pyxllib 0.3.96__py3-none-any.whl → 0.3.197__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyxllib/algo/geo.py +12 -0
- pyxllib/algo/intervals.py +1 -1
- pyxllib/algo/matcher.py +78 -0
- pyxllib/algo/pupil.py +187 -19
- pyxllib/algo/specialist.py +2 -1
- pyxllib/algo/stat.py +38 -2
- {pyxlpr → pyxllib/autogui}/__init__.py +1 -1
- pyxllib/autogui/activewin.py +246 -0
- pyxllib/autogui/all.py +9 -0
- pyxllib/{ext/autogui → autogui}/autogui.py +40 -11
- pyxllib/autogui/uiautolib.py +362 -0
- pyxllib/autogui/wechat.py +827 -0
- pyxllib/autogui/wechat_msg.py +421 -0
- pyxllib/autogui/wxautolib.py +84 -0
- pyxllib/cv/slidercaptcha.py +137 -0
- pyxllib/data/echarts.py +123 -12
- pyxllib/data/jsonlib.py +89 -0
- pyxllib/data/pglib.py +514 -30
- pyxllib/data/sqlite.py +231 -4
- pyxllib/ext/JLineViewer.py +14 -1
- pyxllib/ext/drissionlib.py +277 -0
- pyxllib/ext/kq5034lib.py +0 -1594
- pyxllib/ext/robustprocfile.py +497 -0
- pyxllib/ext/unixlib.py +6 -5
- pyxllib/ext/utools.py +108 -95
- pyxllib/ext/webhook.py +32 -14
- pyxllib/ext/wjxlib.py +88 -0
- pyxllib/ext/wpsapi.py +124 -0
- pyxllib/ext/xlwork.py +9 -0
- pyxllib/ext/yuquelib.py +1003 -71
- pyxllib/file/docxlib.py +1 -1
- pyxllib/file/libreoffice.py +165 -0
- pyxllib/file/movielib.py +9 -0
- pyxllib/file/packlib/__init__.py +112 -75
- pyxllib/file/pdflib.py +1 -1
- pyxllib/file/pupil.py +1 -1
- pyxllib/file/specialist/dirlib.py +1 -1
- pyxllib/file/specialist/download.py +10 -3
- pyxllib/file/specialist/filelib.py +266 -55
- pyxllib/file/xlsxlib.py +205 -50
- pyxllib/file/xlsyncfile.py +341 -0
- pyxllib/prog/cachetools.py +64 -0
- pyxllib/prog/filelock.py +42 -0
- pyxllib/prog/multiprogs.py +940 -0
- pyxllib/prog/newbie.py +9 -2
- pyxllib/prog/pupil.py +129 -60
- pyxllib/prog/specialist/__init__.py +176 -2
- pyxllib/prog/specialist/bc.py +5 -2
- pyxllib/prog/specialist/browser.py +11 -2
- pyxllib/prog/specialist/datetime.py +68 -0
- pyxllib/prog/specialist/tictoc.py +12 -13
- pyxllib/prog/specialist/xllog.py +5 -5
- pyxllib/prog/xlosenv.py +7 -0
- pyxllib/text/airscript.js +744 -0
- pyxllib/text/charclasslib.py +17 -5
- pyxllib/text/jiebalib.py +6 -3
- pyxllib/text/jinjalib.py +32 -0
- pyxllib/text/jsa_ai_prompt.md +271 -0
- pyxllib/text/jscode.py +159 -4
- pyxllib/text/nestenv.py +1 -1
- pyxllib/text/newbie.py +12 -0
- pyxllib/text/pupil/common.py +26 -0
- pyxllib/text/specialist/ptag.py +2 -2
- pyxllib/text/templates/echart_base.html +11 -0
- pyxllib/text/templates/highlight_code.html +17 -0
- pyxllib/text/templates/latex_editor.html +103 -0
- pyxllib/text/xmllib.py +76 -14
- pyxllib/xl.py +2 -1
- pyxllib-0.3.197.dist-info/METADATA +48 -0
- pyxllib-0.3.197.dist-info/RECORD +126 -0
- {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info}/WHEEL +1 -2
- pyxllib/ext/autogui/__init__.py +0 -8
- pyxllib-0.3.96.dist-info/METADATA +0 -51
- pyxllib-0.3.96.dist-info/RECORD +0 -333
- pyxllib-0.3.96.dist-info/top_level.txt +0 -2
- pyxlpr/ai/__init__.py +0 -5
- pyxlpr/ai/clientlib.py +0 -1281
- pyxlpr/ai/specialist.py +0 -286
- pyxlpr/ai/torch_app.py +0 -172
- pyxlpr/ai/xlpaddle.py +0 -655
- pyxlpr/ai/xltorch.py +0 -705
- pyxlpr/data/__init__.py +0 -11
- pyxlpr/data/coco.py +0 -1325
- pyxlpr/data/datacls.py +0 -365
- pyxlpr/data/datasets.py +0 -200
- pyxlpr/data/gptlib.py +0 -1291
- pyxlpr/data/icdar/__init__.py +0 -96
- pyxlpr/data/icdar/deteval.py +0 -377
- pyxlpr/data/icdar/icdar2013.py +0 -341
- pyxlpr/data/icdar/iou.py +0 -340
- pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
- pyxlpr/data/imtextline.py +0 -473
- pyxlpr/data/labelme.py +0 -866
- pyxlpr/data/removeline.py +0 -179
- pyxlpr/data/specialist.py +0 -57
- pyxlpr/eval/__init__.py +0 -85
- pyxlpr/paddleocr.py +0 -776
- pyxlpr/ppocr/__init__.py +0 -15
- pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
- pyxlpr/ppocr/data/__init__.py +0 -135
- pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
- pyxlpr/ppocr/data/imaug/__init__.py +0 -67
- pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
- pyxlpr/ppocr/data/imaug/east_process.py +0 -437
- pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
- pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
- pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
- pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
- pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
- pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
- pyxlpr/ppocr/data/imaug/operators.py +0 -433
- pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
- pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
- pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
- pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
- pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
- pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
- pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
- pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
- pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
- pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
- pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
- pyxlpr/ppocr/data/simple_dataset.py +0 -372
- pyxlpr/ppocr/losses/__init__.py +0 -61
- pyxlpr/ppocr/losses/ace_loss.py +0 -52
- pyxlpr/ppocr/losses/basic_loss.py +0 -135
- pyxlpr/ppocr/losses/center_loss.py +0 -88
- pyxlpr/ppocr/losses/cls_loss.py +0 -30
- pyxlpr/ppocr/losses/combined_loss.py +0 -67
- pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
- pyxlpr/ppocr/losses/det_db_loss.py +0 -80
- pyxlpr/ppocr/losses/det_east_loss.py +0 -63
- pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
- pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
- pyxlpr/ppocr/losses/distillation_loss.py +0 -272
- pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
- pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
- pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
- pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
- pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
- pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
- pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
- pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
- pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
- pyxlpr/ppocr/losses/table_att_loss.py +0 -109
- pyxlpr/ppocr/metrics/__init__.py +0 -44
- pyxlpr/ppocr/metrics/cls_metric.py +0 -45
- pyxlpr/ppocr/metrics/det_metric.py +0 -82
- pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
- pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
- pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
- pyxlpr/ppocr/metrics/kie_metric.py +0 -70
- pyxlpr/ppocr/metrics/rec_metric.py +0 -75
- pyxlpr/ppocr/metrics/table_metric.py +0 -50
- pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
- pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
- pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
- pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
- pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
- pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
- pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
- pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
- pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
- pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
- pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
- pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
- pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
- pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
- pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
- pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
- pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
- pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
- pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
- pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
- pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
- pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
- pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
- pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
- pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
- pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
- pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
- pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
- pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
- pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
- pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
- pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
- pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
- pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
- pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
- pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
- pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
- pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
- pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
- pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
- pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
- pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
- pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
- pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
- pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
- pyxlpr/ppocr/optimizer/__init__.py +0 -61
- pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
- pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
- pyxlpr/ppocr/optimizer/optimizer.py +0 -160
- pyxlpr/ppocr/optimizer/regularizer.py +0 -52
- pyxlpr/ppocr/postprocess/__init__.py +0 -55
- pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
- pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
- pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
- pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
- pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
- pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
- pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
- pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
- pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
- pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
- pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
- pyxlpr/ppocr/tools/__init__.py +0 -14
- pyxlpr/ppocr/tools/eval.py +0 -83
- pyxlpr/ppocr/tools/export_center.py +0 -77
- pyxlpr/ppocr/tools/export_model.py +0 -129
- pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
- pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
- pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
- pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
- pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
- pyxlpr/ppocr/tools/infer/utility.py +0 -629
- pyxlpr/ppocr/tools/infer_cls.py +0 -83
- pyxlpr/ppocr/tools/infer_det.py +0 -134
- pyxlpr/ppocr/tools/infer_e2e.py +0 -122
- pyxlpr/ppocr/tools/infer_kie.py +0 -153
- pyxlpr/ppocr/tools/infer_rec.py +0 -146
- pyxlpr/ppocr/tools/infer_table.py +0 -107
- pyxlpr/ppocr/tools/program.py +0 -596
- pyxlpr/ppocr/tools/test_hubserving.py +0 -117
- pyxlpr/ppocr/tools/train.py +0 -163
- pyxlpr/ppocr/tools/xlprog.py +0 -748
- pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
- pyxlpr/ppocr/utils/__init__.py +0 -24
- pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
- pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
- pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
- pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
- pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
- pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
- pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
- pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
- pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
- pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
- pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
- pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
- pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
- pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
- pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
- pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
- pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
- pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
- pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
- pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
- pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
- pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
- pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
- pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
- pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
- pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
- pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
- pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
- pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
- pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
- pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
- pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
- pyxlpr/ppocr/utils/dict90.txt +0 -90
- pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
- pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
- pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
- pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
- pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
- pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
- pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
- pyxlpr/ppocr/utils/en_dict.txt +0 -95
- pyxlpr/ppocr/utils/gen_label.py +0 -81
- pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
- pyxlpr/ppocr/utils/iou.py +0 -54
- pyxlpr/ppocr/utils/logging.py +0 -69
- pyxlpr/ppocr/utils/network.py +0 -84
- pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
- pyxlpr/ppocr/utils/profiler.py +0 -110
- pyxlpr/ppocr/utils/save_load.py +0 -150
- pyxlpr/ppocr/utils/stats.py +0 -72
- pyxlpr/ppocr/utils/utility.py +0 -80
- pyxlpr/ppstructure/__init__.py +0 -13
- pyxlpr/ppstructure/predict_system.py +0 -187
- pyxlpr/ppstructure/table/__init__.py +0 -13
- pyxlpr/ppstructure/table/eval_table.py +0 -72
- pyxlpr/ppstructure/table/matcher.py +0 -192
- pyxlpr/ppstructure/table/predict_structure.py +0 -136
- pyxlpr/ppstructure/table/predict_table.py +0 -221
- pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
- pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
- pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
- pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
- pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
- pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
- pyxlpr/ppstructure/utility.py +0 -71
- pyxlpr/xlai.py +0 -10
- /pyxllib/{ext/autogui → autogui}/virtualkey.py +0 -0
- {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info/licenses}/LICENSE +0 -0
@@ -1,52 +0,0 @@
|
|
1
|
-
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
|
15
|
-
from __future__ import absolute_import
|
16
|
-
from __future__ import division
|
17
|
-
from __future__ import print_function
|
18
|
-
from __future__ import unicode_literals
|
19
|
-
|
20
|
-
import paddle
|
21
|
-
|
22
|
-
|
23
|
-
class L1Decay(object):
|
24
|
-
"""
|
25
|
-
L1 Weight Decay Regularization, which encourages the weights to be sparse.
|
26
|
-
Args:
|
27
|
-
factor(float): regularization coeff. Default:0.0.
|
28
|
-
"""
|
29
|
-
|
30
|
-
def __init__(self, factor=0.0):
|
31
|
-
super(L1Decay, self).__init__()
|
32
|
-
self.regularization_coeff = factor
|
33
|
-
|
34
|
-
def __call__(self):
|
35
|
-
reg = paddle.regularizer.L1Decay(self.regularization_coeff)
|
36
|
-
return reg
|
37
|
-
|
38
|
-
|
39
|
-
class L2Decay(object):
|
40
|
-
"""
|
41
|
-
L2 Weight Decay Regularization, which encourages the weights to be sparse.
|
42
|
-
Args:
|
43
|
-
factor(float): regularization coeff. Default:0.0.
|
44
|
-
"""
|
45
|
-
|
46
|
-
def __init__(self, factor=0.0):
|
47
|
-
super(L2Decay, self).__init__()
|
48
|
-
self.regularization_coeff = factor
|
49
|
-
|
50
|
-
def __call__(self):
|
51
|
-
reg = paddle.regularizer.L2Decay(self.regularization_coeff)
|
52
|
-
return reg
|
@@ -1,55 +0,0 @@
|
|
1
|
-
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
|
15
|
-
from __future__ import absolute_import
|
16
|
-
from __future__ import division
|
17
|
-
from __future__ import print_function
|
18
|
-
from __future__ import unicode_literals
|
19
|
-
|
20
|
-
import copy
|
21
|
-
|
22
|
-
__all__ = ['build_post_process']
|
23
|
-
|
24
|
-
from .db_postprocess import DBPostProcess, DistillationDBPostProcess
|
25
|
-
from .east_postprocess import EASTPostProcess
|
26
|
-
from .sast_postprocess import SASTPostProcess
|
27
|
-
from .rec_postprocess import CTCLabelDecode, AttnLabelDecode, SRNLabelDecode, DistillationCTCLabelDecode, \
|
28
|
-
TableLabelDecode, NRTRLabelDecode, SARLabelDecode, SEEDLabelDecode
|
29
|
-
from .cls_postprocess import ClsPostProcess
|
30
|
-
from .pg_postprocess import PGPostProcess
|
31
|
-
|
32
|
-
|
33
|
-
def build_post_process(config, global_config=None):
|
34
|
-
support_dict = [
|
35
|
-
'DBPostProcess', 'EASTPostProcess', 'SASTPostProcess', 'CTCLabelDecode',
|
36
|
-
'AttnLabelDecode', 'ClsPostProcess', 'SRNLabelDecode', 'PGPostProcess',
|
37
|
-
'DistillationCTCLabelDecode', 'TableLabelDecode',
|
38
|
-
'DistillationDBPostProcess', 'NRTRLabelDecode', 'SARLabelDecode',
|
39
|
-
'SEEDLabelDecode'
|
40
|
-
]
|
41
|
-
|
42
|
-
if config['name'] == 'PSEPostProcess':
|
43
|
-
from .pse_postprocess import PSEPostProcess
|
44
|
-
support_dict.append('PSEPostProcess')
|
45
|
-
|
46
|
-
config = copy.deepcopy(config)
|
47
|
-
module_name = config.pop('name')
|
48
|
-
if module_name == "None":
|
49
|
-
return
|
50
|
-
if global_config is not None:
|
51
|
-
config.update(global_config)
|
52
|
-
assert module_name in support_dict, Exception(
|
53
|
-
'post process only support {}'.format(support_dict))
|
54
|
-
module_class = eval(module_name)(**config)
|
55
|
-
return module_class
|
@@ -1,33 +0,0 @@
|
|
1
|
-
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
import paddle
|
15
|
-
|
16
|
-
|
17
|
-
class ClsPostProcess(object):
|
18
|
-
""" Convert between text-label and text-index """
|
19
|
-
|
20
|
-
def __init__(self, label_list, **kwargs):
|
21
|
-
super(ClsPostProcess, self).__init__()
|
22
|
-
self.label_list = label_list
|
23
|
-
|
24
|
-
def __call__(self, preds, label=None, *args, **kwargs):
|
25
|
-
if isinstance(preds, paddle.Tensor):
|
26
|
-
preds = preds.numpy()
|
27
|
-
pred_idxs = preds.argmax(axis=1)
|
28
|
-
decode_out = [(self.label_list[idx], preds[i, idx])
|
29
|
-
for i, idx in enumerate(pred_idxs)]
|
30
|
-
if label is None:
|
31
|
-
return decode_out
|
32
|
-
label = [(self.label_list[idx], 1.0) for idx in label]
|
33
|
-
return decode_out, label
|
@@ -1,234 +0,0 @@
|
|
1
|
-
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
"""
|
15
|
-
This code is refered from:
|
16
|
-
https://github.com/WenmuZhou/DBNet.pytorch/blob/master/post_processing/seg_detector_representer.py
|
17
|
-
"""
|
18
|
-
from __future__ import absolute_import
|
19
|
-
from __future__ import division
|
20
|
-
from __future__ import print_function
|
21
|
-
|
22
|
-
import numpy as np
|
23
|
-
import cv2
|
24
|
-
import paddle
|
25
|
-
from shapely.geometry import Polygon
|
26
|
-
import pyclipper
|
27
|
-
|
28
|
-
|
29
|
-
class DBPostProcess(object):
|
30
|
-
"""
|
31
|
-
The post process for Differentiable Binarization (DB).
|
32
|
-
"""
|
33
|
-
|
34
|
-
def __init__(self,
|
35
|
-
thresh=0.3,
|
36
|
-
box_thresh=0.7,
|
37
|
-
max_candidates=1000,
|
38
|
-
unclip_ratio=2.0,
|
39
|
-
use_dilation=False,
|
40
|
-
score_mode="fast",
|
41
|
-
**kwargs):
|
42
|
-
"""
|
43
|
-
:param thresh: 分割图进行二值化的阈值
|
44
|
-
:param box_thresh: 对输出框进行过滤的阈值,低于此阈值的框不会输出
|
45
|
-
:param max_candidates: 输出的最大文本框数量
|
46
|
-
:param unclip_ratio: 对文本框进行放大的比例
|
47
|
-
:param use_dilation:
|
48
|
-
:param score_mode:
|
49
|
-
:param kwargs:
|
50
|
-
"""
|
51
|
-
# 1. 获取后处理超参数
|
52
|
-
self.thresh = thresh
|
53
|
-
self.box_thresh = box_thresh
|
54
|
-
self.max_candidates = max_candidates
|
55
|
-
self.unclip_ratio = unclip_ratio
|
56
|
-
self.min_size = 3
|
57
|
-
self.score_mode = score_mode
|
58
|
-
assert score_mode in [
|
59
|
-
"slow", "fast"
|
60
|
-
], "Score mode must be in [slow, fast] but got: {}".format(score_mode)
|
61
|
-
|
62
|
-
self.dilation_kernel = None if not use_dilation else np.array(
|
63
|
-
[[1, 1], [1, 1]])
|
64
|
-
|
65
|
-
def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
|
66
|
-
'''
|
67
|
-
_bitmap: single map with shape (1, H, W),
|
68
|
-
whose values are binarized as {0, 1}
|
69
|
-
'''
|
70
|
-
|
71
|
-
bitmap = _bitmap
|
72
|
-
height, width = bitmap.shape
|
73
|
-
|
74
|
-
outs = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST,
|
75
|
-
cv2.CHAIN_APPROX_SIMPLE)
|
76
|
-
if len(outs) == 3:
|
77
|
-
img, contours, _ = outs[0], outs[1], outs[2]
|
78
|
-
elif len(outs) == 2:
|
79
|
-
contours, _ = outs[0], outs[1]
|
80
|
-
|
81
|
-
num_contours = min(len(contours), self.max_candidates)
|
82
|
-
|
83
|
-
boxes = []
|
84
|
-
scores = []
|
85
|
-
for index in range(num_contours):
|
86
|
-
contour = contours[index]
|
87
|
-
points, sside = self.get_mini_boxes(contour)
|
88
|
-
if sside < self.min_size:
|
89
|
-
continue
|
90
|
-
points = np.array(points)
|
91
|
-
if self.score_mode == "fast":
|
92
|
-
score = self.box_score_fast(pred, points.reshape(-1, 2))
|
93
|
-
else:
|
94
|
-
score = self.box_score_slow(pred, contour)
|
95
|
-
if self.box_thresh > score:
|
96
|
-
continue
|
97
|
-
|
98
|
-
box = self.unclip(points).reshape(-1, 1, 2)
|
99
|
-
box, sside = self.get_mini_boxes(box)
|
100
|
-
if sside < self.min_size + 2:
|
101
|
-
continue
|
102
|
-
box = np.array(box)
|
103
|
-
|
104
|
-
box[:, 0] = np.clip(
|
105
|
-
np.round(box[:, 0] / width * dest_width), 0, dest_width)
|
106
|
-
box[:, 1] = np.clip(
|
107
|
-
np.round(box[:, 1] / height * dest_height), 0, dest_height)
|
108
|
-
boxes.append(box.astype(np.int16))
|
109
|
-
scores.append(score)
|
110
|
-
return np.array(boxes, dtype=np.int16), scores
|
111
|
-
|
112
|
-
def unclip(self, box):
|
113
|
-
unclip_ratio = self.unclip_ratio
|
114
|
-
poly = Polygon(box)
|
115
|
-
distance = poly.area * unclip_ratio / poly.length
|
116
|
-
offset = pyclipper.PyclipperOffset()
|
117
|
-
offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
|
118
|
-
expanded = np.array(offset.Execute(distance))
|
119
|
-
return expanded
|
120
|
-
|
121
|
-
def get_mini_boxes(self, contour):
|
122
|
-
bounding_box = cv2.minAreaRect(contour)
|
123
|
-
points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])
|
124
|
-
|
125
|
-
index_1, index_2, index_3, index_4 = 0, 1, 2, 3
|
126
|
-
if points[1][1] > points[0][1]:
|
127
|
-
index_1 = 0
|
128
|
-
index_4 = 1
|
129
|
-
else:
|
130
|
-
index_1 = 1
|
131
|
-
index_4 = 0
|
132
|
-
if points[3][1] > points[2][1]:
|
133
|
-
index_2 = 2
|
134
|
-
index_3 = 3
|
135
|
-
else:
|
136
|
-
index_2 = 3
|
137
|
-
index_3 = 2
|
138
|
-
|
139
|
-
box = [
|
140
|
-
points[index_1], points[index_2], points[index_3], points[index_4]
|
141
|
-
]
|
142
|
-
return box, min(bounding_box[1])
|
143
|
-
|
144
|
-
def box_score_fast(self, bitmap, _box):
|
145
|
-
'''
|
146
|
-
box_score_fast: use bbox mean score as the mean score
|
147
|
-
'''
|
148
|
-
h, w = bitmap.shape[:2]
|
149
|
-
box = _box.copy()
|
150
|
-
xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int), 0, w - 1)
|
151
|
-
xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int), 0, w - 1)
|
152
|
-
ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int), 0, h - 1)
|
153
|
-
ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int), 0, h - 1)
|
154
|
-
|
155
|
-
mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
|
156
|
-
box[:, 0] = box[:, 0] - xmin
|
157
|
-
box[:, 1] = box[:, 1] - ymin
|
158
|
-
cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
|
159
|
-
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
|
160
|
-
|
161
|
-
def box_score_slow(self, bitmap, contour):
|
162
|
-
'''
|
163
|
-
box_score_slow: use polyon mean score as the mean score
|
164
|
-
'''
|
165
|
-
h, w = bitmap.shape[:2]
|
166
|
-
contour = contour.copy()
|
167
|
-
contour = np.reshape(contour, (-1, 2))
|
168
|
-
|
169
|
-
xmin = np.clip(np.min(contour[:, 0]), 0, w - 1)
|
170
|
-
xmax = np.clip(np.max(contour[:, 0]), 0, w - 1)
|
171
|
-
ymin = np.clip(np.min(contour[:, 1]), 0, h - 1)
|
172
|
-
ymax = np.clip(np.max(contour[:, 1]), 0, h - 1)
|
173
|
-
|
174
|
-
mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
|
175
|
-
|
176
|
-
contour[:, 0] = contour[:, 0] - xmin
|
177
|
-
contour[:, 1] = contour[:, 1] - ymin
|
178
|
-
|
179
|
-
cv2.fillPoly(mask, contour.reshape(1, -1, 2).astype(np.int32), 1)
|
180
|
-
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
|
181
|
-
|
182
|
-
def __call__(self, outs_dict, shape_list):
|
183
|
-
# 1. 从字典中获取网络预测结果
|
184
|
-
pred = outs_dict['maps']
|
185
|
-
if isinstance(pred, paddle.Tensor):
|
186
|
-
pred = pred.numpy()
|
187
|
-
pred = pred[:, 0, :, :]
|
188
|
-
# 2. 大于后处理参数阈值self.thresh的
|
189
|
-
segmentation = pred > self.thresh
|
190
|
-
|
191
|
-
boxes_batch = []
|
192
|
-
for batch_index in range(pred.shape[0]):
|
193
|
-
# 3. 获取原图的形状和resize比例
|
194
|
-
src_h, src_w, ratio_h, ratio_w = shape_list[batch_index]
|
195
|
-
if self.dilation_kernel is not None:
|
196
|
-
mask = cv2.dilate(
|
197
|
-
np.array(segmentation[batch_index]).astype(np.uint8),
|
198
|
-
self.dilation_kernel)
|
199
|
-
else:
|
200
|
-
mask = segmentation[batch_index]
|
201
|
-
# 4. 使用boxes_from_bitmap函数 完成 从预测的文本概率图中计算得到文本框
|
202
|
-
boxes, scores = self.boxes_from_bitmap(pred[batch_index], mask,
|
203
|
-
src_w, src_h)
|
204
|
-
|
205
|
-
boxes_batch.append({'points': boxes})
|
206
|
-
return boxes_batch
|
207
|
-
|
208
|
-
|
209
|
-
class DistillationDBPostProcess(object):
|
210
|
-
def __init__(self,
|
211
|
-
model_name=["student"],
|
212
|
-
key=None,
|
213
|
-
thresh=0.3,
|
214
|
-
box_thresh=0.6,
|
215
|
-
max_candidates=1000,
|
216
|
-
unclip_ratio=1.5,
|
217
|
-
use_dilation=False,
|
218
|
-
score_mode="fast",
|
219
|
-
**kwargs):
|
220
|
-
self.model_name = model_name
|
221
|
-
self.key = key
|
222
|
-
self.post_process = DBPostProcess(
|
223
|
-
thresh=thresh,
|
224
|
-
box_thresh=box_thresh,
|
225
|
-
max_candidates=max_candidates,
|
226
|
-
unclip_ratio=unclip_ratio,
|
227
|
-
use_dilation=use_dilation,
|
228
|
-
score_mode=score_mode)
|
229
|
-
|
230
|
-
def __call__(self, predicts, shape_list):
|
231
|
-
results = {}
|
232
|
-
for k in self.model_name:
|
233
|
-
results[k] = self.post_process(predicts[k], shape_list=shape_list)
|
234
|
-
return results
|
@@ -1,143 +0,0 @@
|
|
1
|
-
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
|
15
|
-
from __future__ import absolute_import
|
16
|
-
from __future__ import division
|
17
|
-
from __future__ import print_function
|
18
|
-
|
19
|
-
import numpy as np
|
20
|
-
from .locality_aware_nms import nms_locality
|
21
|
-
import cv2
|
22
|
-
import paddle
|
23
|
-
|
24
|
-
import os
|
25
|
-
import sys
|
26
|
-
|
27
|
-
|
28
|
-
class EASTPostProcess(object):
|
29
|
-
"""
|
30
|
-
The post process for EAST.
|
31
|
-
"""
|
32
|
-
|
33
|
-
def __init__(self,
|
34
|
-
score_thresh=0.8,
|
35
|
-
cover_thresh=0.1,
|
36
|
-
nms_thresh=0.2,
|
37
|
-
**kwargs):
|
38
|
-
|
39
|
-
self.score_thresh = score_thresh
|
40
|
-
self.cover_thresh = cover_thresh
|
41
|
-
self.nms_thresh = nms_thresh
|
42
|
-
|
43
|
-
def restore_rectangle_quad(self, origin, geometry):
|
44
|
-
"""
|
45
|
-
Restore rectangle from quadrangle.
|
46
|
-
"""
|
47
|
-
# quad
|
48
|
-
origin_concat = np.concatenate(
|
49
|
-
(origin, origin, origin, origin), axis=1) # (n, 8)
|
50
|
-
pred_quads = origin_concat - geometry
|
51
|
-
pred_quads = pred_quads.reshape((-1, 4, 2)) # (n, 4, 2)
|
52
|
-
return pred_quads
|
53
|
-
|
54
|
-
def detect(self,
|
55
|
-
score_map,
|
56
|
-
geo_map,
|
57
|
-
score_thresh=0.8,
|
58
|
-
cover_thresh=0.1,
|
59
|
-
nms_thresh=0.2):
|
60
|
-
"""
|
61
|
-
restore text boxes from score map and geo map
|
62
|
-
"""
|
63
|
-
|
64
|
-
score_map = score_map[0]
|
65
|
-
geo_map = np.swapaxes(geo_map, 1, 0)
|
66
|
-
geo_map = np.swapaxes(geo_map, 1, 2)
|
67
|
-
# filter the score map
|
68
|
-
xy_text = np.argwhere(score_map > score_thresh)
|
69
|
-
if len(xy_text) == 0:
|
70
|
-
return []
|
71
|
-
# sort the text boxes via the y axis
|
72
|
-
xy_text = xy_text[np.argsort(xy_text[:, 0])]
|
73
|
-
#restore quad proposals
|
74
|
-
text_box_restored = self.restore_rectangle_quad(
|
75
|
-
xy_text[:, ::-1] * 4, geo_map[xy_text[:, 0], xy_text[:, 1], :])
|
76
|
-
boxes = np.zeros((text_box_restored.shape[0], 9), dtype=np.float32)
|
77
|
-
boxes[:, :8] = text_box_restored.reshape((-1, 8))
|
78
|
-
boxes[:, 8] = score_map[xy_text[:, 0], xy_text[:, 1]]
|
79
|
-
|
80
|
-
try:
|
81
|
-
import lanms
|
82
|
-
boxes = lanms.merge_quadrangle_n9(boxes, nms_thresh)
|
83
|
-
except:
|
84
|
-
print(
|
85
|
-
'you should install lanms by pip3 install lanms-nova to speed up nms_locality'
|
86
|
-
)
|
87
|
-
boxes = nms_locality(boxes.astype(np.float64), nms_thresh)
|
88
|
-
if boxes.shape[0] == 0:
|
89
|
-
return []
|
90
|
-
# Here we filter some low score boxes by the average score map,
|
91
|
-
# this is different from the orginal paper.
|
92
|
-
for i, box in enumerate(boxes):
|
93
|
-
mask = np.zeros_like(score_map, dtype=np.uint8)
|
94
|
-
cv2.fillPoly(mask, box[:8].reshape(
|
95
|
-
(-1, 4, 2)).astype(np.int32) // 4, 1)
|
96
|
-
boxes[i, 8] = cv2.mean(score_map, mask)[0]
|
97
|
-
boxes = boxes[boxes[:, 8] > cover_thresh]
|
98
|
-
return boxes
|
99
|
-
|
100
|
-
def sort_poly(self, p):
|
101
|
-
"""
|
102
|
-
Sort polygons.
|
103
|
-
"""
|
104
|
-
min_axis = np.argmin(np.sum(p, axis=1))
|
105
|
-
p = p[[min_axis, (min_axis + 1) % 4,\
|
106
|
-
(min_axis + 2) % 4, (min_axis + 3) % 4]]
|
107
|
-
if abs(p[0, 0] - p[1, 0]) > abs(p[0, 1] - p[1, 1]):
|
108
|
-
return p
|
109
|
-
else:
|
110
|
-
return p[[0, 3, 2, 1]]
|
111
|
-
|
112
|
-
def __call__(self, outs_dict, shape_list):
|
113
|
-
score_list = outs_dict['f_score']
|
114
|
-
geo_list = outs_dict['f_geo']
|
115
|
-
if isinstance(score_list, paddle.Tensor):
|
116
|
-
score_list = score_list.numpy()
|
117
|
-
geo_list = geo_list.numpy()
|
118
|
-
img_num = len(shape_list)
|
119
|
-
dt_boxes_list = []
|
120
|
-
for ino in range(img_num):
|
121
|
-
score = score_list[ino]
|
122
|
-
geo = geo_list[ino]
|
123
|
-
boxes = self.detect(
|
124
|
-
score_map=score,
|
125
|
-
geo_map=geo,
|
126
|
-
score_thresh=self.score_thresh,
|
127
|
-
cover_thresh=self.cover_thresh,
|
128
|
-
nms_thresh=self.nms_thresh)
|
129
|
-
boxes_norm = []
|
130
|
-
if len(boxes) > 0:
|
131
|
-
h, w = score.shape[1:]
|
132
|
-
src_h, src_w, ratio_h, ratio_w = shape_list[ino]
|
133
|
-
boxes = boxes[:, :8].reshape((-1, 4, 2))
|
134
|
-
boxes[:, :, 0] /= ratio_w
|
135
|
-
boxes[:, :, 1] /= ratio_h
|
136
|
-
for i_box, box in enumerate(boxes):
|
137
|
-
box = self.sort_poly(box.astype(np.int32))
|
138
|
-
if np.linalg.norm(box[0] - box[1]) < 5 \
|
139
|
-
or np.linalg.norm(box[3] - box[0]) < 5:
|
140
|
-
continue
|
141
|
-
boxes_norm.append(box)
|
142
|
-
dt_boxes_list.append({'points': np.array(boxes_norm)})
|
143
|
-
return dt_boxes_list
|