pyxllib 0.3.96__py3-none-any.whl → 0.3.197__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyxllib/algo/geo.py +12 -0
- pyxllib/algo/intervals.py +1 -1
- pyxllib/algo/matcher.py +78 -0
- pyxllib/algo/pupil.py +187 -19
- pyxllib/algo/specialist.py +2 -1
- pyxllib/algo/stat.py +38 -2
- {pyxlpr → pyxllib/autogui}/__init__.py +1 -1
- pyxllib/autogui/activewin.py +246 -0
- pyxllib/autogui/all.py +9 -0
- pyxllib/{ext/autogui → autogui}/autogui.py +40 -11
- pyxllib/autogui/uiautolib.py +362 -0
- pyxllib/autogui/wechat.py +827 -0
- pyxllib/autogui/wechat_msg.py +421 -0
- pyxllib/autogui/wxautolib.py +84 -0
- pyxllib/cv/slidercaptcha.py +137 -0
- pyxllib/data/echarts.py +123 -12
- pyxllib/data/jsonlib.py +89 -0
- pyxllib/data/pglib.py +514 -30
- pyxllib/data/sqlite.py +231 -4
- pyxllib/ext/JLineViewer.py +14 -1
- pyxllib/ext/drissionlib.py +277 -0
- pyxllib/ext/kq5034lib.py +0 -1594
- pyxllib/ext/robustprocfile.py +497 -0
- pyxllib/ext/unixlib.py +6 -5
- pyxllib/ext/utools.py +108 -95
- pyxllib/ext/webhook.py +32 -14
- pyxllib/ext/wjxlib.py +88 -0
- pyxllib/ext/wpsapi.py +124 -0
- pyxllib/ext/xlwork.py +9 -0
- pyxllib/ext/yuquelib.py +1003 -71
- pyxllib/file/docxlib.py +1 -1
- pyxllib/file/libreoffice.py +165 -0
- pyxllib/file/movielib.py +9 -0
- pyxllib/file/packlib/__init__.py +112 -75
- pyxllib/file/pdflib.py +1 -1
- pyxllib/file/pupil.py +1 -1
- pyxllib/file/specialist/dirlib.py +1 -1
- pyxllib/file/specialist/download.py +10 -3
- pyxllib/file/specialist/filelib.py +266 -55
- pyxllib/file/xlsxlib.py +205 -50
- pyxllib/file/xlsyncfile.py +341 -0
- pyxllib/prog/cachetools.py +64 -0
- pyxllib/prog/filelock.py +42 -0
- pyxllib/prog/multiprogs.py +940 -0
- pyxllib/prog/newbie.py +9 -2
- pyxllib/prog/pupil.py +129 -60
- pyxllib/prog/specialist/__init__.py +176 -2
- pyxllib/prog/specialist/bc.py +5 -2
- pyxllib/prog/specialist/browser.py +11 -2
- pyxllib/prog/specialist/datetime.py +68 -0
- pyxllib/prog/specialist/tictoc.py +12 -13
- pyxllib/prog/specialist/xllog.py +5 -5
- pyxllib/prog/xlosenv.py +7 -0
- pyxllib/text/airscript.js +744 -0
- pyxllib/text/charclasslib.py +17 -5
- pyxllib/text/jiebalib.py +6 -3
- pyxllib/text/jinjalib.py +32 -0
- pyxllib/text/jsa_ai_prompt.md +271 -0
- pyxllib/text/jscode.py +159 -4
- pyxllib/text/nestenv.py +1 -1
- pyxllib/text/newbie.py +12 -0
- pyxllib/text/pupil/common.py +26 -0
- pyxllib/text/specialist/ptag.py +2 -2
- pyxllib/text/templates/echart_base.html +11 -0
- pyxllib/text/templates/highlight_code.html +17 -0
- pyxllib/text/templates/latex_editor.html +103 -0
- pyxllib/text/xmllib.py +76 -14
- pyxllib/xl.py +2 -1
- pyxllib-0.3.197.dist-info/METADATA +48 -0
- pyxllib-0.3.197.dist-info/RECORD +126 -0
- {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info}/WHEEL +1 -2
- pyxllib/ext/autogui/__init__.py +0 -8
- pyxllib-0.3.96.dist-info/METADATA +0 -51
- pyxllib-0.3.96.dist-info/RECORD +0 -333
- pyxllib-0.3.96.dist-info/top_level.txt +0 -2
- pyxlpr/ai/__init__.py +0 -5
- pyxlpr/ai/clientlib.py +0 -1281
- pyxlpr/ai/specialist.py +0 -286
- pyxlpr/ai/torch_app.py +0 -172
- pyxlpr/ai/xlpaddle.py +0 -655
- pyxlpr/ai/xltorch.py +0 -705
- pyxlpr/data/__init__.py +0 -11
- pyxlpr/data/coco.py +0 -1325
- pyxlpr/data/datacls.py +0 -365
- pyxlpr/data/datasets.py +0 -200
- pyxlpr/data/gptlib.py +0 -1291
- pyxlpr/data/icdar/__init__.py +0 -96
- pyxlpr/data/icdar/deteval.py +0 -377
- pyxlpr/data/icdar/icdar2013.py +0 -341
- pyxlpr/data/icdar/iou.py +0 -340
- pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
- pyxlpr/data/imtextline.py +0 -473
- pyxlpr/data/labelme.py +0 -866
- pyxlpr/data/removeline.py +0 -179
- pyxlpr/data/specialist.py +0 -57
- pyxlpr/eval/__init__.py +0 -85
- pyxlpr/paddleocr.py +0 -776
- pyxlpr/ppocr/__init__.py +0 -15
- pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
- pyxlpr/ppocr/data/__init__.py +0 -135
- pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
- pyxlpr/ppocr/data/imaug/__init__.py +0 -67
- pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
- pyxlpr/ppocr/data/imaug/east_process.py +0 -437
- pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
- pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
- pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
- pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
- pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
- pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
- pyxlpr/ppocr/data/imaug/operators.py +0 -433
- pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
- pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
- pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
- pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
- pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
- pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
- pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
- pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
- pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
- pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
- pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
- pyxlpr/ppocr/data/simple_dataset.py +0 -372
- pyxlpr/ppocr/losses/__init__.py +0 -61
- pyxlpr/ppocr/losses/ace_loss.py +0 -52
- pyxlpr/ppocr/losses/basic_loss.py +0 -135
- pyxlpr/ppocr/losses/center_loss.py +0 -88
- pyxlpr/ppocr/losses/cls_loss.py +0 -30
- pyxlpr/ppocr/losses/combined_loss.py +0 -67
- pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
- pyxlpr/ppocr/losses/det_db_loss.py +0 -80
- pyxlpr/ppocr/losses/det_east_loss.py +0 -63
- pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
- pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
- pyxlpr/ppocr/losses/distillation_loss.py +0 -272
- pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
- pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
- pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
- pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
- pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
- pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
- pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
- pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
- pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
- pyxlpr/ppocr/losses/table_att_loss.py +0 -109
- pyxlpr/ppocr/metrics/__init__.py +0 -44
- pyxlpr/ppocr/metrics/cls_metric.py +0 -45
- pyxlpr/ppocr/metrics/det_metric.py +0 -82
- pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
- pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
- pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
- pyxlpr/ppocr/metrics/kie_metric.py +0 -70
- pyxlpr/ppocr/metrics/rec_metric.py +0 -75
- pyxlpr/ppocr/metrics/table_metric.py +0 -50
- pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
- pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
- pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
- pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
- pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
- pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
- pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
- pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
- pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
- pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
- pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
- pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
- pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
- pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
- pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
- pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
- pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
- pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
- pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
- pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
- pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
- pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
- pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
- pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
- pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
- pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
- pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
- pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
- pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
- pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
- pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
- pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
- pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
- pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
- pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
- pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
- pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
- pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
- pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
- pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
- pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
- pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
- pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
- pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
- pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
- pyxlpr/ppocr/optimizer/__init__.py +0 -61
- pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
- pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
- pyxlpr/ppocr/optimizer/optimizer.py +0 -160
- pyxlpr/ppocr/optimizer/regularizer.py +0 -52
- pyxlpr/ppocr/postprocess/__init__.py +0 -55
- pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
- pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
- pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
- pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
- pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
- pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
- pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
- pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
- pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
- pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
- pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
- pyxlpr/ppocr/tools/__init__.py +0 -14
- pyxlpr/ppocr/tools/eval.py +0 -83
- pyxlpr/ppocr/tools/export_center.py +0 -77
- pyxlpr/ppocr/tools/export_model.py +0 -129
- pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
- pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
- pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
- pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
- pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
- pyxlpr/ppocr/tools/infer/utility.py +0 -629
- pyxlpr/ppocr/tools/infer_cls.py +0 -83
- pyxlpr/ppocr/tools/infer_det.py +0 -134
- pyxlpr/ppocr/tools/infer_e2e.py +0 -122
- pyxlpr/ppocr/tools/infer_kie.py +0 -153
- pyxlpr/ppocr/tools/infer_rec.py +0 -146
- pyxlpr/ppocr/tools/infer_table.py +0 -107
- pyxlpr/ppocr/tools/program.py +0 -596
- pyxlpr/ppocr/tools/test_hubserving.py +0 -117
- pyxlpr/ppocr/tools/train.py +0 -163
- pyxlpr/ppocr/tools/xlprog.py +0 -748
- pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
- pyxlpr/ppocr/utils/__init__.py +0 -24
- pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
- pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
- pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
- pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
- pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
- pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
- pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
- pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
- pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
- pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
- pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
- pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
- pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
- pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
- pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
- pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
- pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
- pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
- pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
- pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
- pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
- pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
- pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
- pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
- pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
- pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
- pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
- pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
- pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
- pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
- pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
- pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
- pyxlpr/ppocr/utils/dict90.txt +0 -90
- pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
- pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
- pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
- pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
- pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
- pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
- pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
- pyxlpr/ppocr/utils/en_dict.txt +0 -95
- pyxlpr/ppocr/utils/gen_label.py +0 -81
- pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
- pyxlpr/ppocr/utils/iou.py +0 -54
- pyxlpr/ppocr/utils/logging.py +0 -69
- pyxlpr/ppocr/utils/network.py +0 -84
- pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
- pyxlpr/ppocr/utils/profiler.py +0 -110
- pyxlpr/ppocr/utils/save_load.py +0 -150
- pyxlpr/ppocr/utils/stats.py +0 -72
- pyxlpr/ppocr/utils/utility.py +0 -80
- pyxlpr/ppstructure/__init__.py +0 -13
- pyxlpr/ppstructure/predict_system.py +0 -187
- pyxlpr/ppstructure/table/__init__.py +0 -13
- pyxlpr/ppstructure/table/eval_table.py +0 -72
- pyxlpr/ppstructure/table/matcher.py +0 -192
- pyxlpr/ppstructure/table/predict_structure.py +0 -136
- pyxlpr/ppstructure/table/predict_table.py +0 -221
- pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
- pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
- pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
- pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
- pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
- pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
- pyxlpr/ppstructure/utility.py +0 -71
- pyxlpr/xlai.py +0 -10
- /pyxllib/{ext/autogui → autogui}/virtualkey.py +0 -0
- {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info/licenses}/LICENSE +0 -0
@@ -1,906 +0,0 @@
|
|
1
|
-
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
|
15
|
-
import math
|
16
|
-
import cv2
|
17
|
-
import numpy as np
|
18
|
-
|
19
|
-
__all__ = ['PGProcessTrain']
|
20
|
-
|
21
|
-
|
22
|
-
class PGProcessTrain(object):
|
23
|
-
def __init__(self,
|
24
|
-
character_dict_path,
|
25
|
-
max_text_length,
|
26
|
-
max_text_nums,
|
27
|
-
tcl_len,
|
28
|
-
batch_size=14,
|
29
|
-
min_crop_size=24,
|
30
|
-
min_text_size=4,
|
31
|
-
max_text_size=512,
|
32
|
-
**kwargs):
|
33
|
-
self.tcl_len = tcl_len
|
34
|
-
self.max_text_length = max_text_length
|
35
|
-
self.max_text_nums = max_text_nums
|
36
|
-
self.batch_size = batch_size
|
37
|
-
self.min_crop_size = min_crop_size
|
38
|
-
self.min_text_size = min_text_size
|
39
|
-
self.max_text_size = max_text_size
|
40
|
-
self.Lexicon_Table = self.get_dict(character_dict_path)
|
41
|
-
self.pad_num = len(self.Lexicon_Table)
|
42
|
-
self.img_id = 0
|
43
|
-
|
44
|
-
def get_dict(self, character_dict_path):
|
45
|
-
character_str = ""
|
46
|
-
with open(character_dict_path, "rb") as fin:
|
47
|
-
lines = fin.readlines()
|
48
|
-
for line in lines:
|
49
|
-
line = line.decode('utf-8').strip("\n").strip("\r\n")
|
50
|
-
character_str += line
|
51
|
-
dict_character = list(character_str)
|
52
|
-
return dict_character
|
53
|
-
|
54
|
-
def quad_area(self, poly):
|
55
|
-
"""
|
56
|
-
compute area of a polygon
|
57
|
-
:param poly:
|
58
|
-
:return:
|
59
|
-
"""
|
60
|
-
edge = [(poly[1][0] - poly[0][0]) * (poly[1][1] + poly[0][1]),
|
61
|
-
(poly[2][0] - poly[1][0]) * (poly[2][1] + poly[1][1]),
|
62
|
-
(poly[3][0] - poly[2][0]) * (poly[3][1] + poly[2][1]),
|
63
|
-
(poly[0][0] - poly[3][0]) * (poly[0][1] + poly[3][1])]
|
64
|
-
return np.sum(edge) / 2.
|
65
|
-
|
66
|
-
def gen_quad_from_poly(self, poly):
|
67
|
-
"""
|
68
|
-
Generate min area quad from poly.
|
69
|
-
"""
|
70
|
-
point_num = poly.shape[0]
|
71
|
-
min_area_quad = np.zeros((4, 2), dtype=np.float32)
|
72
|
-
rect = cv2.minAreaRect(poly.astype(
|
73
|
-
np.int32)) # (center (x,y), (width, height), angle of rotation)
|
74
|
-
box = np.array(cv2.boxPoints(rect))
|
75
|
-
|
76
|
-
first_point_idx = 0
|
77
|
-
min_dist = 1e4
|
78
|
-
for i in range(4):
|
79
|
-
dist = np.linalg.norm(box[(i + 0) % 4] - poly[0]) + \
|
80
|
-
np.linalg.norm(box[(i + 1) % 4] - poly[point_num // 2 - 1]) + \
|
81
|
-
np.linalg.norm(box[(i + 2) % 4] - poly[point_num // 2]) + \
|
82
|
-
np.linalg.norm(box[(i + 3) % 4] - poly[-1])
|
83
|
-
if dist < min_dist:
|
84
|
-
min_dist = dist
|
85
|
-
first_point_idx = i
|
86
|
-
for i in range(4):
|
87
|
-
min_area_quad[i] = box[(first_point_idx + i) % 4]
|
88
|
-
|
89
|
-
return min_area_quad
|
90
|
-
|
91
|
-
def check_and_validate_polys(self, polys, tags, im_size):
|
92
|
-
"""
|
93
|
-
check so that the text poly is in the same direction,
|
94
|
-
and also filter some invalid polygons
|
95
|
-
:param polys:
|
96
|
-
:param tags:
|
97
|
-
:return:
|
98
|
-
"""
|
99
|
-
(h, w) = im_size
|
100
|
-
if polys.shape[0] == 0:
|
101
|
-
return polys, np.array([]), np.array([])
|
102
|
-
polys[:, :, 0] = np.clip(polys[:, :, 0], 0, w - 1)
|
103
|
-
polys[:, :, 1] = np.clip(polys[:, :, 1], 0, h - 1)
|
104
|
-
|
105
|
-
validated_polys = []
|
106
|
-
validated_tags = []
|
107
|
-
hv_tags = []
|
108
|
-
for poly, tag in zip(polys, tags):
|
109
|
-
quad = self.gen_quad_from_poly(poly)
|
110
|
-
p_area = self.quad_area(quad)
|
111
|
-
if abs(p_area) < 1:
|
112
|
-
print('invalid poly')
|
113
|
-
continue
|
114
|
-
if p_area > 0:
|
115
|
-
if tag == False:
|
116
|
-
print('poly in wrong direction')
|
117
|
-
tag = True # reversed cases should be ignore
|
118
|
-
poly = poly[(0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2,
|
119
|
-
1), :]
|
120
|
-
quad = quad[(0, 3, 2, 1), :]
|
121
|
-
|
122
|
-
len_w = np.linalg.norm(quad[0] - quad[1]) + np.linalg.norm(quad[3] -
|
123
|
-
quad[2])
|
124
|
-
len_h = np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm(quad[1] -
|
125
|
-
quad[2])
|
126
|
-
hv_tag = 1
|
127
|
-
|
128
|
-
if len_w * 2.0 < len_h:
|
129
|
-
hv_tag = 0
|
130
|
-
|
131
|
-
validated_polys.append(poly)
|
132
|
-
validated_tags.append(tag)
|
133
|
-
hv_tags.append(hv_tag)
|
134
|
-
return np.array(validated_polys), np.array(validated_tags), np.array(
|
135
|
-
hv_tags)
|
136
|
-
|
137
|
-
def crop_area(self,
|
138
|
-
im,
|
139
|
-
polys,
|
140
|
-
tags,
|
141
|
-
hv_tags,
|
142
|
-
txts,
|
143
|
-
crop_background=False,
|
144
|
-
max_tries=25):
|
145
|
-
"""
|
146
|
-
make random crop from the input image
|
147
|
-
:param im:
|
148
|
-
:param polys: [b,4,2]
|
149
|
-
:param tags:
|
150
|
-
:param crop_background:
|
151
|
-
:param max_tries: 50 -> 25
|
152
|
-
:return:
|
153
|
-
"""
|
154
|
-
h, w, _ = im.shape
|
155
|
-
pad_h = h // 10
|
156
|
-
pad_w = w // 10
|
157
|
-
h_array = np.zeros((h + pad_h * 2), dtype=np.int32)
|
158
|
-
w_array = np.zeros((w + pad_w * 2), dtype=np.int32)
|
159
|
-
for poly in polys:
|
160
|
-
poly = np.round(poly, decimals=0).astype(np.int32)
|
161
|
-
minx = np.min(poly[:, 0])
|
162
|
-
maxx = np.max(poly[:, 0])
|
163
|
-
w_array[minx + pad_w:maxx + pad_w] = 1
|
164
|
-
miny = np.min(poly[:, 1])
|
165
|
-
maxy = np.max(poly[:, 1])
|
166
|
-
h_array[miny + pad_h:maxy + pad_h] = 1
|
167
|
-
# ensure the cropped area not across a text
|
168
|
-
h_axis = np.where(h_array == 0)[0]
|
169
|
-
w_axis = np.where(w_array == 0)[0]
|
170
|
-
if len(h_axis) == 0 or len(w_axis) == 0:
|
171
|
-
return im, polys, tags, hv_tags, txts
|
172
|
-
for i in range(max_tries):
|
173
|
-
xx = np.random.choice(w_axis, size=2)
|
174
|
-
xmin = np.min(xx) - pad_w
|
175
|
-
xmax = np.max(xx) - pad_w
|
176
|
-
xmin = np.clip(xmin, 0, w - 1)
|
177
|
-
xmax = np.clip(xmax, 0, w - 1)
|
178
|
-
yy = np.random.choice(h_axis, size=2)
|
179
|
-
ymin = np.min(yy) - pad_h
|
180
|
-
ymax = np.max(yy) - pad_h
|
181
|
-
ymin = np.clip(ymin, 0, h - 1)
|
182
|
-
ymax = np.clip(ymax, 0, h - 1)
|
183
|
-
if xmax - xmin < self.min_crop_size or \
|
184
|
-
ymax - ymin < self.min_crop_size:
|
185
|
-
continue
|
186
|
-
if polys.shape[0] != 0:
|
187
|
-
poly_axis_in_area = (polys[:, :, 0] >= xmin) & (polys[:, :, 0] <= xmax) \
|
188
|
-
& (polys[:, :, 1] >= ymin) & (polys[:, :, 1] <= ymax)
|
189
|
-
selected_polys = np.where(
|
190
|
-
np.sum(poly_axis_in_area, axis=1) == 4)[0]
|
191
|
-
else:
|
192
|
-
selected_polys = []
|
193
|
-
if len(selected_polys) == 0:
|
194
|
-
# no text in this area
|
195
|
-
if crop_background:
|
196
|
-
txts_tmp = []
|
197
|
-
for selected_poly in selected_polys:
|
198
|
-
txts_tmp.append(txts[selected_poly])
|
199
|
-
txts = txts_tmp
|
200
|
-
return im[ymin: ymax + 1, xmin: xmax + 1, :], \
|
201
|
-
polys[selected_polys], tags[selected_polys], hv_tags[selected_polys], txts
|
202
|
-
else:
|
203
|
-
continue
|
204
|
-
im = im[ymin:ymax + 1, xmin:xmax + 1, :]
|
205
|
-
polys = polys[selected_polys]
|
206
|
-
tags = tags[selected_polys]
|
207
|
-
hv_tags = hv_tags[selected_polys]
|
208
|
-
txts_tmp = []
|
209
|
-
for selected_poly in selected_polys:
|
210
|
-
txts_tmp.append(txts[selected_poly])
|
211
|
-
txts = txts_tmp
|
212
|
-
polys[:, :, 0] -= xmin
|
213
|
-
polys[:, :, 1] -= ymin
|
214
|
-
return im, polys, tags, hv_tags, txts
|
215
|
-
|
216
|
-
return im, polys, tags, hv_tags, txts
|
217
|
-
|
218
|
-
def fit_and_gather_tcl_points_v2(self,
|
219
|
-
min_area_quad,
|
220
|
-
poly,
|
221
|
-
max_h,
|
222
|
-
max_w,
|
223
|
-
fixed_point_num=64,
|
224
|
-
img_id=0,
|
225
|
-
reference_height=3):
|
226
|
-
"""
|
227
|
-
Find the center point of poly as key_points, then fit and gather.
|
228
|
-
"""
|
229
|
-
key_point_xys = []
|
230
|
-
point_num = poly.shape[0]
|
231
|
-
for idx in range(point_num // 2):
|
232
|
-
center_point = (poly[idx] + poly[point_num - 1 - idx]) / 2.0
|
233
|
-
key_point_xys.append(center_point)
|
234
|
-
|
235
|
-
tmp_image = np.zeros(
|
236
|
-
shape=(
|
237
|
-
max_h,
|
238
|
-
max_w, ), dtype='float32')
|
239
|
-
cv2.polylines(tmp_image, [np.array(key_point_xys).astype('int32')],
|
240
|
-
False, 1.0)
|
241
|
-
ys, xs = np.where(tmp_image > 0)
|
242
|
-
xy_text = np.array(list(zip(xs, ys)), dtype='float32')
|
243
|
-
|
244
|
-
left_center_pt = (
|
245
|
-
(min_area_quad[0] - min_area_quad[1]) / 2.0).reshape(1, 2)
|
246
|
-
right_center_pt = (
|
247
|
-
(min_area_quad[1] - min_area_quad[2]) / 2.0).reshape(1, 2)
|
248
|
-
proj_unit_vec = (right_center_pt - left_center_pt) / (
|
249
|
-
np.linalg.norm(right_center_pt - left_center_pt) + 1e-6)
|
250
|
-
proj_unit_vec_tile = np.tile(proj_unit_vec,
|
251
|
-
(xy_text.shape[0], 1)) # (n, 2)
|
252
|
-
left_center_pt_tile = np.tile(left_center_pt,
|
253
|
-
(xy_text.shape[0], 1)) # (n, 2)
|
254
|
-
xy_text_to_left_center = xy_text - left_center_pt_tile
|
255
|
-
proj_value = np.sum(xy_text_to_left_center * proj_unit_vec_tile, axis=1)
|
256
|
-
xy_text = xy_text[np.argsort(proj_value)]
|
257
|
-
|
258
|
-
# convert to np and keep the num of point not greater then fixed_point_num
|
259
|
-
pos_info = np.array(xy_text).reshape(-1, 2)[:, ::-1] # xy-> yx
|
260
|
-
point_num = len(pos_info)
|
261
|
-
if point_num > fixed_point_num:
|
262
|
-
keep_ids = [
|
263
|
-
int((point_num * 1.0 / fixed_point_num) * x)
|
264
|
-
for x in range(fixed_point_num)
|
265
|
-
]
|
266
|
-
pos_info = pos_info[keep_ids, :]
|
267
|
-
|
268
|
-
keep = int(min(len(pos_info), fixed_point_num))
|
269
|
-
if np.random.rand() < 0.2 and reference_height >= 3:
|
270
|
-
dl = (np.random.rand(keep) - 0.5) * reference_height * 0.3
|
271
|
-
random_float = np.array([1, 0]).reshape([1, 2]) * dl.reshape(
|
272
|
-
[keep, 1])
|
273
|
-
pos_info += random_float
|
274
|
-
pos_info[:, 0] = np.clip(pos_info[:, 0], 0, max_h - 1)
|
275
|
-
pos_info[:, 1] = np.clip(pos_info[:, 1], 0, max_w - 1)
|
276
|
-
|
277
|
-
# padding to fixed length
|
278
|
-
pos_l = np.zeros((self.tcl_len, 3), dtype=np.int32)
|
279
|
-
pos_l[:, 0] = np.ones((self.tcl_len, )) * img_id
|
280
|
-
pos_m = np.zeros((self.tcl_len, 1), dtype=np.float32)
|
281
|
-
pos_l[:keep, 1:] = np.round(pos_info).astype(np.int32)
|
282
|
-
pos_m[:keep] = 1.0
|
283
|
-
return pos_l, pos_m
|
284
|
-
|
285
|
-
def generate_direction_map(self, poly_quads, n_char, direction_map):
|
286
|
-
"""
|
287
|
-
"""
|
288
|
-
width_list = []
|
289
|
-
height_list = []
|
290
|
-
for quad in poly_quads:
|
291
|
-
quad_w = (np.linalg.norm(quad[0] - quad[1]) +
|
292
|
-
np.linalg.norm(quad[2] - quad[3])) / 2.0
|
293
|
-
quad_h = (np.linalg.norm(quad[0] - quad[3]) +
|
294
|
-
np.linalg.norm(quad[2] - quad[1])) / 2.0
|
295
|
-
width_list.append(quad_w)
|
296
|
-
height_list.append(quad_h)
|
297
|
-
norm_width = max(sum(width_list) / n_char, 1.0)
|
298
|
-
average_height = max(sum(height_list) / len(height_list), 1.0)
|
299
|
-
k = 1
|
300
|
-
for quad in poly_quads:
|
301
|
-
direct_vector_full = (
|
302
|
-
(quad[1] + quad[2]) - (quad[0] + quad[3])) / 2.0
|
303
|
-
direct_vector = direct_vector_full / (
|
304
|
-
np.linalg.norm(direct_vector_full) + 1e-6) * norm_width
|
305
|
-
direction_label = tuple(
|
306
|
-
map(float,
|
307
|
-
[direct_vector[0], direct_vector[1], 1.0 / average_height]))
|
308
|
-
cv2.fillPoly(direction_map,
|
309
|
-
quad.round().astype(np.int32)[np.newaxis, :, :],
|
310
|
-
direction_label)
|
311
|
-
k += 1
|
312
|
-
return direction_map
|
313
|
-
|
314
|
-
def calculate_average_height(self, poly_quads):
|
315
|
-
"""
|
316
|
-
"""
|
317
|
-
height_list = []
|
318
|
-
for quad in poly_quads:
|
319
|
-
quad_h = (np.linalg.norm(quad[0] - quad[3]) +
|
320
|
-
np.linalg.norm(quad[2] - quad[1])) / 2.0
|
321
|
-
height_list.append(quad_h)
|
322
|
-
average_height = max(sum(height_list) / len(height_list), 1.0)
|
323
|
-
return average_height
|
324
|
-
|
325
|
-
def generate_tcl_ctc_label(self,
|
326
|
-
h,
|
327
|
-
w,
|
328
|
-
polys,
|
329
|
-
tags,
|
330
|
-
text_strs,
|
331
|
-
ds_ratio,
|
332
|
-
tcl_ratio=0.3,
|
333
|
-
shrink_ratio_of_width=0.15):
|
334
|
-
"""
|
335
|
-
Generate polygon.
|
336
|
-
"""
|
337
|
-
score_map_big = np.zeros(
|
338
|
-
(
|
339
|
-
h,
|
340
|
-
w, ), dtype=np.float32)
|
341
|
-
h, w = int(h * ds_ratio), int(w * ds_ratio)
|
342
|
-
polys = polys * ds_ratio
|
343
|
-
|
344
|
-
score_map = np.zeros(
|
345
|
-
(
|
346
|
-
h,
|
347
|
-
w, ), dtype=np.float32)
|
348
|
-
score_label_map = np.zeros(
|
349
|
-
(
|
350
|
-
h,
|
351
|
-
w, ), dtype=np.float32)
|
352
|
-
tbo_map = np.zeros((h, w, 5), dtype=np.float32)
|
353
|
-
training_mask = np.ones(
|
354
|
-
(
|
355
|
-
h,
|
356
|
-
w, ), dtype=np.float32)
|
357
|
-
direction_map = np.ones((h, w, 3)) * np.array([0, 0, 1]).reshape(
|
358
|
-
[1, 1, 3]).astype(np.float32)
|
359
|
-
|
360
|
-
label_idx = 0
|
361
|
-
score_label_map_text_label_list = []
|
362
|
-
pos_list, pos_mask, label_list = [], [], []
|
363
|
-
for poly_idx, poly_tag in enumerate(zip(polys, tags)):
|
364
|
-
poly = poly_tag[0]
|
365
|
-
tag = poly_tag[1]
|
366
|
-
|
367
|
-
# generate min_area_quad
|
368
|
-
min_area_quad, center_point = self.gen_min_area_quad_from_poly(poly)
|
369
|
-
min_area_quad_h = 0.5 * (
|
370
|
-
np.linalg.norm(min_area_quad[0] - min_area_quad[3]) +
|
371
|
-
np.linalg.norm(min_area_quad[1] - min_area_quad[2]))
|
372
|
-
min_area_quad_w = 0.5 * (
|
373
|
-
np.linalg.norm(min_area_quad[0] - min_area_quad[1]) +
|
374
|
-
np.linalg.norm(min_area_quad[2] - min_area_quad[3]))
|
375
|
-
|
376
|
-
if min(min_area_quad_h, min_area_quad_w) < self.min_text_size * ds_ratio \
|
377
|
-
or min(min_area_quad_h, min_area_quad_w) > self.max_text_size * ds_ratio:
|
378
|
-
continue
|
379
|
-
|
380
|
-
if tag:
|
381
|
-
cv2.fillPoly(training_mask,
|
382
|
-
poly.astype(np.int32)[np.newaxis, :, :], 0.15)
|
383
|
-
else:
|
384
|
-
text_label = text_strs[poly_idx]
|
385
|
-
text_label = self.prepare_text_label(text_label,
|
386
|
-
self.Lexicon_Table)
|
387
|
-
|
388
|
-
text_label_index_list = [[self.Lexicon_Table.index(c_)]
|
389
|
-
for c_ in text_label
|
390
|
-
if c_ in self.Lexicon_Table]
|
391
|
-
if len(text_label_index_list) < 1:
|
392
|
-
continue
|
393
|
-
|
394
|
-
tcl_poly = self.poly2tcl(poly, tcl_ratio)
|
395
|
-
tcl_quads = self.poly2quads(tcl_poly)
|
396
|
-
poly_quads = self.poly2quads(poly)
|
397
|
-
|
398
|
-
stcl_quads, quad_index = self.shrink_poly_along_width(
|
399
|
-
tcl_quads,
|
400
|
-
shrink_ratio_of_width=shrink_ratio_of_width,
|
401
|
-
expand_height_ratio=1.0 / tcl_ratio)
|
402
|
-
|
403
|
-
cv2.fillPoly(score_map,
|
404
|
-
np.round(stcl_quads).astype(np.int32), 1.0)
|
405
|
-
cv2.fillPoly(score_map_big,
|
406
|
-
np.round(stcl_quads / ds_ratio).astype(np.int32),
|
407
|
-
1.0)
|
408
|
-
|
409
|
-
for idx, quad in enumerate(stcl_quads):
|
410
|
-
quad_mask = np.zeros((h, w), dtype=np.float32)
|
411
|
-
quad_mask = cv2.fillPoly(
|
412
|
-
quad_mask,
|
413
|
-
np.round(quad[np.newaxis, :, :]).astype(np.int32), 1.0)
|
414
|
-
tbo_map = self.gen_quad_tbo(poly_quads[quad_index[idx]],
|
415
|
-
quad_mask, tbo_map)
|
416
|
-
|
417
|
-
# score label map and score_label_map_text_label_list for refine
|
418
|
-
if label_idx == 0:
|
419
|
-
text_pos_list_ = [[len(self.Lexicon_Table)], ]
|
420
|
-
score_label_map_text_label_list.append(text_pos_list_)
|
421
|
-
|
422
|
-
label_idx += 1
|
423
|
-
cv2.fillPoly(score_label_map,
|
424
|
-
np.round(poly_quads).astype(np.int32), label_idx)
|
425
|
-
score_label_map_text_label_list.append(text_label_index_list)
|
426
|
-
|
427
|
-
# direction info, fix-me
|
428
|
-
n_char = len(text_label_index_list)
|
429
|
-
direction_map = self.generate_direction_map(poly_quads, n_char,
|
430
|
-
direction_map)
|
431
|
-
|
432
|
-
# pos info
|
433
|
-
average_shrink_height = self.calculate_average_height(
|
434
|
-
stcl_quads)
|
435
|
-
pos_l, pos_m = self.fit_and_gather_tcl_points_v2(
|
436
|
-
min_area_quad,
|
437
|
-
poly,
|
438
|
-
max_h=h,
|
439
|
-
max_w=w,
|
440
|
-
fixed_point_num=64,
|
441
|
-
img_id=self.img_id,
|
442
|
-
reference_height=average_shrink_height)
|
443
|
-
|
444
|
-
label_l = text_label_index_list
|
445
|
-
if len(text_label_index_list) < 2:
|
446
|
-
continue
|
447
|
-
|
448
|
-
pos_list.append(pos_l)
|
449
|
-
pos_mask.append(pos_m)
|
450
|
-
label_list.append(label_l)
|
451
|
-
|
452
|
-
# use big score_map for smooth tcl lines
|
453
|
-
score_map_big_resized = cv2.resize(
|
454
|
-
score_map_big, dsize=None, fx=ds_ratio, fy=ds_ratio)
|
455
|
-
score_map = np.array(score_map_big_resized > 1e-3, dtype='float32')
|
456
|
-
|
457
|
-
return score_map, score_label_map, tbo_map, direction_map, training_mask, \
|
458
|
-
pos_list, pos_mask, label_list, score_label_map_text_label_list
|
459
|
-
|
460
|
-
def adjust_point(self, poly):
|
461
|
-
"""
|
462
|
-
adjust point order.
|
463
|
-
"""
|
464
|
-
point_num = poly.shape[0]
|
465
|
-
if point_num == 4:
|
466
|
-
len_1 = np.linalg.norm(poly[0] - poly[1])
|
467
|
-
len_2 = np.linalg.norm(poly[1] - poly[2])
|
468
|
-
len_3 = np.linalg.norm(poly[2] - poly[3])
|
469
|
-
len_4 = np.linalg.norm(poly[3] - poly[0])
|
470
|
-
|
471
|
-
if (len_1 + len_3) * 1.5 < (len_2 + len_4):
|
472
|
-
poly = poly[[1, 2, 3, 0], :]
|
473
|
-
|
474
|
-
elif point_num > 4:
|
475
|
-
vector_1 = poly[0] - poly[1]
|
476
|
-
vector_2 = poly[1] - poly[2]
|
477
|
-
cos_theta = np.dot(vector_1, vector_2) / (
|
478
|
-
np.linalg.norm(vector_1) * np.linalg.norm(vector_2) + 1e-6)
|
479
|
-
theta = np.arccos(np.round(cos_theta, decimals=4))
|
480
|
-
|
481
|
-
if abs(theta) > (70 / 180 * math.pi):
|
482
|
-
index = list(range(1, point_num)) + [0]
|
483
|
-
poly = poly[np.array(index), :]
|
484
|
-
return poly
|
485
|
-
|
486
|
-
def gen_min_area_quad_from_poly(self, poly):
|
487
|
-
"""
|
488
|
-
Generate min area quad from poly.
|
489
|
-
"""
|
490
|
-
point_num = poly.shape[0]
|
491
|
-
min_area_quad = np.zeros((4, 2), dtype=np.float32)
|
492
|
-
if point_num == 4:
|
493
|
-
min_area_quad = poly
|
494
|
-
center_point = np.sum(poly, axis=0) / 4
|
495
|
-
else:
|
496
|
-
rect = cv2.minAreaRect(poly.astype(
|
497
|
-
np.int32)) # (center (x,y), (width, height), angle of rotation)
|
498
|
-
center_point = rect[0]
|
499
|
-
box = np.array(cv2.boxPoints(rect))
|
500
|
-
|
501
|
-
first_point_idx = 0
|
502
|
-
min_dist = 1e4
|
503
|
-
for i in range(4):
|
504
|
-
dist = np.linalg.norm(box[(i + 0) % 4] - poly[0]) + \
|
505
|
-
np.linalg.norm(box[(i + 1) % 4] - poly[point_num // 2 - 1]) + \
|
506
|
-
np.linalg.norm(box[(i + 2) % 4] - poly[point_num // 2]) + \
|
507
|
-
np.linalg.norm(box[(i + 3) % 4] - poly[-1])
|
508
|
-
if dist < min_dist:
|
509
|
-
min_dist = dist
|
510
|
-
first_point_idx = i
|
511
|
-
|
512
|
-
for i in range(4):
|
513
|
-
min_area_quad[i] = box[(first_point_idx + i) % 4]
|
514
|
-
|
515
|
-
return min_area_quad, center_point
|
516
|
-
|
517
|
-
def shrink_quad_along_width(self,
|
518
|
-
quad,
|
519
|
-
begin_width_ratio=0.,
|
520
|
-
end_width_ratio=1.):
|
521
|
-
"""
|
522
|
-
Generate shrink_quad_along_width.
|
523
|
-
"""
|
524
|
-
ratio_pair = np.array(
|
525
|
-
[[begin_width_ratio], [end_width_ratio]], dtype=np.float32)
|
526
|
-
p0_1 = quad[0] + (quad[1] - quad[0]) * ratio_pair
|
527
|
-
p3_2 = quad[3] + (quad[2] - quad[3]) * ratio_pair
|
528
|
-
return np.array([p0_1[0], p0_1[1], p3_2[1], p3_2[0]])
|
529
|
-
|
530
|
-
def shrink_poly_along_width(self,
|
531
|
-
quads,
|
532
|
-
shrink_ratio_of_width,
|
533
|
-
expand_height_ratio=1.0):
|
534
|
-
"""
|
535
|
-
shrink poly with given length.
|
536
|
-
"""
|
537
|
-
upper_edge_list = []
|
538
|
-
|
539
|
-
def get_cut_info(edge_len_list, cut_len):
|
540
|
-
for idx, edge_len in enumerate(edge_len_list):
|
541
|
-
cut_len -= edge_len
|
542
|
-
if cut_len <= 0.000001:
|
543
|
-
ratio = (cut_len + edge_len_list[idx]) / edge_len_list[idx]
|
544
|
-
return idx, ratio
|
545
|
-
|
546
|
-
for quad in quads:
|
547
|
-
upper_edge_len = np.linalg.norm(quad[0] - quad[1])
|
548
|
-
upper_edge_list.append(upper_edge_len)
|
549
|
-
|
550
|
-
# length of left edge and right edge.
|
551
|
-
left_length = np.linalg.norm(quads[0][0] - quads[0][
|
552
|
-
3]) * expand_height_ratio
|
553
|
-
right_length = np.linalg.norm(quads[-1][1] - quads[-1][
|
554
|
-
2]) * expand_height_ratio
|
555
|
-
|
556
|
-
shrink_length = min(left_length, right_length,
|
557
|
-
sum(upper_edge_list)) * shrink_ratio_of_width
|
558
|
-
# shrinking length
|
559
|
-
upper_len_left = shrink_length
|
560
|
-
upper_len_right = sum(upper_edge_list) - shrink_length
|
561
|
-
|
562
|
-
left_idx, left_ratio = get_cut_info(upper_edge_list, upper_len_left)
|
563
|
-
left_quad = self.shrink_quad_along_width(
|
564
|
-
quads[left_idx], begin_width_ratio=left_ratio, end_width_ratio=1)
|
565
|
-
right_idx, right_ratio = get_cut_info(upper_edge_list, upper_len_right)
|
566
|
-
right_quad = self.shrink_quad_along_width(
|
567
|
-
quads[right_idx], begin_width_ratio=0, end_width_ratio=right_ratio)
|
568
|
-
|
569
|
-
out_quad_list = []
|
570
|
-
if left_idx == right_idx:
|
571
|
-
out_quad_list.append(
|
572
|
-
[left_quad[0], right_quad[1], right_quad[2], left_quad[3]])
|
573
|
-
else:
|
574
|
-
out_quad_list.append(left_quad)
|
575
|
-
for idx in range(left_idx + 1, right_idx):
|
576
|
-
out_quad_list.append(quads[idx])
|
577
|
-
out_quad_list.append(right_quad)
|
578
|
-
|
579
|
-
return np.array(out_quad_list), list(range(left_idx, right_idx + 1))
|
580
|
-
|
581
|
-
def prepare_text_label(self, label_str, Lexicon_Table):
|
582
|
-
"""
|
583
|
-
Prepare text lablel by given Lexicon_Table.
|
584
|
-
"""
|
585
|
-
if len(Lexicon_Table) == 36:
|
586
|
-
return label_str.lower()
|
587
|
-
else:
|
588
|
-
return label_str
|
589
|
-
|
590
|
-
def vector_angle(self, A, B):
|
591
|
-
"""
|
592
|
-
Calculate the angle between vector AB and x-axis positive direction.
|
593
|
-
"""
|
594
|
-
AB = np.array([B[1] - A[1], B[0] - A[0]])
|
595
|
-
return np.arctan2(*AB)
|
596
|
-
|
597
|
-
def theta_line_cross_point(self, theta, point):
|
598
|
-
"""
|
599
|
-
Calculate the line through given point and angle in ax + by + c =0 form.
|
600
|
-
"""
|
601
|
-
x, y = point
|
602
|
-
cos = np.cos(theta)
|
603
|
-
sin = np.sin(theta)
|
604
|
-
return [sin, -cos, cos * y - sin * x]
|
605
|
-
|
606
|
-
def line_cross_two_point(self, A, B):
|
607
|
-
"""
|
608
|
-
Calculate the line through given point A and B in ax + by + c =0 form.
|
609
|
-
"""
|
610
|
-
angle = self.vector_angle(A, B)
|
611
|
-
return self.theta_line_cross_point(angle, A)
|
612
|
-
|
613
|
-
def average_angle(self, poly):
|
614
|
-
"""
|
615
|
-
Calculate the average angle between left and right edge in given poly.
|
616
|
-
"""
|
617
|
-
p0, p1, p2, p3 = poly
|
618
|
-
angle30 = self.vector_angle(p3, p0)
|
619
|
-
angle21 = self.vector_angle(p2, p1)
|
620
|
-
return (angle30 + angle21) / 2
|
621
|
-
|
622
|
-
def line_cross_point(self, line1, line2):
|
623
|
-
"""
|
624
|
-
line1 and line2 in 0=ax+by+c form, compute the cross point of line1 and line2
|
625
|
-
"""
|
626
|
-
a1, b1, c1 = line1
|
627
|
-
a2, b2, c2 = line2
|
628
|
-
d = a1 * b2 - a2 * b1
|
629
|
-
|
630
|
-
if d == 0:
|
631
|
-
print('Cross point does not exist')
|
632
|
-
return np.array([0, 0], dtype=np.float32)
|
633
|
-
else:
|
634
|
-
x = (b1 * c2 - b2 * c1) / d
|
635
|
-
y = (a2 * c1 - a1 * c2) / d
|
636
|
-
|
637
|
-
return np.array([x, y], dtype=np.float32)
|
638
|
-
|
639
|
-
def quad2tcl(self, poly, ratio):
|
640
|
-
"""
|
641
|
-
Generate center line by poly clock-wise point. (4, 2)
|
642
|
-
"""
|
643
|
-
ratio_pair = np.array(
|
644
|
-
[[0.5 - ratio / 2], [0.5 + ratio / 2]], dtype=np.float32)
|
645
|
-
p0_3 = poly[0] + (poly[3] - poly[0]) * ratio_pair
|
646
|
-
p1_2 = poly[1] + (poly[2] - poly[1]) * ratio_pair
|
647
|
-
return np.array([p0_3[0], p1_2[0], p1_2[1], p0_3[1]])
|
648
|
-
|
649
|
-
def poly2tcl(self, poly, ratio):
|
650
|
-
"""
|
651
|
-
Generate center line by poly clock-wise point.
|
652
|
-
"""
|
653
|
-
ratio_pair = np.array(
|
654
|
-
[[0.5 - ratio / 2], [0.5 + ratio / 2]], dtype=np.float32)
|
655
|
-
tcl_poly = np.zeros_like(poly)
|
656
|
-
point_num = poly.shape[0]
|
657
|
-
|
658
|
-
for idx in range(point_num // 2):
|
659
|
-
point_pair = poly[idx] + (poly[point_num - 1 - idx] - poly[idx]
|
660
|
-
) * ratio_pair
|
661
|
-
tcl_poly[idx] = point_pair[0]
|
662
|
-
tcl_poly[point_num - 1 - idx] = point_pair[1]
|
663
|
-
return tcl_poly
|
664
|
-
|
665
|
-
def gen_quad_tbo(self, quad, tcl_mask, tbo_map):
|
666
|
-
"""
|
667
|
-
Generate tbo_map for give quad.
|
668
|
-
"""
|
669
|
-
# upper and lower line function: ax + by + c = 0;
|
670
|
-
up_line = self.line_cross_two_point(quad[0], quad[1])
|
671
|
-
lower_line = self.line_cross_two_point(quad[3], quad[2])
|
672
|
-
|
673
|
-
quad_h = 0.5 * (np.linalg.norm(quad[0] - quad[3]) +
|
674
|
-
np.linalg.norm(quad[1] - quad[2]))
|
675
|
-
quad_w = 0.5 * (np.linalg.norm(quad[0] - quad[1]) +
|
676
|
-
np.linalg.norm(quad[2] - quad[3]))
|
677
|
-
|
678
|
-
# average angle of left and right line.
|
679
|
-
angle = self.average_angle(quad)
|
680
|
-
|
681
|
-
xy_in_poly = np.argwhere(tcl_mask == 1)
|
682
|
-
for y, x in xy_in_poly:
|
683
|
-
point = (x, y)
|
684
|
-
line = self.theta_line_cross_point(angle, point)
|
685
|
-
cross_point_upper = self.line_cross_point(up_line, line)
|
686
|
-
cross_point_lower = self.line_cross_point(lower_line, line)
|
687
|
-
##FIX, offset reverse
|
688
|
-
upper_offset_x, upper_offset_y = cross_point_upper - point
|
689
|
-
lower_offset_x, lower_offset_y = cross_point_lower - point
|
690
|
-
tbo_map[y, x, 0] = upper_offset_y
|
691
|
-
tbo_map[y, x, 1] = upper_offset_x
|
692
|
-
tbo_map[y, x, 2] = lower_offset_y
|
693
|
-
tbo_map[y, x, 3] = lower_offset_x
|
694
|
-
tbo_map[y, x, 4] = 1.0 / max(min(quad_h, quad_w), 1.0) * 2
|
695
|
-
return tbo_map
|
696
|
-
|
697
|
-
def poly2quads(self, poly):
|
698
|
-
"""
|
699
|
-
Split poly into quads.
|
700
|
-
"""
|
701
|
-
quad_list = []
|
702
|
-
point_num = poly.shape[0]
|
703
|
-
|
704
|
-
# point pair
|
705
|
-
point_pair_list = []
|
706
|
-
for idx in range(point_num // 2):
|
707
|
-
point_pair = [poly[idx], poly[point_num - 1 - idx]]
|
708
|
-
point_pair_list.append(point_pair)
|
709
|
-
|
710
|
-
quad_num = point_num // 2 - 1
|
711
|
-
for idx in range(quad_num):
|
712
|
-
# reshape and adjust to clock-wise
|
713
|
-
quad_list.append((np.array(point_pair_list)[[idx, idx + 1]]
|
714
|
-
).reshape(4, 2)[[0, 2, 3, 1]])
|
715
|
-
|
716
|
-
return np.array(quad_list)
|
717
|
-
|
718
|
-
def rotate_im_poly(self, im, text_polys):
|
719
|
-
"""
|
720
|
-
rotate image with 90 / 180 / 270 degre
|
721
|
-
"""
|
722
|
-
im_w, im_h = im.shape[1], im.shape[0]
|
723
|
-
dst_im = im.copy()
|
724
|
-
dst_polys = []
|
725
|
-
rand_degree_ratio = np.random.rand()
|
726
|
-
rand_degree_cnt = 1
|
727
|
-
if rand_degree_ratio > 0.5:
|
728
|
-
rand_degree_cnt = 3
|
729
|
-
for i in range(rand_degree_cnt):
|
730
|
-
dst_im = np.rot90(dst_im)
|
731
|
-
rot_degree = -90 * rand_degree_cnt
|
732
|
-
rot_angle = rot_degree * math.pi / 180.0
|
733
|
-
n_poly = text_polys.shape[0]
|
734
|
-
cx, cy = 0.5 * im_w, 0.5 * im_h
|
735
|
-
ncx, ncy = 0.5 * dst_im.shape[1], 0.5 * dst_im.shape[0]
|
736
|
-
for i in range(n_poly):
|
737
|
-
wordBB = text_polys[i]
|
738
|
-
poly = []
|
739
|
-
for j in range(4): # 16->4
|
740
|
-
sx, sy = wordBB[j][0], wordBB[j][1]
|
741
|
-
dx = math.cos(rot_angle) * (sx - cx) - math.sin(rot_angle) * (
|
742
|
-
sy - cy) + ncx
|
743
|
-
dy = math.sin(rot_angle) * (sx - cx) + math.cos(rot_angle) * (
|
744
|
-
sy - cy) + ncy
|
745
|
-
poly.append([dx, dy])
|
746
|
-
dst_polys.append(poly)
|
747
|
-
return dst_im, np.array(dst_polys, dtype=np.float32)
|
748
|
-
|
749
|
-
def __call__(self, data):
|
750
|
-
input_size = 512
|
751
|
-
im = data['image']
|
752
|
-
text_polys = data['polys']
|
753
|
-
text_tags = data['ignore_tags']
|
754
|
-
text_strs = data['texts']
|
755
|
-
h, w, _ = im.shape
|
756
|
-
text_polys, text_tags, hv_tags = self.check_and_validate_polys(
|
757
|
-
text_polys, text_tags, (h, w))
|
758
|
-
if text_polys.shape[0] <= 0:
|
759
|
-
return None
|
760
|
-
# set aspect ratio and keep area fix
|
761
|
-
asp_scales = np.arange(1.0, 1.55, 0.1)
|
762
|
-
asp_scale = np.random.choice(asp_scales)
|
763
|
-
if np.random.rand() < 0.5:
|
764
|
-
asp_scale = 1.0 / asp_scale
|
765
|
-
asp_scale = math.sqrt(asp_scale)
|
766
|
-
|
767
|
-
asp_wx = asp_scale
|
768
|
-
asp_hy = 1.0 / asp_scale
|
769
|
-
im = cv2.resize(im, dsize=None, fx=asp_wx, fy=asp_hy)
|
770
|
-
text_polys[:, :, 0] *= asp_wx
|
771
|
-
text_polys[:, :, 1] *= asp_hy
|
772
|
-
|
773
|
-
h, w, _ = im.shape
|
774
|
-
if max(h, w) > 2048:
|
775
|
-
rd_scale = 2048.0 / max(h, w)
|
776
|
-
im = cv2.resize(im, dsize=None, fx=rd_scale, fy=rd_scale)
|
777
|
-
text_polys *= rd_scale
|
778
|
-
h, w, _ = im.shape
|
779
|
-
if min(h, w) < 16:
|
780
|
-
return None
|
781
|
-
|
782
|
-
# no background
|
783
|
-
im, text_polys, text_tags, hv_tags, text_strs = self.crop_area(
|
784
|
-
im,
|
785
|
-
text_polys,
|
786
|
-
text_tags,
|
787
|
-
hv_tags,
|
788
|
-
text_strs,
|
789
|
-
crop_background=False)
|
790
|
-
|
791
|
-
if text_polys.shape[0] == 0:
|
792
|
-
return None
|
793
|
-
# # continue for all ignore case
|
794
|
-
if np.sum((text_tags * 1.0)) >= text_tags.size:
|
795
|
-
return None
|
796
|
-
new_h, new_w, _ = im.shape
|
797
|
-
if (new_h is None) or (new_w is None):
|
798
|
-
return None
|
799
|
-
# resize image
|
800
|
-
std_ratio = float(input_size) / max(new_w, new_h)
|
801
|
-
rand_scales = np.array(
|
802
|
-
[0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0, 1.0, 1.0, 1.0, 1.0])
|
803
|
-
rz_scale = std_ratio * np.random.choice(rand_scales)
|
804
|
-
im = cv2.resize(im, dsize=None, fx=rz_scale, fy=rz_scale)
|
805
|
-
text_polys[:, :, 0] *= rz_scale
|
806
|
-
text_polys[:, :, 1] *= rz_scale
|
807
|
-
|
808
|
-
# add gaussian blur
|
809
|
-
if np.random.rand() < 0.1 * 0.5:
|
810
|
-
ks = np.random.permutation(5)[0] + 1
|
811
|
-
ks = int(ks / 2) * 2 + 1
|
812
|
-
im = cv2.GaussianBlur(im, ksize=(ks, ks), sigmaX=0, sigmaY=0)
|
813
|
-
# add brighter
|
814
|
-
if np.random.rand() < 0.1 * 0.5:
|
815
|
-
im = im * (1.0 + np.random.rand() * 0.5)
|
816
|
-
im = np.clip(im, 0.0, 255.0)
|
817
|
-
# add darker
|
818
|
-
if np.random.rand() < 0.1 * 0.5:
|
819
|
-
im = im * (1.0 - np.random.rand() * 0.5)
|
820
|
-
im = np.clip(im, 0.0, 255.0)
|
821
|
-
|
822
|
-
# Padding the im to [input_size, input_size]
|
823
|
-
new_h, new_w, _ = im.shape
|
824
|
-
if min(new_w, new_h) < input_size * 0.5:
|
825
|
-
return None
|
826
|
-
im_padded = np.ones((input_size, input_size, 3), dtype=np.float32)
|
827
|
-
im_padded[:, :, 2] = 0.485 * 255
|
828
|
-
im_padded[:, :, 1] = 0.456 * 255
|
829
|
-
im_padded[:, :, 0] = 0.406 * 255
|
830
|
-
|
831
|
-
# Random the start position
|
832
|
-
del_h = input_size - new_h
|
833
|
-
del_w = input_size - new_w
|
834
|
-
sh, sw = 0, 0
|
835
|
-
if del_h > 1:
|
836
|
-
sh = int(np.random.rand() * del_h)
|
837
|
-
if del_w > 1:
|
838
|
-
sw = int(np.random.rand() * del_w)
|
839
|
-
|
840
|
-
# Padding
|
841
|
-
im_padded[sh:sh + new_h, sw:sw + new_w, :] = im.copy()
|
842
|
-
text_polys[:, :, 0] += sw
|
843
|
-
text_polys[:, :, 1] += sh
|
844
|
-
|
845
|
-
score_map, score_label_map, border_map, direction_map, training_mask, \
|
846
|
-
pos_list, pos_mask, label_list, score_label_map_text_label = self.generate_tcl_ctc_label(input_size,
|
847
|
-
input_size,
|
848
|
-
text_polys,
|
849
|
-
text_tags,
|
850
|
-
text_strs, 0.25)
|
851
|
-
if len(label_list) <= 0: # eliminate negative samples
|
852
|
-
return None
|
853
|
-
pos_list_temp = np.zeros([64, 3])
|
854
|
-
pos_mask_temp = np.zeros([64, 1])
|
855
|
-
label_list_temp = np.zeros([self.max_text_length, 1]) + self.pad_num
|
856
|
-
|
857
|
-
for i, label in enumerate(label_list):
|
858
|
-
n = len(label)
|
859
|
-
if n > self.max_text_length:
|
860
|
-
label_list[i] = label[:self.max_text_length]
|
861
|
-
continue
|
862
|
-
while n < self.max_text_length:
|
863
|
-
label.append([self.pad_num])
|
864
|
-
n += 1
|
865
|
-
|
866
|
-
for i in range(len(label_list)):
|
867
|
-
label_list[i] = np.array(label_list[i])
|
868
|
-
|
869
|
-
if len(pos_list) <= 0 or len(pos_list) > self.max_text_nums:
|
870
|
-
return None
|
871
|
-
for __ in range(self.max_text_nums - len(pos_list), 0, -1):
|
872
|
-
pos_list.append(pos_list_temp)
|
873
|
-
pos_mask.append(pos_mask_temp)
|
874
|
-
label_list.append(label_list_temp)
|
875
|
-
|
876
|
-
if self.img_id == self.batch_size - 1:
|
877
|
-
self.img_id = 0
|
878
|
-
else:
|
879
|
-
self.img_id += 1
|
880
|
-
|
881
|
-
im_padded[:, :, 2] -= 0.485 * 255
|
882
|
-
im_padded[:, :, 1] -= 0.456 * 255
|
883
|
-
im_padded[:, :, 0] -= 0.406 * 255
|
884
|
-
im_padded[:, :, 2] /= (255.0 * 0.229)
|
885
|
-
im_padded[:, :, 1] /= (255.0 * 0.224)
|
886
|
-
im_padded[:, :, 0] /= (255.0 * 0.225)
|
887
|
-
im_padded = im_padded.transpose((2, 0, 1))
|
888
|
-
images = im_padded[::-1, :, :]
|
889
|
-
tcl_maps = score_map[np.newaxis, :, :]
|
890
|
-
tcl_label_maps = score_label_map[np.newaxis, :, :]
|
891
|
-
border_maps = border_map.transpose((2, 0, 1))
|
892
|
-
direction_maps = direction_map.transpose((2, 0, 1))
|
893
|
-
training_masks = training_mask[np.newaxis, :, :]
|
894
|
-
pos_list = np.array(pos_list)
|
895
|
-
pos_mask = np.array(pos_mask)
|
896
|
-
label_list = np.array(label_list)
|
897
|
-
data['images'] = images
|
898
|
-
data['tcl_maps'] = tcl_maps
|
899
|
-
data['tcl_label_maps'] = tcl_label_maps
|
900
|
-
data['border_maps'] = border_maps
|
901
|
-
data['direction_maps'] = direction_maps
|
902
|
-
data['training_masks'] = training_masks
|
903
|
-
data['label_list'] = label_list
|
904
|
-
data['pos_list'] = pos_list
|
905
|
-
data['pos_mask'] = pos_mask
|
906
|
-
return data
|