pyxllib 0.3.96__py3-none-any.whl → 0.3.197__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (306) hide show
  1. pyxllib/algo/geo.py +12 -0
  2. pyxllib/algo/intervals.py +1 -1
  3. pyxllib/algo/matcher.py +78 -0
  4. pyxllib/algo/pupil.py +187 -19
  5. pyxllib/algo/specialist.py +2 -1
  6. pyxllib/algo/stat.py +38 -2
  7. {pyxlpr → pyxllib/autogui}/__init__.py +1 -1
  8. pyxllib/autogui/activewin.py +246 -0
  9. pyxllib/autogui/all.py +9 -0
  10. pyxllib/{ext/autogui → autogui}/autogui.py +40 -11
  11. pyxllib/autogui/uiautolib.py +362 -0
  12. pyxllib/autogui/wechat.py +827 -0
  13. pyxllib/autogui/wechat_msg.py +421 -0
  14. pyxllib/autogui/wxautolib.py +84 -0
  15. pyxllib/cv/slidercaptcha.py +137 -0
  16. pyxllib/data/echarts.py +123 -12
  17. pyxllib/data/jsonlib.py +89 -0
  18. pyxllib/data/pglib.py +514 -30
  19. pyxllib/data/sqlite.py +231 -4
  20. pyxllib/ext/JLineViewer.py +14 -1
  21. pyxllib/ext/drissionlib.py +277 -0
  22. pyxllib/ext/kq5034lib.py +0 -1594
  23. pyxllib/ext/robustprocfile.py +497 -0
  24. pyxllib/ext/unixlib.py +6 -5
  25. pyxllib/ext/utools.py +108 -95
  26. pyxllib/ext/webhook.py +32 -14
  27. pyxllib/ext/wjxlib.py +88 -0
  28. pyxllib/ext/wpsapi.py +124 -0
  29. pyxllib/ext/xlwork.py +9 -0
  30. pyxllib/ext/yuquelib.py +1003 -71
  31. pyxllib/file/docxlib.py +1 -1
  32. pyxllib/file/libreoffice.py +165 -0
  33. pyxllib/file/movielib.py +9 -0
  34. pyxllib/file/packlib/__init__.py +112 -75
  35. pyxllib/file/pdflib.py +1 -1
  36. pyxllib/file/pupil.py +1 -1
  37. pyxllib/file/specialist/dirlib.py +1 -1
  38. pyxllib/file/specialist/download.py +10 -3
  39. pyxllib/file/specialist/filelib.py +266 -55
  40. pyxllib/file/xlsxlib.py +205 -50
  41. pyxllib/file/xlsyncfile.py +341 -0
  42. pyxllib/prog/cachetools.py +64 -0
  43. pyxllib/prog/filelock.py +42 -0
  44. pyxllib/prog/multiprogs.py +940 -0
  45. pyxllib/prog/newbie.py +9 -2
  46. pyxllib/prog/pupil.py +129 -60
  47. pyxllib/prog/specialist/__init__.py +176 -2
  48. pyxllib/prog/specialist/bc.py +5 -2
  49. pyxllib/prog/specialist/browser.py +11 -2
  50. pyxllib/prog/specialist/datetime.py +68 -0
  51. pyxllib/prog/specialist/tictoc.py +12 -13
  52. pyxllib/prog/specialist/xllog.py +5 -5
  53. pyxllib/prog/xlosenv.py +7 -0
  54. pyxllib/text/airscript.js +744 -0
  55. pyxllib/text/charclasslib.py +17 -5
  56. pyxllib/text/jiebalib.py +6 -3
  57. pyxllib/text/jinjalib.py +32 -0
  58. pyxllib/text/jsa_ai_prompt.md +271 -0
  59. pyxllib/text/jscode.py +159 -4
  60. pyxllib/text/nestenv.py +1 -1
  61. pyxllib/text/newbie.py +12 -0
  62. pyxllib/text/pupil/common.py +26 -0
  63. pyxllib/text/specialist/ptag.py +2 -2
  64. pyxllib/text/templates/echart_base.html +11 -0
  65. pyxllib/text/templates/highlight_code.html +17 -0
  66. pyxllib/text/templates/latex_editor.html +103 -0
  67. pyxllib/text/xmllib.py +76 -14
  68. pyxllib/xl.py +2 -1
  69. pyxllib-0.3.197.dist-info/METADATA +48 -0
  70. pyxllib-0.3.197.dist-info/RECORD +126 -0
  71. {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info}/WHEEL +1 -2
  72. pyxllib/ext/autogui/__init__.py +0 -8
  73. pyxllib-0.3.96.dist-info/METADATA +0 -51
  74. pyxllib-0.3.96.dist-info/RECORD +0 -333
  75. pyxllib-0.3.96.dist-info/top_level.txt +0 -2
  76. pyxlpr/ai/__init__.py +0 -5
  77. pyxlpr/ai/clientlib.py +0 -1281
  78. pyxlpr/ai/specialist.py +0 -286
  79. pyxlpr/ai/torch_app.py +0 -172
  80. pyxlpr/ai/xlpaddle.py +0 -655
  81. pyxlpr/ai/xltorch.py +0 -705
  82. pyxlpr/data/__init__.py +0 -11
  83. pyxlpr/data/coco.py +0 -1325
  84. pyxlpr/data/datacls.py +0 -365
  85. pyxlpr/data/datasets.py +0 -200
  86. pyxlpr/data/gptlib.py +0 -1291
  87. pyxlpr/data/icdar/__init__.py +0 -96
  88. pyxlpr/data/icdar/deteval.py +0 -377
  89. pyxlpr/data/icdar/icdar2013.py +0 -341
  90. pyxlpr/data/icdar/iou.py +0 -340
  91. pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
  92. pyxlpr/data/imtextline.py +0 -473
  93. pyxlpr/data/labelme.py +0 -866
  94. pyxlpr/data/removeline.py +0 -179
  95. pyxlpr/data/specialist.py +0 -57
  96. pyxlpr/eval/__init__.py +0 -85
  97. pyxlpr/paddleocr.py +0 -776
  98. pyxlpr/ppocr/__init__.py +0 -15
  99. pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
  100. pyxlpr/ppocr/data/__init__.py +0 -135
  101. pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
  102. pyxlpr/ppocr/data/imaug/__init__.py +0 -67
  103. pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
  104. pyxlpr/ppocr/data/imaug/east_process.py +0 -437
  105. pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
  106. pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
  107. pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
  108. pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
  109. pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
  110. pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
  111. pyxlpr/ppocr/data/imaug/operators.py +0 -433
  112. pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
  113. pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
  114. pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
  115. pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
  116. pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
  117. pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
  118. pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
  119. pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
  120. pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
  121. pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
  122. pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
  123. pyxlpr/ppocr/data/simple_dataset.py +0 -372
  124. pyxlpr/ppocr/losses/__init__.py +0 -61
  125. pyxlpr/ppocr/losses/ace_loss.py +0 -52
  126. pyxlpr/ppocr/losses/basic_loss.py +0 -135
  127. pyxlpr/ppocr/losses/center_loss.py +0 -88
  128. pyxlpr/ppocr/losses/cls_loss.py +0 -30
  129. pyxlpr/ppocr/losses/combined_loss.py +0 -67
  130. pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
  131. pyxlpr/ppocr/losses/det_db_loss.py +0 -80
  132. pyxlpr/ppocr/losses/det_east_loss.py +0 -63
  133. pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
  134. pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
  135. pyxlpr/ppocr/losses/distillation_loss.py +0 -272
  136. pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
  137. pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
  138. pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
  139. pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
  140. pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
  141. pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
  142. pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
  143. pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
  144. pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
  145. pyxlpr/ppocr/losses/table_att_loss.py +0 -109
  146. pyxlpr/ppocr/metrics/__init__.py +0 -44
  147. pyxlpr/ppocr/metrics/cls_metric.py +0 -45
  148. pyxlpr/ppocr/metrics/det_metric.py +0 -82
  149. pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
  150. pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
  151. pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
  152. pyxlpr/ppocr/metrics/kie_metric.py +0 -70
  153. pyxlpr/ppocr/metrics/rec_metric.py +0 -75
  154. pyxlpr/ppocr/metrics/table_metric.py +0 -50
  155. pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
  156. pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
  157. pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
  158. pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
  159. pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
  160. pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
  161. pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
  162. pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
  163. pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
  164. pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
  165. pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
  166. pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
  167. pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
  168. pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
  169. pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
  170. pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
  171. pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
  172. pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
  173. pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
  174. pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
  175. pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
  176. pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
  177. pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
  178. pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
  179. pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
  180. pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
  181. pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
  182. pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
  183. pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
  184. pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
  185. pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
  186. pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
  187. pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
  188. pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
  189. pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
  190. pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
  191. pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
  192. pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
  193. pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
  194. pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
  195. pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
  196. pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
  197. pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
  198. pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
  199. pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
  200. pyxlpr/ppocr/optimizer/__init__.py +0 -61
  201. pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
  202. pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
  203. pyxlpr/ppocr/optimizer/optimizer.py +0 -160
  204. pyxlpr/ppocr/optimizer/regularizer.py +0 -52
  205. pyxlpr/ppocr/postprocess/__init__.py +0 -55
  206. pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
  207. pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
  208. pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
  209. pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
  210. pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
  211. pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
  212. pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
  213. pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
  214. pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
  215. pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
  216. pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
  217. pyxlpr/ppocr/tools/__init__.py +0 -14
  218. pyxlpr/ppocr/tools/eval.py +0 -83
  219. pyxlpr/ppocr/tools/export_center.py +0 -77
  220. pyxlpr/ppocr/tools/export_model.py +0 -129
  221. pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
  222. pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
  223. pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
  224. pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
  225. pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
  226. pyxlpr/ppocr/tools/infer/utility.py +0 -629
  227. pyxlpr/ppocr/tools/infer_cls.py +0 -83
  228. pyxlpr/ppocr/tools/infer_det.py +0 -134
  229. pyxlpr/ppocr/tools/infer_e2e.py +0 -122
  230. pyxlpr/ppocr/tools/infer_kie.py +0 -153
  231. pyxlpr/ppocr/tools/infer_rec.py +0 -146
  232. pyxlpr/ppocr/tools/infer_table.py +0 -107
  233. pyxlpr/ppocr/tools/program.py +0 -596
  234. pyxlpr/ppocr/tools/test_hubserving.py +0 -117
  235. pyxlpr/ppocr/tools/train.py +0 -163
  236. pyxlpr/ppocr/tools/xlprog.py +0 -748
  237. pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
  238. pyxlpr/ppocr/utils/__init__.py +0 -24
  239. pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
  240. pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
  241. pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
  242. pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
  243. pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
  244. pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
  245. pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
  246. pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
  247. pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
  248. pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
  249. pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
  250. pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
  251. pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
  252. pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
  253. pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
  254. pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
  255. pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
  256. pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
  257. pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
  258. pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
  259. pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
  260. pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
  261. pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
  262. pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
  263. pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
  264. pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
  265. pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
  266. pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
  267. pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
  268. pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
  269. pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
  270. pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
  271. pyxlpr/ppocr/utils/dict90.txt +0 -90
  272. pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
  273. pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
  274. pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
  275. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
  276. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
  277. pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
  278. pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
  279. pyxlpr/ppocr/utils/en_dict.txt +0 -95
  280. pyxlpr/ppocr/utils/gen_label.py +0 -81
  281. pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
  282. pyxlpr/ppocr/utils/iou.py +0 -54
  283. pyxlpr/ppocr/utils/logging.py +0 -69
  284. pyxlpr/ppocr/utils/network.py +0 -84
  285. pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
  286. pyxlpr/ppocr/utils/profiler.py +0 -110
  287. pyxlpr/ppocr/utils/save_load.py +0 -150
  288. pyxlpr/ppocr/utils/stats.py +0 -72
  289. pyxlpr/ppocr/utils/utility.py +0 -80
  290. pyxlpr/ppstructure/__init__.py +0 -13
  291. pyxlpr/ppstructure/predict_system.py +0 -187
  292. pyxlpr/ppstructure/table/__init__.py +0 -13
  293. pyxlpr/ppstructure/table/eval_table.py +0 -72
  294. pyxlpr/ppstructure/table/matcher.py +0 -192
  295. pyxlpr/ppstructure/table/predict_structure.py +0 -136
  296. pyxlpr/ppstructure/table/predict_table.py +0 -221
  297. pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
  298. pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
  299. pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
  300. pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
  301. pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
  302. pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
  303. pyxlpr/ppstructure/utility.py +0 -71
  304. pyxlpr/xlai.py +0 -10
  305. /pyxllib/{ext/autogui → autogui}/virtualkey.py +0 -0
  306. {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info/licenses}/LICENSE +0 -0
@@ -1,52 +0,0 @@
1
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
- from __future__ import unicode_literals
19
-
20
- import paddle
21
-
22
-
23
- class L1Decay(object):
24
- """
25
- L1 Weight Decay Regularization, which encourages the weights to be sparse.
26
- Args:
27
- factor(float): regularization coeff. Default:0.0.
28
- """
29
-
30
- def __init__(self, factor=0.0):
31
- super(L1Decay, self).__init__()
32
- self.regularization_coeff = factor
33
-
34
- def __call__(self):
35
- reg = paddle.regularizer.L1Decay(self.regularization_coeff)
36
- return reg
37
-
38
-
39
- class L2Decay(object):
40
- """
41
- L2 Weight Decay Regularization, which encourages the weights to be sparse.
42
- Args:
43
- factor(float): regularization coeff. Default:0.0.
44
- """
45
-
46
- def __init__(self, factor=0.0):
47
- super(L2Decay, self).__init__()
48
- self.regularization_coeff = factor
49
-
50
- def __call__(self):
51
- reg = paddle.regularizer.L2Decay(self.regularization_coeff)
52
- return reg
@@ -1,55 +0,0 @@
1
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
- from __future__ import unicode_literals
19
-
20
- import copy
21
-
22
- __all__ = ['build_post_process']
23
-
24
- from .db_postprocess import DBPostProcess, DistillationDBPostProcess
25
- from .east_postprocess import EASTPostProcess
26
- from .sast_postprocess import SASTPostProcess
27
- from .rec_postprocess import CTCLabelDecode, AttnLabelDecode, SRNLabelDecode, DistillationCTCLabelDecode, \
28
- TableLabelDecode, NRTRLabelDecode, SARLabelDecode, SEEDLabelDecode
29
- from .cls_postprocess import ClsPostProcess
30
- from .pg_postprocess import PGPostProcess
31
-
32
-
33
- def build_post_process(config, global_config=None):
34
- support_dict = [
35
- 'DBPostProcess', 'EASTPostProcess', 'SASTPostProcess', 'CTCLabelDecode',
36
- 'AttnLabelDecode', 'ClsPostProcess', 'SRNLabelDecode', 'PGPostProcess',
37
- 'DistillationCTCLabelDecode', 'TableLabelDecode',
38
- 'DistillationDBPostProcess', 'NRTRLabelDecode', 'SARLabelDecode',
39
- 'SEEDLabelDecode'
40
- ]
41
-
42
- if config['name'] == 'PSEPostProcess':
43
- from .pse_postprocess import PSEPostProcess
44
- support_dict.append('PSEPostProcess')
45
-
46
- config = copy.deepcopy(config)
47
- module_name = config.pop('name')
48
- if module_name == "None":
49
- return
50
- if global_config is not None:
51
- config.update(global_config)
52
- assert module_name in support_dict, Exception(
53
- 'post process only support {}'.format(support_dict))
54
- module_class = eval(module_name)(**config)
55
- return module_class
@@ -1,33 +0,0 @@
1
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- import paddle
15
-
16
-
17
- class ClsPostProcess(object):
18
- """ Convert between text-label and text-index """
19
-
20
- def __init__(self, label_list, **kwargs):
21
- super(ClsPostProcess, self).__init__()
22
- self.label_list = label_list
23
-
24
- def __call__(self, preds, label=None, *args, **kwargs):
25
- if isinstance(preds, paddle.Tensor):
26
- preds = preds.numpy()
27
- pred_idxs = preds.argmax(axis=1)
28
- decode_out = [(self.label_list[idx], preds[i, idx])
29
- for i, idx in enumerate(pred_idxs)]
30
- if label is None:
31
- return decode_out
32
- label = [(self.label_list[idx], 1.0) for idx in label]
33
- return decode_out, label
@@ -1,234 +0,0 @@
1
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- """
15
- This code is refered from:
16
- https://github.com/WenmuZhou/DBNet.pytorch/blob/master/post_processing/seg_detector_representer.py
17
- """
18
- from __future__ import absolute_import
19
- from __future__ import division
20
- from __future__ import print_function
21
-
22
- import numpy as np
23
- import cv2
24
- import paddle
25
- from shapely.geometry import Polygon
26
- import pyclipper
27
-
28
-
29
- class DBPostProcess(object):
30
- """
31
- The post process for Differentiable Binarization (DB).
32
- """
33
-
34
- def __init__(self,
35
- thresh=0.3,
36
- box_thresh=0.7,
37
- max_candidates=1000,
38
- unclip_ratio=2.0,
39
- use_dilation=False,
40
- score_mode="fast",
41
- **kwargs):
42
- """
43
- :param thresh: 分割图进行二值化的阈值
44
- :param box_thresh: 对输出框进行过滤的阈值,低于此阈值的框不会输出
45
- :param max_candidates: 输出的最大文本框数量
46
- :param unclip_ratio: 对文本框进行放大的比例
47
- :param use_dilation:
48
- :param score_mode:
49
- :param kwargs:
50
- """
51
- # 1. 获取后处理超参数
52
- self.thresh = thresh
53
- self.box_thresh = box_thresh
54
- self.max_candidates = max_candidates
55
- self.unclip_ratio = unclip_ratio
56
- self.min_size = 3
57
- self.score_mode = score_mode
58
- assert score_mode in [
59
- "slow", "fast"
60
- ], "Score mode must be in [slow, fast] but got: {}".format(score_mode)
61
-
62
- self.dilation_kernel = None if not use_dilation else np.array(
63
- [[1, 1], [1, 1]])
64
-
65
- def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
66
- '''
67
- _bitmap: single map with shape (1, H, W),
68
- whose values are binarized as {0, 1}
69
- '''
70
-
71
- bitmap = _bitmap
72
- height, width = bitmap.shape
73
-
74
- outs = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST,
75
- cv2.CHAIN_APPROX_SIMPLE)
76
- if len(outs) == 3:
77
- img, contours, _ = outs[0], outs[1], outs[2]
78
- elif len(outs) == 2:
79
- contours, _ = outs[0], outs[1]
80
-
81
- num_contours = min(len(contours), self.max_candidates)
82
-
83
- boxes = []
84
- scores = []
85
- for index in range(num_contours):
86
- contour = contours[index]
87
- points, sside = self.get_mini_boxes(contour)
88
- if sside < self.min_size:
89
- continue
90
- points = np.array(points)
91
- if self.score_mode == "fast":
92
- score = self.box_score_fast(pred, points.reshape(-1, 2))
93
- else:
94
- score = self.box_score_slow(pred, contour)
95
- if self.box_thresh > score:
96
- continue
97
-
98
- box = self.unclip(points).reshape(-1, 1, 2)
99
- box, sside = self.get_mini_boxes(box)
100
- if sside < self.min_size + 2:
101
- continue
102
- box = np.array(box)
103
-
104
- box[:, 0] = np.clip(
105
- np.round(box[:, 0] / width * dest_width), 0, dest_width)
106
- box[:, 1] = np.clip(
107
- np.round(box[:, 1] / height * dest_height), 0, dest_height)
108
- boxes.append(box.astype(np.int16))
109
- scores.append(score)
110
- return np.array(boxes, dtype=np.int16), scores
111
-
112
- def unclip(self, box):
113
- unclip_ratio = self.unclip_ratio
114
- poly = Polygon(box)
115
- distance = poly.area * unclip_ratio / poly.length
116
- offset = pyclipper.PyclipperOffset()
117
- offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
118
- expanded = np.array(offset.Execute(distance))
119
- return expanded
120
-
121
- def get_mini_boxes(self, contour):
122
- bounding_box = cv2.minAreaRect(contour)
123
- points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])
124
-
125
- index_1, index_2, index_3, index_4 = 0, 1, 2, 3
126
- if points[1][1] > points[0][1]:
127
- index_1 = 0
128
- index_4 = 1
129
- else:
130
- index_1 = 1
131
- index_4 = 0
132
- if points[3][1] > points[2][1]:
133
- index_2 = 2
134
- index_3 = 3
135
- else:
136
- index_2 = 3
137
- index_3 = 2
138
-
139
- box = [
140
- points[index_1], points[index_2], points[index_3], points[index_4]
141
- ]
142
- return box, min(bounding_box[1])
143
-
144
- def box_score_fast(self, bitmap, _box):
145
- '''
146
- box_score_fast: use bbox mean score as the mean score
147
- '''
148
- h, w = bitmap.shape[:2]
149
- box = _box.copy()
150
- xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int), 0, w - 1)
151
- xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int), 0, w - 1)
152
- ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int), 0, h - 1)
153
- ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int), 0, h - 1)
154
-
155
- mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
156
- box[:, 0] = box[:, 0] - xmin
157
- box[:, 1] = box[:, 1] - ymin
158
- cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
159
- return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
160
-
161
- def box_score_slow(self, bitmap, contour):
162
- '''
163
- box_score_slow: use polyon mean score as the mean score
164
- '''
165
- h, w = bitmap.shape[:2]
166
- contour = contour.copy()
167
- contour = np.reshape(contour, (-1, 2))
168
-
169
- xmin = np.clip(np.min(contour[:, 0]), 0, w - 1)
170
- xmax = np.clip(np.max(contour[:, 0]), 0, w - 1)
171
- ymin = np.clip(np.min(contour[:, 1]), 0, h - 1)
172
- ymax = np.clip(np.max(contour[:, 1]), 0, h - 1)
173
-
174
- mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
175
-
176
- contour[:, 0] = contour[:, 0] - xmin
177
- contour[:, 1] = contour[:, 1] - ymin
178
-
179
- cv2.fillPoly(mask, contour.reshape(1, -1, 2).astype(np.int32), 1)
180
- return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
181
-
182
- def __call__(self, outs_dict, shape_list):
183
- # 1. 从字典中获取网络预测结果
184
- pred = outs_dict['maps']
185
- if isinstance(pred, paddle.Tensor):
186
- pred = pred.numpy()
187
- pred = pred[:, 0, :, :]
188
- # 2. 大于后处理参数阈值self.thresh的
189
- segmentation = pred > self.thresh
190
-
191
- boxes_batch = []
192
- for batch_index in range(pred.shape[0]):
193
- # 3. 获取原图的形状和resize比例
194
- src_h, src_w, ratio_h, ratio_w = shape_list[batch_index]
195
- if self.dilation_kernel is not None:
196
- mask = cv2.dilate(
197
- np.array(segmentation[batch_index]).astype(np.uint8),
198
- self.dilation_kernel)
199
- else:
200
- mask = segmentation[batch_index]
201
- # 4. 使用boxes_from_bitmap函数 完成 从预测的文本概率图中计算得到文本框
202
- boxes, scores = self.boxes_from_bitmap(pred[batch_index], mask,
203
- src_w, src_h)
204
-
205
- boxes_batch.append({'points': boxes})
206
- return boxes_batch
207
-
208
-
209
- class DistillationDBPostProcess(object):
210
- def __init__(self,
211
- model_name=["student"],
212
- key=None,
213
- thresh=0.3,
214
- box_thresh=0.6,
215
- max_candidates=1000,
216
- unclip_ratio=1.5,
217
- use_dilation=False,
218
- score_mode="fast",
219
- **kwargs):
220
- self.model_name = model_name
221
- self.key = key
222
- self.post_process = DBPostProcess(
223
- thresh=thresh,
224
- box_thresh=box_thresh,
225
- max_candidates=max_candidates,
226
- unclip_ratio=unclip_ratio,
227
- use_dilation=use_dilation,
228
- score_mode=score_mode)
229
-
230
- def __call__(self, predicts, shape_list):
231
- results = {}
232
- for k in self.model_name:
233
- results[k] = self.post_process(predicts[k], shape_list=shape_list)
234
- return results
@@ -1,143 +0,0 @@
1
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
-
19
- import numpy as np
20
- from .locality_aware_nms import nms_locality
21
- import cv2
22
- import paddle
23
-
24
- import os
25
- import sys
26
-
27
-
28
- class EASTPostProcess(object):
29
- """
30
- The post process for EAST.
31
- """
32
-
33
- def __init__(self,
34
- score_thresh=0.8,
35
- cover_thresh=0.1,
36
- nms_thresh=0.2,
37
- **kwargs):
38
-
39
- self.score_thresh = score_thresh
40
- self.cover_thresh = cover_thresh
41
- self.nms_thresh = nms_thresh
42
-
43
- def restore_rectangle_quad(self, origin, geometry):
44
- """
45
- Restore rectangle from quadrangle.
46
- """
47
- # quad
48
- origin_concat = np.concatenate(
49
- (origin, origin, origin, origin), axis=1) # (n, 8)
50
- pred_quads = origin_concat - geometry
51
- pred_quads = pred_quads.reshape((-1, 4, 2)) # (n, 4, 2)
52
- return pred_quads
53
-
54
- def detect(self,
55
- score_map,
56
- geo_map,
57
- score_thresh=0.8,
58
- cover_thresh=0.1,
59
- nms_thresh=0.2):
60
- """
61
- restore text boxes from score map and geo map
62
- """
63
-
64
- score_map = score_map[0]
65
- geo_map = np.swapaxes(geo_map, 1, 0)
66
- geo_map = np.swapaxes(geo_map, 1, 2)
67
- # filter the score map
68
- xy_text = np.argwhere(score_map > score_thresh)
69
- if len(xy_text) == 0:
70
- return []
71
- # sort the text boxes via the y axis
72
- xy_text = xy_text[np.argsort(xy_text[:, 0])]
73
- #restore quad proposals
74
- text_box_restored = self.restore_rectangle_quad(
75
- xy_text[:, ::-1] * 4, geo_map[xy_text[:, 0], xy_text[:, 1], :])
76
- boxes = np.zeros((text_box_restored.shape[0], 9), dtype=np.float32)
77
- boxes[:, :8] = text_box_restored.reshape((-1, 8))
78
- boxes[:, 8] = score_map[xy_text[:, 0], xy_text[:, 1]]
79
-
80
- try:
81
- import lanms
82
- boxes = lanms.merge_quadrangle_n9(boxes, nms_thresh)
83
- except:
84
- print(
85
- 'you should install lanms by pip3 install lanms-nova to speed up nms_locality'
86
- )
87
- boxes = nms_locality(boxes.astype(np.float64), nms_thresh)
88
- if boxes.shape[0] == 0:
89
- return []
90
- # Here we filter some low score boxes by the average score map,
91
- # this is different from the orginal paper.
92
- for i, box in enumerate(boxes):
93
- mask = np.zeros_like(score_map, dtype=np.uint8)
94
- cv2.fillPoly(mask, box[:8].reshape(
95
- (-1, 4, 2)).astype(np.int32) // 4, 1)
96
- boxes[i, 8] = cv2.mean(score_map, mask)[0]
97
- boxes = boxes[boxes[:, 8] > cover_thresh]
98
- return boxes
99
-
100
- def sort_poly(self, p):
101
- """
102
- Sort polygons.
103
- """
104
- min_axis = np.argmin(np.sum(p, axis=1))
105
- p = p[[min_axis, (min_axis + 1) % 4,\
106
- (min_axis + 2) % 4, (min_axis + 3) % 4]]
107
- if abs(p[0, 0] - p[1, 0]) > abs(p[0, 1] - p[1, 1]):
108
- return p
109
- else:
110
- return p[[0, 3, 2, 1]]
111
-
112
- def __call__(self, outs_dict, shape_list):
113
- score_list = outs_dict['f_score']
114
- geo_list = outs_dict['f_geo']
115
- if isinstance(score_list, paddle.Tensor):
116
- score_list = score_list.numpy()
117
- geo_list = geo_list.numpy()
118
- img_num = len(shape_list)
119
- dt_boxes_list = []
120
- for ino in range(img_num):
121
- score = score_list[ino]
122
- geo = geo_list[ino]
123
- boxes = self.detect(
124
- score_map=score,
125
- geo_map=geo,
126
- score_thresh=self.score_thresh,
127
- cover_thresh=self.cover_thresh,
128
- nms_thresh=self.nms_thresh)
129
- boxes_norm = []
130
- if len(boxes) > 0:
131
- h, w = score.shape[1:]
132
- src_h, src_w, ratio_h, ratio_w = shape_list[ino]
133
- boxes = boxes[:, :8].reshape((-1, 4, 2))
134
- boxes[:, :, 0] /= ratio_w
135
- boxes[:, :, 1] /= ratio_h
136
- for i_box, box in enumerate(boxes):
137
- box = self.sort_poly(box.astype(np.int32))
138
- if np.linalg.norm(box[0] - box[1]) < 5 \
139
- or np.linalg.norm(box[3] - box[0]) < 5:
140
- continue
141
- boxes_norm.append(box)
142
- dt_boxes_list.append({'points': np.array(boxes_norm)})
143
- return dt_boxes_list