img_height, img_width):
|
108
|
-
"""
|
109
|
-
check so that the text poly is in the same direction,
|
110
|
-
and also filter some invalid polygons
|
111
|
-
:param polys:
|
112
|
-
:param tags:
|
113
|
-
:return:
|
114
|
-
"""
|
115
|
-
h, w = img_height, img_width
|
116
|
-
if polys.shape[0] == 0:
|
117
|
-
return polys
|
118
|
-
polys[:, :, 0] = np.clip(polys[:, :, 0], 0, w - 1)
|
119
|
-
polys[:, :, 1] = np.clip(polys[:, :, 1], 0, h - 1)
|
120
|
-
|
121
|
-
validated_polys = []
|
122
|
-
validated_tags = []
|
123
|
-
for poly, tag in zip(polys, tags):
|
124
|
-
p_area = self.polygon_area(poly)
|
125
|
-
#invalid poly
|
126
|
-
if abs(p_area) < 1:
|
127
|
-
continue
|
128
|
-
if p_area > 0:
|
129
|
-
#'poly in wrong direction'
|
130
|
-
if not tag:
|
131
|
-
tag = True #reversed cases should be ignore
|
132
|
-
poly = poly[(0, 3, 2, 1), :]
|
133
|
-
validated_polys.append(poly)
|
134
|
-
validated_tags.append(tag)
|
135
|
-
return np.array(validated_polys), np.array(validated_tags)
|
136
|
-
|
137
|
-
def draw_img_polys(self, img, polys):
|
138
|
-
if len(img.shape) == 4:
|
139
|
-
img = np.squeeze(img, axis=0)
|
140
|
-
if img.shape[0] == 3:
|
141
|
-
img = img.transpose((1, 2, 0))
|
142
|
-
img[:, :, 2] += 123.68
|
143
|
-
img[:, :, 1] += 116.78
|
144
|
-
img[:, :, 0] += 103.94
|
145
|
-
cv2.imwrite("tmp.jpg", img)
|
146
|
-
img = cv2.imread("tmp.jpg")
|
147
|
-
for box in polys:
|
148
|
-
box = box.astype(np.int32).reshape((-1, 1, 2))
|
149
|
-
cv2.polylines(img, [box], True, color=(255, 255, 0), thickness=2)
|
150
|
-
import random
|
151
|
-
ino = random.randint(0, 100)
|
152
|
-
cv2.imwrite("tmp_%d.jpg" % ino, img)
|
153
|
-
return
|
154
|
-
|
155
|
-
def shrink_poly(self, poly, r):
|
156
|
-
"""
|
157
|
-
fit a poly inside the origin poly, maybe bugs here...
|
158
|
-
used for generate the score map
|
159
|
-
:param poly: the text poly
|
160
|
-
:param r: r in the paper
|
161
|
-
:return: the shrinked poly
|
162
|
-
"""
|
163
|
-
# shrink ratio
|
164
|
-
R = 0.3
|
165
|
-
# find the longer pair
|
166
|
-
dist0 = np.linalg.norm(poly[0] - poly[1])
|
167
|
-
dist1 = np.linalg.norm(poly[2] - poly[3])
|
168
|
-
dist2 = np.linalg.norm(poly[0] - poly[3])
|
169
|
-
dist3 = np.linalg.norm(poly[1] - poly[2])
|
170
|
-
if dist0 + dist1 > dist2 + dist3:
|
171
|
-
# first move (p0, p1), (p2, p3), then (p0, p3), (p1, p2)
|
172
|
-
## p0, p1
|
173
|
-
theta = np.arctan2((poly[1][1] - poly[0][1]),
|
174
|
-
(poly[1][0] - poly[0][0]))
|
175
|
-
poly[0][0] += R * r[0] * np.cos(theta)
|
176
|
-
poly[0][1] += R * r[0] * np.sin(theta)
|
177
|
-
poly[1][0] -= R * r[1] * np.cos(theta)
|
178
|
-
poly[1][1] -= R * r[1] * np.sin(theta)
|
179
|
-
## p2, p3
|
180
|
-
theta = np.arctan2((poly[2][1] - poly[3][1]),
|
181
|
-
(poly[2][0] - poly[3][0]))
|
182
|
-
poly[3][0] += R * r[3] * np.cos(theta)
|
183
|
-
poly[3][1] += R * r[3] * np.sin(theta)
|
184
|
-
poly[2][0] -= R * r[2] * np.cos(theta)
|
185
|
-
poly[2][1] -= R * r[2] * np.sin(theta)
|
186
|
-
## p0, p3
|
187
|
-
theta = np.arctan2((poly[3][0] - poly[0][0]),
|
188
|
-
(poly[3][1] - poly[0][1]))
|
189
|
-
poly[0][0] += R * r[0] * np.sin(theta)
|
190
|
-
poly[0][1] += R * r[0] * np.cos(theta)
|
191
|
-
poly[3][0] -= R * r[3] * np.sin(theta)
|
192
|
-
poly[3][1] -= R * r[3] * np.cos(theta)
|
193
|
-
## p1, p2
|
194
|
-
theta = np.arctan2((poly[2][0] - poly[1][0]),
|
195
|
-
(poly[2][1] - poly[1][1]))
|
196
|
-
poly[1][0] += R * r[1] * np.sin(theta)
|
197
|
-
poly[1][1] += R * r[1] * np.cos(theta)
|
198
|
-
poly[2][0] -= R * r[2] * np.sin(theta)
|
199
|
-
poly[2][1] -= R * r[2] * np.cos(theta)
|
200
|
-
else:
|
201
|
-
## p0, p3
|
202
|
-
# print poly
|
203
|
-
theta = np.arctan2((poly[3][0] - poly[0][0]),
|
204
|
-
(poly[3][1] - poly[0][1]))
|
205
|
-
poly[0][0] += R * r[0] * np.sin(theta)
|
206
|
-
poly[0][1] += R * r[0] * np.cos(theta)
|
207
|
-
poly[3][0] -= R * r[3] * np.sin(theta)
|
208
|
-
poly[3][1] -= R * r[3] * np.cos(theta)
|
209
|
-
## p1, p2
|
210
|
-
theta = np.arctan2((poly[2][0] - poly[1][0]),
|
211
|
-
(poly[2][1] - poly[1][1]))
|
212
|
-
poly[1][0] += R * r[1] * np.sin(theta)
|
213
|
-
poly[1][1] += R * r[1] * np.cos(theta)
|
214
|
-
poly[2][0] -= R * r[2] * np.sin(theta)
|
215
|
-
poly[2][1] -= R * r[2] * np.cos(theta)
|
216
|
-
## p0, p1
|
217
|
-
theta = np.arctan2((poly[1][1] - poly[0][1]),
|
218
|
-
(poly[1][0] - poly[0][0]))
|
219
|
-
poly[0][0] += R * r[0] * np.cos(theta)
|
220
|
-
poly[0][1] += R * r[0] * np.sin(theta)
|
221
|
-
poly[1][0] -= R * r[1] * np.cos(theta)
|
222
|
-
poly[1][1] -= R * r[1] * np.sin(theta)
|
223
|
-
## p2, p3
|
224
|
-
theta = np.arctan2((poly[2][1] - poly[3][1]),
|
225
|
-
(poly[2][0] - poly[3][0]))
|
226
|
-
poly[3][0] += R * r[3] * np.cos(theta)
|
227
|
-
poly[3][1] += R * r[3] * np.sin(theta)
|
228
|
-
poly[2][0] -= R * r[2] * np.cos(theta)
|
229
|
-
poly[2][1] -= R * r[2] * np.sin(theta)
|
230
|
-
return poly
|
231
|
-
|
232
|
-
def generate_quad(self, im_size, polys, tags):
|
233
|
-
"""
|
234
|
-
Generate quadrangle.
|
235
|
-
"""
|
236
|
-
h, w = im_size
|
237
|
-
poly_mask = np.zeros((h, w), dtype=np.uint8)
|
238
|
-
score_map = np.zeros((h, w), dtype=np.uint8)
|
239
|
-
# (x1, y1, ..., x4, y4, short_edge_norm)
|
240
|
-
geo_map = np.zeros((h, w, 9), dtype=np.float32)
|
241
|
-
# mask used during traning, to ignore some hard areas
|
242
|
-
training_mask = np.ones((h, w), dtype=np.uint8)
|
243
|
-
for poly_idx, poly_tag in enumerate(zip(polys, tags)):
|
244
|
-
poly = poly_tag[0]
|
245
|
-
tag = poly_tag[1]
|
246
|
-
|
247
|
-
r = [None, None, None, None]
|
248
|
-
for i in range(4):
|
249
|
-
dist1 = np.linalg.norm(poly[i] - poly[(i + 1) % 4])
|
250
|
-
dist2 = np.linalg.norm(poly[i] - poly[(i - 1) % 4])
|
251
|
-
r[i] = min(dist1, dist2)
|
252
|
-
# score map
|
253
|
-
shrinked_poly = self.shrink_poly(
|
254
|
-
poly.copy(), r).astype(np.int32)[np.newaxis, :, :]
|
255
|
-
cv2.fillPoly(score_map, shrinked_poly, 1)
|
256
|
-
cv2.fillPoly(poly_mask, shrinked_poly, poly_idx + 1)
|
257
|
-
# if the poly is too small, then ignore it during training
|
258
|
-
poly_h = min(
|
259
|
-
np.linalg.norm(poly[0] - poly[3]),
|
260
|
-
np.linalg.norm(poly[1] - poly[2]))
|
261
|
-
poly_w = min(
|
262
|
-
np.linalg.norm(poly[0] - poly[1]),
|
263
|
-
np.linalg.norm(poly[2] - poly[3]))
|
264
|
-
if min(poly_h, poly_w) < self.min_text_size:
|
265
|
-
cv2.fillPoly(training_mask,
|
266
|
-
poly.astype(np.int32)[np.newaxis, :, :], 0)
|
267
|
-
|
268
|
-
if tag:
|
269
|
-
cv2.fillPoly(training_mask,
|
270
|
-
poly.astype(np.int32)[np.newaxis, :, :], 0)
|
271
|
-
|
272
|
-
xy_in_poly = np.argwhere(poly_mask == (poly_idx + 1))
|
273
|
-
# geo map.
|
274
|
-
y_in_poly = xy_in_poly[:, 0]
|
275
|
-
x_in_poly = xy_in_poly[:, 1]
|
276
|
-
poly[:, 0] = np.minimum(np.maximum(poly[:, 0], 0), w)
|
277
|
-
poly[:, 1] = np.minimum(np.maximum(poly[:, 1], 0), h)
|
278
|
-
for pno in range(4):
|
279
|
-
geo_channel_beg = pno * 2
|
280
|
-
geo_map[y_in_poly, x_in_poly, geo_channel_beg] =\
|
281
|
-
x_in_poly - poly[pno, 0]
|
282
|
-
geo_map[y_in_poly, x_in_poly, geo_channel_beg+1] =\
|
283
|
-
y_in_poly - poly[pno, 1]
|
284
|
-
geo_map[y_in_poly, x_in_poly, 8] = \
|
285
|
-
1.0 / max(min(poly_h, poly_w), 1.0)
|
286
|
-
return score_map, geo_map, training_mask
|
287
|
-
|
288
|
-
def crop_area(self, im, polys, tags, crop_background=False, max_tries=50):
|
289
|
-
"""
|
290
|
-
make random crop from the input image
|
291
|
-
:param im:
|
292
|
-
:param polys:
|
293
|
-
:param tags:
|
294
|
-
:param crop_background:
|
295
|
-
:param max_tries:
|
296
|
-
:return:
|
297
|
-
"""
|
298
|
-
h, w, _ = im.shape
|
299
|
-
pad_h = h // 10
|
300
|
-
pad_w = w // 10
|
301
|
-
h_array = np.zeros((h + pad_h * 2), dtype=np.int32)
|
302
|
-
w_array = np.zeros((w + pad_w * 2), dtype=np.int32)
|
303
|
-
for poly in polys:
|
304
|
-
poly = np.round(poly, decimals=0).astype(np.int32)
|
305
|
-
minx = np.min(poly[:, 0])
|
306
|
-
maxx = np.max(poly[:, 0])
|
307
|
-
w_array[minx + pad_w:maxx + pad_w] = 1
|
308
|
-
miny = np.min(poly[:, 1])
|
309
|
-
maxy = np.max(poly[:, 1])
|
310
|
-
h_array[miny + pad_h:maxy + pad_h] = 1
|
311
|
-
# ensure the cropped area not across a text
|
312
|
-
h_axis = np.where(h_array == 0)[0]
|
313
|
-
w_axis = np.where(w_array == 0)[0]
|
314
|
-
if len(h_axis) == 0 or len(w_axis) == 0:
|
315
|
-
return im, polys, tags
|
316
|
-
|
317
|
-
for i in range(max_tries):
|
318
|
-
xx = np.random.choice(w_axis, size=2)
|
319
|
-
xmin = np.min(xx) - pad_w
|
320
|
-
xmax = np.max(xx) - pad_w
|
321
|
-
xmin = np.clip(xmin, 0, w - 1)
|
322
|
-
xmax = np.clip(xmax, 0, w - 1)
|
323
|
-
yy = np.random.choice(h_axis, size=2)
|
324
|
-
ymin = np.min(yy) - pad_h
|
325
|
-
ymax = np.max(yy) - pad_h
|
326
|
-
ymin = np.clip(ymin, 0, h - 1)
|
327
|
-
ymax = np.clip(ymax, 0, h - 1)
|
328
|
-
if xmax - xmin < self.min_crop_side_ratio * w or \
|
329
|
-
ymax - ymin < self.min_crop_side_ratio * h:
|
330
|
-
# area too small
|
331
|
-
continue
|
332
|
-
if polys.shape[0] != 0:
|
333
|
-
poly_axis_in_area = (polys[:, :, 0] >= xmin)\
|
334
|
-
& (polys[:, :, 0] <= xmax)\
|
335
|
-
& (polys[:, :, 1] >= ymin)\
|
336
|
-
& (polys[:, :, 1] <= ymax)
|
337
|
-
selected_polys = np.where(
|
338
|
-
np.sum(poly_axis_in_area, axis=1) == 4)[0]
|
339
|
-
else:
|
340
|
-
selected_polys = []
|
341
|
-
|
342
|
-
if len(selected_polys) == 0:
|
343
|
-
# no text in this area
|
344
|
-
if crop_background:
|
345
|
-
im = im[ymin:ymax + 1, xmin:xmax + 1, :]
|
346
|
-
polys = []
|
347
|
-
tags = []
|
348
|
-
return im, polys, tags
|
349
|
-
else:
|
350
|
-
continue
|
351
|
-
|
352
|
-
im = im[ymin:ymax + 1, xmin:xmax + 1, :]
|
353
|
-
polys = polys[selected_polys]
|
354
|
-
tags = tags[selected_polys]
|
355
|
-
polys[:, :, 0] -= xmin
|
356
|
-
polys[:, :, 1] -= ymin
|
357
|
-
return im, polys, tags
|
358
|
-
return im, polys, tags
|
359
|
-
|
360
|
-
def crop_background_infor(self, im, text_polys, text_tags):
|
361
|
-
im, text_polys, text_tags = self.crop_area(
|
362
|
-
im, text_polys, text_tags, crop_background=True)
|
363
|
-
|
364
|
-
if len(text_polys) > 0:
|
365
|
-
return None
|
366
|
-
# pad and resize image
|
367
|
-
input_size = self.input_size
|
368
|
-
im, ratio = self.preprocess(im)
|
369
|
-
score_map = np.zeros((input_size, input_size), dtype=np.float32)
|
370
|
-
geo_map = np.zeros((input_size, input_size, 9), dtype=np.float32)
|
371
|
-
training_mask = np.ones((input_size, input_size), dtype=np.float32)
|
372
|
-
return im, score_map, geo_map, training_mask
|
373
|
-
|
374
|
-
def crop_foreground_infor(self, im, text_polys, text_tags):
|
375
|
-
im, text_polys, text_tags = self.crop_area(
|
376
|
-
im, text_polys, text_tags, crop_background=False)
|
377
|
-
|
378
|
-
if text_polys.shape[0] == 0:
|
379
|
-
return None
|
380
|
-
#continue for all ignore case
|
381
|
-
if np.sum((text_tags * 1.0)) >= text_tags.size:
|
382
|
-
return None
|
383
|
-
# pad and resize image
|
384
|
-
input_size = self.input_size
|
385
|
-
im, ratio = self.preprocess(im)
|
386
|
-
text_polys[:, :, 0] *= ratio
|
387
|
-
text_polys[:, :, 1] *= ratio
|
388
|
-
_, _, new_h, new_w = im.shape
|
389
|
-
# print(im.shape)
|
390
|
-
# self.draw_img_polys(im, text_polys)
|
391
|
-
score_map, geo_map, training_mask = self.generate_quad(
|
392
|
-
(new_h, new_w), text_polys, text_tags)
|
393
|
-
return im, score_map, geo_map, training_mask
|
394
|
-
|
395
|
-
def __call__(self, data):
|
396
|
-
im = data['image']
|
397
|
-
text_polys = data['polys']
|
398
|
-
text_tags = data['ignore_tags']
|
399
|
-
if im is None:
|
400
|
-
return None
|
401
|
-
if text_polys.shape[0] == 0:
|
402
|
-
return None
|
403
|
-
|
404
|
-
#add rotate cases
|
405
|
-
if np.random.rand() < 0.5:
|
406
|
-
im, text_polys = self.rotate_im_poly(im, text_polys)
|
407
|
-
h, w, _ = im.shape
|
408
|
-
text_polys, text_tags = self.check_and_validate_polys(text_polys,
|
409
|
-
text_tags, h, w)
|
410
|
-
if text_polys.shape[0] == 0:
|
411
|
-
return None
|
412
|
-
|
413
|
-
# random scale this image
|
414
|
-
rd_scale = np.random.choice(self.random_scale)
|
415
|
-
im = cv2.resize(im, dsize=None, fx=rd_scale, fy=rd_scale)
|
416
|
-
text_polys *= rd_scale
|
417
|
-
if np.random.rand() < self.background_ratio:
|
418
|
-
outs = self.crop_background_infor(im, text_polys, text_tags)
|
419
|
-
else:
|
420
|
-
outs = self.crop_foreground_infor(im, text_polys, text_tags)
|
421
|
-
|
422
|
-
if outs is None:
|
423
|
-
return None
|
424
|
-
im, score_map, geo_map, training_mask = outs
|
425
|
-
score_map = score_map[np.newaxis, ::4, ::4].astype(np.float32)
|
426
|
-
geo_map = np.swapaxes(geo_map, 1, 2)
|
427
|
-
geo_map = np.swapaxes(geo_map, 1, 0)
|
428
|
-
geo_map = geo_map[:, ::4, ::4].astype(np.float32)
|
429
|
-
training_mask = training_mask[np.newaxis, ::4, ::4]
|
430
|
-
training_mask = training_mask.astype(np.float32)
|
431
|
-
|
432
|
-
data['image'] = im[0]
|
433
|
-
data['score_map'] = score_map
|
434
|
-
data['geo_map'] = geo_map
|
435
|
-
data['training_mask'] = training_mask
|
436
|
-
# print(im.shape, score_map.shape, geo_map.shape, training_mask.shape)
|
437
|
-
return data
|
@@ -1,244 +0,0 @@
|
|
1
|
-
"""
|
2
|
-
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved
|
3
|
-
#
|
4
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5
|
-
# you may not use this file except in compliance with the License.
|
6
|
-
# You may obtain a copy of the License at
|
7
|
-
#
|
8
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9
|
-
#
|
10
|
-
# Unless required by applicable law or agreed to in writing, software
|
11
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13
|
-
# See the License for the specific language governing permissions and
|
14
|
-
# limitations under the License.
|
15
|
-
"""
|
16
|
-
|
17
|
-
from __future__ import absolute_import
|
18
|
-
from __future__ import division
|
19
|
-
from __future__ import print_function
|
20
|
-
from __future__ import unicode_literals
|
21
|
-
|
22
|
-
import sys
|
23
|
-
import six
|
24
|
-
import cv2
|
25
|
-
import numpy as np
|
26
|
-
|
27
|
-
|
28
|
-
class GenTableMask(object):
|
29
|
-
""" gen table mask """
|
30
|
-
|
31
|
-
def __init__(self, shrink_h_max, shrink_w_max, mask_type=0, **kwargs):
|
32
|
-
self.shrink_h_max = 5
|
33
|
-
self.shrink_w_max = 5
|
34
|
-
self.mask_type = mask_type
|
35
|
-
|
36
|
-
def projection(self, erosion, h, w, spilt_threshold=0):
|
37
|
-
# 水平投影
|
38
|
-
projection_map = np.ones_like(erosion)
|
39
|
-
project_val_array = [0 for _ in range(0, h)]
|
40
|
-
|
41
|
-
for j in range(0, h):
|
42
|
-
for i in range(0, w):
|
43
|
-
if erosion[j, i] == 255:
|
44
|
-
project_val_array[j] += 1
|
45
|
-
# 根据数组,获取切割点
|
46
|
-
start_idx = 0 # 记录进入字符区的索引
|
47
|
-
end_idx = 0 # 记录进入空白区域的索引
|
48
|
-
in_text = False # 是否遍历到了字符区内
|
49
|
-
box_list = []
|
50
|
-
for i in range(len(project_val_array)):
|
51
|
-
if in_text == False and project_val_array[i] > spilt_threshold: # 进入字符区了
|
52
|
-
in_text = True
|
53
|
-
start_idx = i
|
54
|
-
elif project_val_array[i] <= spilt_threshold and in_text == True: # 进入空白区了
|
55
|
-
end_idx = i
|
56
|
-
in_text = False
|
57
|
-
if end_idx - start_idx <= 2:
|
58
|
-
continue
|
59
|
-
box_list.append((start_idx, end_idx + 1))
|
60
|
-
|
61
|
-
if in_text:
|
62
|
-
box_list.append((start_idx, h - 1))
|
63
|
-
# 绘制投影直方图
|
64
|
-
for j in range(0, h):
|
65
|
-
for i in range(0, project_val_array[j]):
|
66
|
-
projection_map[j, i] = 0
|
67
|
-
return box_list, projection_map
|
68
|
-
|
69
|
-
def projection_cx(self, box_img):
|
70
|
-
box_gray_img = cv2.cvtColor(box_img, cv2.COLOR_BGR2GRAY)
|
71
|
-
h, w = box_gray_img.shape
|
72
|
-
# 灰度图片进行二值化处理
|
73
|
-
ret, thresh1 = cv2.threshold(box_gray_img, 200, 255, cv2.THRESH_BINARY_INV)
|
74
|
-
# 纵向腐蚀
|
75
|
-
if h < w:
|
76
|
-
kernel = np.ones((2, 1), np.uint8)
|
77
|
-
erode = cv2.erode(thresh1, kernel, iterations=1)
|
78
|
-
else:
|
79
|
-
erode = thresh1
|
80
|
-
# 水平膨胀
|
81
|
-
kernel = np.ones((1, 5), np.uint8)
|
82
|
-
erosion = cv2.dilate(erode, kernel, iterations=1)
|
83
|
-
# 水平投影
|
84
|
-
projection_map = np.ones_like(erosion)
|
85
|
-
project_val_array = [0 for _ in range(0, h)]
|
86
|
-
|
87
|
-
for j in range(0, h):
|
88
|
-
for i in range(0, w):
|
89
|
-
if erosion[j, i] == 255:
|
90
|
-
project_val_array[j] += 1
|
91
|
-
# 根据数组,获取切割点
|
92
|
-
start_idx = 0 # 记录进入字符区的索引
|
93
|
-
end_idx = 0 # 记录进入空白区域的索引
|
94
|
-
in_text = False # 是否遍历到了字符区内
|
95
|
-
box_list = []
|
96
|
-
spilt_threshold = 0
|
97
|
-
for i in range(len(project_val_array)):
|
98
|
-
if in_text == False and project_val_array[i] > spilt_threshold: # 进入字符区了
|
99
|
-
in_text = True
|
100
|
-
start_idx = i
|
101
|
-
elif project_val_array[i] <= spilt_threshold and in_text == True: # 进入空白区了
|
102
|
-
end_idx = i
|
103
|
-
in_text = False
|
104
|
-
if end_idx - start_idx <= 2:
|
105
|
-
continue
|
106
|
-
box_list.append((start_idx, end_idx + 1))
|
107
|
-
|
108
|
-
if in_text:
|
109
|
-
box_list.append((start_idx, h - 1))
|
110
|
-
# 绘制投影直方图
|
111
|
-
for j in range(0, h):
|
112
|
-
for i in range(0, project_val_array[j]):
|
113
|
-
projection_map[j, i] = 0
|
114
|
-
split_bbox_list = []
|
115
|
-
if len(box_list) > 1:
|
116
|
-
for i, (h_start, h_end) in enumerate(box_list):
|
117
|
-
if i == 0:
|
118
|
-
h_start = 0
|
119
|
-
if i == len(box_list):
|
120
|
-
h_end = h
|
121
|
-
word_img = erosion[h_start:h_end + 1, :]
|
122
|
-
word_h, word_w = word_img.shape
|
123
|
-
w_split_list, w_projection_map = self.projection(word_img.T, word_w, word_h)
|
124
|
-
w_start, w_end = w_split_list[0][0], w_split_list[-1][1]
|
125
|
-
if h_start > 0:
|
126
|
-
h_start -= 1
|
127
|
-
h_end += 1
|
128
|
-
word_img = box_img[h_start:h_end + 1:, w_start:w_end + 1, :]
|
129
|
-
split_bbox_list.append([w_start, h_start, w_end, h_end])
|
130
|
-
else:
|
131
|
-
split_bbox_list.append([0, 0, w, h])
|
132
|
-
return split_bbox_list
|
133
|
-
|
134
|
-
def shrink_bbox(self, bbox):
|
135
|
-
left, top, right, bottom = bbox
|
136
|
-
sh_h = min(max(int((bottom - top) * 0.1), 1), self.shrink_h_max)
|
137
|
-
sh_w = min(max(int((right - left) * 0.1), 1), self.shrink_w_max)
|
138
|
-
left_new = left + sh_w
|
139
|
-
right_new = right - sh_w
|
140
|
-
top_new = top + sh_h
|
141
|
-
bottom_new = bottom - sh_h
|
142
|
-
if left_new >= right_new:
|
143
|
-
left_new = left
|
144
|
-
right_new = right
|
145
|
-
if top_new >= bottom_new:
|
146
|
-
top_new = top
|
147
|
-
bottom_new = bottom
|
148
|
-
return [left_new, top_new, right_new, bottom_new]
|
149
|
-
|
150
|
-
def __call__(self, data):
|
151
|
-
img = data['image']
|
152
|
-
cells = data['cells']
|
153
|
-
height, width = img.shape[0:2]
|
154
|
-
if self.mask_type == 1:
|
155
|
-
mask_img = np.zeros((height, width), dtype=np.float32)
|
156
|
-
else:
|
157
|
-
mask_img = np.zeros((height, width, 3), dtype=np.float32)
|
158
|
-
cell_num = len(cells)
|
159
|
-
for cno in range(cell_num):
|
160
|
-
if "bbox" in cells[cno]:
|
161
|
-
bbox = cells[cno]['bbox']
|
162
|
-
left, top, right, bottom = bbox
|
163
|
-
box_img = img[top:bottom, left:right, :].copy()
|
164
|
-
split_bbox_list = self.projection_cx(box_img)
|
165
|
-
for sno in range(len(split_bbox_list)):
|
166
|
-
split_bbox_list[sno][0] += left
|
167
|
-
split_bbox_list[sno][1] += top
|
168
|
-
split_bbox_list[sno][2] += left
|
169
|
-
split_bbox_list[sno][3] += top
|
170
|
-
|
171
|
-
for sno in range(len(split_bbox_list)):
|
172
|
-
left, top, right, bottom = split_bbox_list[sno]
|
173
|
-
left, top, right, bottom = self.shrink_bbox([left, top, right, bottom])
|
174
|
-
if self.mask_type == 1:
|
175
|
-
mask_img[top:bottom, left:right] = 1.0
|
176
|
-
data['mask_img'] = mask_img
|
177
|
-
else:
|
178
|
-
mask_img[top:bottom, left:right, :] = (255, 255, 255)
|
179
|
-
data['image'] = mask_img
|
180
|
-
return data
|
181
|
-
|
182
|
-
class ResizeTableImage(object):
|
183
|
-
def __init__(self, max_len, **kwargs):
|
184
|
-
super(ResizeTableImage, self).__init__()
|
185
|
-
self.max_len = max_len
|
186
|
-
|
187
|
-
def get_img_bbox(self, cells):
|
188
|
-
bbox_list = []
|
189
|
-
if len(cells) == 0:
|
190
|
-
return bbox_list
|
191
|
-
cell_num = len(cells)
|
192
|
-
for cno in range(cell_num):
|
193
|
-
if "bbox" in cells[cno]:
|
194
|
-
bbox = cells[cno]['bbox']
|
195
|
-
bbox_list.append(bbox)
|
196
|
-
return bbox_list
|
197
|
-
|
198
|
-
def resize_img_table(self, img, bbox_list, max_len):
|
199
|
-
height, width = img.shape[0:2]
|
200
|
-
ratio = max_len / (max(height, width) * 1.0)
|
201
|
-
resize_h = int(height * ratio)
|
202
|
-
resize_w = int(width * ratio)
|
203
|
-
img_new = cv2.resize(img, (resize_w, resize_h))
|
204
|
-
bbox_list_new = []
|
205
|
-
for bno in range(len(bbox_list)):
|
206
|
-
left, top, right, bottom = bbox_list[bno].copy()
|
207
|
-
left = int(left * ratio)
|
208
|
-
top = int(top * ratio)
|
209
|
-
right = int(right * ratio)
|
210
|
-
bottom = int(bottom * ratio)
|
211
|
-
bbox_list_new.append([left, top, right, bottom])
|
212
|
-
return img_new, bbox_list_new
|
213
|
-
|
214
|
-
def __call__(self, data):
|
215
|
-
img = data['image']
|
216
|
-
if 'cells' not in data:
|
217
|
-
cells = []
|
218
|
-
else:
|
219
|
-
cells = data['cells']
|
220
|
-
bbox_list = self.get_img_bbox(cells)
|
221
|
-
img_new, bbox_list_new = self.resize_img_table(img, bbox_list, self.max_len)
|
222
|
-
data['image'] = img_new
|
223
|
-
cell_num = len(cells)
|
224
|
-
bno = 0
|
225
|
-
for cno in range(cell_num):
|
226
|
-
if "bbox" in data['cells'][cno]:
|
227
|
-
data['cells'][cno]['bbox'] = bbox_list_new[bno]
|
228
|
-
bno += 1
|
229
|
-
data['max_len'] = self.max_len
|
230
|
-
return data
|
231
|
-
|
232
|
-
class PaddingTableImage(object):
|
233
|
-
def __init__(self, **kwargs):
|
234
|
-
super(PaddingTableImage, self).__init__()
|
235
|
-
|
236
|
-
def __call__(self, data):
|
237
|
-
img = data['image']
|
238
|
-
max_len = data['max_len']
|
239
|
-
padding_img = np.zeros((max_len, max_len, 3), dtype=np.float32)
|
240
|
-
height, width = img.shape[0:2]
|
241
|
-
padding_img[0:height, 0:width, :] = img.copy()
|
242
|
-
data['image'] = padding_img
|
243
|
-
return data
|
244
|
-
|