pyxllib 0.3.96__py3-none-any.whl → 0.3.197__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (306) hide show
  1. pyxllib/algo/geo.py +12 -0
  2. pyxllib/algo/intervals.py +1 -1
  3. pyxllib/algo/matcher.py +78 -0
  4. pyxllib/algo/pupil.py +187 -19
  5. pyxllib/algo/specialist.py +2 -1
  6. pyxllib/algo/stat.py +38 -2
  7. {pyxlpr → pyxllib/autogui}/__init__.py +1 -1
  8. pyxllib/autogui/activewin.py +246 -0
  9. pyxllib/autogui/all.py +9 -0
  10. pyxllib/{ext/autogui → autogui}/autogui.py +40 -11
  11. pyxllib/autogui/uiautolib.py +362 -0
  12. pyxllib/autogui/wechat.py +827 -0
  13. pyxllib/autogui/wechat_msg.py +421 -0
  14. pyxllib/autogui/wxautolib.py +84 -0
  15. pyxllib/cv/slidercaptcha.py +137 -0
  16. pyxllib/data/echarts.py +123 -12
  17. pyxllib/data/jsonlib.py +89 -0
  18. pyxllib/data/pglib.py +514 -30
  19. pyxllib/data/sqlite.py +231 -4
  20. pyxllib/ext/JLineViewer.py +14 -1
  21. pyxllib/ext/drissionlib.py +277 -0
  22. pyxllib/ext/kq5034lib.py +0 -1594
  23. pyxllib/ext/robustprocfile.py +497 -0
  24. pyxllib/ext/unixlib.py +6 -5
  25. pyxllib/ext/utools.py +108 -95
  26. pyxllib/ext/webhook.py +32 -14
  27. pyxllib/ext/wjxlib.py +88 -0
  28. pyxllib/ext/wpsapi.py +124 -0
  29. pyxllib/ext/xlwork.py +9 -0
  30. pyxllib/ext/yuquelib.py +1003 -71
  31. pyxllib/file/docxlib.py +1 -1
  32. pyxllib/file/libreoffice.py +165 -0
  33. pyxllib/file/movielib.py +9 -0
  34. pyxllib/file/packlib/__init__.py +112 -75
  35. pyxllib/file/pdflib.py +1 -1
  36. pyxllib/file/pupil.py +1 -1
  37. pyxllib/file/specialist/dirlib.py +1 -1
  38. pyxllib/file/specialist/download.py +10 -3
  39. pyxllib/file/specialist/filelib.py +266 -55
  40. pyxllib/file/xlsxlib.py +205 -50
  41. pyxllib/file/xlsyncfile.py +341 -0
  42. pyxllib/prog/cachetools.py +64 -0
  43. pyxllib/prog/filelock.py +42 -0
  44. pyxllib/prog/multiprogs.py +940 -0
  45. pyxllib/prog/newbie.py +9 -2
  46. pyxllib/prog/pupil.py +129 -60
  47. pyxllib/prog/specialist/__init__.py +176 -2
  48. pyxllib/prog/specialist/bc.py +5 -2
  49. pyxllib/prog/specialist/browser.py +11 -2
  50. pyxllib/prog/specialist/datetime.py +68 -0
  51. pyxllib/prog/specialist/tictoc.py +12 -13
  52. pyxllib/prog/specialist/xllog.py +5 -5
  53. pyxllib/prog/xlosenv.py +7 -0
  54. pyxllib/text/airscript.js +744 -0
  55. pyxllib/text/charclasslib.py +17 -5
  56. pyxllib/text/jiebalib.py +6 -3
  57. pyxllib/text/jinjalib.py +32 -0
  58. pyxllib/text/jsa_ai_prompt.md +271 -0
  59. pyxllib/text/jscode.py +159 -4
  60. pyxllib/text/nestenv.py +1 -1
  61. pyxllib/text/newbie.py +12 -0
  62. pyxllib/text/pupil/common.py +26 -0
  63. pyxllib/text/specialist/ptag.py +2 -2
  64. pyxllib/text/templates/echart_base.html +11 -0
  65. pyxllib/text/templates/highlight_code.html +17 -0
  66. pyxllib/text/templates/latex_editor.html +103 -0
  67. pyxllib/text/xmllib.py +76 -14
  68. pyxllib/xl.py +2 -1
  69. pyxllib-0.3.197.dist-info/METADATA +48 -0
  70. pyxllib-0.3.197.dist-info/RECORD +126 -0
  71. {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info}/WHEEL +1 -2
  72. pyxllib/ext/autogui/__init__.py +0 -8
  73. pyxllib-0.3.96.dist-info/METADATA +0 -51
  74. pyxllib-0.3.96.dist-info/RECORD +0 -333
  75. pyxllib-0.3.96.dist-info/top_level.txt +0 -2
  76. pyxlpr/ai/__init__.py +0 -5
  77. pyxlpr/ai/clientlib.py +0 -1281
  78. pyxlpr/ai/specialist.py +0 -286
  79. pyxlpr/ai/torch_app.py +0 -172
  80. pyxlpr/ai/xlpaddle.py +0 -655
  81. pyxlpr/ai/xltorch.py +0 -705
  82. pyxlpr/data/__init__.py +0 -11
  83. pyxlpr/data/coco.py +0 -1325
  84. pyxlpr/data/datacls.py +0 -365
  85. pyxlpr/data/datasets.py +0 -200
  86. pyxlpr/data/gptlib.py +0 -1291
  87. pyxlpr/data/icdar/__init__.py +0 -96
  88. pyxlpr/data/icdar/deteval.py +0 -377
  89. pyxlpr/data/icdar/icdar2013.py +0 -341
  90. pyxlpr/data/icdar/iou.py +0 -340
  91. pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
  92. pyxlpr/data/imtextline.py +0 -473
  93. pyxlpr/data/labelme.py +0 -866
  94. pyxlpr/data/removeline.py +0 -179
  95. pyxlpr/data/specialist.py +0 -57
  96. pyxlpr/eval/__init__.py +0 -85
  97. pyxlpr/paddleocr.py +0 -776
  98. pyxlpr/ppocr/__init__.py +0 -15
  99. pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
  100. pyxlpr/ppocr/data/__init__.py +0 -135
  101. pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
  102. pyxlpr/ppocr/data/imaug/__init__.py +0 -67
  103. pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
  104. pyxlpr/ppocr/data/imaug/east_process.py +0 -437
  105. pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
  106. pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
  107. pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
  108. pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
  109. pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
  110. pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
  111. pyxlpr/ppocr/data/imaug/operators.py +0 -433
  112. pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
  113. pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
  114. pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
  115. pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
  116. pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
  117. pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
  118. pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
  119. pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
  120. pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
  121. pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
  122. pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
  123. pyxlpr/ppocr/data/simple_dataset.py +0 -372
  124. pyxlpr/ppocr/losses/__init__.py +0 -61
  125. pyxlpr/ppocr/losses/ace_loss.py +0 -52
  126. pyxlpr/ppocr/losses/basic_loss.py +0 -135
  127. pyxlpr/ppocr/losses/center_loss.py +0 -88
  128. pyxlpr/ppocr/losses/cls_loss.py +0 -30
  129. pyxlpr/ppocr/losses/combined_loss.py +0 -67
  130. pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
  131. pyxlpr/ppocr/losses/det_db_loss.py +0 -80
  132. pyxlpr/ppocr/losses/det_east_loss.py +0 -63
  133. pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
  134. pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
  135. pyxlpr/ppocr/losses/distillation_loss.py +0 -272
  136. pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
  137. pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
  138. pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
  139. pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
  140. pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
  141. pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
  142. pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
  143. pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
  144. pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
  145. pyxlpr/ppocr/losses/table_att_loss.py +0 -109
  146. pyxlpr/ppocr/metrics/__init__.py +0 -44
  147. pyxlpr/ppocr/metrics/cls_metric.py +0 -45
  148. pyxlpr/ppocr/metrics/det_metric.py +0 -82
  149. pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
  150. pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
  151. pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
  152. pyxlpr/ppocr/metrics/kie_metric.py +0 -70
  153. pyxlpr/ppocr/metrics/rec_metric.py +0 -75
  154. pyxlpr/ppocr/metrics/table_metric.py +0 -50
  155. pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
  156. pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
  157. pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
  158. pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
  159. pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
  160. pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
  161. pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
  162. pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
  163. pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
  164. pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
  165. pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
  166. pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
  167. pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
  168. pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
  169. pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
  170. pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
  171. pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
  172. pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
  173. pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
  174. pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
  175. pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
  176. pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
  177. pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
  178. pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
  179. pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
  180. pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
  181. pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
  182. pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
  183. pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
  184. pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
  185. pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
  186. pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
  187. pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
  188. pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
  189. pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
  190. pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
  191. pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
  192. pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
  193. pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
  194. pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
  195. pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
  196. pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
  197. pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
  198. pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
  199. pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
  200. pyxlpr/ppocr/optimizer/__init__.py +0 -61
  201. pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
  202. pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
  203. pyxlpr/ppocr/optimizer/optimizer.py +0 -160
  204. pyxlpr/ppocr/optimizer/regularizer.py +0 -52
  205. pyxlpr/ppocr/postprocess/__init__.py +0 -55
  206. pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
  207. pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
  208. pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
  209. pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
  210. pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
  211. pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
  212. pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
  213. pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
  214. pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
  215. pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
  216. pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
  217. pyxlpr/ppocr/tools/__init__.py +0 -14
  218. pyxlpr/ppocr/tools/eval.py +0 -83
  219. pyxlpr/ppocr/tools/export_center.py +0 -77
  220. pyxlpr/ppocr/tools/export_model.py +0 -129
  221. pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
  222. pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
  223. pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
  224. pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
  225. pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
  226. pyxlpr/ppocr/tools/infer/utility.py +0 -629
  227. pyxlpr/ppocr/tools/infer_cls.py +0 -83
  228. pyxlpr/ppocr/tools/infer_det.py +0 -134
  229. pyxlpr/ppocr/tools/infer_e2e.py +0 -122
  230. pyxlpr/ppocr/tools/infer_kie.py +0 -153
  231. pyxlpr/ppocr/tools/infer_rec.py +0 -146
  232. pyxlpr/ppocr/tools/infer_table.py +0 -107
  233. pyxlpr/ppocr/tools/program.py +0 -596
  234. pyxlpr/ppocr/tools/test_hubserving.py +0 -117
  235. pyxlpr/ppocr/tools/train.py +0 -163
  236. pyxlpr/ppocr/tools/xlprog.py +0 -748
  237. pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
  238. pyxlpr/ppocr/utils/__init__.py +0 -24
  239. pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
  240. pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
  241. pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
  242. pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
  243. pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
  244. pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
  245. pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
  246. pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
  247. pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
  248. pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
  249. pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
  250. pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
  251. pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
  252. pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
  253. pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
  254. pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
  255. pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
  256. pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
  257. pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
  258. pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
  259. pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
  260. pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
  261. pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
  262. pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
  263. pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
  264. pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
  265. pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
  266. pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
  267. pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
  268. pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
  269. pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
  270. pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
  271. pyxlpr/ppocr/utils/dict90.txt +0 -90
  272. pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
  273. pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
  274. pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
  275. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
  276. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
  277. pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
  278. pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
  279. pyxlpr/ppocr/utils/en_dict.txt +0 -95
  280. pyxlpr/ppocr/utils/gen_label.py +0 -81
  281. pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
  282. pyxlpr/ppocr/utils/iou.py +0 -54
  283. pyxlpr/ppocr/utils/logging.py +0 -69
  284. pyxlpr/ppocr/utils/network.py +0 -84
  285. pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
  286. pyxlpr/ppocr/utils/profiler.py +0 -110
  287. pyxlpr/ppocr/utils/save_load.py +0 -150
  288. pyxlpr/ppocr/utils/stats.py +0 -72
  289. pyxlpr/ppocr/utils/utility.py +0 -80
  290. pyxlpr/ppstructure/__init__.py +0 -13
  291. pyxlpr/ppstructure/predict_system.py +0 -187
  292. pyxlpr/ppstructure/table/__init__.py +0 -13
  293. pyxlpr/ppstructure/table/eval_table.py +0 -72
  294. pyxlpr/ppstructure/table/matcher.py +0 -192
  295. pyxlpr/ppstructure/table/predict_structure.py +0 -136
  296. pyxlpr/ppstructure/table/predict_table.py +0 -221
  297. pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
  298. pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
  299. pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
  300. pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
  301. pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
  302. pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
  303. pyxlpr/ppstructure/utility.py +0 -71
  304. pyxlpr/xlai.py +0 -10
  305. /pyxllib/{ext/autogui → autogui}/virtualkey.py +0 -0
  306. {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info/licenses}/LICENSE +0 -0
@@ -1,629 +0,0 @@
1
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- import argparse
16
- import os
17
- import sys
18
- import cv2
19
- import numpy as np
20
- import paddle
21
- from PIL import Image, ImageDraw, ImageFont
22
- import math
23
- from paddle import inference
24
- import time
25
- from pyxlpr.ppocr.utils.logging import get_logger
26
-
27
- from pyxllib.xl import get_font_file
28
-
29
- def str2bool(v):
30
- return v.lower() in ("true", "t", "1")
31
-
32
-
33
- def init_args():
34
- parser = argparse.ArgumentParser()
35
- # params for prediction engine
36
- parser.add_argument("--use_gpu", type=str2bool, default=True)
37
- parser.add_argument("--ir_optim", type=str2bool, default=True)
38
- parser.add_argument("--use_tensorrt", type=str2bool, default=False)
39
- parser.add_argument("--min_subgraph_size", type=int, default=15)
40
- parser.add_argument("--precision", type=str, default="fp32")
41
- parser.add_argument("--gpu_mem", type=int, default=500)
42
-
43
- # params for text detector
44
- parser.add_argument("--image_dir", type=str)
45
- parser.add_argument("--det_algorithm", type=str, default='DB')
46
- parser.add_argument("--det_model_dir", type=str)
47
- parser.add_argument("--det_limit_side_len", type=float, default=960)
48
- parser.add_argument("--det_limit_type", type=str, default='max')
49
-
50
- # DB parmas
51
- parser.add_argument("--det_db_thresh", type=float, default=0.3)
52
- parser.add_argument("--det_db_box_thresh", type=float, default=0.6)
53
- parser.add_argument("--det_db_unclip_ratio", type=float, default=1.5)
54
- parser.add_argument("--max_batch_size", type=int, default=10)
55
- parser.add_argument("--use_dilation", type=str2bool, default=False)
56
- parser.add_argument("--det_db_score_mode", type=str, default="fast")
57
- # EAST parmas
58
- parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
59
- parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
60
- parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)
61
-
62
- # SAST parmas
63
- parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
64
- parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
65
- parser.add_argument("--det_sast_polygon", type=str2bool, default=False)
66
-
67
- # PSE parmas
68
- parser.add_argument("--det_pse_thresh", type=float, default=0)
69
- parser.add_argument("--det_pse_box_thresh", type=float, default=0.85)
70
- parser.add_argument("--det_pse_min_area", type=float, default=16)
71
- parser.add_argument("--det_pse_box_type", type=str, default='box')
72
- parser.add_argument("--det_pse_scale", type=int, default=1)
73
-
74
- # params for text recognizer
75
- parser.add_argument("--rec_algorithm", type=str, default='CRNN')
76
- parser.add_argument("--rec_model_dir", type=str)
77
- parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
78
- parser.add_argument("--rec_batch_num", type=int, default=6)
79
- parser.add_argument("--max_text_length", type=int, default=25)
80
- parser.add_argument(
81
- "--rec_char_dict_path",
82
- type=str,
83
- default="./ppocr/utils/ppocr_keys_v1.txt")
84
- parser.add_argument("--use_space_char", type=str2bool, default=True)
85
- parser.add_argument(
86
- "--vis_font_path", type=str, default="./doc/fonts/simfang.ttf")
87
- parser.add_argument("--drop_score", type=float, default=0.5)
88
-
89
- # params for e2e
90
- parser.add_argument("--e2e_algorithm", type=str, default='PGNet')
91
- parser.add_argument("--e2e_model_dir", type=str)
92
- parser.add_argument("--e2e_limit_side_len", type=float, default=768)
93
- parser.add_argument("--e2e_limit_type", type=str, default='max')
94
-
95
- # PGNet parmas
96
- parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5)
97
- parser.add_argument(
98
- "--e2e_char_dict_path", type=str, default="./ppocr/utils/ic15_dict.txt")
99
- parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext')
100
- parser.add_argument("--e2e_pgnet_mode", type=str, default='fast')
101
-
102
- # params for text classifier
103
- parser.add_argument("--use_angle_cls", type=str2bool, default=False)
104
- parser.add_argument("--cls_model_dir", type=str)
105
- parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
106
- parser.add_argument("--label_list", type=list, default=['0', '180'])
107
- parser.add_argument("--cls_batch_num", type=int, default=6)
108
- parser.add_argument("--cls_thresh", type=float, default=0.9)
109
-
110
- parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
111
- parser.add_argument("--cpu_threads", type=int, default=10)
112
- parser.add_argument("--use_pdserving", type=str2bool, default=False)
113
- parser.add_argument("--warmup", type=str2bool, default=False)
114
-
115
- #
116
- parser.add_argument(
117
- "--draw_img_save_dir", type=str, default="./inference_results")
118
- parser.add_argument("--save_crop_res", type=str2bool, default=False)
119
- parser.add_argument("--crop_res_save_dir", type=str, default="./output")
120
-
121
- # multi-process
122
- parser.add_argument("--use_mp", type=str2bool, default=False)
123
- parser.add_argument("--total_process_num", type=int, default=1)
124
- parser.add_argument("--process_id", type=int, default=0)
125
-
126
- parser.add_argument("--benchmark", type=str2bool, default=False)
127
- parser.add_argument("--save_log_path", type=str, default="./log_output/")
128
-
129
- parser.add_argument("--show_log", type=str2bool, default=True)
130
- parser.add_argument("--use_onnx", type=str2bool, default=False)
131
- return parser
132
-
133
-
134
- def parse_args():
135
- parser = init_args()
136
- return parser.parse_args()
137
-
138
-
139
- def create_predictor(args, mode, logger):
140
- if mode == "det":
141
- model_dir = args.det_model_dir
142
- elif mode == 'cls':
143
- model_dir = args.cls_model_dir
144
- elif mode == 'rec':
145
- model_dir = args.rec_model_dir
146
- elif mode == 'table':
147
- model_dir = args.table_model_dir
148
- else:
149
- model_dir = args.e2e_model_dir
150
-
151
- if model_dir is None:
152
- logger.info("not find {} model file path {}".format(mode, model_dir))
153
- sys.exit(0)
154
- if args.use_onnx:
155
- import onnxruntime as ort
156
- model_file_path = model_dir
157
- if not os.path.exists(model_file_path):
158
- raise ValueError("not find model file path {}".format(
159
- model_file_path))
160
- sess = ort.InferenceSession(model_file_path)
161
- return sess, sess.get_inputs()[0], None, None
162
-
163
- else:
164
- model_file_path = model_dir + "/inference.pdmodel"
165
- params_file_path = model_dir + "/inference.pdiparams"
166
- if not os.path.exists(model_file_path):
167
- raise ValueError("not find model file path {}".format(
168
- model_file_path))
169
- if not os.path.exists(params_file_path):
170
- raise ValueError("not find params file path {}".format(
171
- params_file_path))
172
-
173
- config = inference.Config(model_file_path, params_file_path)
174
-
175
- if hasattr(args, 'precision'):
176
- if args.precision == "fp16" and args.use_tensorrt:
177
- precision = inference.PrecisionType.Half
178
- elif args.precision == "int8":
179
- precision = inference.PrecisionType.Int8
180
- else:
181
- precision = inference.PrecisionType.Float32
182
- else:
183
- precision = inference.PrecisionType.Float32
184
-
185
- if args.use_gpu:
186
- gpu_id = get_infer_gpuid()
187
- if gpu_id is None:
188
- logger.warning(
189
- "GPU is not found in current device by nvidia-smi. Please check your device or ignore it if run on jeston."
190
- )
191
- config.enable_use_gpu(args.gpu_mem, 0)
192
- if args.use_tensorrt:
193
- config.enable_tensorrt_engine(
194
- workspace_size=1 << 30,
195
- precision_mode=precision,
196
- max_batch_size=args.max_batch_size,
197
- min_subgraph_size=args.min_subgraph_size)
198
- # skip the minmum trt subgraph
199
- use_dynamic_shape = True
200
- if mode == "det":
201
- min_input_shape = {
202
- "x": [1, 3, 50, 50],
203
- "conv2d_92.tmp_0": [1, 120, 20, 20],
204
- "conv2d_91.tmp_0": [1, 24, 10, 10],
205
- "conv2d_59.tmp_0": [1, 96, 20, 20],
206
- "nearest_interp_v2_1.tmp_0": [1, 256, 10, 10],
207
- "nearest_interp_v2_2.tmp_0": [1, 256, 20, 20],
208
- "conv2d_124.tmp_0": [1, 256, 20, 20],
209
- "nearest_interp_v2_3.tmp_0": [1, 64, 20, 20],
210
- "nearest_interp_v2_4.tmp_0": [1, 64, 20, 20],
211
- "nearest_interp_v2_5.tmp_0": [1, 64, 20, 20],
212
- "elementwise_add_7": [1, 56, 2, 2],
213
- "nearest_interp_v2_0.tmp_0": [1, 256, 2, 2]
214
- }
215
- max_input_shape = {
216
- "x": [1, 3, 1536, 1536],
217
- "conv2d_92.tmp_0": [1, 120, 400, 400],
218
- "conv2d_91.tmp_0": [1, 24, 200, 200],
219
- "conv2d_59.tmp_0": [1, 96, 400, 400],
220
- "nearest_interp_v2_1.tmp_0": [1, 256, 200, 200],
221
- "conv2d_124.tmp_0": [1, 256, 400, 400],
222
- "nearest_interp_v2_2.tmp_0": [1, 256, 400, 400],
223
- "nearest_interp_v2_3.tmp_0": [1, 64, 400, 400],
224
- "nearest_interp_v2_4.tmp_0": [1, 64, 400, 400],
225
- "nearest_interp_v2_5.tmp_0": [1, 64, 400, 400],
226
- "elementwise_add_7": [1, 56, 400, 400],
227
- "nearest_interp_v2_0.tmp_0": [1, 256, 400, 400]
228
- }
229
- opt_input_shape = {
230
- "x": [1, 3, 640, 640],
231
- "conv2d_92.tmp_0": [1, 120, 160, 160],
232
- "conv2d_91.tmp_0": [1, 24, 80, 80],
233
- "conv2d_59.tmp_0": [1, 96, 160, 160],
234
- "nearest_interp_v2_1.tmp_0": [1, 256, 80, 80],
235
- "nearest_interp_v2_2.tmp_0": [1, 256, 160, 160],
236
- "conv2d_124.tmp_0": [1, 256, 160, 160],
237
- "nearest_interp_v2_3.tmp_0": [1, 64, 160, 160],
238
- "nearest_interp_v2_4.tmp_0": [1, 64, 160, 160],
239
- "nearest_interp_v2_5.tmp_0": [1, 64, 160, 160],
240
- "elementwise_add_7": [1, 56, 40, 40],
241
- "nearest_interp_v2_0.tmp_0": [1, 256, 40, 40]
242
- }
243
- min_pact_shape = {
244
- "nearest_interp_v2_26.tmp_0": [1, 256, 20, 20],
245
- "nearest_interp_v2_27.tmp_0": [1, 64, 20, 20],
246
- "nearest_interp_v2_28.tmp_0": [1, 64, 20, 20],
247
- "nearest_interp_v2_29.tmp_0": [1, 64, 20, 20]
248
- }
249
- max_pact_shape = {
250
- "nearest_interp_v2_26.tmp_0": [1, 256, 400, 400],
251
- "nearest_interp_v2_27.tmp_0": [1, 64, 400, 400],
252
- "nearest_interp_v2_28.tmp_0": [1, 64, 400, 400],
253
- "nearest_interp_v2_29.tmp_0": [1, 64, 400, 400]
254
- }
255
- opt_pact_shape = {
256
- "nearest_interp_v2_26.tmp_0": [1, 256, 160, 160],
257
- "nearest_interp_v2_27.tmp_0": [1, 64, 160, 160],
258
- "nearest_interp_v2_28.tmp_0": [1, 64, 160, 160],
259
- "nearest_interp_v2_29.tmp_0": [1, 64, 160, 160]
260
- }
261
- min_input_shape.update(min_pact_shape)
262
- max_input_shape.update(max_pact_shape)
263
- opt_input_shape.update(opt_pact_shape)
264
- elif mode == "rec":
265
- if args.rec_algorithm != "CRNN":
266
- use_dynamic_shape = False
267
- min_input_shape = {"x": [1, 3, 32, 10]}
268
- max_input_shape = {"x": [args.rec_batch_num, 3, 32, 1536]}
269
- opt_input_shape = {"x": [args.rec_batch_num, 3, 32, 320]}
270
- elif mode == "cls":
271
- min_input_shape = {"x": [1, 3, 48, 10]}
272
- max_input_shape = {"x": [args.rec_batch_num, 3, 48, 1024]}
273
- opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
274
- else:
275
- use_dynamic_shape = False
276
- if use_dynamic_shape:
277
- config.set_trt_dynamic_shape_info(
278
- min_input_shape, max_input_shape, opt_input_shape)
279
-
280
- else:
281
- config.disable_gpu()
282
- if hasattr(args, "cpu_threads"):
283
- config.set_cpu_math_library_num_threads(args.cpu_threads)
284
- else:
285
- # default cpu threads as 10
286
- config.set_cpu_math_library_num_threads(10)
287
- if args.enable_mkldnn:
288
- # cache 10 different shapes for mkldnn to avoid memory leak
289
- config.set_mkldnn_cache_capacity(10)
290
- config.enable_mkldnn()
291
- if args.precision == "fp16":
292
- config.enable_mkldnn_bfloat16()
293
- # enable memory optim
294
- config.enable_memory_optim()
295
- config.disable_glog_info()
296
-
297
- config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
298
- if mode == 'table':
299
- config.delete_pass("fc_fuse_pass") # not supported for table
300
- config.switch_use_feed_fetch_ops(False)
301
- config.switch_ir_optim(True)
302
-
303
- # create predictor
304
- predictor = inference.create_predictor(config)
305
- input_names = predictor.get_input_names()
306
- for name in input_names:
307
- input_tensor = predictor.get_input_handle(name)
308
- output_names = predictor.get_output_names()
309
- output_tensors = []
310
- for output_name in output_names:
311
- output_tensor = predictor.get_output_handle(output_name)
312
- output_tensors.append(output_tensor)
313
- return predictor, input_tensor, output_tensors, config
314
-
315
-
316
- def get_infer_gpuid():
317
- if os.name == 'nt':
318
- try:
319
- return int(os.environ['CUDA_VISIBLE_DEVICES'].split(',')[0])
320
- except KeyError:
321
- return 0
322
- if not paddle.fluid.core.is_compiled_with_rocm():
323
- cmd = "env | grep CUDA_VISIBLE_DEVICES"
324
- else:
325
- cmd = "env | grep HIP_VISIBLE_DEVICES"
326
- env_cuda = os.popen(cmd).readlines()
327
- if len(env_cuda) == 0:
328
- return 0
329
- else:
330
- gpu_id = env_cuda[0].strip().split("=")[1]
331
- return int(gpu_id[0])
332
-
333
-
334
- def draw_e2e_res(dt_boxes, strs, img_path):
335
- src_im = cv2.imread(img_path)
336
- for box, str in zip(dt_boxes, strs):
337
- box = box.astype(np.int32).reshape((-1, 1, 2))
338
- cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
339
- cv2.putText(
340
- src_im,
341
- str,
342
- org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
343
- fontFace=cv2.FONT_HERSHEY_COMPLEX,
344
- fontScale=0.7,
345
- color=(0, 255, 0),
346
- thickness=1)
347
- return src_im
348
-
349
-
350
- def draw_text_det_res(dt_boxes, img_path):
351
- src_im = cv2.imread(img_path)
352
- for box in dt_boxes:
353
- box = np.array(box).astype(np.int32).reshape(-1, 2)
354
- cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
355
- return src_im
356
-
357
-
358
- def resize_img(img, input_size=600):
359
- """
360
- resize img and limit the longest side of the image to input_size
361
- """
362
- img = np.array(img)
363
- im_shape = img.shape
364
- im_size_max = np.max(im_shape[0:2])
365
- im_scale = float(input_size) / float(im_size_max)
366
- img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
367
- return img
368
-
369
-
370
- def draw_ocr(image,
371
- boxes,
372
- txts=None,
373
- scores=None,
374
- drop_score=0.5,
375
- font_path='simfang.ttf'):
376
- """
377
- Visualize the results of OCR detection and recognition
378
- args:
379
- image(Image|array): RGB image
380
- boxes(list): boxes with shape(N, 4, 2)
381
- txts(list): the texts
382
- scores(list): txxs corresponding scores
383
- drop_score(float): only scores greater than drop_threshold will be visualized
384
- font_path: the path of font which is used to draw text
385
- return(array):
386
- the visualized img
387
- """
388
- if scores is None:
389
- scores = [1] * len(boxes)
390
- box_num = len(boxes)
391
- for i in range(box_num):
392
- if scores is not None and (scores[i] < drop_score or
393
- math.isnan(scores[i])):
394
- continue
395
- box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
396
- image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
397
- if txts is not None:
398
- img = np.array(resize_img(image, input_size=600))
399
- txt_img = text_visual(
400
- txts,
401
- scores,
402
- img_h=img.shape[0],
403
- img_w=600,
404
- threshold=drop_score,
405
- font_path=font_path)
406
- img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
407
- return img
408
- return image
409
-
410
-
411
- def draw_ocr_box_txt(image,
412
- boxes,
413
- txts,
414
- scores=None,
415
- drop_score=0.5,
416
- font_path='simfang.ttf'):
417
- h, w = image.height, image.width
418
- img_left = image.copy()
419
- img_right = Image.new('RGB', (w, h), (255, 255, 255))
420
-
421
- import random
422
-
423
- random.seed(0)
424
- draw_left = ImageDraw.Draw(img_left)
425
- draw_right = ImageDraw.Draw(img_right)
426
- for idx, (box, txt) in enumerate(zip(boxes, txts)):
427
- if scores is not None and scores[idx] < drop_score:
428
- continue
429
- color = (random.randint(0, 255), random.randint(0, 255),
430
- random.randint(0, 255))
431
- draw_left.polygon(box, fill=color)
432
- draw_right.polygon(
433
- [
434
- box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
435
- box[2][1], box[3][0], box[3][1]
436
- ],
437
- outline=color)
438
- box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
439
- 1])**2)
440
- box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
441
- 1])**2)
442
- if box_height > 2 * box_width:
443
- font_size = max(int(box_width * 0.9), 10)
444
- font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
445
- cur_y = box[0][1]
446
- for c in txt:
447
- char_size = font.getsize(c)
448
- draw_right.text(
449
- (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
450
- cur_y += char_size[1]
451
- else:
452
- font_size = max(int(box_height * 0.8), 10)
453
- font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
454
- draw_right.text(
455
- [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
456
- img_left = Image.blend(image, img_left, 0.5)
457
- img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
458
- img_show.paste(img_left, (0, 0, w, h))
459
- img_show.paste(img_right, (w, 0, w * 2, h))
460
- return np.array(img_show)
461
-
462
-
463
- def str_count(s):
464
- """
465
- Count the number of Chinese characters,
466
- a single English character and a single number
467
- equal to half the length of Chinese characters.
468
- args:
469
- s(string): the input of string
470
- return(int):
471
- the number of Chinese characters
472
- """
473
- import string
474
- count_zh = count_pu = 0
475
- s_len = len(s)
476
- en_dg_count = 0
477
- for c in s:
478
- if c in string.ascii_letters or c.isdigit() or c.isspace():
479
- en_dg_count += 1
480
- elif c.isalpha():
481
- count_zh += 1
482
- else:
483
- count_pu += 1
484
- return s_len - math.ceil(en_dg_count / 2)
485
-
486
-
487
- def text_visual(texts,
488
- scores,
489
- img_h=400,
490
- img_w=600,
491
- threshold=0.,
492
- font_path='simfang.ttf'):
493
- """
494
- create new blank img and draw txt on it
495
- args:
496
- texts(list): the text will be draw
497
- scores(list|None): corresponding score of each txt
498
- img_h(int): the height of blank img
499
- img_w(int): the width of blank img
500
- font_path: the path of font which is used to draw text
501
- return(array):
502
- """
503
- if scores is not None:
504
- assert len(texts) == len(
505
- scores), "The number of txts and corresponding scores must match"
506
-
507
- def create_blank_img():
508
- blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
509
- blank_img[:, img_w - 1:] = 0
510
- blank_img = Image.fromarray(blank_img).convert("RGB")
511
- draw_txt = ImageDraw.Draw(blank_img)
512
- return blank_img, draw_txt
513
-
514
- blank_img, draw_txt = create_blank_img()
515
-
516
- font_size = 20
517
- txt_color = (0, 0, 0)
518
-
519
- if not os.path.isfile(font_path):
520
- font_path = str(get_font_file('simfang.ttf'))
521
-
522
- font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
523
-
524
- gap = font_size + 5
525
- txt_img_list = []
526
- count, index = 1, 0
527
- for idx, txt in enumerate(texts):
528
- index += 1
529
- if scores[idx] < threshold or math.isnan(scores[idx]):
530
- index -= 1
531
- continue
532
- first_line = True
533
- while str_count(txt) >= img_w // font_size - 4:
534
- tmp = txt
535
- txt = tmp[:img_w // font_size - 4]
536
- if first_line:
537
- new_txt = str(index) + ': ' + txt
538
- first_line = False
539
- else:
540
- new_txt = ' ' + txt
541
- draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
542
- txt = tmp[img_w // font_size - 4:]
543
- if count >= img_h // gap - 1:
544
- txt_img_list.append(np.array(blank_img))
545
- blank_img, draw_txt = create_blank_img()
546
- count = 0
547
- count += 1
548
- if first_line:
549
- new_txt = str(index) + ': ' + txt + ' ' + '%.3f' % (scores[idx])
550
- else:
551
- new_txt = " " + txt + " " + '%.3f' % (scores[idx])
552
- draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
553
- # whether add new blank img or not
554
- if count >= img_h // gap - 1 and idx + 1 < len(texts):
555
- txt_img_list.append(np.array(blank_img))
556
- blank_img, draw_txt = create_blank_img()
557
- count = 0
558
- count += 1
559
- txt_img_list.append(np.array(blank_img))
560
- if len(txt_img_list) == 1:
561
- blank_img = np.array(txt_img_list[0])
562
- else:
563
- blank_img = np.concatenate(txt_img_list, axis=1)
564
- return np.array(blank_img)
565
-
566
-
567
- def base64_to_cv2(b64str):
568
- import base64
569
- data = base64.b64decode(b64str.encode('utf8'))
570
- data = np.fromstring(data, np.uint8)
571
- data = cv2.imdecode(data, cv2.IMREAD_COLOR)
572
- return data
573
-
574
-
575
- def draw_boxes(image, boxes, scores=None, drop_score=0.5):
576
- if scores is None:
577
- scores = [1] * len(boxes)
578
- for (box, score) in zip(boxes, scores):
579
- if score < drop_score:
580
- continue
581
- box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
582
- image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
583
- return image
584
-
585
-
586
- def get_rotate_crop_image(img, points):
587
- '''
588
- img_height, img_width = img.shape[0:2]
589
- left = int(np.min(points[:, 0]))
590
- right = int(np.max(points[:, 0]))
591
- top = int(np.min(points[:, 1]))
592
- bottom = int(np.max(points[:, 1]))
593
- img_crop = img[top:bottom, left:right, :].copy()
594
- points[:, 0] = points[:, 0] - left
595
- points[:, 1] = points[:, 1] - top
596
- '''
597
- assert len(points) == 4, "shape of points must be 4*2"
598
- img_crop_width = int(
599
- max(
600
- np.linalg.norm(points[0] - points[1]),
601
- np.linalg.norm(points[2] - points[3])))
602
- img_crop_height = int(
603
- max(
604
- np.linalg.norm(points[0] - points[3]),
605
- np.linalg.norm(points[1] - points[2])))
606
- pts_std = np.float32([[0, 0], [img_crop_width, 0],
607
- [img_crop_width, img_crop_height],
608
- [0, img_crop_height]])
609
- M = cv2.getPerspectiveTransform(points, pts_std)
610
- dst_img = cv2.warpPerspective(
611
- img,
612
- M, (img_crop_width, img_crop_height),
613
- borderMode=cv2.BORDER_REPLICATE,
614
- flags=cv2.INTER_CUBIC)
615
- dst_img_height, dst_img_width = dst_img.shape[0:2]
616
- if dst_img_height * 1.0 / dst_img_width >= 1.5:
617
- dst_img = np.rot90(dst_img)
618
- return dst_img
619
-
620
-
621
- def check_gpu(use_gpu):
622
- if use_gpu and not paddle.is_compiled_with_cuda():
623
-
624
- use_gpu = False
625
- return use_gpu
626
-
627
-
628
- if __name__ == '__main__':
629
- pass