pyxllib 0.3.96__py3-none-any.whl → 0.3.197__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (306) hide show
  1. pyxllib/algo/geo.py +12 -0
  2. pyxllib/algo/intervals.py +1 -1
  3. pyxllib/algo/matcher.py +78 -0
  4. pyxllib/algo/pupil.py +187 -19
  5. pyxllib/algo/specialist.py +2 -1
  6. pyxllib/algo/stat.py +38 -2
  7. {pyxlpr → pyxllib/autogui}/__init__.py +1 -1
  8. pyxllib/autogui/activewin.py +246 -0
  9. pyxllib/autogui/all.py +9 -0
  10. pyxllib/{ext/autogui → autogui}/autogui.py +40 -11
  11. pyxllib/autogui/uiautolib.py +362 -0
  12. pyxllib/autogui/wechat.py +827 -0
  13. pyxllib/autogui/wechat_msg.py +421 -0
  14. pyxllib/autogui/wxautolib.py +84 -0
  15. pyxllib/cv/slidercaptcha.py +137 -0
  16. pyxllib/data/echarts.py +123 -12
  17. pyxllib/data/jsonlib.py +89 -0
  18. pyxllib/data/pglib.py +514 -30
  19. pyxllib/data/sqlite.py +231 -4
  20. pyxllib/ext/JLineViewer.py +14 -1
  21. pyxllib/ext/drissionlib.py +277 -0
  22. pyxllib/ext/kq5034lib.py +0 -1594
  23. pyxllib/ext/robustprocfile.py +497 -0
  24. pyxllib/ext/unixlib.py +6 -5
  25. pyxllib/ext/utools.py +108 -95
  26. pyxllib/ext/webhook.py +32 -14
  27. pyxllib/ext/wjxlib.py +88 -0
  28. pyxllib/ext/wpsapi.py +124 -0
  29. pyxllib/ext/xlwork.py +9 -0
  30. pyxllib/ext/yuquelib.py +1003 -71
  31. pyxllib/file/docxlib.py +1 -1
  32. pyxllib/file/libreoffice.py +165 -0
  33. pyxllib/file/movielib.py +9 -0
  34. pyxllib/file/packlib/__init__.py +112 -75
  35. pyxllib/file/pdflib.py +1 -1
  36. pyxllib/file/pupil.py +1 -1
  37. pyxllib/file/specialist/dirlib.py +1 -1
  38. pyxllib/file/specialist/download.py +10 -3
  39. pyxllib/file/specialist/filelib.py +266 -55
  40. pyxllib/file/xlsxlib.py +205 -50
  41. pyxllib/file/xlsyncfile.py +341 -0
  42. pyxllib/prog/cachetools.py +64 -0
  43. pyxllib/prog/filelock.py +42 -0
  44. pyxllib/prog/multiprogs.py +940 -0
  45. pyxllib/prog/newbie.py +9 -2
  46. pyxllib/prog/pupil.py +129 -60
  47. pyxllib/prog/specialist/__init__.py +176 -2
  48. pyxllib/prog/specialist/bc.py +5 -2
  49. pyxllib/prog/specialist/browser.py +11 -2
  50. pyxllib/prog/specialist/datetime.py +68 -0
  51. pyxllib/prog/specialist/tictoc.py +12 -13
  52. pyxllib/prog/specialist/xllog.py +5 -5
  53. pyxllib/prog/xlosenv.py +7 -0
  54. pyxllib/text/airscript.js +744 -0
  55. pyxllib/text/charclasslib.py +17 -5
  56. pyxllib/text/jiebalib.py +6 -3
  57. pyxllib/text/jinjalib.py +32 -0
  58. pyxllib/text/jsa_ai_prompt.md +271 -0
  59. pyxllib/text/jscode.py +159 -4
  60. pyxllib/text/nestenv.py +1 -1
  61. pyxllib/text/newbie.py +12 -0
  62. pyxllib/text/pupil/common.py +26 -0
  63. pyxllib/text/specialist/ptag.py +2 -2
  64. pyxllib/text/templates/echart_base.html +11 -0
  65. pyxllib/text/templates/highlight_code.html +17 -0
  66. pyxllib/text/templates/latex_editor.html +103 -0
  67. pyxllib/text/xmllib.py +76 -14
  68. pyxllib/xl.py +2 -1
  69. pyxllib-0.3.197.dist-info/METADATA +48 -0
  70. pyxllib-0.3.197.dist-info/RECORD +126 -0
  71. {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info}/WHEEL +1 -2
  72. pyxllib/ext/autogui/__init__.py +0 -8
  73. pyxllib-0.3.96.dist-info/METADATA +0 -51
  74. pyxllib-0.3.96.dist-info/RECORD +0 -333
  75. pyxllib-0.3.96.dist-info/top_level.txt +0 -2
  76. pyxlpr/ai/__init__.py +0 -5
  77. pyxlpr/ai/clientlib.py +0 -1281
  78. pyxlpr/ai/specialist.py +0 -286
  79. pyxlpr/ai/torch_app.py +0 -172
  80. pyxlpr/ai/xlpaddle.py +0 -655
  81. pyxlpr/ai/xltorch.py +0 -705
  82. pyxlpr/data/__init__.py +0 -11
  83. pyxlpr/data/coco.py +0 -1325
  84. pyxlpr/data/datacls.py +0 -365
  85. pyxlpr/data/datasets.py +0 -200
  86. pyxlpr/data/gptlib.py +0 -1291
  87. pyxlpr/data/icdar/__init__.py +0 -96
  88. pyxlpr/data/icdar/deteval.py +0 -377
  89. pyxlpr/data/icdar/icdar2013.py +0 -341
  90. pyxlpr/data/icdar/iou.py +0 -340
  91. pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
  92. pyxlpr/data/imtextline.py +0 -473
  93. pyxlpr/data/labelme.py +0 -866
  94. pyxlpr/data/removeline.py +0 -179
  95. pyxlpr/data/specialist.py +0 -57
  96. pyxlpr/eval/__init__.py +0 -85
  97. pyxlpr/paddleocr.py +0 -776
  98. pyxlpr/ppocr/__init__.py +0 -15
  99. pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
  100. pyxlpr/ppocr/data/__init__.py +0 -135
  101. pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
  102. pyxlpr/ppocr/data/imaug/__init__.py +0 -67
  103. pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
  104. pyxlpr/ppocr/data/imaug/east_process.py +0 -437
  105. pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
  106. pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
  107. pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
  108. pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
  109. pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
  110. pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
  111. pyxlpr/ppocr/data/imaug/operators.py +0 -433
  112. pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
  113. pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
  114. pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
  115. pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
  116. pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
  117. pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
  118. pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
  119. pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
  120. pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
  121. pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
  122. pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
  123. pyxlpr/ppocr/data/simple_dataset.py +0 -372
  124. pyxlpr/ppocr/losses/__init__.py +0 -61
  125. pyxlpr/ppocr/losses/ace_loss.py +0 -52
  126. pyxlpr/ppocr/losses/basic_loss.py +0 -135
  127. pyxlpr/ppocr/losses/center_loss.py +0 -88
  128. pyxlpr/ppocr/losses/cls_loss.py +0 -30
  129. pyxlpr/ppocr/losses/combined_loss.py +0 -67
  130. pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
  131. pyxlpr/ppocr/losses/det_db_loss.py +0 -80
  132. pyxlpr/ppocr/losses/det_east_loss.py +0 -63
  133. pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
  134. pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
  135. pyxlpr/ppocr/losses/distillation_loss.py +0 -272
  136. pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
  137. pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
  138. pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
  139. pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
  140. pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
  141. pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
  142. pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
  143. pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
  144. pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
  145. pyxlpr/ppocr/losses/table_att_loss.py +0 -109
  146. pyxlpr/ppocr/metrics/__init__.py +0 -44
  147. pyxlpr/ppocr/metrics/cls_metric.py +0 -45
  148. pyxlpr/ppocr/metrics/det_metric.py +0 -82
  149. pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
  150. pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
  151. pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
  152. pyxlpr/ppocr/metrics/kie_metric.py +0 -70
  153. pyxlpr/ppocr/metrics/rec_metric.py +0 -75
  154. pyxlpr/ppocr/metrics/table_metric.py +0 -50
  155. pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
  156. pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
  157. pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
  158. pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
  159. pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
  160. pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
  161. pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
  162. pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
  163. pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
  164. pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
  165. pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
  166. pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
  167. pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
  168. pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
  169. pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
  170. pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
  171. pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
  172. pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
  173. pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
  174. pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
  175. pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
  176. pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
  177. pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
  178. pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
  179. pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
  180. pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
  181. pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
  182. pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
  183. pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
  184. pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
  185. pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
  186. pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
  187. pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
  188. pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
  189. pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
  190. pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
  191. pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
  192. pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
  193. pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
  194. pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
  195. pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
  196. pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
  197. pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
  198. pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
  199. pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
  200. pyxlpr/ppocr/optimizer/__init__.py +0 -61
  201. pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
  202. pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
  203. pyxlpr/ppocr/optimizer/optimizer.py +0 -160
  204. pyxlpr/ppocr/optimizer/regularizer.py +0 -52
  205. pyxlpr/ppocr/postprocess/__init__.py +0 -55
  206. pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
  207. pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
  208. pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
  209. pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
  210. pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
  211. pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
  212. pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
  213. pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
  214. pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
  215. pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
  216. pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
  217. pyxlpr/ppocr/tools/__init__.py +0 -14
  218. pyxlpr/ppocr/tools/eval.py +0 -83
  219. pyxlpr/ppocr/tools/export_center.py +0 -77
  220. pyxlpr/ppocr/tools/export_model.py +0 -129
  221. pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
  222. pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
  223. pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
  224. pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
  225. pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
  226. pyxlpr/ppocr/tools/infer/utility.py +0 -629
  227. pyxlpr/ppocr/tools/infer_cls.py +0 -83
  228. pyxlpr/ppocr/tools/infer_det.py +0 -134
  229. pyxlpr/ppocr/tools/infer_e2e.py +0 -122
  230. pyxlpr/ppocr/tools/infer_kie.py +0 -153
  231. pyxlpr/ppocr/tools/infer_rec.py +0 -146
  232. pyxlpr/ppocr/tools/infer_table.py +0 -107
  233. pyxlpr/ppocr/tools/program.py +0 -596
  234. pyxlpr/ppocr/tools/test_hubserving.py +0 -117
  235. pyxlpr/ppocr/tools/train.py +0 -163
  236. pyxlpr/ppocr/tools/xlprog.py +0 -748
  237. pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
  238. pyxlpr/ppocr/utils/__init__.py +0 -24
  239. pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
  240. pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
  241. pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
  242. pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
  243. pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
  244. pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
  245. pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
  246. pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
  247. pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
  248. pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
  249. pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
  250. pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
  251. pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
  252. pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
  253. pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
  254. pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
  255. pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
  256. pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
  257. pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
  258. pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
  259. pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
  260. pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
  261. pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
  262. pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
  263. pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
  264. pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
  265. pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
  266. pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
  267. pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
  268. pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
  269. pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
  270. pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
  271. pyxlpr/ppocr/utils/dict90.txt +0 -90
  272. pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
  273. pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
  274. pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
  275. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
  276. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
  277. pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
  278. pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
  279. pyxlpr/ppocr/utils/en_dict.txt +0 -95
  280. pyxlpr/ppocr/utils/gen_label.py +0 -81
  281. pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
  282. pyxlpr/ppocr/utils/iou.py +0 -54
  283. pyxlpr/ppocr/utils/logging.py +0 -69
  284. pyxlpr/ppocr/utils/network.py +0 -84
  285. pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
  286. pyxlpr/ppocr/utils/profiler.py +0 -110
  287. pyxlpr/ppocr/utils/save_load.py +0 -150
  288. pyxlpr/ppocr/utils/stats.py +0 -72
  289. pyxlpr/ppocr/utils/utility.py +0 -80
  290. pyxlpr/ppstructure/__init__.py +0 -13
  291. pyxlpr/ppstructure/predict_system.py +0 -187
  292. pyxlpr/ppstructure/table/__init__.py +0 -13
  293. pyxlpr/ppstructure/table/eval_table.py +0 -72
  294. pyxlpr/ppstructure/table/matcher.py +0 -192
  295. pyxlpr/ppstructure/table/predict_structure.py +0 -136
  296. pyxlpr/ppstructure/table/predict_table.py +0 -221
  297. pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
  298. pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
  299. pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
  300. pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
  301. pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
  302. pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
  303. pyxlpr/ppstructure/utility.py +0 -71
  304. pyxlpr/xlai.py +0 -10
  305. /pyxllib/{ext/autogui → autogui}/virtualkey.py +0 -0
  306. {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info/licenses}/LICENSE +0 -0
@@ -1,151 +0,0 @@
1
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- import os
15
- import sys
16
-
17
- __dir__ = os.path.dirname(os.path.abspath(__file__))
18
- sys.path.append(__dir__)
19
- sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
20
-
21
- os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
22
-
23
- import cv2
24
- import copy
25
- import numpy as np
26
- import math
27
- import time
28
- import traceback
29
-
30
- import pyxlpr.ppocr.tools.infer.utility as utility
31
- from pyxlpr.ppocr.postprocess import build_post_process
32
- from pyxlpr.ppocr.utils.logging import get_logger
33
- from pyxlpr.ppocr.utils.utility import get_image_file_list, check_and_read_gif
34
-
35
- logger = get_logger()
36
-
37
-
38
- class TextClassifier(object):
39
- def __init__(self, args):
40
- self.cls_image_shape = [int(v) for v in args.cls_image_shape.split(",")]
41
- self.cls_batch_num = args.cls_batch_num
42
- self.cls_thresh = args.cls_thresh
43
- postprocess_params = {
44
- 'name': 'ClsPostProcess',
45
- "label_list": args.label_list,
46
- }
47
- self.postprocess_op = build_post_process(postprocess_params)
48
- self.predictor, self.input_tensor, self.output_tensors, _ = \
49
- utility.create_predictor(args, 'cls', logger)
50
- self.use_onnx = args.use_onnx
51
-
52
- def resize_norm_img(self, img):
53
- imgC, imgH, imgW = self.cls_image_shape
54
- h = img.shape[0]
55
- w = img.shape[1]
56
- ratio = w / float(h)
57
- if math.ceil(imgH * ratio) > imgW:
58
- resized_w = imgW
59
- else:
60
- resized_w = int(math.ceil(imgH * ratio))
61
- resized_image = cv2.resize(img, (resized_w, imgH))
62
- resized_image = resized_image.astype('float32')
63
- if self.cls_image_shape[0] == 1:
64
- resized_image = resized_image / 255
65
- resized_image = resized_image[np.newaxis, :]
66
- else:
67
- resized_image = resized_image.transpose((2, 0, 1)) / 255
68
- resized_image -= 0.5
69
- resized_image /= 0.5
70
- padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
71
- padding_im[:, :, 0:resized_w] = resized_image
72
- return padding_im
73
-
74
- def __call__(self, img_list):
75
- img_list = copy.deepcopy(img_list)
76
- img_num = len(img_list)
77
- # Calculate the aspect ratio of all text bars
78
- width_list = []
79
- for img in img_list:
80
- width_list.append(img.shape[1] / float(img.shape[0]))
81
- # Sorting can speed up the cls process
82
- indices = np.argsort(np.array(width_list))
83
-
84
- cls_res = [['', 0.0]] * img_num
85
- batch_num = self.cls_batch_num
86
- elapse = 0
87
- for beg_img_no in range(0, img_num, batch_num):
88
-
89
- end_img_no = min(img_num, beg_img_no + batch_num)
90
- norm_img_batch = []
91
- max_wh_ratio = 0
92
- starttime = time.time()
93
- for ino in range(beg_img_no, end_img_no):
94
- h, w = img_list[indices[ino]].shape[0:2]
95
- wh_ratio = w * 1.0 / h
96
- max_wh_ratio = max(max_wh_ratio, wh_ratio)
97
- for ino in range(beg_img_no, end_img_no):
98
- norm_img = self.resize_norm_img(img_list[indices[ino]])
99
- norm_img = norm_img[np.newaxis, :]
100
- norm_img_batch.append(norm_img)
101
- norm_img_batch = np.concatenate(norm_img_batch)
102
- norm_img_batch = norm_img_batch.copy()
103
-
104
- if self.use_onnx:
105
- input_dict = {}
106
- input_dict[self.input_tensor.name] = norm_img_batch
107
- outputs = self.predictor.run(self.output_tensors, input_dict)
108
- prob_out = outputs[0]
109
- else:
110
- self.input_tensor.copy_from_cpu(norm_img_batch)
111
- self.predictor.run()
112
- prob_out = self.output_tensors[0].copy_to_cpu()
113
- self.predictor.try_shrink_memory()
114
- cls_result = self.postprocess_op(prob_out)
115
- elapse += time.time() - starttime
116
- for rno in range(len(cls_result)):
117
- label, score = cls_result[rno]
118
- cls_res[indices[beg_img_no + rno]] = [label, score]
119
- if '180' in label and score > self.cls_thresh:
120
- img_list[indices[beg_img_no + rno]] = cv2.rotate(
121
- img_list[indices[beg_img_no + rno]], 1)
122
- return img_list, cls_res, elapse
123
-
124
-
125
- def main(args):
126
- image_file_list = get_image_file_list(args.image_dir)
127
- text_classifier = TextClassifier(args)
128
- valid_image_file_list = []
129
- img_list = []
130
- for image_file in image_file_list:
131
- img, flag = check_and_read_gif(image_file)
132
- if not flag:
133
- img = cv2.imread(image_file)
134
- if img is None:
135
- logger.info("error in loading image:{}".format(image_file))
136
- continue
137
- valid_image_file_list.append(image_file)
138
- img_list.append(img)
139
- try:
140
- img_list, cls_res, predict_time = text_classifier(img_list)
141
- except Exception as E:
142
- logger.info(traceback.format_exc())
143
- logger.info(E)
144
- exit()
145
- for ino in range(len(img_list)):
146
- logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
147
- cls_res[ino]))
148
-
149
-
150
- if __name__ == "__main__":
151
- main(utility.parse_args())
@@ -1,300 +0,0 @@
1
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- import os
15
- import sys
16
-
17
- __dir__ = os.path.dirname(os.path.abspath(__file__))
18
- sys.path.append(__dir__)
19
- sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
20
-
21
- os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
22
-
23
- import cv2
24
- import numpy as np
25
- import time
26
- import sys
27
-
28
- import pyxlpr.ppocr.tools.infer.utility as utility
29
- from pyxlpr.ppocr.utils.logging import get_logger
30
- from pyxlpr.ppocr.utils.utility import get_image_file_list, check_and_read_gif
31
- from pyxlpr.ppocr.data import create_operators, transform
32
- from pyxlpr.ppocr.postprocess import build_post_process
33
- import json
34
- logger = get_logger()
35
-
36
-
37
- class TextDetector(object):
38
- def __init__(self, args):
39
- self.args = args
40
- self.det_algorithm = args.det_algorithm
41
- self.use_onnx = args.use_onnx
42
- pre_process_list = [{
43
- 'DetResizeForTest': {
44
- 'limit_side_len': args.det_limit_side_len,
45
- 'limit_type': args.det_limit_type,
46
- }
47
- }, {
48
- 'NormalizeImage': {
49
- 'std': [0.229, 0.224, 0.225],
50
- 'mean': [0.485, 0.456, 0.406],
51
- 'scale': '1./255.',
52
- 'order': 'hwc'
53
- }
54
- }, {
55
- 'ToCHWImage': None
56
- }, {
57
- 'KeepKeys': {
58
- 'keep_keys': ['image', 'shape']
59
- }
60
- }]
61
- postprocess_params = {}
62
- if self.det_algorithm == "DB":
63
- postprocess_params['name'] = 'DBPostProcess'
64
- postprocess_params["thresh"] = args.det_db_thresh
65
- postprocess_params["box_thresh"] = args.det_db_box_thresh
66
- postprocess_params["max_candidates"] = 1000
67
- postprocess_params["unclip_ratio"] = args.det_db_unclip_ratio
68
- postprocess_params["use_dilation"] = args.use_dilation
69
- postprocess_params["score_mode"] = args.det_db_score_mode
70
- elif self.det_algorithm == "EAST":
71
- postprocess_params['name'] = 'EASTPostProcess'
72
- postprocess_params["score_thresh"] = args.det_east_score_thresh
73
- postprocess_params["cover_thresh"] = args.det_east_cover_thresh
74
- postprocess_params["nms_thresh"] = args.det_east_nms_thresh
75
- elif self.det_algorithm == "SAST":
76
- pre_process_list[0] = {
77
- 'DetResizeForTest': {
78
- 'resize_long': args.det_limit_side_len
79
- }
80
- }
81
- postprocess_params['name'] = 'SASTPostProcess'
82
- postprocess_params["score_thresh"] = args.det_sast_score_thresh
83
- postprocess_params["nms_thresh"] = args.det_sast_nms_thresh
84
- self.det_sast_polygon = args.det_sast_polygon
85
- if self.det_sast_polygon:
86
- postprocess_params["sample_pts_num"] = 6
87
- postprocess_params["expand_scale"] = 1.2
88
- postprocess_params["shrink_ratio_of_width"] = 0.2
89
- else:
90
- postprocess_params["sample_pts_num"] = 2
91
- postprocess_params["expand_scale"] = 1.0
92
- postprocess_params["shrink_ratio_of_width"] = 0.3
93
- elif self.det_algorithm == "PSE":
94
- postprocess_params['name'] = 'PSEPostProcess'
95
- postprocess_params["thresh"] = args.det_pse_thresh
96
- postprocess_params["box_thresh"] = args.det_pse_box_thresh
97
- postprocess_params["min_area"] = args.det_pse_min_area
98
- postprocess_params["box_type"] = args.det_pse_box_type
99
- postprocess_params["scale"] = args.det_pse_scale
100
- self.det_pse_box_type = args.det_pse_box_type
101
- else:
102
- logger.info("unknown det_algorithm:{}".format(self.det_algorithm))
103
- sys.exit(0)
104
-
105
- self.postprocess_op = build_post_process(postprocess_params)
106
- self.predictor, self.input_tensor, self.output_tensors, self.config = utility.create_predictor(
107
- args, 'det', logger)
108
-
109
- if self.use_onnx:
110
- img_h, img_w = self.input_tensor.shape[2:]
111
- if img_h is not None and img_w is not None and img_h > 0 and img_w > 0:
112
- pre_process_list[0] = {
113
- 'DetResizeForTest': {
114
- 'image_shape': [img_h, img_w]
115
- }
116
- }
117
- self.preprocess_op = create_operators(pre_process_list)
118
-
119
- if args.benchmark:
120
- import auto_log
121
- pid = os.getpid()
122
- gpu_id = utility.get_infer_gpuid()
123
- self.autolog = auto_log.AutoLogger(
124
- model_name="det",
125
- model_precision=args.precision,
126
- batch_size=1,
127
- data_shape="dynamic",
128
- save_path=None,
129
- inference_config=self.config,
130
- pids=pid,
131
- process_name=None,
132
- gpu_ids=gpu_id if args.use_gpu else None,
133
- time_keys=[
134
- 'preprocess_time', 'inference_time', 'postprocess_time'
135
- ],
136
- warmup=2,
137
- logger=logger)
138
-
139
- def order_points_clockwise(self, pts):
140
- """
141
- reference from: https://github.com/jrosebr1/imutils/blob/master/imutils/perspective.py
142
- # sort the points based on their x-coordinates
143
- """
144
- xSorted = pts[np.argsort(pts[:, 0]), :]
145
-
146
- # grab the left-most and right-most points from the sorted
147
- # x-roodinate points
148
- leftMost = xSorted[:2, :]
149
- rightMost = xSorted[2:, :]
150
-
151
- # now, sort the left-most coordinates according to their
152
- # y-coordinates so we can grab the top-left and bottom-left
153
- # points, respectively
154
- leftMost = leftMost[np.argsort(leftMost[:, 1]), :]
155
- (tl, bl) = leftMost
156
-
157
- rightMost = rightMost[np.argsort(rightMost[:, 1]), :]
158
- (tr, br) = rightMost
159
-
160
- rect = np.array([tl, tr, br, bl], dtype="float32")
161
- return rect
162
-
163
- def clip_det_res(self, points, img_height, img_width):
164
- for pno in range(points.shape[0]):
165
- points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
166
- points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
167
- return points
168
-
169
- def filter_tag_det_res(self, dt_boxes, image_shape):
170
- img_height, img_width = image_shape[0:2]
171
- dt_boxes_new = []
172
- for box in dt_boxes:
173
- box = self.order_points_clockwise(box)
174
- box = self.clip_det_res(box, img_height, img_width)
175
- rect_width = int(np.linalg.norm(box[0] - box[1]))
176
- rect_height = int(np.linalg.norm(box[0] - box[3]))
177
- if rect_width <= 3 or rect_height <= 3:
178
- continue
179
- dt_boxes_new.append(box)
180
- dt_boxes = np.array(dt_boxes_new)
181
- return dt_boxes
182
-
183
- def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
184
- img_height, img_width = image_shape[0:2]
185
- dt_boxes_new = []
186
- for box in dt_boxes:
187
- box = self.clip_det_res(box, img_height, img_width)
188
- dt_boxes_new.append(box)
189
- dt_boxes = np.array(dt_boxes_new)
190
- return dt_boxes
191
-
192
- def __call__(self, img):
193
- ori_im = img.copy()
194
- data = {'image': img}
195
-
196
- st = time.time()
197
-
198
- if self.args.benchmark:
199
- self.autolog.times.start()
200
-
201
- data = transform(data, self.preprocess_op)
202
- img, shape_list = data
203
- if img is None:
204
- return None, 0
205
- img = np.expand_dims(img, axis=0)
206
- shape_list = np.expand_dims(shape_list, axis=0)
207
- img = img.copy()
208
-
209
- if self.args.benchmark:
210
- self.autolog.times.stamp()
211
- if self.use_onnx:
212
- input_dict = {}
213
- input_dict[self.input_tensor.name] = img
214
- outputs = self.predictor.run(self.output_tensors, input_dict)
215
- else:
216
- self.input_tensor.copy_from_cpu(img)
217
- self.predictor.run()
218
- outputs = []
219
- for output_tensor in self.output_tensors:
220
- output = output_tensor.copy_to_cpu()
221
- outputs.append(output)
222
- if self.args.benchmark:
223
- self.autolog.times.stamp()
224
-
225
- preds = {}
226
- if self.det_algorithm == "EAST":
227
- preds['f_geo'] = outputs[0]
228
- preds['f_score'] = outputs[1]
229
- elif self.det_algorithm == 'SAST':
230
- preds['f_border'] = outputs[0]
231
- preds['f_score'] = outputs[1]
232
- preds['f_tco'] = outputs[2]
233
- preds['f_tvo'] = outputs[3]
234
- elif self.det_algorithm in ['DB', 'PSE']:
235
- preds['maps'] = outputs[0]
236
- else:
237
- raise NotImplementedError
238
-
239
- #self.predictor.try_shrink_memory()
240
- post_result = self.postprocess_op(preds, shape_list)
241
- dt_boxes = post_result[0]['points']
242
- if (self.det_algorithm == "SAST" and
243
- self.det_sast_polygon) or (self.det_algorithm == "PSE" and
244
- self.det_pse_box_type == 'poly'):
245
- dt_boxes = self.filter_tag_det_res_only_clip(dt_boxes, ori_im.shape)
246
- else:
247
- dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)
248
-
249
- if self.args.benchmark:
250
- self.autolog.times.end(stamp=True)
251
- et = time.time()
252
- return dt_boxes, et - st
253
-
254
-
255
- if __name__ == "__main__":
256
- args = utility.parse_args()
257
- image_file_list = get_image_file_list(args.image_dir)
258
- text_detector = TextDetector(args)
259
- count = 0
260
- total_time = 0
261
- draw_img_save = "./inference_results"
262
-
263
- if args.warmup:
264
- img = np.random.uniform(0, 255, [640, 640, 3]).astype(np.uint8)
265
- for i in range(2):
266
- res = text_detector(img)
267
-
268
- if not os.path.exists(draw_img_save):
269
- os.makedirs(draw_img_save)
270
- save_results = []
271
- for image_file in image_file_list:
272
- img, flag = check_and_read_gif(image_file)
273
- if not flag:
274
- img = cv2.imread(image_file)
275
- if img is None:
276
- logger.info("error in loading image:{}".format(image_file))
277
- continue
278
- st = time.time()
279
- dt_boxes, _ = text_detector(img)
280
- elapse = time.time() - st
281
- if count > 0:
282
- total_time += elapse
283
- count += 1
284
- save_pred = os.path.basename(image_file) + "\t" + str(
285
- json.dumps(np.array(dt_boxes).astype(np.int32).tolist())) + "\n"
286
- save_results.append(save_pred)
287
- logger.info(save_pred)
288
- logger.info("The predict time of {}: {}".format(image_file, elapse))
289
- src_im = utility.draw_text_det_res(dt_boxes, image_file)
290
- img_name_pure = os.path.split(image_file)[-1]
291
- img_path = os.path.join(draw_img_save,
292
- "det_res_{}".format(img_name_pure))
293
- cv2.imwrite(img_path, src_im)
294
- logger.info("The visualized image saved in {}".format(img_path))
295
-
296
- with open(os.path.join(draw_img_save, "det_results.txt"), 'w') as f:
297
- f.writelines(save_results)
298
- f.close()
299
- if args.benchmark:
300
- text_detector.autolog.report()
@@ -1,169 +0,0 @@
1
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- import os
15
- import sys
16
-
17
- __dir__ = os.path.dirname(os.path.abspath(__file__))
18
- sys.path.append(__dir__)
19
- sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
20
-
21
- os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
22
-
23
- import cv2
24
- import numpy as np
25
- import time
26
- import sys
27
-
28
- import pyxlpr.ppocr.tools.infer.utility as utility
29
- from pyxlpr.ppocr.utils.logging import get_logger
30
- from pyxlpr.ppocr.utils.utility import get_image_file_list, check_and_read_gif
31
- from pyxlpr.ppocr.data import create_operators, transform
32
- from pyxlpr.ppocr.postprocess import build_post_process
33
-
34
- logger = get_logger()
35
-
36
-
37
- class TextE2E(object):
38
- def __init__(self, args):
39
- self.args = args
40
- self.e2e_algorithm = args.e2e_algorithm
41
- self.use_onnx = args.use_onnx
42
- pre_process_list = [{
43
- 'E2EResizeForTest': {}
44
- }, {
45
- 'NormalizeImage': {
46
- 'std': [0.229, 0.224, 0.225],
47
- 'mean': [0.485, 0.456, 0.406],
48
- 'scale': '1./255.',
49
- 'order': 'hwc'
50
- }
51
- }, {
52
- 'ToCHWImage': None
53
- }, {
54
- 'KeepKeys': {
55
- 'keep_keys': ['image', 'shape']
56
- }
57
- }]
58
- postprocess_params = {}
59
- if self.e2e_algorithm == "PGNet":
60
- pre_process_list[0] = {
61
- 'E2EResizeForTest': {
62
- 'max_side_len': args.e2e_limit_side_len,
63
- 'valid_set': 'totaltext'
64
- }
65
- }
66
- postprocess_params['name'] = 'PGPostProcess'
67
- postprocess_params["score_thresh"] = args.e2e_pgnet_score_thresh
68
- postprocess_params["character_dict_path"] = args.e2e_char_dict_path
69
- postprocess_params["valid_set"] = args.e2e_pgnet_valid_set
70
- postprocess_params["mode"] = args.e2e_pgnet_mode
71
- else:
72
- logger.info("unknown e2e_algorithm:{}".format(self.e2e_algorithm))
73
- sys.exit(0)
74
-
75
- self.preprocess_op = create_operators(pre_process_list)
76
- self.postprocess_op = build_post_process(postprocess_params)
77
- self.predictor, self.input_tensor, self.output_tensors, _ = utility.create_predictor(
78
- args, 'e2e', logger) # paddle.jit.load(args.det_model_dir)
79
- # self.predictor.eval()
80
-
81
- def clip_det_res(self, points, img_height, img_width):
82
- for pno in range(points.shape[0]):
83
- points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
84
- points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
85
- return points
86
-
87
- def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
88
- img_height, img_width = image_shape[0:2]
89
- dt_boxes_new = []
90
- for box in dt_boxes:
91
- box = self.clip_det_res(box, img_height, img_width)
92
- dt_boxes_new.append(box)
93
- dt_boxes = np.array(dt_boxes_new)
94
- return dt_boxes
95
-
96
- def __call__(self, img):
97
-
98
- ori_im = img.copy()
99
- data = {'image': img}
100
- data = transform(data, self.preprocess_op)
101
- img, shape_list = data
102
- if img is None:
103
- return None, 0
104
- img = np.expand_dims(img, axis=0)
105
- shape_list = np.expand_dims(shape_list, axis=0)
106
- img = img.copy()
107
- starttime = time.time()
108
-
109
- if self.use_onnx:
110
- input_dict = {}
111
- input_dict[self.input_tensor.name] = img
112
- outputs = self.predictor.run(self.output_tensors, input_dict)
113
- preds = {}
114
- preds['f_border'] = outputs[0]
115
- preds['f_char'] = outputs[1]
116
- preds['f_direction'] = outputs[2]
117
- preds['f_score'] = outputs[3]
118
- else:
119
- self.input_tensor.copy_from_cpu(img)
120
- self.predictor.run()
121
- outputs = []
122
- for output_tensor in self.output_tensors:
123
- output = output_tensor.copy_to_cpu()
124
- outputs.append(output)
125
-
126
- preds = {}
127
- if self.e2e_algorithm == 'PGNet':
128
- preds['f_border'] = outputs[0]
129
- preds['f_char'] = outputs[1]
130
- preds['f_direction'] = outputs[2]
131
- preds['f_score'] = outputs[3]
132
- else:
133
- raise NotImplementedError
134
- post_result = self.postprocess_op(preds, shape_list)
135
- points, strs = post_result['points'], post_result['texts']
136
- dt_boxes = self.filter_tag_det_res_only_clip(points, ori_im.shape)
137
- elapse = time.time() - starttime
138
- return dt_boxes, strs, elapse
139
-
140
-
141
- if __name__ == "__main__":
142
- args = utility.parse_args()
143
- image_file_list = get_image_file_list(args.image_dir)
144
- text_detector = TextE2E(args)
145
- count = 0
146
- total_time = 0
147
- draw_img_save = "./inference_results"
148
- if not os.path.exists(draw_img_save):
149
- os.makedirs(draw_img_save)
150
- for image_file in image_file_list:
151
- img, flag = check_and_read_gif(image_file)
152
- if not flag:
153
- img = cv2.imread(image_file)
154
- if img is None:
155
- logger.info("error in loading image:{}".format(image_file))
156
- continue
157
- points, strs, elapse = text_detector(img)
158
- if count > 0:
159
- total_time += elapse
160
- count += 1
161
- logger.info("Predict time of {}: {}".format(image_file, elapse))
162
- src_im = utility.draw_e2e_res(points, strs, image_file)
163
- img_name_pure = os.path.split(image_file)[-1]
164
- img_path = os.path.join(draw_img_save,
165
- "e2e_res_{}".format(img_name_pure))
166
- cv2.imwrite(img_path, src_im)
167
- logger.info("The visualized image saved in {}".format(img_path))
168
- if count > 1:
169
- logger.info("Avg Time: {}".format(total_time / (count - 1)))