pyxllib 0.3.96__py3-none-any.whl → 0.3.197__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyxllib/algo/geo.py +12 -0
- pyxllib/algo/intervals.py +1 -1
- pyxllib/algo/matcher.py +78 -0
- pyxllib/algo/pupil.py +187 -19
- pyxllib/algo/specialist.py +2 -1
- pyxllib/algo/stat.py +38 -2
- {pyxlpr → pyxllib/autogui}/__init__.py +1 -1
- pyxllib/autogui/activewin.py +246 -0
- pyxllib/autogui/all.py +9 -0
- pyxllib/{ext/autogui → autogui}/autogui.py +40 -11
- pyxllib/autogui/uiautolib.py +362 -0
- pyxllib/autogui/wechat.py +827 -0
- pyxllib/autogui/wechat_msg.py +421 -0
- pyxllib/autogui/wxautolib.py +84 -0
- pyxllib/cv/slidercaptcha.py +137 -0
- pyxllib/data/echarts.py +123 -12
- pyxllib/data/jsonlib.py +89 -0
- pyxllib/data/pglib.py +514 -30
- pyxllib/data/sqlite.py +231 -4
- pyxllib/ext/JLineViewer.py +14 -1
- pyxllib/ext/drissionlib.py +277 -0
- pyxllib/ext/kq5034lib.py +0 -1594
- pyxllib/ext/robustprocfile.py +497 -0
- pyxllib/ext/unixlib.py +6 -5
- pyxllib/ext/utools.py +108 -95
- pyxllib/ext/webhook.py +32 -14
- pyxllib/ext/wjxlib.py +88 -0
- pyxllib/ext/wpsapi.py +124 -0
- pyxllib/ext/xlwork.py +9 -0
- pyxllib/ext/yuquelib.py +1003 -71
- pyxllib/file/docxlib.py +1 -1
- pyxllib/file/libreoffice.py +165 -0
- pyxllib/file/movielib.py +9 -0
- pyxllib/file/packlib/__init__.py +112 -75
- pyxllib/file/pdflib.py +1 -1
- pyxllib/file/pupil.py +1 -1
- pyxllib/file/specialist/dirlib.py +1 -1
- pyxllib/file/specialist/download.py +10 -3
- pyxllib/file/specialist/filelib.py +266 -55
- pyxllib/file/xlsxlib.py +205 -50
- pyxllib/file/xlsyncfile.py +341 -0
- pyxllib/prog/cachetools.py +64 -0
- pyxllib/prog/filelock.py +42 -0
- pyxllib/prog/multiprogs.py +940 -0
- pyxllib/prog/newbie.py +9 -2
- pyxllib/prog/pupil.py +129 -60
- pyxllib/prog/specialist/__init__.py +176 -2
- pyxllib/prog/specialist/bc.py +5 -2
- pyxllib/prog/specialist/browser.py +11 -2
- pyxllib/prog/specialist/datetime.py +68 -0
- pyxllib/prog/specialist/tictoc.py +12 -13
- pyxllib/prog/specialist/xllog.py +5 -5
- pyxllib/prog/xlosenv.py +7 -0
- pyxllib/text/airscript.js +744 -0
- pyxllib/text/charclasslib.py +17 -5
- pyxllib/text/jiebalib.py +6 -3
- pyxllib/text/jinjalib.py +32 -0
- pyxllib/text/jsa_ai_prompt.md +271 -0
- pyxllib/text/jscode.py +159 -4
- pyxllib/text/nestenv.py +1 -1
- pyxllib/text/newbie.py +12 -0
- pyxllib/text/pupil/common.py +26 -0
- pyxllib/text/specialist/ptag.py +2 -2
- pyxllib/text/templates/echart_base.html +11 -0
- pyxllib/text/templates/highlight_code.html +17 -0
- pyxllib/text/templates/latex_editor.html +103 -0
- pyxllib/text/xmllib.py +76 -14
- pyxllib/xl.py +2 -1
- pyxllib-0.3.197.dist-info/METADATA +48 -0
- pyxllib-0.3.197.dist-info/RECORD +126 -0
- {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info}/WHEEL +1 -2
- pyxllib/ext/autogui/__init__.py +0 -8
- pyxllib-0.3.96.dist-info/METADATA +0 -51
- pyxllib-0.3.96.dist-info/RECORD +0 -333
- pyxllib-0.3.96.dist-info/top_level.txt +0 -2
- pyxlpr/ai/__init__.py +0 -5
- pyxlpr/ai/clientlib.py +0 -1281
- pyxlpr/ai/specialist.py +0 -286
- pyxlpr/ai/torch_app.py +0 -172
- pyxlpr/ai/xlpaddle.py +0 -655
- pyxlpr/ai/xltorch.py +0 -705
- pyxlpr/data/__init__.py +0 -11
- pyxlpr/data/coco.py +0 -1325
- pyxlpr/data/datacls.py +0 -365
- pyxlpr/data/datasets.py +0 -200
- pyxlpr/data/gptlib.py +0 -1291
- pyxlpr/data/icdar/__init__.py +0 -96
- pyxlpr/data/icdar/deteval.py +0 -377
- pyxlpr/data/icdar/icdar2013.py +0 -341
- pyxlpr/data/icdar/iou.py +0 -340
- pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
- pyxlpr/data/imtextline.py +0 -473
- pyxlpr/data/labelme.py +0 -866
- pyxlpr/data/removeline.py +0 -179
- pyxlpr/data/specialist.py +0 -57
- pyxlpr/eval/__init__.py +0 -85
- pyxlpr/paddleocr.py +0 -776
- pyxlpr/ppocr/__init__.py +0 -15
- pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
- pyxlpr/ppocr/data/__init__.py +0 -135
- pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
- pyxlpr/ppocr/data/imaug/__init__.py +0 -67
- pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
- pyxlpr/ppocr/data/imaug/east_process.py +0 -437
- pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
- pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
- pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
- pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
- pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
- pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
- pyxlpr/ppocr/data/imaug/operators.py +0 -433
- pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
- pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
- pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
- pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
- pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
- pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
- pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
- pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
- pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
- pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
- pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
- pyxlpr/ppocr/data/simple_dataset.py +0 -372
- pyxlpr/ppocr/losses/__init__.py +0 -61
- pyxlpr/ppocr/losses/ace_loss.py +0 -52
- pyxlpr/ppocr/losses/basic_loss.py +0 -135
- pyxlpr/ppocr/losses/center_loss.py +0 -88
- pyxlpr/ppocr/losses/cls_loss.py +0 -30
- pyxlpr/ppocr/losses/combined_loss.py +0 -67
- pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
- pyxlpr/ppocr/losses/det_db_loss.py +0 -80
- pyxlpr/ppocr/losses/det_east_loss.py +0 -63
- pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
- pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
- pyxlpr/ppocr/losses/distillation_loss.py +0 -272
- pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
- pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
- pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
- pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
- pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
- pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
- pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
- pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
- pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
- pyxlpr/ppocr/losses/table_att_loss.py +0 -109
- pyxlpr/ppocr/metrics/__init__.py +0 -44
- pyxlpr/ppocr/metrics/cls_metric.py +0 -45
- pyxlpr/ppocr/metrics/det_metric.py +0 -82
- pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
- pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
- pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
- pyxlpr/ppocr/metrics/kie_metric.py +0 -70
- pyxlpr/ppocr/metrics/rec_metric.py +0 -75
- pyxlpr/ppocr/metrics/table_metric.py +0 -50
- pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
- pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
- pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
- pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
- pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
- pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
- pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
- pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
- pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
- pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
- pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
- pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
- pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
- pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
- pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
- pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
- pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
- pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
- pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
- pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
- pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
- pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
- pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
- pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
- pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
- pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
- pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
- pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
- pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
- pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
- pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
- pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
- pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
- pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
- pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
- pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
- pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
- pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
- pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
- pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
- pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
- pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
- pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
- pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
- pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
- pyxlpr/ppocr/optimizer/__init__.py +0 -61
- pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
- pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
- pyxlpr/ppocr/optimizer/optimizer.py +0 -160
- pyxlpr/ppocr/optimizer/regularizer.py +0 -52
- pyxlpr/ppocr/postprocess/__init__.py +0 -55
- pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
- pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
- pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
- pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
- pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
- pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
- pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
- pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
- pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
- pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
- pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
- pyxlpr/ppocr/tools/__init__.py +0 -14
- pyxlpr/ppocr/tools/eval.py +0 -83
- pyxlpr/ppocr/tools/export_center.py +0 -77
- pyxlpr/ppocr/tools/export_model.py +0 -129
- pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
- pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
- pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
- pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
- pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
- pyxlpr/ppocr/tools/infer/utility.py +0 -629
- pyxlpr/ppocr/tools/infer_cls.py +0 -83
- pyxlpr/ppocr/tools/infer_det.py +0 -134
- pyxlpr/ppocr/tools/infer_e2e.py +0 -122
- pyxlpr/ppocr/tools/infer_kie.py +0 -153
- pyxlpr/ppocr/tools/infer_rec.py +0 -146
- pyxlpr/ppocr/tools/infer_table.py +0 -107
- pyxlpr/ppocr/tools/program.py +0 -596
- pyxlpr/ppocr/tools/test_hubserving.py +0 -117
- pyxlpr/ppocr/tools/train.py +0 -163
- pyxlpr/ppocr/tools/xlprog.py +0 -748
- pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
- pyxlpr/ppocr/utils/__init__.py +0 -24
- pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
- pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
- pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
- pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
- pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
- pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
- pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
- pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
- pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
- pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
- pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
- pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
- pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
- pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
- pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
- pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
- pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
- pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
- pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
- pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
- pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
- pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
- pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
- pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
- pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
- pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
- pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
- pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
- pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
- pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
- pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
- pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
- pyxlpr/ppocr/utils/dict90.txt +0 -90
- pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
- pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
- pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
- pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
- pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
- pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
- pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
- pyxlpr/ppocr/utils/en_dict.txt +0 -95
- pyxlpr/ppocr/utils/gen_label.py +0 -81
- pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
- pyxlpr/ppocr/utils/iou.py +0 -54
- pyxlpr/ppocr/utils/logging.py +0 -69
- pyxlpr/ppocr/utils/network.py +0 -84
- pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
- pyxlpr/ppocr/utils/profiler.py +0 -110
- pyxlpr/ppocr/utils/save_load.py +0 -150
- pyxlpr/ppocr/utils/stats.py +0 -72
- pyxlpr/ppocr/utils/utility.py +0 -80
- pyxlpr/ppstructure/__init__.py +0 -13
- pyxlpr/ppstructure/predict_system.py +0 -187
- pyxlpr/ppstructure/table/__init__.py +0 -13
- pyxlpr/ppstructure/table/eval_table.py +0 -72
- pyxlpr/ppstructure/table/matcher.py +0 -192
- pyxlpr/ppstructure/table/predict_structure.py +0 -136
- pyxlpr/ppstructure/table/predict_table.py +0 -221
- pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
- pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
- pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
- pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
- pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
- pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
- pyxlpr/ppstructure/utility.py +0 -71
- pyxlpr/xlai.py +0 -10
- /pyxllib/{ext/autogui → autogui}/virtualkey.py +0 -0
- {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info/licenses}/LICENSE +0 -0
@@ -1,574 +0,0 @@
|
|
1
|
-
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
|
15
|
-
import numpy as np
|
16
|
-
import scipy.io as io
|
17
|
-
from pyxlpr.ppocr.utils.e2e_metric.polygon_fast import iod, area_of_intersection, area
|
18
|
-
|
19
|
-
|
20
|
-
def get_socre_A(gt_dir, pred_dict):
|
21
|
-
allInputs = 1
|
22
|
-
|
23
|
-
def input_reading_mod(pred_dict):
|
24
|
-
"""This helper reads input from txt files"""
|
25
|
-
det = []
|
26
|
-
n = len(pred_dict)
|
27
|
-
for i in range(n):
|
28
|
-
points = pred_dict[i]['points']
|
29
|
-
text = pred_dict[i]['texts']
|
30
|
-
point = ",".join(map(str, points.reshape(-1, )))
|
31
|
-
det.append([point, text])
|
32
|
-
return det
|
33
|
-
|
34
|
-
def gt_reading_mod(gt_dict):
|
35
|
-
"""This helper reads groundtruths from mat files"""
|
36
|
-
gt = []
|
37
|
-
n = len(gt_dict)
|
38
|
-
for i in range(n):
|
39
|
-
points = gt_dict[i]['points'].tolist()
|
40
|
-
h = len(points)
|
41
|
-
text = gt_dict[i]['text']
|
42
|
-
xx = [
|
43
|
-
np.array(
|
44
|
-
['x:'], dtype='<U2'), 0, np.array(
|
45
|
-
['y:'], dtype='<U2'), 0, np.array(
|
46
|
-
['#'], dtype='<U1'), np.array(
|
47
|
-
['#'], dtype='<U1')
|
48
|
-
]
|
49
|
-
t_x, t_y = [], []
|
50
|
-
for j in range(h):
|
51
|
-
t_x.append(points[j][0])
|
52
|
-
t_y.append(points[j][1])
|
53
|
-
xx[1] = np.array([t_x], dtype='int16')
|
54
|
-
xx[3] = np.array([t_y], dtype='int16')
|
55
|
-
if text != "":
|
56
|
-
xx[4] = np.array([text], dtype='U{}'.format(len(text)))
|
57
|
-
xx[5] = np.array(['c'], dtype='<U1')
|
58
|
-
gt.append(xx)
|
59
|
-
return gt
|
60
|
-
|
61
|
-
def detection_filtering(detections, groundtruths, threshold=0.5):
|
62
|
-
for gt_id, gt in enumerate(groundtruths):
|
63
|
-
if (gt[5] == '#') and (gt[1].shape[1] > 1):
|
64
|
-
gt_x = list(map(int, np.squeeze(gt[1])))
|
65
|
-
gt_y = list(map(int, np.squeeze(gt[3])))
|
66
|
-
for det_id, detection in enumerate(detections):
|
67
|
-
detection_orig = detection
|
68
|
-
detection = [float(x) for x in detection[0].split(',')]
|
69
|
-
detection = list(map(int, detection))
|
70
|
-
det_x = detection[0::2]
|
71
|
-
det_y = detection[1::2]
|
72
|
-
det_gt_iou = iod(det_x, det_y, gt_x, gt_y)
|
73
|
-
if det_gt_iou > threshold:
|
74
|
-
detections[det_id] = []
|
75
|
-
|
76
|
-
detections[:] = [item for item in detections if item != []]
|
77
|
-
return detections
|
78
|
-
|
79
|
-
def sigma_calculation(det_x, det_y, gt_x, gt_y):
|
80
|
-
"""
|
81
|
-
sigma = inter_area / gt_area
|
82
|
-
"""
|
83
|
-
return np.round((area_of_intersection(det_x, det_y, gt_x, gt_y) /
|
84
|
-
area(gt_x, gt_y)), 2)
|
85
|
-
|
86
|
-
def tau_calculation(det_x, det_y, gt_x, gt_y):
|
87
|
-
if area(det_x, det_y) == 0.0:
|
88
|
-
return 0
|
89
|
-
return np.round((area_of_intersection(det_x, det_y, gt_x, gt_y) /
|
90
|
-
area(det_x, det_y)), 2)
|
91
|
-
|
92
|
-
##############################Initialization###################################
|
93
|
-
# global_sigma = []
|
94
|
-
# global_tau = []
|
95
|
-
# global_pred_str = []
|
96
|
-
# global_gt_str = []
|
97
|
-
###############################################################################
|
98
|
-
|
99
|
-
for input_id in range(allInputs):
|
100
|
-
if (input_id != '.DS_Store') and (input_id != 'Pascal_result.txt') and (
|
101
|
-
input_id != 'Pascal_result_curved.txt') and (input_id != 'Pascal_result_non_curved.txt') and (
|
102
|
-
input_id != 'Deteval_result.txt') and (input_id != 'Deteval_result_curved.txt') \
|
103
|
-
and (input_id != 'Deteval_result_non_curved.txt'):
|
104
|
-
detections = input_reading_mod(pred_dict)
|
105
|
-
groundtruths = gt_reading_mod(gt_dir)
|
106
|
-
detections = detection_filtering(
|
107
|
-
detections,
|
108
|
-
groundtruths) # filters detections overlapping with DC area
|
109
|
-
dc_id = []
|
110
|
-
for i in range(len(groundtruths)):
|
111
|
-
if groundtruths[i][5] == '#':
|
112
|
-
dc_id.append(i)
|
113
|
-
cnt = 0
|
114
|
-
for a in dc_id:
|
115
|
-
num = a - cnt
|
116
|
-
del groundtruths[num]
|
117
|
-
cnt += 1
|
118
|
-
|
119
|
-
local_sigma_table = np.zeros((len(groundtruths), len(detections)))
|
120
|
-
local_tau_table = np.zeros((len(groundtruths), len(detections)))
|
121
|
-
local_pred_str = {}
|
122
|
-
local_gt_str = {}
|
123
|
-
|
124
|
-
for gt_id, gt in enumerate(groundtruths):
|
125
|
-
if len(detections) > 0:
|
126
|
-
for det_id, detection in enumerate(detections):
|
127
|
-
detection_orig = detection
|
128
|
-
detection = [float(x) for x in detection[0].split(',')]
|
129
|
-
detection = list(map(int, detection))
|
130
|
-
pred_seq_str = detection_orig[1].strip()
|
131
|
-
det_x = detection[0::2]
|
132
|
-
det_y = detection[1::2]
|
133
|
-
gt_x = list(map(int, np.squeeze(gt[1])))
|
134
|
-
gt_y = list(map(int, np.squeeze(gt[3])))
|
135
|
-
gt_seq_str = str(gt[4].tolist()[0])
|
136
|
-
|
137
|
-
local_sigma_table[gt_id, det_id] = sigma_calculation(
|
138
|
-
det_x, det_y, gt_x, gt_y)
|
139
|
-
local_tau_table[gt_id, det_id] = tau_calculation(
|
140
|
-
det_x, det_y, gt_x, gt_y)
|
141
|
-
local_pred_str[det_id] = pred_seq_str
|
142
|
-
local_gt_str[gt_id] = gt_seq_str
|
143
|
-
|
144
|
-
global_sigma = local_sigma_table
|
145
|
-
global_tau = local_tau_table
|
146
|
-
global_pred_str = local_pred_str
|
147
|
-
global_gt_str = local_gt_str
|
148
|
-
|
149
|
-
single_data = {}
|
150
|
-
single_data['sigma'] = global_sigma
|
151
|
-
single_data['global_tau'] = global_tau
|
152
|
-
single_data['global_pred_str'] = global_pred_str
|
153
|
-
single_data['global_gt_str'] = global_gt_str
|
154
|
-
return single_data
|
155
|
-
|
156
|
-
|
157
|
-
def get_socre_B(gt_dir, img_id, pred_dict):
|
158
|
-
allInputs = 1
|
159
|
-
|
160
|
-
def input_reading_mod(pred_dict):
|
161
|
-
"""This helper reads input from txt files"""
|
162
|
-
det = []
|
163
|
-
n = len(pred_dict)
|
164
|
-
for i in range(n):
|
165
|
-
points = pred_dict[i]['points']
|
166
|
-
text = pred_dict[i]['texts']
|
167
|
-
point = ",".join(map(str, points.reshape(-1, )))
|
168
|
-
det.append([point, text])
|
169
|
-
return det
|
170
|
-
|
171
|
-
def gt_reading_mod(gt_dir, gt_id):
|
172
|
-
gt = io.loadmat('%s/poly_gt_img%s.mat' % (gt_dir, gt_id))
|
173
|
-
gt = gt['polygt']
|
174
|
-
return gt
|
175
|
-
|
176
|
-
def detection_filtering(detections, groundtruths, threshold=0.5):
|
177
|
-
for gt_id, gt in enumerate(groundtruths):
|
178
|
-
if (gt[5] == '#') and (gt[1].shape[1] > 1):
|
179
|
-
gt_x = list(map(int, np.squeeze(gt[1])))
|
180
|
-
gt_y = list(map(int, np.squeeze(gt[3])))
|
181
|
-
for det_id, detection in enumerate(detections):
|
182
|
-
detection_orig = detection
|
183
|
-
detection = [float(x) for x in detection[0].split(',')]
|
184
|
-
detection = list(map(int, detection))
|
185
|
-
det_x = detection[0::2]
|
186
|
-
det_y = detection[1::2]
|
187
|
-
det_gt_iou = iod(det_x, det_y, gt_x, gt_y)
|
188
|
-
if det_gt_iou > threshold:
|
189
|
-
detections[det_id] = []
|
190
|
-
|
191
|
-
detections[:] = [item for item in detections if item != []]
|
192
|
-
return detections
|
193
|
-
|
194
|
-
def sigma_calculation(det_x, det_y, gt_x, gt_y):
|
195
|
-
"""
|
196
|
-
sigma = inter_area / gt_area
|
197
|
-
"""
|
198
|
-
return np.round((area_of_intersection(det_x, det_y, gt_x, gt_y) /
|
199
|
-
area(gt_x, gt_y)), 2)
|
200
|
-
|
201
|
-
def tau_calculation(det_x, det_y, gt_x, gt_y):
|
202
|
-
if area(det_x, det_y) == 0.0:
|
203
|
-
return 0
|
204
|
-
return np.round((area_of_intersection(det_x, det_y, gt_x, gt_y) /
|
205
|
-
area(det_x, det_y)), 2)
|
206
|
-
|
207
|
-
##############################Initialization###################################
|
208
|
-
# global_sigma = []
|
209
|
-
# global_tau = []
|
210
|
-
# global_pred_str = []
|
211
|
-
# global_gt_str = []
|
212
|
-
###############################################################################
|
213
|
-
|
214
|
-
for input_id in range(allInputs):
|
215
|
-
if (input_id != '.DS_Store') and (input_id != 'Pascal_result.txt') and (
|
216
|
-
input_id != 'Pascal_result_curved.txt') and (input_id != 'Pascal_result_non_curved.txt') and (
|
217
|
-
input_id != 'Deteval_result.txt') and (input_id != 'Deteval_result_curved.txt') \
|
218
|
-
and (input_id != 'Deteval_result_non_curved.txt'):
|
219
|
-
detections = input_reading_mod(pred_dict)
|
220
|
-
groundtruths = gt_reading_mod(gt_dir, img_id).tolist()
|
221
|
-
detections = detection_filtering(
|
222
|
-
detections,
|
223
|
-
groundtruths) # filters detections overlapping with DC area
|
224
|
-
dc_id = []
|
225
|
-
for i in range(len(groundtruths)):
|
226
|
-
if groundtruths[i][5] == '#':
|
227
|
-
dc_id.append(i)
|
228
|
-
cnt = 0
|
229
|
-
for a in dc_id:
|
230
|
-
num = a - cnt
|
231
|
-
del groundtruths[num]
|
232
|
-
cnt += 1
|
233
|
-
|
234
|
-
local_sigma_table = np.zeros((len(groundtruths), len(detections)))
|
235
|
-
local_tau_table = np.zeros((len(groundtruths), len(detections)))
|
236
|
-
local_pred_str = {}
|
237
|
-
local_gt_str = {}
|
238
|
-
|
239
|
-
for gt_id, gt in enumerate(groundtruths):
|
240
|
-
if len(detections) > 0:
|
241
|
-
for det_id, detection in enumerate(detections):
|
242
|
-
detection_orig = detection
|
243
|
-
detection = [float(x) for x in detection[0].split(',')]
|
244
|
-
detection = list(map(int, detection))
|
245
|
-
pred_seq_str = detection_orig[1].strip()
|
246
|
-
det_x = detection[0::2]
|
247
|
-
det_y = detection[1::2]
|
248
|
-
gt_x = list(map(int, np.squeeze(gt[1])))
|
249
|
-
gt_y = list(map(int, np.squeeze(gt[3])))
|
250
|
-
gt_seq_str = str(gt[4].tolist()[0])
|
251
|
-
|
252
|
-
local_sigma_table[gt_id, det_id] = sigma_calculation(
|
253
|
-
det_x, det_y, gt_x, gt_y)
|
254
|
-
local_tau_table[gt_id, det_id] = tau_calculation(
|
255
|
-
det_x, det_y, gt_x, gt_y)
|
256
|
-
local_pred_str[det_id] = pred_seq_str
|
257
|
-
local_gt_str[gt_id] = gt_seq_str
|
258
|
-
|
259
|
-
global_sigma = local_sigma_table
|
260
|
-
global_tau = local_tau_table
|
261
|
-
global_pred_str = local_pred_str
|
262
|
-
global_gt_str = local_gt_str
|
263
|
-
|
264
|
-
single_data = {}
|
265
|
-
single_data['sigma'] = global_sigma
|
266
|
-
single_data['global_tau'] = global_tau
|
267
|
-
single_data['global_pred_str'] = global_pred_str
|
268
|
-
single_data['global_gt_str'] = global_gt_str
|
269
|
-
return single_data
|
270
|
-
|
271
|
-
|
272
|
-
def combine_results(all_data):
|
273
|
-
tr = 0.7
|
274
|
-
tp = 0.6
|
275
|
-
fsc_k = 0.8
|
276
|
-
k = 2
|
277
|
-
global_sigma = []
|
278
|
-
global_tau = []
|
279
|
-
global_pred_str = []
|
280
|
-
global_gt_str = []
|
281
|
-
for data in all_data:
|
282
|
-
global_sigma.append(data['sigma'])
|
283
|
-
global_tau.append(data['global_tau'])
|
284
|
-
global_pred_str.append(data['global_pred_str'])
|
285
|
-
global_gt_str.append(data['global_gt_str'])
|
286
|
-
|
287
|
-
global_accumulative_recall = 0
|
288
|
-
global_accumulative_precision = 0
|
289
|
-
total_num_gt = 0
|
290
|
-
total_num_det = 0
|
291
|
-
hit_str_count = 0
|
292
|
-
hit_count = 0
|
293
|
-
|
294
|
-
def one_to_one(local_sigma_table, local_tau_table,
|
295
|
-
local_accumulative_recall, local_accumulative_precision,
|
296
|
-
global_accumulative_recall, global_accumulative_precision,
|
297
|
-
gt_flag, det_flag, idy):
|
298
|
-
hit_str_num = 0
|
299
|
-
for gt_id in range(num_gt):
|
300
|
-
gt_matching_qualified_sigma_candidates = np.where(
|
301
|
-
local_sigma_table[gt_id, :] > tr)
|
302
|
-
gt_matching_num_qualified_sigma_candidates = gt_matching_qualified_sigma_candidates[
|
303
|
-
0].shape[0]
|
304
|
-
gt_matching_qualified_tau_candidates = np.where(
|
305
|
-
local_tau_table[gt_id, :] > tp)
|
306
|
-
gt_matching_num_qualified_tau_candidates = gt_matching_qualified_tau_candidates[
|
307
|
-
0].shape[0]
|
308
|
-
|
309
|
-
det_matching_qualified_sigma_candidates = np.where(
|
310
|
-
local_sigma_table[:, gt_matching_qualified_sigma_candidates[0]]
|
311
|
-
> tr)
|
312
|
-
det_matching_num_qualified_sigma_candidates = det_matching_qualified_sigma_candidates[
|
313
|
-
0].shape[0]
|
314
|
-
det_matching_qualified_tau_candidates = np.where(
|
315
|
-
local_tau_table[:, gt_matching_qualified_tau_candidates[0]] >
|
316
|
-
tp)
|
317
|
-
det_matching_num_qualified_tau_candidates = det_matching_qualified_tau_candidates[
|
318
|
-
0].shape[0]
|
319
|
-
|
320
|
-
if (gt_matching_num_qualified_sigma_candidates == 1) and (gt_matching_num_qualified_tau_candidates == 1) and \
|
321
|
-
(det_matching_num_qualified_sigma_candidates == 1) and (
|
322
|
-
det_matching_num_qualified_tau_candidates == 1):
|
323
|
-
global_accumulative_recall = global_accumulative_recall + 1.0
|
324
|
-
global_accumulative_precision = global_accumulative_precision + 1.0
|
325
|
-
local_accumulative_recall = local_accumulative_recall + 1.0
|
326
|
-
local_accumulative_precision = local_accumulative_precision + 1.0
|
327
|
-
|
328
|
-
gt_flag[0, gt_id] = 1
|
329
|
-
matched_det_id = np.where(local_sigma_table[gt_id, :] > tr)
|
330
|
-
# recg start
|
331
|
-
gt_str_cur = global_gt_str[idy][gt_id]
|
332
|
-
pred_str_cur = global_pred_str[idy][matched_det_id[0].tolist()[
|
333
|
-
0]]
|
334
|
-
if pred_str_cur == gt_str_cur:
|
335
|
-
hit_str_num += 1
|
336
|
-
else:
|
337
|
-
if pred_str_cur.lower() == gt_str_cur.lower():
|
338
|
-
hit_str_num += 1
|
339
|
-
# recg end
|
340
|
-
det_flag[0, matched_det_id] = 1
|
341
|
-
return local_accumulative_recall, local_accumulative_precision, global_accumulative_recall, global_accumulative_precision, gt_flag, det_flag, hit_str_num
|
342
|
-
|
343
|
-
def one_to_many(local_sigma_table, local_tau_table,
|
344
|
-
local_accumulative_recall, local_accumulative_precision,
|
345
|
-
global_accumulative_recall, global_accumulative_precision,
|
346
|
-
gt_flag, det_flag, idy):
|
347
|
-
hit_str_num = 0
|
348
|
-
for gt_id in range(num_gt):
|
349
|
-
# skip the following if the groundtruth was matched
|
350
|
-
if gt_flag[0, gt_id] > 0:
|
351
|
-
continue
|
352
|
-
|
353
|
-
non_zero_in_sigma = np.where(local_sigma_table[gt_id, :] > 0)
|
354
|
-
num_non_zero_in_sigma = non_zero_in_sigma[0].shape[0]
|
355
|
-
|
356
|
-
if num_non_zero_in_sigma >= k:
|
357
|
-
####search for all detections that overlaps with this groundtruth
|
358
|
-
qualified_tau_candidates = np.where((local_tau_table[
|
359
|
-
gt_id, :] >= tp) & (det_flag[0, :] == 0))
|
360
|
-
num_qualified_tau_candidates = qualified_tau_candidates[
|
361
|
-
0].shape[0]
|
362
|
-
|
363
|
-
if num_qualified_tau_candidates == 1:
|
364
|
-
if ((local_tau_table[gt_id, qualified_tau_candidates] >= tp)
|
365
|
-
and
|
366
|
-
(local_sigma_table[gt_id, qualified_tau_candidates] >=
|
367
|
-
tr)):
|
368
|
-
# became an one-to-one case
|
369
|
-
global_accumulative_recall = global_accumulative_recall + 1.0
|
370
|
-
global_accumulative_precision = global_accumulative_precision + 1.0
|
371
|
-
local_accumulative_recall = local_accumulative_recall + 1.0
|
372
|
-
local_accumulative_precision = local_accumulative_precision + 1.0
|
373
|
-
|
374
|
-
gt_flag[0, gt_id] = 1
|
375
|
-
det_flag[0, qualified_tau_candidates] = 1
|
376
|
-
# recg start
|
377
|
-
gt_str_cur = global_gt_str[idy][gt_id]
|
378
|
-
pred_str_cur = global_pred_str[idy][
|
379
|
-
qualified_tau_candidates[0].tolist()[0]]
|
380
|
-
if pred_str_cur == gt_str_cur:
|
381
|
-
hit_str_num += 1
|
382
|
-
else:
|
383
|
-
if pred_str_cur.lower() == gt_str_cur.lower():
|
384
|
-
hit_str_num += 1
|
385
|
-
# recg end
|
386
|
-
elif (np.sum(local_sigma_table[gt_id, qualified_tau_candidates])
|
387
|
-
>= tr):
|
388
|
-
gt_flag[0, gt_id] = 1
|
389
|
-
det_flag[0, qualified_tau_candidates] = 1
|
390
|
-
# recg start
|
391
|
-
gt_str_cur = global_gt_str[idy][gt_id]
|
392
|
-
pred_str_cur = global_pred_str[idy][
|
393
|
-
qualified_tau_candidates[0].tolist()[0]]
|
394
|
-
if pred_str_cur == gt_str_cur:
|
395
|
-
hit_str_num += 1
|
396
|
-
else:
|
397
|
-
if pred_str_cur.lower() == gt_str_cur.lower():
|
398
|
-
hit_str_num += 1
|
399
|
-
# recg end
|
400
|
-
|
401
|
-
global_accumulative_recall = global_accumulative_recall + fsc_k
|
402
|
-
global_accumulative_precision = global_accumulative_precision + num_qualified_tau_candidates * fsc_k
|
403
|
-
|
404
|
-
local_accumulative_recall = local_accumulative_recall + fsc_k
|
405
|
-
local_accumulative_precision = local_accumulative_precision + num_qualified_tau_candidates * fsc_k
|
406
|
-
|
407
|
-
return local_accumulative_recall, local_accumulative_precision, global_accumulative_recall, global_accumulative_precision, gt_flag, det_flag, hit_str_num
|
408
|
-
|
409
|
-
def many_to_one(local_sigma_table, local_tau_table,
|
410
|
-
local_accumulative_recall, local_accumulative_precision,
|
411
|
-
global_accumulative_recall, global_accumulative_precision,
|
412
|
-
gt_flag, det_flag, idy):
|
413
|
-
hit_str_num = 0
|
414
|
-
for det_id in range(num_det):
|
415
|
-
# skip the following if the detection was matched
|
416
|
-
if det_flag[0, det_id] > 0:
|
417
|
-
continue
|
418
|
-
|
419
|
-
non_zero_in_tau = np.where(local_tau_table[:, det_id] > 0)
|
420
|
-
num_non_zero_in_tau = non_zero_in_tau[0].shape[0]
|
421
|
-
|
422
|
-
if num_non_zero_in_tau >= k:
|
423
|
-
####search for all detections that overlaps with this groundtruth
|
424
|
-
qualified_sigma_candidates = np.where((
|
425
|
-
local_sigma_table[:, det_id] >= tp) & (gt_flag[0, :] == 0))
|
426
|
-
num_qualified_sigma_candidates = qualified_sigma_candidates[
|
427
|
-
0].shape[0]
|
428
|
-
|
429
|
-
if num_qualified_sigma_candidates == 1:
|
430
|
-
if ((local_tau_table[qualified_sigma_candidates, det_id] >=
|
431
|
-
tp) and
|
432
|
-
(local_sigma_table[qualified_sigma_candidates, det_id]
|
433
|
-
>= tr)):
|
434
|
-
# became an one-to-one case
|
435
|
-
global_accumulative_recall = global_accumulative_recall + 1.0
|
436
|
-
global_accumulative_precision = global_accumulative_precision + 1.0
|
437
|
-
local_accumulative_recall = local_accumulative_recall + 1.0
|
438
|
-
local_accumulative_precision = local_accumulative_precision + 1.0
|
439
|
-
|
440
|
-
gt_flag[0, qualified_sigma_candidates] = 1
|
441
|
-
det_flag[0, det_id] = 1
|
442
|
-
# recg start
|
443
|
-
pred_str_cur = global_pred_str[idy][det_id]
|
444
|
-
gt_len = len(qualified_sigma_candidates[0])
|
445
|
-
for idx in range(gt_len):
|
446
|
-
ele_gt_id = qualified_sigma_candidates[0].tolist()[
|
447
|
-
idx]
|
448
|
-
if ele_gt_id not in global_gt_str[idy]:
|
449
|
-
continue
|
450
|
-
gt_str_cur = global_gt_str[idy][ele_gt_id]
|
451
|
-
if pred_str_cur == gt_str_cur:
|
452
|
-
hit_str_num += 1
|
453
|
-
break
|
454
|
-
else:
|
455
|
-
if pred_str_cur.lower() == gt_str_cur.lower():
|
456
|
-
hit_str_num += 1
|
457
|
-
break
|
458
|
-
# recg end
|
459
|
-
elif (np.sum(local_tau_table[qualified_sigma_candidates,
|
460
|
-
det_id]) >= tp):
|
461
|
-
det_flag[0, det_id] = 1
|
462
|
-
gt_flag[0, qualified_sigma_candidates] = 1
|
463
|
-
# recg start
|
464
|
-
pred_str_cur = global_pred_str[idy][det_id]
|
465
|
-
gt_len = len(qualified_sigma_candidates[0])
|
466
|
-
for idx in range(gt_len):
|
467
|
-
ele_gt_id = qualified_sigma_candidates[0].tolist()[idx]
|
468
|
-
if ele_gt_id not in global_gt_str[idy]:
|
469
|
-
continue
|
470
|
-
gt_str_cur = global_gt_str[idy][ele_gt_id]
|
471
|
-
if pred_str_cur == gt_str_cur:
|
472
|
-
hit_str_num += 1
|
473
|
-
break
|
474
|
-
else:
|
475
|
-
if pred_str_cur.lower() == gt_str_cur.lower():
|
476
|
-
hit_str_num += 1
|
477
|
-
break
|
478
|
-
# recg end
|
479
|
-
|
480
|
-
global_accumulative_recall = global_accumulative_recall + num_qualified_sigma_candidates * fsc_k
|
481
|
-
global_accumulative_precision = global_accumulative_precision + fsc_k
|
482
|
-
|
483
|
-
local_accumulative_recall = local_accumulative_recall + num_qualified_sigma_candidates * fsc_k
|
484
|
-
local_accumulative_precision = local_accumulative_precision + fsc_k
|
485
|
-
return local_accumulative_recall, local_accumulative_precision, global_accumulative_recall, global_accumulative_precision, gt_flag, det_flag, hit_str_num
|
486
|
-
|
487
|
-
for idx in range(len(global_sigma)):
|
488
|
-
local_sigma_table = np.array(global_sigma[idx])
|
489
|
-
local_tau_table = global_tau[idx]
|
490
|
-
|
491
|
-
num_gt = local_sigma_table.shape[0]
|
492
|
-
num_det = local_sigma_table.shape[1]
|
493
|
-
|
494
|
-
total_num_gt = total_num_gt + num_gt
|
495
|
-
total_num_det = total_num_det + num_det
|
496
|
-
|
497
|
-
local_accumulative_recall = 0
|
498
|
-
local_accumulative_precision = 0
|
499
|
-
gt_flag = np.zeros((1, num_gt))
|
500
|
-
det_flag = np.zeros((1, num_det))
|
501
|
-
|
502
|
-
#######first check for one-to-one case##########
|
503
|
-
local_accumulative_recall, local_accumulative_precision, global_accumulative_recall, global_accumulative_precision, \
|
504
|
-
gt_flag, det_flag, hit_str_num = one_to_one(local_sigma_table, local_tau_table,
|
505
|
-
local_accumulative_recall, local_accumulative_precision,
|
506
|
-
global_accumulative_recall, global_accumulative_precision,
|
507
|
-
gt_flag, det_flag, idx)
|
508
|
-
|
509
|
-
hit_str_count += hit_str_num
|
510
|
-
#######then check for one-to-many case##########
|
511
|
-
local_accumulative_recall, local_accumulative_precision, global_accumulative_recall, global_accumulative_precision, \
|
512
|
-
gt_flag, det_flag, hit_str_num = one_to_many(local_sigma_table, local_tau_table,
|
513
|
-
local_accumulative_recall, local_accumulative_precision,
|
514
|
-
global_accumulative_recall, global_accumulative_precision,
|
515
|
-
gt_flag, det_flag, idx)
|
516
|
-
hit_str_count += hit_str_num
|
517
|
-
#######then check for many-to-one case##########
|
518
|
-
local_accumulative_recall, local_accumulative_precision, global_accumulative_recall, global_accumulative_precision, \
|
519
|
-
gt_flag, det_flag, hit_str_num = many_to_one(local_sigma_table, local_tau_table,
|
520
|
-
local_accumulative_recall, local_accumulative_precision,
|
521
|
-
global_accumulative_recall, global_accumulative_precision,
|
522
|
-
gt_flag, det_flag, idx)
|
523
|
-
hit_str_count += hit_str_num
|
524
|
-
|
525
|
-
try:
|
526
|
-
recall = global_accumulative_recall / total_num_gt
|
527
|
-
except ZeroDivisionError:
|
528
|
-
recall = 0
|
529
|
-
|
530
|
-
try:
|
531
|
-
precision = global_accumulative_precision / total_num_det
|
532
|
-
except ZeroDivisionError:
|
533
|
-
precision = 0
|
534
|
-
|
535
|
-
try:
|
536
|
-
f_score = 2 * precision * recall / (precision + recall)
|
537
|
-
except ZeroDivisionError:
|
538
|
-
f_score = 0
|
539
|
-
|
540
|
-
try:
|
541
|
-
seqerr = 1 - float(hit_str_count) / global_accumulative_recall
|
542
|
-
except ZeroDivisionError:
|
543
|
-
seqerr = 1
|
544
|
-
|
545
|
-
try:
|
546
|
-
recall_e2e = float(hit_str_count) / total_num_gt
|
547
|
-
except ZeroDivisionError:
|
548
|
-
recall_e2e = 0
|
549
|
-
|
550
|
-
try:
|
551
|
-
precision_e2e = float(hit_str_count) / total_num_det
|
552
|
-
except ZeroDivisionError:
|
553
|
-
precision_e2e = 0
|
554
|
-
|
555
|
-
try:
|
556
|
-
f_score_e2e = 2 * precision_e2e * recall_e2e / (
|
557
|
-
precision_e2e + recall_e2e)
|
558
|
-
except ZeroDivisionError:
|
559
|
-
f_score_e2e = 0
|
560
|
-
|
561
|
-
final = {
|
562
|
-
'total_num_gt': total_num_gt,
|
563
|
-
'total_num_det': total_num_det,
|
564
|
-
'global_accumulative_recall': global_accumulative_recall,
|
565
|
-
'hit_str_count': hit_str_count,
|
566
|
-
'recall': recall,
|
567
|
-
'precision': precision,
|
568
|
-
'f_score': f_score,
|
569
|
-
'seqerr': seqerr,
|
570
|
-
'recall_e2e': recall_e2e,
|
571
|
-
'precision_e2e': precision_e2e,
|
572
|
-
'f_score_e2e': f_score_e2e
|
573
|
-
}
|
574
|
-
return final
|
@@ -1,83 +0,0 @@
|
|
1
|
-
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
import numpy as np
|
15
|
-
from shapely.geometry import Polygon
|
16
|
-
"""
|
17
|
-
:param det_x: [1, N] Xs of detection's vertices
|
18
|
-
:param det_y: [1, N] Ys of detection's vertices
|
19
|
-
:param gt_x: [1, N] Xs of groundtruth's vertices
|
20
|
-
:param gt_y: [1, N] Ys of groundtruth's vertices
|
21
|
-
|
22
|
-
##############
|
23
|
-
All the calculation of 'AREA' in this script is handled by:
|
24
|
-
1) First generating a binary mask with the polygon area filled up with 1's
|
25
|
-
2) Summing up all the 1's
|
26
|
-
"""
|
27
|
-
|
28
|
-
|
29
|
-
def area(x, y):
|
30
|
-
polygon = Polygon(np.stack([x, y], axis=1))
|
31
|
-
return float(polygon.area)
|
32
|
-
|
33
|
-
|
34
|
-
def approx_area_of_intersection(det_x, det_y, gt_x, gt_y):
|
35
|
-
"""
|
36
|
-
This helper determine if both polygons are intersecting with each others with an approximation method.
|
37
|
-
Area of intersection represented by the minimum bounding rectangular [xmin, ymin, xmax, ymax]
|
38
|
-
"""
|
39
|
-
det_ymax = np.max(det_y)
|
40
|
-
det_xmax = np.max(det_x)
|
41
|
-
det_ymin = np.min(det_y)
|
42
|
-
det_xmin = np.min(det_x)
|
43
|
-
|
44
|
-
gt_ymax = np.max(gt_y)
|
45
|
-
gt_xmax = np.max(gt_x)
|
46
|
-
gt_ymin = np.min(gt_y)
|
47
|
-
gt_xmin = np.min(gt_x)
|
48
|
-
|
49
|
-
all_min_ymax = np.minimum(det_ymax, gt_ymax)
|
50
|
-
all_max_ymin = np.maximum(det_ymin, gt_ymin)
|
51
|
-
|
52
|
-
intersect_heights = np.maximum(0.0, (all_min_ymax - all_max_ymin))
|
53
|
-
|
54
|
-
all_min_xmax = np.minimum(det_xmax, gt_xmax)
|
55
|
-
all_max_xmin = np.maximum(det_xmin, gt_xmin)
|
56
|
-
intersect_widths = np.maximum(0.0, (all_min_xmax - all_max_xmin))
|
57
|
-
|
58
|
-
return intersect_heights * intersect_widths
|
59
|
-
|
60
|
-
|
61
|
-
def area_of_intersection(det_x, det_y, gt_x, gt_y):
|
62
|
-
p1 = Polygon(np.stack([det_x, det_y], axis=1)).buffer(0)
|
63
|
-
p2 = Polygon(np.stack([gt_x, gt_y], axis=1)).buffer(0)
|
64
|
-
return float(p1.intersection(p2).area)
|
65
|
-
|
66
|
-
|
67
|
-
def area_of_union(det_x, det_y, gt_x, gt_y):
|
68
|
-
p1 = Polygon(np.stack([det_x, det_y], axis=1)).buffer(0)
|
69
|
-
p2 = Polygon(np.stack([gt_x, gt_y], axis=1)).buffer(0)
|
70
|
-
return float(p1.union(p2).area)
|
71
|
-
|
72
|
-
|
73
|
-
def iou(det_x, det_y, gt_x, gt_y):
|
74
|
-
return area_of_intersection(det_x, det_y, gt_x, gt_y) / (
|
75
|
-
area_of_union(det_x, det_y, gt_x, gt_y) + 1.0)
|
76
|
-
|
77
|
-
|
78
|
-
def iod(det_x, det_y, gt_x, gt_y):
|
79
|
-
"""
|
80
|
-
This helper determine the fraction of intersection area over detection area
|
81
|
-
"""
|
82
|
-
return area_of_intersection(det_x, det_y, gt_x, gt_y) / (
|
83
|
-
area(det_x, det_y) + 1.0)
|