pyxllib 0.3.96__py3-none-any.whl → 0.3.197__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (306) hide show
  1. pyxllib/algo/geo.py +12 -0
  2. pyxllib/algo/intervals.py +1 -1
  3. pyxllib/algo/matcher.py +78 -0
  4. pyxllib/algo/pupil.py +187 -19
  5. pyxllib/algo/specialist.py +2 -1
  6. pyxllib/algo/stat.py +38 -2
  7. {pyxlpr → pyxllib/autogui}/__init__.py +1 -1
  8. pyxllib/autogui/activewin.py +246 -0
  9. pyxllib/autogui/all.py +9 -0
  10. pyxllib/{ext/autogui → autogui}/autogui.py +40 -11
  11. pyxllib/autogui/uiautolib.py +362 -0
  12. pyxllib/autogui/wechat.py +827 -0
  13. pyxllib/autogui/wechat_msg.py +421 -0
  14. pyxllib/autogui/wxautolib.py +84 -0
  15. pyxllib/cv/slidercaptcha.py +137 -0
  16. pyxllib/data/echarts.py +123 -12
  17. pyxllib/data/jsonlib.py +89 -0
  18. pyxllib/data/pglib.py +514 -30
  19. pyxllib/data/sqlite.py +231 -4
  20. pyxllib/ext/JLineViewer.py +14 -1
  21. pyxllib/ext/drissionlib.py +277 -0
  22. pyxllib/ext/kq5034lib.py +0 -1594
  23. pyxllib/ext/robustprocfile.py +497 -0
  24. pyxllib/ext/unixlib.py +6 -5
  25. pyxllib/ext/utools.py +108 -95
  26. pyxllib/ext/webhook.py +32 -14
  27. pyxllib/ext/wjxlib.py +88 -0
  28. pyxllib/ext/wpsapi.py +124 -0
  29. pyxllib/ext/xlwork.py +9 -0
  30. pyxllib/ext/yuquelib.py +1003 -71
  31. pyxllib/file/docxlib.py +1 -1
  32. pyxllib/file/libreoffice.py +165 -0
  33. pyxllib/file/movielib.py +9 -0
  34. pyxllib/file/packlib/__init__.py +112 -75
  35. pyxllib/file/pdflib.py +1 -1
  36. pyxllib/file/pupil.py +1 -1
  37. pyxllib/file/specialist/dirlib.py +1 -1
  38. pyxllib/file/specialist/download.py +10 -3
  39. pyxllib/file/specialist/filelib.py +266 -55
  40. pyxllib/file/xlsxlib.py +205 -50
  41. pyxllib/file/xlsyncfile.py +341 -0
  42. pyxllib/prog/cachetools.py +64 -0
  43. pyxllib/prog/filelock.py +42 -0
  44. pyxllib/prog/multiprogs.py +940 -0
  45. pyxllib/prog/newbie.py +9 -2
  46. pyxllib/prog/pupil.py +129 -60
  47. pyxllib/prog/specialist/__init__.py +176 -2
  48. pyxllib/prog/specialist/bc.py +5 -2
  49. pyxllib/prog/specialist/browser.py +11 -2
  50. pyxllib/prog/specialist/datetime.py +68 -0
  51. pyxllib/prog/specialist/tictoc.py +12 -13
  52. pyxllib/prog/specialist/xllog.py +5 -5
  53. pyxllib/prog/xlosenv.py +7 -0
  54. pyxllib/text/airscript.js +744 -0
  55. pyxllib/text/charclasslib.py +17 -5
  56. pyxllib/text/jiebalib.py +6 -3
  57. pyxllib/text/jinjalib.py +32 -0
  58. pyxllib/text/jsa_ai_prompt.md +271 -0
  59. pyxllib/text/jscode.py +159 -4
  60. pyxllib/text/nestenv.py +1 -1
  61. pyxllib/text/newbie.py +12 -0
  62. pyxllib/text/pupil/common.py +26 -0
  63. pyxllib/text/specialist/ptag.py +2 -2
  64. pyxllib/text/templates/echart_base.html +11 -0
  65. pyxllib/text/templates/highlight_code.html +17 -0
  66. pyxllib/text/templates/latex_editor.html +103 -0
  67. pyxllib/text/xmllib.py +76 -14
  68. pyxllib/xl.py +2 -1
  69. pyxllib-0.3.197.dist-info/METADATA +48 -0
  70. pyxllib-0.3.197.dist-info/RECORD +126 -0
  71. {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info}/WHEEL +1 -2
  72. pyxllib/ext/autogui/__init__.py +0 -8
  73. pyxllib-0.3.96.dist-info/METADATA +0 -51
  74. pyxllib-0.3.96.dist-info/RECORD +0 -333
  75. pyxllib-0.3.96.dist-info/top_level.txt +0 -2
  76. pyxlpr/ai/__init__.py +0 -5
  77. pyxlpr/ai/clientlib.py +0 -1281
  78. pyxlpr/ai/specialist.py +0 -286
  79. pyxlpr/ai/torch_app.py +0 -172
  80. pyxlpr/ai/xlpaddle.py +0 -655
  81. pyxlpr/ai/xltorch.py +0 -705
  82. pyxlpr/data/__init__.py +0 -11
  83. pyxlpr/data/coco.py +0 -1325
  84. pyxlpr/data/datacls.py +0 -365
  85. pyxlpr/data/datasets.py +0 -200
  86. pyxlpr/data/gptlib.py +0 -1291
  87. pyxlpr/data/icdar/__init__.py +0 -96
  88. pyxlpr/data/icdar/deteval.py +0 -377
  89. pyxlpr/data/icdar/icdar2013.py +0 -341
  90. pyxlpr/data/icdar/iou.py +0 -340
  91. pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
  92. pyxlpr/data/imtextline.py +0 -473
  93. pyxlpr/data/labelme.py +0 -866
  94. pyxlpr/data/removeline.py +0 -179
  95. pyxlpr/data/specialist.py +0 -57
  96. pyxlpr/eval/__init__.py +0 -85
  97. pyxlpr/paddleocr.py +0 -776
  98. pyxlpr/ppocr/__init__.py +0 -15
  99. pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
  100. pyxlpr/ppocr/data/__init__.py +0 -135
  101. pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
  102. pyxlpr/ppocr/data/imaug/__init__.py +0 -67
  103. pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
  104. pyxlpr/ppocr/data/imaug/east_process.py +0 -437
  105. pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
  106. pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
  107. pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
  108. pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
  109. pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
  110. pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
  111. pyxlpr/ppocr/data/imaug/operators.py +0 -433
  112. pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
  113. pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
  114. pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
  115. pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
  116. pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
  117. pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
  118. pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
  119. pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
  120. pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
  121. pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
  122. pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
  123. pyxlpr/ppocr/data/simple_dataset.py +0 -372
  124. pyxlpr/ppocr/losses/__init__.py +0 -61
  125. pyxlpr/ppocr/losses/ace_loss.py +0 -52
  126. pyxlpr/ppocr/losses/basic_loss.py +0 -135
  127. pyxlpr/ppocr/losses/center_loss.py +0 -88
  128. pyxlpr/ppocr/losses/cls_loss.py +0 -30
  129. pyxlpr/ppocr/losses/combined_loss.py +0 -67
  130. pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
  131. pyxlpr/ppocr/losses/det_db_loss.py +0 -80
  132. pyxlpr/ppocr/losses/det_east_loss.py +0 -63
  133. pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
  134. pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
  135. pyxlpr/ppocr/losses/distillation_loss.py +0 -272
  136. pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
  137. pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
  138. pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
  139. pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
  140. pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
  141. pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
  142. pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
  143. pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
  144. pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
  145. pyxlpr/ppocr/losses/table_att_loss.py +0 -109
  146. pyxlpr/ppocr/metrics/__init__.py +0 -44
  147. pyxlpr/ppocr/metrics/cls_metric.py +0 -45
  148. pyxlpr/ppocr/metrics/det_metric.py +0 -82
  149. pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
  150. pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
  151. pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
  152. pyxlpr/ppocr/metrics/kie_metric.py +0 -70
  153. pyxlpr/ppocr/metrics/rec_metric.py +0 -75
  154. pyxlpr/ppocr/metrics/table_metric.py +0 -50
  155. pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
  156. pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
  157. pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
  158. pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
  159. pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
  160. pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
  161. pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
  162. pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
  163. pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
  164. pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
  165. pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
  166. pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
  167. pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
  168. pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
  169. pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
  170. pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
  171. pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
  172. pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
  173. pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
  174. pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
  175. pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
  176. pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
  177. pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
  178. pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
  179. pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
  180. pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
  181. pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
  182. pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
  183. pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
  184. pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
  185. pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
  186. pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
  187. pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
  188. pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
  189. pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
  190. pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
  191. pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
  192. pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
  193. pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
  194. pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
  195. pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
  196. pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
  197. pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
  198. pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
  199. pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
  200. pyxlpr/ppocr/optimizer/__init__.py +0 -61
  201. pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
  202. pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
  203. pyxlpr/ppocr/optimizer/optimizer.py +0 -160
  204. pyxlpr/ppocr/optimizer/regularizer.py +0 -52
  205. pyxlpr/ppocr/postprocess/__init__.py +0 -55
  206. pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
  207. pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
  208. pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
  209. pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
  210. pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
  211. pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
  212. pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
  213. pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
  214. pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
  215. pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
  216. pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
  217. pyxlpr/ppocr/tools/__init__.py +0 -14
  218. pyxlpr/ppocr/tools/eval.py +0 -83
  219. pyxlpr/ppocr/tools/export_center.py +0 -77
  220. pyxlpr/ppocr/tools/export_model.py +0 -129
  221. pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
  222. pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
  223. pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
  224. pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
  225. pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
  226. pyxlpr/ppocr/tools/infer/utility.py +0 -629
  227. pyxlpr/ppocr/tools/infer_cls.py +0 -83
  228. pyxlpr/ppocr/tools/infer_det.py +0 -134
  229. pyxlpr/ppocr/tools/infer_e2e.py +0 -122
  230. pyxlpr/ppocr/tools/infer_kie.py +0 -153
  231. pyxlpr/ppocr/tools/infer_rec.py +0 -146
  232. pyxlpr/ppocr/tools/infer_table.py +0 -107
  233. pyxlpr/ppocr/tools/program.py +0 -596
  234. pyxlpr/ppocr/tools/test_hubserving.py +0 -117
  235. pyxlpr/ppocr/tools/train.py +0 -163
  236. pyxlpr/ppocr/tools/xlprog.py +0 -748
  237. pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
  238. pyxlpr/ppocr/utils/__init__.py +0 -24
  239. pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
  240. pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
  241. pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
  242. pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
  243. pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
  244. pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
  245. pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
  246. pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
  247. pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
  248. pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
  249. pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
  250. pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
  251. pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
  252. pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
  253. pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
  254. pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
  255. pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
  256. pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
  257. pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
  258. pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
  259. pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
  260. pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
  261. pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
  262. pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
  263. pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
  264. pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
  265. pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
  266. pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
  267. pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
  268. pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
  269. pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
  270. pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
  271. pyxlpr/ppocr/utils/dict90.txt +0 -90
  272. pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
  273. pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
  274. pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
  275. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
  276. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
  277. pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
  278. pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
  279. pyxlpr/ppocr/utils/en_dict.txt +0 -95
  280. pyxlpr/ppocr/utils/gen_label.py +0 -81
  281. pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
  282. pyxlpr/ppocr/utils/iou.py +0 -54
  283. pyxlpr/ppocr/utils/logging.py +0 -69
  284. pyxlpr/ppocr/utils/network.py +0 -84
  285. pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
  286. pyxlpr/ppocr/utils/profiler.py +0 -110
  287. pyxlpr/ppocr/utils/save_load.py +0 -150
  288. pyxlpr/ppocr/utils/stats.py +0 -72
  289. pyxlpr/ppocr/utils/utility.py +0 -80
  290. pyxlpr/ppstructure/__init__.py +0 -13
  291. pyxlpr/ppstructure/predict_system.py +0 -187
  292. pyxlpr/ppstructure/table/__init__.py +0 -13
  293. pyxlpr/ppstructure/table/eval_table.py +0 -72
  294. pyxlpr/ppstructure/table/matcher.py +0 -192
  295. pyxlpr/ppstructure/table/predict_structure.py +0 -136
  296. pyxlpr/ppstructure/table/predict_table.py +0 -221
  297. pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
  298. pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
  299. pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
  300. pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
  301. pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
  302. pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
  303. pyxlpr/ppstructure/utility.py +0 -71
  304. pyxlpr/xlai.py +0 -10
  305. /pyxllib/{ext/autogui → autogui}/virtualkey.py +0 -0
  306. {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info/licenses}/LICENSE +0 -0
@@ -1,406 +0,0 @@
1
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
-
19
- import math
20
-
21
- import paddle
22
- from paddle import ParamAttr, nn
23
- from paddle import nn, ParamAttr
24
- from paddle.nn import functional as F
25
- import paddle.fluid as fluid
26
- import numpy as np
27
- gradient_clip = 10
28
-
29
-
30
- class WrapEncoderForFeature(nn.Layer):
31
- def __init__(self,
32
- src_vocab_size,
33
- max_length,
34
- n_layer,
35
- n_head,
36
- d_key,
37
- d_value,
38
- d_model,
39
- d_inner_hid,
40
- prepostprocess_dropout,
41
- attention_dropout,
42
- relu_dropout,
43
- preprocess_cmd,
44
- postprocess_cmd,
45
- weight_sharing,
46
- bos_idx=0):
47
- super(WrapEncoderForFeature, self).__init__()
48
-
49
- self.prepare_encoder = PrepareEncoder(
50
- src_vocab_size,
51
- d_model,
52
- max_length,
53
- prepostprocess_dropout,
54
- bos_idx=bos_idx,
55
- word_emb_param_name="src_word_emb_table")
56
- self.encoder = Encoder(n_layer, n_head, d_key, d_value, d_model,
57
- d_inner_hid, prepostprocess_dropout,
58
- attention_dropout, relu_dropout, preprocess_cmd,
59
- postprocess_cmd)
60
-
61
- def forward(self, enc_inputs):
62
- conv_features, src_pos, src_slf_attn_bias = enc_inputs
63
- enc_input = self.prepare_encoder(conv_features, src_pos)
64
- enc_output = self.encoder(enc_input, src_slf_attn_bias)
65
- return enc_output
66
-
67
-
68
- class WrapEncoder(nn.Layer):
69
- """
70
- embedder + encoder
71
- """
72
-
73
- def __init__(self,
74
- src_vocab_size,
75
- max_length,
76
- n_layer,
77
- n_head,
78
- d_key,
79
- d_value,
80
- d_model,
81
- d_inner_hid,
82
- prepostprocess_dropout,
83
- attention_dropout,
84
- relu_dropout,
85
- preprocess_cmd,
86
- postprocess_cmd,
87
- weight_sharing,
88
- bos_idx=0):
89
- super(WrapEncoder, self).__init__()
90
-
91
- self.prepare_decoder = PrepareDecoder(
92
- src_vocab_size,
93
- d_model,
94
- max_length,
95
- prepostprocess_dropout,
96
- bos_idx=bos_idx)
97
- self.encoder = Encoder(n_layer, n_head, d_key, d_value, d_model,
98
- d_inner_hid, prepostprocess_dropout,
99
- attention_dropout, relu_dropout, preprocess_cmd,
100
- postprocess_cmd)
101
-
102
- def forward(self, enc_inputs):
103
- src_word, src_pos, src_slf_attn_bias = enc_inputs
104
- enc_input = self.prepare_decoder(src_word, src_pos)
105
- enc_output = self.encoder(enc_input, src_slf_attn_bias)
106
- return enc_output
107
-
108
-
109
- class Encoder(nn.Layer):
110
- """
111
- encoder
112
- """
113
-
114
- def __init__(self,
115
- n_layer,
116
- n_head,
117
- d_key,
118
- d_value,
119
- d_model,
120
- d_inner_hid,
121
- prepostprocess_dropout,
122
- attention_dropout,
123
- relu_dropout,
124
- preprocess_cmd="n",
125
- postprocess_cmd="da"):
126
-
127
- super(Encoder, self).__init__()
128
-
129
- self.encoder_layers = list()
130
- for i in range(n_layer):
131
- self.encoder_layers.append(
132
- self.add_sublayer(
133
- "layer_%d" % i,
134
- EncoderLayer(n_head, d_key, d_value, d_model, d_inner_hid,
135
- prepostprocess_dropout, attention_dropout,
136
- relu_dropout, preprocess_cmd,
137
- postprocess_cmd)))
138
- self.processer = PrePostProcessLayer(preprocess_cmd, d_model,
139
- prepostprocess_dropout)
140
-
141
- def forward(self, enc_input, attn_bias):
142
- for encoder_layer in self.encoder_layers:
143
- enc_output = encoder_layer(enc_input, attn_bias)
144
- enc_input = enc_output
145
- enc_output = self.processer(enc_output)
146
- return enc_output
147
-
148
-
149
- class EncoderLayer(nn.Layer):
150
- """
151
- EncoderLayer
152
- """
153
-
154
- def __init__(self,
155
- n_head,
156
- d_key,
157
- d_value,
158
- d_model,
159
- d_inner_hid,
160
- prepostprocess_dropout,
161
- attention_dropout,
162
- relu_dropout,
163
- preprocess_cmd="n",
164
- postprocess_cmd="da"):
165
-
166
- super(EncoderLayer, self).__init__()
167
- self.preprocesser1 = PrePostProcessLayer(preprocess_cmd, d_model,
168
- prepostprocess_dropout)
169
- self.self_attn = MultiHeadAttention(d_key, d_value, d_model, n_head,
170
- attention_dropout)
171
- self.postprocesser1 = PrePostProcessLayer(postprocess_cmd, d_model,
172
- prepostprocess_dropout)
173
-
174
- self.preprocesser2 = PrePostProcessLayer(preprocess_cmd, d_model,
175
- prepostprocess_dropout)
176
- self.ffn = FFN(d_inner_hid, d_model, relu_dropout)
177
- self.postprocesser2 = PrePostProcessLayer(postprocess_cmd, d_model,
178
- prepostprocess_dropout)
179
-
180
- def forward(self, enc_input, attn_bias):
181
- attn_output = self.self_attn(
182
- self.preprocesser1(enc_input), None, None, attn_bias)
183
- attn_output = self.postprocesser1(attn_output, enc_input)
184
- ffn_output = self.ffn(self.preprocesser2(attn_output))
185
- ffn_output = self.postprocesser2(ffn_output, attn_output)
186
- return ffn_output
187
-
188
-
189
- class MultiHeadAttention(nn.Layer):
190
- """
191
- Multi-Head Attention
192
- """
193
-
194
- def __init__(self, d_key, d_value, d_model, n_head=1, dropout_rate=0.):
195
- super(MultiHeadAttention, self).__init__()
196
- self.n_head = n_head
197
- self.d_key = d_key
198
- self.d_value = d_value
199
- self.d_model = d_model
200
- self.dropout_rate = dropout_rate
201
- self.q_fc = paddle.nn.Linear(
202
- in_features=d_model, out_features=d_key * n_head, bias_attr=False)
203
- self.k_fc = paddle.nn.Linear(
204
- in_features=d_model, out_features=d_key * n_head, bias_attr=False)
205
- self.v_fc = paddle.nn.Linear(
206
- in_features=d_model, out_features=d_value * n_head, bias_attr=False)
207
- self.proj_fc = paddle.nn.Linear(
208
- in_features=d_value * n_head, out_features=d_model, bias_attr=False)
209
-
210
- def _prepare_qkv(self, queries, keys, values, cache=None):
211
- if keys is None: # self-attention
212
- keys, values = queries, queries
213
- static_kv = False
214
- else: # cross-attention
215
- static_kv = True
216
-
217
- q = self.q_fc(queries)
218
- q = paddle.reshape(x=q, shape=[0, 0, self.n_head, self.d_key])
219
- q = paddle.transpose(x=q, perm=[0, 2, 1, 3])
220
-
221
- if cache is not None and static_kv and "static_k" in cache:
222
- # for encoder-decoder attention in inference and has cached
223
- k = cache["static_k"]
224
- v = cache["static_v"]
225
- else:
226
- k = self.k_fc(keys)
227
- v = self.v_fc(values)
228
- k = paddle.reshape(x=k, shape=[0, 0, self.n_head, self.d_key])
229
- k = paddle.transpose(x=k, perm=[0, 2, 1, 3])
230
- v = paddle.reshape(x=v, shape=[0, 0, self.n_head, self.d_value])
231
- v = paddle.transpose(x=v, perm=[0, 2, 1, 3])
232
-
233
- if cache is not None:
234
- if static_kv and not "static_k" in cache:
235
- # for encoder-decoder attention in inference and has not cached
236
- cache["static_k"], cache["static_v"] = k, v
237
- elif not static_kv:
238
- # for decoder self-attention in inference
239
- cache_k, cache_v = cache["k"], cache["v"]
240
- k = paddle.concat([cache_k, k], axis=2)
241
- v = paddle.concat([cache_v, v], axis=2)
242
- cache["k"], cache["v"] = k, v
243
-
244
- return q, k, v
245
-
246
- def forward(self, queries, keys, values, attn_bias, cache=None):
247
- # compute q ,k ,v
248
- keys = queries if keys is None else keys
249
- values = keys if values is None else values
250
- q, k, v = self._prepare_qkv(queries, keys, values, cache)
251
-
252
- # scale dot product attention
253
- product = paddle.matmul(x=q, y=k, transpose_y=True)
254
- product = product * self.d_model**-0.5
255
- if attn_bias is not None:
256
- product += attn_bias
257
- weights = F.softmax(product)
258
- if self.dropout_rate:
259
- weights = F.dropout(
260
- weights, p=self.dropout_rate, mode="downscale_in_infer")
261
- out = paddle.matmul(weights, v)
262
-
263
- # combine heads
264
- out = paddle.transpose(out, perm=[0, 2, 1, 3])
265
- out = paddle.reshape(x=out, shape=[0, 0, out.shape[2] * out.shape[3]])
266
-
267
- # project to output
268
- out = self.proj_fc(out)
269
-
270
- return out
271
-
272
-
273
- class PrePostProcessLayer(nn.Layer):
274
- """
275
- PrePostProcessLayer
276
- """
277
-
278
- def __init__(self, process_cmd, d_model, dropout_rate):
279
- super(PrePostProcessLayer, self).__init__()
280
- self.process_cmd = process_cmd
281
- self.functors = []
282
- for cmd in self.process_cmd:
283
- if cmd == "a": # add residual connection
284
- self.functors.append(lambda x, y: x + y if y is not None else x)
285
- elif cmd == "n": # add layer normalization
286
- self.functors.append(
287
- self.add_sublayer(
288
- "layer_norm_%d" % len(self.sublayers()),
289
- paddle.nn.LayerNorm(
290
- normalized_shape=d_model,
291
- weight_attr=fluid.ParamAttr(
292
- initializer=fluid.initializer.Constant(1.)),
293
- bias_attr=fluid.ParamAttr(
294
- initializer=fluid.initializer.Constant(0.)))))
295
- elif cmd == "d": # add dropout
296
- self.functors.append(lambda x: F.dropout(
297
- x, p=dropout_rate, mode="downscale_in_infer")
298
- if dropout_rate else x)
299
-
300
- def forward(self, x, residual=None):
301
- for i, cmd in enumerate(self.process_cmd):
302
- if cmd == "a":
303
- x = self.functors[i](x, residual)
304
- else:
305
- x = self.functors[i](x)
306
- return x
307
-
308
-
309
- class PrepareEncoder(nn.Layer):
310
- def __init__(self,
311
- src_vocab_size,
312
- src_emb_dim,
313
- src_max_len,
314
- dropout_rate=0,
315
- bos_idx=0,
316
- word_emb_param_name=None,
317
- pos_enc_param_name=None):
318
- super(PrepareEncoder, self).__init__()
319
- self.src_emb_dim = src_emb_dim
320
- self.src_max_len = src_max_len
321
- self.emb = paddle.nn.Embedding(
322
- num_embeddings=self.src_max_len, embedding_dim=self.src_emb_dim)
323
- self.dropout_rate = dropout_rate
324
-
325
- def forward(self, src_word, src_pos):
326
- src_word_emb = src_word
327
- src_word_emb = fluid.layers.cast(src_word_emb, 'float32')
328
- src_word_emb = paddle.scale(x=src_word_emb, scale=self.src_emb_dim**0.5)
329
- src_pos = paddle.squeeze(src_pos, axis=-1)
330
- src_pos_enc = self.emb(src_pos)
331
- src_pos_enc.stop_gradient = True
332
- enc_input = src_word_emb + src_pos_enc
333
- if self.dropout_rate:
334
- out = F.dropout(
335
- x=enc_input, p=self.dropout_rate, mode="downscale_in_infer")
336
- else:
337
- out = enc_input
338
- return out
339
-
340
-
341
- class PrepareDecoder(nn.Layer):
342
- def __init__(self,
343
- src_vocab_size,
344
- src_emb_dim,
345
- src_max_len,
346
- dropout_rate=0,
347
- bos_idx=0,
348
- word_emb_param_name=None,
349
- pos_enc_param_name=None):
350
- super(PrepareDecoder, self).__init__()
351
- self.src_emb_dim = src_emb_dim
352
- """
353
- self.emb0 = Embedding(num_embeddings=src_vocab_size,
354
- embedding_dim=src_emb_dim)
355
- """
356
- self.emb0 = paddle.nn.Embedding(
357
- num_embeddings=src_vocab_size,
358
- embedding_dim=self.src_emb_dim,
359
- padding_idx=bos_idx,
360
- weight_attr=paddle.ParamAttr(
361
- name=word_emb_param_name,
362
- initializer=nn.initializer.Normal(0., src_emb_dim**-0.5)))
363
- self.emb1 = paddle.nn.Embedding(
364
- num_embeddings=src_max_len,
365
- embedding_dim=self.src_emb_dim,
366
- weight_attr=paddle.ParamAttr(name=pos_enc_param_name))
367
- self.dropout_rate = dropout_rate
368
-
369
- def forward(self, src_word, src_pos):
370
- src_word = fluid.layers.cast(src_word, 'int64')
371
- src_word = paddle.squeeze(src_word, axis=-1)
372
- src_word_emb = self.emb0(src_word)
373
- src_word_emb = paddle.scale(x=src_word_emb, scale=self.src_emb_dim**0.5)
374
- src_pos = paddle.squeeze(src_pos, axis=-1)
375
- src_pos_enc = self.emb1(src_pos)
376
- src_pos_enc.stop_gradient = True
377
- enc_input = src_word_emb + src_pos_enc
378
- if self.dropout_rate:
379
- out = F.dropout(
380
- x=enc_input, p=self.dropout_rate, mode="downscale_in_infer")
381
- else:
382
- out = enc_input
383
- return out
384
-
385
-
386
- class FFN(nn.Layer):
387
- """
388
- Feed-Forward Network
389
- """
390
-
391
- def __init__(self, d_inner_hid, d_model, dropout_rate):
392
- super(FFN, self).__init__()
393
- self.dropout_rate = dropout_rate
394
- self.fc1 = paddle.nn.Linear(
395
- in_features=d_model, out_features=d_inner_hid)
396
- self.fc2 = paddle.nn.Linear(
397
- in_features=d_inner_hid, out_features=d_model)
398
-
399
- def forward(self, x):
400
- hidden = self.fc1(x)
401
- hidden = F.relu(hidden)
402
- if self.dropout_rate:
403
- hidden = F.dropout(
404
- hidden, p=self.dropout_rate, mode="downscale_in_infer")
405
- out = self.fc2(hidden)
406
- return out
@@ -1,246 +0,0 @@
1
- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
-
19
- import paddle
20
- import paddle.nn as nn
21
- import paddle.nn.functional as F
22
- import numpy as np
23
-
24
-
25
- class TableAttentionHead(nn.Layer):
26
- def __init__(self,
27
- in_channels,
28
- hidden_size,
29
- loc_type,
30
- in_max_len=488,
31
- max_text_length=100,
32
- max_elem_length=800,
33
- max_cell_num=500,
34
- **kwargs):
35
- super(TableAttentionHead, self).__init__()
36
- self.input_size = in_channels[-1]
37
- self.hidden_size = hidden_size
38
- self.elem_num = 30
39
- self.max_text_length = max_text_length
40
- self.max_elem_length = max_elem_length
41
- self.max_cell_num = max_cell_num
42
-
43
- self.structure_attention_cell = AttentionGRUCell(
44
- self.input_size, hidden_size, self.elem_num, use_gru=False)
45
- self.structure_generator = nn.Linear(hidden_size, self.elem_num)
46
- self.loc_type = loc_type
47
- self.in_max_len = in_max_len
48
-
49
- if self.loc_type == 1:
50
- self.loc_generator = nn.Linear(hidden_size, 4)
51
- else:
52
- if self.in_max_len == 640:
53
- self.loc_fea_trans = nn.Linear(400, self.max_elem_length + 1)
54
- elif self.in_max_len == 800:
55
- self.loc_fea_trans = nn.Linear(625, self.max_elem_length + 1)
56
- else:
57
- self.loc_fea_trans = nn.Linear(256, self.max_elem_length + 1)
58
- self.loc_generator = nn.Linear(self.input_size + hidden_size, 4)
59
-
60
- def _char_to_onehot(self, input_char, onehot_dim):
61
- input_ont_hot = F.one_hot(input_char, onehot_dim)
62
- return input_ont_hot
63
-
64
- def forward(self, inputs, targets=None):
65
- # if and else branch are both needed when you want to assign a variable
66
- # if you modify the var in just one branch, then the modification will not work.
67
- fea = inputs[-1]
68
- if len(fea.shape) == 3:
69
- pass
70
- else:
71
- last_shape = int(np.prod(fea.shape[2:])) # gry added
72
- fea = paddle.reshape(fea, [fea.shape[0], fea.shape[1], last_shape])
73
- fea = fea.transpose([0, 2, 1]) # (NTC)(batch, width, channels)
74
- batch_size = fea.shape[0]
75
-
76
- hidden = paddle.zeros((batch_size, self.hidden_size))
77
- output_hiddens = []
78
- if self.training and targets is not None:
79
- structure = targets[0]
80
- for i in range(self.max_elem_length + 1):
81
- elem_onehots = self._char_to_onehot(
82
- structure[:, i], onehot_dim=self.elem_num)
83
- (outputs, hidden), alpha = self.structure_attention_cell(
84
- hidden, fea, elem_onehots)
85
- output_hiddens.append(paddle.unsqueeze(outputs, axis=1))
86
- output = paddle.concat(output_hiddens, axis=1)
87
- structure_probs = self.structure_generator(output)
88
- if self.loc_type == 1:
89
- loc_preds = self.loc_generator(output)
90
- loc_preds = F.sigmoid(loc_preds)
91
- else:
92
- loc_fea = fea.transpose([0, 2, 1])
93
- loc_fea = self.loc_fea_trans(loc_fea)
94
- loc_fea = loc_fea.transpose([0, 2, 1])
95
- loc_concat = paddle.concat([output, loc_fea], axis=2)
96
- loc_preds = self.loc_generator(loc_concat)
97
- loc_preds = F.sigmoid(loc_preds)
98
- else:
99
- temp_elem = paddle.zeros(shape=[batch_size], dtype="int32")
100
- structure_probs = None
101
- loc_preds = None
102
- elem_onehots = None
103
- outputs = None
104
- alpha = None
105
- max_elem_length = paddle.to_tensor(self.max_elem_length)
106
- i = 0
107
- while i < max_elem_length + 1:
108
- elem_onehots = self._char_to_onehot(
109
- temp_elem, onehot_dim=self.elem_num)
110
- (outputs, hidden), alpha = self.structure_attention_cell(
111
- hidden, fea, elem_onehots)
112
- output_hiddens.append(paddle.unsqueeze(outputs, axis=1))
113
- structure_probs_step = self.structure_generator(outputs)
114
- temp_elem = structure_probs_step.argmax(axis=1, dtype="int32")
115
- i += 1
116
-
117
- output = paddle.concat(output_hiddens, axis=1)
118
- structure_probs = self.structure_generator(output)
119
- structure_probs = F.softmax(structure_probs)
120
- if self.loc_type == 1:
121
- loc_preds = self.loc_generator(output)
122
- loc_preds = F.sigmoid(loc_preds)
123
- else:
124
- loc_fea = fea.transpose([0, 2, 1])
125
- loc_fea = self.loc_fea_trans(loc_fea)
126
- loc_fea = loc_fea.transpose([0, 2, 1])
127
- loc_concat = paddle.concat([output, loc_fea], axis=2)
128
- loc_preds = self.loc_generator(loc_concat)
129
- loc_preds = F.sigmoid(loc_preds)
130
- return {'structure_probs': structure_probs, 'loc_preds': loc_preds}
131
-
132
-
133
- class AttentionGRUCell(nn.Layer):
134
- def __init__(self, input_size, hidden_size, num_embeddings, use_gru=False):
135
- super(AttentionGRUCell, self).__init__()
136
- self.i2h = nn.Linear(input_size, hidden_size, bias_attr=False)
137
- self.h2h = nn.Linear(hidden_size, hidden_size)
138
- self.score = nn.Linear(hidden_size, 1, bias_attr=False)
139
- self.rnn = nn.GRUCell(
140
- input_size=input_size + num_embeddings, hidden_size=hidden_size)
141
- self.hidden_size = hidden_size
142
-
143
- def forward(self, prev_hidden, batch_H, char_onehots):
144
- batch_H_proj = self.i2h(batch_H)
145
- prev_hidden_proj = paddle.unsqueeze(self.h2h(prev_hidden), axis=1)
146
- res = paddle.add(batch_H_proj, prev_hidden_proj)
147
- res = paddle.tanh(res)
148
- e = self.score(res)
149
- alpha = F.softmax(e, axis=1)
150
- alpha = paddle.transpose(alpha, [0, 2, 1])
151
- context = paddle.squeeze(paddle.mm(alpha, batch_H), axis=1)
152
- concat_context = paddle.concat([context, char_onehots], 1)
153
- cur_hidden = self.rnn(concat_context, prev_hidden)
154
- return cur_hidden, alpha
155
-
156
-
157
- class AttentionLSTM(nn.Layer):
158
- def __init__(self, in_channels, out_channels, hidden_size, **kwargs):
159
- super(AttentionLSTM, self).__init__()
160
- self.input_size = in_channels
161
- self.hidden_size = hidden_size
162
- self.num_classes = out_channels
163
-
164
- self.attention_cell = AttentionLSTMCell(
165
- in_channels, hidden_size, out_channels, use_gru=False)
166
- self.generator = nn.Linear(hidden_size, out_channels)
167
-
168
- def _char_to_onehot(self, input_char, onehot_dim):
169
- input_ont_hot = F.one_hot(input_char, onehot_dim)
170
- return input_ont_hot
171
-
172
- def forward(self, inputs, targets=None, batch_max_length=25):
173
- batch_size = inputs.shape[0]
174
- num_steps = batch_max_length
175
-
176
- hidden = (paddle.zeros((batch_size, self.hidden_size)), paddle.zeros(
177
- (batch_size, self.hidden_size)))
178
- output_hiddens = []
179
-
180
- if targets is not None:
181
- for i in range(num_steps):
182
- # one-hot vectors for a i-th char
183
- char_onehots = self._char_to_onehot(
184
- targets[:, i], onehot_dim=self.num_classes)
185
- hidden, alpha = self.attention_cell(hidden, inputs,
186
- char_onehots)
187
-
188
- hidden = (hidden[1][0], hidden[1][1])
189
- output_hiddens.append(paddle.unsqueeze(hidden[0], axis=1))
190
- output = paddle.concat(output_hiddens, axis=1)
191
- probs = self.generator(output)
192
-
193
- else:
194
- targets = paddle.zeros(shape=[batch_size], dtype="int32")
195
- probs = None
196
-
197
- for i in range(num_steps):
198
- char_onehots = self._char_to_onehot(
199
- targets, onehot_dim=self.num_classes)
200
- hidden, alpha = self.attention_cell(hidden, inputs,
201
- char_onehots)
202
- probs_step = self.generator(hidden[0])
203
- hidden = (hidden[1][0], hidden[1][1])
204
- if probs is None:
205
- probs = paddle.unsqueeze(probs_step, axis=1)
206
- else:
207
- probs = paddle.concat(
208
- [probs, paddle.unsqueeze(
209
- probs_step, axis=1)], axis=1)
210
-
211
- next_input = probs_step.argmax(axis=1)
212
-
213
- targets = next_input
214
-
215
- return probs
216
-
217
-
218
- class AttentionLSTMCell(nn.Layer):
219
- def __init__(self, input_size, hidden_size, num_embeddings, use_gru=False):
220
- super(AttentionLSTMCell, self).__init__()
221
- self.i2h = nn.Linear(input_size, hidden_size, bias_attr=False)
222
- self.h2h = nn.Linear(hidden_size, hidden_size)
223
- self.score = nn.Linear(hidden_size, 1, bias_attr=False)
224
- if not use_gru:
225
- self.rnn = nn.LSTMCell(
226
- input_size=input_size + num_embeddings, hidden_size=hidden_size)
227
- else:
228
- self.rnn = nn.GRUCell(
229
- input_size=input_size + num_embeddings, hidden_size=hidden_size)
230
-
231
- self.hidden_size = hidden_size
232
-
233
- def forward(self, prev_hidden, batch_H, char_onehots):
234
- batch_H_proj = self.i2h(batch_H)
235
- prev_hidden_proj = paddle.unsqueeze(self.h2h(prev_hidden[0]), axis=1)
236
- res = paddle.add(batch_H_proj, prev_hidden_proj)
237
- res = paddle.tanh(res)
238
- e = self.score(res)
239
-
240
- alpha = F.softmax(e, axis=1)
241
- alpha = paddle.transpose(alpha, [0, 2, 1])
242
- context = paddle.squeeze(paddle.mm(alpha, batch_H), axis=1)
243
- concat_context = paddle.concat([context, char_onehots], 1)
244
- cur_hidden = self.rnn(concat_context, prev_hidden)
245
-
246
- return cur_hidden, alpha
@@ -1,32 +0,0 @@
1
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- __all__ = ['build_neck']
16
-
17
-
18
- def build_neck(config):
19
- from .db_fpn import DBFPN
20
- from .east_fpn import EASTFPN
21
- from .sast_fpn import SASTFPN
22
- from .rnn import SequenceEncoder
23
- from .pg_fpn import PGFPN
24
- from .table_fpn import TableFPN
25
- from .fpn import FPN
26
- support_dict = ['FPN','DBFPN', 'EASTFPN', 'SASTFPN', 'SequenceEncoder', 'PGFPN', 'TableFPN']
27
-
28
- module_name = config.pop('name')
29
- assert module_name in support_dict, Exception('neck only support {}'.format(
30
- support_dict))
31
- module_class = eval(module_name)(**config)
32
- return module_class