pyxllib 0.3.96__py3-none-any.whl → 0.3.197__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (306) hide show
  1. pyxllib/algo/geo.py +12 -0
  2. pyxllib/algo/intervals.py +1 -1
  3. pyxllib/algo/matcher.py +78 -0
  4. pyxllib/algo/pupil.py +187 -19
  5. pyxllib/algo/specialist.py +2 -1
  6. pyxllib/algo/stat.py +38 -2
  7. {pyxlpr → pyxllib/autogui}/__init__.py +1 -1
  8. pyxllib/autogui/activewin.py +246 -0
  9. pyxllib/autogui/all.py +9 -0
  10. pyxllib/{ext/autogui → autogui}/autogui.py +40 -11
  11. pyxllib/autogui/uiautolib.py +362 -0
  12. pyxllib/autogui/wechat.py +827 -0
  13. pyxllib/autogui/wechat_msg.py +421 -0
  14. pyxllib/autogui/wxautolib.py +84 -0
  15. pyxllib/cv/slidercaptcha.py +137 -0
  16. pyxllib/data/echarts.py +123 -12
  17. pyxllib/data/jsonlib.py +89 -0
  18. pyxllib/data/pglib.py +514 -30
  19. pyxllib/data/sqlite.py +231 -4
  20. pyxllib/ext/JLineViewer.py +14 -1
  21. pyxllib/ext/drissionlib.py +277 -0
  22. pyxllib/ext/kq5034lib.py +0 -1594
  23. pyxllib/ext/robustprocfile.py +497 -0
  24. pyxllib/ext/unixlib.py +6 -5
  25. pyxllib/ext/utools.py +108 -95
  26. pyxllib/ext/webhook.py +32 -14
  27. pyxllib/ext/wjxlib.py +88 -0
  28. pyxllib/ext/wpsapi.py +124 -0
  29. pyxllib/ext/xlwork.py +9 -0
  30. pyxllib/ext/yuquelib.py +1003 -71
  31. pyxllib/file/docxlib.py +1 -1
  32. pyxllib/file/libreoffice.py +165 -0
  33. pyxllib/file/movielib.py +9 -0
  34. pyxllib/file/packlib/__init__.py +112 -75
  35. pyxllib/file/pdflib.py +1 -1
  36. pyxllib/file/pupil.py +1 -1
  37. pyxllib/file/specialist/dirlib.py +1 -1
  38. pyxllib/file/specialist/download.py +10 -3
  39. pyxllib/file/specialist/filelib.py +266 -55
  40. pyxllib/file/xlsxlib.py +205 -50
  41. pyxllib/file/xlsyncfile.py +341 -0
  42. pyxllib/prog/cachetools.py +64 -0
  43. pyxllib/prog/filelock.py +42 -0
  44. pyxllib/prog/multiprogs.py +940 -0
  45. pyxllib/prog/newbie.py +9 -2
  46. pyxllib/prog/pupil.py +129 -60
  47. pyxllib/prog/specialist/__init__.py +176 -2
  48. pyxllib/prog/specialist/bc.py +5 -2
  49. pyxllib/prog/specialist/browser.py +11 -2
  50. pyxllib/prog/specialist/datetime.py +68 -0
  51. pyxllib/prog/specialist/tictoc.py +12 -13
  52. pyxllib/prog/specialist/xllog.py +5 -5
  53. pyxllib/prog/xlosenv.py +7 -0
  54. pyxllib/text/airscript.js +744 -0
  55. pyxllib/text/charclasslib.py +17 -5
  56. pyxllib/text/jiebalib.py +6 -3
  57. pyxllib/text/jinjalib.py +32 -0
  58. pyxllib/text/jsa_ai_prompt.md +271 -0
  59. pyxllib/text/jscode.py +159 -4
  60. pyxllib/text/nestenv.py +1 -1
  61. pyxllib/text/newbie.py +12 -0
  62. pyxllib/text/pupil/common.py +26 -0
  63. pyxllib/text/specialist/ptag.py +2 -2
  64. pyxllib/text/templates/echart_base.html +11 -0
  65. pyxllib/text/templates/highlight_code.html +17 -0
  66. pyxllib/text/templates/latex_editor.html +103 -0
  67. pyxllib/text/xmllib.py +76 -14
  68. pyxllib/xl.py +2 -1
  69. pyxllib-0.3.197.dist-info/METADATA +48 -0
  70. pyxllib-0.3.197.dist-info/RECORD +126 -0
  71. {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info}/WHEEL +1 -2
  72. pyxllib/ext/autogui/__init__.py +0 -8
  73. pyxllib-0.3.96.dist-info/METADATA +0 -51
  74. pyxllib-0.3.96.dist-info/RECORD +0 -333
  75. pyxllib-0.3.96.dist-info/top_level.txt +0 -2
  76. pyxlpr/ai/__init__.py +0 -5
  77. pyxlpr/ai/clientlib.py +0 -1281
  78. pyxlpr/ai/specialist.py +0 -286
  79. pyxlpr/ai/torch_app.py +0 -172
  80. pyxlpr/ai/xlpaddle.py +0 -655
  81. pyxlpr/ai/xltorch.py +0 -705
  82. pyxlpr/data/__init__.py +0 -11
  83. pyxlpr/data/coco.py +0 -1325
  84. pyxlpr/data/datacls.py +0 -365
  85. pyxlpr/data/datasets.py +0 -200
  86. pyxlpr/data/gptlib.py +0 -1291
  87. pyxlpr/data/icdar/__init__.py +0 -96
  88. pyxlpr/data/icdar/deteval.py +0 -377
  89. pyxlpr/data/icdar/icdar2013.py +0 -341
  90. pyxlpr/data/icdar/iou.py +0 -340
  91. pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
  92. pyxlpr/data/imtextline.py +0 -473
  93. pyxlpr/data/labelme.py +0 -866
  94. pyxlpr/data/removeline.py +0 -179
  95. pyxlpr/data/specialist.py +0 -57
  96. pyxlpr/eval/__init__.py +0 -85
  97. pyxlpr/paddleocr.py +0 -776
  98. pyxlpr/ppocr/__init__.py +0 -15
  99. pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
  100. pyxlpr/ppocr/data/__init__.py +0 -135
  101. pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
  102. pyxlpr/ppocr/data/imaug/__init__.py +0 -67
  103. pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
  104. pyxlpr/ppocr/data/imaug/east_process.py +0 -437
  105. pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
  106. pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
  107. pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
  108. pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
  109. pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
  110. pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
  111. pyxlpr/ppocr/data/imaug/operators.py +0 -433
  112. pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
  113. pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
  114. pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
  115. pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
  116. pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
  117. pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
  118. pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
  119. pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
  120. pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
  121. pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
  122. pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
  123. pyxlpr/ppocr/data/simple_dataset.py +0 -372
  124. pyxlpr/ppocr/losses/__init__.py +0 -61
  125. pyxlpr/ppocr/losses/ace_loss.py +0 -52
  126. pyxlpr/ppocr/losses/basic_loss.py +0 -135
  127. pyxlpr/ppocr/losses/center_loss.py +0 -88
  128. pyxlpr/ppocr/losses/cls_loss.py +0 -30
  129. pyxlpr/ppocr/losses/combined_loss.py +0 -67
  130. pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
  131. pyxlpr/ppocr/losses/det_db_loss.py +0 -80
  132. pyxlpr/ppocr/losses/det_east_loss.py +0 -63
  133. pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
  134. pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
  135. pyxlpr/ppocr/losses/distillation_loss.py +0 -272
  136. pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
  137. pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
  138. pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
  139. pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
  140. pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
  141. pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
  142. pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
  143. pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
  144. pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
  145. pyxlpr/ppocr/losses/table_att_loss.py +0 -109
  146. pyxlpr/ppocr/metrics/__init__.py +0 -44
  147. pyxlpr/ppocr/metrics/cls_metric.py +0 -45
  148. pyxlpr/ppocr/metrics/det_metric.py +0 -82
  149. pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
  150. pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
  151. pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
  152. pyxlpr/ppocr/metrics/kie_metric.py +0 -70
  153. pyxlpr/ppocr/metrics/rec_metric.py +0 -75
  154. pyxlpr/ppocr/metrics/table_metric.py +0 -50
  155. pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
  156. pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
  157. pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
  158. pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
  159. pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
  160. pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
  161. pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
  162. pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
  163. pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
  164. pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
  165. pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
  166. pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
  167. pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
  168. pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
  169. pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
  170. pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
  171. pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
  172. pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
  173. pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
  174. pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
  175. pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
  176. pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
  177. pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
  178. pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
  179. pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
  180. pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
  181. pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
  182. pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
  183. pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
  184. pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
  185. pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
  186. pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
  187. pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
  188. pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
  189. pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
  190. pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
  191. pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
  192. pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
  193. pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
  194. pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
  195. pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
  196. pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
  197. pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
  198. pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
  199. pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
  200. pyxlpr/ppocr/optimizer/__init__.py +0 -61
  201. pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
  202. pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
  203. pyxlpr/ppocr/optimizer/optimizer.py +0 -160
  204. pyxlpr/ppocr/optimizer/regularizer.py +0 -52
  205. pyxlpr/ppocr/postprocess/__init__.py +0 -55
  206. pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
  207. pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
  208. pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
  209. pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
  210. pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
  211. pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
  212. pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
  213. pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
  214. pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
  215. pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
  216. pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
  217. pyxlpr/ppocr/tools/__init__.py +0 -14
  218. pyxlpr/ppocr/tools/eval.py +0 -83
  219. pyxlpr/ppocr/tools/export_center.py +0 -77
  220. pyxlpr/ppocr/tools/export_model.py +0 -129
  221. pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
  222. pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
  223. pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
  224. pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
  225. pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
  226. pyxlpr/ppocr/tools/infer/utility.py +0 -629
  227. pyxlpr/ppocr/tools/infer_cls.py +0 -83
  228. pyxlpr/ppocr/tools/infer_det.py +0 -134
  229. pyxlpr/ppocr/tools/infer_e2e.py +0 -122
  230. pyxlpr/ppocr/tools/infer_kie.py +0 -153
  231. pyxlpr/ppocr/tools/infer_rec.py +0 -146
  232. pyxlpr/ppocr/tools/infer_table.py +0 -107
  233. pyxlpr/ppocr/tools/program.py +0 -596
  234. pyxlpr/ppocr/tools/test_hubserving.py +0 -117
  235. pyxlpr/ppocr/tools/train.py +0 -163
  236. pyxlpr/ppocr/tools/xlprog.py +0 -748
  237. pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
  238. pyxlpr/ppocr/utils/__init__.py +0 -24
  239. pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
  240. pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
  241. pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
  242. pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
  243. pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
  244. pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
  245. pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
  246. pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
  247. pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
  248. pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
  249. pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
  250. pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
  251. pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
  252. pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
  253. pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
  254. pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
  255. pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
  256. pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
  257. pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
  258. pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
  259. pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
  260. pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
  261. pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
  262. pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
  263. pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
  264. pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
  265. pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
  266. pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
  267. pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
  268. pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
  269. pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
  270. pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
  271. pyxlpr/ppocr/utils/dict90.txt +0 -90
  272. pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
  273. pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
  274. pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
  275. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
  276. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
  277. pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
  278. pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
  279. pyxlpr/ppocr/utils/en_dict.txt +0 -95
  280. pyxlpr/ppocr/utils/gen_label.py +0 -81
  281. pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
  282. pyxlpr/ppocr/utils/iou.py +0 -54
  283. pyxlpr/ppocr/utils/logging.py +0 -69
  284. pyxlpr/ppocr/utils/network.py +0 -84
  285. pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
  286. pyxlpr/ppocr/utils/profiler.py +0 -110
  287. pyxlpr/ppocr/utils/save_load.py +0 -150
  288. pyxlpr/ppocr/utils/stats.py +0 -72
  289. pyxlpr/ppocr/utils/utility.py +0 -80
  290. pyxlpr/ppstructure/__init__.py +0 -13
  291. pyxlpr/ppstructure/predict_system.py +0 -187
  292. pyxlpr/ppstructure/table/__init__.py +0 -13
  293. pyxlpr/ppstructure/table/eval_table.py +0 -72
  294. pyxlpr/ppstructure/table/matcher.py +0 -192
  295. pyxlpr/ppstructure/table/predict_structure.py +0 -136
  296. pyxlpr/ppstructure/table/predict_table.py +0 -221
  297. pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
  298. pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
  299. pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
  300. pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
  301. pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
  302. pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
  303. pyxlpr/ppstructure/utility.py +0 -71
  304. pyxlpr/xlai.py +0 -10
  305. /pyxllib/{ext/autogui → autogui}/virtualkey.py +0 -0
  306. {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info/licenses}/LICENSE +0 -0
@@ -1,121 +0,0 @@
1
- # copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
-
19
- import paddle
20
- from paddle import nn
21
- from .det_basic_loss import DiceLoss
22
- import numpy as np
23
-
24
-
25
- class SASTLoss(nn.Layer):
26
- """
27
- """
28
-
29
- def __init__(self, eps=1e-6, **kwargs):
30
- super(SASTLoss, self).__init__()
31
- self.dice_loss = DiceLoss(eps=eps)
32
-
33
- def forward(self, predicts, labels):
34
- """
35
- tcl_pos: N x 128 x 3
36
- tcl_mask: N x 128 x 1
37
- tcl_label: N x X list or LoDTensor
38
- """
39
-
40
- f_score = predicts['f_score']
41
- f_border = predicts['f_border']
42
- f_tvo = predicts['f_tvo']
43
- f_tco = predicts['f_tco']
44
-
45
- l_score, l_border, l_mask, l_tvo, l_tco = labels[1:]
46
-
47
- #score_loss
48
- intersection = paddle.sum(f_score * l_score * l_mask)
49
- union = paddle.sum(f_score * l_mask) + paddle.sum(l_score * l_mask)
50
- score_loss = 1.0 - 2 * intersection / (union + 1e-5)
51
-
52
- #border loss
53
- l_border_split, l_border_norm = paddle.split(
54
- l_border, num_or_sections=[4, 1], axis=1)
55
- f_border_split = f_border
56
- border_ex_shape = l_border_norm.shape * np.array([1, 4, 1, 1])
57
- l_border_norm_split = paddle.expand(
58
- x=l_border_norm, shape=border_ex_shape)
59
- l_border_score = paddle.expand(x=l_score, shape=border_ex_shape)
60
- l_border_mask = paddle.expand(x=l_mask, shape=border_ex_shape)
61
-
62
- border_diff = l_border_split - f_border_split
63
- abs_border_diff = paddle.abs(border_diff)
64
- border_sign = abs_border_diff < 1.0
65
- border_sign = paddle.cast(border_sign, dtype='float32')
66
- border_sign.stop_gradient = True
67
- border_in_loss = 0.5 * abs_border_diff * abs_border_diff * border_sign + \
68
- (abs_border_diff - 0.5) * (1.0 - border_sign)
69
- border_out_loss = l_border_norm_split * border_in_loss
70
- border_loss = paddle.sum(border_out_loss * l_border_score * l_border_mask) / \
71
- (paddle.sum(l_border_score * l_border_mask) + 1e-5)
72
-
73
- #tvo_loss
74
- l_tvo_split, l_tvo_norm = paddle.split(
75
- l_tvo, num_or_sections=[8, 1], axis=1)
76
- f_tvo_split = f_tvo
77
- tvo_ex_shape = l_tvo_norm.shape * np.array([1, 8, 1, 1])
78
- l_tvo_norm_split = paddle.expand(x=l_tvo_norm, shape=tvo_ex_shape)
79
- l_tvo_score = paddle.expand(x=l_score, shape=tvo_ex_shape)
80
- l_tvo_mask = paddle.expand(x=l_mask, shape=tvo_ex_shape)
81
- #
82
- tvo_geo_diff = l_tvo_split - f_tvo_split
83
- abs_tvo_geo_diff = paddle.abs(tvo_geo_diff)
84
- tvo_sign = abs_tvo_geo_diff < 1.0
85
- tvo_sign = paddle.cast(tvo_sign, dtype='float32')
86
- tvo_sign.stop_gradient = True
87
- tvo_in_loss = 0.5 * abs_tvo_geo_diff * abs_tvo_geo_diff * tvo_sign + \
88
- (abs_tvo_geo_diff - 0.5) * (1.0 - tvo_sign)
89
- tvo_out_loss = l_tvo_norm_split * tvo_in_loss
90
- tvo_loss = paddle.sum(tvo_out_loss * l_tvo_score * l_tvo_mask) / \
91
- (paddle.sum(l_tvo_score * l_tvo_mask) + 1e-5)
92
-
93
- #tco_loss
94
- l_tco_split, l_tco_norm = paddle.split(
95
- l_tco, num_or_sections=[2, 1], axis=1)
96
- f_tco_split = f_tco
97
- tco_ex_shape = l_tco_norm.shape * np.array([1, 2, 1, 1])
98
- l_tco_norm_split = paddle.expand(x=l_tco_norm, shape=tco_ex_shape)
99
- l_tco_score = paddle.expand(x=l_score, shape=tco_ex_shape)
100
- l_tco_mask = paddle.expand(x=l_mask, shape=tco_ex_shape)
101
-
102
- tco_geo_diff = l_tco_split - f_tco_split
103
- abs_tco_geo_diff = paddle.abs(tco_geo_diff)
104
- tco_sign = abs_tco_geo_diff < 1.0
105
- tco_sign = paddle.cast(tco_sign, dtype='float32')
106
- tco_sign.stop_gradient = True
107
- tco_in_loss = 0.5 * abs_tco_geo_diff * abs_tco_geo_diff * tco_sign + \
108
- (abs_tco_geo_diff - 0.5) * (1.0 - tco_sign)
109
- tco_out_loss = l_tco_norm_split * tco_in_loss
110
- tco_loss = paddle.sum(tco_out_loss * l_tco_score * l_tco_mask) / \
111
- (paddle.sum(l_tco_score * l_tco_mask) + 1e-5)
112
-
113
- # total loss
114
- tvo_lw, tco_lw = 1.5, 1.5
115
- score_lw, border_lw = 1.0, 1.0
116
- total_loss = score_loss * score_lw + border_loss * border_lw + \
117
- tvo_loss * tvo_lw + tco_loss * tco_lw
118
-
119
- losses = {'loss':total_loss, "score_loss":score_loss,\
120
- "border_loss":border_loss, 'tvo_loss':tvo_loss, 'tco_loss':tco_loss}
121
- return losses
@@ -1,272 +0,0 @@
1
- #copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- #Licensed under the Apache License, Version 2.0 (the "License");
4
- #you may not use this file except in compliance with the License.
5
- #You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- #Unless required by applicable law or agreed to in writing, software
10
- #distributed under the License is distributed on an "AS IS" BASIS,
11
- #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- #See the License for the specific language governing permissions and
13
- #limitations under the License.
14
-
15
- import paddle
16
- import paddle.nn as nn
17
- import numpy as np
18
- import cv2
19
-
20
- from .rec_ctc_loss import CTCLoss
21
- from .basic_loss import DMLLoss
22
- from .basic_loss import DistanceLoss
23
- from .det_db_loss import DBLoss
24
- from .det_basic_loss import BalanceLoss, MaskL1Loss, DiceLoss
25
-
26
-
27
- def _sum_loss(loss_dict):
28
- if "loss" in loss_dict.keys():
29
- return loss_dict
30
- else:
31
- loss_dict["loss"] = 0.
32
- for k, value in loss_dict.items():
33
- if k == "loss":
34
- continue
35
- else:
36
- loss_dict["loss"] += value
37
- return loss_dict
38
-
39
-
40
- class DistillationDMLLoss(DMLLoss):
41
- """
42
- """
43
-
44
- def __init__(self,
45
- model_name_pairs=[],
46
- act=None,
47
- use_log=False,
48
- key=None,
49
- maps_name=None,
50
- name="dml"):
51
- super().__init__(act=act, use_log=use_log)
52
- assert isinstance(model_name_pairs, list)
53
- self.key = key
54
- self.model_name_pairs = self._check_model_name_pairs(model_name_pairs)
55
- self.name = name
56
- self.maps_name = self._check_maps_name(maps_name)
57
-
58
- def _check_model_name_pairs(self, model_name_pairs):
59
- if not isinstance(model_name_pairs, list):
60
- return []
61
- elif isinstance(model_name_pairs[0], list) and isinstance(
62
- model_name_pairs[0][0], str):
63
- return model_name_pairs
64
- else:
65
- return [model_name_pairs]
66
-
67
- def _check_maps_name(self, maps_name):
68
- if maps_name is None:
69
- return None
70
- elif type(maps_name) == str:
71
- return [maps_name]
72
- elif type(maps_name) == list:
73
- return [maps_name]
74
- else:
75
- return None
76
-
77
- def _slice_out(self, outs):
78
- new_outs = {}
79
- for k in self.maps_name:
80
- if k == "thrink_maps":
81
- new_outs[k] = outs[:, 0, :, :]
82
- elif k == "threshold_maps":
83
- new_outs[k] = outs[:, 1, :, :]
84
- elif k == "binary_maps":
85
- new_outs[k] = outs[:, 2, :, :]
86
- else:
87
- continue
88
- return new_outs
89
-
90
- def forward(self, predicts, batch):
91
- loss_dict = dict()
92
- for idx, pair in enumerate(self.model_name_pairs):
93
- out1 = predicts[pair[0]]
94
- out2 = predicts[pair[1]]
95
- if self.key is not None:
96
- out1 = out1[self.key]
97
- out2 = out2[self.key]
98
-
99
- if self.maps_name is None:
100
- loss = super().forward(out1, out2)
101
- if isinstance(loss, dict):
102
- for key in loss:
103
- loss_dict["{}_{}_{}_{}".format(key, pair[0], pair[1],
104
- idx)] = loss[key]
105
- else:
106
- loss_dict["{}_{}".format(self.name, idx)] = loss
107
- else:
108
- outs1 = self._slice_out(out1)
109
- outs2 = self._slice_out(out2)
110
- for _c, k in enumerate(outs1.keys()):
111
- loss = super().forward(outs1[k], outs2[k])
112
- if isinstance(loss, dict):
113
- for key in loss:
114
- loss_dict["{}_{}_{}_{}_{}".format(key, pair[
115
- 0], pair[1], self.maps_name, idx)] = loss[key]
116
- else:
117
- loss_dict["{}_{}_{}".format(self.name, self.maps_name[
118
- _c], idx)] = loss
119
-
120
- loss_dict = _sum_loss(loss_dict)
121
-
122
- return loss_dict
123
-
124
-
125
- class DistillationCTCLoss(CTCLoss):
126
- def __init__(self, model_name_list=[], key=None, name="loss_ctc"):
127
- super().__init__()
128
- self.model_name_list = model_name_list
129
- self.key = key
130
- self.name = name
131
-
132
- def forward(self, predicts, batch):
133
- loss_dict = dict()
134
- for idx, model_name in enumerate(self.model_name_list):
135
- out = predicts[model_name]
136
- if self.key is not None:
137
- out = out[self.key]
138
- loss = super().forward(out, batch)
139
- if isinstance(loss, dict):
140
- for key in loss:
141
- loss_dict["{}_{}_{}".format(self.name, model_name,
142
- idx)] = loss[key]
143
- else:
144
- loss_dict["{}_{}".format(self.name, model_name)] = loss
145
- return loss_dict
146
-
147
-
148
- class DistillationDBLoss(DBLoss):
149
- def __init__(self,
150
- model_name_list=[],
151
- balance_loss=True,
152
- main_loss_type='DiceLoss',
153
- alpha=5,
154
- beta=10,
155
- ohem_ratio=3,
156
- eps=1e-6,
157
- name="db",
158
- **kwargs):
159
- super().__init__()
160
- self.model_name_list = model_name_list
161
- self.name = name
162
- self.key = None
163
-
164
- def forward(self, predicts, batch):
165
- loss_dict = {}
166
- for idx, model_name in enumerate(self.model_name_list):
167
- out = predicts[model_name]
168
- if self.key is not None:
169
- out = out[self.key]
170
- loss = super().forward(out, batch)
171
-
172
- if isinstance(loss, dict):
173
- for key in loss.keys():
174
- if key == "loss":
175
- continue
176
- name = "{}_{}_{}".format(self.name, model_name, key)
177
- loss_dict[name] = loss[key]
178
- else:
179
- loss_dict["{}_{}".format(self.name, model_name)] = loss
180
-
181
- loss_dict = _sum_loss(loss_dict)
182
- return loss_dict
183
-
184
-
185
- class DistillationDilaDBLoss(DBLoss):
186
- def __init__(self,
187
- model_name_pairs=[],
188
- key=None,
189
- balance_loss=True,
190
- main_loss_type='DiceLoss',
191
- alpha=5,
192
- beta=10,
193
- ohem_ratio=3,
194
- eps=1e-6,
195
- name="dila_dbloss"):
196
- super().__init__()
197
- self.model_name_pairs = model_name_pairs
198
- self.name = name
199
- self.key = key
200
-
201
- def forward(self, predicts, batch):
202
- loss_dict = dict()
203
- for idx, pair in enumerate(self.model_name_pairs):
204
- stu_outs = predicts[pair[0]]
205
- tch_outs = predicts[pair[1]]
206
- if self.key is not None:
207
- stu_preds = stu_outs[self.key]
208
- tch_preds = tch_outs[self.key]
209
-
210
- stu_shrink_maps = stu_preds[:, 0, :, :]
211
- stu_binary_maps = stu_preds[:, 2, :, :]
212
-
213
- # dilation to teacher prediction
214
- dilation_w = np.array([[1, 1], [1, 1]])
215
- th_shrink_maps = tch_preds[:, 0, :, :]
216
- th_shrink_maps = th_shrink_maps.numpy() > 0.3 # thresh = 0.3
217
- dilate_maps = np.zeros_like(th_shrink_maps).astype(np.float32)
218
- for i in range(th_shrink_maps.shape[0]):
219
- dilate_maps[i] = cv2.dilate(
220
- th_shrink_maps[i, :, :].astype(np.uint8), dilation_w)
221
- th_shrink_maps = paddle.to_tensor(dilate_maps)
222
-
223
- label_threshold_map, label_threshold_mask, label_shrink_map, label_shrink_mask = batch[
224
- 1:]
225
-
226
- # calculate the shrink map loss
227
- bce_loss = self.alpha * self.bce_loss(
228
- stu_shrink_maps, th_shrink_maps, label_shrink_mask)
229
- loss_binary_maps = self.dice_loss(stu_binary_maps, th_shrink_maps,
230
- label_shrink_mask)
231
-
232
- # k = f"{self.name}_{pair[0]}_{pair[1]}"
233
- k = "{}_{}_{}".format(self.name, pair[0], pair[1])
234
- loss_dict[k] = bce_loss + loss_binary_maps
235
-
236
- loss_dict = _sum_loss(loss_dict)
237
- return loss_dict
238
-
239
-
240
- class DistillationDistanceLoss(DistanceLoss):
241
- """
242
- """
243
-
244
- def __init__(self,
245
- mode="l2",
246
- model_name_pairs=[],
247
- key=None,
248
- name="loss_distance",
249
- **kargs):
250
- super().__init__(mode=mode, **kargs)
251
- assert isinstance(model_name_pairs, list)
252
- self.key = key
253
- self.model_name_pairs = model_name_pairs
254
- self.name = name + "_l2"
255
-
256
- def forward(self, predicts, batch):
257
- loss_dict = dict()
258
- for idx, pair in enumerate(self.model_name_pairs):
259
- out1 = predicts[pair[0]]
260
- out2 = predicts[pair[1]]
261
- if self.key is not None:
262
- out1 = out1[self.key]
263
- out2 = out2[self.key]
264
- loss = super().forward(out1, out2)
265
- if isinstance(loss, dict):
266
- for key in loss:
267
- loss_dict["{}_{}_{}".format(self.name, key, idx)] = loss[
268
- key]
269
- else:
270
- loss_dict["{}_{}_{}_{}".format(self.name, pair[0], pair[1],
271
- idx)] = loss
272
- return loss_dict
@@ -1,140 +0,0 @@
1
- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
-
19
- from paddle import nn
20
- import paddle
21
-
22
- from .det_basic_loss import DiceLoss
23
- from pyxlpr.ppocr.utils.e2e_utils.extract_batchsize import pre_process
24
-
25
-
26
- class PGLoss(nn.Layer):
27
- def __init__(self,
28
- tcl_bs,
29
- max_text_length,
30
- max_text_nums,
31
- pad_num,
32
- eps=1e-6,
33
- **kwargs):
34
- super(PGLoss, self).__init__()
35
- self.tcl_bs = tcl_bs
36
- self.max_text_nums = max_text_nums
37
- self.max_text_length = max_text_length
38
- self.pad_num = pad_num
39
- self.dice_loss = DiceLoss(eps=eps)
40
-
41
- def border_loss(self, f_border, l_border, l_score, l_mask):
42
- l_border_split, l_border_norm = paddle.tensor.split(
43
- l_border, num_or_sections=[4, 1], axis=1)
44
- f_border_split = f_border
45
- b, c, h, w = l_border_norm.shape
46
- l_border_norm_split = paddle.expand(
47
- x=l_border_norm, shape=[b, 4 * c, h, w])
48
- b, c, h, w = l_score.shape
49
- l_border_score = paddle.expand(x=l_score, shape=[b, 4 * c, h, w])
50
- b, c, h, w = l_mask.shape
51
- l_border_mask = paddle.expand(x=l_mask, shape=[b, 4 * c, h, w])
52
- border_diff = l_border_split - f_border_split
53
- abs_border_diff = paddle.abs(border_diff)
54
- border_sign = abs_border_diff < 1.0
55
- border_sign = paddle.cast(border_sign, dtype='float32')
56
- border_sign.stop_gradient = True
57
- border_in_loss = 0.5 * abs_border_diff * abs_border_diff * border_sign + \
58
- (abs_border_diff - 0.5) * (1.0 - border_sign)
59
- border_out_loss = l_border_norm_split * border_in_loss
60
- border_loss = paddle.sum(border_out_loss * l_border_score * l_border_mask) / \
61
- (paddle.sum(l_border_score * l_border_mask) + 1e-5)
62
- return border_loss
63
-
64
- def direction_loss(self, f_direction, l_direction, l_score, l_mask):
65
- l_direction_split, l_direction_norm = paddle.tensor.split(
66
- l_direction, num_or_sections=[2, 1], axis=1)
67
- f_direction_split = f_direction
68
- b, c, h, w = l_direction_norm.shape
69
- l_direction_norm_split = paddle.expand(
70
- x=l_direction_norm, shape=[b, 2 * c, h, w])
71
- b, c, h, w = l_score.shape
72
- l_direction_score = paddle.expand(x=l_score, shape=[b, 2 * c, h, w])
73
- b, c, h, w = l_mask.shape
74
- l_direction_mask = paddle.expand(x=l_mask, shape=[b, 2 * c, h, w])
75
- direction_diff = l_direction_split - f_direction_split
76
- abs_direction_diff = paddle.abs(direction_diff)
77
- direction_sign = abs_direction_diff < 1.0
78
- direction_sign = paddle.cast(direction_sign, dtype='float32')
79
- direction_sign.stop_gradient = True
80
- direction_in_loss = 0.5 * abs_direction_diff * abs_direction_diff * direction_sign + \
81
- (abs_direction_diff - 0.5) * (1.0 - direction_sign)
82
- direction_out_loss = l_direction_norm_split * direction_in_loss
83
- direction_loss = paddle.sum(direction_out_loss * l_direction_score * l_direction_mask) / \
84
- (paddle.sum(l_direction_score * l_direction_mask) + 1e-5)
85
- return direction_loss
86
-
87
- def ctcloss(self, f_char, tcl_pos, tcl_mask, tcl_label, label_t):
88
- f_char = paddle.transpose(f_char, [0, 2, 3, 1])
89
- tcl_pos = paddle.reshape(tcl_pos, [-1, 3])
90
- tcl_pos = paddle.cast(tcl_pos, dtype=int)
91
- f_tcl_char = paddle.gather_nd(f_char, tcl_pos)
92
- f_tcl_char = paddle.reshape(f_tcl_char,
93
- [-1, 64, 37]) # len(Lexicon_Table)+1
94
- f_tcl_char_fg, f_tcl_char_bg = paddle.split(f_tcl_char, [36, 1], axis=2)
95
- f_tcl_char_bg = f_tcl_char_bg * tcl_mask + (1.0 - tcl_mask) * 20.0
96
- b, c, l = tcl_mask.shape
97
- tcl_mask_fg = paddle.expand(x=tcl_mask, shape=[b, c, 36 * l])
98
- tcl_mask_fg.stop_gradient = True
99
- f_tcl_char_fg = f_tcl_char_fg * tcl_mask_fg + (1.0 - tcl_mask_fg) * (
100
- -20.0)
101
- f_tcl_char_mask = paddle.concat([f_tcl_char_fg, f_tcl_char_bg], axis=2)
102
- f_tcl_char_ld = paddle.transpose(f_tcl_char_mask, (1, 0, 2))
103
- N, B, _ = f_tcl_char_ld.shape
104
- input_lengths = paddle.to_tensor([N] * B, dtype='int64')
105
- cost = paddle.nn.functional.ctc_loss(
106
- log_probs=f_tcl_char_ld,
107
- labels=tcl_label,
108
- input_lengths=input_lengths,
109
- label_lengths=label_t,
110
- blank=self.pad_num,
111
- reduction='none')
112
- cost = cost.mean()
113
- return cost
114
-
115
- def forward(self, predicts, labels):
116
- images, tcl_maps, tcl_label_maps, border_maps \
117
- , direction_maps, training_masks, label_list, pos_list, pos_mask = labels
118
- # for all the batch_size
119
- pos_list, pos_mask, label_list, label_t = pre_process(
120
- label_list, pos_list, pos_mask, self.max_text_length,
121
- self.max_text_nums, self.pad_num, self.tcl_bs)
122
-
123
- f_score, f_border, f_direction, f_char = predicts['f_score'], predicts['f_border'], predicts['f_direction'], \
124
- predicts['f_char']
125
- score_loss = self.dice_loss(f_score, tcl_maps, training_masks)
126
- border_loss = self.border_loss(f_border, border_maps, tcl_maps,
127
- training_masks)
128
- direction_loss = self.direction_loss(f_direction, direction_maps,
129
- tcl_maps, training_masks)
130
- ctc_loss = self.ctcloss(f_char, pos_list, pos_mask, label_list, label_t)
131
- loss_all = score_loss + border_loss + direction_loss + 5 * ctc_loss
132
-
133
- losses = {
134
- 'loss': loss_all,
135
- "score_loss": score_loss,
136
- "border_loss": border_loss,
137
- "direction_loss": direction_loss,
138
- "ctc_loss": ctc_loss
139
- }
140
- return losses
@@ -1,113 +0,0 @@
1
- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
-
19
- from paddle import nn
20
- import paddle
21
-
22
-
23
- class SDMGRLoss(nn.Layer):
24
- def __init__(self, node_weight=1.0, edge_weight=1.0, ignore=0):
25
- super().__init__()
26
- self.loss_node = nn.CrossEntropyLoss(ignore_index=ignore)
27
- self.loss_edge = nn.CrossEntropyLoss(ignore_index=-1)
28
- self.node_weight = node_weight
29
- self.edge_weight = edge_weight
30
- self.ignore = ignore
31
-
32
- def pre_process(self, gts, tag):
33
- gts, tag = gts.numpy(), tag.numpy().tolist()
34
- temp_gts = []
35
- batch = len(tag)
36
- for i in range(batch):
37
- num, recoder_len = tag[i][0], tag[i][1]
38
- temp_gts.append(
39
- paddle.to_tensor(
40
- gts[i, :num, :num + 1], dtype='int64'))
41
- return temp_gts
42
-
43
- def accuracy(self, pred, target, topk=1, thresh=None):
44
- """Calculate accuracy according to the prediction and target.
45
-
46
- Args:
47
- pred (torch.Tensor): The model prediction, shape (N, num_class)
48
- target (torch.Tensor): The target of each prediction, shape (N, )
49
- topk (int | tuple[int], optional): If the predictions in ``topk``
50
- matches the target, the predictions will be regarded as
51
- correct ones. Defaults to 1.
52
- thresh (float, optional): If not None, predictions with scores under
53
- this threshold are considered incorrect. Default to None.
54
-
55
- Returns:
56
- float | tuple[float]: If the input ``topk`` is a single integer,
57
- the function will return a single float as accuracy. If
58
- ``topk`` is a tuple containing multiple integers, the
59
- function will return a tuple containing accuracies of
60
- each ``topk`` number.
61
- """
62
- assert isinstance(topk, (int, tuple))
63
- if isinstance(topk, int):
64
- topk = (topk, )
65
- return_single = True
66
- else:
67
- return_single = False
68
-
69
- maxk = max(topk)
70
- if pred.shape[0] == 0:
71
- accu = [pred.new_tensor(0.) for i in range(len(topk))]
72
- return accu[0] if return_single else accu
73
- pred_value, pred_label = paddle.topk(pred, maxk, axis=1)
74
- pred_label = pred_label.transpose(
75
- [1, 0]) # transpose to shape (maxk, N)
76
- correct = paddle.equal(pred_label,
77
- (target.reshape([1, -1]).expand_as(pred_label)))
78
- res = []
79
- for k in topk:
80
- correct_k = paddle.sum(correct[:k].reshape([-1]).astype('float32'),
81
- axis=0,
82
- keepdim=True)
83
- res.append(
84
- paddle.multiply(correct_k,
85
- paddle.to_tensor(100.0 / pred.shape[0])))
86
- return res[0] if return_single else res
87
-
88
- def forward(self, pred, batch):
89
- node_preds, edge_preds = pred
90
- gts, tag = batch[4], batch[5]
91
- gts = self.pre_process(gts, tag)
92
- node_gts, edge_gts = [], []
93
- for gt in gts:
94
- node_gts.append(gt[:, 0])
95
- edge_gts.append(gt[:, 1:].reshape([-1]))
96
- node_gts = paddle.concat(node_gts)
97
- edge_gts = paddle.concat(edge_gts)
98
-
99
- node_valids = paddle.nonzero(node_gts != self.ignore).reshape([-1])
100
- edge_valids = paddle.nonzero(edge_gts != -1).reshape([-1])
101
- loss_node = self.loss_node(node_preds, node_gts)
102
- loss_edge = self.loss_edge(edge_preds, edge_gts)
103
- loss = self.node_weight * loss_node + self.edge_weight * loss_edge
104
- return dict(
105
- loss=loss,
106
- loss_node=loss_node,
107
- loss_edge=loss_edge,
108
- acc_node=self.accuracy(
109
- paddle.gather(node_preds, node_valids),
110
- paddle.gather(node_gts, node_valids)),
111
- acc_edge=self.accuracy(
112
- paddle.gather(edge_preds, edge_valids),
113
- paddle.gather(edge_gts, edge_valids)))