pyxllib 0.3.96__py3-none-any.whl → 0.3.197__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyxllib/algo/geo.py +12 -0
- pyxllib/algo/intervals.py +1 -1
- pyxllib/algo/matcher.py +78 -0
- pyxllib/algo/pupil.py +187 -19
- pyxllib/algo/specialist.py +2 -1
- pyxllib/algo/stat.py +38 -2
- {pyxlpr → pyxllib/autogui}/__init__.py +1 -1
- pyxllib/autogui/activewin.py +246 -0
- pyxllib/autogui/all.py +9 -0
- pyxllib/{ext/autogui → autogui}/autogui.py +40 -11
- pyxllib/autogui/uiautolib.py +362 -0
- pyxllib/autogui/wechat.py +827 -0
- pyxllib/autogui/wechat_msg.py +421 -0
- pyxllib/autogui/wxautolib.py +84 -0
- pyxllib/cv/slidercaptcha.py +137 -0
- pyxllib/data/echarts.py +123 -12
- pyxllib/data/jsonlib.py +89 -0
- pyxllib/data/pglib.py +514 -30
- pyxllib/data/sqlite.py +231 -4
- pyxllib/ext/JLineViewer.py +14 -1
- pyxllib/ext/drissionlib.py +277 -0
- pyxllib/ext/kq5034lib.py +0 -1594
- pyxllib/ext/robustprocfile.py +497 -0
- pyxllib/ext/unixlib.py +6 -5
- pyxllib/ext/utools.py +108 -95
- pyxllib/ext/webhook.py +32 -14
- pyxllib/ext/wjxlib.py +88 -0
- pyxllib/ext/wpsapi.py +124 -0
- pyxllib/ext/xlwork.py +9 -0
- pyxllib/ext/yuquelib.py +1003 -71
- pyxllib/file/docxlib.py +1 -1
- pyxllib/file/libreoffice.py +165 -0
- pyxllib/file/movielib.py +9 -0
- pyxllib/file/packlib/__init__.py +112 -75
- pyxllib/file/pdflib.py +1 -1
- pyxllib/file/pupil.py +1 -1
- pyxllib/file/specialist/dirlib.py +1 -1
- pyxllib/file/specialist/download.py +10 -3
- pyxllib/file/specialist/filelib.py +266 -55
- pyxllib/file/xlsxlib.py +205 -50
- pyxllib/file/xlsyncfile.py +341 -0
- pyxllib/prog/cachetools.py +64 -0
- pyxllib/prog/filelock.py +42 -0
- pyxllib/prog/multiprogs.py +940 -0
- pyxllib/prog/newbie.py +9 -2
- pyxllib/prog/pupil.py +129 -60
- pyxllib/prog/specialist/__init__.py +176 -2
- pyxllib/prog/specialist/bc.py +5 -2
- pyxllib/prog/specialist/browser.py +11 -2
- pyxllib/prog/specialist/datetime.py +68 -0
- pyxllib/prog/specialist/tictoc.py +12 -13
- pyxllib/prog/specialist/xllog.py +5 -5
- pyxllib/prog/xlosenv.py +7 -0
- pyxllib/text/airscript.js +744 -0
- pyxllib/text/charclasslib.py +17 -5
- pyxllib/text/jiebalib.py +6 -3
- pyxllib/text/jinjalib.py +32 -0
- pyxllib/text/jsa_ai_prompt.md +271 -0
- pyxllib/text/jscode.py +159 -4
- pyxllib/text/nestenv.py +1 -1
- pyxllib/text/newbie.py +12 -0
- pyxllib/text/pupil/common.py +26 -0
- pyxllib/text/specialist/ptag.py +2 -2
- pyxllib/text/templates/echart_base.html +11 -0
- pyxllib/text/templates/highlight_code.html +17 -0
- pyxllib/text/templates/latex_editor.html +103 -0
- pyxllib/text/xmllib.py +76 -14
- pyxllib/xl.py +2 -1
- pyxllib-0.3.197.dist-info/METADATA +48 -0
- pyxllib-0.3.197.dist-info/RECORD +126 -0
- {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info}/WHEEL +1 -2
- pyxllib/ext/autogui/__init__.py +0 -8
- pyxllib-0.3.96.dist-info/METADATA +0 -51
- pyxllib-0.3.96.dist-info/RECORD +0 -333
- pyxllib-0.3.96.dist-info/top_level.txt +0 -2
- pyxlpr/ai/__init__.py +0 -5
- pyxlpr/ai/clientlib.py +0 -1281
- pyxlpr/ai/specialist.py +0 -286
- pyxlpr/ai/torch_app.py +0 -172
- pyxlpr/ai/xlpaddle.py +0 -655
- pyxlpr/ai/xltorch.py +0 -705
- pyxlpr/data/__init__.py +0 -11
- pyxlpr/data/coco.py +0 -1325
- pyxlpr/data/datacls.py +0 -365
- pyxlpr/data/datasets.py +0 -200
- pyxlpr/data/gptlib.py +0 -1291
- pyxlpr/data/icdar/__init__.py +0 -96
- pyxlpr/data/icdar/deteval.py +0 -377
- pyxlpr/data/icdar/icdar2013.py +0 -341
- pyxlpr/data/icdar/iou.py +0 -340
- pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
- pyxlpr/data/imtextline.py +0 -473
- pyxlpr/data/labelme.py +0 -866
- pyxlpr/data/removeline.py +0 -179
- pyxlpr/data/specialist.py +0 -57
- pyxlpr/eval/__init__.py +0 -85
- pyxlpr/paddleocr.py +0 -776
- pyxlpr/ppocr/__init__.py +0 -15
- pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
- pyxlpr/ppocr/data/__init__.py +0 -135
- pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
- pyxlpr/ppocr/data/imaug/__init__.py +0 -67
- pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
- pyxlpr/ppocr/data/imaug/east_process.py +0 -437
- pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
- pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
- pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
- pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
- pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
- pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
- pyxlpr/ppocr/data/imaug/operators.py +0 -433
- pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
- pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
- pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
- pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
- pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
- pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
- pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
- pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
- pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
- pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
- pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
- pyxlpr/ppocr/data/simple_dataset.py +0 -372
- pyxlpr/ppocr/losses/__init__.py +0 -61
- pyxlpr/ppocr/losses/ace_loss.py +0 -52
- pyxlpr/ppocr/losses/basic_loss.py +0 -135
- pyxlpr/ppocr/losses/center_loss.py +0 -88
- pyxlpr/ppocr/losses/cls_loss.py +0 -30
- pyxlpr/ppocr/losses/combined_loss.py +0 -67
- pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
- pyxlpr/ppocr/losses/det_db_loss.py +0 -80
- pyxlpr/ppocr/losses/det_east_loss.py +0 -63
- pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
- pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
- pyxlpr/ppocr/losses/distillation_loss.py +0 -272
- pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
- pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
- pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
- pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
- pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
- pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
- pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
- pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
- pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
- pyxlpr/ppocr/losses/table_att_loss.py +0 -109
- pyxlpr/ppocr/metrics/__init__.py +0 -44
- pyxlpr/ppocr/metrics/cls_metric.py +0 -45
- pyxlpr/ppocr/metrics/det_metric.py +0 -82
- pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
- pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
- pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
- pyxlpr/ppocr/metrics/kie_metric.py +0 -70
- pyxlpr/ppocr/metrics/rec_metric.py +0 -75
- pyxlpr/ppocr/metrics/table_metric.py +0 -50
- pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
- pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
- pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
- pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
- pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
- pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
- pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
- pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
- pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
- pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
- pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
- pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
- pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
- pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
- pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
- pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
- pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
- pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
- pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
- pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
- pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
- pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
- pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
- pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
- pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
- pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
- pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
- pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
- pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
- pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
- pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
- pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
- pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
- pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
- pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
- pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
- pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
- pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
- pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
- pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
- pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
- pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
- pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
- pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
- pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
- pyxlpr/ppocr/optimizer/__init__.py +0 -61
- pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
- pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
- pyxlpr/ppocr/optimizer/optimizer.py +0 -160
- pyxlpr/ppocr/optimizer/regularizer.py +0 -52
- pyxlpr/ppocr/postprocess/__init__.py +0 -55
- pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
- pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
- pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
- pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
- pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
- pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
- pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
- pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
- pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
- pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
- pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
- pyxlpr/ppocr/tools/__init__.py +0 -14
- pyxlpr/ppocr/tools/eval.py +0 -83
- pyxlpr/ppocr/tools/export_center.py +0 -77
- pyxlpr/ppocr/tools/export_model.py +0 -129
- pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
- pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
- pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
- pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
- pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
- pyxlpr/ppocr/tools/infer/utility.py +0 -629
- pyxlpr/ppocr/tools/infer_cls.py +0 -83
- pyxlpr/ppocr/tools/infer_det.py +0 -134
- pyxlpr/ppocr/tools/infer_e2e.py +0 -122
- pyxlpr/ppocr/tools/infer_kie.py +0 -153
- pyxlpr/ppocr/tools/infer_rec.py +0 -146
- pyxlpr/ppocr/tools/infer_table.py +0 -107
- pyxlpr/ppocr/tools/program.py +0 -596
- pyxlpr/ppocr/tools/test_hubserving.py +0 -117
- pyxlpr/ppocr/tools/train.py +0 -163
- pyxlpr/ppocr/tools/xlprog.py +0 -748
- pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
- pyxlpr/ppocr/utils/__init__.py +0 -24
- pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
- pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
- pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
- pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
- pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
- pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
- pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
- pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
- pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
- pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
- pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
- pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
- pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
- pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
- pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
- pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
- pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
- pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
- pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
- pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
- pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
- pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
- pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
- pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
- pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
- pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
- pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
- pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
- pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
- pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
- pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
- pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
- pyxlpr/ppocr/utils/dict90.txt +0 -90
- pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
- pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
- pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
- pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
- pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
- pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
- pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
- pyxlpr/ppocr/utils/en_dict.txt +0 -95
- pyxlpr/ppocr/utils/gen_label.py +0 -81
- pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
- pyxlpr/ppocr/utils/iou.py +0 -54
- pyxlpr/ppocr/utils/logging.py +0 -69
- pyxlpr/ppocr/utils/network.py +0 -84
- pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
- pyxlpr/ppocr/utils/profiler.py +0 -110
- pyxlpr/ppocr/utils/save_load.py +0 -150
- pyxlpr/ppocr/utils/stats.py +0 -72
- pyxlpr/ppocr/utils/utility.py +0 -80
- pyxlpr/ppstructure/__init__.py +0 -13
- pyxlpr/ppstructure/predict_system.py +0 -187
- pyxlpr/ppstructure/table/__init__.py +0 -13
- pyxlpr/ppstructure/table/eval_table.py +0 -72
- pyxlpr/ppstructure/table/matcher.py +0 -192
- pyxlpr/ppstructure/table/predict_structure.py +0 -136
- pyxlpr/ppstructure/table/predict_table.py +0 -221
- pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
- pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
- pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
- pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
- pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
- pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
- pyxlpr/ppstructure/utility.py +0 -71
- pyxlpr/xlai.py +0 -10
- /pyxllib/{ext/autogui → autogui}/virtualkey.py +0 -0
- {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info/licenses}/LICENSE +0 -0
@@ -1,629 +0,0 @@
|
|
1
|
-
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
|
15
|
-
import argparse
|
16
|
-
import os
|
17
|
-
import sys
|
18
|
-
import cv2
|
19
|
-
import numpy as np
|
20
|
-
import paddle
|
21
|
-
from PIL import Image, ImageDraw, ImageFont
|
22
|
-
import math
|
23
|
-
from paddle import inference
|
24
|
-
import time
|
25
|
-
from pyxlpr.ppocr.utils.logging import get_logger
|
26
|
-
|
27
|
-
from pyxllib.xl import get_font_file
|
28
|
-
|
29
|
-
def str2bool(v):
|
30
|
-
return v.lower() in ("true", "t", "1")
|
31
|
-
|
32
|
-
|
33
|
-
def init_args():
|
34
|
-
parser = argparse.ArgumentParser()
|
35
|
-
# params for prediction engine
|
36
|
-
parser.add_argument("--use_gpu", type=str2bool, default=True)
|
37
|
-
parser.add_argument("--ir_optim", type=str2bool, default=True)
|
38
|
-
parser.add_argument("--use_tensorrt", type=str2bool, default=False)
|
39
|
-
parser.add_argument("--min_subgraph_size", type=int, default=15)
|
40
|
-
parser.add_argument("--precision", type=str, default="fp32")
|
41
|
-
parser.add_argument("--gpu_mem", type=int, default=500)
|
42
|
-
|
43
|
-
# params for text detector
|
44
|
-
parser.add_argument("--image_dir", type=str)
|
45
|
-
parser.add_argument("--det_algorithm", type=str, default='DB')
|
46
|
-
parser.add_argument("--det_model_dir", type=str)
|
47
|
-
parser.add_argument("--det_limit_side_len", type=float, default=960)
|
48
|
-
parser.add_argument("--det_limit_type", type=str, default='max')
|
49
|
-
|
50
|
-
# DB parmas
|
51
|
-
parser.add_argument("--det_db_thresh", type=float, default=0.3)
|
52
|
-
parser.add_argument("--det_db_box_thresh", type=float, default=0.6)
|
53
|
-
parser.add_argument("--det_db_unclip_ratio", type=float, default=1.5)
|
54
|
-
parser.add_argument("--max_batch_size", type=int, default=10)
|
55
|
-
parser.add_argument("--use_dilation", type=str2bool, default=False)
|
56
|
-
parser.add_argument("--det_db_score_mode", type=str, default="fast")
|
57
|
-
# EAST parmas
|
58
|
-
parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
|
59
|
-
parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
|
60
|
-
parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)
|
61
|
-
|
62
|
-
# SAST parmas
|
63
|
-
parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
|
64
|
-
parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
|
65
|
-
parser.add_argument("--det_sast_polygon", type=str2bool, default=False)
|
66
|
-
|
67
|
-
# PSE parmas
|
68
|
-
parser.add_argument("--det_pse_thresh", type=float, default=0)
|
69
|
-
parser.add_argument("--det_pse_box_thresh", type=float, default=0.85)
|
70
|
-
parser.add_argument("--det_pse_min_area", type=float, default=16)
|
71
|
-
parser.add_argument("--det_pse_box_type", type=str, default='box')
|
72
|
-
parser.add_argument("--det_pse_scale", type=int, default=1)
|
73
|
-
|
74
|
-
# params for text recognizer
|
75
|
-
parser.add_argument("--rec_algorithm", type=str, default='CRNN')
|
76
|
-
parser.add_argument("--rec_model_dir", type=str)
|
77
|
-
parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
|
78
|
-
parser.add_argument("--rec_batch_num", type=int, default=6)
|
79
|
-
parser.add_argument("--max_text_length", type=int, default=25)
|
80
|
-
parser.add_argument(
|
81
|
-
"--rec_char_dict_path",
|
82
|
-
type=str,
|
83
|
-
default="./ppocr/utils/ppocr_keys_v1.txt")
|
84
|
-
parser.add_argument("--use_space_char", type=str2bool, default=True)
|
85
|
-
parser.add_argument(
|
86
|
-
"--vis_font_path", type=str, default="./doc/fonts/simfang.ttf")
|
87
|
-
parser.add_argument("--drop_score", type=float, default=0.5)
|
88
|
-
|
89
|
-
# params for e2e
|
90
|
-
parser.add_argument("--e2e_algorithm", type=str, default='PGNet')
|
91
|
-
parser.add_argument("--e2e_model_dir", type=str)
|
92
|
-
parser.add_argument("--e2e_limit_side_len", type=float, default=768)
|
93
|
-
parser.add_argument("--e2e_limit_type", type=str, default='max')
|
94
|
-
|
95
|
-
# PGNet parmas
|
96
|
-
parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5)
|
97
|
-
parser.add_argument(
|
98
|
-
"--e2e_char_dict_path", type=str, default="./ppocr/utils/ic15_dict.txt")
|
99
|
-
parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext')
|
100
|
-
parser.add_argument("--e2e_pgnet_mode", type=str, default='fast')
|
101
|
-
|
102
|
-
# params for text classifier
|
103
|
-
parser.add_argument("--use_angle_cls", type=str2bool, default=False)
|
104
|
-
parser.add_argument("--cls_model_dir", type=str)
|
105
|
-
parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
|
106
|
-
parser.add_argument("--label_list", type=list, default=['0', '180'])
|
107
|
-
parser.add_argument("--cls_batch_num", type=int, default=6)
|
108
|
-
parser.add_argument("--cls_thresh", type=float, default=0.9)
|
109
|
-
|
110
|
-
parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
|
111
|
-
parser.add_argument("--cpu_threads", type=int, default=10)
|
112
|
-
parser.add_argument("--use_pdserving", type=str2bool, default=False)
|
113
|
-
parser.add_argument("--warmup", type=str2bool, default=False)
|
114
|
-
|
115
|
-
#
|
116
|
-
parser.add_argument(
|
117
|
-
"--draw_img_save_dir", type=str, default="./inference_results")
|
118
|
-
parser.add_argument("--save_crop_res", type=str2bool, default=False)
|
119
|
-
parser.add_argument("--crop_res_save_dir", type=str, default="./output")
|
120
|
-
|
121
|
-
# multi-process
|
122
|
-
parser.add_argument("--use_mp", type=str2bool, default=False)
|
123
|
-
parser.add_argument("--total_process_num", type=int, default=1)
|
124
|
-
parser.add_argument("--process_id", type=int, default=0)
|
125
|
-
|
126
|
-
parser.add_argument("--benchmark", type=str2bool, default=False)
|
127
|
-
parser.add_argument("--save_log_path", type=str, default="./log_output/")
|
128
|
-
|
129
|
-
parser.add_argument("--show_log", type=str2bool, default=True)
|
130
|
-
parser.add_argument("--use_onnx", type=str2bool, default=False)
|
131
|
-
return parser
|
132
|
-
|
133
|
-
|
134
|
-
def parse_args():
|
135
|
-
parser = init_args()
|
136
|
-
return parser.parse_args()
|
137
|
-
|
138
|
-
|
139
|
-
def create_predictor(args, mode, logger):
|
140
|
-
if mode == "det":
|
141
|
-
model_dir = args.det_model_dir
|
142
|
-
elif mode == 'cls':
|
143
|
-
model_dir = args.cls_model_dir
|
144
|
-
elif mode == 'rec':
|
145
|
-
model_dir = args.rec_model_dir
|
146
|
-
elif mode == 'table':
|
147
|
-
model_dir = args.table_model_dir
|
148
|
-
else:
|
149
|
-
model_dir = args.e2e_model_dir
|
150
|
-
|
151
|
-
if model_dir is None:
|
152
|
-
logger.info("not find {} model file path {}".format(mode, model_dir))
|
153
|
-
sys.exit(0)
|
154
|
-
if args.use_onnx:
|
155
|
-
import onnxruntime as ort
|
156
|
-
model_file_path = model_dir
|
157
|
-
if not os.path.exists(model_file_path):
|
158
|
-
raise ValueError("not find model file path {}".format(
|
159
|
-
model_file_path))
|
160
|
-
sess = ort.InferenceSession(model_file_path)
|
161
|
-
return sess, sess.get_inputs()[0], None, None
|
162
|
-
|
163
|
-
else:
|
164
|
-
model_file_path = model_dir + "/inference.pdmodel"
|
165
|
-
params_file_path = model_dir + "/inference.pdiparams"
|
166
|
-
if not os.path.exists(model_file_path):
|
167
|
-
raise ValueError("not find model file path {}".format(
|
168
|
-
model_file_path))
|
169
|
-
if not os.path.exists(params_file_path):
|
170
|
-
raise ValueError("not find params file path {}".format(
|
171
|
-
params_file_path))
|
172
|
-
|
173
|
-
config = inference.Config(model_file_path, params_file_path)
|
174
|
-
|
175
|
-
if hasattr(args, 'precision'):
|
176
|
-
if args.precision == "fp16" and args.use_tensorrt:
|
177
|
-
precision = inference.PrecisionType.Half
|
178
|
-
elif args.precision == "int8":
|
179
|
-
precision = inference.PrecisionType.Int8
|
180
|
-
else:
|
181
|
-
precision = inference.PrecisionType.Float32
|
182
|
-
else:
|
183
|
-
precision = inference.PrecisionType.Float32
|
184
|
-
|
185
|
-
if args.use_gpu:
|
186
|
-
gpu_id = get_infer_gpuid()
|
187
|
-
if gpu_id is None:
|
188
|
-
logger.warning(
|
189
|
-
"GPU is not found in current device by nvidia-smi. Please check your device or ignore it if run on jeston."
|
190
|
-
)
|
191
|
-
config.enable_use_gpu(args.gpu_mem, 0)
|
192
|
-
if args.use_tensorrt:
|
193
|
-
config.enable_tensorrt_engine(
|
194
|
-
workspace_size=1 << 30,
|
195
|
-
precision_mode=precision,
|
196
|
-
max_batch_size=args.max_batch_size,
|
197
|
-
min_subgraph_size=args.min_subgraph_size)
|
198
|
-
# skip the minmum trt subgraph
|
199
|
-
use_dynamic_shape = True
|
200
|
-
if mode == "det":
|
201
|
-
min_input_shape = {
|
202
|
-
"x": [1, 3, 50, 50],
|
203
|
-
"conv2d_92.tmp_0": [1, 120, 20, 20],
|
204
|
-
"conv2d_91.tmp_0": [1, 24, 10, 10],
|
205
|
-
"conv2d_59.tmp_0": [1, 96, 20, 20],
|
206
|
-
"nearest_interp_v2_1.tmp_0": [1, 256, 10, 10],
|
207
|
-
"nearest_interp_v2_2.tmp_0": [1, 256, 20, 20],
|
208
|
-
"conv2d_124.tmp_0": [1, 256, 20, 20],
|
209
|
-
"nearest_interp_v2_3.tmp_0": [1, 64, 20, 20],
|
210
|
-
"nearest_interp_v2_4.tmp_0": [1, 64, 20, 20],
|
211
|
-
"nearest_interp_v2_5.tmp_0": [1, 64, 20, 20],
|
212
|
-
"elementwise_add_7": [1, 56, 2, 2],
|
213
|
-
"nearest_interp_v2_0.tmp_0": [1, 256, 2, 2]
|
214
|
-
}
|
215
|
-
max_input_shape = {
|
216
|
-
"x": [1, 3, 1536, 1536],
|
217
|
-
"conv2d_92.tmp_0": [1, 120, 400, 400],
|
218
|
-
"conv2d_91.tmp_0": [1, 24, 200, 200],
|
219
|
-
"conv2d_59.tmp_0": [1, 96, 400, 400],
|
220
|
-
"nearest_interp_v2_1.tmp_0": [1, 256, 200, 200],
|
221
|
-
"conv2d_124.tmp_0": [1, 256, 400, 400],
|
222
|
-
"nearest_interp_v2_2.tmp_0": [1, 256, 400, 400],
|
223
|
-
"nearest_interp_v2_3.tmp_0": [1, 64, 400, 400],
|
224
|
-
"nearest_interp_v2_4.tmp_0": [1, 64, 400, 400],
|
225
|
-
"nearest_interp_v2_5.tmp_0": [1, 64, 400, 400],
|
226
|
-
"elementwise_add_7": [1, 56, 400, 400],
|
227
|
-
"nearest_interp_v2_0.tmp_0": [1, 256, 400, 400]
|
228
|
-
}
|
229
|
-
opt_input_shape = {
|
230
|
-
"x": [1, 3, 640, 640],
|
231
|
-
"conv2d_92.tmp_0": [1, 120, 160, 160],
|
232
|
-
"conv2d_91.tmp_0": [1, 24, 80, 80],
|
233
|
-
"conv2d_59.tmp_0": [1, 96, 160, 160],
|
234
|
-
"nearest_interp_v2_1.tmp_0": [1, 256, 80, 80],
|
235
|
-
"nearest_interp_v2_2.tmp_0": [1, 256, 160, 160],
|
236
|
-
"conv2d_124.tmp_0": [1, 256, 160, 160],
|
237
|
-
"nearest_interp_v2_3.tmp_0": [1, 64, 160, 160],
|
238
|
-
"nearest_interp_v2_4.tmp_0": [1, 64, 160, 160],
|
239
|
-
"nearest_interp_v2_5.tmp_0": [1, 64, 160, 160],
|
240
|
-
"elementwise_add_7": [1, 56, 40, 40],
|
241
|
-
"nearest_interp_v2_0.tmp_0": [1, 256, 40, 40]
|
242
|
-
}
|
243
|
-
min_pact_shape = {
|
244
|
-
"nearest_interp_v2_26.tmp_0": [1, 256, 20, 20],
|
245
|
-
"nearest_interp_v2_27.tmp_0": [1, 64, 20, 20],
|
246
|
-
"nearest_interp_v2_28.tmp_0": [1, 64, 20, 20],
|
247
|
-
"nearest_interp_v2_29.tmp_0": [1, 64, 20, 20]
|
248
|
-
}
|
249
|
-
max_pact_shape = {
|
250
|
-
"nearest_interp_v2_26.tmp_0": [1, 256, 400, 400],
|
251
|
-
"nearest_interp_v2_27.tmp_0": [1, 64, 400, 400],
|
252
|
-
"nearest_interp_v2_28.tmp_0": [1, 64, 400, 400],
|
253
|
-
"nearest_interp_v2_29.tmp_0": [1, 64, 400, 400]
|
254
|
-
}
|
255
|
-
opt_pact_shape = {
|
256
|
-
"nearest_interp_v2_26.tmp_0": [1, 256, 160, 160],
|
257
|
-
"nearest_interp_v2_27.tmp_0": [1, 64, 160, 160],
|
258
|
-
"nearest_interp_v2_28.tmp_0": [1, 64, 160, 160],
|
259
|
-
"nearest_interp_v2_29.tmp_0": [1, 64, 160, 160]
|
260
|
-
}
|
261
|
-
min_input_shape.update(min_pact_shape)
|
262
|
-
max_input_shape.update(max_pact_shape)
|
263
|
-
opt_input_shape.update(opt_pact_shape)
|
264
|
-
elif mode == "rec":
|
265
|
-
if args.rec_algorithm != "CRNN":
|
266
|
-
use_dynamic_shape = False
|
267
|
-
min_input_shape = {"x": [1, 3, 32, 10]}
|
268
|
-
max_input_shape = {"x": [args.rec_batch_num, 3, 32, 1536]}
|
269
|
-
opt_input_shape = {"x": [args.rec_batch_num, 3, 32, 320]}
|
270
|
-
elif mode == "cls":
|
271
|
-
min_input_shape = {"x": [1, 3, 48, 10]}
|
272
|
-
max_input_shape = {"x": [args.rec_batch_num, 3, 48, 1024]}
|
273
|
-
opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
|
274
|
-
else:
|
275
|
-
use_dynamic_shape = False
|
276
|
-
if use_dynamic_shape:
|
277
|
-
config.set_trt_dynamic_shape_info(
|
278
|
-
min_input_shape, max_input_shape, opt_input_shape)
|
279
|
-
|
280
|
-
else:
|
281
|
-
config.disable_gpu()
|
282
|
-
if hasattr(args, "cpu_threads"):
|
283
|
-
config.set_cpu_math_library_num_threads(args.cpu_threads)
|
284
|
-
else:
|
285
|
-
# default cpu threads as 10
|
286
|
-
config.set_cpu_math_library_num_threads(10)
|
287
|
-
if args.enable_mkldnn:
|
288
|
-
# cache 10 different shapes for mkldnn to avoid memory leak
|
289
|
-
config.set_mkldnn_cache_capacity(10)
|
290
|
-
config.enable_mkldnn()
|
291
|
-
if args.precision == "fp16":
|
292
|
-
config.enable_mkldnn_bfloat16()
|
293
|
-
# enable memory optim
|
294
|
-
config.enable_memory_optim()
|
295
|
-
config.disable_glog_info()
|
296
|
-
|
297
|
-
config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
|
298
|
-
if mode == 'table':
|
299
|
-
config.delete_pass("fc_fuse_pass") # not supported for table
|
300
|
-
config.switch_use_feed_fetch_ops(False)
|
301
|
-
config.switch_ir_optim(True)
|
302
|
-
|
303
|
-
# create predictor
|
304
|
-
predictor = inference.create_predictor(config)
|
305
|
-
input_names = predictor.get_input_names()
|
306
|
-
for name in input_names:
|
307
|
-
input_tensor = predictor.get_input_handle(name)
|
308
|
-
output_names = predictor.get_output_names()
|
309
|
-
output_tensors = []
|
310
|
-
for output_name in output_names:
|
311
|
-
output_tensor = predictor.get_output_handle(output_name)
|
312
|
-
output_tensors.append(output_tensor)
|
313
|
-
return predictor, input_tensor, output_tensors, config
|
314
|
-
|
315
|
-
|
316
|
-
def get_infer_gpuid():
|
317
|
-
if os.name == 'nt':
|
318
|
-
try:
|
319
|
-
return int(os.environ['CUDA_VISIBLE_DEVICES'].split(',')[0])
|
320
|
-
except KeyError:
|
321
|
-
return 0
|
322
|
-
if not paddle.fluid.core.is_compiled_with_rocm():
|
323
|
-
cmd = "env | grep CUDA_VISIBLE_DEVICES"
|
324
|
-
else:
|
325
|
-
cmd = "env | grep HIP_VISIBLE_DEVICES"
|
326
|
-
env_cuda = os.popen(cmd).readlines()
|
327
|
-
if len(env_cuda) == 0:
|
328
|
-
return 0
|
329
|
-
else:
|
330
|
-
gpu_id = env_cuda[0].strip().split("=")[1]
|
331
|
-
return int(gpu_id[0])
|
332
|
-
|
333
|
-
|
334
|
-
def draw_e2e_res(dt_boxes, strs, img_path):
|
335
|
-
src_im = cv2.imread(img_path)
|
336
|
-
for box, str in zip(dt_boxes, strs):
|
337
|
-
box = box.astype(np.int32).reshape((-1, 1, 2))
|
338
|
-
cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
|
339
|
-
cv2.putText(
|
340
|
-
src_im,
|
341
|
-
str,
|
342
|
-
org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
|
343
|
-
fontFace=cv2.FONT_HERSHEY_COMPLEX,
|
344
|
-
fontScale=0.7,
|
345
|
-
color=(0, 255, 0),
|
346
|
-
thickness=1)
|
347
|
-
return src_im
|
348
|
-
|
349
|
-
|
350
|
-
def draw_text_det_res(dt_boxes, img_path):
|
351
|
-
src_im = cv2.imread(img_path)
|
352
|
-
for box in dt_boxes:
|
353
|
-
box = np.array(box).astype(np.int32).reshape(-1, 2)
|
354
|
-
cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
|
355
|
-
return src_im
|
356
|
-
|
357
|
-
|
358
|
-
def resize_img(img, input_size=600):
|
359
|
-
"""
|
360
|
-
resize img and limit the longest side of the image to input_size
|
361
|
-
"""
|
362
|
-
img = np.array(img)
|
363
|
-
im_shape = img.shape
|
364
|
-
im_size_max = np.max(im_shape[0:2])
|
365
|
-
im_scale = float(input_size) / float(im_size_max)
|
366
|
-
img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
|
367
|
-
return img
|
368
|
-
|
369
|
-
|
370
|
-
def draw_ocr(image,
|
371
|
-
boxes,
|
372
|
-
txts=None,
|
373
|
-
scores=None,
|
374
|
-
drop_score=0.5,
|
375
|
-
font_path='simfang.ttf'):
|
376
|
-
"""
|
377
|
-
Visualize the results of OCR detection and recognition
|
378
|
-
args:
|
379
|
-
image(Image|array): RGB image
|
380
|
-
boxes(list): boxes with shape(N, 4, 2)
|
381
|
-
txts(list): the texts
|
382
|
-
scores(list): txxs corresponding scores
|
383
|
-
drop_score(float): only scores greater than drop_threshold will be visualized
|
384
|
-
font_path: the path of font which is used to draw text
|
385
|
-
return(array):
|
386
|
-
the visualized img
|
387
|
-
"""
|
388
|
-
if scores is None:
|
389
|
-
scores = [1] * len(boxes)
|
390
|
-
box_num = len(boxes)
|
391
|
-
for i in range(box_num):
|
392
|
-
if scores is not None and (scores[i] < drop_score or
|
393
|
-
math.isnan(scores[i])):
|
394
|
-
continue
|
395
|
-
box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
|
396
|
-
image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
|
397
|
-
if txts is not None:
|
398
|
-
img = np.array(resize_img(image, input_size=600))
|
399
|
-
txt_img = text_visual(
|
400
|
-
txts,
|
401
|
-
scores,
|
402
|
-
img_h=img.shape[0],
|
403
|
-
img_w=600,
|
404
|
-
threshold=drop_score,
|
405
|
-
font_path=font_path)
|
406
|
-
img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
|
407
|
-
return img
|
408
|
-
return image
|
409
|
-
|
410
|
-
|
411
|
-
def draw_ocr_box_txt(image,
|
412
|
-
boxes,
|
413
|
-
txts,
|
414
|
-
scores=None,
|
415
|
-
drop_score=0.5,
|
416
|
-
font_path='simfang.ttf'):
|
417
|
-
h, w = image.height, image.width
|
418
|
-
img_left = image.copy()
|
419
|
-
img_right = Image.new('RGB', (w, h), (255, 255, 255))
|
420
|
-
|
421
|
-
import random
|
422
|
-
|
423
|
-
random.seed(0)
|
424
|
-
draw_left = ImageDraw.Draw(img_left)
|
425
|
-
draw_right = ImageDraw.Draw(img_right)
|
426
|
-
for idx, (box, txt) in enumerate(zip(boxes, txts)):
|
427
|
-
if scores is not None and scores[idx] < drop_score:
|
428
|
-
continue
|
429
|
-
color = (random.randint(0, 255), random.randint(0, 255),
|
430
|
-
random.randint(0, 255))
|
431
|
-
draw_left.polygon(box, fill=color)
|
432
|
-
draw_right.polygon(
|
433
|
-
[
|
434
|
-
box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
|
435
|
-
box[2][1], box[3][0], box[3][1]
|
436
|
-
],
|
437
|
-
outline=color)
|
438
|
-
box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
|
439
|
-
1])**2)
|
440
|
-
box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
|
441
|
-
1])**2)
|
442
|
-
if box_height > 2 * box_width:
|
443
|
-
font_size = max(int(box_width * 0.9), 10)
|
444
|
-
font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
|
445
|
-
cur_y = box[0][1]
|
446
|
-
for c in txt:
|
447
|
-
char_size = font.getsize(c)
|
448
|
-
draw_right.text(
|
449
|
-
(box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
|
450
|
-
cur_y += char_size[1]
|
451
|
-
else:
|
452
|
-
font_size = max(int(box_height * 0.8), 10)
|
453
|
-
font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
|
454
|
-
draw_right.text(
|
455
|
-
[box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
|
456
|
-
img_left = Image.blend(image, img_left, 0.5)
|
457
|
-
img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
|
458
|
-
img_show.paste(img_left, (0, 0, w, h))
|
459
|
-
img_show.paste(img_right, (w, 0, w * 2, h))
|
460
|
-
return np.array(img_show)
|
461
|
-
|
462
|
-
|
463
|
-
def str_count(s):
|
464
|
-
"""
|
465
|
-
Count the number of Chinese characters,
|
466
|
-
a single English character and a single number
|
467
|
-
equal to half the length of Chinese characters.
|
468
|
-
args:
|
469
|
-
s(string): the input of string
|
470
|
-
return(int):
|
471
|
-
the number of Chinese characters
|
472
|
-
"""
|
473
|
-
import string
|
474
|
-
count_zh = count_pu = 0
|
475
|
-
s_len = len(s)
|
476
|
-
en_dg_count = 0
|
477
|
-
for c in s:
|
478
|
-
if c in string.ascii_letters or c.isdigit() or c.isspace():
|
479
|
-
en_dg_count += 1
|
480
|
-
elif c.isalpha():
|
481
|
-
count_zh += 1
|
482
|
-
else:
|
483
|
-
count_pu += 1
|
484
|
-
return s_len - math.ceil(en_dg_count / 2)
|
485
|
-
|
486
|
-
|
487
|
-
def text_visual(texts,
|
488
|
-
scores,
|
489
|
-
img_h=400,
|
490
|
-
img_w=600,
|
491
|
-
threshold=0.,
|
492
|
-
font_path='simfang.ttf'):
|
493
|
-
"""
|
494
|
-
create new blank img and draw txt on it
|
495
|
-
args:
|
496
|
-
texts(list): the text will be draw
|
497
|
-
scores(list|None): corresponding score of each txt
|
498
|
-
img_h(int): the height of blank img
|
499
|
-
img_w(int): the width of blank img
|
500
|
-
font_path: the path of font which is used to draw text
|
501
|
-
return(array):
|
502
|
-
"""
|
503
|
-
if scores is not None:
|
504
|
-
assert len(texts) == len(
|
505
|
-
scores), "The number of txts and corresponding scores must match"
|
506
|
-
|
507
|
-
def create_blank_img():
|
508
|
-
blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
|
509
|
-
blank_img[:, img_w - 1:] = 0
|
510
|
-
blank_img = Image.fromarray(blank_img).convert("RGB")
|
511
|
-
draw_txt = ImageDraw.Draw(blank_img)
|
512
|
-
return blank_img, draw_txt
|
513
|
-
|
514
|
-
blank_img, draw_txt = create_blank_img()
|
515
|
-
|
516
|
-
font_size = 20
|
517
|
-
txt_color = (0, 0, 0)
|
518
|
-
|
519
|
-
if not os.path.isfile(font_path):
|
520
|
-
font_path = str(get_font_file('simfang.ttf'))
|
521
|
-
|
522
|
-
font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
|
523
|
-
|
524
|
-
gap = font_size + 5
|
525
|
-
txt_img_list = []
|
526
|
-
count, index = 1, 0
|
527
|
-
for idx, txt in enumerate(texts):
|
528
|
-
index += 1
|
529
|
-
if scores[idx] < threshold or math.isnan(scores[idx]):
|
530
|
-
index -= 1
|
531
|
-
continue
|
532
|
-
first_line = True
|
533
|
-
while str_count(txt) >= img_w // font_size - 4:
|
534
|
-
tmp = txt
|
535
|
-
txt = tmp[:img_w // font_size - 4]
|
536
|
-
if first_line:
|
537
|
-
new_txt = str(index) + ': ' + txt
|
538
|
-
first_line = False
|
539
|
-
else:
|
540
|
-
new_txt = ' ' + txt
|
541
|
-
draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
|
542
|
-
txt = tmp[img_w // font_size - 4:]
|
543
|
-
if count >= img_h // gap - 1:
|
544
|
-
txt_img_list.append(np.array(blank_img))
|
545
|
-
blank_img, draw_txt = create_blank_img()
|
546
|
-
count = 0
|
547
|
-
count += 1
|
548
|
-
if first_line:
|
549
|
-
new_txt = str(index) + ': ' + txt + ' ' + '%.3f' % (scores[idx])
|
550
|
-
else:
|
551
|
-
new_txt = " " + txt + " " + '%.3f' % (scores[idx])
|
552
|
-
draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
|
553
|
-
# whether add new blank img or not
|
554
|
-
if count >= img_h // gap - 1 and idx + 1 < len(texts):
|
555
|
-
txt_img_list.append(np.array(blank_img))
|
556
|
-
blank_img, draw_txt = create_blank_img()
|
557
|
-
count = 0
|
558
|
-
count += 1
|
559
|
-
txt_img_list.append(np.array(blank_img))
|
560
|
-
if len(txt_img_list) == 1:
|
561
|
-
blank_img = np.array(txt_img_list[0])
|
562
|
-
else:
|
563
|
-
blank_img = np.concatenate(txt_img_list, axis=1)
|
564
|
-
return np.array(blank_img)
|
565
|
-
|
566
|
-
|
567
|
-
def base64_to_cv2(b64str):
|
568
|
-
import base64
|
569
|
-
data = base64.b64decode(b64str.encode('utf8'))
|
570
|
-
data = np.fromstring(data, np.uint8)
|
571
|
-
data = cv2.imdecode(data, cv2.IMREAD_COLOR)
|
572
|
-
return data
|
573
|
-
|
574
|
-
|
575
|
-
def draw_boxes(image, boxes, scores=None, drop_score=0.5):
|
576
|
-
if scores is None:
|
577
|
-
scores = [1] * len(boxes)
|
578
|
-
for (box, score) in zip(boxes, scores):
|
579
|
-
if score < drop_score:
|
580
|
-
continue
|
581
|
-
box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
|
582
|
-
image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
|
583
|
-
return image
|
584
|
-
|
585
|
-
|
586
|
-
def get_rotate_crop_image(img, points):
|
587
|
-
'''
|
588
|
-
img_height, img_width = img.shape[0:2]
|
589
|
-
left = int(np.min(points[:, 0]))
|
590
|
-
right = int(np.max(points[:, 0]))
|
591
|
-
top = int(np.min(points[:, 1]))
|
592
|
-
bottom = int(np.max(points[:, 1]))
|
593
|
-
img_crop = img[top:bottom, left:right, :].copy()
|
594
|
-
points[:, 0] = points[:, 0] - left
|
595
|
-
points[:, 1] = points[:, 1] - top
|
596
|
-
'''
|
597
|
-
assert len(points) == 4, "shape of points must be 4*2"
|
598
|
-
img_crop_width = int(
|
599
|
-
max(
|
600
|
-
np.linalg.norm(points[0] - points[1]),
|
601
|
-
np.linalg.norm(points[2] - points[3])))
|
602
|
-
img_crop_height = int(
|
603
|
-
max(
|
604
|
-
np.linalg.norm(points[0] - points[3]),
|
605
|
-
np.linalg.norm(points[1] - points[2])))
|
606
|
-
pts_std = np.float32([[0, 0], [img_crop_width, 0],
|
607
|
-
[img_crop_width, img_crop_height],
|
608
|
-
[0, img_crop_height]])
|
609
|
-
M = cv2.getPerspectiveTransform(points, pts_std)
|
610
|
-
dst_img = cv2.warpPerspective(
|
611
|
-
img,
|
612
|
-
M, (img_crop_width, img_crop_height),
|
613
|
-
borderMode=cv2.BORDER_REPLICATE,
|
614
|
-
flags=cv2.INTER_CUBIC)
|
615
|
-
dst_img_height, dst_img_width = dst_img.shape[0:2]
|
616
|
-
if dst_img_height * 1.0 / dst_img_width >= 1.5:
|
617
|
-
dst_img = np.rot90(dst_img)
|
618
|
-
return dst_img
|
619
|
-
|
620
|
-
|
621
|
-
def check_gpu(use_gpu):
|
622
|
-
if use_gpu and not paddle.is_compiled_with_cuda():
|
623
|
-
|
624
|
-
use_gpu = False
|
625
|
-
return use_gpu
|
626
|
-
|
627
|
-
|
628
|
-
if __name__ == '__main__':
|
629
|
-
pass
|