pyxllib 0.3.96__py3-none-any.whl → 0.3.197__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyxllib/algo/geo.py +12 -0
- pyxllib/algo/intervals.py +1 -1
- pyxllib/algo/matcher.py +78 -0
- pyxllib/algo/pupil.py +187 -19
- pyxllib/algo/specialist.py +2 -1
- pyxllib/algo/stat.py +38 -2
- {pyxlpr → pyxllib/autogui}/__init__.py +1 -1
- pyxllib/autogui/activewin.py +246 -0
- pyxllib/autogui/all.py +9 -0
- pyxllib/{ext/autogui → autogui}/autogui.py +40 -11
- pyxllib/autogui/uiautolib.py +362 -0
- pyxllib/autogui/wechat.py +827 -0
- pyxllib/autogui/wechat_msg.py +421 -0
- pyxllib/autogui/wxautolib.py +84 -0
- pyxllib/cv/slidercaptcha.py +137 -0
- pyxllib/data/echarts.py +123 -12
- pyxllib/data/jsonlib.py +89 -0
- pyxllib/data/pglib.py +514 -30
- pyxllib/data/sqlite.py +231 -4
- pyxllib/ext/JLineViewer.py +14 -1
- pyxllib/ext/drissionlib.py +277 -0
- pyxllib/ext/kq5034lib.py +0 -1594
- pyxllib/ext/robustprocfile.py +497 -0
- pyxllib/ext/unixlib.py +6 -5
- pyxllib/ext/utools.py +108 -95
- pyxllib/ext/webhook.py +32 -14
- pyxllib/ext/wjxlib.py +88 -0
- pyxllib/ext/wpsapi.py +124 -0
- pyxllib/ext/xlwork.py +9 -0
- pyxllib/ext/yuquelib.py +1003 -71
- pyxllib/file/docxlib.py +1 -1
- pyxllib/file/libreoffice.py +165 -0
- pyxllib/file/movielib.py +9 -0
- pyxllib/file/packlib/__init__.py +112 -75
- pyxllib/file/pdflib.py +1 -1
- pyxllib/file/pupil.py +1 -1
- pyxllib/file/specialist/dirlib.py +1 -1
- pyxllib/file/specialist/download.py +10 -3
- pyxllib/file/specialist/filelib.py +266 -55
- pyxllib/file/xlsxlib.py +205 -50
- pyxllib/file/xlsyncfile.py +341 -0
- pyxllib/prog/cachetools.py +64 -0
- pyxllib/prog/filelock.py +42 -0
- pyxllib/prog/multiprogs.py +940 -0
- pyxllib/prog/newbie.py +9 -2
- pyxllib/prog/pupil.py +129 -60
- pyxllib/prog/specialist/__init__.py +176 -2
- pyxllib/prog/specialist/bc.py +5 -2
- pyxllib/prog/specialist/browser.py +11 -2
- pyxllib/prog/specialist/datetime.py +68 -0
- pyxllib/prog/specialist/tictoc.py +12 -13
- pyxllib/prog/specialist/xllog.py +5 -5
- pyxllib/prog/xlosenv.py +7 -0
- pyxllib/text/airscript.js +744 -0
- pyxllib/text/charclasslib.py +17 -5
- pyxllib/text/jiebalib.py +6 -3
- pyxllib/text/jinjalib.py +32 -0
- pyxllib/text/jsa_ai_prompt.md +271 -0
- pyxllib/text/jscode.py +159 -4
- pyxllib/text/nestenv.py +1 -1
- pyxllib/text/newbie.py +12 -0
- pyxllib/text/pupil/common.py +26 -0
- pyxllib/text/specialist/ptag.py +2 -2
- pyxllib/text/templates/echart_base.html +11 -0
- pyxllib/text/templates/highlight_code.html +17 -0
- pyxllib/text/templates/latex_editor.html +103 -0
- pyxllib/text/xmllib.py +76 -14
- pyxllib/xl.py +2 -1
- pyxllib-0.3.197.dist-info/METADATA +48 -0
- pyxllib-0.3.197.dist-info/RECORD +126 -0
- {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info}/WHEEL +1 -2
- pyxllib/ext/autogui/__init__.py +0 -8
- pyxllib-0.3.96.dist-info/METADATA +0 -51
- pyxllib-0.3.96.dist-info/RECORD +0 -333
- pyxllib-0.3.96.dist-info/top_level.txt +0 -2
- pyxlpr/ai/__init__.py +0 -5
- pyxlpr/ai/clientlib.py +0 -1281
- pyxlpr/ai/specialist.py +0 -286
- pyxlpr/ai/torch_app.py +0 -172
- pyxlpr/ai/xlpaddle.py +0 -655
- pyxlpr/ai/xltorch.py +0 -705
- pyxlpr/data/__init__.py +0 -11
- pyxlpr/data/coco.py +0 -1325
- pyxlpr/data/datacls.py +0 -365
- pyxlpr/data/datasets.py +0 -200
- pyxlpr/data/gptlib.py +0 -1291
- pyxlpr/data/icdar/__init__.py +0 -96
- pyxlpr/data/icdar/deteval.py +0 -377
- pyxlpr/data/icdar/icdar2013.py +0 -341
- pyxlpr/data/icdar/iou.py +0 -340
- pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
- pyxlpr/data/imtextline.py +0 -473
- pyxlpr/data/labelme.py +0 -866
- pyxlpr/data/removeline.py +0 -179
- pyxlpr/data/specialist.py +0 -57
- pyxlpr/eval/__init__.py +0 -85
- pyxlpr/paddleocr.py +0 -776
- pyxlpr/ppocr/__init__.py +0 -15
- pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
- pyxlpr/ppocr/data/__init__.py +0 -135
- pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
- pyxlpr/ppocr/data/imaug/__init__.py +0 -67
- pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
- pyxlpr/ppocr/data/imaug/east_process.py +0 -437
- pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
- pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
- pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
- pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
- pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
- pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
- pyxlpr/ppocr/data/imaug/operators.py +0 -433
- pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
- pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
- pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
- pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
- pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
- pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
- pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
- pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
- pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
- pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
- pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
- pyxlpr/ppocr/data/simple_dataset.py +0 -372
- pyxlpr/ppocr/losses/__init__.py +0 -61
- pyxlpr/ppocr/losses/ace_loss.py +0 -52
- pyxlpr/ppocr/losses/basic_loss.py +0 -135
- pyxlpr/ppocr/losses/center_loss.py +0 -88
- pyxlpr/ppocr/losses/cls_loss.py +0 -30
- pyxlpr/ppocr/losses/combined_loss.py +0 -67
- pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
- pyxlpr/ppocr/losses/det_db_loss.py +0 -80
- pyxlpr/ppocr/losses/det_east_loss.py +0 -63
- pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
- pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
- pyxlpr/ppocr/losses/distillation_loss.py +0 -272
- pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
- pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
- pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
- pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
- pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
- pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
- pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
- pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
- pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
- pyxlpr/ppocr/losses/table_att_loss.py +0 -109
- pyxlpr/ppocr/metrics/__init__.py +0 -44
- pyxlpr/ppocr/metrics/cls_metric.py +0 -45
- pyxlpr/ppocr/metrics/det_metric.py +0 -82
- pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
- pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
- pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
- pyxlpr/ppocr/metrics/kie_metric.py +0 -70
- pyxlpr/ppocr/metrics/rec_metric.py +0 -75
- pyxlpr/ppocr/metrics/table_metric.py +0 -50
- pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
- pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
- pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
- pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
- pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
- pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
- pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
- pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
- pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
- pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
- pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
- pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
- pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
- pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
- pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
- pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
- pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
- pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
- pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
- pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
- pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
- pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
- pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
- pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
- pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
- pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
- pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
- pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
- pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
- pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
- pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
- pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
- pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
- pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
- pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
- pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
- pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
- pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
- pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
- pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
- pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
- pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
- pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
- pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
- pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
- pyxlpr/ppocr/optimizer/__init__.py +0 -61
- pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
- pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
- pyxlpr/ppocr/optimizer/optimizer.py +0 -160
- pyxlpr/ppocr/optimizer/regularizer.py +0 -52
- pyxlpr/ppocr/postprocess/__init__.py +0 -55
- pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
- pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
- pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
- pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
- pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
- pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
- pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
- pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
- pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
- pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
- pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
- pyxlpr/ppocr/tools/__init__.py +0 -14
- pyxlpr/ppocr/tools/eval.py +0 -83
- pyxlpr/ppocr/tools/export_center.py +0 -77
- pyxlpr/ppocr/tools/export_model.py +0 -129
- pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
- pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
- pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
- pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
- pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
- pyxlpr/ppocr/tools/infer/utility.py +0 -629
- pyxlpr/ppocr/tools/infer_cls.py +0 -83
- pyxlpr/ppocr/tools/infer_det.py +0 -134
- pyxlpr/ppocr/tools/infer_e2e.py +0 -122
- pyxlpr/ppocr/tools/infer_kie.py +0 -153
- pyxlpr/ppocr/tools/infer_rec.py +0 -146
- pyxlpr/ppocr/tools/infer_table.py +0 -107
- pyxlpr/ppocr/tools/program.py +0 -596
- pyxlpr/ppocr/tools/test_hubserving.py +0 -117
- pyxlpr/ppocr/tools/train.py +0 -163
- pyxlpr/ppocr/tools/xlprog.py +0 -748
- pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
- pyxlpr/ppocr/utils/__init__.py +0 -24
- pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
- pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
- pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
- pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
- pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
- pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
- pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
- pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
- pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
- pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
- pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
- pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
- pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
- pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
- pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
- pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
- pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
- pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
- pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
- pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
- pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
- pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
- pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
- pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
- pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
- pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
- pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
- pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
- pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
- pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
- pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
- pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
- pyxlpr/ppocr/utils/dict90.txt +0 -90
- pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
- pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
- pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
- pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
- pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
- pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
- pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
- pyxlpr/ppocr/utils/en_dict.txt +0 -95
- pyxlpr/ppocr/utils/gen_label.py +0 -81
- pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
- pyxlpr/ppocr/utils/iou.py +0 -54
- pyxlpr/ppocr/utils/logging.py +0 -69
- pyxlpr/ppocr/utils/network.py +0 -84
- pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
- pyxlpr/ppocr/utils/profiler.py +0 -110
- pyxlpr/ppocr/utils/save_load.py +0 -150
- pyxlpr/ppocr/utils/stats.py +0 -72
- pyxlpr/ppocr/utils/utility.py +0 -80
- pyxlpr/ppstructure/__init__.py +0 -13
- pyxlpr/ppstructure/predict_system.py +0 -187
- pyxlpr/ppstructure/table/__init__.py +0 -13
- pyxlpr/ppstructure/table/eval_table.py +0 -72
- pyxlpr/ppstructure/table/matcher.py +0 -192
- pyxlpr/ppstructure/table/predict_structure.py +0 -136
- pyxlpr/ppstructure/table/predict_table.py +0 -221
- pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
- pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
- pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
- pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
- pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
- pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
- pyxlpr/ppstructure/utility.py +0 -71
- pyxlpr/xlai.py +0 -10
- /pyxllib/{ext/autogui → autogui}/virtualkey.py +0 -0
- {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info/licenses}/LICENSE +0 -0
@@ -1,246 +0,0 @@
|
|
1
|
-
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
|
15
|
-
from __future__ import absolute_import
|
16
|
-
from __future__ import division
|
17
|
-
from __future__ import print_function
|
18
|
-
|
19
|
-
import paddle
|
20
|
-
from paddle import ParamAttr
|
21
|
-
import paddle.nn as nn
|
22
|
-
import paddle.nn.functional as F
|
23
|
-
|
24
|
-
__all__ = ["ResNet"]
|
25
|
-
|
26
|
-
|
27
|
-
class ConvBNLayer(nn.Layer):
|
28
|
-
def __init__(self,
|
29
|
-
in_channels,
|
30
|
-
out_channels,
|
31
|
-
kernel_size,
|
32
|
-
stride=1,
|
33
|
-
groups=1,
|
34
|
-
is_vd_mode=False,
|
35
|
-
act=None):
|
36
|
-
super(ConvBNLayer, self).__init__()
|
37
|
-
|
38
|
-
self.is_vd_mode = is_vd_mode
|
39
|
-
self._pool2d_avg = nn.AvgPool2D(
|
40
|
-
kernel_size=2, stride=2, padding=0, ceil_mode=True)
|
41
|
-
self._conv = nn.Conv2D(
|
42
|
-
in_channels=in_channels,
|
43
|
-
out_channels=out_channels,
|
44
|
-
kernel_size=kernel_size,
|
45
|
-
stride=stride,
|
46
|
-
padding=(kernel_size - 1) // 2,
|
47
|
-
groups=groups,
|
48
|
-
bias_attr=False)
|
49
|
-
self._batch_norm = nn.BatchNorm(out_channels, act=act)
|
50
|
-
|
51
|
-
def forward(self, inputs):
|
52
|
-
if self.is_vd_mode:
|
53
|
-
inputs = self._pool2d_avg(inputs)
|
54
|
-
y = self._conv(inputs)
|
55
|
-
y = self._batch_norm(y)
|
56
|
-
return y
|
57
|
-
|
58
|
-
|
59
|
-
class BottleneckBlock(nn.Layer):
|
60
|
-
def __init__(self,
|
61
|
-
in_channels,
|
62
|
-
out_channels,
|
63
|
-
stride,
|
64
|
-
shortcut=True,
|
65
|
-
if_first=False):
|
66
|
-
super(BottleneckBlock, self).__init__()
|
67
|
-
|
68
|
-
self.conv0 = ConvBNLayer(
|
69
|
-
in_channels=in_channels,
|
70
|
-
out_channels=out_channels,
|
71
|
-
kernel_size=1,
|
72
|
-
act='relu')
|
73
|
-
self.conv1 = ConvBNLayer(
|
74
|
-
in_channels=out_channels,
|
75
|
-
out_channels=out_channels,
|
76
|
-
kernel_size=3,
|
77
|
-
stride=stride,
|
78
|
-
act='relu')
|
79
|
-
self.conv2 = ConvBNLayer(
|
80
|
-
in_channels=out_channels,
|
81
|
-
out_channels=out_channels * 4,
|
82
|
-
kernel_size=1,
|
83
|
-
act=None)
|
84
|
-
|
85
|
-
if not shortcut:
|
86
|
-
self.short = ConvBNLayer(
|
87
|
-
in_channels=in_channels,
|
88
|
-
out_channels=out_channels * 4,
|
89
|
-
kernel_size=1,
|
90
|
-
stride=1,
|
91
|
-
is_vd_mode=False if if_first else True)
|
92
|
-
|
93
|
-
self.shortcut = shortcut
|
94
|
-
|
95
|
-
def forward(self, inputs):
|
96
|
-
y = self.conv0(inputs)
|
97
|
-
conv1 = self.conv1(y)
|
98
|
-
conv2 = self.conv2(conv1)
|
99
|
-
|
100
|
-
if self.shortcut:
|
101
|
-
short = inputs
|
102
|
-
else:
|
103
|
-
short = self.short(inputs)
|
104
|
-
y = paddle.add(x=short, y=conv2)
|
105
|
-
y = F.relu(y)
|
106
|
-
return y
|
107
|
-
|
108
|
-
|
109
|
-
class BasicBlock(nn.Layer):
|
110
|
-
def __init__(
|
111
|
-
self,
|
112
|
-
in_channels,
|
113
|
-
out_channels,
|
114
|
-
stride,
|
115
|
-
shortcut=True,
|
116
|
-
if_first=False, ):
|
117
|
-
super(BasicBlock, self).__init__()
|
118
|
-
self.stride = stride
|
119
|
-
self.conv0 = ConvBNLayer(
|
120
|
-
in_channels=in_channels,
|
121
|
-
out_channels=out_channels,
|
122
|
-
kernel_size=3,
|
123
|
-
stride=stride,
|
124
|
-
act='relu')
|
125
|
-
self.conv1 = ConvBNLayer(
|
126
|
-
in_channels=out_channels,
|
127
|
-
out_channels=out_channels,
|
128
|
-
kernel_size=3,
|
129
|
-
act=None)
|
130
|
-
|
131
|
-
if not shortcut:
|
132
|
-
self.short = ConvBNLayer(
|
133
|
-
in_channels=in_channels,
|
134
|
-
out_channels=out_channels,
|
135
|
-
kernel_size=1,
|
136
|
-
stride=1,
|
137
|
-
is_vd_mode=False if if_first else True)
|
138
|
-
|
139
|
-
self.shortcut = shortcut
|
140
|
-
|
141
|
-
def forward(self, inputs):
|
142
|
-
y = self.conv0(inputs)
|
143
|
-
conv1 = self.conv1(y)
|
144
|
-
|
145
|
-
if self.shortcut:
|
146
|
-
short = inputs
|
147
|
-
else:
|
148
|
-
short = self.short(inputs)
|
149
|
-
y = paddle.add(x=short, y=conv1)
|
150
|
-
y = F.relu(y)
|
151
|
-
return y
|
152
|
-
|
153
|
-
|
154
|
-
class ResNet(nn.Layer):
|
155
|
-
def __init__(self, in_channels=3, layers=50, **kwargs):
|
156
|
-
super(ResNet, self).__init__()
|
157
|
-
|
158
|
-
self.layers = layers
|
159
|
-
supported_layers = [18, 34, 50, 101, 152, 200]
|
160
|
-
assert layers in supported_layers, \
|
161
|
-
"supported layers are {} but input layer is {}".format(
|
162
|
-
supported_layers, layers)
|
163
|
-
|
164
|
-
if layers == 18:
|
165
|
-
depth = [2, 2, 2, 2]
|
166
|
-
elif layers == 34 or layers == 50:
|
167
|
-
depth = [3, 4, 6, 3]
|
168
|
-
elif layers == 101:
|
169
|
-
depth = [3, 4, 23, 3]
|
170
|
-
elif layers == 152:
|
171
|
-
depth = [3, 8, 36, 3]
|
172
|
-
elif layers == 200:
|
173
|
-
depth = [3, 12, 48, 3]
|
174
|
-
num_channels = [64, 256, 512,
|
175
|
-
1024] if layers >= 50 else [64, 64, 128, 256]
|
176
|
-
num_filters = [64, 128, 256, 512]
|
177
|
-
|
178
|
-
self.conv1_1 = ConvBNLayer(
|
179
|
-
in_channels=in_channels,
|
180
|
-
out_channels=32,
|
181
|
-
kernel_size=3,
|
182
|
-
stride=2,
|
183
|
-
act='relu')
|
184
|
-
self.conv1_2 = ConvBNLayer(
|
185
|
-
in_channels=32,
|
186
|
-
out_channels=32,
|
187
|
-
kernel_size=3,
|
188
|
-
stride=1,
|
189
|
-
act='relu')
|
190
|
-
self.conv1_3 = ConvBNLayer(
|
191
|
-
in_channels=32,
|
192
|
-
out_channels=64,
|
193
|
-
kernel_size=3,
|
194
|
-
stride=1,
|
195
|
-
act='relu')
|
196
|
-
self.pool2d_max = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
|
197
|
-
|
198
|
-
self.stages = []
|
199
|
-
self.out_channels = []
|
200
|
-
if layers >= 50:
|
201
|
-
for block in range(len(depth)):
|
202
|
-
block_list = []
|
203
|
-
shortcut = False
|
204
|
-
for i in range(depth[block]):
|
205
|
-
bottleneck_block = self.add_sublayer(
|
206
|
-
'bb_%d_%d' % (block, i),
|
207
|
-
BottleneckBlock(
|
208
|
-
in_channels=num_channels[block]
|
209
|
-
if i == 0 else num_filters[block] * 4,
|
210
|
-
out_channels=num_filters[block],
|
211
|
-
stride=2 if i == 0 and block != 0 else 1,
|
212
|
-
shortcut=shortcut,
|
213
|
-
if_first=block == i == 0))
|
214
|
-
shortcut = True
|
215
|
-
block_list.append(bottleneck_block)
|
216
|
-
self.out_channels.append(num_filters[block] * 4)
|
217
|
-
self.stages.append(nn.Sequential(*block_list))
|
218
|
-
else:
|
219
|
-
for block in range(len(depth)):
|
220
|
-
block_list = []
|
221
|
-
shortcut = False
|
222
|
-
for i in range(depth[block]):
|
223
|
-
basic_block = self.add_sublayer(
|
224
|
-
'bb_%d_%d' % (block, i),
|
225
|
-
BasicBlock(
|
226
|
-
in_channels=num_channels[block]
|
227
|
-
if i == 0 else num_filters[block],
|
228
|
-
out_channels=num_filters[block],
|
229
|
-
stride=2 if i == 0 and block != 0 else 1,
|
230
|
-
shortcut=shortcut,
|
231
|
-
if_first=block == i == 0))
|
232
|
-
shortcut = True
|
233
|
-
block_list.append(basic_block)
|
234
|
-
self.out_channels.append(num_filters[block])
|
235
|
-
self.stages.append(nn.Sequential(*block_list))
|
236
|
-
|
237
|
-
def forward(self, inputs):
|
238
|
-
y = self.conv1_1(inputs)
|
239
|
-
y = self.conv1_2(y)
|
240
|
-
y = self.conv1_3(y)
|
241
|
-
y = self.pool2d_max(y)
|
242
|
-
out = []
|
243
|
-
for block in self.stages:
|
244
|
-
y = block(y)
|
245
|
-
out.append(y)
|
246
|
-
return out
|
@@ -1,285 +0,0 @@
|
|
1
|
-
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
|
15
|
-
from __future__ import absolute_import
|
16
|
-
from __future__ import division
|
17
|
-
from __future__ import print_function
|
18
|
-
|
19
|
-
import paddle
|
20
|
-
from paddle import ParamAttr
|
21
|
-
import paddle.nn as nn
|
22
|
-
import paddle.nn.functional as F
|
23
|
-
|
24
|
-
__all__ = ["ResNet_SAST"]
|
25
|
-
|
26
|
-
|
27
|
-
class ConvBNLayer(nn.Layer):
|
28
|
-
def __init__(
|
29
|
-
self,
|
30
|
-
in_channels,
|
31
|
-
out_channels,
|
32
|
-
kernel_size,
|
33
|
-
stride=1,
|
34
|
-
groups=1,
|
35
|
-
is_vd_mode=False,
|
36
|
-
act=None,
|
37
|
-
name=None, ):
|
38
|
-
super(ConvBNLayer, self).__init__()
|
39
|
-
|
40
|
-
self.is_vd_mode = is_vd_mode
|
41
|
-
self._pool2d_avg = nn.AvgPool2D(
|
42
|
-
kernel_size=2, stride=2, padding=0, ceil_mode=True)
|
43
|
-
self._conv = nn.Conv2D(
|
44
|
-
in_channels=in_channels,
|
45
|
-
out_channels=out_channels,
|
46
|
-
kernel_size=kernel_size,
|
47
|
-
stride=stride,
|
48
|
-
padding=(kernel_size - 1) // 2,
|
49
|
-
groups=groups,
|
50
|
-
weight_attr=ParamAttr(name=name + "_weights"),
|
51
|
-
bias_attr=False)
|
52
|
-
if name == "conv1":
|
53
|
-
bn_name = "bn_" + name
|
54
|
-
else:
|
55
|
-
bn_name = "bn" + name[3:]
|
56
|
-
self._batch_norm = nn.BatchNorm(
|
57
|
-
out_channels,
|
58
|
-
act=act,
|
59
|
-
param_attr=ParamAttr(name=bn_name + '_scale'),
|
60
|
-
bias_attr=ParamAttr(bn_name + '_offset'),
|
61
|
-
moving_mean_name=bn_name + '_mean',
|
62
|
-
moving_variance_name=bn_name + '_variance')
|
63
|
-
|
64
|
-
def forward(self, inputs):
|
65
|
-
if self.is_vd_mode:
|
66
|
-
inputs = self._pool2d_avg(inputs)
|
67
|
-
y = self._conv(inputs)
|
68
|
-
y = self._batch_norm(y)
|
69
|
-
return y
|
70
|
-
|
71
|
-
|
72
|
-
class BottleneckBlock(nn.Layer):
|
73
|
-
def __init__(self,
|
74
|
-
in_channels,
|
75
|
-
out_channels,
|
76
|
-
stride,
|
77
|
-
shortcut=True,
|
78
|
-
if_first=False,
|
79
|
-
name=None):
|
80
|
-
super(BottleneckBlock, self).__init__()
|
81
|
-
|
82
|
-
self.conv0 = ConvBNLayer(
|
83
|
-
in_channels=in_channels,
|
84
|
-
out_channels=out_channels,
|
85
|
-
kernel_size=1,
|
86
|
-
act='relu',
|
87
|
-
name=name + "_branch2a")
|
88
|
-
self.conv1 = ConvBNLayer(
|
89
|
-
in_channels=out_channels,
|
90
|
-
out_channels=out_channels,
|
91
|
-
kernel_size=3,
|
92
|
-
stride=stride,
|
93
|
-
act='relu',
|
94
|
-
name=name + "_branch2b")
|
95
|
-
self.conv2 = ConvBNLayer(
|
96
|
-
in_channels=out_channels,
|
97
|
-
out_channels=out_channels * 4,
|
98
|
-
kernel_size=1,
|
99
|
-
act=None,
|
100
|
-
name=name + "_branch2c")
|
101
|
-
|
102
|
-
if not shortcut:
|
103
|
-
self.short = ConvBNLayer(
|
104
|
-
in_channels=in_channels,
|
105
|
-
out_channels=out_channels * 4,
|
106
|
-
kernel_size=1,
|
107
|
-
stride=1,
|
108
|
-
is_vd_mode=False if if_first else True,
|
109
|
-
name=name + "_branch1")
|
110
|
-
|
111
|
-
self.shortcut = shortcut
|
112
|
-
|
113
|
-
def forward(self, inputs):
|
114
|
-
y = self.conv0(inputs)
|
115
|
-
conv1 = self.conv1(y)
|
116
|
-
conv2 = self.conv2(conv1)
|
117
|
-
|
118
|
-
if self.shortcut:
|
119
|
-
short = inputs
|
120
|
-
else:
|
121
|
-
short = self.short(inputs)
|
122
|
-
y = paddle.add(x=short, y=conv2)
|
123
|
-
y = F.relu(y)
|
124
|
-
return y
|
125
|
-
|
126
|
-
|
127
|
-
class BasicBlock(nn.Layer):
|
128
|
-
def __init__(self,
|
129
|
-
in_channels,
|
130
|
-
out_channels,
|
131
|
-
stride,
|
132
|
-
shortcut=True,
|
133
|
-
if_first=False,
|
134
|
-
name=None):
|
135
|
-
super(BasicBlock, self).__init__()
|
136
|
-
self.stride = stride
|
137
|
-
self.conv0 = ConvBNLayer(
|
138
|
-
in_channels=in_channels,
|
139
|
-
out_channels=out_channels,
|
140
|
-
kernel_size=3,
|
141
|
-
stride=stride,
|
142
|
-
act='relu',
|
143
|
-
name=name + "_branch2a")
|
144
|
-
self.conv1 = ConvBNLayer(
|
145
|
-
in_channels=out_channels,
|
146
|
-
out_channels=out_channels,
|
147
|
-
kernel_size=3,
|
148
|
-
act=None,
|
149
|
-
name=name + "_branch2b")
|
150
|
-
|
151
|
-
if not shortcut:
|
152
|
-
self.short = ConvBNLayer(
|
153
|
-
in_channels=in_channels,
|
154
|
-
out_channels=out_channels,
|
155
|
-
kernel_size=1,
|
156
|
-
stride=1,
|
157
|
-
is_vd_mode=False if if_first else True,
|
158
|
-
name=name + "_branch1")
|
159
|
-
|
160
|
-
self.shortcut = shortcut
|
161
|
-
|
162
|
-
def forward(self, inputs):
|
163
|
-
y = self.conv0(inputs)
|
164
|
-
conv1 = self.conv1(y)
|
165
|
-
|
166
|
-
if self.shortcut:
|
167
|
-
short = inputs
|
168
|
-
else:
|
169
|
-
short = self.short(inputs)
|
170
|
-
y = paddle.add(x=short, y=conv1)
|
171
|
-
y = F.relu(y)
|
172
|
-
return y
|
173
|
-
|
174
|
-
|
175
|
-
class ResNet_SAST(nn.Layer):
|
176
|
-
def __init__(self, in_channels=3, layers=50, **kwargs):
|
177
|
-
super(ResNet_SAST, self).__init__()
|
178
|
-
|
179
|
-
self.layers = layers
|
180
|
-
supported_layers = [18, 34, 50, 101, 152, 200]
|
181
|
-
assert layers in supported_layers, \
|
182
|
-
"supported layers are {} but input layer is {}".format(
|
183
|
-
supported_layers, layers)
|
184
|
-
|
185
|
-
if layers == 18:
|
186
|
-
depth = [2, 2, 2, 2]
|
187
|
-
elif layers == 34 or layers == 50:
|
188
|
-
# depth = [3, 4, 6, 3]
|
189
|
-
depth = [3, 4, 6, 3, 3]
|
190
|
-
elif layers == 101:
|
191
|
-
depth = [3, 4, 23, 3]
|
192
|
-
elif layers == 152:
|
193
|
-
depth = [3, 8, 36, 3]
|
194
|
-
elif layers == 200:
|
195
|
-
depth = [3, 12, 48, 3]
|
196
|
-
# num_channels = [64, 256, 512,
|
197
|
-
# 1024] if layers >= 50 else [64, 64, 128, 256]
|
198
|
-
# num_filters = [64, 128, 256, 512]
|
199
|
-
num_channels = [64, 256, 512,
|
200
|
-
1024, 2048] if layers >= 50 else [64, 64, 128, 256]
|
201
|
-
num_filters = [64, 128, 256, 512, 512]
|
202
|
-
|
203
|
-
self.conv1_1 = ConvBNLayer(
|
204
|
-
in_channels=in_channels,
|
205
|
-
out_channels=32,
|
206
|
-
kernel_size=3,
|
207
|
-
stride=2,
|
208
|
-
act='relu',
|
209
|
-
name="conv1_1")
|
210
|
-
self.conv1_2 = ConvBNLayer(
|
211
|
-
in_channels=32,
|
212
|
-
out_channels=32,
|
213
|
-
kernel_size=3,
|
214
|
-
stride=1,
|
215
|
-
act='relu',
|
216
|
-
name="conv1_2")
|
217
|
-
self.conv1_3 = ConvBNLayer(
|
218
|
-
in_channels=32,
|
219
|
-
out_channels=64,
|
220
|
-
kernel_size=3,
|
221
|
-
stride=1,
|
222
|
-
act='relu',
|
223
|
-
name="conv1_3")
|
224
|
-
self.pool2d_max = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
|
225
|
-
|
226
|
-
self.stages = []
|
227
|
-
self.out_channels = [3, 64]
|
228
|
-
if layers >= 50:
|
229
|
-
for block in range(len(depth)):
|
230
|
-
block_list = []
|
231
|
-
shortcut = False
|
232
|
-
for i in range(depth[block]):
|
233
|
-
if layers in [101, 152] and block == 2:
|
234
|
-
if i == 0:
|
235
|
-
conv_name = "res" + str(block + 2) + "a"
|
236
|
-
else:
|
237
|
-
conv_name = "res" + str(block + 2) + "b" + str(i)
|
238
|
-
else:
|
239
|
-
conv_name = "res" + str(block + 2) + chr(97 + i)
|
240
|
-
bottleneck_block = self.add_sublayer(
|
241
|
-
'bb_%d_%d' % (block, i),
|
242
|
-
BottleneckBlock(
|
243
|
-
in_channels=num_channels[block]
|
244
|
-
if i == 0 else num_filters[block] * 4,
|
245
|
-
out_channels=num_filters[block],
|
246
|
-
stride=2 if i == 0 and block != 0 else 1,
|
247
|
-
shortcut=shortcut,
|
248
|
-
if_first=block == i == 0,
|
249
|
-
name=conv_name))
|
250
|
-
shortcut = True
|
251
|
-
block_list.append(bottleneck_block)
|
252
|
-
self.out_channels.append(num_filters[block] * 4)
|
253
|
-
self.stages.append(nn.Sequential(*block_list))
|
254
|
-
else:
|
255
|
-
for block in range(len(depth)):
|
256
|
-
block_list = []
|
257
|
-
shortcut = False
|
258
|
-
for i in range(depth[block]):
|
259
|
-
conv_name = "res" + str(block + 2) + chr(97 + i)
|
260
|
-
basic_block = self.add_sublayer(
|
261
|
-
'bb_%d_%d' % (block, i),
|
262
|
-
BasicBlock(
|
263
|
-
in_channels=num_channels[block]
|
264
|
-
if i == 0 else num_filters[block],
|
265
|
-
out_channels=num_filters[block],
|
266
|
-
stride=2 if i == 0 and block != 0 else 1,
|
267
|
-
shortcut=shortcut,
|
268
|
-
if_first=block == i == 0,
|
269
|
-
name=conv_name))
|
270
|
-
shortcut = True
|
271
|
-
block_list.append(basic_block)
|
272
|
-
self.out_channels.append(num_filters[block])
|
273
|
-
self.stages.append(nn.Sequential(*block_list))
|
274
|
-
|
275
|
-
def forward(self, inputs):
|
276
|
-
out = [inputs]
|
277
|
-
y = self.conv1_1(inputs)
|
278
|
-
y = self.conv1_2(y)
|
279
|
-
y = self.conv1_3(y)
|
280
|
-
out.append(y)
|
281
|
-
y = self.pool2d_max(y)
|
282
|
-
for block in self.stages:
|
283
|
-
y = block(y)
|
284
|
-
out.append(y)
|
285
|
-
return out
|