pyxllib 0.3.96__py3-none-any.whl → 0.3.197__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (306) hide show
  1. pyxllib/algo/geo.py +12 -0
  2. pyxllib/algo/intervals.py +1 -1
  3. pyxllib/algo/matcher.py +78 -0
  4. pyxllib/algo/pupil.py +187 -19
  5. pyxllib/algo/specialist.py +2 -1
  6. pyxllib/algo/stat.py +38 -2
  7. {pyxlpr → pyxllib/autogui}/__init__.py +1 -1
  8. pyxllib/autogui/activewin.py +246 -0
  9. pyxllib/autogui/all.py +9 -0
  10. pyxllib/{ext/autogui → autogui}/autogui.py +40 -11
  11. pyxllib/autogui/uiautolib.py +362 -0
  12. pyxllib/autogui/wechat.py +827 -0
  13. pyxllib/autogui/wechat_msg.py +421 -0
  14. pyxllib/autogui/wxautolib.py +84 -0
  15. pyxllib/cv/slidercaptcha.py +137 -0
  16. pyxllib/data/echarts.py +123 -12
  17. pyxllib/data/jsonlib.py +89 -0
  18. pyxllib/data/pglib.py +514 -30
  19. pyxllib/data/sqlite.py +231 -4
  20. pyxllib/ext/JLineViewer.py +14 -1
  21. pyxllib/ext/drissionlib.py +277 -0
  22. pyxllib/ext/kq5034lib.py +0 -1594
  23. pyxllib/ext/robustprocfile.py +497 -0
  24. pyxllib/ext/unixlib.py +6 -5
  25. pyxllib/ext/utools.py +108 -95
  26. pyxllib/ext/webhook.py +32 -14
  27. pyxllib/ext/wjxlib.py +88 -0
  28. pyxllib/ext/wpsapi.py +124 -0
  29. pyxllib/ext/xlwork.py +9 -0
  30. pyxllib/ext/yuquelib.py +1003 -71
  31. pyxllib/file/docxlib.py +1 -1
  32. pyxllib/file/libreoffice.py +165 -0
  33. pyxllib/file/movielib.py +9 -0
  34. pyxllib/file/packlib/__init__.py +112 -75
  35. pyxllib/file/pdflib.py +1 -1
  36. pyxllib/file/pupil.py +1 -1
  37. pyxllib/file/specialist/dirlib.py +1 -1
  38. pyxllib/file/specialist/download.py +10 -3
  39. pyxllib/file/specialist/filelib.py +266 -55
  40. pyxllib/file/xlsxlib.py +205 -50
  41. pyxllib/file/xlsyncfile.py +341 -0
  42. pyxllib/prog/cachetools.py +64 -0
  43. pyxllib/prog/filelock.py +42 -0
  44. pyxllib/prog/multiprogs.py +940 -0
  45. pyxllib/prog/newbie.py +9 -2
  46. pyxllib/prog/pupil.py +129 -60
  47. pyxllib/prog/specialist/__init__.py +176 -2
  48. pyxllib/prog/specialist/bc.py +5 -2
  49. pyxllib/prog/specialist/browser.py +11 -2
  50. pyxllib/prog/specialist/datetime.py +68 -0
  51. pyxllib/prog/specialist/tictoc.py +12 -13
  52. pyxllib/prog/specialist/xllog.py +5 -5
  53. pyxllib/prog/xlosenv.py +7 -0
  54. pyxllib/text/airscript.js +744 -0
  55. pyxllib/text/charclasslib.py +17 -5
  56. pyxllib/text/jiebalib.py +6 -3
  57. pyxllib/text/jinjalib.py +32 -0
  58. pyxllib/text/jsa_ai_prompt.md +271 -0
  59. pyxllib/text/jscode.py +159 -4
  60. pyxllib/text/nestenv.py +1 -1
  61. pyxllib/text/newbie.py +12 -0
  62. pyxllib/text/pupil/common.py +26 -0
  63. pyxllib/text/specialist/ptag.py +2 -2
  64. pyxllib/text/templates/echart_base.html +11 -0
  65. pyxllib/text/templates/highlight_code.html +17 -0
  66. pyxllib/text/templates/latex_editor.html +103 -0
  67. pyxllib/text/xmllib.py +76 -14
  68. pyxllib/xl.py +2 -1
  69. pyxllib-0.3.197.dist-info/METADATA +48 -0
  70. pyxllib-0.3.197.dist-info/RECORD +126 -0
  71. {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info}/WHEEL +1 -2
  72. pyxllib/ext/autogui/__init__.py +0 -8
  73. pyxllib-0.3.96.dist-info/METADATA +0 -51
  74. pyxllib-0.3.96.dist-info/RECORD +0 -333
  75. pyxllib-0.3.96.dist-info/top_level.txt +0 -2
  76. pyxlpr/ai/__init__.py +0 -5
  77. pyxlpr/ai/clientlib.py +0 -1281
  78. pyxlpr/ai/specialist.py +0 -286
  79. pyxlpr/ai/torch_app.py +0 -172
  80. pyxlpr/ai/xlpaddle.py +0 -655
  81. pyxlpr/ai/xltorch.py +0 -705
  82. pyxlpr/data/__init__.py +0 -11
  83. pyxlpr/data/coco.py +0 -1325
  84. pyxlpr/data/datacls.py +0 -365
  85. pyxlpr/data/datasets.py +0 -200
  86. pyxlpr/data/gptlib.py +0 -1291
  87. pyxlpr/data/icdar/__init__.py +0 -96
  88. pyxlpr/data/icdar/deteval.py +0 -377
  89. pyxlpr/data/icdar/icdar2013.py +0 -341
  90. pyxlpr/data/icdar/iou.py +0 -340
  91. pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
  92. pyxlpr/data/imtextline.py +0 -473
  93. pyxlpr/data/labelme.py +0 -866
  94. pyxlpr/data/removeline.py +0 -179
  95. pyxlpr/data/specialist.py +0 -57
  96. pyxlpr/eval/__init__.py +0 -85
  97. pyxlpr/paddleocr.py +0 -776
  98. pyxlpr/ppocr/__init__.py +0 -15
  99. pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
  100. pyxlpr/ppocr/data/__init__.py +0 -135
  101. pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
  102. pyxlpr/ppocr/data/imaug/__init__.py +0 -67
  103. pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
  104. pyxlpr/ppocr/data/imaug/east_process.py +0 -437
  105. pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
  106. pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
  107. pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
  108. pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
  109. pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
  110. pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
  111. pyxlpr/ppocr/data/imaug/operators.py +0 -433
  112. pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
  113. pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
  114. pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
  115. pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
  116. pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
  117. pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
  118. pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
  119. pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
  120. pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
  121. pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
  122. pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
  123. pyxlpr/ppocr/data/simple_dataset.py +0 -372
  124. pyxlpr/ppocr/losses/__init__.py +0 -61
  125. pyxlpr/ppocr/losses/ace_loss.py +0 -52
  126. pyxlpr/ppocr/losses/basic_loss.py +0 -135
  127. pyxlpr/ppocr/losses/center_loss.py +0 -88
  128. pyxlpr/ppocr/losses/cls_loss.py +0 -30
  129. pyxlpr/ppocr/losses/combined_loss.py +0 -67
  130. pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
  131. pyxlpr/ppocr/losses/det_db_loss.py +0 -80
  132. pyxlpr/ppocr/losses/det_east_loss.py +0 -63
  133. pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
  134. pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
  135. pyxlpr/ppocr/losses/distillation_loss.py +0 -272
  136. pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
  137. pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
  138. pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
  139. pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
  140. pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
  141. pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
  142. pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
  143. pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
  144. pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
  145. pyxlpr/ppocr/losses/table_att_loss.py +0 -109
  146. pyxlpr/ppocr/metrics/__init__.py +0 -44
  147. pyxlpr/ppocr/metrics/cls_metric.py +0 -45
  148. pyxlpr/ppocr/metrics/det_metric.py +0 -82
  149. pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
  150. pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
  151. pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
  152. pyxlpr/ppocr/metrics/kie_metric.py +0 -70
  153. pyxlpr/ppocr/metrics/rec_metric.py +0 -75
  154. pyxlpr/ppocr/metrics/table_metric.py +0 -50
  155. pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
  156. pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
  157. pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
  158. pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
  159. pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
  160. pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
  161. pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
  162. pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
  163. pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
  164. pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
  165. pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
  166. pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
  167. pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
  168. pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
  169. pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
  170. pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
  171. pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
  172. pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
  173. pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
  174. pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
  175. pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
  176. pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
  177. pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
  178. pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
  179. pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
  180. pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
  181. pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
  182. pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
  183. pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
  184. pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
  185. pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
  186. pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
  187. pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
  188. pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
  189. pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
  190. pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
  191. pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
  192. pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
  193. pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
  194. pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
  195. pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
  196. pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
  197. pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
  198. pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
  199. pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
  200. pyxlpr/ppocr/optimizer/__init__.py +0 -61
  201. pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
  202. pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
  203. pyxlpr/ppocr/optimizer/optimizer.py +0 -160
  204. pyxlpr/ppocr/optimizer/regularizer.py +0 -52
  205. pyxlpr/ppocr/postprocess/__init__.py +0 -55
  206. pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
  207. pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
  208. pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
  209. pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
  210. pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
  211. pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
  212. pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
  213. pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
  214. pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
  215. pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
  216. pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
  217. pyxlpr/ppocr/tools/__init__.py +0 -14
  218. pyxlpr/ppocr/tools/eval.py +0 -83
  219. pyxlpr/ppocr/tools/export_center.py +0 -77
  220. pyxlpr/ppocr/tools/export_model.py +0 -129
  221. pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
  222. pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
  223. pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
  224. pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
  225. pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
  226. pyxlpr/ppocr/tools/infer/utility.py +0 -629
  227. pyxlpr/ppocr/tools/infer_cls.py +0 -83
  228. pyxlpr/ppocr/tools/infer_det.py +0 -134
  229. pyxlpr/ppocr/tools/infer_e2e.py +0 -122
  230. pyxlpr/ppocr/tools/infer_kie.py +0 -153
  231. pyxlpr/ppocr/tools/infer_rec.py +0 -146
  232. pyxlpr/ppocr/tools/infer_table.py +0 -107
  233. pyxlpr/ppocr/tools/program.py +0 -596
  234. pyxlpr/ppocr/tools/test_hubserving.py +0 -117
  235. pyxlpr/ppocr/tools/train.py +0 -163
  236. pyxlpr/ppocr/tools/xlprog.py +0 -748
  237. pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
  238. pyxlpr/ppocr/utils/__init__.py +0 -24
  239. pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
  240. pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
  241. pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
  242. pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
  243. pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
  244. pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
  245. pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
  246. pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
  247. pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
  248. pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
  249. pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
  250. pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
  251. pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
  252. pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
  253. pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
  254. pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
  255. pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
  256. pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
  257. pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
  258. pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
  259. pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
  260. pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
  261. pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
  262. pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
  263. pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
  264. pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
  265. pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
  266. pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
  267. pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
  268. pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
  269. pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
  270. pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
  271. pyxlpr/ppocr/utils/dict90.txt +0 -90
  272. pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
  273. pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
  274. pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
  275. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
  276. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
  277. pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
  278. pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
  279. pyxlpr/ppocr/utils/en_dict.txt +0 -95
  280. pyxlpr/ppocr/utils/gen_label.py +0 -81
  281. pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
  282. pyxlpr/ppocr/utils/iou.py +0 -54
  283. pyxlpr/ppocr/utils/logging.py +0 -69
  284. pyxlpr/ppocr/utils/network.py +0 -84
  285. pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
  286. pyxlpr/ppocr/utils/profiler.py +0 -110
  287. pyxlpr/ppocr/utils/save_load.py +0 -150
  288. pyxlpr/ppocr/utils/stats.py +0 -72
  289. pyxlpr/ppocr/utils/utility.py +0 -80
  290. pyxlpr/ppstructure/__init__.py +0 -13
  291. pyxlpr/ppstructure/predict_system.py +0 -187
  292. pyxlpr/ppstructure/table/__init__.py +0 -13
  293. pyxlpr/ppstructure/table/eval_table.py +0 -72
  294. pyxlpr/ppstructure/table/matcher.py +0 -192
  295. pyxlpr/ppstructure/table/predict_structure.py +0 -136
  296. pyxlpr/ppstructure/table/predict_table.py +0 -221
  297. pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
  298. pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
  299. pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
  300. pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
  301. pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
  302. pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
  303. pyxlpr/ppstructure/utility.py +0 -71
  304. pyxlpr/xlai.py +0 -10
  305. /pyxllib/{ext/autogui → autogui}/virtualkey.py +0 -0
  306. {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info/licenses}/LICENSE +0 -0
@@ -1,402 +0,0 @@
1
- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- """
15
- This code is refer from:
16
- https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textrecog/encoders/sar_encoder.py
17
- https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textrecog/decoders/sar_decoder.py
18
- """
19
-
20
- from __future__ import absolute_import
21
- from __future__ import division
22
- from __future__ import print_function
23
-
24
- import math
25
- import paddle
26
- from paddle import ParamAttr
27
- import paddle.nn as nn
28
- import paddle.nn.functional as F
29
-
30
-
31
- class SAREncoder(nn.Layer):
32
- """
33
- Args:
34
- enc_bi_rnn (bool): If True, use bidirectional RNN in encoder.
35
- enc_drop_rnn (float): Dropout probability of RNN layer in encoder.
36
- enc_gru (bool): If True, use GRU, else LSTM in encoder.
37
- d_model (int): Dim of channels from backbone.
38
- d_enc (int): Dim of encoder RNN layer.
39
- mask (bool): If True, mask padding in RNN sequence.
40
- """
41
-
42
- def __init__(self,
43
- enc_bi_rnn=False,
44
- enc_drop_rnn=0.1,
45
- enc_gru=False,
46
- d_model=512,
47
- d_enc=512,
48
- mask=True,
49
- **kwargs):
50
- super().__init__()
51
- assert isinstance(enc_bi_rnn, bool)
52
- assert isinstance(enc_drop_rnn, (int, float))
53
- assert 0 <= enc_drop_rnn < 1.0
54
- assert isinstance(enc_gru, bool)
55
- assert isinstance(d_model, int)
56
- assert isinstance(d_enc, int)
57
- assert isinstance(mask, bool)
58
-
59
- self.enc_bi_rnn = enc_bi_rnn
60
- self.enc_drop_rnn = enc_drop_rnn
61
- self.mask = mask
62
-
63
- # LSTM Encoder
64
- if enc_bi_rnn:
65
- direction = 'bidirectional'
66
- else:
67
- direction = 'forward'
68
- kwargs = dict(
69
- input_size=d_model,
70
- hidden_size=d_enc,
71
- num_layers=2,
72
- time_major=False,
73
- dropout=enc_drop_rnn,
74
- direction=direction)
75
- if enc_gru:
76
- self.rnn_encoder = nn.GRU(**kwargs)
77
- else:
78
- self.rnn_encoder = nn.LSTM(**kwargs)
79
-
80
- # global feature transformation
81
- encoder_rnn_out_size = d_enc * (int(enc_bi_rnn) + 1)
82
- self.linear = nn.Linear(encoder_rnn_out_size, encoder_rnn_out_size)
83
-
84
- def forward(self, feat, img_metas=None):
85
- if img_metas is not None:
86
- assert len(img_metas[0]) == feat.shape[0]
87
-
88
- valid_ratios = None
89
- if img_metas is not None and self.mask:
90
- valid_ratios = img_metas[-1]
91
-
92
- h_feat = feat.shape[2] # bsz c h w
93
- feat_v = F.max_pool2d(
94
- feat, kernel_size=(h_feat, 1), stride=1, padding=0)
95
- feat_v = feat_v.squeeze(2) # bsz * C * W
96
- feat_v = paddle.transpose(feat_v, perm=[0, 2, 1]) # bsz * W * C
97
- holistic_feat = self.rnn_encoder(feat_v)[0] # bsz * T * C
98
-
99
- if valid_ratios is not None:
100
- valid_hf = []
101
- T = holistic_feat.shape[1]
102
- for i, valid_ratio in enumerate(valid_ratios):
103
- valid_step = min(T, math.ceil(T * valid_ratio)) - 1
104
- valid_hf.append(holistic_feat[i, valid_step, :])
105
- valid_hf = paddle.stack(valid_hf, axis=0)
106
- else:
107
- valid_hf = holistic_feat[:, -1, :] # bsz * C
108
- holistic_feat = self.linear(valid_hf) # bsz * C
109
-
110
- return holistic_feat
111
-
112
-
113
- class BaseDecoder(nn.Layer):
114
- def __init__(self, **kwargs):
115
- super().__init__()
116
-
117
- def forward_train(self, feat, out_enc, targets, img_metas):
118
- raise NotImplementedError
119
-
120
- def forward_test(self, feat, out_enc, img_metas):
121
- raise NotImplementedError
122
-
123
- def forward(self,
124
- feat,
125
- out_enc,
126
- label=None,
127
- img_metas=None,
128
- train_mode=True):
129
- self.train_mode = train_mode
130
-
131
- if train_mode:
132
- return self.forward_train(feat, out_enc, label, img_metas)
133
- return self.forward_test(feat, out_enc, img_metas)
134
-
135
-
136
- class ParallelSARDecoder(BaseDecoder):
137
- """
138
- Args:
139
- out_channels (int): Output class number.
140
- enc_bi_rnn (bool): If True, use bidirectional RNN in encoder.
141
- dec_bi_rnn (bool): If True, use bidirectional RNN in decoder.
142
- dec_drop_rnn (float): Dropout of RNN layer in decoder.
143
- dec_gru (bool): If True, use GRU, else LSTM in decoder.
144
- d_model (int): Dim of channels from backbone.
145
- d_enc (int): Dim of encoder RNN layer.
146
- d_k (int): Dim of channels of attention module.
147
- pred_dropout (float): Dropout probability of prediction layer.
148
- max_seq_len (int): Maximum sequence length for decoding.
149
- mask (bool): If True, mask padding in feature map.
150
- start_idx (int): Index of start token.
151
- padding_idx (int): Index of padding token.
152
- pred_concat (bool): If True, concat glimpse feature from
153
- attention with holistic feature and hidden state.
154
- """
155
-
156
- def __init__(
157
- self,
158
- out_channels, # 90 + unknown + start + padding
159
- enc_bi_rnn=False,
160
- dec_bi_rnn=False,
161
- dec_drop_rnn=0.0,
162
- dec_gru=False,
163
- d_model=512,
164
- d_enc=512,
165
- d_k=64,
166
- pred_dropout=0.1,
167
- max_text_length=30,
168
- mask=True,
169
- pred_concat=True,
170
- **kwargs):
171
- super().__init__()
172
-
173
- self.num_classes = out_channels
174
- self.enc_bi_rnn = enc_bi_rnn
175
- self.d_k = d_k
176
- self.start_idx = out_channels - 2
177
- self.padding_idx = out_channels - 1
178
- self.max_seq_len = max_text_length
179
- self.mask = mask
180
- self.pred_concat = pred_concat
181
-
182
- encoder_rnn_out_size = d_enc * (int(enc_bi_rnn) + 1)
183
- decoder_rnn_out_size = encoder_rnn_out_size * (int(dec_bi_rnn) + 1)
184
-
185
- # 2D attention layer
186
- self.conv1x1_1 = nn.Linear(decoder_rnn_out_size, d_k)
187
- self.conv3x3_1 = nn.Conv2D(
188
- d_model, d_k, kernel_size=3, stride=1, padding=1)
189
- self.conv1x1_2 = nn.Linear(d_k, 1)
190
-
191
- # Decoder RNN layer
192
- if dec_bi_rnn:
193
- direction = 'bidirectional'
194
- else:
195
- direction = 'forward'
196
-
197
- kwargs = dict(
198
- input_size=encoder_rnn_out_size,
199
- hidden_size=encoder_rnn_out_size,
200
- num_layers=2,
201
- time_major=False,
202
- dropout=dec_drop_rnn,
203
- direction=direction)
204
- if dec_gru:
205
- self.rnn_decoder = nn.GRU(**kwargs)
206
- else:
207
- self.rnn_decoder = nn.LSTM(**kwargs)
208
-
209
- # Decoder input embedding
210
- self.embedding = nn.Embedding(
211
- self.num_classes,
212
- encoder_rnn_out_size,
213
- padding_idx=self.padding_idx)
214
-
215
- # Prediction layer
216
- self.pred_dropout = nn.Dropout(pred_dropout)
217
- pred_num_classes = self.num_classes - 1
218
- if pred_concat:
219
- fc_in_channel = decoder_rnn_out_size + d_model + d_enc
220
- else:
221
- fc_in_channel = d_model
222
- self.prediction = nn.Linear(fc_in_channel, pred_num_classes)
223
-
224
- def _2d_attention(self,
225
- decoder_input,
226
- feat,
227
- holistic_feat,
228
- valid_ratios=None):
229
-
230
- y = self.rnn_decoder(decoder_input)[0]
231
- # y: bsz * (seq_len + 1) * hidden_size
232
-
233
- attn_query = self.conv1x1_1(y) # bsz * (seq_len + 1) * attn_size
234
- bsz, seq_len, attn_size = attn_query.shape
235
- attn_query = paddle.unsqueeze(attn_query, axis=[3, 4])
236
- # (bsz, seq_len + 1, attn_size, 1, 1)
237
-
238
- attn_key = self.conv3x3_1(feat)
239
- # bsz * attn_size * h * w
240
- attn_key = attn_key.unsqueeze(1)
241
- # bsz * 1 * attn_size * h * w
242
-
243
- attn_weight = paddle.tanh(paddle.add(attn_key, attn_query))
244
-
245
- # bsz * (seq_len + 1) * attn_size * h * w
246
- attn_weight = paddle.transpose(attn_weight, perm=[0, 1, 3, 4, 2])
247
- # bsz * (seq_len + 1) * h * w * attn_size
248
- attn_weight = self.conv1x1_2(attn_weight)
249
- # bsz * (seq_len + 1) * h * w * 1
250
- bsz, T, h, w, c = attn_weight.shape
251
- assert c == 1
252
-
253
- if valid_ratios is not None:
254
- # cal mask of attention weight
255
- for i, valid_ratio in enumerate(valid_ratios):
256
- valid_width = min(w, math.ceil(w * valid_ratio))
257
- if valid_width < w:
258
- attn_weight[i, :, :, valid_width:, :] = float('-inf')
259
-
260
- attn_weight = paddle.reshape(attn_weight, [bsz, T, -1])
261
- attn_weight = F.softmax(attn_weight, axis=-1)
262
-
263
- attn_weight = paddle.reshape(attn_weight, [bsz, T, h, w, c])
264
- attn_weight = paddle.transpose(attn_weight, perm=[0, 1, 4, 2, 3])
265
- # attn_weight: bsz * T * c * h * w
266
- # feat: bsz * c * h * w
267
- attn_feat = paddle.sum(paddle.multiply(feat.unsqueeze(1), attn_weight),
268
- (3, 4),
269
- keepdim=False)
270
- # bsz * (seq_len + 1) * C
271
-
272
- # Linear transformation
273
- if self.pred_concat:
274
- hf_c = holistic_feat.shape[-1]
275
- holistic_feat = paddle.expand(
276
- holistic_feat, shape=[bsz, seq_len, hf_c])
277
- y = self.prediction(paddle.concat((y, attn_feat, holistic_feat), 2))
278
- else:
279
- y = self.prediction(attn_feat)
280
- # bsz * (seq_len + 1) * num_classes
281
- if self.train_mode:
282
- y = self.pred_dropout(y)
283
-
284
- return y
285
-
286
- def forward_train(self, feat, out_enc, label, img_metas):
287
- '''
288
- img_metas: [label, valid_ratio]
289
- '''
290
- if img_metas is not None:
291
- assert len(img_metas[0]) == feat.shape[0]
292
-
293
- valid_ratios = None
294
- if img_metas is not None and self.mask:
295
- valid_ratios = img_metas[-1]
296
-
297
- lab_embedding = self.embedding(label)
298
- # bsz * seq_len * emb_dim
299
- out_enc = out_enc.unsqueeze(1)
300
- # bsz * 1 * emb_dim
301
- in_dec = paddle.concat((out_enc, lab_embedding), axis=1)
302
- # bsz * (seq_len + 1) * C
303
- out_dec = self._2d_attention(
304
- in_dec, feat, out_enc, valid_ratios=valid_ratios)
305
- # bsz * (seq_len + 1) * num_classes
306
-
307
- return out_dec[:, 1:, :] # bsz * seq_len * num_classes
308
-
309
- def forward_test(self, feat, out_enc, img_metas):
310
- if img_metas is not None:
311
- assert len(img_metas[0]) == feat.shape[0]
312
-
313
- valid_ratios = None
314
- if img_metas is not None and self.mask:
315
- valid_ratios = img_metas[-1]
316
-
317
- seq_len = self.max_seq_len
318
- bsz = feat.shape[0]
319
- start_token = paddle.full(
320
- (bsz, ), fill_value=self.start_idx, dtype='int64')
321
- # bsz
322
- start_token = self.embedding(start_token)
323
- # bsz * emb_dim
324
- emb_dim = start_token.shape[1]
325
- start_token = start_token.unsqueeze(1)
326
- start_token = paddle.expand(start_token, shape=[bsz, seq_len, emb_dim])
327
- # bsz * seq_len * emb_dim
328
- out_enc = out_enc.unsqueeze(1)
329
- # bsz * 1 * emb_dim
330
- decoder_input = paddle.concat((out_enc, start_token), axis=1)
331
- # bsz * (seq_len + 1) * emb_dim
332
-
333
- outputs = []
334
- for i in range(1, seq_len + 1):
335
- decoder_output = self._2d_attention(
336
- decoder_input, feat, out_enc, valid_ratios=valid_ratios)
337
- char_output = decoder_output[:, i, :] # bsz * num_classes
338
- char_output = F.softmax(char_output, -1)
339
- outputs.append(char_output)
340
- max_idx = paddle.argmax(char_output, axis=1, keepdim=False)
341
- char_embedding = self.embedding(max_idx) # bsz * emb_dim
342
- if i < seq_len:
343
- decoder_input[:, i + 1, :] = char_embedding
344
-
345
- outputs = paddle.stack(outputs, 1) # bsz * seq_len * num_classes
346
-
347
- return outputs
348
-
349
-
350
- class SARHead(nn.Layer):
351
- def __init__(self,
352
- out_channels,
353
- enc_bi_rnn=False,
354
- enc_drop_rnn=0.1,
355
- enc_gru=False,
356
- dec_bi_rnn=False,
357
- dec_drop_rnn=0.0,
358
- dec_gru=False,
359
- d_k=512,
360
- pred_dropout=0.1,
361
- max_text_length=30,
362
- pred_concat=True,
363
- **kwargs):
364
- super(SARHead, self).__init__()
365
-
366
- # encoder module
367
- self.encoder = SAREncoder(
368
- enc_bi_rnn=enc_bi_rnn, enc_drop_rnn=enc_drop_rnn, enc_gru=enc_gru)
369
-
370
- # decoder module
371
- self.decoder = ParallelSARDecoder(
372
- out_channels=out_channels,
373
- enc_bi_rnn=enc_bi_rnn,
374
- dec_bi_rnn=dec_bi_rnn,
375
- dec_drop_rnn=dec_drop_rnn,
376
- dec_gru=dec_gru,
377
- d_k=d_k,
378
- pred_dropout=pred_dropout,
379
- max_text_length=max_text_length,
380
- pred_concat=pred_concat)
381
-
382
- def forward(self, feat, targets=None):
383
- '''
384
- img_metas: [label, valid_ratio]
385
- '''
386
- holistic_feat = self.encoder(feat, targets) # bsz c
387
-
388
- if self.training:
389
- label = targets[0] # label
390
- label = paddle.to_tensor(label, dtype='int64')
391
- final_out = self.decoder(
392
- feat, holistic_feat, label, img_metas=targets)
393
- if not self.training:
394
- final_out = self.decoder(
395
- feat,
396
- holistic_feat,
397
- label=None,
398
- img_metas=targets,
399
- train_mode=False)
400
- # (bsz, seq_len, num_classes)
401
-
402
- return final_out
@@ -1,280 +0,0 @@
1
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
-
19
- import math
20
- import paddle
21
- from paddle import nn, ParamAttr
22
- from paddle.nn import functional as F
23
- import paddle.fluid as fluid
24
- import numpy as np
25
- from .self_attention import WrapEncoderForFeature
26
- from .self_attention import WrapEncoder
27
- from paddle.static import Program
28
- from pyxlpr.ppocr.modeling.backbones.rec_resnet_fpn import ResNetFPN
29
- import paddle.fluid.framework as framework
30
-
31
- from collections import OrderedDict
32
- gradient_clip = 10
33
-
34
-
35
- class PVAM(nn.Layer):
36
- def __init__(self, in_channels, char_num, max_text_length, num_heads,
37
- num_encoder_tus, hidden_dims):
38
- super(PVAM, self).__init__()
39
- self.char_num = char_num
40
- self.max_length = max_text_length
41
- self.num_heads = num_heads
42
- self.num_encoder_TUs = num_encoder_tus
43
- self.hidden_dims = hidden_dims
44
- # Transformer encoder
45
- t = 256
46
- c = 512
47
- self.wrap_encoder_for_feature = WrapEncoderForFeature(
48
- src_vocab_size=1,
49
- max_length=t,
50
- n_layer=self.num_encoder_TUs,
51
- n_head=self.num_heads,
52
- d_key=int(self.hidden_dims / self.num_heads),
53
- d_value=int(self.hidden_dims / self.num_heads),
54
- d_model=self.hidden_dims,
55
- d_inner_hid=self.hidden_dims,
56
- prepostprocess_dropout=0.1,
57
- attention_dropout=0.1,
58
- relu_dropout=0.1,
59
- preprocess_cmd="n",
60
- postprocess_cmd="da",
61
- weight_sharing=True)
62
-
63
- # PVAM
64
- self.flatten0 = paddle.nn.Flatten(start_axis=0, stop_axis=1)
65
- self.fc0 = paddle.nn.Linear(
66
- in_features=in_channels,
67
- out_features=in_channels, )
68
- self.emb = paddle.nn.Embedding(
69
- num_embeddings=self.max_length, embedding_dim=in_channels)
70
- self.flatten1 = paddle.nn.Flatten(start_axis=0, stop_axis=2)
71
- self.fc1 = paddle.nn.Linear(
72
- in_features=in_channels, out_features=1, bias_attr=False)
73
-
74
- def forward(self, inputs, encoder_word_pos, gsrm_word_pos):
75
- b, c, h, w = inputs.shape
76
- conv_features = paddle.reshape(inputs, shape=[-1, c, h * w])
77
- conv_features = paddle.transpose(conv_features, perm=[0, 2, 1])
78
- # transformer encoder
79
- b, t, c = conv_features.shape
80
-
81
- enc_inputs = [conv_features, encoder_word_pos, None]
82
- word_features = self.wrap_encoder_for_feature(enc_inputs)
83
-
84
- # pvam
85
- b, t, c = word_features.shape
86
- word_features = self.fc0(word_features)
87
- word_features_ = paddle.reshape(word_features, [-1, 1, t, c])
88
- word_features_ = paddle.tile(word_features_, [1, self.max_length, 1, 1])
89
- word_pos_feature = self.emb(gsrm_word_pos)
90
- word_pos_feature_ = paddle.reshape(word_pos_feature,
91
- [-1, self.max_length, 1, c])
92
- word_pos_feature_ = paddle.tile(word_pos_feature_, [1, 1, t, 1])
93
- y = word_pos_feature_ + word_features_
94
- y = F.tanh(y)
95
- attention_weight = self.fc1(y)
96
- attention_weight = paddle.reshape(
97
- attention_weight, shape=[-1, self.max_length, t])
98
- attention_weight = F.softmax(attention_weight, axis=-1)
99
- pvam_features = paddle.matmul(attention_weight,
100
- word_features) #[b, max_length, c]
101
- return pvam_features
102
-
103
-
104
- class GSRM(nn.Layer):
105
- def __init__(self, in_channels, char_num, max_text_length, num_heads,
106
- num_encoder_tus, num_decoder_tus, hidden_dims):
107
- super(GSRM, self).__init__()
108
- self.char_num = char_num
109
- self.max_length = max_text_length
110
- self.num_heads = num_heads
111
- self.num_encoder_TUs = num_encoder_tus
112
- self.num_decoder_TUs = num_decoder_tus
113
- self.hidden_dims = hidden_dims
114
-
115
- self.fc0 = paddle.nn.Linear(
116
- in_features=in_channels, out_features=self.char_num)
117
- self.wrap_encoder0 = WrapEncoder(
118
- src_vocab_size=self.char_num + 1,
119
- max_length=self.max_length,
120
- n_layer=self.num_decoder_TUs,
121
- n_head=self.num_heads,
122
- d_key=int(self.hidden_dims / self.num_heads),
123
- d_value=int(self.hidden_dims / self.num_heads),
124
- d_model=self.hidden_dims,
125
- d_inner_hid=self.hidden_dims,
126
- prepostprocess_dropout=0.1,
127
- attention_dropout=0.1,
128
- relu_dropout=0.1,
129
- preprocess_cmd="n",
130
- postprocess_cmd="da",
131
- weight_sharing=True)
132
-
133
- self.wrap_encoder1 = WrapEncoder(
134
- src_vocab_size=self.char_num + 1,
135
- max_length=self.max_length,
136
- n_layer=self.num_decoder_TUs,
137
- n_head=self.num_heads,
138
- d_key=int(self.hidden_dims / self.num_heads),
139
- d_value=int(self.hidden_dims / self.num_heads),
140
- d_model=self.hidden_dims,
141
- d_inner_hid=self.hidden_dims,
142
- prepostprocess_dropout=0.1,
143
- attention_dropout=0.1,
144
- relu_dropout=0.1,
145
- preprocess_cmd="n",
146
- postprocess_cmd="da",
147
- weight_sharing=True)
148
-
149
- self.mul = lambda x: paddle.matmul(x=x,
150
- y=self.wrap_encoder0.prepare_decoder.emb0.weight,
151
- transpose_y=True)
152
-
153
- def forward(self, inputs, gsrm_word_pos, gsrm_slf_attn_bias1,
154
- gsrm_slf_attn_bias2):
155
- # ===== GSRM Visual-to-semantic embedding block =====
156
- b, t, c = inputs.shape
157
- pvam_features = paddle.reshape(inputs, [-1, c])
158
- word_out = self.fc0(pvam_features)
159
- word_ids = paddle.argmax(F.softmax(word_out), axis=1)
160
- word_ids = paddle.reshape(x=word_ids, shape=[-1, t, 1])
161
-
162
- #===== GSRM Semantic reasoning block =====
163
- """
164
- This module is achieved through bi-transformers,
165
- ngram_feature1 is the froward one, ngram_fetaure2 is the backward one
166
- """
167
- pad_idx = self.char_num
168
-
169
- word1 = paddle.cast(word_ids, "float32")
170
- word1 = F.pad(word1, [1, 0], value=1.0 * pad_idx, data_format="NLC")
171
- word1 = paddle.cast(word1, "int64")
172
- word1 = word1[:, :-1, :]
173
- word2 = word_ids
174
-
175
- enc_inputs_1 = [word1, gsrm_word_pos, gsrm_slf_attn_bias1]
176
- enc_inputs_2 = [word2, gsrm_word_pos, gsrm_slf_attn_bias2]
177
-
178
- gsrm_feature1 = self.wrap_encoder0(enc_inputs_1)
179
- gsrm_feature2 = self.wrap_encoder1(enc_inputs_2)
180
-
181
- gsrm_feature2 = F.pad(gsrm_feature2, [0, 1],
182
- value=0.,
183
- data_format="NLC")
184
- gsrm_feature2 = gsrm_feature2[:, 1:, ]
185
- gsrm_features = gsrm_feature1 + gsrm_feature2
186
-
187
- gsrm_out = self.mul(gsrm_features)
188
-
189
- b, t, c = gsrm_out.shape
190
- gsrm_out = paddle.reshape(gsrm_out, [-1, c])
191
-
192
- return gsrm_features, word_out, gsrm_out
193
-
194
-
195
- class VSFD(nn.Layer):
196
- def __init__(self, in_channels=512, pvam_ch=512, char_num=38):
197
- super(VSFD, self).__init__()
198
- self.char_num = char_num
199
- self.fc0 = paddle.nn.Linear(
200
- in_features=in_channels * 2, out_features=pvam_ch)
201
- self.fc1 = paddle.nn.Linear(
202
- in_features=pvam_ch, out_features=self.char_num)
203
-
204
- def forward(self, pvam_feature, gsrm_feature):
205
- b, t, c1 = pvam_feature.shape
206
- b, t, c2 = gsrm_feature.shape
207
- combine_feature_ = paddle.concat([pvam_feature, gsrm_feature], axis=2)
208
- img_comb_feature_ = paddle.reshape(
209
- combine_feature_, shape=[-1, c1 + c2])
210
- img_comb_feature_map = self.fc0(img_comb_feature_)
211
- img_comb_feature_map = F.sigmoid(img_comb_feature_map)
212
- img_comb_feature_map = paddle.reshape(
213
- img_comb_feature_map, shape=[-1, t, c1])
214
- combine_feature = img_comb_feature_map * pvam_feature + (
215
- 1.0 - img_comb_feature_map) * gsrm_feature
216
- img_comb_feature = paddle.reshape(combine_feature, shape=[-1, c1])
217
-
218
- out = self.fc1(img_comb_feature)
219
- return out
220
-
221
-
222
- class SRNHead(nn.Layer):
223
- def __init__(self, in_channels, out_channels, max_text_length, num_heads,
224
- num_encoder_TUs, num_decoder_TUs, hidden_dims, **kwargs):
225
- super(SRNHead, self).__init__()
226
- self.char_num = out_channels
227
- self.max_length = max_text_length
228
- self.num_heads = num_heads
229
- self.num_encoder_TUs = num_encoder_TUs
230
- self.num_decoder_TUs = num_decoder_TUs
231
- self.hidden_dims = hidden_dims
232
-
233
- self.pvam = PVAM(
234
- in_channels=in_channels,
235
- char_num=self.char_num,
236
- max_text_length=self.max_length,
237
- num_heads=self.num_heads,
238
- num_encoder_tus=self.num_encoder_TUs,
239
- hidden_dims=self.hidden_dims)
240
-
241
- self.gsrm = GSRM(
242
- in_channels=in_channels,
243
- char_num=self.char_num,
244
- max_text_length=self.max_length,
245
- num_heads=self.num_heads,
246
- num_encoder_tus=self.num_encoder_TUs,
247
- num_decoder_tus=self.num_decoder_TUs,
248
- hidden_dims=self.hidden_dims)
249
- self.vsfd = VSFD(in_channels=in_channels, char_num=self.char_num)
250
-
251
- self.gsrm.wrap_encoder1.prepare_decoder.emb0 = self.gsrm.wrap_encoder0.prepare_decoder.emb0
252
-
253
- def forward(self, inputs, targets=None):
254
- others = targets[-4:]
255
- encoder_word_pos = others[0]
256
- gsrm_word_pos = others[1]
257
- gsrm_slf_attn_bias1 = others[2]
258
- gsrm_slf_attn_bias2 = others[3]
259
-
260
- pvam_feature = self.pvam(inputs, encoder_word_pos, gsrm_word_pos)
261
-
262
- gsrm_feature, word_out, gsrm_out = self.gsrm(
263
- pvam_feature, gsrm_word_pos, gsrm_slf_attn_bias1,
264
- gsrm_slf_attn_bias2)
265
-
266
- final_out = self.vsfd(pvam_feature, gsrm_feature)
267
- if not self.training:
268
- final_out = F.softmax(final_out, axis=1)
269
-
270
- _, decoded_out = paddle.topk(final_out, k=1)
271
-
272
- predicts = OrderedDict([
273
- ('predict', final_out),
274
- ('pvam_feature', pvam_feature),
275
- ('decoded_out', decoded_out),
276
- ('word_out', word_out),
277
- ('gsrm_out', gsrm_out),
278
- ])
279
-
280
- return predicts