pyxllib 0.3.96__py3-none-any.whl → 0.3.197__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyxllib/algo/geo.py +12 -0
- pyxllib/algo/intervals.py +1 -1
- pyxllib/algo/matcher.py +78 -0
- pyxllib/algo/pupil.py +187 -19
- pyxllib/algo/specialist.py +2 -1
- pyxllib/algo/stat.py +38 -2
- {pyxlpr → pyxllib/autogui}/__init__.py +1 -1
- pyxllib/autogui/activewin.py +246 -0
- pyxllib/autogui/all.py +9 -0
- pyxllib/{ext/autogui → autogui}/autogui.py +40 -11
- pyxllib/autogui/uiautolib.py +362 -0
- pyxllib/autogui/wechat.py +827 -0
- pyxllib/autogui/wechat_msg.py +421 -0
- pyxllib/autogui/wxautolib.py +84 -0
- pyxllib/cv/slidercaptcha.py +137 -0
- pyxllib/data/echarts.py +123 -12
- pyxllib/data/jsonlib.py +89 -0
- pyxllib/data/pglib.py +514 -30
- pyxllib/data/sqlite.py +231 -4
- pyxllib/ext/JLineViewer.py +14 -1
- pyxllib/ext/drissionlib.py +277 -0
- pyxllib/ext/kq5034lib.py +0 -1594
- pyxllib/ext/robustprocfile.py +497 -0
- pyxllib/ext/unixlib.py +6 -5
- pyxllib/ext/utools.py +108 -95
- pyxllib/ext/webhook.py +32 -14
- pyxllib/ext/wjxlib.py +88 -0
- pyxllib/ext/wpsapi.py +124 -0
- pyxllib/ext/xlwork.py +9 -0
- pyxllib/ext/yuquelib.py +1003 -71
- pyxllib/file/docxlib.py +1 -1
- pyxllib/file/libreoffice.py +165 -0
- pyxllib/file/movielib.py +9 -0
- pyxllib/file/packlib/__init__.py +112 -75
- pyxllib/file/pdflib.py +1 -1
- pyxllib/file/pupil.py +1 -1
- pyxllib/file/specialist/dirlib.py +1 -1
- pyxllib/file/specialist/download.py +10 -3
- pyxllib/file/specialist/filelib.py +266 -55
- pyxllib/file/xlsxlib.py +205 -50
- pyxllib/file/xlsyncfile.py +341 -0
- pyxllib/prog/cachetools.py +64 -0
- pyxllib/prog/filelock.py +42 -0
- pyxllib/prog/multiprogs.py +940 -0
- pyxllib/prog/newbie.py +9 -2
- pyxllib/prog/pupil.py +129 -60
- pyxllib/prog/specialist/__init__.py +176 -2
- pyxllib/prog/specialist/bc.py +5 -2
- pyxllib/prog/specialist/browser.py +11 -2
- pyxllib/prog/specialist/datetime.py +68 -0
- pyxllib/prog/specialist/tictoc.py +12 -13
- pyxllib/prog/specialist/xllog.py +5 -5
- pyxllib/prog/xlosenv.py +7 -0
- pyxllib/text/airscript.js +744 -0
- pyxllib/text/charclasslib.py +17 -5
- pyxllib/text/jiebalib.py +6 -3
- pyxllib/text/jinjalib.py +32 -0
- pyxllib/text/jsa_ai_prompt.md +271 -0
- pyxllib/text/jscode.py +159 -4
- pyxllib/text/nestenv.py +1 -1
- pyxllib/text/newbie.py +12 -0
- pyxllib/text/pupil/common.py +26 -0
- pyxllib/text/specialist/ptag.py +2 -2
- pyxllib/text/templates/echart_base.html +11 -0
- pyxllib/text/templates/highlight_code.html +17 -0
- pyxllib/text/templates/latex_editor.html +103 -0
- pyxllib/text/xmllib.py +76 -14
- pyxllib/xl.py +2 -1
- pyxllib-0.3.197.dist-info/METADATA +48 -0
- pyxllib-0.3.197.dist-info/RECORD +126 -0
- {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info}/WHEEL +1 -2
- pyxllib/ext/autogui/__init__.py +0 -8
- pyxllib-0.3.96.dist-info/METADATA +0 -51
- pyxllib-0.3.96.dist-info/RECORD +0 -333
- pyxllib-0.3.96.dist-info/top_level.txt +0 -2
- pyxlpr/ai/__init__.py +0 -5
- pyxlpr/ai/clientlib.py +0 -1281
- pyxlpr/ai/specialist.py +0 -286
- pyxlpr/ai/torch_app.py +0 -172
- pyxlpr/ai/xlpaddle.py +0 -655
- pyxlpr/ai/xltorch.py +0 -705
- pyxlpr/data/__init__.py +0 -11
- pyxlpr/data/coco.py +0 -1325
- pyxlpr/data/datacls.py +0 -365
- pyxlpr/data/datasets.py +0 -200
- pyxlpr/data/gptlib.py +0 -1291
- pyxlpr/data/icdar/__init__.py +0 -96
- pyxlpr/data/icdar/deteval.py +0 -377
- pyxlpr/data/icdar/icdar2013.py +0 -341
- pyxlpr/data/icdar/iou.py +0 -340
- pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
- pyxlpr/data/imtextline.py +0 -473
- pyxlpr/data/labelme.py +0 -866
- pyxlpr/data/removeline.py +0 -179
- pyxlpr/data/specialist.py +0 -57
- pyxlpr/eval/__init__.py +0 -85
- pyxlpr/paddleocr.py +0 -776
- pyxlpr/ppocr/__init__.py +0 -15
- pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
- pyxlpr/ppocr/data/__init__.py +0 -135
- pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
- pyxlpr/ppocr/data/imaug/__init__.py +0 -67
- pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
- pyxlpr/ppocr/data/imaug/east_process.py +0 -437
- pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
- pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
- pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
- pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
- pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
- pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
- pyxlpr/ppocr/data/imaug/operators.py +0 -433
- pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
- pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
- pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
- pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
- pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
- pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
- pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
- pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
- pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
- pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
- pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
- pyxlpr/ppocr/data/simple_dataset.py +0 -372
- pyxlpr/ppocr/losses/__init__.py +0 -61
- pyxlpr/ppocr/losses/ace_loss.py +0 -52
- pyxlpr/ppocr/losses/basic_loss.py +0 -135
- pyxlpr/ppocr/losses/center_loss.py +0 -88
- pyxlpr/ppocr/losses/cls_loss.py +0 -30
- pyxlpr/ppocr/losses/combined_loss.py +0 -67
- pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
- pyxlpr/ppocr/losses/det_db_loss.py +0 -80
- pyxlpr/ppocr/losses/det_east_loss.py +0 -63
- pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
- pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
- pyxlpr/ppocr/losses/distillation_loss.py +0 -272
- pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
- pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
- pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
- pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
- pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
- pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
- pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
- pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
- pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
- pyxlpr/ppocr/losses/table_att_loss.py +0 -109
- pyxlpr/ppocr/metrics/__init__.py +0 -44
- pyxlpr/ppocr/metrics/cls_metric.py +0 -45
- pyxlpr/ppocr/metrics/det_metric.py +0 -82
- pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
- pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
- pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
- pyxlpr/ppocr/metrics/kie_metric.py +0 -70
- pyxlpr/ppocr/metrics/rec_metric.py +0 -75
- pyxlpr/ppocr/metrics/table_metric.py +0 -50
- pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
- pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
- pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
- pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
- pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
- pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
- pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
- pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
- pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
- pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
- pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
- pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
- pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
- pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
- pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
- pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
- pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
- pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
- pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
- pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
- pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
- pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
- pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
- pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
- pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
- pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
- pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
- pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
- pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
- pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
- pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
- pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
- pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
- pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
- pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
- pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
- pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
- pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
- pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
- pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
- pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
- pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
- pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
- pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
- pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
- pyxlpr/ppocr/optimizer/__init__.py +0 -61
- pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
- pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
- pyxlpr/ppocr/optimizer/optimizer.py +0 -160
- pyxlpr/ppocr/optimizer/regularizer.py +0 -52
- pyxlpr/ppocr/postprocess/__init__.py +0 -55
- pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
- pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
- pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
- pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
- pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
- pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
- pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
- pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
- pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
- pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
- pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
- pyxlpr/ppocr/tools/__init__.py +0 -14
- pyxlpr/ppocr/tools/eval.py +0 -83
- pyxlpr/ppocr/tools/export_center.py +0 -77
- pyxlpr/ppocr/tools/export_model.py +0 -129
- pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
- pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
- pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
- pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
- pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
- pyxlpr/ppocr/tools/infer/utility.py +0 -629
- pyxlpr/ppocr/tools/infer_cls.py +0 -83
- pyxlpr/ppocr/tools/infer_det.py +0 -134
- pyxlpr/ppocr/tools/infer_e2e.py +0 -122
- pyxlpr/ppocr/tools/infer_kie.py +0 -153
- pyxlpr/ppocr/tools/infer_rec.py +0 -146
- pyxlpr/ppocr/tools/infer_table.py +0 -107
- pyxlpr/ppocr/tools/program.py +0 -596
- pyxlpr/ppocr/tools/test_hubserving.py +0 -117
- pyxlpr/ppocr/tools/train.py +0 -163
- pyxlpr/ppocr/tools/xlprog.py +0 -748
- pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
- pyxlpr/ppocr/utils/__init__.py +0 -24
- pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
- pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
- pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
- pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
- pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
- pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
- pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
- pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
- pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
- pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
- pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
- pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
- pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
- pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
- pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
- pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
- pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
- pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
- pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
- pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
- pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
- pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
- pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
- pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
- pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
- pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
- pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
- pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
- pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
- pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
- pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
- pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
- pyxlpr/ppocr/utils/dict90.txt +0 -90
- pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
- pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
- pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
- pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
- pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
- pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
- pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
- pyxlpr/ppocr/utils/en_dict.txt +0 -95
- pyxlpr/ppocr/utils/gen_label.py +0 -81
- pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
- pyxlpr/ppocr/utils/iou.py +0 -54
- pyxlpr/ppocr/utils/logging.py +0 -69
- pyxlpr/ppocr/utils/network.py +0 -84
- pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
- pyxlpr/ppocr/utils/profiler.py +0 -110
- pyxlpr/ppocr/utils/save_load.py +0 -150
- pyxlpr/ppocr/utils/stats.py +0 -72
- pyxlpr/ppocr/utils/utility.py +0 -80
- pyxlpr/ppstructure/__init__.py +0 -13
- pyxlpr/ppstructure/predict_system.py +0 -187
- pyxlpr/ppstructure/table/__init__.py +0 -13
- pyxlpr/ppstructure/table/eval_table.py +0 -72
- pyxlpr/ppstructure/table/matcher.py +0 -192
- pyxlpr/ppstructure/table/predict_structure.py +0 -136
- pyxlpr/ppstructure/table/predict_table.py +0 -221
- pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
- pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
- pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
- pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
- pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
- pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
- pyxlpr/ppstructure/utility.py +0 -71
- pyxlpr/xlai.py +0 -10
- /pyxllib/{ext/autogui → autogui}/virtualkey.py +0 -0
- {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info/licenses}/LICENSE +0 -0
@@ -1,111 +0,0 @@
|
|
1
|
-
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
|
15
|
-
from __future__ import absolute_import
|
16
|
-
from __future__ import division
|
17
|
-
from __future__ import print_function
|
18
|
-
|
19
|
-
import paddle
|
20
|
-
from paddle import nn
|
21
|
-
import paddle.nn.functional as F
|
22
|
-
from paddle import ParamAttr
|
23
|
-
|
24
|
-
|
25
|
-
class DBFPN(nn.Layer):
|
26
|
-
def __init__(self, in_channels, out_channels, **kwargs):
|
27
|
-
super(DBFPN, self).__init__()
|
28
|
-
self.out_channels = out_channels
|
29
|
-
weight_attr = paddle.nn.initializer.KaimingUniform()
|
30
|
-
|
31
|
-
self.in2_conv = nn.Conv2D(
|
32
|
-
in_channels=in_channels[0],
|
33
|
-
out_channels=self.out_channels,
|
34
|
-
kernel_size=1,
|
35
|
-
weight_attr=ParamAttr(initializer=weight_attr),
|
36
|
-
bias_attr=False)
|
37
|
-
self.in3_conv = nn.Conv2D(
|
38
|
-
in_channels=in_channels[1],
|
39
|
-
out_channels=self.out_channels,
|
40
|
-
kernel_size=1,
|
41
|
-
weight_attr=ParamAttr(initializer=weight_attr),
|
42
|
-
bias_attr=False)
|
43
|
-
self.in4_conv = nn.Conv2D(
|
44
|
-
in_channels=in_channels[2],
|
45
|
-
out_channels=self.out_channels,
|
46
|
-
kernel_size=1,
|
47
|
-
weight_attr=ParamAttr(initializer=weight_attr),
|
48
|
-
bias_attr=False)
|
49
|
-
self.in5_conv = nn.Conv2D(
|
50
|
-
in_channels=in_channels[3],
|
51
|
-
out_channels=self.out_channels,
|
52
|
-
kernel_size=1,
|
53
|
-
weight_attr=ParamAttr(initializer=weight_attr),
|
54
|
-
bias_attr=False)
|
55
|
-
self.p5_conv = nn.Conv2D(
|
56
|
-
in_channels=self.out_channels,
|
57
|
-
out_channels=self.out_channels // 4,
|
58
|
-
kernel_size=3,
|
59
|
-
padding=1,
|
60
|
-
weight_attr=ParamAttr(initializer=weight_attr),
|
61
|
-
bias_attr=False)
|
62
|
-
self.p4_conv = nn.Conv2D(
|
63
|
-
in_channels=self.out_channels,
|
64
|
-
out_channels=self.out_channels // 4,
|
65
|
-
kernel_size=3,
|
66
|
-
padding=1,
|
67
|
-
weight_attr=ParamAttr(initializer=weight_attr),
|
68
|
-
bias_attr=False)
|
69
|
-
self.p3_conv = nn.Conv2D(
|
70
|
-
in_channels=self.out_channels,
|
71
|
-
out_channels=self.out_channels // 4,
|
72
|
-
kernel_size=3,
|
73
|
-
padding=1,
|
74
|
-
weight_attr=ParamAttr(initializer=weight_attr),
|
75
|
-
bias_attr=False)
|
76
|
-
self.p2_conv = nn.Conv2D(
|
77
|
-
in_channels=self.out_channels,
|
78
|
-
out_channels=self.out_channels // 4,
|
79
|
-
kernel_size=3,
|
80
|
-
padding=1,
|
81
|
-
weight_attr=ParamAttr(initializer=weight_attr),
|
82
|
-
bias_attr=False)
|
83
|
-
|
84
|
-
def forward(self, x):
|
85
|
-
c2, c3, c4, c5 = x
|
86
|
-
|
87
|
-
in5 = self.in5_conv(c5)
|
88
|
-
in4 = self.in4_conv(c4)
|
89
|
-
in3 = self.in3_conv(c3)
|
90
|
-
in2 = self.in2_conv(c2)
|
91
|
-
|
92
|
-
# 特征上采样
|
93
|
-
out4 = in4 + F.upsample(
|
94
|
-
in5, scale_factor=2, mode="nearest", align_mode=1) # 1/16
|
95
|
-
out3 = in3 + F.upsample(
|
96
|
-
out4, scale_factor=2, mode="nearest", align_mode=1) # 1/8
|
97
|
-
out2 = in2 + F.upsample(
|
98
|
-
out3, scale_factor=2, mode="nearest", align_mode=1) # 1/4
|
99
|
-
|
100
|
-
p5 = self.p5_conv(in5)
|
101
|
-
p4 = self.p4_conv(out4)
|
102
|
-
p3 = self.p3_conv(out3)
|
103
|
-
p2 = self.p2_conv(out2)
|
104
|
-
|
105
|
-
# 特征上采样
|
106
|
-
p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1)
|
107
|
-
p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1)
|
108
|
-
p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1)
|
109
|
-
|
110
|
-
fuse = paddle.concat([p5, p4, p3, p2], axis=1)
|
111
|
-
return fuse
|
@@ -1,188 +0,0 @@
|
|
1
|
-
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
|
15
|
-
from __future__ import absolute_import
|
16
|
-
from __future__ import division
|
17
|
-
from __future__ import print_function
|
18
|
-
|
19
|
-
import paddle
|
20
|
-
from paddle import nn
|
21
|
-
import paddle.nn.functional as F
|
22
|
-
from paddle import ParamAttr
|
23
|
-
|
24
|
-
|
25
|
-
class ConvBNLayer(nn.Layer):
|
26
|
-
def __init__(self,
|
27
|
-
in_channels,
|
28
|
-
out_channels,
|
29
|
-
kernel_size,
|
30
|
-
stride,
|
31
|
-
padding,
|
32
|
-
groups=1,
|
33
|
-
if_act=True,
|
34
|
-
act=None,
|
35
|
-
name=None):
|
36
|
-
super(ConvBNLayer, self).__init__()
|
37
|
-
self.if_act = if_act
|
38
|
-
self.act = act
|
39
|
-
self.conv = nn.Conv2D(
|
40
|
-
in_channels=in_channels,
|
41
|
-
out_channels=out_channels,
|
42
|
-
kernel_size=kernel_size,
|
43
|
-
stride=stride,
|
44
|
-
padding=padding,
|
45
|
-
groups=groups,
|
46
|
-
weight_attr=ParamAttr(name=name + '_weights'),
|
47
|
-
bias_attr=False)
|
48
|
-
|
49
|
-
self.bn = nn.BatchNorm(
|
50
|
-
num_channels=out_channels,
|
51
|
-
act=act,
|
52
|
-
param_attr=ParamAttr(name="bn_" + name + "_scale"),
|
53
|
-
bias_attr=ParamAttr(name="bn_" + name + "_offset"),
|
54
|
-
moving_mean_name="bn_" + name + "_mean",
|
55
|
-
moving_variance_name="bn_" + name + "_variance")
|
56
|
-
|
57
|
-
def forward(self, x):
|
58
|
-
x = self.conv(x)
|
59
|
-
x = self.bn(x)
|
60
|
-
return x
|
61
|
-
|
62
|
-
|
63
|
-
class DeConvBNLayer(nn.Layer):
|
64
|
-
def __init__(self,
|
65
|
-
in_channels,
|
66
|
-
out_channels,
|
67
|
-
kernel_size,
|
68
|
-
stride,
|
69
|
-
padding,
|
70
|
-
groups=1,
|
71
|
-
if_act=True,
|
72
|
-
act=None,
|
73
|
-
name=None):
|
74
|
-
super(DeConvBNLayer, self).__init__()
|
75
|
-
self.if_act = if_act
|
76
|
-
self.act = act
|
77
|
-
self.deconv = nn.Conv2DTranspose(
|
78
|
-
in_channels=in_channels,
|
79
|
-
out_channels=out_channels,
|
80
|
-
kernel_size=kernel_size,
|
81
|
-
stride=stride,
|
82
|
-
padding=padding,
|
83
|
-
groups=groups,
|
84
|
-
weight_attr=ParamAttr(name=name + '_weights'),
|
85
|
-
bias_attr=False)
|
86
|
-
self.bn = nn.BatchNorm(
|
87
|
-
num_channels=out_channels,
|
88
|
-
act=act,
|
89
|
-
param_attr=ParamAttr(name="bn_" + name + "_scale"),
|
90
|
-
bias_attr=ParamAttr(name="bn_" + name + "_offset"),
|
91
|
-
moving_mean_name="bn_" + name + "_mean",
|
92
|
-
moving_variance_name="bn_" + name + "_variance")
|
93
|
-
|
94
|
-
def forward(self, x):
|
95
|
-
x = self.deconv(x)
|
96
|
-
x = self.bn(x)
|
97
|
-
return x
|
98
|
-
|
99
|
-
|
100
|
-
class EASTFPN(nn.Layer):
|
101
|
-
def __init__(self, in_channels, model_name, **kwargs):
|
102
|
-
super(EASTFPN, self).__init__()
|
103
|
-
self.model_name = model_name
|
104
|
-
if self.model_name == "large":
|
105
|
-
self.out_channels = 128
|
106
|
-
else:
|
107
|
-
self.out_channels = 64
|
108
|
-
self.in_channels = in_channels[::-1]
|
109
|
-
self.h1_conv = ConvBNLayer(
|
110
|
-
in_channels=self.out_channels+self.in_channels[1],
|
111
|
-
out_channels=self.out_channels,
|
112
|
-
kernel_size=3,
|
113
|
-
stride=1,
|
114
|
-
padding=1,
|
115
|
-
if_act=True,
|
116
|
-
act='relu',
|
117
|
-
name="unet_h_1")
|
118
|
-
self.h2_conv = ConvBNLayer(
|
119
|
-
in_channels=self.out_channels+self.in_channels[2],
|
120
|
-
out_channels=self.out_channels,
|
121
|
-
kernel_size=3,
|
122
|
-
stride=1,
|
123
|
-
padding=1,
|
124
|
-
if_act=True,
|
125
|
-
act='relu',
|
126
|
-
name="unet_h_2")
|
127
|
-
self.h3_conv = ConvBNLayer(
|
128
|
-
in_channels=self.out_channels+self.in_channels[3],
|
129
|
-
out_channels=self.out_channels,
|
130
|
-
kernel_size=3,
|
131
|
-
stride=1,
|
132
|
-
padding=1,
|
133
|
-
if_act=True,
|
134
|
-
act='relu',
|
135
|
-
name="unet_h_3")
|
136
|
-
self.g0_deconv = DeConvBNLayer(
|
137
|
-
in_channels=self.in_channels[0],
|
138
|
-
out_channels=self.out_channels,
|
139
|
-
kernel_size=4,
|
140
|
-
stride=2,
|
141
|
-
padding=1,
|
142
|
-
if_act=True,
|
143
|
-
act='relu',
|
144
|
-
name="unet_g_0")
|
145
|
-
self.g1_deconv = DeConvBNLayer(
|
146
|
-
in_channels=self.out_channels,
|
147
|
-
out_channels=self.out_channels,
|
148
|
-
kernel_size=4,
|
149
|
-
stride=2,
|
150
|
-
padding=1,
|
151
|
-
if_act=True,
|
152
|
-
act='relu',
|
153
|
-
name="unet_g_1")
|
154
|
-
self.g2_deconv = DeConvBNLayer(
|
155
|
-
in_channels=self.out_channels,
|
156
|
-
out_channels=self.out_channels,
|
157
|
-
kernel_size=4,
|
158
|
-
stride=2,
|
159
|
-
padding=1,
|
160
|
-
if_act=True,
|
161
|
-
act='relu',
|
162
|
-
name="unet_g_2")
|
163
|
-
self.g3_conv = ConvBNLayer(
|
164
|
-
in_channels=self.out_channels,
|
165
|
-
out_channels=self.out_channels,
|
166
|
-
kernel_size=3,
|
167
|
-
stride=1,
|
168
|
-
padding=1,
|
169
|
-
if_act=True,
|
170
|
-
act='relu',
|
171
|
-
name="unet_g_3")
|
172
|
-
|
173
|
-
def forward(self, x):
|
174
|
-
f = x[::-1]
|
175
|
-
|
176
|
-
h = f[0]
|
177
|
-
g = self.g0_deconv(h)
|
178
|
-
h = paddle.concat([g, f[1]], axis=1)
|
179
|
-
h = self.h1_conv(h)
|
180
|
-
g = self.g1_deconv(h)
|
181
|
-
h = paddle.concat([g, f[2]], axis=1)
|
182
|
-
h = self.h2_conv(h)
|
183
|
-
g = self.g2_deconv(h)
|
184
|
-
h = paddle.concat([g, f[3]], axis=1)
|
185
|
-
h = self.h3_conv(h)
|
186
|
-
g = self.g3_conv(h)
|
187
|
-
|
188
|
-
return g
|
@@ -1,138 +0,0 @@
|
|
1
|
-
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
"""
|
15
|
-
This code is refer from:
|
16
|
-
https://github.com/whai362/PSENet/blob/python3/models/neck/fpn.py
|
17
|
-
"""
|
18
|
-
|
19
|
-
import paddle.nn as nn
|
20
|
-
import paddle
|
21
|
-
import math
|
22
|
-
import paddle.nn.functional as F
|
23
|
-
|
24
|
-
|
25
|
-
class Conv_BN_ReLU(nn.Layer):
|
26
|
-
def __init__(self,
|
27
|
-
in_planes,
|
28
|
-
out_planes,
|
29
|
-
kernel_size=1,
|
30
|
-
stride=1,
|
31
|
-
padding=0):
|
32
|
-
super(Conv_BN_ReLU, self).__init__()
|
33
|
-
self.conv = nn.Conv2D(
|
34
|
-
in_planes,
|
35
|
-
out_planes,
|
36
|
-
kernel_size=kernel_size,
|
37
|
-
stride=stride,
|
38
|
-
padding=padding,
|
39
|
-
bias_attr=False)
|
40
|
-
self.bn = nn.BatchNorm2D(out_planes, momentum=0.1)
|
41
|
-
self.relu = nn.ReLU()
|
42
|
-
|
43
|
-
for m in self.sublayers():
|
44
|
-
if isinstance(m, nn.Conv2D):
|
45
|
-
n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels
|
46
|
-
m.weight = paddle.create_parameter(
|
47
|
-
shape=m.weight.shape,
|
48
|
-
dtype='float32',
|
49
|
-
default_initializer=paddle.nn.initializer.Normal(
|
50
|
-
0, math.sqrt(2. / n)))
|
51
|
-
elif isinstance(m, nn.BatchNorm2D):
|
52
|
-
m.weight = paddle.create_parameter(
|
53
|
-
shape=m.weight.shape,
|
54
|
-
dtype='float32',
|
55
|
-
default_initializer=paddle.nn.initializer.Constant(1.0))
|
56
|
-
m.bias = paddle.create_parameter(
|
57
|
-
shape=m.bias.shape,
|
58
|
-
dtype='float32',
|
59
|
-
default_initializer=paddle.nn.initializer.Constant(0.0))
|
60
|
-
|
61
|
-
def forward(self, x):
|
62
|
-
return self.relu(self.bn(self.conv(x)))
|
63
|
-
|
64
|
-
|
65
|
-
class FPN(nn.Layer):
|
66
|
-
def __init__(self, in_channels, out_channels):
|
67
|
-
super(FPN, self).__init__()
|
68
|
-
|
69
|
-
# Top layer
|
70
|
-
self.toplayer_ = Conv_BN_ReLU(
|
71
|
-
in_channels[3], out_channels, kernel_size=1, stride=1, padding=0)
|
72
|
-
# Lateral layers
|
73
|
-
self.latlayer1_ = Conv_BN_ReLU(
|
74
|
-
in_channels[2], out_channels, kernel_size=1, stride=1, padding=0)
|
75
|
-
|
76
|
-
self.latlayer2_ = Conv_BN_ReLU(
|
77
|
-
in_channels[1], out_channels, kernel_size=1, stride=1, padding=0)
|
78
|
-
|
79
|
-
self.latlayer3_ = Conv_BN_ReLU(
|
80
|
-
in_channels[0], out_channels, kernel_size=1, stride=1, padding=0)
|
81
|
-
|
82
|
-
# Smooth layers
|
83
|
-
self.smooth1_ = Conv_BN_ReLU(
|
84
|
-
out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
85
|
-
|
86
|
-
self.smooth2_ = Conv_BN_ReLU(
|
87
|
-
out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
88
|
-
|
89
|
-
self.smooth3_ = Conv_BN_ReLU(
|
90
|
-
out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
91
|
-
|
92
|
-
self.out_channels = out_channels * 4
|
93
|
-
for m in self.sublayers():
|
94
|
-
if isinstance(m, nn.Conv2D):
|
95
|
-
n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels
|
96
|
-
m.weight = paddle.create_parameter(
|
97
|
-
shape=m.weight.shape,
|
98
|
-
dtype='float32',
|
99
|
-
default_initializer=paddle.nn.initializer.Normal(
|
100
|
-
0, math.sqrt(2. / n)))
|
101
|
-
elif isinstance(m, nn.BatchNorm2D):
|
102
|
-
m.weight = paddle.create_parameter(
|
103
|
-
shape=m.weight.shape,
|
104
|
-
dtype='float32',
|
105
|
-
default_initializer=paddle.nn.initializer.Constant(1.0))
|
106
|
-
m.bias = paddle.create_parameter(
|
107
|
-
shape=m.bias.shape,
|
108
|
-
dtype='float32',
|
109
|
-
default_initializer=paddle.nn.initializer.Constant(0.0))
|
110
|
-
|
111
|
-
def _upsample(self, x, scale=1):
|
112
|
-
return F.upsample(x, scale_factor=scale, mode='bilinear')
|
113
|
-
|
114
|
-
def _upsample_add(self, x, y, scale=1):
|
115
|
-
return F.upsample(x, scale_factor=scale, mode='bilinear') + y
|
116
|
-
|
117
|
-
def forward(self, x):
|
118
|
-
f2, f3, f4, f5 = x
|
119
|
-
p5 = self.toplayer_(f5)
|
120
|
-
|
121
|
-
f4 = self.latlayer1_(f4)
|
122
|
-
p4 = self._upsample_add(p5, f4, 2)
|
123
|
-
p4 = self.smooth1_(p4)
|
124
|
-
|
125
|
-
f3 = self.latlayer2_(f3)
|
126
|
-
p3 = self._upsample_add(p4, f3, 2)
|
127
|
-
p3 = self.smooth2_(p3)
|
128
|
-
|
129
|
-
f2 = self.latlayer3_(f2)
|
130
|
-
p2 = self._upsample_add(p3, f2, 2)
|
131
|
-
p2 = self.smooth3_(p2)
|
132
|
-
|
133
|
-
p3 = self._upsample(p3, 2)
|
134
|
-
p4 = self._upsample(p4, 4)
|
135
|
-
p5 = self._upsample(p5, 8)
|
136
|
-
|
137
|
-
fuse = paddle.concat([p2, p3, p4, p5], axis=1)
|
138
|
-
return fuse
|