pyxllib 0.3.96__py3-none-any.whl → 0.3.197__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (306) hide show
  1. pyxllib/algo/geo.py +12 -0
  2. pyxllib/algo/intervals.py +1 -1
  3. pyxllib/algo/matcher.py +78 -0
  4. pyxllib/algo/pupil.py +187 -19
  5. pyxllib/algo/specialist.py +2 -1
  6. pyxllib/algo/stat.py +38 -2
  7. {pyxlpr → pyxllib/autogui}/__init__.py +1 -1
  8. pyxllib/autogui/activewin.py +246 -0
  9. pyxllib/autogui/all.py +9 -0
  10. pyxllib/{ext/autogui → autogui}/autogui.py +40 -11
  11. pyxllib/autogui/uiautolib.py +362 -0
  12. pyxllib/autogui/wechat.py +827 -0
  13. pyxllib/autogui/wechat_msg.py +421 -0
  14. pyxllib/autogui/wxautolib.py +84 -0
  15. pyxllib/cv/slidercaptcha.py +137 -0
  16. pyxllib/data/echarts.py +123 -12
  17. pyxllib/data/jsonlib.py +89 -0
  18. pyxllib/data/pglib.py +514 -30
  19. pyxllib/data/sqlite.py +231 -4
  20. pyxllib/ext/JLineViewer.py +14 -1
  21. pyxllib/ext/drissionlib.py +277 -0
  22. pyxllib/ext/kq5034lib.py +0 -1594
  23. pyxllib/ext/robustprocfile.py +497 -0
  24. pyxllib/ext/unixlib.py +6 -5
  25. pyxllib/ext/utools.py +108 -95
  26. pyxllib/ext/webhook.py +32 -14
  27. pyxllib/ext/wjxlib.py +88 -0
  28. pyxllib/ext/wpsapi.py +124 -0
  29. pyxllib/ext/xlwork.py +9 -0
  30. pyxllib/ext/yuquelib.py +1003 -71
  31. pyxllib/file/docxlib.py +1 -1
  32. pyxllib/file/libreoffice.py +165 -0
  33. pyxllib/file/movielib.py +9 -0
  34. pyxllib/file/packlib/__init__.py +112 -75
  35. pyxllib/file/pdflib.py +1 -1
  36. pyxllib/file/pupil.py +1 -1
  37. pyxllib/file/specialist/dirlib.py +1 -1
  38. pyxllib/file/specialist/download.py +10 -3
  39. pyxllib/file/specialist/filelib.py +266 -55
  40. pyxllib/file/xlsxlib.py +205 -50
  41. pyxllib/file/xlsyncfile.py +341 -0
  42. pyxllib/prog/cachetools.py +64 -0
  43. pyxllib/prog/filelock.py +42 -0
  44. pyxllib/prog/multiprogs.py +940 -0
  45. pyxllib/prog/newbie.py +9 -2
  46. pyxllib/prog/pupil.py +129 -60
  47. pyxllib/prog/specialist/__init__.py +176 -2
  48. pyxllib/prog/specialist/bc.py +5 -2
  49. pyxllib/prog/specialist/browser.py +11 -2
  50. pyxllib/prog/specialist/datetime.py +68 -0
  51. pyxllib/prog/specialist/tictoc.py +12 -13
  52. pyxllib/prog/specialist/xllog.py +5 -5
  53. pyxllib/prog/xlosenv.py +7 -0
  54. pyxllib/text/airscript.js +744 -0
  55. pyxllib/text/charclasslib.py +17 -5
  56. pyxllib/text/jiebalib.py +6 -3
  57. pyxllib/text/jinjalib.py +32 -0
  58. pyxllib/text/jsa_ai_prompt.md +271 -0
  59. pyxllib/text/jscode.py +159 -4
  60. pyxllib/text/nestenv.py +1 -1
  61. pyxllib/text/newbie.py +12 -0
  62. pyxllib/text/pupil/common.py +26 -0
  63. pyxllib/text/specialist/ptag.py +2 -2
  64. pyxllib/text/templates/echart_base.html +11 -0
  65. pyxllib/text/templates/highlight_code.html +17 -0
  66. pyxllib/text/templates/latex_editor.html +103 -0
  67. pyxllib/text/xmllib.py +76 -14
  68. pyxllib/xl.py +2 -1
  69. pyxllib-0.3.197.dist-info/METADATA +48 -0
  70. pyxllib-0.3.197.dist-info/RECORD +126 -0
  71. {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info}/WHEEL +1 -2
  72. pyxllib/ext/autogui/__init__.py +0 -8
  73. pyxllib-0.3.96.dist-info/METADATA +0 -51
  74. pyxllib-0.3.96.dist-info/RECORD +0 -333
  75. pyxllib-0.3.96.dist-info/top_level.txt +0 -2
  76. pyxlpr/ai/__init__.py +0 -5
  77. pyxlpr/ai/clientlib.py +0 -1281
  78. pyxlpr/ai/specialist.py +0 -286
  79. pyxlpr/ai/torch_app.py +0 -172
  80. pyxlpr/ai/xlpaddle.py +0 -655
  81. pyxlpr/ai/xltorch.py +0 -705
  82. pyxlpr/data/__init__.py +0 -11
  83. pyxlpr/data/coco.py +0 -1325
  84. pyxlpr/data/datacls.py +0 -365
  85. pyxlpr/data/datasets.py +0 -200
  86. pyxlpr/data/gptlib.py +0 -1291
  87. pyxlpr/data/icdar/__init__.py +0 -96
  88. pyxlpr/data/icdar/deteval.py +0 -377
  89. pyxlpr/data/icdar/icdar2013.py +0 -341
  90. pyxlpr/data/icdar/iou.py +0 -340
  91. pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
  92. pyxlpr/data/imtextline.py +0 -473
  93. pyxlpr/data/labelme.py +0 -866
  94. pyxlpr/data/removeline.py +0 -179
  95. pyxlpr/data/specialist.py +0 -57
  96. pyxlpr/eval/__init__.py +0 -85
  97. pyxlpr/paddleocr.py +0 -776
  98. pyxlpr/ppocr/__init__.py +0 -15
  99. pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
  100. pyxlpr/ppocr/data/__init__.py +0 -135
  101. pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
  102. pyxlpr/ppocr/data/imaug/__init__.py +0 -67
  103. pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
  104. pyxlpr/ppocr/data/imaug/east_process.py +0 -437
  105. pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
  106. pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
  107. pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
  108. pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
  109. pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
  110. pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
  111. pyxlpr/ppocr/data/imaug/operators.py +0 -433
  112. pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
  113. pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
  114. pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
  115. pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
  116. pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
  117. pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
  118. pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
  119. pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
  120. pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
  121. pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
  122. pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
  123. pyxlpr/ppocr/data/simple_dataset.py +0 -372
  124. pyxlpr/ppocr/losses/__init__.py +0 -61
  125. pyxlpr/ppocr/losses/ace_loss.py +0 -52
  126. pyxlpr/ppocr/losses/basic_loss.py +0 -135
  127. pyxlpr/ppocr/losses/center_loss.py +0 -88
  128. pyxlpr/ppocr/losses/cls_loss.py +0 -30
  129. pyxlpr/ppocr/losses/combined_loss.py +0 -67
  130. pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
  131. pyxlpr/ppocr/losses/det_db_loss.py +0 -80
  132. pyxlpr/ppocr/losses/det_east_loss.py +0 -63
  133. pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
  134. pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
  135. pyxlpr/ppocr/losses/distillation_loss.py +0 -272
  136. pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
  137. pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
  138. pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
  139. pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
  140. pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
  141. pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
  142. pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
  143. pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
  144. pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
  145. pyxlpr/ppocr/losses/table_att_loss.py +0 -109
  146. pyxlpr/ppocr/metrics/__init__.py +0 -44
  147. pyxlpr/ppocr/metrics/cls_metric.py +0 -45
  148. pyxlpr/ppocr/metrics/det_metric.py +0 -82
  149. pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
  150. pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
  151. pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
  152. pyxlpr/ppocr/metrics/kie_metric.py +0 -70
  153. pyxlpr/ppocr/metrics/rec_metric.py +0 -75
  154. pyxlpr/ppocr/metrics/table_metric.py +0 -50
  155. pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
  156. pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
  157. pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
  158. pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
  159. pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
  160. pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
  161. pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
  162. pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
  163. pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
  164. pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
  165. pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
  166. pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
  167. pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
  168. pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
  169. pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
  170. pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
  171. pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
  172. pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
  173. pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
  174. pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
  175. pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
  176. pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
  177. pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
  178. pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
  179. pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
  180. pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
  181. pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
  182. pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
  183. pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
  184. pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
  185. pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
  186. pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
  187. pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
  188. pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
  189. pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
  190. pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
  191. pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
  192. pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
  193. pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
  194. pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
  195. pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
  196. pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
  197. pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
  198. pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
  199. pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
  200. pyxlpr/ppocr/optimizer/__init__.py +0 -61
  201. pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
  202. pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
  203. pyxlpr/ppocr/optimizer/optimizer.py +0 -160
  204. pyxlpr/ppocr/optimizer/regularizer.py +0 -52
  205. pyxlpr/ppocr/postprocess/__init__.py +0 -55
  206. pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
  207. pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
  208. pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
  209. pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
  210. pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
  211. pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
  212. pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
  213. pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
  214. pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
  215. pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
  216. pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
  217. pyxlpr/ppocr/tools/__init__.py +0 -14
  218. pyxlpr/ppocr/tools/eval.py +0 -83
  219. pyxlpr/ppocr/tools/export_center.py +0 -77
  220. pyxlpr/ppocr/tools/export_model.py +0 -129
  221. pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
  222. pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
  223. pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
  224. pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
  225. pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
  226. pyxlpr/ppocr/tools/infer/utility.py +0 -629
  227. pyxlpr/ppocr/tools/infer_cls.py +0 -83
  228. pyxlpr/ppocr/tools/infer_det.py +0 -134
  229. pyxlpr/ppocr/tools/infer_e2e.py +0 -122
  230. pyxlpr/ppocr/tools/infer_kie.py +0 -153
  231. pyxlpr/ppocr/tools/infer_rec.py +0 -146
  232. pyxlpr/ppocr/tools/infer_table.py +0 -107
  233. pyxlpr/ppocr/tools/program.py +0 -596
  234. pyxlpr/ppocr/tools/test_hubserving.py +0 -117
  235. pyxlpr/ppocr/tools/train.py +0 -163
  236. pyxlpr/ppocr/tools/xlprog.py +0 -748
  237. pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
  238. pyxlpr/ppocr/utils/__init__.py +0 -24
  239. pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
  240. pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
  241. pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
  242. pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
  243. pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
  244. pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
  245. pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
  246. pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
  247. pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
  248. pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
  249. pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
  250. pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
  251. pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
  252. pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
  253. pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
  254. pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
  255. pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
  256. pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
  257. pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
  258. pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
  259. pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
  260. pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
  261. pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
  262. pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
  263. pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
  264. pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
  265. pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
  266. pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
  267. pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
  268. pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
  269. pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
  270. pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
  271. pyxlpr/ppocr/utils/dict90.txt +0 -90
  272. pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
  273. pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
  274. pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
  275. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
  276. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
  277. pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
  278. pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
  279. pyxlpr/ppocr/utils/en_dict.txt +0 -95
  280. pyxlpr/ppocr/utils/gen_label.py +0 -81
  281. pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
  282. pyxlpr/ppocr/utils/iou.py +0 -54
  283. pyxlpr/ppocr/utils/logging.py +0 -69
  284. pyxlpr/ppocr/utils/network.py +0 -84
  285. pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
  286. pyxlpr/ppocr/utils/profiler.py +0 -110
  287. pyxlpr/ppocr/utils/save_load.py +0 -150
  288. pyxlpr/ppocr/utils/stats.py +0 -72
  289. pyxlpr/ppocr/utils/utility.py +0 -80
  290. pyxlpr/ppstructure/__init__.py +0 -13
  291. pyxlpr/ppstructure/predict_system.py +0 -187
  292. pyxlpr/ppstructure/table/__init__.py +0 -13
  293. pyxlpr/ppstructure/table/eval_table.py +0 -72
  294. pyxlpr/ppstructure/table/matcher.py +0 -192
  295. pyxlpr/ppstructure/table/predict_structure.py +0 -136
  296. pyxlpr/ppstructure/table/predict_table.py +0 -221
  297. pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
  298. pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
  299. pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
  300. pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
  301. pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
  302. pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
  303. pyxlpr/ppstructure/utility.py +0 -71
  304. pyxlpr/xlai.py +0 -10
  305. /pyxllib/{ext/autogui → autogui}/virtualkey.py +0 -0
  306. {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info/licenses}/LICENSE +0 -0
@@ -1,88 +0,0 @@
1
- #copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- #Licensed under the Apache License, Version 2.0 (the "License");
4
- #you may not use this file except in compliance with the License.
5
- #You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- #Unless required by applicable law or agreed to in writing, software
10
- #distributed under the License is distributed on an "AS IS" BASIS,
11
- #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- #See the License for the specific language governing permissions and
13
- #limitations under the License.
14
-
15
- # This code is refer from: https://github.com/KaiyangZhou/pytorch-center-loss
16
-
17
- from __future__ import absolute_import
18
- from __future__ import division
19
- from __future__ import print_function
20
- import os
21
- import pickle
22
-
23
- import paddle
24
- import paddle.nn as nn
25
- import paddle.nn.functional as F
26
-
27
-
28
- class CenterLoss(nn.Layer):
29
- """
30
- Reference: Wen et al. A Discriminative Feature Learning Approach for Deep Face Recognition. ECCV 2016.
31
- """
32
-
33
- def __init__(self, num_classes=6625, feat_dim=96, center_file_path=None):
34
- super().__init__()
35
- self.num_classes = num_classes
36
- self.feat_dim = feat_dim
37
- self.centers = paddle.randn(
38
- shape=[self.num_classes, self.feat_dim]).astype("float64")
39
-
40
- if center_file_path is not None:
41
- assert os.path.exists(
42
- center_file_path
43
- ), f"center path({center_file_path}) must exist when it is not None."
44
- with open(center_file_path, 'rb') as f:
45
- char_dict = pickle.load(f)
46
- for key in char_dict.keys():
47
- self.centers[key] = paddle.to_tensor(char_dict[key])
48
-
49
- def __call__(self, predicts, batch):
50
- assert isinstance(predicts, (list, tuple))
51
- features, predicts = predicts
52
-
53
- feats_reshape = paddle.reshape(
54
- features, [-1, features.shape[-1]]).astype("float64")
55
- label = paddle.argmax(predicts, axis=2)
56
- label = paddle.reshape(label, [label.shape[0] * label.shape[1]])
57
-
58
- batch_size = feats_reshape.shape[0]
59
-
60
- #calc l2 distance between feats and centers
61
- square_feat = paddle.sum(paddle.square(feats_reshape),
62
- axis=1,
63
- keepdim=True)
64
- square_feat = paddle.expand(square_feat, [batch_size, self.num_classes])
65
-
66
- square_center = paddle.sum(paddle.square(self.centers),
67
- axis=1,
68
- keepdim=True)
69
- square_center = paddle.expand(
70
- square_center, [self.num_classes, batch_size]).astype("float64")
71
- square_center = paddle.transpose(square_center, [1, 0])
72
-
73
- distmat = paddle.add(square_feat, square_center)
74
- feat_dot_center = paddle.matmul(feats_reshape,
75
- paddle.transpose(self.centers, [1, 0]))
76
- distmat = distmat - 2.0 * feat_dot_center
77
-
78
- #generate the mask
79
- classes = paddle.arange(self.num_classes).astype("int64")
80
- label = paddle.expand(
81
- paddle.unsqueeze(label, 1), (batch_size, self.num_classes))
82
- mask = paddle.equal(
83
- paddle.expand(classes, [batch_size, self.num_classes]),
84
- label).astype("float64")
85
- dist = paddle.multiply(distmat, mask)
86
-
87
- loss = paddle.sum(paddle.clip(dist, min=1e-12, max=1e+12)) / batch_size
88
- return {'loss_center': loss}
@@ -1,30 +0,0 @@
1
- # copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
-
19
- from paddle import nn
20
-
21
-
22
- class ClsLoss(nn.Layer):
23
- def __init__(self, **kwargs):
24
- super(ClsLoss, self).__init__()
25
- self.loss_func = nn.CrossEntropyLoss(reduction='mean')
26
-
27
- def forward(self, predicts, batch):
28
- label = batch[1].astype("int64")
29
- loss = self.loss_func(input=predicts, label=label)
30
- return {'loss': loss}
@@ -1,67 +0,0 @@
1
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- import paddle
16
- import paddle.nn as nn
17
-
18
- from .rec_ctc_loss import CTCLoss
19
- from .center_loss import CenterLoss
20
- from .ace_loss import ACELoss
21
-
22
- from .distillation_loss import DistillationCTCLoss
23
- from .distillation_loss import DistillationDMLLoss
24
- from .distillation_loss import DistillationDistanceLoss, DistillationDBLoss, DistillationDilaDBLoss
25
-
26
-
27
- class CombinedLoss(nn.Layer):
28
- """
29
- CombinedLoss:
30
- a combionation of loss function
31
- """
32
-
33
- def __init__(self, loss_config_list=None):
34
- super().__init__()
35
- self.loss_func = []
36
- self.loss_weight = []
37
- assert isinstance(loss_config_list, list), (
38
- 'operator config should be a list')
39
- for config in loss_config_list:
40
- assert isinstance(config,
41
- dict) and len(config) == 1, "yaml format error"
42
- name = list(config)[0]
43
- param = config[name]
44
- assert "weight" in param, "weight must be in param, but param just contains {}".format(
45
- param.keys())
46
- self.loss_weight.append(param.pop("weight"))
47
- self.loss_func.append(eval(name)(**param))
48
-
49
- def forward(self, input, batch, **kargs):
50
- loss_dict = {}
51
- loss_all = 0.
52
- for idx, loss_func in enumerate(self.loss_func):
53
- loss = loss_func(input, batch, **kargs)
54
- if isinstance(loss, paddle.Tensor):
55
- loss = {"loss_{}_{}".format(str(loss), idx): loss}
56
-
57
- weight = self.loss_weight[idx]
58
-
59
- loss = {key: loss[key] * weight for key in loss}
60
-
61
- if "loss" in loss:
62
- loss_all += loss["loss"]
63
- else:
64
- loss_all += paddle.add_n(list(loss.values()))
65
- loss_dict.update(loss)
66
- loss_dict["loss"] = loss_all
67
- return loss_dict
@@ -1,208 +0,0 @@
1
- # copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- """
15
- This code is refer from:
16
- https://github.com/WenmuZhou/DBNet.pytorch/blob/master/models/losses/basic_loss.py
17
- """
18
- from __future__ import absolute_import
19
- from __future__ import division
20
- from __future__ import print_function
21
-
22
- import numpy as np
23
-
24
- import paddle
25
- from paddle import nn
26
- import paddle.nn.functional as F
27
-
28
-
29
- class BalanceLoss(nn.Layer):
30
- def __init__(self,
31
- balance_loss=True,
32
- main_loss_type='DiceLoss',
33
- negative_ratio=3,
34
- return_origin=False,
35
- eps=1e-6,
36
- **kwargs):
37
- """
38
- The BalanceLoss for Differentiable Binarization text detection
39
- args:
40
- balance_loss (bool): whether balance loss or not, default is True
41
- main_loss_type (str): can only be one of ['CrossEntropy','DiceLoss',
42
- 'Euclidean','BCELoss', 'MaskL1Loss'], default is 'DiceLoss'.
43
- negative_ratio (int|float): float, default is 3.
44
- return_origin (bool): whether return unbalanced loss or not, default is False.
45
- eps (float): default is 1e-6.
46
- """
47
- super(BalanceLoss, self).__init__()
48
- self.balance_loss = balance_loss
49
- self.main_loss_type = main_loss_type
50
- self.negative_ratio = negative_ratio
51
- self.return_origin = return_origin
52
- self.eps = eps
53
-
54
- if self.main_loss_type == "CrossEntropy":
55
- self.loss = nn.CrossEntropyLoss()
56
- elif self.main_loss_type == "Euclidean":
57
- self.loss = nn.MSELoss()
58
- elif self.main_loss_type == "DiceLoss":
59
- self.loss = DiceLoss(self.eps)
60
- elif self.main_loss_type == "BCELoss":
61
- self.loss = BCELoss(reduction='none')
62
- elif self.main_loss_type == "MaskL1Loss":
63
- self.loss = MaskL1Loss(self.eps)
64
- else:
65
- loss_type = [
66
- 'CrossEntropy', 'DiceLoss', 'Euclidean', 'BCELoss', 'MaskL1Loss'
67
- ]
68
- raise Exception(
69
- "main_loss_type in BalanceLoss() can only be one of {}".format(
70
- loss_type))
71
-
72
- def forward(self, pred, gt, mask=None):
73
- """
74
- The BalanceLoss for Differentiable Binarization text detection
75
- args:
76
- pred (variable): predicted feature maps.
77
- gt (variable): ground truth feature maps.
78
- mask (variable): masked maps.
79
- return: (variable) balanced loss
80
- """
81
- # if self.main_loss_type in ['DiceLoss']:
82
- # # For the loss that returns to scalar value, perform ohem on the mask
83
- # mask = ohem_batch(pred, gt, mask, self.negative_ratio)
84
- # loss = self.loss(pred, gt, mask)
85
- # return loss
86
-
87
- positive = gt * mask
88
- negative = (1 - gt) * mask
89
-
90
- positive_count = int(positive.sum())
91
- negative_count = int(
92
- min(negative.sum(), positive_count * self.negative_ratio))
93
- loss = self.loss(pred, gt, mask=mask)
94
-
95
- if not self.balance_loss:
96
- return loss
97
-
98
- positive_loss = positive * loss
99
- negative_loss = negative * loss
100
- negative_loss = paddle.reshape(negative_loss, shape=[-1])
101
- if negative_count > 0:
102
- sort_loss = negative_loss.sort(descending=True)
103
- negative_loss = sort_loss[:negative_count]
104
- # negative_loss, _ = paddle.topk(negative_loss, k=negative_count_int)
105
- balance_loss = (positive_loss.sum() + negative_loss.sum()) / (
106
- positive_count + negative_count + self.eps)
107
- else:
108
- balance_loss = positive_loss.sum() / (positive_count + self.eps)
109
- if self.return_origin:
110
- return balance_loss, loss
111
-
112
- return balance_loss
113
-
114
-
115
- class DiceLoss(nn.Layer):
116
- def __init__(self, eps=1e-6):
117
- super(DiceLoss, self).__init__()
118
- self.eps = eps
119
-
120
- def forward(self, pred, gt, mask, weights=None):
121
- """
122
- DiceLoss function.
123
- """
124
-
125
- assert pred.shape == gt.shape
126
- assert pred.shape == mask.shape
127
- if weights is not None:
128
- assert weights.shape == mask.shape
129
- mask = weights * mask
130
- intersection = paddle.sum(pred * gt * mask)
131
-
132
- union = paddle.sum(pred * mask) + paddle.sum(gt * mask) + self.eps
133
- loss = 1 - 2.0 * intersection / union
134
- assert loss <= 1
135
- return loss
136
-
137
-
138
- class MaskL1Loss(nn.Layer):
139
- def __init__(self, eps=1e-6):
140
- super(MaskL1Loss, self).__init__()
141
- self.eps = eps
142
-
143
- def forward(self, pred, gt, mask):
144
- """
145
- Mask L1 Loss
146
- """
147
- loss = (paddle.abs(pred - gt) * mask).sum() / (mask.sum() + self.eps)
148
- loss = paddle.mean(loss)
149
- return loss
150
-
151
-
152
- class BCELoss(nn.Layer):
153
- def __init__(self, reduction='mean'):
154
- super(BCELoss, self).__init__()
155
- self.reduction = reduction
156
-
157
- def forward(self, input, label, mask=None, weight=None, name=None):
158
- loss = F.binary_cross_entropy(input, label, reduction=self.reduction)
159
- return loss
160
-
161
-
162
- def ohem_single(score, gt_text, training_mask, ohem_ratio):
163
- pos_num = (int)(np.sum(gt_text > 0.5)) - (
164
- int)(np.sum((gt_text > 0.5) & (training_mask <= 0.5)))
165
-
166
- if pos_num == 0:
167
- # selected_mask = gt_text.copy() * 0 # may be not good
168
- selected_mask = training_mask
169
- selected_mask = selected_mask.reshape(
170
- 1, selected_mask.shape[0], selected_mask.shape[1]).astype('float32')
171
- return selected_mask
172
-
173
- neg_num = (int)(np.sum(gt_text <= 0.5))
174
- neg_num = (int)(min(pos_num * ohem_ratio, neg_num))
175
-
176
- if neg_num == 0:
177
- selected_mask = training_mask
178
- selected_mask = selected_mask.reshape(
179
- 1, selected_mask.shape[0], selected_mask.shape[1]).astype('float32')
180
- return selected_mask
181
-
182
- neg_score = score[gt_text <= 0.5]
183
- # 将负样本得分从高到低排序
184
- neg_score_sorted = np.sort(-neg_score)
185
- threshold = -neg_score_sorted[neg_num - 1]
186
- # 选出 得分高的 负样本 和正样本 的 mask
187
- selected_mask = ((score >= threshold) |
188
- (gt_text > 0.5)) & (training_mask > 0.5)
189
- selected_mask = selected_mask.reshape(
190
- 1, selected_mask.shape[0], selected_mask.shape[1]).astype('float32')
191
- return selected_mask
192
-
193
-
194
- def ohem_batch(scores, gt_texts, training_masks, ohem_ratio):
195
- scores = scores.numpy()
196
- gt_texts = gt_texts.numpy()
197
- training_masks = training_masks.numpy()
198
-
199
- selected_masks = []
200
- for i in range(scores.shape[0]):
201
- selected_masks.append(
202
- ohem_single(scores[i, :, :], gt_texts[i, :, :], training_masks[
203
- i, :, :], ohem_ratio))
204
-
205
- selected_masks = np.concatenate(selected_masks, 0)
206
- selected_masks = paddle.to_tensor(selected_masks)
207
-
208
- return selected_masks
@@ -1,80 +0,0 @@
1
- # copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- """
15
- This code is refer from:
16
- https://github.com/WenmuZhou/DBNet.pytorch/blob/master/models/losses/DB_loss.py
17
- """
18
-
19
- from __future__ import absolute_import
20
- from __future__ import division
21
- from __future__ import print_function
22
-
23
- from paddle import nn
24
-
25
- from .det_basic_loss import BalanceLoss, MaskL1Loss, DiceLoss
26
-
27
-
28
- class DBLoss(nn.Layer):
29
- """
30
- Differentiable Binarization (DB) Loss Function
31
- args:
32
- param (dict): the super paramter for DB Loss
33
- """
34
-
35
- def __init__(self,
36
- balance_loss=True,
37
- main_loss_type='DiceLoss',
38
- alpha=5,
39
- beta=10,
40
- ohem_ratio=3,
41
- eps=1e-6,
42
- **kwargs):
43
- super(DBLoss, self).__init__()
44
- self.alpha = alpha
45
- self.beta = beta
46
- # 声明不同的损失函数
47
- self.dice_loss = DiceLoss(eps=eps)
48
- self.l1_loss = MaskL1Loss(eps=eps)
49
- self.bce_loss = BalanceLoss(
50
- balance_loss=balance_loss,
51
- main_loss_type=main_loss_type,
52
- negative_ratio=ohem_ratio)
53
-
54
- def forward(self, predicts, labels):
55
- predict_maps = predicts['maps']
56
- label_threshold_map, label_threshold_mask, label_shrink_map, label_shrink_mask = labels[
57
- 1:]
58
- shrink_maps = predict_maps[:, 0, :, :]
59
- threshold_maps = predict_maps[:, 1, :, :]
60
- binary_maps = predict_maps[:, 2, :, :]
61
- # 1. 针对文本预测概率图,使用二值交叉熵损失函数
62
- loss_shrink_maps = self.bce_loss(shrink_maps, label_shrink_map,
63
- label_shrink_mask)
64
- # 2. 针对文本预测阈值图使用L1距离损失函数
65
- loss_threshold_maps = self.l1_loss(threshold_maps, label_threshold_map,
66
- label_threshold_mask)
67
- # 3. 针对文本预测二值图,使用dice loss损失函数
68
- loss_binary_maps = self.dice_loss(binary_maps, label_shrink_map,
69
- label_shrink_mask)
70
- # 4. 不同的损失函数乘上不同的权重
71
- loss_shrink_maps = self.alpha * loss_shrink_maps
72
- loss_threshold_maps = self.beta * loss_threshold_maps
73
-
74
- loss_all = loss_shrink_maps + loss_threshold_maps \
75
- + loss_binary_maps
76
- losses = {'loss': loss_all, \
77
- "loss_shrink_maps": loss_shrink_maps, \
78
- "loss_threshold_maps": loss_threshold_maps, \
79
- "loss_binary_maps": loss_binary_maps}
80
- return losses
@@ -1,63 +0,0 @@
1
- # copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
-
19
- import paddle
20
- from paddle import nn
21
- from .det_basic_loss import DiceLoss
22
-
23
-
24
- class EASTLoss(nn.Layer):
25
- """
26
- """
27
-
28
- def __init__(self,
29
- eps=1e-6,
30
- **kwargs):
31
- super(EASTLoss, self).__init__()
32
- self.dice_loss = DiceLoss(eps=eps)
33
-
34
- def forward(self, predicts, labels):
35
- l_score, l_geo, l_mask = labels[1:]
36
- f_score = predicts['f_score']
37
- f_geo = predicts['f_geo']
38
-
39
- dice_loss = self.dice_loss(f_score, l_score, l_mask)
40
-
41
- #smoooth_l1_loss
42
- channels = 8
43
- l_geo_split = paddle.split(
44
- l_geo, num_or_sections=channels + 1, axis=1)
45
- f_geo_split = paddle.split(f_geo, num_or_sections=channels, axis=1)
46
- smooth_l1 = 0
47
- for i in range(0, channels):
48
- geo_diff = l_geo_split[i] - f_geo_split[i]
49
- abs_geo_diff = paddle.abs(geo_diff)
50
- smooth_l1_sign = paddle.less_than(abs_geo_diff, l_score)
51
- smooth_l1_sign = paddle.cast(smooth_l1_sign, dtype='float32')
52
- in_loss = abs_geo_diff * abs_geo_diff * smooth_l1_sign + \
53
- (abs_geo_diff - 0.5) * (1.0 - smooth_l1_sign)
54
- out_loss = l_geo_split[-1] / channels * in_loss * l_score
55
- smooth_l1 += out_loss
56
- smooth_l1_loss = paddle.mean(smooth_l1 * l_score)
57
-
58
- dice_loss = dice_loss * 0.01
59
- total_loss = dice_loss + smooth_l1_loss
60
- losses = {"loss":total_loss, \
61
- "dice_loss":dice_loss,\
62
- "smooth_l1_loss":smooth_l1_loss}
63
- return losses
@@ -1,149 +0,0 @@
1
- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- """
15
- This code is refer from:
16
- https://github.com/whai362/PSENet/blob/python3/models/head/psenet_head.py
17
- """
18
-
19
- import paddle
20
- from paddle import nn
21
- from paddle.nn import functional as F
22
- import numpy as np
23
- from pyxlpr.ppocr.utils.iou import iou
24
-
25
-
26
- class PSELoss(nn.Layer):
27
- def __init__(self,
28
- alpha,
29
- ohem_ratio=3,
30
- kernel_sample_mask='pred',
31
- reduction='sum',
32
- eps=1e-6,
33
- **kwargs):
34
- """Implement PSE Loss.
35
- """
36
- super(PSELoss, self).__init__()
37
- assert reduction in ['sum', 'mean', 'none']
38
- self.alpha = alpha
39
- self.ohem_ratio = ohem_ratio
40
- self.kernel_sample_mask = kernel_sample_mask
41
- self.reduction = reduction
42
- self.eps = eps
43
-
44
- def forward(self, outputs, labels):
45
- predicts = outputs['maps']
46
- predicts = F.interpolate(predicts, scale_factor=4)
47
-
48
- texts = predicts[:, 0, :, :]
49
- kernels = predicts[:, 1:, :, :]
50
- gt_texts, gt_kernels, training_masks = labels[1:]
51
-
52
- # text loss
53
- selected_masks = self.ohem_batch(texts, gt_texts, training_masks)
54
-
55
- loss_text = self.dice_loss(texts, gt_texts, selected_masks)
56
- iou_text = iou((texts > 0).astype('int64'),
57
- gt_texts,
58
- training_masks,
59
- reduce=False)
60
- losses = dict(loss_text=loss_text, iou_text=iou_text)
61
-
62
- # kernel loss
63
- loss_kernels = []
64
- if self.kernel_sample_mask == 'gt':
65
- selected_masks = gt_texts * training_masks
66
- elif self.kernel_sample_mask == 'pred':
67
- selected_masks = (
68
- F.sigmoid(texts) > 0.5).astype('float32') * training_masks
69
-
70
- for i in range(kernels.shape[1]):
71
- kernel_i = kernels[:, i, :, :]
72
- gt_kernel_i = gt_kernels[:, i, :, :]
73
- loss_kernel_i = self.dice_loss(kernel_i, gt_kernel_i,
74
- selected_masks)
75
- loss_kernels.append(loss_kernel_i)
76
- loss_kernels = paddle.mean(paddle.stack(loss_kernels, axis=1), axis=1)
77
- iou_kernel = iou((kernels[:, -1, :, :] > 0).astype('int64'),
78
- gt_kernels[:, -1, :, :],
79
- training_masks * gt_texts,
80
- reduce=False)
81
- losses.update(dict(loss_kernels=loss_kernels, iou_kernel=iou_kernel))
82
- loss = self.alpha * loss_text + (1 - self.alpha) * loss_kernels
83
- losses['loss'] = loss
84
- if self.reduction == 'sum':
85
- losses = {x: paddle.sum(v) for x, v in losses.items()}
86
- elif self.reduction == 'mean':
87
- losses = {x: paddle.mean(v) for x, v in losses.items()}
88
- return losses
89
-
90
- def dice_loss(self, input, target, mask):
91
- input = F.sigmoid(input)
92
-
93
- input = input.reshape([input.shape[0], -1])
94
- target = target.reshape([target.shape[0], -1])
95
- mask = mask.reshape([mask.shape[0], -1])
96
-
97
- input = input * mask
98
- target = target * mask
99
-
100
- a = paddle.sum(input * target, 1)
101
- b = paddle.sum(input * input, 1) + self.eps
102
- c = paddle.sum(target * target, 1) + self.eps
103
- d = (2 * a) / (b + c)
104
- return 1 - d
105
-
106
- def ohem_single(self, score, gt_text, training_mask, ohem_ratio=3):
107
- pos_num = int(paddle.sum((gt_text > 0.5).astype('float32'))) - int(
108
- paddle.sum(
109
- paddle.logical_and((gt_text > 0.5), (training_mask <= 0.5))
110
- .astype('float32')))
111
-
112
- if pos_num == 0:
113
- selected_mask = training_mask
114
- selected_mask = selected_mask.reshape(
115
- [1, selected_mask.shape[0], selected_mask.shape[1]]).astype(
116
- 'float32')
117
- return selected_mask
118
-
119
- neg_num = int(paddle.sum((gt_text <= 0.5).astype('float32')))
120
- neg_num = int(min(pos_num * ohem_ratio, neg_num))
121
-
122
- if neg_num == 0:
123
- selected_mask = training_mask
124
- selected_mask = selected_mask.view(
125
- 1, selected_mask.shape[0],
126
- selected_mask.shape[1]).astype('float32')
127
- return selected_mask
128
-
129
- neg_score = paddle.masked_select(score, gt_text <= 0.5)
130
- neg_score_sorted = paddle.sort(-neg_score)
131
- threshold = -neg_score_sorted[neg_num - 1]
132
-
133
- selected_mask = paddle.logical_and(
134
- paddle.logical_or((score >= threshold), (gt_text > 0.5)),
135
- (training_mask > 0.5))
136
- selected_mask = selected_mask.reshape(
137
- [1, selected_mask.shape[0], selected_mask.shape[1]]).astype(
138
- 'float32')
139
- return selected_mask
140
-
141
- def ohem_batch(self, scores, gt_texts, training_masks, ohem_ratio=3):
142
- selected_masks = []
143
- for i in range(scores.shape[0]):
144
- selected_masks.append(
145
- self.ohem_single(scores[i, :, :], gt_texts[i, :, :],
146
- training_masks[i, :, :], ohem_ratio))
147
-
148
- selected_masks = paddle.concat(selected_masks, 0).astype('float32')
149
- return selected_masks