pyxllib 0.3.96__py3-none-any.whl → 0.3.197__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (306) hide show
  1. pyxllib/algo/geo.py +12 -0
  2. pyxllib/algo/intervals.py +1 -1
  3. pyxllib/algo/matcher.py +78 -0
  4. pyxllib/algo/pupil.py +187 -19
  5. pyxllib/algo/specialist.py +2 -1
  6. pyxllib/algo/stat.py +38 -2
  7. {pyxlpr → pyxllib/autogui}/__init__.py +1 -1
  8. pyxllib/autogui/activewin.py +246 -0
  9. pyxllib/autogui/all.py +9 -0
  10. pyxllib/{ext/autogui → autogui}/autogui.py +40 -11
  11. pyxllib/autogui/uiautolib.py +362 -0
  12. pyxllib/autogui/wechat.py +827 -0
  13. pyxllib/autogui/wechat_msg.py +421 -0
  14. pyxllib/autogui/wxautolib.py +84 -0
  15. pyxllib/cv/slidercaptcha.py +137 -0
  16. pyxllib/data/echarts.py +123 -12
  17. pyxllib/data/jsonlib.py +89 -0
  18. pyxllib/data/pglib.py +514 -30
  19. pyxllib/data/sqlite.py +231 -4
  20. pyxllib/ext/JLineViewer.py +14 -1
  21. pyxllib/ext/drissionlib.py +277 -0
  22. pyxllib/ext/kq5034lib.py +0 -1594
  23. pyxllib/ext/robustprocfile.py +497 -0
  24. pyxllib/ext/unixlib.py +6 -5
  25. pyxllib/ext/utools.py +108 -95
  26. pyxllib/ext/webhook.py +32 -14
  27. pyxllib/ext/wjxlib.py +88 -0
  28. pyxllib/ext/wpsapi.py +124 -0
  29. pyxllib/ext/xlwork.py +9 -0
  30. pyxllib/ext/yuquelib.py +1003 -71
  31. pyxllib/file/docxlib.py +1 -1
  32. pyxllib/file/libreoffice.py +165 -0
  33. pyxllib/file/movielib.py +9 -0
  34. pyxllib/file/packlib/__init__.py +112 -75
  35. pyxllib/file/pdflib.py +1 -1
  36. pyxllib/file/pupil.py +1 -1
  37. pyxllib/file/specialist/dirlib.py +1 -1
  38. pyxllib/file/specialist/download.py +10 -3
  39. pyxllib/file/specialist/filelib.py +266 -55
  40. pyxllib/file/xlsxlib.py +205 -50
  41. pyxllib/file/xlsyncfile.py +341 -0
  42. pyxllib/prog/cachetools.py +64 -0
  43. pyxllib/prog/filelock.py +42 -0
  44. pyxllib/prog/multiprogs.py +940 -0
  45. pyxllib/prog/newbie.py +9 -2
  46. pyxllib/prog/pupil.py +129 -60
  47. pyxllib/prog/specialist/__init__.py +176 -2
  48. pyxllib/prog/specialist/bc.py +5 -2
  49. pyxllib/prog/specialist/browser.py +11 -2
  50. pyxllib/prog/specialist/datetime.py +68 -0
  51. pyxllib/prog/specialist/tictoc.py +12 -13
  52. pyxllib/prog/specialist/xllog.py +5 -5
  53. pyxllib/prog/xlosenv.py +7 -0
  54. pyxllib/text/airscript.js +744 -0
  55. pyxllib/text/charclasslib.py +17 -5
  56. pyxllib/text/jiebalib.py +6 -3
  57. pyxllib/text/jinjalib.py +32 -0
  58. pyxllib/text/jsa_ai_prompt.md +271 -0
  59. pyxllib/text/jscode.py +159 -4
  60. pyxllib/text/nestenv.py +1 -1
  61. pyxllib/text/newbie.py +12 -0
  62. pyxllib/text/pupil/common.py +26 -0
  63. pyxllib/text/specialist/ptag.py +2 -2
  64. pyxllib/text/templates/echart_base.html +11 -0
  65. pyxllib/text/templates/highlight_code.html +17 -0
  66. pyxllib/text/templates/latex_editor.html +103 -0
  67. pyxllib/text/xmllib.py +76 -14
  68. pyxllib/xl.py +2 -1
  69. pyxllib-0.3.197.dist-info/METADATA +48 -0
  70. pyxllib-0.3.197.dist-info/RECORD +126 -0
  71. {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info}/WHEEL +1 -2
  72. pyxllib/ext/autogui/__init__.py +0 -8
  73. pyxllib-0.3.96.dist-info/METADATA +0 -51
  74. pyxllib-0.3.96.dist-info/RECORD +0 -333
  75. pyxllib-0.3.96.dist-info/top_level.txt +0 -2
  76. pyxlpr/ai/__init__.py +0 -5
  77. pyxlpr/ai/clientlib.py +0 -1281
  78. pyxlpr/ai/specialist.py +0 -286
  79. pyxlpr/ai/torch_app.py +0 -172
  80. pyxlpr/ai/xlpaddle.py +0 -655
  81. pyxlpr/ai/xltorch.py +0 -705
  82. pyxlpr/data/__init__.py +0 -11
  83. pyxlpr/data/coco.py +0 -1325
  84. pyxlpr/data/datacls.py +0 -365
  85. pyxlpr/data/datasets.py +0 -200
  86. pyxlpr/data/gptlib.py +0 -1291
  87. pyxlpr/data/icdar/__init__.py +0 -96
  88. pyxlpr/data/icdar/deteval.py +0 -377
  89. pyxlpr/data/icdar/icdar2013.py +0 -341
  90. pyxlpr/data/icdar/iou.py +0 -340
  91. pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
  92. pyxlpr/data/imtextline.py +0 -473
  93. pyxlpr/data/labelme.py +0 -866
  94. pyxlpr/data/removeline.py +0 -179
  95. pyxlpr/data/specialist.py +0 -57
  96. pyxlpr/eval/__init__.py +0 -85
  97. pyxlpr/paddleocr.py +0 -776
  98. pyxlpr/ppocr/__init__.py +0 -15
  99. pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
  100. pyxlpr/ppocr/data/__init__.py +0 -135
  101. pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
  102. pyxlpr/ppocr/data/imaug/__init__.py +0 -67
  103. pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
  104. pyxlpr/ppocr/data/imaug/east_process.py +0 -437
  105. pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
  106. pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
  107. pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
  108. pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
  109. pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
  110. pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
  111. pyxlpr/ppocr/data/imaug/operators.py +0 -433
  112. pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
  113. pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
  114. pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
  115. pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
  116. pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
  117. pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
  118. pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
  119. pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
  120. pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
  121. pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
  122. pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
  123. pyxlpr/ppocr/data/simple_dataset.py +0 -372
  124. pyxlpr/ppocr/losses/__init__.py +0 -61
  125. pyxlpr/ppocr/losses/ace_loss.py +0 -52
  126. pyxlpr/ppocr/losses/basic_loss.py +0 -135
  127. pyxlpr/ppocr/losses/center_loss.py +0 -88
  128. pyxlpr/ppocr/losses/cls_loss.py +0 -30
  129. pyxlpr/ppocr/losses/combined_loss.py +0 -67
  130. pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
  131. pyxlpr/ppocr/losses/det_db_loss.py +0 -80
  132. pyxlpr/ppocr/losses/det_east_loss.py +0 -63
  133. pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
  134. pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
  135. pyxlpr/ppocr/losses/distillation_loss.py +0 -272
  136. pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
  137. pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
  138. pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
  139. pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
  140. pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
  141. pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
  142. pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
  143. pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
  144. pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
  145. pyxlpr/ppocr/losses/table_att_loss.py +0 -109
  146. pyxlpr/ppocr/metrics/__init__.py +0 -44
  147. pyxlpr/ppocr/metrics/cls_metric.py +0 -45
  148. pyxlpr/ppocr/metrics/det_metric.py +0 -82
  149. pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
  150. pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
  151. pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
  152. pyxlpr/ppocr/metrics/kie_metric.py +0 -70
  153. pyxlpr/ppocr/metrics/rec_metric.py +0 -75
  154. pyxlpr/ppocr/metrics/table_metric.py +0 -50
  155. pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
  156. pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
  157. pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
  158. pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
  159. pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
  160. pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
  161. pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
  162. pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
  163. pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
  164. pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
  165. pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
  166. pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
  167. pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
  168. pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
  169. pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
  170. pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
  171. pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
  172. pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
  173. pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
  174. pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
  175. pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
  176. pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
  177. pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
  178. pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
  179. pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
  180. pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
  181. pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
  182. pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
  183. pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
  184. pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
  185. pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
  186. pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
  187. pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
  188. pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
  189. pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
  190. pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
  191. pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
  192. pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
  193. pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
  194. pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
  195. pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
  196. pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
  197. pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
  198. pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
  199. pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
  200. pyxlpr/ppocr/optimizer/__init__.py +0 -61
  201. pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
  202. pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
  203. pyxlpr/ppocr/optimizer/optimizer.py +0 -160
  204. pyxlpr/ppocr/optimizer/regularizer.py +0 -52
  205. pyxlpr/ppocr/postprocess/__init__.py +0 -55
  206. pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
  207. pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
  208. pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
  209. pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
  210. pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
  211. pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
  212. pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
  213. pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
  214. pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
  215. pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
  216. pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
  217. pyxlpr/ppocr/tools/__init__.py +0 -14
  218. pyxlpr/ppocr/tools/eval.py +0 -83
  219. pyxlpr/ppocr/tools/export_center.py +0 -77
  220. pyxlpr/ppocr/tools/export_model.py +0 -129
  221. pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
  222. pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
  223. pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
  224. pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
  225. pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
  226. pyxlpr/ppocr/tools/infer/utility.py +0 -629
  227. pyxlpr/ppocr/tools/infer_cls.py +0 -83
  228. pyxlpr/ppocr/tools/infer_det.py +0 -134
  229. pyxlpr/ppocr/tools/infer_e2e.py +0 -122
  230. pyxlpr/ppocr/tools/infer_kie.py +0 -153
  231. pyxlpr/ppocr/tools/infer_rec.py +0 -146
  232. pyxlpr/ppocr/tools/infer_table.py +0 -107
  233. pyxlpr/ppocr/tools/program.py +0 -596
  234. pyxlpr/ppocr/tools/test_hubserving.py +0 -117
  235. pyxlpr/ppocr/tools/train.py +0 -163
  236. pyxlpr/ppocr/tools/xlprog.py +0 -748
  237. pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
  238. pyxlpr/ppocr/utils/__init__.py +0 -24
  239. pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
  240. pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
  241. pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
  242. pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
  243. pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
  244. pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
  245. pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
  246. pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
  247. pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
  248. pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
  249. pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
  250. pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
  251. pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
  252. pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
  253. pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
  254. pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
  255. pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
  256. pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
  257. pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
  258. pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
  259. pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
  260. pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
  261. pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
  262. pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
  263. pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
  264. pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
  265. pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
  266. pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
  267. pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
  268. pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
  269. pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
  270. pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
  271. pyxlpr/ppocr/utils/dict90.txt +0 -90
  272. pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
  273. pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
  274. pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
  275. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
  276. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
  277. pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
  278. pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
  279. pyxlpr/ppocr/utils/en_dict.txt +0 -95
  280. pyxlpr/ppocr/utils/gen_label.py +0 -81
  281. pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
  282. pyxlpr/ppocr/utils/iou.py +0 -54
  283. pyxlpr/ppocr/utils/logging.py +0 -69
  284. pyxlpr/ppocr/utils/network.py +0 -84
  285. pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
  286. pyxlpr/ppocr/utils/profiler.py +0 -110
  287. pyxlpr/ppocr/utils/save_load.py +0 -150
  288. pyxlpr/ppocr/utils/stats.py +0 -72
  289. pyxlpr/ppocr/utils/utility.py +0 -80
  290. pyxlpr/ppstructure/__init__.py +0 -13
  291. pyxlpr/ppstructure/predict_system.py +0 -187
  292. pyxlpr/ppstructure/table/__init__.py +0 -13
  293. pyxlpr/ppstructure/table/eval_table.py +0 -72
  294. pyxlpr/ppstructure/table/matcher.py +0 -192
  295. pyxlpr/ppstructure/table/predict_structure.py +0 -136
  296. pyxlpr/ppstructure/table/predict_table.py +0 -221
  297. pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
  298. pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
  299. pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
  300. pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
  301. pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
  302. pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
  303. pyxlpr/ppstructure/utility.py +0 -71
  304. pyxlpr/xlai.py +0 -10
  305. /pyxllib/{ext/autogui → autogui}/virtualkey.py +0 -0
  306. {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info/licenses}/LICENSE +0 -0
@@ -1,258 +0,0 @@
1
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- # This code is refer from: https://github.com/PaddlePaddle/PaddleClas/blob/develop/ppcls/arch/backbone/legendary_models/pp_lcnet.py
16
-
17
- from __future__ import absolute_import
18
- from __future__ import division
19
- from __future__ import print_function
20
-
21
- import numpy as np
22
- import paddle
23
- from paddle import ParamAttr
24
- import paddle.nn as nn
25
- import paddle.nn.functional as F
26
- from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
27
- from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
28
- from paddle.nn.initializer import KaimingNormal
29
- import math
30
- import numpy as np
31
- import paddle
32
- from paddle import ParamAttr, reshape, transpose, concat, split
33
- import paddle.nn as nn
34
- import paddle.nn.functional as F
35
- from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
36
- from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
37
- from paddle.nn.initializer import KaimingNormal
38
- import math
39
- from paddle.nn.functional import hardswish, hardsigmoid
40
- from paddle.regularizer import L2Decay
41
-
42
-
43
- class ConvBNLayer(nn.Layer):
44
- def __init__(self,
45
- num_channels,
46
- filter_size,
47
- num_filters,
48
- stride,
49
- padding,
50
- channels=None,
51
- num_groups=1,
52
- act='hard_swish'):
53
- super(ConvBNLayer, self).__init__()
54
-
55
- self._conv = Conv2D(
56
- in_channels=num_channels,
57
- out_channels=num_filters,
58
- kernel_size=filter_size,
59
- stride=stride,
60
- padding=padding,
61
- groups=num_groups,
62
- weight_attr=ParamAttr(initializer=KaimingNormal()),
63
- bias_attr=False)
64
-
65
- self._batch_norm = BatchNorm(
66
- num_filters,
67
- act=act,
68
- param_attr=ParamAttr(regularizer=L2Decay(0.0)),
69
- bias_attr=ParamAttr(regularizer=L2Decay(0.0)))
70
-
71
- def forward(self, inputs):
72
- y = self._conv(inputs)
73
- y = self._batch_norm(y)
74
- return y
75
-
76
-
77
- class DepthwiseSeparable(nn.Layer):
78
- def __init__(self,
79
- num_channels,
80
- num_filters1,
81
- num_filters2,
82
- num_groups,
83
- stride,
84
- scale,
85
- dw_size=3,
86
- padding=1,
87
- use_se=False):
88
- super(DepthwiseSeparable, self).__init__()
89
- self.use_se = use_se
90
- self._depthwise_conv = ConvBNLayer(
91
- num_channels=num_channels,
92
- num_filters=int(num_filters1 * scale),
93
- filter_size=dw_size,
94
- stride=stride,
95
- padding=padding,
96
- num_groups=int(num_groups * scale))
97
- if use_se:
98
- self._se = SEModule(int(num_filters1 * scale))
99
- self._pointwise_conv = ConvBNLayer(
100
- num_channels=int(num_filters1 * scale),
101
- filter_size=1,
102
- num_filters=int(num_filters2 * scale),
103
- stride=1,
104
- padding=0)
105
-
106
- def forward(self, inputs):
107
- y = self._depthwise_conv(inputs)
108
- if self.use_se:
109
- y = self._se(y)
110
- y = self._pointwise_conv(y)
111
- return y
112
-
113
-
114
- class MobileNetV1Enhance(nn.Layer):
115
- def __init__(self, in_channels=3, scale=0.5, **kwargs):
116
- super().__init__()
117
- self.scale = scale
118
- self.block_list = []
119
-
120
- self.conv1 = ConvBNLayer(
121
- num_channels=3,
122
- filter_size=3,
123
- channels=3,
124
- num_filters=int(32 * scale),
125
- stride=2,
126
- padding=1)
127
-
128
- conv2_1 = DepthwiseSeparable(
129
- num_channels=int(32 * scale),
130
- num_filters1=32,
131
- num_filters2=64,
132
- num_groups=32,
133
- stride=1,
134
- scale=scale)
135
- self.block_list.append(conv2_1)
136
-
137
- conv2_2 = DepthwiseSeparable(
138
- num_channels=int(64 * scale),
139
- num_filters1=64,
140
- num_filters2=128,
141
- num_groups=64,
142
- stride=1,
143
- scale=scale)
144
- self.block_list.append(conv2_2)
145
-
146
- conv3_1 = DepthwiseSeparable(
147
- num_channels=int(128 * scale),
148
- num_filters1=128,
149
- num_filters2=128,
150
- num_groups=128,
151
- stride=1,
152
- scale=scale)
153
- self.block_list.append(conv3_1)
154
-
155
- conv3_2 = DepthwiseSeparable(
156
- num_channels=int(128 * scale),
157
- num_filters1=128,
158
- num_filters2=256,
159
- num_groups=128,
160
- stride=(2, 1),
161
- scale=scale)
162
- self.block_list.append(conv3_2)
163
-
164
- conv4_1 = DepthwiseSeparable(
165
- num_channels=int(256 * scale),
166
- num_filters1=256,
167
- num_filters2=256,
168
- num_groups=256,
169
- stride=1,
170
- scale=scale)
171
- self.block_list.append(conv4_1)
172
-
173
- conv4_2 = DepthwiseSeparable(
174
- num_channels=int(256 * scale),
175
- num_filters1=256,
176
- num_filters2=512,
177
- num_groups=256,
178
- stride=(2, 1),
179
- scale=scale)
180
- self.block_list.append(conv4_2)
181
-
182
- for _ in range(5):
183
- conv5 = DepthwiseSeparable(
184
- num_channels=int(512 * scale),
185
- num_filters1=512,
186
- num_filters2=512,
187
- num_groups=512,
188
- stride=1,
189
- dw_size=5,
190
- padding=2,
191
- scale=scale,
192
- use_se=False)
193
- self.block_list.append(conv5)
194
-
195
- conv5_6 = DepthwiseSeparable(
196
- num_channels=int(512 * scale),
197
- num_filters1=512,
198
- num_filters2=1024,
199
- num_groups=512,
200
- stride=(2, 1),
201
- dw_size=5,
202
- padding=2,
203
- scale=scale,
204
- use_se=True)
205
- self.block_list.append(conv5_6)
206
-
207
- conv6 = DepthwiseSeparable(
208
- num_channels=int(1024 * scale),
209
- num_filters1=1024,
210
- num_filters2=1024,
211
- num_groups=1024,
212
- stride=1,
213
- dw_size=5,
214
- padding=2,
215
- use_se=True,
216
- scale=scale)
217
- self.block_list.append(conv6)
218
-
219
- self.block_list = nn.Sequential(*self.block_list)
220
-
221
- self.pool = nn.MaxPool2D(kernel_size=2, stride=2, padding=0)
222
- self.out_channels = int(1024 * scale)
223
-
224
- def forward(self, inputs):
225
- y = self.conv1(inputs)
226
- y = self.block_list(y)
227
- y = self.pool(y)
228
- return y
229
-
230
-
231
- class SEModule(nn.Layer):
232
- def __init__(self, channel, reduction=4):
233
- super(SEModule, self).__init__()
234
- self.avg_pool = AdaptiveAvgPool2D(1)
235
- self.conv1 = Conv2D(
236
- in_channels=channel,
237
- out_channels=channel // reduction,
238
- kernel_size=1,
239
- stride=1,
240
- padding=0,
241
- weight_attr=ParamAttr(),
242
- bias_attr=ParamAttr())
243
- self.conv2 = Conv2D(
244
- in_channels=channel // reduction,
245
- out_channels=channel,
246
- kernel_size=1,
247
- stride=1,
248
- padding=0,
249
- weight_attr=ParamAttr(),
250
- bias_attr=ParamAttr())
251
-
252
- def forward(self, inputs):
253
- outputs = self.avg_pool(inputs)
254
- outputs = self.conv1(outputs)
255
- outputs = F.relu(outputs)
256
- outputs = self.conv2(outputs)
257
- outputs = hardsigmoid(outputs)
258
- return paddle.multiply(x=inputs, y=outputs)
@@ -1,48 +0,0 @@
1
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from paddle import nn
16
- import paddle
17
-
18
-
19
- class MTB(nn.Layer):
20
- def __init__(self, cnn_num, in_channels):
21
- super(MTB, self).__init__()
22
- self.block = nn.Sequential()
23
- self.out_channels = in_channels
24
- self.cnn_num = cnn_num
25
- if self.cnn_num == 2:
26
- for i in range(self.cnn_num):
27
- self.block.add_sublayer(
28
- 'conv_{}'.format(i),
29
- nn.Conv2D(
30
- in_channels=in_channels
31
- if i == 0 else 32 * (2**(i - 1)),
32
- out_channels=32 * (2**i),
33
- kernel_size=3,
34
- stride=2,
35
- padding=1))
36
- self.block.add_sublayer('relu_{}'.format(i), nn.ReLU())
37
- self.block.add_sublayer('bn_{}'.format(i),
38
- nn.BatchNorm2D(32 * (2**i)))
39
-
40
- def forward(self, images):
41
- x = self.block(images)
42
- if self.cnn_num == 2:
43
- # (b, w, h, c)
44
- x = paddle.transpose(x, [0, 3, 2, 1])
45
- x_shape = paddle.shape(x)
46
- x = paddle.reshape(
47
- x, [x_shape[0], x_shape[1], x_shape[2] * x_shape[3]])
48
- return x
@@ -1,210 +0,0 @@
1
- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- """
15
- This code is refer from:
16
- https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textrecog/layers/conv_layer.py
17
- https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textrecog/backbones/resnet31_ocr.py
18
- """
19
-
20
- from __future__ import absolute_import
21
- from __future__ import division
22
- from __future__ import print_function
23
-
24
- import paddle
25
- from paddle import ParamAttr
26
- import paddle.nn as nn
27
- import paddle.nn.functional as F
28
- import numpy as np
29
-
30
- __all__ = ["ResNet31"]
31
-
32
-
33
- def conv3x3(in_channel, out_channel, stride=1):
34
- return nn.Conv2D(
35
- in_channel,
36
- out_channel,
37
- kernel_size=3,
38
- stride=stride,
39
- padding=1,
40
- bias_attr=False)
41
-
42
-
43
- class BasicBlock(nn.Layer):
44
- expansion = 1
45
-
46
- def __init__(self, in_channels, channels, stride=1, downsample=False):
47
- super().__init__()
48
- self.conv1 = conv3x3(in_channels, channels, stride)
49
- self.bn1 = nn.BatchNorm2D(channels)
50
- self.relu = nn.ReLU()
51
- self.conv2 = conv3x3(channels, channels)
52
- self.bn2 = nn.BatchNorm2D(channels)
53
- self.downsample = downsample
54
- if downsample:
55
- self.downsample = nn.Sequential(
56
- nn.Conv2D(
57
- in_channels,
58
- channels * self.expansion,
59
- 1,
60
- stride,
61
- bias_attr=False),
62
- nn.BatchNorm2D(channels * self.expansion), )
63
- else:
64
- self.downsample = nn.Sequential()
65
- self.stride = stride
66
-
67
- def forward(self, x):
68
- residual = x
69
-
70
- out = self.conv1(x)
71
- out = self.bn1(out)
72
- out = self.relu(out)
73
-
74
- out = self.conv2(out)
75
- out = self.bn2(out)
76
-
77
- if self.downsample:
78
- residual = self.downsample(x)
79
-
80
- out += residual
81
- out = self.relu(out)
82
-
83
- return out
84
-
85
-
86
- class ResNet31(nn.Layer):
87
- '''
88
- Args:
89
- in_channels (int): Number of channels of input image tensor.
90
- layers (list[int]): List of BasicBlock number for each stage.
91
- channels (list[int]): List of out_channels of Conv2d layer.
92
- out_indices (None | Sequence[int]): Indices of output stages.
93
- last_stage_pool (bool): If True, add `MaxPool2d` layer to last stage.
94
- '''
95
-
96
- def __init__(self,
97
- in_channels=3,
98
- layers=[1, 2, 5, 3],
99
- channels=[64, 128, 256, 256, 512, 512, 512],
100
- out_indices=None,
101
- last_stage_pool=False):
102
- super(ResNet31, self).__init__()
103
- assert isinstance(in_channels, int)
104
- assert isinstance(last_stage_pool, bool)
105
-
106
- self.out_indices = out_indices
107
- self.last_stage_pool = last_stage_pool
108
-
109
- # conv 1 (Conv Conv)
110
- self.conv1_1 = nn.Conv2D(
111
- in_channels, channels[0], kernel_size=3, stride=1, padding=1)
112
- self.bn1_1 = nn.BatchNorm2D(channels[0])
113
- self.relu1_1 = nn.ReLU()
114
-
115
- self.conv1_2 = nn.Conv2D(
116
- channels[0], channels[1], kernel_size=3, stride=1, padding=1)
117
- self.bn1_2 = nn.BatchNorm2D(channels[1])
118
- self.relu1_2 = nn.ReLU()
119
-
120
- # conv 2 (Max-pooling, Residual block, Conv)
121
- self.pool2 = nn.MaxPool2D(
122
- kernel_size=2, stride=2, padding=0, ceil_mode=True)
123
- self.block2 = self._make_layer(channels[1], channels[2], layers[0])
124
- self.conv2 = nn.Conv2D(
125
- channels[2], channels[2], kernel_size=3, stride=1, padding=1)
126
- self.bn2 = nn.BatchNorm2D(channels[2])
127
- self.relu2 = nn.ReLU()
128
-
129
- # conv 3 (Max-pooling, Residual block, Conv)
130
- self.pool3 = nn.MaxPool2D(
131
- kernel_size=2, stride=2, padding=0, ceil_mode=True)
132
- self.block3 = self._make_layer(channels[2], channels[3], layers[1])
133
- self.conv3 = nn.Conv2D(
134
- channels[3], channels[3], kernel_size=3, stride=1, padding=1)
135
- self.bn3 = nn.BatchNorm2D(channels[3])
136
- self.relu3 = nn.ReLU()
137
-
138
- # conv 4 (Max-pooling, Residual block, Conv)
139
- self.pool4 = nn.MaxPool2D(
140
- kernel_size=(2, 1), stride=(2, 1), padding=0, ceil_mode=True)
141
- self.block4 = self._make_layer(channels[3], channels[4], layers[2])
142
- self.conv4 = nn.Conv2D(
143
- channels[4], channels[4], kernel_size=3, stride=1, padding=1)
144
- self.bn4 = nn.BatchNorm2D(channels[4])
145
- self.relu4 = nn.ReLU()
146
-
147
- # conv 5 ((Max-pooling), Residual block, Conv)
148
- self.pool5 = None
149
- if self.last_stage_pool:
150
- self.pool5 = nn.MaxPool2D(
151
- kernel_size=2, stride=2, padding=0, ceil_mode=True)
152
- self.block5 = self._make_layer(channels[4], channels[5], layers[3])
153
- self.conv5 = nn.Conv2D(
154
- channels[5], channels[5], kernel_size=3, stride=1, padding=1)
155
- self.bn5 = nn.BatchNorm2D(channels[5])
156
- self.relu5 = nn.ReLU()
157
-
158
- self.out_channels = channels[-1]
159
-
160
- def _make_layer(self, input_channels, output_channels, blocks):
161
- layers = []
162
- for _ in range(blocks):
163
- downsample = None
164
- if input_channels != output_channels:
165
- downsample = nn.Sequential(
166
- nn.Conv2D(
167
- input_channels,
168
- output_channels,
169
- kernel_size=1,
170
- stride=1,
171
- bias_attr=False),
172
- nn.BatchNorm2D(output_channels), )
173
-
174
- layers.append(
175
- BasicBlock(
176
- input_channels, output_channels, downsample=downsample))
177
- input_channels = output_channels
178
- return nn.Sequential(*layers)
179
-
180
- def forward(self, x):
181
- x = self.conv1_1(x)
182
- x = self.bn1_1(x)
183
- x = self.relu1_1(x)
184
-
185
- x = self.conv1_2(x)
186
- x = self.bn1_2(x)
187
- x = self.relu1_2(x)
188
-
189
- outs = []
190
- for i in range(4):
191
- layer_index = i + 2
192
- pool_layer = getattr(self, f'pool{layer_index}')
193
- block_layer = getattr(self, f'block{layer_index}')
194
- conv_layer = getattr(self, f'conv{layer_index}')
195
- bn_layer = getattr(self, f'bn{layer_index}')
196
- relu_layer = getattr(self, f'relu{layer_index}')
197
-
198
- if pool_layer is not None:
199
- x = pool_layer(x)
200
- x = block_layer(x)
201
- x = conv_layer(x)
202
- x = bn_layer(x)
203
- x = relu_layer(x)
204
-
205
- outs.append(x)
206
-
207
- if self.out_indices is not None:
208
- return tuple([outs[i] for i in self.out_indices])
209
-
210
- return x
@@ -1,143 +0,0 @@
1
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- """
15
- This code is refer from:
16
- https://github.com/ayumiymk/aster.pytorch/blob/master/lib/models/resnet_aster.py
17
- """
18
- import paddle
19
- import paddle.nn as nn
20
-
21
- import sys
22
- import math
23
-
24
-
25
- def conv3x3(in_planes, out_planes, stride=1):
26
- """3x3 convolution with padding"""
27
- return nn.Conv2D(
28
- in_planes,
29
- out_planes,
30
- kernel_size=3,
31
- stride=stride,
32
- padding=1,
33
- bias_attr=False)
34
-
35
-
36
- def conv1x1(in_planes, out_planes, stride=1):
37
- """1x1 convolution"""
38
- return nn.Conv2D(
39
- in_planes, out_planes, kernel_size=1, stride=stride, bias_attr=False)
40
-
41
-
42
- def get_sinusoid_encoding(n_position, feat_dim, wave_length=10000):
43
- # [n_position]
44
- positions = paddle.arange(0, n_position)
45
- # [feat_dim]
46
- dim_range = paddle.arange(0, feat_dim)
47
- dim_range = paddle.pow(wave_length, 2 * (dim_range // 2) / feat_dim)
48
- # [n_position, feat_dim]
49
- angles = paddle.unsqueeze(
50
- positions, axis=1) / paddle.unsqueeze(
51
- dim_range, axis=0)
52
- angles = paddle.cast(angles, "float32")
53
- angles[:, 0::2] = paddle.sin(angles[:, 0::2])
54
- angles[:, 1::2] = paddle.cos(angles[:, 1::2])
55
- return angles
56
-
57
-
58
- class AsterBlock(nn.Layer):
59
- def __init__(self, inplanes, planes, stride=1, downsample=None):
60
- super(AsterBlock, self).__init__()
61
- self.conv1 = conv1x1(inplanes, planes, stride)
62
- self.bn1 = nn.BatchNorm2D(planes)
63
- self.relu = nn.ReLU()
64
- self.conv2 = conv3x3(planes, planes)
65
- self.bn2 = nn.BatchNorm2D(planes)
66
- self.downsample = downsample
67
- self.stride = stride
68
-
69
- def forward(self, x):
70
- residual = x
71
- out = self.conv1(x)
72
- out = self.bn1(out)
73
- out = self.relu(out)
74
- out = self.conv2(out)
75
- out = self.bn2(out)
76
-
77
- if self.downsample is not None:
78
- residual = self.downsample(x)
79
- out += residual
80
- out = self.relu(out)
81
- return out
82
-
83
-
84
- class ResNet_ASTER(nn.Layer):
85
- """For aster or crnn"""
86
-
87
- def __init__(self, with_lstm=True, n_group=1, in_channels=3):
88
- super(ResNet_ASTER, self).__init__()
89
- self.with_lstm = with_lstm
90
- self.n_group = n_group
91
-
92
- self.layer0 = nn.Sequential(
93
- nn.Conv2D(
94
- in_channels,
95
- 32,
96
- kernel_size=(3, 3),
97
- stride=1,
98
- padding=1,
99
- bias_attr=False),
100
- nn.BatchNorm2D(32),
101
- nn.ReLU())
102
-
103
- self.inplanes = 32
104
- self.layer1 = self._make_layer(32, 3, [2, 2]) # [16, 50]
105
- self.layer2 = self._make_layer(64, 4, [2, 2]) # [8, 25]
106
- self.layer3 = self._make_layer(128, 6, [2, 1]) # [4, 25]
107
- self.layer4 = self._make_layer(256, 6, [2, 1]) # [2, 25]
108
- self.layer5 = self._make_layer(512, 3, [2, 1]) # [1, 25]
109
-
110
- if with_lstm:
111
- self.rnn = nn.LSTM(512, 256, direction="bidirect", num_layers=2)
112
- self.out_channels = 2 * 256
113
- else:
114
- self.out_channels = 512
115
-
116
- def _make_layer(self, planes, blocks, stride):
117
- downsample = None
118
- if stride != [1, 1] or self.inplanes != planes:
119
- downsample = nn.Sequential(
120
- conv1x1(self.inplanes, planes, stride), nn.BatchNorm2D(planes))
121
-
122
- layers = []
123
- layers.append(AsterBlock(self.inplanes, planes, stride, downsample))
124
- self.inplanes = planes
125
- for _ in range(1, blocks):
126
- layers.append(AsterBlock(self.inplanes, planes))
127
- return nn.Sequential(*layers)
128
-
129
- def forward(self, x):
130
- x0 = self.layer0(x)
131
- x1 = self.layer1(x0)
132
- x2 = self.layer2(x1)
133
- x3 = self.layer3(x2)
134
- x4 = self.layer4(x3)
135
- x5 = self.layer5(x4)
136
-
137
- cnn_feat = x5.squeeze(2) # [N, c, w]
138
- cnn_feat = paddle.transpose(cnn_feat, perm=[0, 2, 1])
139
- if self.with_lstm:
140
- rnn_feat, _ = self.rnn(cnn_feat)
141
- return rnn_feat
142
- else:
143
- return cnn_feat